

WPI SCHEDULER IMPROVEMENT PROJECT

Interactive Qualifying Project Report completed in partial fulfillment
of the Bachelor of Science degree at

Worcester Polytechnic Institute, Worcester, MA

Submitted to:
 Professor Michael Ciaraldi (advisor)

Ryan Danas

Douglas Lally

Henrique Polido

 (Date of submission)

 Advisor Signature

i

Abstract
The WPI Scheduler Improvement Project intends to improve the class scheduling process for

students at Worcester Polytechnic Institute. Existing scheduling methods, including the WPI Scheduler
(http://wpischeduler.org), have inadequacies which lead to incorrect behavior in the application. The
need for a specialized application for scheduling classes at WPI was identified, and provided the basis for
this project.

http://wpischeduler.org/

ii

Table of Contents
Abstract .. i

Authorship Page ... iii

I. Introduction .. 1

II. Methodology ... 3

Identifying Inadequacies in Previous Scheduling Methods .. 3

Designing the Solution .. 3

Selecting a Programming Language .. 3

Creating the New Scheduler ... 5

Application Deployment ... 5

III. Results ... 7

IV. Conclusions ... 8

Recognition ... 8

Future Work .. 8

V. Appendices .. 10

Appendix A – Survey Results ... 10

Appendix B – User Stories ... 13

Appendix C – Use Cases .. 14

Appendix D – UML Class Diagrams ... 20

Appendix E – Data Flow Diagram .. 23

iii

Authorship Page
Ryan Danas assisted with group research and design, acted as co-programmer1, and co-authored the

project report. Douglas Lally handled meeting minutes and agendas, assisted with the preliminary

design, acted as auxiliary programmer2, and co-authored the project report. Henrique Polido acted as

lead programmer3 and designer4, as well as managing the development cycles and task delegation.

1 Co-programmer: Secondary coder who implemented a portion of the application
2 Auxiliary Programmer: Primary implementer of middleware needed to properly serve data in the format the
application expects
3 Lead Programmer: Primary coder who implemented the most significant portion of the application
4 Lead Designer: Most influential role in planning the overall application design, as well as deciding the best option
when design changes are needed

1

I. Introduction

Scheduling classes at WPI has always been a complicated process. Until recently, the only option

for choosing classes used to be the Banner Web Information System (Bannerweb). Through this website,

students can access class information, which included dozens of sections for most classes in every

department, usually taught by different professors at varying times. Even without factoring in waitlists,

cross listed courses, experimental class offerings, and degree requirements, sifting through all this data

was a time consuming task. Many students had issues just coming up with a schedule without conflicting

classes, let alone one that they actually enjoy.

“The (original) WPI Scheduler Project aimed to develop a new course scheduling system
for the students of Worcester Polytechnic Institute by modifying and extending the
open source University Scheduler originally developed by Keith Lea. This course
scheduling system will provide students and their advisors an easier, more convenient
method of creating course schedules for an entire academic year.” (Hawkins, Lucia and
Rubio)

However, the needs of WPI students have changed since the development of the original WPI

Scheduler in 2007. In order to address these issues, the team planned on creating a new scheduling

application which improved upon the previous WPI Scheduler’s design. Our approach was to develop

this application based on student feedback and research into modern technologies. Employing modern

development libraries and compilers helped us create an application that was simple to access, easy to

use, and platform independent.

The previous scheduling application is a program adapted to work at WPI from University

Scheduler5, an open source program. University Scheduler was written in Java using IntelliJ6, which is a

pay-to-use Integrated Development Environment (IDE). Our group identified issues in the previous

5 http://sourceforge.net/projects/unischeduler/
6 http://www.jetbrains.com/idea/

2

application, including program crashes, and creation of schedules with conflicts. University Scheduler

was designed to create schedules for two-semester schools, and as WPI uses a four term system.

Therefore, the previous project team had to modify the code to work with WPI’s four term system.

