
011.- 601Z-
Project Number: JDW-0301 - 4-1

A Visual Basic Program for Resampling Based Statistical Analysis

An Interactive Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Joshua Smolic

Minesh G Patel

Huy Dinh Nguyen
Date: Dec 18, 2003

Professor Jayson D. Wilbur, Major Advisor

Abstract

New methods for statistical analysis are usually not adopted by practitioners until the

computational components of the method are made accessible via standard software

packages. This project involves developing a Visual Basic application to make new

statistical methodology accessible to practitioners familiar with Microsoft Excel. The

program performs resampling-based statistical analysis and allows for various multiple

testing corrections.

ii

Table of Contents
Abstract 	 ii

Table of Contents 	 iii

1. Introduction 	 1

1.1 Background and Motivation 	 1
1.2 Literature review 	 1

1.2.1 StatXact 	 2
1.2.2 InStat 	 2

1.3 Hypothesis Testing 	 3
1.3.1 Introduction 	 3
1.3.2 Statistical Errors 	 4
1.3.3 Multiple Testing 	 5

2. Methodology 	 6

2.1 Introduction 	 6
2.1.1 Test statistic 	 7

2.2 Exact Permutation Test 	 9
2.2.1 What Is an Exact Permutation Test? 	 9
2.2.2 Advantages of Exact Permutation tests 	 10
2.2.3 Disadvantages of Exact Permutation tests 	 11
2.3.4 Algorithm used for exact permutation test 	 12
2.2.5 Assumptions 	 12

2.3 Randomization Test 	 12
2.3.1 What is Randomization Test? 	 12
2.3.2 What Are The Advantages and Disadvantages? 	 13
2.3.3 Algorithm 	 13
2.3.4 Assumptions 	 14

2.4 Bootstrap Test 	 14
2.4.1 What is the Bootstrap Test? 	 14
2.4.2 Advantages of Bootstrap? 	 16
2.4.3 Disadvantages of Bootstrap 	 16
2.4.4 Algorithm used for Bootstrap 	 1 7
2.4.5 Assumptions 	 17

3. Procedure 	 17

4. Results 	 18
4.1 Problems 	 18
4.2 Analysis of results 	 19

5. Conclusions and Recommendations 	 20
Appendices 	 22

A 1 : Readme.doc 	 22
Minimum System Requirements: 	 22

iii

Installation: 	 22
Running the Addin: 	 23

A2: Source _code.doc 	 24
Main select form (group_select): 	 24
Code from main select form (group_select): 	 24
Module 1 code: 	 29
Module 2 code: 	 32
Module 3 code: 	 37
Module 4 code: 	 42

A3: Contents of attached CD: 	 45

iv

1. Introduction

1.1 Background and Motivation

Statistics is changing. Modern computers and software make it possible to look at data

graphically and numerically in ways that were previously computationally infeasible.

They enable more realistic, accurate, and informative analyses than could be done before

with previous means.

The bootstrap, permutation tests, and other resampling methods are part of this

revolution. Resampling methods allow us to quantify uncertainty by calculating standard

errors and confidence intervals and performing significance tests. They require fewer

assumptions than traditional methods and generally give more accurate answers.

Moreover, resampling lets us tackle new inference settings easily (Moore, 2003).

Modern computers are able to do massive amounts of calculations. Resampling tests are

not widely available though. These tests are rather new and the programs that do have

them tend to be very complicated and expensive. This project proposes a Visual Basic

program that works to make an easily used interface for scientists to use that don't have a

background in statistics and computer science. For this reason it runs in Microsoft Excel

and minimal amounts of user interaction are needed for the tests.

1.2 Literature review

There are several commercial software products are available today to perform statistical

analysis of data. Most do not allow for resampling-based inference. However, two

commercial programs that provide this feature are described below.

1

1.2.1 StatXact

StatXact (Cytel Software Corporation, Cambridge, MA) is a software package for exact

nonparametric statistical inference on categorical or continuous data. This software

provides lot of flexibility in terms of being compatible with different data formats.

