
uSCRIPT: an AJAX-based Online Manuscript Transcription Service

A Major Qualifying Project Report:

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By:

Brian Cafferelli

Nathaniel Piper

Eric Sutman

Advisors:

Fabio Carrera

Stanley Selkow

April 23, 2008

http://www.uscript.org

http://www.uscript.org/

ii

Authorship Page

Statement from the team: All team members shared equally in the creation of this report.

iii

Abstract

This project, a continuation of the ongoing Emergent Transcriptions Initiative, redesigned and

implemented the Transcription Assistant software system. The system provides tools for archivists and

transcribers in order to preserve ancient documents in a digital, searchable format. Specifically, it

converted the system to a more appropriate web-based architecture. The software is composed of a

web browser based user interface, a series of server-side services, and a set of databases for storing all

the related transcription and user information. The project also established a web “home base” for the

past, present, and ongoing project.

iv

Table of Contents

Table of Contents ... iv

1 Introduction .. 1

2 Background ... 3

2.1 Overview of Historical Research Using Manuscripts .. 3

2.1.1 Importance of Manuscripts ... 3

2.1.2 Transcriptions.. 5

2.1.3 Digital Manuscripts ... 5

2.1.4 Manuscript-Based Historical Research ... 6

2.2 Goals of the Emergent Transcriptions Initiative ... 9

2.2.1 What is Emergence? ... 10

2.3 Components of the Emergent Transcriptions Initiative .. 10

2.3.1 Transcription Assistant .. 11

2.3.2 Archive Assistant ... 12

2.3.3 Contribution Accountant .. 12

2.3.4 Role of the Project in Manuscript Research ... 14

2.4 Previous Work on the Emergent Transcriptions Initiative .. 16

2.4.1 Transcription Assistant .. 16

2.4.2 Manuscript Markup Language (MML) .. 17

2.4.3 Automatic Boxing .. 19

2.4.4 Optical Character Recognition (OCR) .. 19

2.4.5 Genetic Algorithms ... 20

2.4.6 Text Line Detection ... 20

3 Discussion .. 22

3.1 Software Redesign .. 22

v

3.1.1 New auto-ordering algorithm ... 25

3.2 Database Design .. 26

3.2.1 Database Structure ... 29

3.2.2 Indexing ... 30

3.3 Front End Design ... 31

3.3.1 AJAX ... 31

3.3.2 Google Web Toolkit (GWT) ... 32

3.3.3 Interface design .. 34

4 Recommendations and Conclusions ... 37

4.1 Front-End Functionality .. 37

4.1.1 Adding a Throbber/Loading Bar .. 37

4.1.2 Browser History Support ... 37

4.1.3 User Projects ... 37

4.1.4 Splitting/Merging Boxes .. 38

4.1.5 Expanding Support for Other Languages and Other Archives .. 38

4.1.6 Straight-to-text .. 39

4.2 Website Expansion .. 39

4.2.1 User Forums .. 39

4.2.2 User Management .. 39

4.2.3 User pages ... 40

4.3 Overall System Improvements .. 40

4.3.1 Transcription Searching .. 40

4.3.2 Enhanced Optical Character Recognition ... 41

4.3.3 Importing Options ... 42

4.3.4 Business Plan ... 42

vi

4.3.5 Algorithm Optimization .. 42

4.4 Conclusion ... 43

5 Bibliography .. 44

6 Appendix A: Uscript Codebase Access .. 45

7 Appendix B: Database Documentation Access ... 46

8 Appendix C: Proposed Transcription Database Structure .. 47

9 Appendix D: Final Transcription Database Structure .. 48

10 Appendix E: Front-End Panel Structure .. 49

1

1 Introduction

 The history of the world is contained in handwritten manuscripts stored in archives

across the globe. Individual documents may seem unimportant, documenting day-to-day affairs

such as birth and death records, police reports, and other government acts. However, when

collections of these manuscripts are considered as a whole, one can view histories of entire

civilizations.

 Unfortunately, environmental conditions such as moisture ensure that these manuscripts,

which are typically written on paper or parchment, will not last forever. They yellow and grow

moldy, eventually becoming unreadable or even disintegrating altogether. Historians are

charged with the duty of transcribing these manuscripts to inform the public of the history they

describe.

 The most common and useful process for transcribing manuscripts is to create a digital

transcription. Today, a historian will sit down at a computer with a manuscript, open up a word

processor such as Microsoft Word, and start typing. There are many drawbacks to this method,

including lack of support for manuscript-specific font-styles (such as erased text and words

written in a different hand) and an absence of collaboration opportunity. After a historian has

finished transcribing a manuscript and puts it back on the archive shelves, another person could

walk in the next day and start transcribing that very same manuscript that has been done the

previous day, with no way of recognizing the redundancy.

 To deal with this very important issue, our project continues the work of the Emergent

Transcriptions Initiative, which seeks to build a software system to aid historians in transcribing

documents, as well as building an online community of transcribers cooperating to help build a

cumulative, reliable and transparent process for transcribing manuscripts. It seeks to reduce

the inherent redundancy of multiple, possibly several, people transcribing any one document

from scratch, by allowing transcriptions to be shared and gradually improved, this expediting

progress towards a complete computerized record of the information in the world’s archives.

 As a proposed answer to the problem of redundant transcription and dearth of

manuscript-specific word processing, the uSCRIPT system employs the asynchronous JavaScript

2

model (AJAX) with the help of the Google Web Toolkit (GWT) to establish a lightweight web

application that responds to user input fast enough to emulate the look and feel of a traditional

desktop program.

Chapter 2 provides a comprehensive review of the historical importance and uses of

manuscripts along with a summary of previous work completed by project teams as part

of the Emergent Transcriptions Initiative.

 Chapter 3 explains the goals of our project and how we achieved each of them. This

chapter contains implementation and architecture details for the uSCRIPT system.

 Chapter 4 contains the recommendations for students working on a future project as

part of the Emergent Transcriptions Initiative, as well as conclusions about the work we

did as part of the initiative decided by the team at the end of our project.

 Appendix A explains how to use sourceforge and subversion to access uSCRIPT source

 code.

 Appendix B explains where to find database documentation files.

 Appendix C displays a database structure proposed early on in the project.

Appendix D displays the current transcription database structure.

Appendix E provides a look at the structural hierarchy of the user interface.

3

2 Background

Development of a tool to help transcribers first requires an understanding of the research

process when working with historical manuscripts. Our work is built on previous work done that

has already examined this facet of the Emergent Transcriptions Initiative in great detail. This

chapter is intended to provide the reader with an overview of historical research using

manuscripts as well as a picture of the status of the Emergent Transcriptions Initiative at the

beginning of our work.

2.1 Overview of Historical Research Using Manuscripts

At the core of the Emergent Transcriptions Initiative are historical manuscripts. These are

ancient documents that usually were never intended to be published. The Emergent

Transcriptions Initiative is intended to streamline the process of using manuscripts in historical

research. It is therefore important to understand the importance of manuscripts, how they are

cataloged, what transcriptions are and why they are important, and how manuscripts are

stored digitally. This section explains all of these, and gives an overview of the process

historians typically follow when doing historical research with manuscripts.

2.1.1 Importance of Manuscripts

The most important type of source of information in historical research is a “primary

source”. A primary source of information is a document, artifact or other source of information

that was created close to or during the event or time period being studied. There are three

types of primary sources used in historical research: (1) Oral traditions and oral histories, (2)

Physical artifacts, and (3) Documents, both printed and handwritten

(http://memory.loc.gov/learn/lessons/psources/analyze.html). Of these three types, the third is

perhaps the most important and prolific.

The Library of Congress further divides the third category into published and unpublished works.

This distinction is important because few copies exist of each unpublished work. These

4

predominately handwritten documents are usually referred to as “manuscripts” and can consist

of personal correspondence, town records, court proceedings, and many other first-hand

accounts of historical events.