Modifying the code complicated the program structure, making it difficult to debug. Any further changes

to the original project risked introducing new issues to the program, which require additional time and

effort to fix. Furthermore, advancements in software have provided other avenues of development for a

scheduling application. Our group elected to create a totally new scheduling program, tailored to work

at WPI in order to address all of the identified inadequacies.

3

II. Methodology

Identifying Inadequacies in Previous Scheduling Methods

 In order to identify which issues were most prevalent in the average user’s experience, with the

previous WPI Scheduler, our group sent a survey to the student body at WPI (See Appendix A). Out of

the 114 responses, 71 reported troubles saving and later re-opening a schedule, 61 had experienced

unexpected crashes, and 48 generated a schedule that had time conflicts. Respondents also

overwhelmingly indicated that they expected any scheduling solution to be able to create a schedule

without conflicts, and be able to save and later re-open a schedule. Based on these results from the

survey, this group identified program crashes, valid schedule generation, and save-load functionality as

our three critical areas that must be improved in a new application.

Designing the Solution

 Our group spent the first term of our project collecting information and planning the

implementation of our program. We drafted user stories (Appendix B) and use cases (Appendix C) to

describe the desired behavior of our program. The team then used this behavior to plan the technical

structure of our program through Unified Modeling Language (UML) class diagrams (Appendix D). These

diagrams depict the logical structure of our program, and how different parts interact. By carefully

creating these UML diagrams, the members of the team were able to work independently on different

areas of the program with minimal time needed to integrate the different components.

Selecting a Programming Language

 After the planning of our application was complete, our group needed to select which language

would be used to implement our design. Our application also needed to work regardless of operating

4

system. This led us to consider Java7, the language used by the previous WPI Scheduler. Java is perhaps

best known for being an object-oriented cross platform language. However, it is also notorious for using

a large amount of memory on the user’s computer, as well as being computationally slower than other

languages.

 We then turned our considerations to JavaScript, which although similar in name, has many

differences from Java. JavaScript programs are typically accessed by navigating to a webpage, where the

client downloads the JavaScript program from the server, and then runs it in the web browser.

JavaScript can also be an object-oriented language, and it offered one additional benefit which our team

had not previously considered: Program updates and maintenance would be very simple to implement.

 A JavaScript program would be re-downloaded every time a user accessed a web page where it

was stored. Therefore, by updating the program on the web server, anyone using the program would

always have the newest version. However, the major drawback of JavaScript is a difficulty in creating a

Graphical User Interface (GUI). A text-based application would be simple to develop, but not user

friendly. Conversely, a graphical program would be inherently more user friendly, but difficult to

implement in JavaScript. Furthermore, our group was not as experienced in writing JavaScript as we

were with Java.

 Additional research led us to Google Closure8, a JavaScript optimizer and library which together

provide performance improvements and additional functionality. This tool would not only simplify the

creation of a GUI, but also recompile any JavaScript code that we wrote to be as efficient as possible.

Unfortunately, using Google Closure meant the application would still be written in JavaScript.

 Finally, the team discovered Google Web Toolkit9 (GWT). Again, a tool created by Google, this

7 http://www.java.com
8 https://developers.google.com/closure/
9 https://developers.google.com/web-toolkit/

5

toolkit operates as a plugin for Eclipse10, a popular open-source Java IDE. GWT takes code written in

Java, and compiles it into a JavaScript program with identical functionality. This compromise would

allow us to comfortably use Java to write our program, but maintain the speed and updatability of

JavaScript. GWT also provides libraries to aid in the creation of a GUI, which would remove the need to

manually create one in JavaScript.

Creating the New Scheduler

 Over two terms, the team worked on implementing our design in Java, with the aid of GWT. The

team worked mostly autonomously, and by conforming to our design and using a remote Git11

repository12 for version control, we were able to work separately towards the same goal.

By the end of B-Term 2012, our application was functional at a basic level. It was still missing

certain crucial functionalities, including saving and loading, as well as restricting schedules by class time.