StatXact contains many procedures covering the following types of statistical tests: one-

sample, two independent samples, two dependent samples, more than two independent or

dependent samples, stratified samples, measures of agreement and measures of

association. The procedures include exact permutation test, asymptotic, Monte Carlo,

Bootstrap and many others. Sometimes StatXact will not be able to obtain an exact p-

value due to insufficient computer resources and dataset being too large for the exact

procedures. The permutation test is exact and able to preserve the Type-I error rate while

the asymptotic test is not and bootstrap is ultra-conservative. More information about

StatXact can be found at the Cytel Software website: http://www.cytel.com

1.2.2 InStat

Instant Biostatistics (GraphPad Software, San Diego, CA) is easy to use software that

performs statistical analysis on a small amount of data. InStat is not designed to manage

large database with many variables. InStat will perform many statistical tests including,

the unpaired t test, nonparametric Mann-Whitney test, paired t test, Wilcoxon test,

Friedman test, one sample t test, F test, chi-square test, and Fisher exact test. For each

variable, InStat computes its best-fit computation with standard error, 95% confidence

interval and p-value testing whether the variable contributes significantly to the model.

Standard error of the mean and differences between standard error of the means can also

2

be calculated in this program. For more information about InStat can be found at the

GraphPad Software website: http://www.graphpad.com

1.3 Hypothesis Testing

1.3.1 Introduction

Hypothesis testing is a method of statistical inference in making a decision about a

scientific hypothesis, on the basis of observed data. A statistical hypothesis testing

problem consists of five main components:

Scientific Hypothesis theorized outcome of the experiment or study.

Statistical Model a model used to describe the observed data. It depends on how the data

are obtained. The model most often used for comparing population means is

Xij 111 	 alj
	 j = 	 i= 	 k

Xii is the j th observation from the ith population

Ix, is the mean of the i th population

Eii is the random error associated with the j th observation from the i th population.

Most often it is assumed that c ii are independent N(0, 6 2) random variables.

Statistical Hypothesis is a statement about one or more parameters in the model we're

considering. There are typically two hypotheses: a null hypothesis (Ho) and an

alternative hypothesis (H a). The null hypothesis represents a theory that has been put

forward, either because it is believed to be true or because it is to be used as a basis for

argument, but has not been proved. The alternative hypothesis is a statement of what a

statistical hypothesis test is set up to establish. The null hypothesis contradicts the

3

scientific hypothesis and the alternative hypothesis corresponds to the scientific

hypothesis of interest.

Test Statistic a quantity calculated from the sample of data. Its value is used to decide

whether or not the null hypothesis should be rejected in the chosen hypothesis test.

Sampling distribution the frequency distribution of a statistic obtained from an extremely

large number of random samples drawn from a specified population. For example, the

distribution of the test statistic under assumption Ho is true.

P-value the probability of getting a value of the test statistic as extreme as or more

extreme than that observed by chance alone, if the null hypothesis H o is true. Typically,

the null hypothesis is rejected when the p-value is small (e.g., p<0.05).

1.3.2 Statistical Errors

When performing a hypothesis testing it is possible to draw wrong conclusion. Type I

and Type II errors are two errors that can be made in hypothesis testing. A Type I error

occurs when the null hypothesis is falsely rejected. A Type II error occurs when the null

hypothesis is not rejected even though it is false. The probability of making a Type I error

is represented by the Greek letter alpha (a) and the probability of making a Type II error

is denoted by the Greek letter beta (B). The table below illustrates this.

Truth
Ho True Ho False

Decision

Reject Ho Type I error Correct

Don't Reject H o Correct Type II error

4

1.3.3 Multiple Testing

When testing multiple hypotheses one may observe several small p-values, but when

performing multiple tests, the probability of making at least one Type I error would be

large. A way to solve this problem is by using multiple testing corrections. Suppose

there are m null hypotheses Hoi,•••,Hon, that are to be tested simultaneously against the

corresponding alternatives Hai, • • •, Ham.

Two error rates associated with Type I errors in multiple testing are the false discovery

rate (FDR) and the familywise error rate (FWER). The false discovery rate is the

expected ratio of the number of erroneously rejected null hypotheses to the total number

of rejected null hypotheses. The familywise error rate is the probability of falsely

rejecting at least one true null hypothesis. FWER control reduces the probability of any

false positive occurring in an entire study.

Bonferroni correction is the simplest multiple testing correction that controls the FWER.

