

Abstract

There is an increasing concern in tackling the problems faced by the elderly

community and physically in-locked people to lead an independent life experience

problems with self-care. The need for developing service robots that can help people

with mobility impairments is hence very essential. Developing a control framework

for shared human-robot autonomy will allow locked-in individuals to perform the

Activities of Daily Living (ADL) in a flexible way. The relevant ADL scenarios

were identified as handling objects, self-feeding, and opening doors for indoor nav-

igation assistance. Multiple experiments were conducted, which demonstrates that

the robot executes these daily living tasks reliably without requiring adjustment

to the environment. The indoor manipulation tasks hold the challenge of dealing

with a wide range of unknown objects. This thesis presents a framework developed

for grasping without requiring a priori knowledge of the objects being manipulated.

A successful manipulation task requires the combination of aspects such as envi-

ronment modeling, object detection with pose estimation, grasp planning, motion

planning followed by an e�cient grasp execution, which is validated by a 6+2 Degree

of Freedom robotic manipulator.

Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables viii

Abbreviations ix

Symbols x

1 INTRODUCTION 1

1.1 Motivation and Goal . 1

1.2 Ambient Assisted Living (AAL) . 2

1.2.1 Need for AAL . 2

1.2.2 Robotics in AAL . 3

1.3 The Robotic System . 4

1.4 Activities of Daily Living Tasks . 5

1.4.1 Challenges involved in ADL manipulation tasks 6

1.5 Overview . 7

2 MULTIPLE OBJECT POSE ESTIMATION AND DETECTION 8

2.1 Modeling the object . 9

2.1.1 Structure From Motion . 9

2.1.2 Refining the 3D Model . 10

2.2 Methodology and Implementation . 11

2.2.1 Feature Extraction . 11

2.2.2 Feature Matching . 12

2.2.3 Feature Clustering . 12

2.2.4 Hypothesis Generation . 13

2.2.5 Pose Clustering . 13

2.2.6 Hypothesis Refinement . 13

2.2.7 Pose Recombination . 14

2.3 Limitation of MOPED in ADL scenarios 14

iv

Contents v

3 DOOR OPENING TASK FOR INDOOR NAVIGATION 15

3.1 Point Cloud Structure . 15

3.1.1 Processing the acquired 3D Point Cloud data 16

3.1.2 Downsampling the 3D Point Cloud data 16

3.2 Robot Operating System (ROS) architecture of the system 17

3.3 Handle Detection and Pose Estimation . 17

3.3.1 Computational Problems . 18

3.4 Normal Estimation and 3D Edge Detection 20

3.4.1 k-d tree representation of a point cloud 21

3.4.2 Clustering and estimating inliers 23

3.5 Principle Component Analysis (PCA) . 25

4 SELF FEEDING TASK 27

4.1 ROS architecture of the system . 27

4.2 Task Overview . 28

4.2.1 Computational Problems . 28

4.3 Normal estimation and 3D Edge Detection 29

4.3.1 Removing outliers and false positives 30

4.4 Optimal Grasp Selection . 31

4.4.1 Definition of optimality . 32

4.4.2 Approach vector . 33

5 MANIPULATION PLANNING USING TRAJECTORY OPTIMIZER 34

5.1 The Optimization Problem . 34

5.2 Motion Planning and execution . 36

5.2.1 Door Opening Task . 36

5.2.2 Self feeding task . 38

5.3 Pipeline of the overall system . 40

6 EXPERIMENTS AND RESULTS 42

6.1 Multiple Object Pose Estimation and Detection results 42

6.2 Door opening results . 44

6.3 Self feeding results . 45

7 CONTRIBUTION AND DISCUSSION 46

A JACO arm manipulation capabilities 48

B Camera Calibration 51

Bibliography 53

List of Figures

1.1 Prevalence of disability (in Percentage of population) in United States in
2010 . 3

1.2 Pick up and deliver mobile robot DUSTY 4

1.3 The mobile manipulator Anna used in this thesis 5

1.4 Graphical roadmap of the thesis . 7

2.1 Generating the 3D Model of the object by Structure From Motion Tech-
nique . 9

2.2 3D Model of soap created using Bundler 10

2.3 Soap image on the left, Mask of the image on the right 11

2.4 Gaussian Pyramid . 12

3.1 The obtained Point Cloud of the workspace displayed in RViz 16

3.2 ROS architecture of the system representing the communication between
the nodes . 18

3.3 The Point Cloud data of the handle with the door surface 19

3.4 The change in reflectivity at varying lighting condition. Left: Environ-
ment with dull light Centre: Environment with bright light Right: A
subset of door points having brighter intensity than the handle causing
noise . 19

3.5 Normal of a point on a circular surface . 20

3.6 3 dimensional edge detection result on the point cloud containing the handle 22

3.7 A 2d k-d tree from the k-d tree tutorial in PCL documentation 22

3.8 Extracted edge indices from the scene displayed in RViz 23

3.9 Observed changes (from top view) in color of points due to varying dis-
tance. The edges detected in the floor are marked in red and the edges
detected in handle are marked orange . 23

3.10 Extracted edge indices of the door handle displayed in RViz 24

3.11 Vectors originating from centroid of the dataset in a 3-dimensional plane . 25

3.12 The grasp approach vector for the handle. The sparse white points repre-
sents the handle indices and the cuboid represents the normal to handle
surface. The coordinate frames are arbitrary for Eigen values calculation . 26

4.1 ROS architecture of self feeding system representing communication be-
tween the nodes . 28

4.2 Workspace of the self feeding task displayed in RViz. The Point Cloud
data of bowl and the spoon can be seen 29

4.3 False positive (a pen) for a spoon like 3D geometry 29

vi

List of Figures vii

4.4 RGB-D edge detection results Left: 3D indices of extracted Point Cloud
edges Right: Edges shown with the environment 30

4.5 Extracted indices from parametrized Hough transform displayed in RViz . 31

4.6 Optimal end-e↵ector grasp pose for self feeding task 32

4.7 Grasp estimation Left: The arbitrary coordinate axes with blue axis being
the table plane Right: The optimal grasp approach vector is shown by
black arrow . 33

5.1 End e↵ector poses during the task execution Left:Home Pose (Pose1)
Middle: Pose for grasping handle (Pose2) Right: Pose after turning handle
(Pose3) . 38

5.2 End e↵ector poses during the task execution Left:Home Pose (Pose1)
Middle: Pose for grasping spoon (Pose2) Right: Pose to feed the user
(Pose4) . 40

5.3 ROS pipeline of the entire system showing communication between nodes
(in boxes). The content in between transition shows the ROS message
type being published . 41

6.1 Detection of soap bar using MOPED . 43

6.2 Handle detection algorithm tested under various conditions 45

A.1 A view of JACO showing the link parameters 48

A.2 Trajectory of the JACO manipulator playing a baseball swing 50

B.1 A rectangular chess board used for camera calibration 52

List of Tables

1.1 Subset of categories of ADL and approximate number of people (in thou-
sands) in need of assistance . 6

6.1 Number of successful attempts to execute the sub-tasks of door opening
task. Number of attempts = 10 . 44

6.2 Success ratio for self feeding task. Number of attempts = 10 45

viii

Abbreviations

ADL Activities of Daily Living

AAL Ambient Assisted Living

PCL Point Cloud Library

ROS Robot Operating System

MOPED Multiple Object Pose Estimation and Detection

PCA Principle Component Analysis

TrajOpt Trajectory Optimizer

ix

Symbols

P Point Cloud Structure

p
i

2 P A 3D point
�
x
i

, y
i

, z
i

in a point cloud data

Pk points located in the k-neighborhood of a point p
i

�!n
i

a surface normal at point p
i

T Transformation matrix containing Position and Orientation of the object

C Centroid of a set of Points P

Q Configuration space of the manipulator

q
t

2 Q Configuration of the robot at time t

x

Chapter 1

INTRODUCTION

As autonomous operations with Robots are continuously evolving, the ability to achieve

a tight coupling between perception and action are starting to explore a wide range of

applications. This research strives to push the intelligent manipulation one step towards

achieving complete autonomy and as a result, I present a reliable perception framework

for grasping and manipulation of household objects with and without prior knowledge

of the object.

Service Robots is a promising research field and the International Federation of Robots

(IFR) defines service robots as follows: A service robot is a robot which operates semi-

or fully autonomously to perform services useful to the well-being of humans and equip-

ment, excluding manufacturing operation 1. According to IFR, about 4.7 million service

robots for personal and domestic use were sold in 2014 and a total of 172,000 service

robots for professional use have been sold since 1998 2. This engenders the need of

sophisticated perception and manipulation planning algorithms such that the robot can

robustly and reliably accomplish the household tasks.

1.1 Motivation and Goal

There are approximately 3.1 million people worldwide who are physically in-locked, ex-

perience problems with self-care due to the inability to interact flexibly with the physical

world. People with motor and/or communication disabilities would like to interact with

the environment and move to places independently. The primary motivation of this

research is to serve these community of people to e↵ectively perform the Activities of

Daily Living (ADL) manipulation tasks. Human in the Loop Cyber Physical System

1
http://www.ifr.org/service-robots/

2
http://www.ifr.org/service-robots/statistics/

1

2

(HiLCPS) [1] deals with the challenge of restoring the autonomous actions by allowing

the users to communicate and control devices in physical world through an embedded

system. Robot Assistive Technology, a primary focus of HiLCPS, is my inspiration to

work on this problem.

The goal of this research is to develop sophisticated perception algorithms to reliably

detect and estimate pose of unknown objects and model the environment for grasping

and manipulating household objects. The motion planner used for manipulation task

is Trajectory Optimizer (TrajOpt) [2], a sequential convex optimizer planner, with a

determined set of constraints. Developing a generalized constrained motion planner is

out of the scope of this project.

1.2 Ambient Assisted Living (AAL)

In The United States of America, people over 65 years are the group of the population

that is fastest growing in numbers, and by 2020 they are expected to represent 1 in 6

of the population [3]. Due to their high dependency ratio [4], there is a desire to assist

the living at home with smart technologies. A potential solution to this problem is by

extending the time people can live in their preferred environment by increasing their

autonomy, self-confident and mobility, and providing such solutions are developed under

the term Ambient Assisted Living (AAL) 3.