The user interface was also basic, and confusing to use. C-Term 2013 was used to make small but critical

improvements to the application. The user interface was slowly improved, and missing functionality was

added.

Application Deployment

 A copy of the source code, a computer, and the desired deployment webserver are needed to

properly deploy the application. Firstly, the source code must be compiled, preferably using the latest

version of Google Web Toolkit. For ease of use, using the GWT Eclipse Plugin13 to compile the code is

recommended. As the GWT Eclipse tutorial explains, the web application deployment code can be

retrieved from the “WebAppName/war” directory. Simply copy the compiled code, which consists of

10 http://www.eclipse.org/
11 http://git-scm.com/
12 https://github.com/Nican/wpischeduler
13 http://www.gwtproject.org/usingeclipse.html

6

several javascript files, to the desired web server location, just like you would host any standard HTML

document. You should now be able to reach the WPI Scheduler web application by browsing to the web

server location. For the application to produce proper schedules, an up-to-date copy of the WPI

schedule data must be provided. Included with our report is a standalone java JAR file, xmltojson.jar

which was created to restructure the data provided by the Banner Team at WPI. It parses the XML data,

and outputs a single JSON file containing all the same information. The source code of this program and

a readme are also included. JavaScript works natively with JSON data, so by transforming from XML to

JSON, the load time of the application is significantly reduced. This JSON file must be placed in the same

directory where the compiled JavaScript application was placed. It is recommended that this be set up

to run as an automatic job, as Banner will provide an updated file fairly frequently. The full data flow for

loading class information starts from the WPI Banner Database, which generates an XML output file,

which is used as input to the xmltojson utility, which outputs a schedb.json, a file properly formatted to

work with our application. This process is visualized in Appendix E.

 Saving and Loading is handled by the client automatically using Local Storage, a feature introduced

with HTML 5, and as such, no server interaction is required for saving and loading.For detailed

instructions on application usage and deployment, please see the included Appendicies G and H.

7

III. Results

During D-Term of the 2012-2013 academic year, we ran a closed beta testing demo of our

application by circulating it to WPI students who willingly volunteered to use it instead of the previous

WPI scheduler. Many students ended up sharing the location with their friends, which resulted in

hundreds of unique visitors within the two weeks before course registration. Overall, students enjoyed

using the program over the previous iteration due to its quick accessibility and ease of use. Since then,

we have received inquiries from several students asking where the final version of our application will

be hosted.

8

IV. Conclusions

Recognition
 Towards the end of C-Term 2013, our group was approached by members of WPI IT. They

expressed interest in adopting our application and providing formal support. In the beginning of the

following academic year, we were contacted by the Dean of Undergraduate Studies, Arthur Heinricher,

who similarly expressed interest in our application. We met with the Dean and representatives from the

IT department on September 3, 2013 to discuss our project and the requirements for continuing to

support it. At the end of our project, WPI was still reviewing their options and deciding the best way to

move forward. Our group would much prefer that WPI take over support of our program so we are not

indefinitely responsible for its maintenance, and it can be properly supported after we graduate from

WPI.

Future Work
 Overall, our group was pleased with the state of our application at the end of the project. We

worked with John Plunkett, part of WPI’s Banner team, to update the XML file that they generate. The

new version includes additional information for each class. Ideally, this new version should be generated

on a regular basis and made available for our application to use.

 Furthermore, if WPI does adopt our application, we recommend extending it so it can connect

directly to the Banner database and retrieve class information in real-time. This would prevent many of

the issues that arise due to the current information being up to four hours out of date. Furthermore, it

would remove the need to run the xmltojson utility. Direct database access would impose an extra load

on the database servers, which would have to be carefully tested to make sure the infrastructure can

handle the additional requests.

9

 Finally, it may be worth investigating other means of saving and sharing schedules. Our group

initially planned on adding a mechanism to allow users to share their created schedules on Facebook, or

through some other social media, so their friends could easily see what classes they had in common.