It is very effective when small numbers of tests are made. If there are m hypotheses

needing to be tested instead of a single hypothesis, the alpha level is divided by m. For

example, suppose we were looking at the effect of different drugs on blood pressure.

Instead of testing each drug at the 0.05 alpha level, we would test at alpha= 0.05/10=

0.005 level. This would ensure that the overall chance of making a Type I error is still

less than 0.05. Bonferroni correction can also be applied by adjusting the p-value. A

Bonferroni adjusted p-value is the number of hypotheses being tested multiply the normal

5

p-value. If the adjusted p-value ended up greater than 1.0, it would be rounded down to

1.0.

The false discovery rate is defined in the following way. Let R denote the number of null

hypotheses that are rejected and V denote the number of null hypotheses that are falsely

rejected in a multiple testing procedure. Define Q = V/R if R > 0, and Q = 0 if R = 0; Q is

the proportion of Type I errors among the rejected null hypotheses. Then, E(Q) is the

FDR of that procedure.

ri/R ifR>0 FDR = E(Q) =-- 	 (1)
0 if R = 0

To control the false discovery rate (FDR) the following procedure is employed. The p-

values are sorted from smallest to largest: p1<p2<...<p m and the hypotheses

corresponding to p-values less than or equal to p h are rejected where

h--= {max 1 < i < m :pi < a-i-} 	 (2)

2. Methodology

2.1 Introduction

The resampling based statistical methods are used to make statistical inference about

observed data without making explicit distributional assumptions. The exact permutation

test, the randomization and the bootstrap test are resampling methods to work to find the

6

same conclusion going about it different ways. While the exact permutation test only

considers the set of permutations of the original data, the bootstrap considers all samples

from the observed data with replacement. The randomization test is an approximation of

the exact permutation test obtained by taking a random sample of all possible

permutations.

2.1.1 Test statistic

The test statistic for testing the null hypothesis (Ho) of equal population means is called

the F statistic and is computed as the ratio of MSM to MSE: F = MSM/MSE. When the

null hypothesis is true and the data follow a normal distribution, the sampling distribution

for the test statistic F is an F distribution with first parameter equal to the degrees of

freedom associated with SSM, and second parameter equal to the degrees of freedom

associated with SSE. In other words, we can express the F ratio as

F = [SSM/(k-1)]/[SSE/(n-k)]
	

(3).

Let's step back one-step and explain what these terms and variables mean. SSM is sum

of squares model. This is the between-groups mean variation. The degree of freedom for

SSE as mention above is (k — 1) and this k is the total number of groups. MSM is the

mean square model. SSE is the sum of squares error is the sum of the squares of the

residuals. This is the within-group variation. Its degree of freedom is (n — k) where n is

the total number of observations and k, again, is the total number of groups. MSE is the

mean square error.

The formula in (3) could be shortened and written as

7

k
–

i =1
F = k
	 k –1) 	 (4)

– k)

For this equation, K is the number of groups, n i is the number of elements in each group,

Xi. is the mean of each group, X is the total mean of all of the observations, Xu is

each element.

To reduce the number of calculations when calculating the F statistic, one could drop the

degrees of freedom part of the numerator and denominator of formula (4). This result

could also correct.

Compute original F statistic by

k = number of groups

n, = number of samples in each group

.th 	 .th = j sample from group

F

k
n i (A7 –) 2

= i =1
k n i

-XL)-
/ = lj =1

(5)

Xi— mean of ith group

X = overall mean

The p-value is a measure of how consistent the test statistic is with the null hypothesis.

The p-value is the probability that an observation from the Fk-1,n-k distribution exceeds the

observed F ratio. A small p-value indicates strong evidence against the null hypothesis

and in favor of the alternative hypothesis.

8

2.2 Exact Permutation Test

2.2.1 What Is an Exact Permutation Test?

An exact permutation test consists of computing a p-value for a given groups of data

samples. The p-value of the test is computed by comparing the observed value of the test

statistic Ho. Usually under Ho, all permutations are assumed to be equally likely. This

distribution consists of all values of the test statistic obtained by suitable permutations of

the data values.

A permutation is a reordering of the numbers 1, 2... n. For example, permutations of the

numbers 1 through 6 are shown below.