1.2.1 Need for AAL

The main aim of Ambient Assisted Living (AAL) is to improve the life quality of elderly

people who need special care and assistance by providing cognitive and physical support

and access to the environment services.

The International Classification of Functioning, Disability, and Health (ICF) at-

tempts to bridge many of these definitions by considering disability as an umbrella term

for impairments, activity limitations, and participation restrictions. The United States

of America census 4 says that around 18.7 % of total US population possess some kind

of disability, and 12 %, with ± 0.2 margin of error, su↵er from sever disability which

includes severe impairments and activity limitation. Figure 1.1 shows the distribu-

tion of category of people with disabilities and severe disabilities amongst the total US

population of 291 million in 2010 released by US census in 2012.

3
AAL was initially termed in Europe

4
http://www.census.gov

3

Figure 1.1: Prevalence of disability (in Percentage of population) in United States in
2010

The high disability ratio among the population of US will have some adverse conse-

quences including, but not limited to, rising health care cost, an increase in age-related

diseases, shortage of professionals / care-takers, an increase in the number of individu-

als unable to live independently. This explicitly creates an alarming desire to develop

living assistance systems. Hence, the assistive devices are developed to facilitate the

daily lives of these elderly people. These technologies would promise to help the elderly

people living independently in comfortable ways.

1.2.2 Robotics in AAL

Assistive robots provide the major tool and infrastructure towards AAL as the robots

are not only helpful in the physical tasks, but also serve as a communicator as people

consider them as social entities. There are several assistive robots developed to reduce

the need of movement of the user like vacuum cleaning robot, pick and place robot,

nursing care robot like RIBA [5]. DUSTY [6] is a joy-stick controlled assistive robot

that uses a manipulator to pick any object in the ground weighing less than a pound.

Figure 1.2 shows the compact mobile robot DUSTY with a vertical lift to pick up and

deliver dropped objects to people with motor impairments.

4

Figure 1.2: Pick up and deliver mobile robot DUSTY

1.3 The Robotic System

Mobile manipulators are a category of robotic systems in which a mobile platform is

combined with a robotic manipulator. The mobile manipulator referred throughout this

thesis is Anna [7], shown in Figure 1.3, is a semi-autonomous wheelchair combined with

a 6 Degrees of Freedom manipulator. The mobile platform is a 2 Degrees of Freedom

(DoF) with a translation and a rotational component. This platform is equipped with

several sensors including ultrasonic sensors for collision avoidance, LiDAR for scanner

data, encoders for odometry data and a Primesense ASUS camera for 3D point cloud

data [8] 5. The manipulator is a 6 DoF arm JACO from Kinova Robotics 6. The

manipulator is equipped with position sensor at each joint for state estimation and an

end-e↵ector force/torque sensor.

Integrating the mobile platform with a manipulator results in a system with redundant

kinematics as the mobile manipulator possesses more than 6 DoF with the task space

being only 6 dimensional. Solving redundant kinematics of the mobile manipulator is

out of the scope of this thesis as I enforce the mobile platform to be in rest while the

manipulator is active. In all the test cases considered during validation, the objects

being manipulated are in a small region within the reach of manipulators work space.

5
Point Cloud Library presents an advanced approach to 3D perception with state of the art algorithms

for processing the data

6
www.kinovarobotics.com/

5

Figure 1.3: The mobile manipulator Anna used in this thesis

1.4 Activities of Daily Living Tasks

Census reports that in the US, about 12.3 million people aged 6 years and older, consti-

tuting 4.4 % of population, needed assistance with one or more Activities of Daily Living

(ADLs), Enhanced Activities of Daily Living (EADLs) and Instrumental Activities of

Daily Living (IADLs). The ADLs include di�culty getting around inside the home,

getting into/out of bed, bathing, dress-ing, eating, use transportation or toileting. The

EADLs include participation in social and enriching activities, such as learning new skills

and engaging in hobbies. The IADLs include di�culty going outside the home, man-

aging money, preparing meals, doing housework, taking prescription medication, and

using the phone. IADLs are generally more cognitive demanding than ADLs. These

6

categories constitute most of the tasks older adults spend their time performing in the

home environment; essentially, older adults want to make their time there as enjoyable

and productive as possible [9].

Table 1.1: Subset of categories of ADL and approximate number of people (in thou-
sands) in need of assistance

Category of ADL Number(in US) Needed assistance Percentage %
Di�culty getting
around

4,552 2,452 53.86

Di�culty eating 1,845 1,031 55.8
Di�culty doing
housework

7,708 5,892 76.44

Some of the relevant ADL scenarios identified in this project were door opening for nav-

igation assistance, self feeding amd identifying and manipulating household objects that

are commonly used. Table 1.1 shows the approximate number of people (in thousands)

who definitely need assistance for these above identified ADLs among the US population

in 2010 released by US government census data is 2012.

1.4.1 Challenges involved in ADL manipulation tasks

ADL manipulation tasks involves several key design requirements include safety, de-

pendability, modularity, reliability and fault handling in the system. The robot will

be closely working with human and the human-robot shared autonomy tasks require

high degree of safety measures including collision checks, limited workspace, e�cient

and reliable environment modeling. Performing everyday manipulation tasks involves

computing motions that are subject to multiple task space constraints and these are to

be addressed in high dimensional C-space manipulation planning.

The most common challenge in performing ADL manipulation task is the constraints on

the pose of the robot’s end-e↵ector. For example, carrying a cup of water to the user

possess the constraint of no rotation in the end-e↵ector. The 3D rotational component of

the end e↵ector, described by the Special Orthogonal group SO(3), is fixed throughout

the entire path, so as to not to spill the water. Reaching the manipulator to grasp an

object also imposes constraints on grasp configuration based on the object’s 6D pose and

this constraint is satisfied by e�ciently computing the approach vector of end e↵ector

for grasp planning.

7

The other computational problem arising from the perception of the environment from

the 3D point cloud data to di↵erentiate between the objects and planar surfaces like

tables and cupboards for e�cient segmentation will be discussed in the later chapters.

1.5 Overview

The graphical roadmap illustrating the organization of the thesis is shown in Figure

1.4. This thesis describes various Activities of Daily Living tasks performed using the

wheelchair - manipulator robotic system Anna. Chapter 2 deals with a perception

technique, Multiple Object Pose Estimation and Detection (MOPED), that has the ca-

pability of detecting multiple objects in a cluttered scene as well as estimating their 6D

pose in the scene. Chapter 3 demonstrates the primary ADL task of the robot assisting

in opening the door for indoor navigation and describes the entire perception framwe-

ork for handle detection and grasp estimation. Chapter 4 demonstrates another ADL

task of robot assisting the user in self feeding and describes the task space constraints

involved in the task. Chapter 5 describes the results obtained from the capabilities of

robot assisting the user in ADL task and Chapter 6 concludes with the discussion and

future work to extend so as to achieve complete autonomy in manipulation.

Figure 1.4: Graphical roadmap of the thesis

Chapter 2

MULTIPLE OBJECT POSE

ESTIMATION AND

DETECTION

Object detection is one of the most fundamental and at the same time one of the most

complex problem in the field of computer vision. Multiple Object Pose Estimation

and Detection (MOPED)[10] framework is a multi-image object recognition and pose

estimation technique that uses a novel pose clustering technique for handling outliers.

A part of this thesis focuses on implementing the MOPED, generating models of new

objects, detecting the pose of those objects in the scene and detecting the modelled

objects with their pose in a scene. This project was started as a part of course project

in a team of 3 and I extended the work to obtain the 6D pose and estimate the grasp

pose for JACO manipulator.

MOPED uses Scale Invariant Feature Transform(SIFT) to generate Keypoints and de-

scriptors of an image. These Keypoints are then matched with scene to determine if an

object is present. SIFT is a robust technique of detecting objects as it is invariant to

scale, rotation(upto 60 degrees), translation, partially invariant to illumination changes.

MOPED not only gives position of the objects but also provides 3D pose information.

It is one of the most e↵ective framework to detect the object in the cluttered environ-

ment. Since MOPED also estimates 6D pose of the object, it is easier to integrate this

framework with manipulation as this 6D pose will be the goal pose of the end-e↵ector

of manipulator for grasping tasks.

8

9

2.1 Modeling the object

MOPED requires a 3D model of the object to be detected which is generated using

Structure From Motion (SFM), that extracts geometric structure of the object from

images through a camera’s motion, using functions within OpenCV’s API.

2.1.1 Structure From Motion

MOPED requires at least 24 images of the object spanning 360�, where any point on the

object should be visible in at least 3 images. But not every image is ideal. To account

for bad images, 50-60 images were taken. Object should be kept on sheet of paper with

lots of high frequency features. Figure 2.1 shows a sample set of images given as input

for model creation where the soap bar is captured from di↵erent angles as compared to

the laptop which serves as a reference feature for rotation and scaling.

Figure 2.1: Generating the 3D Model of the object by Structure From Motion Tech-
nique

Using SFM principles, a 3D point cloud of Keypoints can be generated using a python

tool model generator. This tool finds SIFT features in all the available images of object.

The Keypoints that are generated are passed to Bundler[11] along with the camera’s in-

trinsic parameters to generate a sparse 3D point cloud data of the object in the scene.

10

Figure 2.2: 3D Model of soap created using Bundler

SIFT features of these input images are matched to each other. Based on the matching,

di↵erent camera poses are calculated and the position of images is determined. Key-

points belonging to these images are clustered together in the model. Since surroundings

of the object are intentionally kept cluttered to get the orientation, these environmental

elements are visible in the 3D model as well. Figure 2.2 displays 3D model of the soap

from di↵erent angles.

Knowledge of camera’s intrinsic parameters is crucial for generating accurate model.

These parameters can be extracted from Exchangable Information File format (EXIF)

tags of images, however calibrating the camera and providing these parameters in XML

file improves the quality of model. For details on camera calibration, see Appendix B.

2.1.2 Refining the 3D Model

Once a 3D point cloud is generated, masks are applied to every image to remove out-

liers, which are the environmental elements used for determining orientation. Mask is a

binary image that has the object pixels as white (true) and remaining part of the image

is black (false). Figure 2.3 displays an example image of soap on left and it’s mask on

right. Model is refined and the environmental elements are removed using these masks.