These manuscripts can be found in thousands of repositories across the globe, stored in

archives which protect them as best as possible from physical deterioration, and attempt to

catalogue them in a useful fashion. These tasks often prove difficult, as the collections are

usually quite large—the works of a single author often total in the hundreds of thousands of

pages (Rath et al., 2004).

Much of the information contained in these documents is relatively unimportant—minutiae of

everyday life, well documented in other texts. However, often historians will “unearth”

important data about significant events buried in these accounts. For this reason, these vast

collections of historical documents are important because of their potential to reveal lost

secrets about the past.

Figure 2.1: An Example of a Damaged Manuscript

Sifting through this data is a long and arduous process, and unfortunately the time we have

to do so is limited. The materials these historical accounts were recorded on are fragile; they

were never intended to last hundreds of years. Archives devote immense resources to

protecting and preserving the documents in their care. Water, mold, and even light can damage

5

manuscripts until they become unreadable. Archives must restrict access to their collections in

order to reduce the number of hands that handle any given document; each viewing of a

manuscript quickens its deterioration.

2.1.2 Transcriptions

The traditional solution to the conflicting needs to preserve and use historical documents is

the creation of transcriptions. The creation of transcriptions is also typically one of the steps a

historian takes in processing a document during research. Transcriptions have two primary

benefits over original documents. First, they are not as fragile as the source document. Second,

they are often easier to understand and read than the original. Note that a transcription is not

to be confused with a translation, whose primary purpose is to transform the content of a

document into a different language.

A transcription is a document which is intended to take the place of the original. It is more

than a simple copy of the final text of a document; typically it also describes other features of

the manuscript. Marks and notes in the margins, writing between lines, and stricken passages

can all be as important to a historian as the main body of text (Finch, 1999).

Creating a transcription is a time-consuming and labor-intensive process (Rath et al., 2004).

Manuscripts are often difficult to read because of damage and age, and difficult to understand

because of archaic words, expressions, and constructions (Finch, 1999). Still, they are an

essential part of the research process, especially because archives limit access to the original

documents.

2.1.3 Digital Manuscripts

Recently, many archive collections have begun to be converted to digital format. This

process allows for more frequent use of manuscripts without subjecting them to the handling

that is involved in physical examination. This is good for both archives and researchers, as

documents can be simultaneously better protected and more widely used.

6

Digitization of a document typically begins with scanning its pages, producing a digital

image. Large collections of these manuscript images are difficult to use, however, because

current technology for searching image contents is not very developed (Rath et al., 2004). The

common solution to this issue is to manually attach metadata describing the document to the

image in the database.

One organization that has attempted to provide a standard for representing digital versions

of documents is the Text Encoding Initiative (TEI). The Guidelines published by the organization

are designed to allow “a variety of literary and linguistic texts” to be represented for online

study and preservation (http://www.tei-c.org/). The various XML and SGML elements that the

organization provides are intended to be inserted by hand into plain-text transcriptions of texts

in order to mark features such as chapter beginnings, headings, and lines of poetry.

2.1.4 Manuscript-Based Historical Research

In order to create a tool for studying historical manuscripts, the existing process for doing so

must be understood. This facet of the Emergent Transcriptions Initiative was previously

examined. What was found is that the current process suffered from major inefficiencies, and is

time-consuming and labor-intensive. Their description of the process was based on the system

in place at the Venetian Archives, but a similar procedure exists in other archives. Figure 2.2

shows an overview of the procedure.

The process begins with historians searching the archive’s records of manuscripts they own.

Unfortunately, information about the contents of the manuscript is limited, so the search must

be based on the metadata the archive has on file. This means that historians’ search results can

yield a large number of possibly useful manuscripts.

Researchers then request a manuscript from the archive by collection set and series.

Archive personnel check the archive’s reserve to see if the requested document is already in

reserve. If it is not, they must search the archive’s stacks for the manuscript. When they find it

they put it in reserve. Once the document is in reserve, it is available for researchers to study.

7

The delay between the request and receipt of a document can be as long as two weeks due to

the size of the collection and inefficiencies in the cataloging system.

Once researchers are notified that the manuscript is available, they may view it in the

archive’s reading room. This is the only location in which people who do not work for the

archive may view the original documents. Therefore, all work with the document must be done

in the reading room. For this reason, transcription is an important part of the research process.

The actual transcription of the document is often a long and difficult task. The process often

requires use of dictionaries of abbreviations and symbols and other reference texts. A

researcher may require multiple trips to the archive in order to complete transcription of a

single document. On each visit, the researcher must again have the manuscript brought to the

reading room, and must locate the point at which they stopped work. Once the transcription

process is complete, the researcher returns the original document, and keeps the transcription

for personal use.

Two characteristics of the existing research process make it particularly inefficient. First, the

methods for locating manuscripts are currently not precise enough to quickly search for

manuscripts covering specific topics. Second, the transcriptions created by researchers are

rarely shared with other members of the research community. Together, these two

characteristics lead researchers to repeat work already completed by other historians, and to

use well-known manuscripts rather than uncovering new information.

Currently, searches for manuscripts are largely restricted to the contents of the metadata

for each document. Archives already spend significant time and resources keeping these

records accurate (Rath et al., 2004). Unfortunately, this data is often not specific enough for

researchers searching generic records for mention of specific people, places or events.

8

Figure 2.2: The Traditional Transcription Process

A study of history professionals in 2002 found that the most often used method of

finding primary sources during research was finding leads in other printed sources, which 98

percent of respondents said they regularly used for research (Tibbo, 2002). The next three most

commonly used methods (81 percent each) were printed bibliographies, printed finding aids,

and printed repository guides. The first of these three is very similar to finding leads in printed

9

sources, and the latter two must be compiled by the owners of collections (a time-consuming

task). By far the most commonly used electronic method of searching was searching an OPAC

database, which was only used by 78 percent of respondents.

This information means that historians are using manuscripts that have already been

analyzed by their peers far more often than they examine any of the incredible volume of

manuscripts which have not been touched in years. This leaves a possible vast resource of

information untapped. If more sophisticated methods for searching are not developed, more

and more documents could be lost to deterioration before their value can be determined.

The other major problem with manuscript research as it currently stands is that the

same work is often repeated many times by different researchers. When a transcriber

completes the transcription process, he keeps the transcription for his own personal use. The

archive takes back the original document, but usually does not even record that a transcription

was made. When other researchers choose to use the same manuscript for their own work,

they often end up repeating the transcription process.

While the archives are partially to blame because they do not keep records of transcriptions,

the overall system is far more responsible for this gross inefficiency. As the current historical

research process stands, there is no incentive for a transcriber of a manuscript to share his

work with the community. Doing so can give others working on similar projects an advantage,

and allow them to publish their findings first.

2.2 Goals of the Emergent Transcriptions Initiative

The overall goal of the Emergent Transcriptions initiative is to create a system that will

leverage the work that is already being done by visitors to archives around the world. It seeks

to create an ever-growing collection of transcriptions that are refined by the work of many

researchers. In this way, it hopes to uncover important information hidden in thousands of still

untapped manuscripts (Carrera, 2005).

10

The Emergent Transcriptions initiative is predicated upon five assumptions, according to

Carrera (2005):

• “There are precious few researchers with the necessary paleographic skills who are
able to produce reliable transcriptions of ancient manuscripts;

• “Despite this crucial bottleneck, these few capable individuals frequently duplicate
efforts by re-transcribing the same exact manuscript that someone else has
already worked on, often unbeknownst to each other;

• “The constant manipulation of the primary sources (parchments and the like)
renders them less and less legible as time goes by;

• “Very few manuscript transcriptions are published verbatim;

• “The work put into transcriptions is subsumed into scholarly journal articles and
books, thus it is rarely if ever seen or re-used by others.” (Carrera, 2005)

2.2.1 What is Emergence?

At the core of this project is the idea of emergence. In this case, it refers to the way in which

high-quality transcriptions will emerge from the work of many different participants. The

contribution of each researcher who contributes to transcriptions within the project will be

added to the system’s repository of information. This is not a new idea; similar projects, such as

Wikipedia, have been built on similar principles.