(1, 2, 3, 4, 5, 6)
(1, 3, 2, 4, 5, 6)
(4, 5, 2, 6, 1, 3)
(3, 2, 1, 6, 4, 5)

etc 	

Note that this includes the standard order in first line. There are n! (n factorial)

permutations of n objects. In this case, 6! = 720, so they aren't all written out here.

The term permutation test refers to rearrangements of data. The null hypothesis of this

test specifies that the permutations are all equally likely. The exact permutation test used

for this project forms all of the permutations, calculating the test statistic for all and

considering these values all equally likely. The permutation of the data in each group by

moving the data from one group to the other will give the user a test statistic relating the

two groups.

9

Permutation tests were originally proposed by R.A. Fisher (Fisher, 1935) as a first

attempt to perform non-parametric statistical tests on observed responses derived from

experiments. P.I. Good (1993) describes the five step process used to perform

permutation comparison of two samples. These general steps are the same for all

permutation tests:

1. Analyze the problem—identify the hypothesis and the alternative(s) of interest.

2. Choose a statistic that will distinguish the hypothesis from the alternative.

3. Compute the test statistic for the original observations.

4. Rearrange (relabel) the observations.

(a) Compute the test statistic for the new arrangement.

(b) Compare the new value of the test statistic with the value obtained for the

original observations. Repeat steps (a) and (b) until the user is ready to

make a decision. For exact test, this will include all possible permutations.

5. Draw a conclusion. Reject the null hypothesis and accept the alternative if the

value of the test statistic for the observations as they were labeled originally is

an extreme value in the permutation distribution of the statistic.

2.2.2 Advantages of Exact Permutation tests

• Generality:

o They are appropriate when sampling or experimental units are randomly

sampled whether or not experimental units are not selected at random, as long

as treatments are randomly assigned to experimental units.

o They do not depend on the distribution of the data, so they are distribution

free in the truest sense.

10

o It is fairly easy to take into account specifics of the situation of interest and

use non-standard test statistics.

• The P-Values are based only on the data given:

In some tests, the p-values are based on distributional assumptions, such as

normality, or approximation, such as the normal approximation to the binomial.

With a permutation test, neither of these situations occurs

2.2.3 Disadvantages of Exact Permutation tests
• Applicability

Permutation tests are not applicable to all problems using any test statistic. As an

example, there is no permutation test of the mean of a single distribution using the

t statistic as the test statistic, since the t statistic doesn't change under

permutations of the data.

• Ease of Use :

Despite the fact that the computing power exists to make permutation tests

practical, most standard statistical software packages have not yet implemented

permutation tests. However, specialized commercial programs are available, and

it is just a matter of time until suitable software becomes widely available. For

complex models, there are pitfalls in the implementation of permutation tests that

require deep thinking about statistical issues.

• Lack of statistical power due to generality.

11

2.3.4 Algorithm used for exact permutation test
1. Compute F statistics for the observation by equation (5).

2. All numbers from the groups are appended together in order. All permutations

of the numbers in order are generated. By selecting the groups in the same

order each time, all permutations of the groups are also generated.

3. Count number of permutations whose F-statistic is larger than or equal to the

F-statistic is observed data

4. The p-value is the number of permutations larger divided by the total number

of possible permutations.

2.2.5 Assumptions

Exact permutation test assumes that under Ho that X1, X2 ...X n are exchangeable.

Exchangeable means that the same distributions will result regardless of the ordering of

the data.

2.3 Randomization Test

2.3.1 What is Randomization Test?

In practice, even with current fast and powerful computers, exact tests can only be

performed when the number of observations (n) is small. For example, if there are 10

observations (n= 10), assuming that there are two groups and there are 5 observations in

each group, there are 10! /(5! 5!) = 252 permutations to calculate and if there are 20

observations, there would be 20! /(10! 10!) = 184756 permutations to calculate. As the

number of observations increases and the number of permutations increases

tremendously. It will take a long time to calculate the F statistics for all these

permutations. This is where the randomization test is useful.

12

A randomization test is a procedure that generates an approximate p-value for a

permutation test by computing values of the test statistic from a random sample of all

permutations, rather than from all permutations. When the number of observations is so

large that exact tests are inappropriate to use, an approximation is used. Generating a

subset of all possible permutations because only a sub sample of all possible

permutations is calculated does this.