The process described above generates the model in XML format. This file contains all

the Keypoints repeated for every camera pose. Descriptors for the Keypoints are also

11

Figure 2.3: Soap image on the left, Mask of the image on the right

stored in the same XML tag. Path to this model is provided when running the MOPED

node so that it can compare Keypoints in incoming images with the ones stored in the

model file.

2.2 Methodology and Implementation

Moped uses SIFT features to obtain Keypoints and to extract descriptors from natural

object features. The system is separated into an o↵line object modelling stage and an

online recognition and registration stage. The invariant local features are used to obtain

point matches between multiple 2D images of a rigid 3D object or scene. These are

then used as input to bundle adjustment to obtain a metrically accurate 3D solution for

the locations of the features and cameras. 3D models are used for recognition as they

integrate features from various views and are therefore more complete and robust. The

first stage, object modeling was discussed in the previous section.

The second stage of this process deals with the object recognition and 6 Dimensional

solution of the model pose. Feature detected in the video frame are matched to those

of the world model and the current pose of the model is estimated with these matches.

The object detection and pose estimation process can be split into 7 tasks as described

below:

2.2.1 Feature Extraction

For every input image, features are extracted using SIFT[12]. These are usually high

frequency features called as Keypoints. SIFT uses an approximation of Laplacian of

Gaussian(LoG), known as Di↵erence of Gaussians(DoG) to speed up the process. This

is done for di↵erent octaves of the image in Gaussian Pyramid as shown in Figure 2.4.

Images are then searched for local extrema which are potential Keypoints. Edges are

removed using Hessian Matrix to finalize the Keypoints. Once Keypoints are finalized,

12

Orientation is assigned to every keypoint to achieve rotation invariance. This informa-

tion of a keypoint and it’s neighbors is stored into a 128 dimension vector known as

Descriptor. Information of neighbors in the descriptors allow detection of object with

partial occlusions to a certain degree.

Figure 2.4: Gaussian Pyramid

2.2.2 Feature Matching

SIFT features are matched by a finding their approximate nearest neighbors, defined

as the feature with the minimum Euclidean distance between descriptor vectors. But

approximate matching technique may produce more outliers. As the exact 6 Dimensional

pose of the object is required, the orientation of each of the descriptor must also be found.

One or more orientations are assigned to each keypoint location based on local image

gradient directions. All future operations are performed on image data that has been

transformed relative to the assigned orientation, scale, and location for each feature,

thereby providing invariance to these transformations. Fast Library for Approximate

Nearest Neighbors (FLANN) [13] is used for matching descriptors.

2.2.3 Feature Clustering

Feature clustering is important because spatially close features are more likely to belong

to the same object instance. Mean shift algorithm [14] is used to locate the maxima

of the density function used for clustering. The features extracted from the image

13

are considered as an empirical probability distribution function. The dense regions

corresponds to the local maxima of the probability distribution function. For each data

point, Mean shift associates it with the nearby peak of the datasets probability density

function. For each data point, Mean shift defines a window around it and computes the

mean of the data point . Then it shifts the center of the window to the mean and repeats

the algorithm till it converges. After each iteration, the window shifts to a denser region

of the dataset.

2.2.4 Hypothesis Generation

After the clustering of features are done, we need to generate an hypothesis to which

clusters of the image belong. Initially it is assumed that a cluster of feature belongs to a

single image. Process each cluster independently in search of objects. RANdom SAmple

Consensus (RANSAC), which finds the best fit line(s) through the feature clusters is

used to find object instances that are loosely consistent with each objects geometry in

spite of outliers. After this step, a rough pose of the object is obtained as I get the

object descriptor along with it’s orientation in the real space. Coarse object detection

and pose estimation is done but with the outliers of the image included in the scene.

2.2.5 Pose Clustering

The clusters that are formed in the previous steps are again clustered to form a bigger

cluster. As the same object might be present in multiple clusters, re-cluster image space

features using poses resulting from Hypothesis Generation so as to avoid the redundancy.

The same RANSAC method is used to obtain the new cluster. New, larger clusters are

created, that often contain all consistent features for a whole object.

2.2.6 Hypothesis Refinement

After a coarse object detection is done, some refinement of the image space features

is necessary for a fine object detection. After re-clustering and merging, most of the

outliers are removed. Each of the new clusters contain features corresponding to only

one instance of an object. Increase the iteration value of RANSAC to estimate a single

pose from each cluster, but this has a trade-o↵ with the computation time for the entire

manipulation planning.

14

2.2.7 Pose Recombination

Similar poses that might be present by any chance are removed here by again merging

together object instances with similar poses. This final merging step removes any mul-

tiple detection of the same object thus e↵ectively forming a single pose for an object.

A 6 Degrees of Freedom pose estimation is done by the above mentioned seven step

algorithm of MOPED framework.

2.3 Limitation of MOPED in ADL scenarios

MOPED needs a pre-computed 3D model of the object to be detected and this limitation

leads to the development of a generalized perception framework that can detect and

estimate the pose and estimate the grasp configuration just from the 3D point cloud data

and the object’s surface geometry. Household objects can have multiple variation and

a 3D Bundler model of all those variations is very tedious and its not a good approach.

For example, in door opening task for autonomous indoor navigation, the robot has to

identify the handle of the door, estimate its pose and manipulate it. MOPED needs the

complete 3D model of this handle. But handle fitted in door is not a unique design and

in order to address this, the following sections demonstrates a perception framework

that can be implemented on objects with no prior knowledge.

Chapter 3

DOOR OPENING TASK FOR

INDOOR NAVIGATION

A robust door handle detector is needed for the door opening task since the robot at

home environment may have to function in a varying light conditions, varying door and

handle specifications like handle types (lever and knob types), door and handle color for

RGB segmentation and so on. To account for this, a 3D point cloud based approach of

handle detection is developed which requires no prior model of the handle and can work

on any lighting condition as this algorithm depend only on the 3D points.

3.1 Point Cloud Structure

A point cloud structure P is referred to a collection of 3 dimensional points in the free

space. Point cloud data from a 3D Perception system like Primesense provides discrete

and useful representation of the environment. A point in the 3D model is p =
�
x, y, z

and the
�
x
i

, y
i

, z
i

coordinates of any point p

i

2 P are the distances from a given

reference frame having its origin at the sensing device used to acquire the data. Each

point p
i

represents the distance on the 3D coordinate axes from the viewpoint of the

sensing device. Distance of each point from the sensor is measured by the Time Of

Flight (TOF) system, which measure the delay until an emitted signal hits a surface

and returns to the receiver. Figure 3.1 shows the 3D Point Cloud data of a sample

workspace obtained from Primesense. The data is represented by a format represented

by the structure pcl::PointCloud
⌦
pcl :: PointXY ZRGB

↵
, which represent the Euclidean

XYZ coordinates and the RGB color of Each point in the space.

15

16

Figure 3.1: The obtained Point Cloud of the workspace displayed in RViz

3.1.1 Processing the acquired 3D Point Cloud data

Once a 3D point cloud data set has been acquired, several geometric processing steps

has to be done such that meaningful information can be extracted to help the robot in

performing tasks. The raw input point cloud data should be converted into di↵erent

representation and formats.

Point cloud segmentation and point clustering are few of the notable processing steps

that can work directly on the raw point cloud data. Segmentation is a process finding all

the subset of points within the point cloud data, that supports an arbitrary model.The

model can be a plane model, cylinder model and so on. Di↵erent types of segmentation

process are listed in segmentation tutorial of PCL documentation 1. For example, a

mobile manipulation task of manipulating a household objects needs to extract out

the objects separately by removing the point clouds of table plane. In our case of

handle detection, the door plane, perpendicular to the ground needs to be removed by

segmentation. The main purpose of clustering is to group similar structures together,

in order to lower the computational resources needed by other subsequent algorithmic

steps. Given an unorganized point cloud model P, clustering divides the data into

smaller parts so that the overall processing time for P is reduced significantly.

3.1.2 Downsampling the 3D Point Cloud data

Spacial decomposition techniques like kd-trees and octrees are commonly used techniques

to partition a three dimensional space by recursively subdividing it. Similar techniques

can be used in partitioning the point cloud data P into several chunks so as to make the

search faster. Downsampling is a technique to reduce the number of points p
i

from P

1
http://pointclouds.org/documentation/tutorials/segmentation-tutorial

17

using a voxelized grid approach. The point cloud data P are converted into 3D Voxels,

which are a set of tiny 3D boxes in space, of arbitrary width, length and height. Each

3D voxel, containing many point p
i

, will be downsampled with their centroid. Higher

the voxel volume, lesser the resultant number of points generated.

Downsampling the point cloud data not only provides fast access to the point location

and feature searches, but also helps in environment modeling for collision avoidance

application. Octree representation gives a better and faster estimate of distance from

the spaces which are free or occluded.

3.2 Robot Operating System (ROS) architecture of the

system

The entire wheelchair-manipulator system operates on ROS, hence the Point Cloud

Library (PCL) perception framework developed in this project is also made ROS com-

patible. pcl ros provides the necessary interface for running a ROS system to a PCL

application. The approach in this project utilizes ROS for the entire communication

pipeline, driver support and configuration needs. ROS makes this framework modu-

lar, with the intention of allowing to incorporate alternate motion planning, control or

perception frameworks.

The architecture of the system is shown in Figure 3.2. The boxes with dashed line

represents the group of nodes di↵erentiated by their functionality. The boxes with

continuous line represent a node. The arrow mark shows the communication between

the nodes through ROS communication pipeline.

The main focus of this section is describing the perception framework developed for ro-

bust handle detection. Hence, this chapter covers the functioning of Handle Detection,

Pose Estimation and Grasp Estimation nodes. Grasp Execution node is discussed in

Chapter 5. The remaining components fall outside the scope of this thesis.

3.3 Handle Detection and Pose Estimation

The primary assumption of the handle detection task is that the wheelchair should have

reached to a region proximity to the door, where the handle is within the workspace of

the manipulator and the handle is in the field of view of primesense device. In order to

reduce the computational and search time, the search space of the system is restricted

to a part of the 3D space, which are in proximity of the door. Since this approach does

18

Figure 3.2: ROS architecture of the system representing the communication between
the nodes

not rely on the 2D image geometry of the surface being detected, the handle detection

method operates only on the Point Cloud data P discussed above.