Due to time constraints, this was not possible during this project.

10

V. Appendices

Appendix A – Survey Results

21

30

21

42

0

5

10

15

20

25

30

35

40

45

Freshman Sophomore Junior Senior

Class Year

8
4

8
1

9
2

5
25

11
1
1
1

2
1

3
13

2
16

1

0 5 10 15 20 25 30

Aerospace Engineering

Biomedical Engineering

Chemical Engineering

Civil & Environmental Engineering

Electrical and Computer Engineering

Environmental Studies and Sustainability…

Interactive Media and Game Development

Mathematical Sciences

Physics

Other

Major

Series1

11

12

43

20

39

0

5

10

15

20

25

30

35

40

45

50

Never Once a Year Twice a year More than twice a year

How often do you use (previous) WPI Scheduler?

17

82

15

0

10

20

30

40

50

60

70

80

90

Never Sometimes Often

Do you change classes after registration?

12

48

38

61

71

22

0 10 20 30 40 50 60 70 80

Made a schedule using WPI Scheduler, but
there was conflicts.

Got waitlisted for a course, when using WPI
Scheduler.

WPI Scheduler unexpectedly crashed.

Unable to save, and later reopen my
schedule.

Not able to print a schedule, while using WPI
Scheduler.

Which of the following have you experienced while using the
current WPI Scheduler?

98

82

41

98

38

33

89

94

0 20 40 60 80 100 120

Create a schedule with no conflicts.

Ability to sort possible schedules.

Ability to comment on courses/professors.

Ability to save the schedule, and be able to open it
later.

Ability to share the schedule with friends, and see
what courses my friends are taking.

Ability to print the schedule.

Input classes already taken, and see progress for
major requirements.

Knowing how many seats are available left in a class.

Which features are most important to you in a
class scheduling program?

13

Appendix B – User Stories

Title: Base Case
User: Wants to create a schedule for the upcoming year
Story: The user opens WPI Scheduler, chooses the classes he wants to take, and have a list of CRNs
ready to be put into WPI Scheduler.

Title: Updating schedule
User: User has an existing schedule, and wants to update it
Story: The user has an existing schedule inside of the WPI scheduler; The user loads the previously made
schedule, add/drop classes as needed, and generates a new list of CRN numbers.

Title: Finding now non-existent classes
User: User loads the schedule, and is notified that some previously chosen classes no longer exists.
Story: User has the choice to see a list of a list of the classes that no longer exist, remove them, and
choose new classes.

Title: Discovering newly added classes/sections
User: New classes are added into bannerweb, in the student’s interested major, and the user is notified.
Story: New classes/sections are added to bannerweb, and the students are notified that the new classes
exist.

Title: Saving/Loading a schedule
User: User is working on a schedule, and he wants to save it for editing it later.
Story: User saves the schedule through the WPI Scheduler, and he is able to edit it later. The saved
schedule should have the classes picked and the year.

Title: Sharing the schedule with adviser
User: The user has create a new schedule, and now he wants to discuss it with his adviser.
Story: All students have meeting with their advisers to discuss about their schedule. The user has the
option to share the schedule, and the adviser is able to leave comments on the scheduler.

Title: Sharing the schedule with friends
User: User has chosen his classes, and now wants to share the schedule with his friends
Story: The user has the option to share the schedule with social networks, such as facebook, google+,
etc..., so other friends can see it.

Title: Finding full/waitlisted classes
User: User logins into the scheduler, and see that some of the previously chosen classes are now full.
Story: The user login into scheduler, and finds that some of the classes are full, or are going to be
waitlisted, and has the option to choose other alternative classes.