2.3.2 What Are The Advantages and Disadvantages?

The advantages and disadvantages of randomization test are the same as those for the

exact permutation test discussed in Section 2.2. Since randomization test is the

approximate permutation test, one of the disadvantages is the p-values are approximate.

A distinct advantage is that it is still possible to perform a Randomization when the

number of observations is large enough to prohibit an Exact test.

2.3.3 Algorithm

There are five steps in calculating the randomization test procedure. These steps are

1. Analyze the problem-identify the null hypothesis and the alternative(s) of

interest.

2. Choose a test statistic.

3. Compute a test statistic for the observed or original data.

4. Randomly regenerate the original data and calculated the test statistic. Repeat

this step m time where m is the number of permutations (subset of all possible

permutations).

13

5. Calculate the p-value by dividing the number of permutations by the total

number of calculated test statistics, done in part 4, that have equal or greater

value than the observed test statistic. If the total number of calculated test

statistics is 10 and the number of permutations is 10000 then the p-value is

10/10000 or equal to 0.0001. Draw conclusion about the null hypothesis

based on this p-value.

2.3.4 Assumptions

When performing a randomization test, we must assume that the random variables that

we permute are exchangeable. This basically comes down to the assumption that if the

null hypothesis were true, the labels assigning subjects to groups are interchangeable.

Even after the data have been collected, the mean of a typical group would have the same

expectation after we shuffled subjects among groups. This is why we will create a

sampling distribution by taking the data at hand, shuffling them, as reassigning them to

groups. When we do this repeatedly, the results we obtain will be the sampling

distribution for the test statistic under the null hypothesis

2.4 Bootstrap Test

2.4.1 What is the Bootstrap Test?

The bootstrap was originally proposed in 1979 by Efron (1979). Bootstrap is a general

resampling procedure that is computer-based. This statistical method is used to make

inferences about a population based on sample statistics.

The bootstrap is empirical approach to understanding the distributional properties of a

test statistic, but is also useful as a means of estimating statistics and their standard errors

14

and hypothesis testing. The observed distribution of sample values is used as an estimate

of the underlying probability distribution of the population. Then, the distribution of a

statistic for fixed sample sizes is obtained by repeatedly resampling from the distribution

n, so that instead of individual partitions of the data having the potential to occur more

than once, the individual values themselves may appear repeatedly in a single sample.

Under this resampling algorithm the number of possible sample arrangements is much

greater compare to the exact and randomization tests. For example with a total sample

size n = 12, with component samples of size 7 and 5, 12 7 x 125 = 8.9161004 x 10 12

 arrangements are possible. Therefore the test statistic under this algorithm will have a

larger standard error since sub-samples of n can deviate lot more.

Consider a set of data drawn from some population. The elements of that population are

121, 118, 110, 34, 22 and 12, with group 1 having values 121,118 and 110 and group 2

with values 34, 22 and 12. Generate a random sample with same number of observations

in each group where each value is equally likely to take any value form the whole

sample. Then compute the test statistic for that random sample and compare it with the

test statistic from the original sample. Perform this for large number of times in order to

obtain any desired statistical inferences, such as hypothesis testing and confidence

interval estimation. Randomly generated samples using this technique would look like the

following for this example:

Bootstrap sample Treatment Control Test statistic
1 22 ,121,121 121,34,110 0.11
2 110,121,110 110,110,12 1320.11
3 34,121,34 110,12,110 205.44

15

2.4.2 Advantages of Bootstrap?
• Bootstrapping can be used to estimate the sampling distribution of any well-defined

statistics of sample data.

• Bootstrapping makes no assumption about the population (no normality and equal

variance assumptions, not even the central limit theorem).

• Bootstrapping is especially useful in situations for which no analytic formula for the

sampling distribution is available and/or it is intractable (i.e., no look-up table for

critical values is possible).

• Another situation in which bootstrapping is useful is when required assumptions of a

test are clearly violated. For example, the t-test with two independent sample means

requires the equal variance assumption). If this assumption is violated and sample

sizes are not large, the test cannot be used and no other alternative exists.

2.4.3 Disadvantages of Bootstrap

• Technology

Though computation is becoming more powerful and less expensive, a computer

is needed to do bootstrapping. The technology is within the range of today's

computers.