The Emergent Transcriptions initiative builds upon that idea by adding the concept of

credibility. As a given transcriber’s work is viewed and modified by others, acceptance or

modification of that work contributes to the original submitters’ credibility score. As more

people accept a transcriber’s work as correct, the credibility score of that transcriber will

increase. If others modify that transcriber’s work, their credibility score will decrease. When

deciding upon an accepted transcription out of the work of many different transcribers, the

system will consider these credibility scores. (Freitas & Glajch, 2007)

2.3 Components of the Emergent Transcriptions Initiative

The final version of the Emergent Transcriptions initiative will consist of three related

subsystems. These are the Transcription Assistant, the Archive Assistant, and the Contribution

Accountant. The role of each of these will be described in the following sections. An overview of

the various components and how they interact is shown in Figure 2.3.

11

Figure 2.3: High-Level View of the System

2.3.1 Transcription Assistant

The most visible part of the Emergent Transcriptions initiative is the Transcription Assistant.

This tool will be used by all transcribers while transcribing manuscript images that the archive

has loaded into the Emergent Transcriptions initiative. It allows the transcriber to retrieve,

review, and contribute to existing transcriptions and manuscripts.

The Transcription Assistant is particularly important to the project because it will serve as

the primary incentive for researchers to use the Emergent Transcriptions initiative. It is

intended to make the task of transcription easier in at least four ways. First, it makes it easier

for a transcriber to find their place in the manuscript should they have to consult another

reference. Second, it may in the future be able to give suggestions for words through

sophisticated Optical Character Recognition techniques. Third, it will allow researchers to

12

consult existing transcriptions in the Emergent Transcriptions database. Fourth, and perhaps

most importantly, it will allow a researcher to retrieve a manuscript or transcription almost

instantly from the server. It is important to ensure that transcribers want to use the

Transcription Assistant, because it will be the primary incentive for them to contribute their

transcription work to the larger community. (Freitas & Glajch, 2007)

2.3.2 Archive Assistant

The Archive Assistant portion of the Emergent Transcriptions initiative comprises a number

of tools which assist the archive in managing the Emergent Transcriptions initiative. Most of

these tools will make up the back end of the system. This portion of the system includes three

major tools. First is the database for all uploaded manuscript images. Second is a tool for

archivists to easily and quickly load manuscript images and metadata into the database. Third is

the automatic manuscript processing tool, which automatically boxes, orders, and uses OCR

techniques in order to index manuscript images which have not yet been transcribed. The

Archive Assistant also includes a user database and manager for all active users. (Freitas &

Glajch, 2007)

2.3.3 Contribution Accountant

The Contribution Accountant is the portion of the system that tracks the “reputation

scores” for all known users. The contribution assistant will constantly monitor the transcriptions

database, and update a user’s credibility score as they contribute to a transcription. It will also

use its records of credibility to determine the currently accepted text of the transcription.

Though the credibility system has not yet been designed, some basic features have already

been decided. There will be two types of credibility scores: scores for individual users, and

scores for each modifiable item in a transcription. Each time a user modifies a transcription, the

portions of the transcription they changed are counted as “votes” for their own submission. A

given user’s vote would be weighted by their own credibility, and would modify the credibility

score for all items they confirmed or changed. A user’s credibility score would be increased

13

when their submissions were confirmed, and decreased when their submissions were modified.

The credibility scores of elements in transcriptions would be used to determine the “accepted

text” of a transcription. Simply contributing to the project by submitting a transcription would

increase a user’s credibility by some base amount, in order to encourage participation.

Another aspect of the credibility system that has been proposed is allowing access to more

sophisticated features only to high-credibility users. For example, normal users might have

access to a basic OCR library or a limited number of uses of the OCR system during transcription,

while a higher credibility user could use author-specific OCR systems and could do so more

frequently. The credibility system could also be used to encourage users to give back to the

community by restricting the number of transcription downloads allowed in a given time period

based on the credibility of a given user. (Freitas & Glajch, 2007)

14

2.3.4 Role of the Project in Manuscript Research

Figure 2.4: Manuscript Workflow Using the Emergent Transcriptions System

Figure 2.4 demonstrates the way in which the manuscript research process will change

once the Emergent Transcriptions initiative is used at an archive. There are now three parts to

the process. The transcriber and the archive personnel still have significant roles in the process,

but they no longer directly interact. Both work with the Emergent Transcriptions server to get

things done.

The process begins with the archive personnel entering a manuscript into the system.

This will be an ongoing process until the archive’s entire collection has been added to the

Emergent Transcriptions initiative. The archivist will scan the manuscript, attach some basic

metadata to it, and upload it to the database, all with the help of the Archive Assistant. As a

particular archive will eventually accumulate a huge amount of data, the system will be

expanded such that each archive participating in the initiative will operate its own storage

server, and grant access to the system. A portion of the Archive Assistant on a central server

will then index the manuscript and enter the correct data into the database. The archivist can

then continue to upload additional manuscripts.

15

Once manuscripts have been uploaded, the transcriber can request to view manuscripts

using the Transcription Assistant or an associated web application. Transcribers will be able to

search the manuscripts using a variety of criteria, including full text of a transcription, and any

of the standard metadata elements. The server will respond almost instantly, retrieve the

requested manuscripts, and make them available to the transcriber. This will allow transcribers

to quickly browse through the results until they find one that interests them.

At this point, the transcription process begins. The Transcription Assistant will make this

step of the process much easier, but it will likely still involve a significant amount of work. As

the transcriber works with the transcription, their contributions are dynamically updated on the

server.

As each contribution is made, the Contribution Accountant will examine the changes the

transcriber made, and update the credibility information in the database accordingly. Any

changes the transcriber made will decrease the credibility scores of both the changed elements

and the corresponding transcribers. If the change the transcriber made was to a value a

previous transcriber entered, that transcriber’s credibility will increase. All changes in credibility

will be weighted by the current transcriber’s own credibility.

There is one additional portion to this process: automatic processing that the Archive

Assistant does when it has free cycles. There are currently two proposed activities which the

Archive Assistant could engage in when idle: Automatically indexing manuscripts that have not

been transcribed using OCR methods, and optimizing OCR and auto-boxing for specific classes

of manuscripts. These two processes should allow un-transcribed manuscripts to be found in

searches, thereby increasing the likelihood that more and more manuscripts will be examined.

(Freitas & Glajch, 2007)

16

2.4 Previous Work on the Emergent Transcriptions Initiative

The Emergent Transcriptions initiative has been ongoing for some time, with the most

recent work in the 2006-07 academic year. This section gives a brief overview of the status of

the initiative at the beginning of the 2007-08 academic years when our contribution began.

2.4.1 Transcription Assistant

A team of WPI students created the first major version of the Transcription Assistant in

2003, which is the tool to help someone transcribe an existing manuscript. Their work featured

a boxing system on top of the manuscript image that allowed the user to work with both the

original image they were boxing, and the transcription text side by side. The user would draw a

box around a word, and then double click on the box to edit the text value associated with the

box. That text shows up on the adjacent panel in the same position where the box was in the

image. A screenshot of the system at the beginning of our project can be seen in Figure 2.5.