3.3.1 Computational Problems

To demonstrate the algorithm, the lever type handle is considered. Handles possess

very thin geometrical structure, and the 3D volume they occupy is very small, when

compared to the volume of the door in the point cloud. Extracting a small subset of

3D points from a large 480 x 640 sized acquisition device is a complex task. Also, a

bigger portion of the handle visible from the acquisition device as shown in the Figure

3.3, will have their surface parallel to the surface of the door. As a result, 2D plane

based segmentation of Point Cloud data will fail because segmentation will remove the

useful planar information of handle also.

Figure 3.4 shows another notable di�culty in detecting handles caused by the change

in reflectivity of the handle surface in varying lighting condition. The intensity data is

really useful while performing object detection tasks that involve metal surfaces, but in

this case, the sampled data becomes too noisy and sparse when the pcl::PointCloud
⌦
pcl ::

PointXY ZRGBI
↵
point data type is used.

19

Figure 3.3: The Point Cloud data of the handle with the door surface

Figure 3.4: The change in reflectivity at varying lighting condition. Left: Environ-
ment with dull light Centre: Environment with bright light Right: A subset of door

points having brighter intensity than the handle causing noise

Hence obtaining useful grasp information can be achieved only by performing complex

20

processing tasks like extracting the edges of entire point cloud by estimating the sur-

face normal p
n

of all the points p
i

=
�
x
i

, y
i

, z
i

, extracting useful points related to the

handle and then applying Principle Component Analysis (PCA) on the points to obtain

the mean magnitude and direction of the aligned points. The further sections explains

these steps in detail to achieve a robust handle pose estimation.

3.4 Normal Estimation and 3D Edge Detection

Surface reconstruction needs consistently oriented normals by assigning a vector �!n
i

=
�
n
x

, n
y

, n
z

at each point p

i

of the point cloud. A local plane is fitted to each point

with their corresponding neighbors to estimate the direction of the gradient. The line

normal to the local directional change is the normal to that point. Figure 3.5 shows a

simple illustration of normal being computed on a circular surface.

Figure 3.5: Normal of a point on a circular surface

This approach will be very expensive in huge 3D point cloud data as it is expensive to

run a spanning tree. A simpler and e�cient approach is to use local plane fitting that

estimates a plane instead of a normal vector. For each point x
i

2 P, pick k nearest

neighbors,
�
x1, x2,x

k

and find a plane ⇡ that minimizes the sum of squared dis-

tances (SSD). For a set of k points, there may be many number of 2-dimensional plane

available. From the set of planes, estimate the plane that has minimum SSD.

21

min
P

k

i=1 dist(xi,⇡)
2

In this approach, I used k = 8 with a simple logic that a point in the 2-dimensional plane

will have 8 neighbors, with the general case being 3n�1, where n is the dimension of the

plane. The least square plane fitting estimation problem approximates the problem of

determining the normal �!n
i

=
�
n
x

, n
y

, n
z

to a point p

i

on the surface to the problem of

estimating the normal of a plane tangent to the surface that minimizes the SSD. A much

more complicated and computationally expensive problem of estimating surface normal

at all sample points of the point cloud based on local least square fitting is discussed in

[15].

After the normals �!n
i

’s are estimated, 3D RGB-Depth edge detection is feasible. RGB-D

edge detection based on the 3D geometric information and photometric information is

demonstrated in [16]. The /depth/registered points ROS topic of Openni 2, the SDK

containing binaries and drivers for primesense, contains the organised point cloud of the

scene. The organized point cloud is similar to images with rows and columns of pixels

containing the information of points in scene. As a result, neighbor search is done with

the row and column indices instead of performing a time-consuming 3D search, as is

necessary for general unorganized point clouds.

To determine the edges inside the point cloud, local 8-Neighbor search is performed.

The point cloud is separated as an Octree representation, which is a variant of k-d trees

that splits into successive branches of equal cubical volume. The section 3.4.1 describes

more about the k-d tree implemented on the Point Cloud data along with the search

technique. In a 3-dimensional Octree, the (x, y) component is considered along with

the Depth information D at each point. The local 8-neighbor search is performed via

8-Neighbor(D, x, y). This enables the calculation of maximum depth di↵erence from the

current location to all the local neighbors. High curvature edges can also be e�ciently

detected in 3D points by using a variant of Canny edge detector [17]. The first order

image gradients of Canny filters G
x

and G
y

are applied to the surface normal N of the

image with the components of normal being N
x

and N
y

. Figure 3.6 shows the detection

of high and low curvature edges on the door handle Point Cloud data.

3.4.1 k-d tree representation of a point cloud

K-d tree is a binary search tree with constraints imposed on the search direction. The

K-d tree implementation in this approach deals with 3 dimensional point clouds, hence

each level of a k-d tree splits all children along a specific dimension, using a hyperplane

that is perpendicular to the corresponding axis. This is a kind of exhaustive search for

2
http://structure.io/openni

22

Figure 3.6: 3 dimensional edge detection result on the point cloud containing the
handle

the worst case as the search should return to the first dimension of all others have been

exhausted. Figure 3.7 shows an example partition method for a 2-dimensional k-d tree.

Figure 3.7: A 2d k-d tree from the k-d tree tutorial in PCL documentation

23

3.4.2 Clustering and estimating inliers

From the boundary information obtained as shown in Figure 3.8, handles need to be

extracted out separately for Pose estimation. We known that the edges of the handles

that are parallel to the ground plane are parallel to each other when viewed at an angle

normal to the door plane, and almost parallel to each other when viewed from a di↵erent

angle.

Figure 3.8: Extracted edge indices from the scene displayed in RViz

Another useful information that can be used to extract the handle indices alone is the

distance of those points pcl::PointCloud
⌦
pcl :: PointXY Z

↵
from the origin transfor-

mation frame, an arbitrary point in the ground plane, is known. Figure 3.9 shows the

di↵erence in color based on the distance d
i

of the points
�
x
i

, y
i

, z
i

from the origin.

Figure 3.9: Observed changes (from top view) in color of points due to varying
distance. The edges detected in the floor are marked in red and the edges detected in

handle are marked orange

24

The approach used to extract the handle indices is straightforward and computationally

easy. The indices containing the edge information are copied to a new point Cloud data.

Probabilistic Hough Transform is applied over the edge image to extract only the lines.

After checking the slopes of the lines, only vertical lines that have pixel length lesser

that a predefined threshold (in pixels) are retained since the handle length is usually

smaller than other lines arising through the door edges. All the vertical edges along

with larger horizontal edges are eliminated. RANdom SAmple Consensus (RANSAC)

algorithm [18]is a general parameter estimation approach. RANSAC calculates the line

equation of the lines available and the two lines, that have similar slopes (with a ±0.1

tolerance) separated by a small distance are extracted out as the handle indices. Figure

3.10 shows the extracted point cloud containing the handle data.

Figure 3.10: Extracted edge indices of the door handle displayed in RViz

The pose information containing the rotation of the handle with respect to the camera

frame can be obtained by Principle Component Analysis and Section 3.5 discusses the

algorithm in detail.

25

3.5 Principle Component Analysis (PCA)

The 3D edge detection gives out the boundary information of handle in terms of vector of

pcl::PointCloud
⌦
pcl :: PointXY Z

↵
. Principle Component Analysis (PCA) [19] finds an

orthogonal basis that best represents a set of observations. Given a set of Point cloud

Points
�
x1, x2,xn

2 R3, PCA finds the best approximating hyper plane passing

through a point p with its normal �!n
p

such that

min
p,n

nX

i=1

((x
i

� p)Tn)2

Satisfying the above equation will result in obtaining the Eigen vector �!n
p

at p of the

dataset, that determines the shift and correlation of the observation.

The centroid C
�
C
x

, C
y

, C
z

of a dataset containing the input points

�
x1, x2,xn

2 R3

is given by

C = 1/n
P

n

i=1 xi

Figure 3.11: Vectors originating from centroid of the dataset in a 3-dimensional plane

Let the vectors from each point x
i

to the centroid be y
i

and represented by

y
i

= x
i

� C

Figure 3.11 shows the vectors �!y
i

from the centroid C to points x
i

2 R3.

26

The Eigen vector of the Point Cloud points can be calculated along with a hyper plane

that represents the homogeneous transformation matrix with the following steps:

• Compute the centroid C represented by
�
C
x

, C
y

, C
z

and the normalized covariance

of the input Point Cloud

• Compute the Eigen Vector for the 3-dimensional space �!e
x

, �!e
y

and �!e
z

. These

vectors will be the reference in their coordinate axes.

• Compute the maximum, minimum and center of the frames

– Repeat for all three frames

• With the obtained statistical data on all three frames, draw the bounding box with

max and min values of x, y, z frames. This results in a cuboid

• Apply the transformation and rotations to the cuboid obtained from Eigen vectors

and covariance matrix.

The bounding box, as illustrated in Figure 3.12 estimates the normal to the plane in

which the Point Cloud data is available in dense. A good grasp is realizable only if

the approach vector of the Robot’s end-e↵ector is normal to the direction of object

orientation. This demonstrates that PCA can estimate the grasp orientation of any

Figure 3.12: The grasp approach vector for the handle. The sparse white points
represents the handle indices and the cuboid represents the normal to handle surface.

The coordinate frames are arbitrary for Eigen values calculation

object from any direction given the Point Cloud indices of the object. Chapter 5 will

explain the motion planning approach to demonstrate this task.

Chapter 4

SELF FEEDING TASK

Self feeding is one of the primary ADL tasks that impose a compulsion of using Robot

Assistive Technology. As mentioned in Section 1.4, a huge number of people require

assistance in feeding themselves. Hence, there is a need to design a system that will

autonomously feed people by , given a spoon and a bowl with food. This section describes

and illustrates the perception framework developed to realise the self feeding task.

The self feeding task also implements many techniques used in door opening task (Sec-

tion 3) like downsampling the 3D cloud data, normal estimation and RGB-D Edge

detection, octree implementation for faster search, clustering and so on. In order to

avoid redundancy, many of the above mentioned steps which had similar procedure are

not discussed in this chapter. This chapter contains only specific sections that relates

only to self feeding task.

4.1 ROS architecture of the system

This task doesn’t need to control the position of the wheelchair and therefore can re-

move the navigation component from the ROS architecture shown in Figure 3.2. The

architecture of the system for self feeding task is shown in the Figure 4.1. The boxes

with dashed line represents the group of nodes di↵erentiated by their functionality. The

boxes with continuous line represent a node. The arrow mark shows the communication

between the nodes through ROS communication pipeline.