14

Appendix C – Use Cases
Name: Search Class

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the student has started a brand new schedule

 Exit Criteria

o Scheduler displays a list of classes that meet the search criteria

 Flow of Events

1. The student enters information they would like to search by

2. Scheduler displays the classes that fit the information the student entered

Name: Add Class

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the student has searched for a certain class they would
like to add

 Exit Criteria

o Scheduler adds the class to the list of classes the student would like to take this year

 Flow of Events

1. The student selects a class they would like to add

2. Scheduler adds that class to the separate list of chosen classes

15

Name: Choose Terms

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the student has chosen the classes they wish to take

 Exit Criteria

o Scheduler updates the terms the student would like to take that specific class

 Flow of Events

1. The student requests to take a certain class during a subset of the available terms

2. Scheduler reflects that term selection for the class requested

Name: Choose Times

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the student has chosen the classes they wish to take

 Exit Criteria

o Scheduler updates the times classes are allowed to occur in order to be considered

 Flow of Events

1. The student requests to take classes in a certain set of timeframes

2. Scheduler updates the time frame in which selected classes are allowed to occur

16

Name: Choose Section

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the Student has chosen the classes they wish to take

 Exit Criteria

o Scheduler selects/deselects that specific section, affecting if it will be a part of the final
schedule generation process

 Flow of Events

1. The student requests a specific section

2. Scheduler shows the student the specific time details of that section

3. The student selects/deselects that section

4. Scheduler removes/adds that section to the list of sections to be included in the final
schedule generation process

Name: Generate Schedules

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the Student has chosen sections that they would like to
be a part of their final schedule choices

 Exit Criteria

o Scheduler displays every possible schedule that qualifies as a “necessary and sufficient”
WPI schedule

 Flow of Events

1. The student requests for schedules to be generated over the sections chosen

2. Scheduler generates every possible schedule to the Student to choose from

17

Name: Sort Schedules

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the possible schedules have been generated

 Exit Criteria

o Scheduler displays the schedules in a certain order that follows the specified sort criteria

 Flow of Events

1. The student requests for schedules to be sorted by a certain criteria

2. Scheduler sorts the current schedules by the given criteria

Name: Finalize Schedule

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the Student has generated all possible schedules

 Exit Criteria

o Scheduler confirms the final schedule and provides several end options to the student

 Flow of Events

1. The student chooses a final schedule out of the list of possible schedules

2. Scheduler displays the final schedule to confirm their choice is correct, with final options
to be used upon the final schedule

18

Name: Print Schedule

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the Student has chosen their final schedule

 Exit Criteria

o Scheduler gives the student several printer friendly visual formats

 Flow of Events

1. The student requests for their final schedule to be printed

2. Scheduler generates visual formats that can be printed using their web-browser

Name: Save Schedule

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started, and the Student has chosen their final schedule

 Exit Criteria

o Scheduler saves the schedule so it can be opened at a later date

 Flow of Events

1. The student requests for the final schedule to be saved

2. Scheduler notifies the user that the schedule has been saved and how to open it later

19

Name: Load Schedule

 Participating Actor: Initiated by Student

 Entry Condition

o Scheduler has been started

 Exit Criteria

o Scheduler opens the schedule given

 Flow of Events

1. The student requests to open the saved schedule

2. Scheduler opens the schedule and returns the student to where they left off

3. Scheduler cannot fully restore the schedule given, and returns the student to the
farthest possible state of their application usage

20

Appendix D – UML Class Diagrams

21

22

23

Appendix E – Data Flow Diagram

24

Appendix F – Files Included With Project Submission
1) WPI SCHEDULER IMPROVEMENT PROJECT REPORT.docx – Word format of the

PDF report

2) xmltojson.zip – Zip containing compiled JAR as well as source code and README

for the xmltojson utility

3) wpischeduler-master.zip – Zip file containing source code for the scheduler as it

existed at the conclusion of this project

4) wpi.schedbR – Sample XML file generated by the Banner team at WPI

5) schedb.json – Sample JSON output from the xmltojson utility

6) Appendix G – User Guide.pdf

7) Appendix H – Deployment Guide.pdf