Though this system was updated during another project in 2004, it still was not a complete

working program, and several of the components were either not completely implemented, or

had bugs. Still, the general interface for editing the boxes was present, so we decided to work

off of and redesign this program. (Freitas & Glajch, 2007)

17

Figure 2.5: Previous Completed Work on the Transcription Assistant

2.4.2 Manuscript Markup Language (MML)

A team of WPI students in 2003 had devised a basic structure for storing the transcription

information for a particulate manuscript that they labeled as MML, or Manuscript Markup

Language. This was the data structure implemented in the previous Transcription Assistant

program. While the MML version was not fully XML compatible, it worked in a similar fashion. It

was basically a list of unordered box tags. Each tag has five attributes, the x and y pixel

locations for the top right and bottom left corners of the box, as well as a type field, which

indicated whether the box was a text box or image box. Within each tag was the actual word or

words that the user input as the transcription for the word or words boxed, along with some

simple HTML-style text-markup identifiers, such as bold tags (Ho et al., 2003, pages 40-42).

While the old projects did store metadata for each transcription entered by the user, it was not

18

stored in the MML. Another WPI student team in 2007 decided to restructure this MML into a

new fully XML compliant structure which allowed for a more descriptive document

representation. (Freitas & Glajch, 2007) The redesigned MML allows for the expression of the

full document history, integrates metadata, enables transcriber notes, and maintains a

specified word order.

Figure 2.6: The Smear Automatic Boxing Process (Freitas & Glajch, 2007)

19

2.4.3 Automatic Boxing

A team of WPI students in 2004 extended the Transcription Assistant to include an

algorithm for automatically creating boxes around words in a manuscript, and then displaying

those boxes on the screen. Though this algorithm places no order on the boxes, and did not do

a complete job of boxing every word correctly, it worked well enough that the 2007 WPI

student team based their auto-boxing research off of the existing tool.

The algorithm converted the color image temporarily into a grayscale image. Then using the

Java Advanced Imaging’s (JAI) existing conversion tools, it binarized the image into a black and

white image. This black and white image was passed through an algorithm which goes through

the image horizontally and vertically looking for runs of white pixels smaller than a certain

threshold, and turns the small white pixels runs to black pixels. The result is that the image

looks smeared horizontally and vertically. These two images are combined by taking the cross-

section of the black smeared areas, to create an image with sections of black smears over each

word. Then boxes are created around these words, and finally boxes that are too small or

overlapping are combined. This algorithm has some thresholds which can be manipulated to

produce better performance in different styles of manuscripts. (Freitas & Glajch, 2007)

2.4.4 Optical Character Recognition (OCR)

A key piece of the final Emergent Transcriptions initiative will be a sophisticated Optical

Character Recognition (OCR) system. Research on OCR algorithms revealed that at this point in

the Emergent Transcriptions initiative, it was not practical to begin work on the OCR system.

The extent of the work that has gone into OCR development is the automatic word boxing

algorithm.

20

2.4.5 Genetic Algorithms

There are many advanced algorithms for pattern recognition and image manipulation that

are planned for inclusion in the Emergent Transcriptions initiative, and each of these will likely

be difficult to optimize. The 2007 project realized that optimization can be made easier and

faster through the use of a “Genetic Algorithm” (GA). A GA uses a method which mimics

evolution in order to find a near-optimal solution to a problem. Without doing the complex,

long, and often unfeasible task of analysis required to derive the optimal solution, a GA can find

an excellent solution in a fraction of the time.

At the core of the GA is a “chromosome”, which is a series of bits that represents a

unique solution to the problem. Typically, these are made up of all of the different parameters

that determine how a process functions. Chromosomes are the elements in the GA that evolve

and improve over time. The purpose of the GA is to find the chromosome that represents the

best solution to the larger problem.

The chromosomes in the GA are created in “generations”. Each generation is a collection of

chromosomes that are created and evaluated at the same time. All of the generations in a given

GA typically contain the same number of chromosomes. Each chromosome in the first

generation is randomly generated. Each chromosome in subsequent generations is produced by

“reproduction” between pairs of chromosomes in the previous generation. Reproduction pairs

are selected based on a “fitness value” that is calculated for every chromosome. (Freitas &

Glajch, 2007)

Both the processes of reproduction and selection in a GA are discussed further in the 2007

report.

2.4.6 Text Line Detection

 An important set of information that hadn’t yet been accounted for was the order of the

boxes (and therefore words) on a page. This information is necessary for making logical sense

of the transcriptions on a page. The 2007 project designed a line detection subsystem in an

effort to order the words.

21

A proof of concept for this technique was developed using a line detection algorithm

based on what is called the “Vertical Projection Profile”. The algorithm examines fixed-width

columns of the entire image, and locates Partial Segmentation Lines (PSLs) at locations likely to

be the bottoms of words. After finding all the PSLs for all of the columns, the algorithm joins

PSLs across the entire page into word line borders. (Freitas & Glajch, 2007) This process is

described in greater detail in the 2007 report. The advantage of the algorithm was that it could

be optimized with the same genetic algorithm that could optimize the automatic boxing system.

Although it was functional it was not efficient or accurate, and needed significantly more

development.

 The 2007 student project team realized that their desktop application, which saved

transcriptions on a client’s machine in an MML file, did not sufficiently fulfill their goal to

provide opportunity for historians to collaborate. Since uploading a saved transcription

would’ve been an extra step for the user and there was at that time no incentive to do so, the

team concluded that they had to accept that people would typically not bother submitting their

work to share with others. Though it was never fully functional, a java applet version of the

Transcription Assistant was developed in an effort to more effectively build an online

community of transcribers. The 2007 team also pioneered a single-table mySQL database

stored on WPI’s database servers to store transcription data. Metadata was stored directly in

the database, with pointers to both the manuscript image and MML file for each document.

22

3 Discussion

At the outset of this iteration of the Emergent Transcriptions project, we determined

that the overall initiative required a thorough evaluation. Past projects resulted in software

with various levels of functionality, but the initiative was yet to produce fully functional and

useful software. There was useful code, but too much of it was interlaced with inefficient, non-

working, or useless code. Many of the past groups had spent considerable amounts of time

sorting through previous projects trying to make sense of the code. This was an immense waste

of time that could have been better utilized if the projects were better organized and

documented.

Realizing that our work would be another step in the initiative, and that future groups

would again be using our work as a building block, we decided that our primary goal would be

to build a functional framework for the system that would be easily understood and easily

extensible. In order to achieve this, a complete system re-design was necessary.

We took this opportunity to reanalyze the requirements for the project, and gauge

whether the initiative was being fueled by the end-user requirements, or if it was steering off

course. It was easy to see how an ongoing long-term project such as ours might have drifted off

course due to continually compromised requirements. We realized that continually refreshing

the requirements is necessary to this project’s success. Many of the past projects dealt largely

with researching user requirements, and were our primary source for determining the current

requirements.

3.1 Software Redesign

 The major update that we determined was needed was the conversion of the software

to an online system. Collaboration within the system is dependent on connectivity, and

previous stand-alone applications never reached a point where collaboration was actually a

possibility. There was also concern about the technical aptitude of our potential users. Having

to download, install, or configure anything may pose a problem. In addition, public computers

typically have restrictions on downloading and installing software. We determined that an

23

online system, properly designed, could have the same user feel as a desktop application,

without requiring any downloads or installations, and increase the feasibility for seamless

collaboration.

 The software redesign was an interesting experiment in restraint. We had an existing

legacy code base that was fairly expansive, with working code and design decisions already

made. It would have been tempting to start our new design with the assumption that we could

reuse much of the previous code, but we realized that if we considered the legacy code a

“starting point”, we would compromise our design in order to facilitate easier coding. We knew

that we needed to design from the ground up.

 We decided to adopt a web-based service architecture for the new software. It

incorporates three major components: a client-side graphical user interface, a set of server-side

functionality, and a set of databases for centralized storage. The decision to move some of the

functionality to server-side web services was made because of the heavier, processor-intensive

Transcription Assistant functions such as auto-boxing, auto-ordering, running the genetic

algorithm, and parsing data to/from the older MML data format. The legacy code base was

largely adaptable into web services for the TA. The difficulty with extricating useful code from

previous versions of the software was that it was largely tied into the specific implementation

of the software. By removing unnecessary dependencies within the code, we were able to

isolate and streamline the processes that we were interested in reusing. Rather than being

intrinsically tied to a specific implementation, the services are now available through a simple

interface from anywhere within our software. The Google Web Toolkit provides a Remote

Procedure Call specification which allows this communication between server and client.