The main focus of this section is describing the perception framework developed for

robust spoon detection enclosed by a bowl surface. Hence, this chapter covers the

functioning of Detection, Pose Estimation and Optimal Grasp Estimation nodes.

Grasp Execution and Motion P lanning nodes are discussed in Chapter 5.

27

28

Figure 4.1: ROS architecture of self feeding system representing communication be-
tween the nodes

4.2 Task Overview

Figure 4.2 shows an example of a workspace with the bowl and spoon in focus. The

assumptions of this task is that the color of the spoon and bowl need not contrast each

other, but should not be of the same color. Being same color will lose out information

while RGB-D processing. Another assumption of this task is that the bowl with spoon

is within the reach of manipulator’s workspace and in the field of view of primesense

device.

4.2.1 Computational Problems

As discussed earlier in chapter 3.3.1, the intensity variations cannot be taken into ac-

count because of the varying lighting condition in the home environment and the dif-

ference in material with which the spoon is made. As a result, this task should de-

pend only the geometrical data of the scene along with object color obtained from

pcl::PointCloud
⌦
pcl :: PointXY ZRGB

↵
data.

This task relies on the 3D geometrical model of the spoon. Spoon can be approximated

to a rod in 3-dimensions. There can be few other false positives in the environment as

shown in the Figure 4.3. The algorithm should be robust enough to e�ciently remove

these false positives and extract only the pose of the spoon for grasping.

29

Figure 4.2: Workspace of the self feeding task displayed in RViz. The Point Cloud
data of bowl and the spoon can be seen

Figure 4.3: False positive (a pen) for a spoon like 3D geometry

4.3 Normal estimation and 3D Edge Detection

The approach used for RGB-D edge detection is similar to the approach mentioned in

Section 3.4. Refer to that section for a detailed description of surface normal estimation,

3D edge detection using Octree search. Figure 4.4 shows the 3d edge detection results

on the workspace containing a spoon inside a bowl. Both the figures 4.4(a) and 4.4(b)

illustrate the same scene, but with a change in spoon orientation, just to check if the

edge detector is e�cient enough to detect the occluded edges. As you can see, the change

is detected and the left image shows the entire outline of the spoon although the spoon

has been partially immersed in food.

30

Figure 4.4: RGB-D edge detection results Left: 3D indices of extracted Point Cloud
edges Right: Edges shown with the environment

The least square fitting estimation problem used for determining normal�!n
i

=
�
n
x

, n
y

, n
z

to a point p
i

2 P is not explained here as it has been already covered in Section 3.4.

Creating a k-d tree for the Point Cloud P and searching for neighbors Pk

i

for a point p
i

is explained in Section 3.4.1.

4.3.1 Removing outliers and false positives

From the obtained indices of 3D edges, extraction of only useful points should be per-

formed. The approach followed to extract the spoon information alone is similar to

approach explained in Section 3.4.2 except for some changes in search and model fit-

ting parameters. A spoon in 3-dimensional space can be approximated to a cylinder and

RANSAC (see section 3.4.2) will implement a sample consensus search on a Cylindrical

model. This would not only extract the spoon indices, but also construct a 3D cylinder

over the best fit points of P. The orientation of cylindrical model will give the position

and orientation of spoon indices in 3-dimensional space with respect to an arbitrary

coordinate frame that can be transformed with respect to camera frame. Thus pose

estimation problem of spoon is solved.

But this is not as simple as it seems. There will be many clusters of objects that can be

approximated into a 3D cylinder from sample consensus. There can be objects similar

to spoon like pen, ointments, wires and so on. An household environment can never be

approximated as a noise free environment. As discussed in Section 4.2.1, there can be

multiple false positives detected. This approach e�ciently removes the false positives

by combining the information of the bowl/plate on which the spoon is usually placed.

Probabilistic Hough transforms is applied over the edge indices data to extract the

vertical and horizontal lines. When these lines put together, the candidate that forms a

closed surface, a box, is the indices of the plate.

If the bowl/plate is circle, the indices data can be obtained after applying Hough circles,

a parametrized Hough Transforms with the parametric equations

x
i

= a+R cos(✓)

31

y
i

= b+R sin(✓)

The above equation represents a circle with radius R and center (a, b) , with ✓ being the

angle swept. When ✓ sweeps to full 360 �, the points (x, y) trace the perimeter of the

circle. Finding the parameter triplets (a, b, R) in 3D parameter space is memory and

time expensive. The search will be less expensive if any of the parameter, let’s say radius

R is known as it converts the search problem into 2D parameter space. This approach

does not uses 2D parameter search as it is clearly stated that this perception framework

needs no prior knowledge.

Once the potential candidate for bowl/plate is estimated, the indices are checked for

occlusion or enclosure with the sampling consensus cylindrical model. The cylindrical

model which occludes the indices obtained from Hough parametrization will be final

candidate for spoon detection and the transformation matrix of the model gives the

pose of the spoon. Figure 4.6 shows the extracted candidate from probabilistic Hough

Transform in 3D space along with the spoon. More details about the model fitting and

grasp selection will be discussed in Section 4.4.

Figure 4.5: Extracted indices from parametrized Hough transform displayed in RViz

4.4 Optimal Grasp Selection

After the pose estimation of the object to be manipulated is achieved, estimating the

correct approach vector for the robot’s end e↵ector to grasp the object should be esti-

mated. The grasp estimation is the last module of the perception framework developed

in this thesis. This section explains the approach used for estimating the approach vector

for JACO manipulator, with parallel gripper opening, to reliably grasp the spoon.

32

4.4.1 Definition of optimality

Optimality of a task depends on the resources or time utilized by an agent to complete the

task. In this context, an optimal grasp of the spoon is such a grasp which minimizes the

overall cost of the solution. Minimizing the cost of a grasping and manipulation problem

implies minimizing the number of joint motions a robot has to do to perform a task.

More details about the cost function of a manipulation problem involving constraints is

discussed in Section 5.1.

Optimal grasping a spoon implies that the manipulator needs to do a minimum joint

motions to grab food and reach the user. The optimal way identified to grasp the spoon

is the approach vector of the manipulator’s end e↵ector being normal to the surface

2D plane fitted along the spoon such that the surface is perpendicular to the ground

plane. This implies that the approach vector should always be parallel to the ground

surface with the gripper opening-closing direction being perpendicular to the surface of

the spoon. Figure 4.6 illustrates optimal grasping position of spoon with JACO. The

Figure 4.6: Optimal end-e↵ector grasp pose for self feeding task

reason for choosing this as an optimal grasp pose, because this pose requires just one

rotational motion roll of the end e↵ector to grab food from the bowl. Also, a very few

roll and translation motions will achieve the task of grabbing food into an empty spoon

33

from bowl. As a result, the perception algorithm developed tries to compute this grasp

direction, if feasible, based on spoon’s position estimation.

4.4.2 Approach vector

Consider the 3-dimensional coordinate axes to be as shown in the figure 4.7(a). Let

the blue colored axis, referred as z-axis, be the axis along the ground/table plane.

As discussed in section 4.3.1, a cylindrical model can be fitted onto the spoon by

sample consensus. Fitting a 2D plane through the axis of the cylinder and perpen-

dicular to the ground plane, will result in obtaining a plane normal to the ground plane.

This 2D plane contains the position and orientation details of the normal of the axis of

cylindrical 3D model of spoon. Figure 4.7(b) shows the approach vector represented by

the black arrow, which is a vector normal to the center of the 2D plane. The red thin

lines shows the JACO’s parallel gripper opening and closing direction. This approach

vector is maintained parallel to the ground plane if a feasible grasp exist. This grasp

approach provided the results (see chapter 6) that proves it to be the optimal grasp

pose and can be used for any manipulator just by changing the gripper opening/closing

direction accordingly.

Figure 4.7: Grasp estimation Left: The arbitrary coordinate axes with blue axis being
the table plane Right: The optimal grasp approach vector is shown by black arrow

Given the Pose of the object and the grasp approach vector, the motion planner will

execute the grasp on the object being manipulated. Chapter 5 explains the motion

planning approach along with the task planner to execute the manipulation tasks.

Chapter 5

MANIPULATION PLANNING

USING TRAJECTORY

OPTIMIZER

Trajectory Optimizer, referred as TrajOpt, is an optimization based framework for plan-

ning robot motion. TrajOpt was chosen as the motion planner because of its constraints

satisfaction capabilities in the task space manipulation. TrajOpt generates the trajecto-

ries through sequential convex optimization, a local optimization method for nonconvex

problems that requires convex optimization. TrajOpt molds the problem as a sequential

convex programming problem and solves it using a convex optimization solver Gurobi
1. Gradient Optimization Techniques for E�cient Motion Planning(CHOMP) [20] and

Stochastic trajectory optimization for motion planning (STOMP) [21] are other two op-

timization based planning framework that can generate high quality path from an initial

seed trajectory. The limitations with TrajOpt and other optimization based planners

are that they may get stuck in local optima. This problem can be addressed by running

more iterations for optimization solver or providing a good and dynamically feasible

initial seeds.

5.1 The Optimization Problem

The tasks are executed by JACO manipulator (see Appendix A for details), a 6 Degree

of Freedom robot. The desired Cartesian space motion of the manipulator is specified

in terms of a 6x1 pose vector.

1
http://www.gurobi.com/products/gurobi-optimizer

34

35

Pose vector = [x y z pitch roll yaw]T

The first three entries represents the end e↵ector position in the 3-dimensional Carte-

sian space
�
x, y, z

while the last three entries represents the orientation of the end

e↵ector. The optimizer formulates these Cartesian motion as its cost and constraints,

also accepting additional constraints, and computes a trajectory represented by a set of

time-stamped waypoints. The non-convex optimization problem can be formulated as

min
x

f(x)

s.t g
i

(x) � 0, i = 1, 2,m

h
j

(x) = 0, j = 1, 2,p

with the optimization variable x 2 Rn, n being the degree of freedom of the manipula-

tor. If the trajectory has T waypoints, then x can be represented of the form x = q1:T ,

where q
t

2 Rn describes the joint configuration at the t� th timestep. f and g
i

are non-

convex scalar function and h
j

is non-a�ne. The commonly used inequality constraints

in motion planning problem are collision avoidance, joint limits constraints and speed

limits in Cartesian space. Common equality constraints include the end e↵ector pose

and orientation constraints which will be discussed in section

The cost function is represented in configuration space and it is written as:

f(q1:T) =
TX

t=1

((q
t+1 � q

t

)TQ1(qt+1 � q
t

) + (q
t

� q
nom

)TQ2(qt � q
nom

)

where Q1, Q2 � 0 and q
nom

contains the configuration of nominal posture. The

above equation enforces cost penalty on joint-space velocities as it tries to penalize a

high velocities by maintaining a di↵erence check between q
t+1 and q

t

. In practice, the

collision check is included in the cost function rather than a constraint satisfaction.