• Coverage

There is some evidence of a modest under coverage for bootstrap confidence

intervals. For example, since 95% bootstrap confidence intervals such as those

we present here might contain the true parameter being estimated less than 95%

of the time.

• The P-value differs in general from the ideal P-value.

16

2.4.4 Algorithm used for Bootstrap
1. Compute F statistics for the observed date by equation (5).

2. Generate random number for each element in the set of original observations

to get a resample. If there is a seed available then use that as a seed to generate

random numbers otherwise use system clock as seed.

3. Calculate the F-statistic for the resampled data

4. Count number of permutations whose F statistic is larger than the observed F

statistic.

5. Repeat steps 2 and 3 for the number of permutations specified.

6. The p-value is the number of permutations larger divided by the total number

of possible permutations.

2.4.5 Assumptions

Bootstrap assumes that under Ho, Xii is equally likely to take on any value from the

sample population.

3. Procedure

Once the Add-in is installed (See appendix Al for installation instructions.), to run the

Add-in, the user must select Permutation Addin from the Tools menu. This will bring up

a window that will allow the user to select several features. The particular analysis is

easily selected by radio buttons. Arrow buttons are used to determine the number of

groups to be tested. Reference editor fields are shown corresponding to the number

groups. These are used the same way any other reference used in Excel. The stipulation

applied to this input is that each row selected is separate variable and that every group

17

was the same number of variables. If either the randomization or bootstrap test was

selected, the number of permutations to calculate and the random seed are configurable.

The random seed will either take the seed from the system time or a user inputted

number. A button labeled Calculate total possible will tell the user how many

permutations are possible for the users selected groups.

Error control is also available by selecting either None, Bonferonni, or BAH FDR. The

alpha is configurable by the corresponding input box. One additional option is available

to allow the user to direct the results to a worksheet. By default, the output will be

displayed in a window. Once all of the options have been set, the only thing left to do is

press the button Permute. This will run the corresponding test on the data and output it in

the selected way.

This program also adds the feature of multiple testing. When a group is selected, each

row will correspond to a separate sample of that group. Each sample is considered to be a

separate variable that is to be tested. By selecting multiple variables from the same

sample groups, calculations can be combined. Once a permutation order is calculated, the

F-statistic is calculated for all tests from each group. This drastically reduces the number

of calculations needed.

4. Results

4.1 Problems

Some of the complications encountered in this project arose from problems inherent in

Visual Basic macros. The functions use variables that are all very exact, but something

18

causes there to be an extreme loss of accuracy. Only 15 decimal places of accuracy are

used in the calculations because of one of functions used in the program. Which function

was causing the problem was never determined. Another problem resulted from the

Msgbox function call (See Appendix A2.). This resulted in a limit being put on the

output that can be printed to a message box. Only up to 16 variables can have results

outputted to a window.

The exact permutation test has to calculate every possible permutation, so very quickly it

become computationally impossible. The timed results of this test are available in Chart

Exact of Appendix A3. Many of the results are not available because they would take too

long to calculate. The randomization times are in Chart Randomization of Appendix A3

and the bootstrap times are in Chart Bootstrap of Appendix A3.

4.2 Analysis of results

For the exact permutation test, the time per permutation is actually a polynomial

equation: Y = 1E-10 * x2 + (0.0001 + 0.0001*z) * x with x = number of permutations, y

= number of seconds and z = number of variables. This is a very quickly growing time

due to the number of permutations also growing exponentially. Even three groups with

five elements will take over 3 minutes on a Pentium 3 500MHz. This just reiterates that

the exact test will not work for large samples. The Add-in will also estimate computation

time for the randomization and bootstrap tests. However, the estimates can be highly

inaccurate.

19

5. Conclusions and Recommendations

This project resulted in an easy to use add-in that runs in Microsoft Excel. While this is

easy to use, it is not as fast as this could be and is sensitive to rounding errors. This

program will work with sufficient accuracy for most jobs. However due to the

inefficiencies of a Visual Basic, some computations are time consuming.

There are many ways in which this program could be improved including: Much of this

program could be cleaned up to run faster. This program could also be sped up by

changing programming languages. Many of these calculations can be done as vectors

opposed to arrays. Other such optimizations are built in to other programming languages.