 One modification was done to the auto-boxing mechanism when converting it to a

service. Rather than boxing an entire page by default, we realized that it would likely be more

accurate if the auto-boxer were given a particular set of boundaries (referred to as a “text field”)

to box. Doing so will eliminate extraneous boxes by reducing the amount of white space,

marginalia, miscellaneous marks, unwanted text and images. It will also significantly improve

24

the speed at which the auto-boxer runs, as it will minimize the number of pixels that are

processed.

 The Transcription Assistant maintains the feel of a desktop application because all of the

communication between client and server is asynchronous. Typically when working in a

browser, any update of information requires that an entire page is reloaded. Through GWT’s

RPC calls, the browser is able to pass and receive information and requests behind the scenes,

eliminating the need to refresh the page.

25

3.1.1 New auto-ordering algorithm

The previous algorithm for determining where a line of text on a page lies was slow and

inaccurate. Knowing where lines of text lie on a page is integral to the software, because it

dictates the order in which the boxes are stored, and consequently, the order of the words. The

previous algorithm, like the algorithm for auto-boxing, depended on an analysis of the image

data. Rather than try to analyze the image, we suggested a new algorithm that depends on the

location of boxes generated by the auto-boxing algorithm. In preliminary testing, this new

algorithm is more accurate and significantly more efficient.

 The new algorithm depends on a new piece of data that is very useful to analyze an

image: the average height (in pixels) of the boxes generated by the auto-boxing algorithm. It

may sound like a trivial piece of information, but it describes the average height of the text on

the page. Because manuscripts have no uniform “font size”, and different scanning resolutions

make words look different sizes to an image analyzer, this data gives us a better understanding

of the relative size of the words on the page.

 The ordering algorithm starts by searching the list of boxes on a page to find the top

left-most box. As the boxes are stored by coordinates, it finds the box with the lowest x and y

values (x,y). It assumes that this is logically the first word on the page. It removes that box from

the “to search” list, and adds it as the first box in the ordered list. To determine which box is the

next box, it searches the list of boxes for the box with the lowest x value with a y-midpoint

value within the range of y-midpoint +/- half of the average box height.

26

Logically, this finds the next word that appears to be on the same line as the previous

word. Once again, it removes that box from the “to search” list, and appends it as the next box

in the ordered list. The algorithm determines that it has found the end of a line when there is

no box that meets the above criterion. It then finds a new top-left box, and repeats the steps.

When the “to search” list is empty, the algorithm is finished.

3.2 Database Design

As is the case with most modern web applications, the Transcription Assistant is three-

tiered. The lowest tier is the data tier and is comprised of two relational, mySQL databases. The

first stores information related to the system’s users and the second stores all the data that

comprise the transcriptions themselves along with their metadata. Manuscript images are

stored on an external file system on the server, with pointers to them stored in the

transcriptions database.

 The user database employs a simple, single-table design to store user data: login

credentials, user access level (normal user, archivist, administrator), and the number of

transcriptions they have worked on, among other details. Guests to our site have access to the

demonstration version of the Transcription Assistant (seen on the uSCRIPT website on the

Transcribe tab) to allow them to get a feel for what our system can offer. Registered users will

27

have basic access to the Transcription Assistant so that they can save their work, therefore

contributing to those emergent documents along with the ability to export their transcriptions

for personal use. Archivists will additionally have access to the Archive Assistant, allowing them

to upload and auto-box scanned manuscript images. System administrators have the ability to

ban problematic users to ensure the operation of the system runs smoothly. Please note that

the user access schema is set up such that each type of user has all of the access rights of all

user levels lower than theirs:

 The transcriptions database houses all of the data and metadata of each manuscript

transcription, and has undergone multiple design changes over the course of our project.

Using the initial design, the transcription database contained only 12 tables. So all

suggested words in the transcriptions in the system are stored in the same table, which

becomes unreasonably large very quickly.

 The second design dealt with the problem of very large tables, but it ended up

overcompensating. Using this design, each box had its own tables for suggested words, votes

for those words, suggested coordinates, and votes for those coordinates. The number of tables

used to represent data for a single page of average length approaches one-thousand. Each

28

table is very small. However, the number of tables becomes highly prohibitive in terms of

executing database operations quickly enough to provide a smooth user experience from the

perspective of the web interface.

 In order to decrease the number of tables needed to represent pages in the

transcription, the third design focuses on the page as a storage unit. Rather than having each

box having its own table for suggested words, all suggested words on a given page are stored in

the same table. With this setup each page is represented by twelve tables in the database. Each

of these tables is fairly small, containing no more than a few hundred rows. For more details,

see Appendix C.

 After considering the above design, we found that there were still too many tables, so

the focus was moved to the entire manuscript as a unit of storage. With this design, all

suggested words in a given manuscript are listed in the same table, allowing a single manuscript

to be represented by twelve tables.

 In the end we came to the realization that the initial design, in which all transcription

data and metadata in the system are stored in twelve tables, is the best for uSCRIPT as it

minimizes the number of tables in the system. The fact that each table is quite large in size isn’t

a remarkable drawback because database tables by nature are meant to store enormous

amounts of data.

While a manuscript is likely to be lacking a proper title, there has to be a way of uniquely

identifying them in our system. One could argue that a reference code would serve as the

unique identifier, but that is not an optimal solution. Firstly, references codes vary from archive

to archive, so there’s a chance that there are two manuscripts in our system with the same

reference code. Also, reference codes tend to err on the unintelligible side in terms of end-

users looking at them, as they were meant for internal archive use in keep the different

manuscripts in order. Even if a title has to be contrived by an archivist based on a few other

metadata fields (such as reference code and subject), it is our best bet for uniquely identifying

documents in the uSCRIPT system.

29

3.2.1 Database Structure

 The structure of the transcriptions database mirrors the Manuscript Markup

Language (MML) file structure, which is an XML-based system devised by a previous project

team to store transcription data. While MML files are no longer used for storing data in the

uSCRIPT system, the same structure is used in the transcriptions database. Each time a

transcription was opened in the Transcription Assistant its MML file would be sent to the client

machine and its data loaded in the application. When a user was finished with a document they

would save it, sending the updated MML file back to the server. The sending of MML back and

forth is both unwieldy and time consuming, and the AJAX model compensates for MML’s

drawbacks. The vision for the web-based Transcription Assistant built on the framework we’ve

provided only transmits data to the client machine from the server and vice versa exactly when

it is needed. For example, when a user types a word into a box, that word will immediately be

sent to its proper place in the transcriptions database. The end result is that a user’s

transcriptions will be saved automatically as they work, eliminating the need both to wait for all

of the updates to be saved at the end of a session and developers needing to worry about data

being lost if a user is disconnected in the middle of a session.

Each transcription contains a set of metadata, including the title, author, and subject

matter. Due to the age of many of these manuscripts, many pieces of metadata may be

unavailable, so the archivist who is uploading a manuscript will simply enter as many pieces of

metadata as they can. As for the structure of transcription data itself, each document contains

a series of one or more pages, which are labeled with a number for recordkeeping purposes,

even if the printed page numbers on the manuscript don’t match up exactly. Each page

contains a series of one or more page elements, which can represent a number of different

things, but are most commonly either a paragraph of text or an image. If a page element is a

text paragraph, it contains a series of one or more boxes. Boxes are a specific element that are

drawn around words, and are comprised of a number of elements:

 a list of suggested transcriptions for that word

 a list of votes for the suggested transcriptions for that word

 a list of suggested sets of coordinates for the location of the box

30

 a list of votes for the sets of coordinates for the location of the
box

 the text style of the word in the box

Users are allowed to suggest new locations for the boxes because it makes documents

more emergent, and it recognizes the reality that archivists are likely not going to have the time

to tweak the locations of boxes on a manuscript they’ve just auto-boxed. They’re probably

going to consider the boxing good enough for transcription to begin, upload the boxed image,

and move on to the next image they want to upload. However, there’s a much better chance

that transcribers will, from time to time, take a moment to suggest a new set of coordinates for

a box in order to improve the clarity of boxes.