This is because, the robot’s end-e↵ector must come in contact with the object being

manipulated, and if the collision check was a constraint, this action would never be

validated. If the collision check is included as a cost parameter, the penalties can be

handled o↵ for the collision with the object being manipulated.

36

5.2 Motion Planning and execution

Motion planning for a specific task like door opening and self feeding can be achieved

through a high-level task planning approach that determines long term strategies like

picking up a spoon from anywhere outside the bowl, manipulating it inside the bowl and

grabbing food. The repetitive execution of motions from bowl to user for self feeding can

be performed by a low-level motion planner. Combining the low-level motion planner

and high-level task planner [22] is a hard problem because of the generality of the task

planner. Implementing a task planner is out of the scope of this thesis and assumptions

are made that the preconditions are satisfied to execute motion planning. The motion

planning approach for door opening task and self feeding task is discussed in Section

5.2.1 and 5.2.2 respectively.

5.2.1 Door Opening Task

Chapter 3 described the approach to detect the 6 dimensional pose of the handle and

computed the approach vector based on the 3D orientation of the handle using Prin-

ciple Component analysis. Given a pose and the approach vector, the motion planner

computes a set of waypoints q1:T , where qt is the joint configuration of the robot at time

t 2
�
1, T

to execute the motion of grasping the handle and turning it to open the door.

The Planning Domain Definition Language (PDDL) [23] helps to formulate the prob-

lem by defining a deterministic task planning problem as a tuple
⌦
A, s0, g

↵
where A

is a set of parameterized action, s0 is the initial state and g is the goal state. The

state transition function f specifies the transition from the current state x to the next

state x0 when an action u 2 U(x), the action space, is applied. The task of a planning

problem is to find a finite sequence of robot actions, that when applied to the robot

trasforms the initial state s0 to the goal state g. Every action, when given a present

state, applies a state transformation given by the e↵ect of the action. For example, a dis-

crete grasp action on handle using current gripper state could be represented as follows :

grasp(handle , gripper)

precon Empty(gripper)

effect InGripper(handle), ~Empty(gripper)

All other robot discrete action like turnHandle, leaveHandleresults with an e↵ect on the

states and can be represented in a similar way.

A motion planning problem is represented as a tuple
⌦
Q, f, p0, pt

↵
, where Q is the

configuration space containing all the possible configuration of the robot, f is a boolean

37

function that determines whether a current configuration q
t

2 Q is in collision and p0, pt

is the initial and final poses. A collision-free motion plan solving a motion planning

problem is a trajectory in Q from p0 to p
t

such that f doesnt hold for any pose in the

trajectory. The collision with the handle is allowed by modifying f to be false.

The door opening manipulation task can be divided into three sub-tasks :

• Grasp the handle

• Turn the handle to unlatch

• Pull the handle to open the door

The last sub-task to pull the handle and open the door is not performed in this task

as JACO’s gripper possesses fragile fingers which is designed to perform light load task.

Pulling the heavy door with those fingers is not feasible and hence was not tried. The

task can be represented as discrete actions as follows:

grasp(handle , gripper , pose1 , pose2 , traj1)

precon Empty(gripper), At(gripper , pose1)

isGraspPossible(pose2 , handle), setConstraints(traj1)

isMotionPossible(traj1 , pose1 , pose2)

effect In(handle , gripper), ~Empty(gripper)

At(gripper , pose2)

turn(handle , gripper , pose2 , pose3 , traj2)

precon In(handle , gripper), ~Empty(gripper)

At(gripper , pose2), setConstraints(traj2)

isMotionPossible(traj2 , pose2 , pose3)

effect In(handle , gripper), ~Empty(gripper)

At(gripper , pose3)

The structure of discrete action is similar to [22], where they try to pick an object

from one position and place it at another position. I had introduced few predicates like

isGraspPossible and isMotionPossible as precondition checks which returns boolean

true or false. isGraspPossible(pose2, handle) returns true if pose2 is a pose at which

handle can be grasped. isMotionPossible(traj1, pose1, pose2) returns true only if mo-

tion planning action tuple
⌦
Q, f, pose1, pose2

↵
holds for the trajectory traj1. That is,

traj1 should give feasible solution from pose1 to pose2. In(handle, gripper) returns true

if the gripper is currently grasping the handle. At(gripper, pose2) holds true of the end

e↵ector is in pose2. Remaining predicates used are self-explanatory.

End e↵ector poses used above are 6x1 vectors. pose1 is the home configuration of the

robot. pose2 is the configuration of the robot that grasps the handle. pose3 is the

configuration of the robot after turning the handle to unlatch the door. The end e↵ector

38

pose for di↵erent poses are shown in the Figure 5.1. The rotation of handle is achieved

by setting the end e↵ector pose constraints while TrajOpt calculates the trajectory. The

end e↵ector pose constraints are set by the by calculating the corresponding quaternion,

a 4x1 vector of
⌦
w, x, y, z

↵
. An array of position and quaternion of end-e↵ector constitute

a set of waypoints and that gives the trajectory for the robot to execute.

Figure 5.1: End e↵ector poses during the task execution Left:Home Pose (Pose1)
Middle: Pose for grasping handle (Pose2) Right: Pose after turning handle (Pose3)

5.2.2 Self feeding task

Chapter 4 described the approach to detect the 6 dimensional pose of the spoon and

computed the approach vector based on the 3D orientation of the spoon. Given a pose

and the approach vector, the motion planner computes a set of waypoints q1:T to execute

the motion of grasping the spoon, grabbing food from the bowl, feed the user and repeat

the task.

The robot motion is executed through a sequence of several feasible states. Discrete

planning (discusses in section 5.2.1) formulates the planning problem for the self feeding

task. The problem formulation and discrete actions are similar to what section 5.2.1

explains. They are not discussed in this section to avoid redundancy.

The self feeding manipulation task can be divided into three sub-tasks :

• Grasp the spoon

• Translate and rotate the spoon to grab food from bowl

• Manipulate the spoon to the user and execute feed

• Manipulate back to initial grasp position (and repeat steps 2 - 4)

39

These sub-tasks can be represented as discrete actions as follows :

grasp(spoon , gripper , pose1 , pose2 , traj1)

precon Empty(gripper), At(gripper , pose1)

isGraspPossible(pose2 , spoon), setConstraints(traj1)

isMotionPossible(traj1 , pose1 , pose2)

effect In(spoon , gripper), ~Empty(gripper)

At(gripper , pose2)

grabFood(spoon , gripper , pose2 , pose3 , traj2)

precon In(handle , gripper), ~Empty(gripper)

At(gripper , pose2), setConstraints(traj2)

isMotionPossible(traj2 , pose2 , pose3)

effect In(spoon , gripper), ~Empty(gripper)

At(gripper , pose3)

feedUser(spoon , gripper , pose3 , pose4 , traj3)

precon In(spoon , gripper), ~Empty(gripper)

At(gripper , pose3), setConstraints(traj3)

isMotionPossible(traj3 , pose3 , pose4)

effect In(spoon , gripper), ~Empty(gripper)

At(gripper , pose4)

traceBack (spoon , gripper , pose4 , pose2 , traj4) %Repeat - back to grab food

precon In(spoon , gripper), ~Empty(gripper)

At(gripper , pose4), setConstraints(traj4)

isMotionPossible(traj4 , pose4 , pose1)

effect In(spoon , gripper), ~Empty(gripper)

At(gripper , pose1)

All the assumptions and task predicates defined are similar to definition used in Section

5.2.1. Each sub-task e↵ects in manipulation of robot from one pose to another pose

of end-e↵ector. The end e↵ector pose for di↵erent poses are shown in the Figure 5.2.

pose1 is the home configuration of the robot. pose2 is the configuration of the robot that

grasps the spoon. pose3 is achieved from pose2 after executing translation (if needed)

and rotation to grab the food. pose4 is the configuration of the robot that feeds the

user. The robot takes a pause of 10 seconds to ensure that the user has reached to

spoon to eat. And these set of sub-tasks are repeated to feed the user. The costs and

constraints are set similarly (not the same) as explained in Section 5.2.1. Self feeding

task has a hard constraint of not spilling the food while manipulating from bowl to

user. traj3 is responsible for this manipulation. Rotation of the end e↵ector is only

allowed along the axis perpendicular to the ground plane as this rotation will not spill

the food. The remaining two rotations roll and pitch are not allowed. This can be done

by adding a rotational constraint to the end e↵ector along the entire trajectory. The

rotation coe�cient of the trajectory, rot
coeffs

are set to [k,0,0], where k is a very small

constant allowing minimal rotation along x-axis (ground being z axis). The trajectory

traj3 accepts no di↵erence in rotational component roll and pitch between pose3 and

40

Figure 5.2: End e↵ector poses during the task execution Left:Home Pose (Pose1)
Middle: Pose for grasping spoon (Pose2) Right: Pose to feed the user (Pose4)

pose4. Even if a minimal di↵erence exists, TrajOpt will either return a trajectory with

infinite cost or will get stuck in a local minima that never ends the search problem.

5.3 Pipeline of the overall system

Planning the robot motion and execution completes the task of opening the door/self

feeding successfully. The entire perception and manipulation planning framework is built

on ROS for modularity and easy communication. The entire ROS pipeline to complete

the task is shown in Figure 5.3.

A ROS node is an executable that communicate with other nodes using ROS topics. In

the above figure, Primesense and JACO manipulation are sensor and actuator respec-

tively. Other solid blocks represent di↵erent ROS nodes. The algorithms developed for

this thesis can be split into di↵erent ROS nodes as shown for modularity reasons. The

nodes enclosed in red boxes are related to perception algorithms and the nodes enclosed

in green boxes are for manipulation capabilities.

