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ABSTRACT 

Tuberculosis is a deadly disease caused by bacteria of the genus Mycobacterium. One-third of 

the world’s population is infected with Mycobacterium tuberculosis.  Two million these deaths 

occur each year in immunocompromised AIDS patients. M. tuberculosis has co-evolved with 

humans for many thousands of years. The bacillus has developed tactics to overcome the 

immune defense system and multiply in the macrophage. At the interface of the host and 

pathogen interactions, there is an interchange of metals and electrolytes. The host on one hand 

reduces the availability of metals essential for pathogen survival, like manganese and iron, in the 

macrophage and increases potassium ions which reduce pH in the phagolysosome. The host also 

generates Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), to create toxic 

affects through interactions with metals and metalloproteins. M. tuberculosis copes with the 

hostile environment in the macrophage by preventing the acidification of the phagolysosome, 

secreting antioxidant enzymes such as alkylhydroperoxidase (AhpF) and peroxiredoxin (AhpC), 

superoxide dismutase, SodA and SodC, and catalase KatG through the SecA system. M. 

tuberculosis contains 28 metal transporters, among them there are 12 unique P-type ATPases. 

This is an unusually high number of P-type ATPases in an organism. These ATPases transport 

several monovalent and divalent metals (Cu
+
, Cu

2+
, Ag

+
, Zn

2+
, Na

+
, K

+
, Ca

2+
, Cd

2+
, Pb

2+
, Mn

2+
, 

Mg
2+

, and Co
2+

) across biological membranes, using energy from ATP hydrolysis.  Our analysis 

has revealed that these P-type ATPases have homologs in other intracellular 

symbiotic/pathogenic bacteria and certain chemolithotrophic archaea and bacteria. A correlation 

can hence be drawn among these pumps and the capability of surviving in noxious environments 

and coping with adverse redox conditions. Possible substrates were identified by determining the 

consensus sequences in different helices of these ATPases. However, out of the 12 P-type 
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ATPases confirmed, transported substrate could be postulated for four of these proteins; CtpA, 

CtpB, CtpV and KdpB. Using bioinformatic approaches we have characterized the possible 

genetic environment of these genes. The transmembrane regions were analyzed for consensus 

sequences and the N-terminals and C-terminals were scrutinized for metal binding domains, and 

we were able to categorize these ATPases into P1 type and P2 type ATPases. In an attempt to 

determine the substrate specificity, two of these ATPases (CtpC and ctpG) were cloned and 

transformed into Escherichia coli cells.  Cells expressing CtpC were grown in different 

concentrations of metals and pHs. In these experiments CtpC was found to show an interaction 

with copper and cadmium.  Pure protein was obtained by His-tag purification and para-Nitro 

Phenol Phosphatase (pNPPase) assay was performed with different metals, it was found that 

copper and zinc activated the phosphatase activity of the enzyme; and cobalt and manganese 

were inhibitory. Inhibition of the pNPP assay could mean that there would be activation in the 

ATPase assay, meaning that cobalt and manganese could be possible substrates to this enzyme.  
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The more you care, the stronger you can be. 

Jim Rohn 

 

 

 

 

If your heart acquires strength, you will be able to remove blemishes from others without 

thinking evil of them. 

The weak can never forgive. Forgiveness is the attribute of the strong. 

Mohandas Karamchand Gandhi 

 

 

 

 

 

 

 

All too often arrogance accompanies strength, and we must never assume that justice is on the 

side of the strong. The use of power must always be accompanied by moral choice. 

Theodore Bikel 

 