Traditionally, a scripting language such as Perl or PHP is used to allow the front-end of a

web application to communicate with and manipulate databases. However, in our three-tiered

design we have a middle tier running on the server side in the form of a Java application. To fit

into this system we opted to make use of Java’s Database Communications (JDBC) library . This

allows us to format and process the raw data being received from one of the databases before

sending it to the TA web interface on the client machine, thereby minimizing the amount of

data that needs to be sent between the client and server machines.

3.2.2 Indexing

One method that we looked into using for the purpose of improving database

performance is the use of indexes. Indexes are typically used on larger tables to decrease the

amount of records a database has to sift through in order to formulate the result of a query.

However, along with their potential for significant speed increases, indexes actually slow down

processing on queries that modify fields in a database, rather than simply reading fields. The

most common database operation in our system, unfortunately, is a modification resulting from

a user typing a suggested word on a transcription page. Because our databases will be serving

more update (write) queries than read queries, the use of indexes in our transcription database

would decrease overall query processing speed.

31

3.3 Front End Design

The front-end component of our application represents a very important aspect of our

overall project. As the primary end-user product, the front-end is responsible for the usability

of the entire system. Since our application is not being designed for other computer scientists,

and is not being programmed only as a proof-of-concept, we must take special care to create a

program with an intuitive interface that allows users to work effectively, and to work efficiently.

We constructed an interface that largely resembles desktop applications while running within a

web browser, taking into consideration and developing elements such as toolbars, work areas,

and an infrastructure for multi-language support,

3.3.1 AJAX

 One of our early decisions was to implement our online system using AJAX, which stands

for Asynchronous JavaScript and XML. As its name implies, AJAX is not a language or platform,

but a system of techniques for developing rich Internet applications (RIAs). The primary

element to AJAX applications is the use of the XMLHttpRequest object or IFrame objects. These

allows web browsers to make dynamic data requests without having to reload the entire page

and application, making data exchange much faster and easier to handle. The second

commonly found trait in AJAX applications is the use of XHTML and CSS for the styling of

elements. While this is not particularly uncommon, it is noteworthy for aiding the speed with

which elements can be developed, as XHTML and CSS are both common, easily learned and

quick to implement. Next, the interface and Document Object Model (DOM) calls of an AJAX

application are typically coded in JavaScript or a related scripting language. Lastly, AJAX

applications most commonly use XML for the file format of exchanged data, but HTML,

JavaScript Object Notation (JSON), or plain text are all also commonly used. The culmination of

these four steps is an elegant method for putting together a browser-based application with a

well-balanced client-server relationship and large potential for functionality and usability. That

said, AJAX is not the only technique for creating rich Internet applications.

 The specific reasons we chose AJAX for our system center around our user

requirements. Our target audience, historians and historical scholars, are by no means

32

guaranteed to be particularly tech savvy, or to have extensive computer resources. We

therefore need our application to make as few demands upon them as possible. Our system

would need to be easily accessible, intuitive to use, and light on system requirements, AJAX was

the simplest solution which addressed all of these issues. First, all a user would need to access

an application in AJAX is a connection to the Internet, and a web browser with JavaScript

enabled. With other technologies, such as desktop applications, installation might become a

hindrance, as the users, especially those who may work off of computers owned by a company

or university, might not have the appropriate permissions. Another benefit is that all system

upgrades or updates would be automatic, requiring no patches or re-installation. With regard

to usability, AJAX applications offer essentially the same functionality as would a desktop

application. While development of some elements might be faster in Visual Basic, for example,

as was the original 1998 Emergent Transcriptions project, the same features are nevertheless

available with AJAX, with the added benefits of an online application. Finally, because much of

the work of the application is done locally by the browser, with major functions being run by

the server through remote procedure calls (RPCs), the application is not intensive from either a

processing or networking standpoint.

 There are, however, some weaknesses to using AJAX. For one, our application runs the

risk of having latency problems when loading large amounts of data from the database is

loaded. Also, since the application is typically coded in JavaScript, problems can arise where

different browsers use different standards for interpreting JavaScript.

3.3.2 Google Web Toolkit (GWT)

 After deciding upon AJAX as a method of implementation for our application, w looked

into various available technologies and libraries available for creating JavaScript front-ends, and

eventually decided upon the Google Web Toolkit (GWT). GWT launched version 1.0 on May 17,

2006 to much fanfare and has since received much praise from a variety of sources on web

development. Its primary feature is its Java-to-JavaScript Compiler, which allows a developer to

write their application in Java design their application according to standard object oriented

33

programming conventions. GWT also features a large class library of widgets (ie, interface

elements), that can be used to build interfaces in a similar fashion to other common Java

widget toolkits like SWING or AWT. Since the JavaScript produced is essentially an object code

of sorts, it is not only more compact than most JavaScript applications, but much more difficult

to read through; the latter property means that using GWT naturally creates a low-level

security for the proprietary work in the application. Finally, GWT offers easy implementation

of RPCs, speeding up time spent connecting the back- and front-ends of our application.

 In addition to these features, we also chose GWT for some of its other strengths. As

mentioned before, JavaScript and related ECMAScript scripting languages are inconsistently

implemented by different browsers. As a result, developers can spend considerable time

providing checks and fixes to applications to correct cross-browser problems. GWT has a good

reputation for dealing with this problem, and, although we later ran into a problem with cross-

browser support, this aspect was nevertheless a big selling point for us. Another feature of

GWT is support for internationalization, wherein the text in the application may appear in

multiple languages for users in different parts of the world. Since our application is initially

being developed for use by an Italian archive, with an eye to expand to historical archives all

over the world, multilingual support is an imperative feature for our usability. Essentially, GWT

offers more rapid development in a familiar language and format as well as support for features

that would be much more time-consuming to implement otherwise.

 However, there are a couple of caveats to developing in GWT. In our experience, there

are sometimes inconsistencies between the documentation and the functionality of widgets.

This can be frustrating and can lead to many redesigns and work-arounds. Similarly, the widget

library is still somewhat limited, as are the currently implemented widgets. As an example, the

AbsolutePanel class is the only panel which can position widgets placed on top of it absolutely

(according to a set pixel coordinate value). However if you want those widgets to be able to be

focusable, you'll need to wrap them in a FocusPanel, the only panel which brings focus to the

widgets it carries. This led to considerable layering of panels in our application, and will

probably continue to do so in later iterations. Thankfully, these problems are very likely to be

addressed by Google developers as GWT comes into maturity.

34

3.3.3 Interface design

 When we began designing the user interface for our new application, we began by

looking at previous iterations. We used a generally similar layout to the Java application that

we worked with at the beginning. The primary feature of this layout is the use of two large

windows in the primary workspace, in our version called the Image View and the Text View,

from which the user can view the manuscript and a preview of the current transcription

respectively.

 The Image View comprises not only the scanned image of the current manuscript, but

also the boxes in which transcription suggestions are stored, superimposed over the words they

represent. The Image View is currently housed within a tabbed panel (TabPanel) with the idea

being that in future iterations other views of a manuscript (such as under ultraviolet light) will

be available.