The content in between the boxes (shown above arrows) are the type of ROS messages be-

ing communicated. For example, geometry msgs/Pose is a ROS message type that con-

tains both position (geometry msgs/Point) and orientation (geometry msgs/Quaternion)

information.

The Primesense sensor publishes (sends) the Point Cloud data of type sensor msgs/PointCloud2

that is used by the Handle detector node to process and detect the handle. The dashed

41

Figure 5.3: ROS pipeline of the entire system showing communication between nodes
(in boxes). The content in between transition shows the ROS message type being

published

arrows represent an alternate task of self feeding. The handle detector node com-

putes the indices that contains the handle points as vector ¡pcl::PointXYZ¿ along with

pcl::PointNormal information to estimate the orientation of detected objects. The Pose

estimator computes an array of possible Poses of the object in the world. The Grasp

estimator node compute the approach vector as a geometry msgs/vector3 message type.

With the Pose and approach vector information, the motion planning node computes

an array of commands for the JACO arm to manipulate and complete the manipulation

task.

Chapter 6

EXPERIMENTS AND RESULTS

This chapter presents the recorded experimental data to evaluate the algorithms and

methods discussed in the earlier chapters. The data provided in the following sections

are mostly related to success/failure rates over numerous runs. The results of MOPED

framework, the door opening task and self feeding task is discussed.

6.1 Multiple Object Pose Estimation and Detection re-

sults

In the tests that were performed on Pose Estimation of the soap bar, I was successfully

able to detect the soap bar and estimates its 6D pose in 72 images out of 75. These

images had set of images from di↵erent cameras, locations, lighting conditions, cluttered

and uncluttered environments. Images a) and b) in Figure 6.1 displays detection of the

soap when only soap is present in the scene and the images c) and d) displays detection

when soap is partially occluded by other objects.

Given the 6D pose of the object in the scene, the grasp pose is estimated and manip-

ulator could successfully manipulate the object. This 6D pose estimation technique is

highly reliable.

42

43

(a) Soap Front (b) Soap Side

(c) Cluttered Environment Front (d) Cluttered Environment Side

Figure 6.1: Detection of soap bar using MOPED

44

6.2 Door opening results

The door opening task has several sub-tasks like handle detection, pose estimation,

grasp estimation and motion execution tasks performance was evaluated. Given the

point cloud data, the handle can be e�ciently located and opened. Figures from section

3.4, section 3.5 and section 5.2.1 illustrates the results of these sub tasks being executed

successfully. The handle can be detected and opened from multiple angles lying within a

region where a good view of the handle can be obtained. Principle Component Analysis

finds the Eigen Vector of the extracted cloud indices to estimate the grasp approach

vector.

Table 6.1: Number of successful attempts to execute the sub-tasks of door opening
task. Number of attempts = 10

Sub-tasks Successful attempts Success %
estimate handle pose 9 90%
grasp handle 7 77.8% (7/9)
turn handle 7 100% (7/7)

The table 6.1 shows the successful attempts the robot executed the sub-tasks without

any time constraints. The overall task success rate = 70 % (7/10 attempts).The handle

detection and its pose estimation was a very successful task and that proves the reliability

of the algorithm developed. Grasp estimation failed in few cases where the organization

of extracted handle point indices are disoriented with the reference frame. This is not

likely to happen in indoor navigation because the user on the wheelchair will approach

the door in a direction normal to the door plane by allowing some considerable deviation.

The handle grasping task failed in attempts when the point cloud data does not return

the accurate Pose P and grasp approach vector. This happened due to the noise in the

extracted point data due to presence of other handle-like features in the scene. Once the

handle grasp is achieved, turning the handle is achieved always as TrajOpt generated

accurate trajectories to turn the handle.

Figure 6.2 shows the handle detection algorithm being tested under various environmen-

tal conditions like varying light intensity, a di↵erent type of handle (knob) and varying

field of acquisition. The results were obtained for these variation to show that the algo-

rithm is robust to be implemented in household environment.

45

Figure 6.2: Handle detection algorithm tested under various conditions

6.3 Self feeding results

The self feeding task was executed in varying conditions like di↵erent spoon poses,

di↵erent number of false positives, di↵erent bowl and spoon models and so on. As the

algorithm developed requires no prior model of any object, the task could be executed

with di↵erent model of spoon and bowl. However in some cases, the grasp approach

vector could not be e�ciently obtained due to the cylindrical nature of the spoon. In

such case of ambiguity, the grasp approach vector is manually hard-coded to be the vector

parallel to the ground plane as it is the optimal approach direction for self feeding task

(see Section 4.4). In such cases, the algorithm loses its robustness. The table 6.2 shows

the success ratio when the self feeding task was performed under varying conditions.

Table 6.2: Success ratio for self feeding task. Number of attempts = 10

Sub-tasks Successful attempts Success %
estimate spoon pose 7 70%
grasp spoon 6 84.4% (6/7)
grab food 6 100% (6/6)
feed user 5 83.3% (5/6)

The overall success ratio for the task is 50% (5/10 attempts). This low success rate is

because of the thin geometry of spoon in large point cloud. Also, most of the household

object which could potentially be in the scene can also be fitted into a 3D cylindri-

cal model. This results in large number of outliers and false positives. However, this

can be improved if the spoon model is learned by the algorithm, which is against the

assumptions made for this algorithm.

Chapter 7

CONTRIBUTION AND

DISCUSSION

The manipulation planning for JACO (Chapter 5) used in validating the perception

algorithms (Chapter 3 and 4) was developed by Xianchao Long from Robotics and

Intelligent Vehicles Research (RIVeR) laboratory. He developed the motion planning

framework for the above discussed ADL manipulation tasks. The MOPED framework

(Chapter 2) was developed for a course project and the approach was extended to obtain

a feasible grasp pose for JACO manipulator from the obtained 6D pose.

The approach presented in this thesis demonstrates to perceive unknown and known

objects. As of now, this work doesn’t guarantee a complete autonomy for dealing with

unknown objects as the algorithm is not sophisticated to perceive and classify unknown

objects. Instead, the perception algorithms developed are task specific and can classify

and estimate the pose of the objects that are related to the task. As discussed in

the motivation of this research, this algorithms are developed under the classification of

Human in the Loop Cyber Physical System (HiLCPS). The Brain Body Control Interface

(BBCI), researched and developed in Robotics and Intelligent Vehicles Research (RIVeR)

laboratory serves as the cyber medium. The user should think to open the door run the

door-opening task related algorithms and the pose estimator will only look for handle

like features in a door plane ignoring all other geometry. That is, self feeding task and

door opening task are completely independent to each other.

The door opening task for indoor navigation provided similar results like the Laser

based door opening with a PR2 [24] from Laser and intensity data , but the algorithm

demonstrated in this thesis did not rely on the intensity data of the Point cloud. This

algorithm will work in almost all household conditions allowing a cushion of few false

46

47

positives. The motion planner, TrajOpt, validates the task successfully by taking all

constraints required for a household manipulation task.

Door traversal task using ATLAS Humanoid robot [25], by team WPI-CMU, was one

of the tasks at DRC finals. ATLAS successfully identified the door, walked towards the

door, detected handle, turned the handle, opened the door and walked past the door.

The handle detection was done by color segmentation based on the assumption that the

handle is of significantly di↵erent color from the door. But the algorithm developed for

handle detection in this thesis does not rely on color or intensity changes in order to

make it robust for varying environmental conditions at home.

To the best of my knowledge, there has been no published successful work on autonomous

self feeding using robots. The algorithms developed as a part of this thesis towards

feeding the user will stand as a benchmark for future work on similar goals. The results

of this thesis can be reproduced in simulation using ROS and openRAVE simulator. The

future work on this task is to develop a highly robust and reliable grasping technique

by using advanced machine learning classifiers to detect and grasp the spoon/fork to

achieve 100% success rate.

The Point Cloud data were used only for the object classification and pose estimation

problems. As the robot manipulates in an environment, point cloud data can be used

in developing a probabilistic model of the environment’s occupancy data for collision

avoidance by creating an Octomap representation. Another future scope of this project

is to develop a closed-loop feedback control system by visual servoing. The real time

perception data can provide the pose of the manipulator’s end-e↵ector and can be used

as a feedback for error propagation and correction as it executes its planned trajectory.

Appendix A

JACO arm manipulation

capabilities

JACO robotic arm is a 6 -DoF manipulator shown in Figure A.1. Advanced motion

planners like TrajOpt can be implemented on the JACO (see Chapter 5). This appendix

is written for the readers not familiar about executing a trajectory using a manipulator.

Figure A.1: A view of JACO showing the link parameters

A time-stamped trajectory contains the information of position, velocity and acceleration

of each joint during every step of the trajectory. Given the position and velocity details

of start position and goal pose 1, Trajectory generation can be done by computing a

1
A pose of the robot represents the position and orientation of the end e↵ector as a 6x1 vector

48

49

quintic time dependent polynomial. To represent mathematically, Given the start and

end positions (q0(t), q
f

(t)), velocities (q̇0(t), q̇
f

(t)), and accelerations (q̈0(t), q̈
f

(t)) for

start time, t0 and end time t
f

, the position can be given by the quintic polynomial as

follows:

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (A.1)

Therefore, velocity and acceleration are given by:

q̇(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (A.2)

q̈(t) = 4a2 + 6a3t+ 12a4t
2 + 20a5t

3 (A.3)

We can solve for the coe�cients, by plugging in the known start and end positions,

velocities and accelerations given by the following linear system:

~q(t) = A⇥ ~a

Therefore,

~a = A�1 ⇥ ~q(t) (A.4)

which is equivalent to:

2

66666666664

a0

a1

a2

a3

a4

a5

3

77777777775

=

2

66666666664

1 t t2 t3 t4 t5

1 t t2 t3 t4 t5

0 1 2t 3t2 4t3 5t4

0 1 2t 3t2 4t3 5t4

0 0 2 6t 12t2 20t3

0 0 2 6t 12t2 20t3

3

77777777775

�1

⇥

2

66666666664

q0(t)

q
f

(t)

q̇0(t)

q̇
f

(t)

q̈0(t)

q̈
f

(t)

3

77777777775

The equation A.4 provides the values for the coe�cients of the quintic polynomial that

can then be used for the desired trajectory generation. This is done by creating an

array with the range [t0, t
f

] with a step size of 0.1 seconds.The values in the array are

then applied to equations A.1, A.2, and A.3 to get corresponding discretized position,

velocity and acceleration trajectory profiles. For the JACO arm, the discretized positon

trajectory profile was used to control the desired set points of the robotic arm.