 The Text View is less directly interactive with the user, but is still an important

component of the workspace. Since the boxes are superimposed over words on the

manuscript, it would be problematic to place the transcription suggestion inside the box itself,

since it would render both versions of the word illegible. Therefore, a second view in which

only the digital text appears is necessary. Words in the Text View appear in the same place on

the field as they do in the Image View, and the two views' scrollbars are locked together so that

they will move together.

35

 The last major component to the workspace, which is new to our version, is the Preview

Panel. This panel resides on the left hand side of the workspace, and is roughly similar to

preview panels in more common programs like Microsoft PowerPoint or Adobe Acrobat. When

a user has multiple transcription pages open, each will appear as a selectable button on the

Preview Panel. Each button will feature a title and thumbnail view of the page.

 Besides the layout of the application, we also needed to design the ways in which the

user would input data into and interact with the transcription suggestion boxes. Moving and

resizing the boxes is controlled by the use of two handles, located at the top-left and bottom-

right of a box respectively. We had initially planned to make the sides of the boxes themselves

editable, but ran into problems with resizing in the left and up directions. In order to enter

text, the user simply clicks on the box, which prompts a pop-up box into which the user enters a

word. It is important to note that the box does not appear directly over top of the box, because

that would obscure the view of the word being transcribed. In order to submit a typed

suggestion, the user may either press the spacebar to enter the suggestion and advance to the

next box, or press the return key to enter the suggestion without moving their position. The

36

pop-up's text field is itself a suggestion box (SuggestBox), meaning that, as the user types,

previously entered suggestions that match what has been typed so far will appear below the

pop-up. These words can be selected with either the mouse or the keyboard. Finally, on the

right side of the pop-up is a button which expands the pop-up to a now mostly deprecated

view. This secondary pop-up is a stack panel containing a drop-down for previously entered

suggestions, a text field for entering new suggestions, a similar drop-down for coordinates, and

a button to begin editing box coordinates under the initial system involving dragging box edges.

 Besides the Transcription Assistant we worked on creating the preliminary layout for the

Archive Assistant. The Archive Assistant, the tool which archivists use to import images into the

database, is divided into two main sections. On the left is a file upload panel where the user

can create manuscripts and pages and place them onto a tree structure before submission. On

the right it contains a tabbed panel which contains a section for entering meta-data and a

section for editing boxing in the file.

37

4 Recommendations and Conclusions

 A major goal of this project is to provide future groups with a comprehensive view of the status

of the project, where we envision the initiative progressing from here, and how we imagine that might

be done.

4.1 Front-End Functionality

4.1.1 Adding a Throbber/Loading Bar

In the current implementation of the Transcription Assistant, there is no way to monitor

the status of any ongoing loading or processing. As a result, users waiting for the program to

load a large element or finish an intensive task are left without any indication that the

application is still in fact functioning. This is addressed in browsers with elements like loading

bars and throbbers. Throbbers are icons located typically in the top-right corner of a browser's

screen which run a simple animation while the browser is busy. This is a simple method for

reassuring the user that all is well and prevent them from mistakenly closing out the

application. While our current state of implementation does not necessitate a throbber or a

loading bar, almost any extension of functionality would be greatly aided by the presence of

such a device.

4.1.2 Browser History Support

 One of GWT's commonly touted features is its browser history support. Since the

browser history is tied to interpreted HTML, JavaScript developers often do not or are unable to

utilize it. That means that when users move between pages in such applications, they cannot

rely upon the browser's built-in navigation tools. GWT allows the creation of new history items

that can be placed on a browser's history stack . While this is not a core feature, it does not

appear prohibitively difficult to implement compared to its benefits in usability.

4.1.3 User Projects

 Realistically, users are not going to simply look through one or two documents for the

whole of their research. Instead, they are going to collect lists of documents that they

38

reference and it would be very useful for the Transcription Assistant to facilitate that. The idea

of a project, then, would be to maintain a collection of links to relevant files. Since the project

file is simply a list of references, it could easily be exportable to and importable from local files,

and could easily be used by multiple users.

4.1.4 Splitting/Merging Boxes

 There is a problematic case in emergent transcription where there is disagreement over

whether a section of text is one or multiple words. Worse still, such contested sections may

overlap and be interwoven. Our proposed solution would be to create tools for splitting and

merging boxes. These splits and merges would themselves need to be suggestions, and as such,

would be stored separately from the individual suggestions. Essentially a section that was

originally marked as two words could be merged together, creating a third suggestion-storing

object for when the boxes were viewed as one. The user would then need some visual

indication in order to switch between the two views of the wording. Splitting would work

similarly in the other direction.

4.1.5 Expanding Support for Other Languages and Other Archives

 Currently, our project only has a language entry present for English, and has no

specialization for different archives. Since we would like to see this project implemented in

various countries by several different archives, it will be important for future groups to spend

time working on implementing new language support and making meta-data friendly to

differing formats. The current application contains the groundwork for implementing

internationalization. Also thankfully, most archives primarily use a reference number which

contains all of the information they need, but changes such as specialized forms must

nevertheless be anticipated.

39

4.1.6 Straight-to-text

 A straight-to-text tool would be fairly simple to write, and is very necessary in the next

release of the software. This tool would take the top ranked suggestion for each word (or the

word that the current user has chosen) and output the words in sequence (as defined by the

user with the help of the auto-ordering algorithm). The output could go to an output file to be

saved locally, or to a secondary “Preview” tab.

4.2 Website Expansion

4.2.1 User Forums

 Another useful addition to the uSCRIPT system that a future project work should

implement would be a set of user forums. These would allow interaction between users beyond

simply assisting one another in transcribing manuscripts in the way of offering suggested

transcriptions and giving an up-or-down vote on existing suggestions. Users would be able to

have more open discussions with one another about transcribing, the uSCRIPT system in

general. Along with providing for a much stronger sense of community and cooperation, user

forums could serve as a mechanism with which to collect feedback about the usability of our

system and suggestions for improvement.

4.2.2 User Management

 Another feature that would be nice to see in future iterations of the TA is user

management. The possibility of malicious users working within the system should be

recognized as a potential problem and some protection scheme put in place to combat

behavior that is clearly subversive in nature. One simple way this could be accomplished is by

allowing users to report other users who they suspect are causing trouble.

 Reputation and credibility management also present an opportunity both to improve

the usability of the Transcription Assistant and help offset the efforts of malicious users. While

a simple reputation system exists in the current system, a future team should take the time to

devise a more sophisticated scheme.

40

4.2.3 User pages

 Many well-established, successful websites have user pages that act as a sort of

customized headquarters to make browsing that site easier for each user. A user homepage on

the uSCRIPT website should list transcriptions they have worked on recently, transcriptions that

are similar in content to manuscripts that user has worked on, and similar transcriptions listed

by era or location. Below you can see a good example of a user page laid out neatly at

sourceforge.net:

4.3 Overall System Improvements

4.3.1 Transcription Searching

 One area of the system that we’d like to see built upon in future projects is transcription

searching. As searching in a web application is analogous to opening a file in a traditional

desktop application, powerful searching capabilities make it easier for historians and archivists

to use our system. The current uSCRIPT system provides the framework for taking a set of

metadata obtained from the Venice State Archive and allowing users to search for existing

transcriptions with those parameters.

41

 Ideally, users will be able to seek out transcriptions on a given topic by searching the

body of text in a transcription in addition to external metadata. This will increase the amount of

related material users are able to discover to further their research.

4.3.2 Enhanced Optical Character Recognition

Enhanced optical character recognition has long been a goal of the initiative. As it

currently stands, the image is analyzed in order to figure out where individual words lie within

the page (auto-boxing). This is commonly the first step taken in modern OCR algorithms. We

would like to see this taken a step further into analyzing the content of the boxes that are

generated. (As a side note, success of this step would be dependent on a reliable auto-boxing of

the image. Please see the section on algorithm optimization for more on this.) The method for

analysis is yet to be researched, but some ideas have been proposed. Typical methods are

unlikely to succeed in for this project, as the intricacy and variability of the text varies so widely.

It wouldn’t be appropriate to compare the word images to any standard set (or sets) of data in

order to discover individual letters and proceed to build words. A more feasible option might be

to utilize previously transcribed words, paired with some sort of quantitative analysis of the

digital image. If, once the words on a page were boxed, the image data within each box could

be extricated and stored, individual words could be compared to each other. If patterns

matched, the system could use the user recommended transcriptions for one word in order to

make suggestions for the other unknown word. There would be an interesting algorithmic

problem to solve in how to analyze, quantify, and compare each word image. It would be

extremely processor intensive to compare, pixel by pixel, one image to another, and would also

be very difficult to determine whether it was a valid “match”. One possible solution that has

been mentioned is the possibility of quantifying the pen strokes within a word image to make

for easier pattern matching. Other possible optimizations of this algorithm might take into

account the metadata for the manuscript that a word is taken from, such as time period, author,

or language. Clearly a match is more likely with word images that are known to be from the

same author.

42

4.3.3 Importing Options

 Expanding options for importing a manuscript into the system through the Archive

Assistant is a necessary improvement. When importing a manuscript, the archivist should be

required to enter a specific set of metadata about the manuscript. A preliminary boxing of each

page of the manuscript should also be required. There should be some options presented to

the archivist about how the documents should be boxed. Some options might include manually

boxing the page(s), manually setting threshold values for the auto-boxing algorithm, displaying

some sample manuscript images with preset threshold values for similar manuscripts, or the

option to manually box a single page of a multi-page manuscript in order to have the genetic

algorithm find optimal threshold values for the rest of the pages.

4.3.4 Business Plan

 One of the long-term goals stated early on in the initiative was the desire for some sort

of incentive program for system users. This could include but is not limited to monetary credit

for providing transcriptions, to be funded by yearly service subscription fees. This could also be

pushed along by providing higher credit to users with higher transcription reputations, and by

charging credit for access for advanced features such as an optical character recognition

algorithm or for access to view a transcription.

4.3.5 Algorithm Optimization

 Most of the server-side processes have somewhat sophisticated algorithms, and most of

them can and should be optimized to run more efficiently. The auto-boxing algorithm uses a

smearing algorithm that may not be the most accurate choice. The auto-lining algorithm could

be written to run more efficiently. The genetic algorithm was written to run infinitely, or until

halted by a user. Realistically, it needs to have some way to decide when it has found a

satisfactory solution. The inner workings of the genetic algorithm and auto-boxing are

discussed in depth in previous reports, and the current auto-ordering algorithm is explained

within the code.

43

4.4 Conclusion

 As this has been an ongoing project for quite some time now, one might assume that

the final software would be more sophisticated and fully functional than it is in its current state.

Based on our research and analysis of past projects, we determined that the overarching

reasons for lack of progress were that there was a lack of clear direction, guidance, and

documentation on the part of the group members when passing the project from one group to

the next and too often, emphasis was placed on less than integral components of the system.

Thus, much time was spent trying to understand the background and existing work, and it

typically resulted in an even more convoluted problem for the next team.

 Our initial goal was to solve this problem by providing a system built on the appropriate

platform (the web) that is particularly easy to understand, easily extensible, and practical for

the problem. In addition, another goal was to provide clear and concise guidance and

recommendations for future teams, through comments within the code, and sections in this

report. We were also able to provide a central hub for the initiative, through the uscript.org

web site. It provides a comprehensive background of the initiative, as well as a look into the

current and future work. This is a valuable resource for community members interested in the

ongoing project as well as for future groups. Although we were not able to expand the

functionality of the system as far as we would have liked to, we have provided a valuable

service to the Emergent Transcriptions Initiative. We believe that our work toward this project

will enable the initiative to grow further and faster than it has in the past, and soon to reach its

eventual goal of common use throughout the archive and transcription community.

44

5 Bibliography

Carrera, Fabio. (2005). “Making History: an Emergent System for the Systematic Accrual of

Transcriptions of Historic Manuscripts” in proceedings of IEEE’s 8th International

Conference on Document Analysis and Recognition. Seoul, South Korea: August 29-

September 1, 2005.

Finch, Nathan. “Venetian Transcription Software,” 1999. WPI Major Qualifying Projects

Collection.

Fritas, Paul and Scott Glajch. “Web-Based Emergent Manuscript Transcriptions,” 2007. WPI

Major Qualifying Projects Collection.

Ho, Oliver, Chirag Patel, Ravi Patel, Ricardo Kligman. “Manuscript Transcription Assistant”, 2003.

WPI Major Qualifying Projects Collection.

Rath, Toni M., R. Manmatha, Victor Lavrenko. “A Search Engine for Historical Manuscripts.”

Published by the ACM, 2004. Retrieved 4/25/08 from

http://ciir.cs.umass.edu/pubfiles/mm-341.pdf

Tibbo, Helen R. “Primarily History: Historians and the Search for Primary Source Materials”.

International Conference on Digital Libraries. 2002. pp. 1-10.

http://www.icdar2005.org/
http://www.icdar2005.org/
http://www.icdar2005.org/
http://ciir.cs.umass.edu/pubfiles/mm-341.pdf

45

6 Appendix A: Uscript Codebase Access

https://sourceforge.wpi.edu/sf/projects/transcription_mqp

 The Codebase for our application is currently stored in a subversion repository on

sourceforge.wpi.edu at the above URL. The current iteration of source code may be found in

the directory “emergent_transcriptions” in the source code section of the Sourceforge project.

The “transcription_mqp” directory next to it houses deprecated versions of the software at

various different stages. The code may be checked out from the repository using the following

command:
“svn checkout --username [USERNAME]

https://sourceforge.wpi.edu/svn/repos/emergent_transcriptions”

https://sourceforge.wpi.edu/sf/projects/transcription_mqp

46

7 Appendix B: Database Documentation Access

https://sourceforge.wpi.edu/sf/docman/do/listDocuments/projects.transcription_mqp/docman.root.b0

7.db_design_docs.transcriptions

 Future project teams can find SQL Database Definition Language files, entity-

relationship diagrams, and field description files for both the transcription and user databases

on the transcription_mqp project on on sourceforge.wpi.edu. After logging in, one can navigate

to the Documents tab and open B07 > db design docs on the left panel to view the files.

https://sourceforge.wpi.edu/sf/docman/do/listDocuments/projects.transcription_mqp/docman.root.b07.db_design_docs.transcriptions
https://sourceforge.wpi.edu/sf/docman/do/listDocuments/projects.transcription_mqp/docman.root.b07.db_design_docs.transcriptions

47

8 Appendix C: Proposed Transcription Database Structure

Please note that the above structure, with the exception of the Transcription table,

displays the tables that are needed under this model for each page in a transcription. For

example, page 1 of a manuscript called “Police Report 456” would use tables called

PoliceReport456Page1, PoliceReport456Page1Element, PoliceReport456Page1Box, etc. The

fact that table names needed to be generated was a factor in simplifying the structure.

48

9 Appendix D: Final Transcription Database Structure

 Unlike the diagram in Appendix C, the above diagram shows all tables in the entire

database.

49

10 Appendix E: Front-End Panel Structure

 The following diagram shows the skeletal hierarchy of the main panels in the Transcription

Assistant layout. Each box represents an instance of some type of panel, which in GWT means a

container widget on top which other widgets may be placed. A panel can be seen as a sort of platform,

serving no purpose than to provide a context for other widgets. Each panel which appears “within”

another was added as a widget to the second panel. This results in situations where panels can be

stacked upon stacks of other panels in order to form composite panels with more complex behaviors

than that of predefined panel classes. It should also be noted that the following types of panels in the

diagram were defined as part of this project: TAPanel (extends DockPanel), TAToolbar (extends

AbsolutePanel), and TAPreviewPanel (extends AbsolutePanel).