50

The 6 dimensional end e↵ector pose of the above resulted discredited position trajectory

profile was recorded and plotted in MATLAB illustrated in Figure A.2. The trajectory

obtained results in a baseball swing using a single arm with required final velocity and

acceleration required to hit the ball hard. The swing was performed without the baseball

stick just for demonstration purpose.

Figure A.2: Trajectory of the JACO manipulator playing a baseball swing

Appendix B

Camera Calibration

Camera calibration is the process of finding the true parameters of the camera that took

the photographs. The parameters of a camera can be classified as extrinsic and intrin-

sic parameters. Extrinsic parameters describes the camera’s orientation and location is

real world. Intrinsic parameters define the relationship between pixel coordinates and

camera coordinates. Some of these parameters are focal length, format size, principal

point, and lens distortion. Camera Calibration is primarily used when modeling scenes

virtually from real inputs. One of the main purpose of camera calibration is to figure out

where the camera was in relation to a scene in a photograph. Thus camera calibration

is mandatory in 3D computer vision.

In order to achieve the intrinsic parameters, calibration is done using a 2D planar pat-

tern. A chessboard, shown in Figure B.1 was observed by the camera at di↵erent ori-

entations. The primary requirement is that the chess board should not be a square,

number of rows and columns should be di↵erent. This requirement would account for

the rotations made by the camera while observing this 2D pattern from various orien-

tations.

’Distortion’ is primarily accounted in camera calibration which arises due to two fac-

tors namely radial and tangential factors. The distortion due to radial factors can be

corrected as

x
corrected

= x(1 + k1r2 + k2r4 + k3r6)

y
corrected

= y(1 + k1r2 + k2r4 + k3r6)

The distortion due to radial factors can be corrected as

x
corrected

= x+ [2p1xy + p2(r2 + 2x2)]

y
corrected

= y + [2p1xy + p2(r2 + 2y2)]

51

52

Figure B.1: A rectangular chess board used for camera calibration

The position on the corrected output image will have the coordinates (x
corrected

, y
corrected

).

The five distortion parameters can be implemented as 1x5 matrix in OpenCV as

Distortion
coefficient

= [k1 k2 p1 p2 k3]

The 3D point is converted into a 2D projection in the image plane using the matrix

2

664

x

y

w

3

775 =

2

664

f
x

0 c
x

0 f
y

c
y

0 0 1

3

775

2

664

X

Y

Z

3

775

The 3x3 matrix that relates the real world coordinates (X,Y,Z) with the image plane

coordinates (x,y) is called the camera intrinsic matrix. The unknown parameters f
x

, f
y

are the camera focal length and c
x

, c
y

are the optical centers of the image plane expressed

in pixel coordinates.

The process of determining the distortion matrix and the camera intrinsic matrix is

calibration. The input images are the images of the planar pattern from di↵erent ori-

entations. The number of images required depends on the type of the pattern. In case

of chessboard, the minimum number of snapshots required is four, but to eliminate the

noise in the image, I used seven images for calibration. This gave a better result and

proper calibration was done.

Bibliography

[1] G. Schirner, D. Erdogmus, K. Chowdhury, and T. Padir. The future of human-in-
the-loop cyber-physical systems. Computer, 46(1):36–45, Jan 2013. ISSN 0018-9162.
doi: 10.1109/MC.2013.31.

[2] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, and
Pieter Abbeel. Finding locally optimal, collision-free trajectories with sequential
convex optimization. In Proceedings of Robotics: Science and Systems, Berlin,
Germany, June 2013. doi: 10.15607/RSS.2013.IX.031.

[3] Juan M. Corchado, Javier Bajo, and Ajith Abraham. Gerami: Improving healthcare
delivery in geriatric residences. IEEE Intelligent Systems, 23:19–25, 2008.

[4] Paolo Sernani, Andrea Claudi, Luca Palazzo, Gianluca Dolcini, and Aldo
Franco Dragoni. Home care expert systems for ambient assisted living: A multi-
agent approach.

[5] T. Mukai, S. Hirano, H. Nakashima, Y. Kato, Y. Sakaida, S. Guo, and S. Hosoe.
Development of a nursing-care assistant robot riba that can lift a human in its
arms. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pages 5996–6001, Oct 2010. doi: 10.1109/IROS.2010.5651735.

[6] Chih-Hung King and Chen. Dusty: an assistive mobile manipulator that retrieves
dropped objects for people with motor impairments. March 2012.

[7] Dmitry Sinyukov, Ross Desmond, Matthew Dickerman, James Fleming, Jerome
Schaufeld, and Taskin Padir. Multi-modal control framework for a semi-autonomous
wheelchair using modular sensor designs. Intelligent Service Robotics, 7(3):145 –
155, July 2014.

[8] R. B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages 1–4, May
2011. doi: 10.1109/ICRA.2011.5980567.

[9] Baltes MM and LANG FR. Everyday functioning and successful aging: the impact
of resources. Psychology and Aging, 12(3):433–443, 1997.

[10] Alvaro Collet Romea, Manuel Martinez Torres, and Siddhartha Srinivasa. The
moped framework: Object recognition and pose estimation for manipulation. In-
ternational Journal of Robotics Research, 30(10):1284 – 1306, September 2011.

[11] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo
collections in 3d. ACM transactions on graphics (TOG), 25(3):835–846, 2006.

53

Bibliography 54

[12] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

[13] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with auto-
matic algorithm configuration. In International Conference on Computer Vision
Theory and Application VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[14] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature
space analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
24(5):603–619, 2002.

[15] Nioy J Mitra and An Nguyen. Estimating surface normals in noisy point cloud
data.

[16] C. Choi, A. J. B. Trevor, and H. I. Christensen. Rgb-d edge detection and edge-
based registration. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1568–1575, Nov 2013. doi: 10.1109/IROS.2013.6696558.

[17] J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, Nov 1986. ISSN
0162-8828. doi: 10.1109/TPAMI.1986.4767851.

[18] Martin A Fischer and Robert C. Bolles. andom sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381 – 395, 1981.

[19] Jon Shlens. A tutorial on principle component analysis: Derivation, discussion and
singular value decomposition. 25 March 2003.

[20] Nathan Ratli↵, Matthew Zucker, J. Andrew (Drew) Bagnell, and Siddhartha Srini-
vasa. Chomp: Gradient optimization techniques for e�cient motion planning. In
IEEE International Conference on Robotics and Automation (ICRA), May 2009.

[21] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp:
Stochastic trajectory optimization for motion planning. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, pages 4569–4574, May 2011.
doi: 10.1109/ICRA.2011.5980280.

[22] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Com-
bined task and motion planning through an extensible planner-independent inter-
face layer. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 639–646, May 2014. doi: 10.1109/ICRA.2014.6906922.

[23] M. Fox and D. Long. Pddl2.1: an extension to pddl for expressing temporal planning
domains. JAIR, 20(1):61 – 124, 2003.

[24] R. B. Rusu, W. Meeussen, S. Chitta, and M. Beetz. Laser-based perception for door
and handle identification. In Advanced Robotics, 2009. ICAR 2009. International
Conference on, pages 1–8, June 2009.

[25] Nandan Banerjee, Xianchao Long, Ruixiang Du, Felipe Polido, Siyuan Feng,
Christopher G. Atkeson, Michael A. Gennert, and Taskin Padir. Human-supervised
control of the ATLAS humanoid robot for traversing doors. In 15th IEEE-RAS
International Conference on Humanoid Robots, Humanoids 2015, Seoul, South Ko-
rea, November 3-5, 2015, pages 722–729, 2015. doi: 10.1109/HUMANOIDS.2015.
7363442. URL http://dx.doi.org/10.1109/HUMANOIDS.2015.7363442.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 INTRODUCTION
	1.1 Motivation and Goal
	1.2 Ambient Assisted Living (AAL)
	1.2.1 Need for AAL
	1.2.2 Robotics in AAL

	1.3 The Robotic System
	1.4 Activities of Daily Living Tasks
	1.4.1 Challenges involved in ADL manipulation tasks

	1.5 Overview

	2 MULTIPLE OBJECT POSE ESTIMATION AND DETECTION
	2.1 Modeling the object
	2.1.1 Structure From Motion
	2.1.2 Refining the 3D Model

	2.2 Methodology and Implementation
	2.2.1 Feature Extraction
	2.2.2 Feature Matching
	2.2.3 Feature Clustering
	2.2.4 Hypothesis Generation
	2.2.5 Pose Clustering
	2.2.6 Hypothesis Refinement
	2.2.7 Pose Recombination

	2.3 Limitation of MOPED in ADL scenarios

	3 DOOR OPENING TASK FOR INDOOR NAVIGATION
	3.1 Point Cloud Structure
	3.1.1 Processing the acquired 3D Point Cloud data
	3.1.2 Downsampling the 3D Point Cloud data

	3.2 Robot Operating System (ROS) architecture of the system
	3.3 Handle Detection and Pose Estimation
	3.3.1 Computational Problems

	3.4 Normal Estimation and 3D Edge Detection
	3.4.1 k-d tree representation of a point cloud
	3.4.2 Clustering and estimating inliers

	3.5 Principle Component Analysis (PCA)

	4 SELF FEEDING TASK
	4.1 ROS architecture of the system
	4.2 Task Overview
	4.2.1 Computational Problems

	4.3 Normal estimation and 3D Edge Detection
	4.3.1 Removing outliers and false positives

	4.4 Optimal Grasp Selection
	4.4.1 Definition of optimality
	4.4.2 Approach vector

	5 MANIPULATION PLANNING USING TRAJECTORY OPTIMIZER
	5.1 The Optimization Problem
	5.2 Motion Planning and execution
	5.2.1 Door Opening Task
	5.2.2 Self feeding task

	5.3 Pipeline of the overall system

	6 EXPERIMENTS AND RESULTS
	6.1 Multiple Object Pose Estimation and Detection results
	6.2 Door opening results
	6.3 Self feeding results

	7 CONTRIBUTION AND DISCUSSION
	A JACO arm manipulation capabilities
	B Camera Calibration
	Bibliography