However this program does meet the requirements of the project description. It is easy to

use and will work with very little knowledge of statistics. All of the code is available and

would be easily adaptable by anyone who wanted to customize it.

20

Bibliography

Chernick , Michael R. (1999) Bootstrap Methods, A practioner's Guide, John Wiley &
Sons, Inc.

Efron, Bradley. An introduction to the bootstrap. New York: Chapman & Hall, 1993

Efron, B. Bootstrap methods: another look at the jackknife. Annals of Statistics, 1979

Easton, Valerie J. and John H. McColl Statistics Glossary (2001)
http://www.eas.lanes.ac.uk/glossary v1.1/main.html

Fisher, R.A. The Design of Experiments, Edinburgh: Oliver and Boyd, 1935

Good, Phillip (1994) Permutation Tests, A Practical Guide to Resampling Methods for
Testing Hypothesis, Springer-Verlag.

Heydebreck, Anja von. Multiple testing with gene expression array data (2002)
http://www.dkfz-heidelberg.de/biostatistics/training/dayl multiple testing.pdf

Lane, David M. HyperStat Online Textbook (2003)
http://davidmlane.com/hyperstat/index.html

Moore, David S. Practice for business statistics (2003)
http://bcs.whfreeman.com/pbs/cat 160/PBS18.pdf

Petruccelli, Nandram, and Chen (1999) Applied Statistics for Engineers and Scientists,
Prentice Hall.

Wilbur, Jayson D., Permutation-based analysis of factorial experiments (2003) Lecture
Notes, WPI

21

Appendices

Al: Readme.doc

Readme for Permutation Add-in
Version 1.0
Date: Dec 17, 2003

Minimum System Requirements:
System must have installed:

Microsoft Office Excel XP
.NET Framework 1.1

System recommendations:
Windows 2000 or XP
Pentium III 500 MHz or better
512 Mb or RAM or better

Installation:
Included with the program is a file called test.xla. This is the permutation add-in for
Excel.

Temporary:
To temporarily load this add-in, all that is required is to open the test.xla file. It will
automatically load in Microsoft Excel.

Permanent:
1. Move the file test.xla to somewhere that it won't be deleted or renamed. (ex.

C:/program files/Microsoft office/).
2. Open Excel
3. Click the Tools menu

a. Select the menu item Add-ins..
4. Press the Browse button
5. Navigate the browse window to where you moved the test.xla file

a. Select the test.xla file
b. Press the OK button

6. If the Test Addin option is not selected, do so now by clicking the box just to the
left of the name

7. Press the OK button

22

Running the Addin:
Once Excel is running, to run the Add-in, the user must select "permutation addin" from

the Tools menu. This will bring up a window that will allow the user to select several

features. The particular analysis is easily selected by radio buttons. Arrow buttons are

used to determine the number of groups to be tested. Reference editor fields are shown

corresponding to the number groups. These are used the same way any other reference

used in Excel. The stipulation applied to this input is that each row selected is separate

variable and that every group was the same number of variables. If either the

randomization or bootstrap test was selected, the number of permutations to calculate and

the random seed are configurable. The random seed will either take the seed from the

system time or a user inputted number. A button labeled Calculate total possible will tell

the user how many permutations are possible for the users selected groups.

Error control is also available by selecting either None, Bonferonni, or BAH FDR. The

alpha is configurable by the corresponding input box. One additional option is available

to allow the user to direct the results to a worksheet. By default, the output will be

displayed in a window. Once all of the options have been set, the only thing left to do is

press the button Permute. This will run the corresponding test on the data and output it in

the selected way.

This program also adds the feature of multiple testing. When a group is selected, each

row will correspond to a separate sample of that group. Each sample is considered to be a

separate variable that is to be tested. By selecting multiple variables from the same

sample groups, calculations can be combined. Once a permutation order is calculated, the

23

-=1 3 	 •

Select Test and Groups

of groups 7_
•

• • rows = variables
	 columns = group elements

	 1 	 j.

Select your analysis:

(;- Exact Permutation

C Randomization

C Bootstrap 2 	 •

4 	 I

	 5

C Random Seed:

Error control: 	 Alpha = I 0 . 05

Estimate time
to calculate

of
permutations
to calculate

• • • 6- No Output 	

F statistic is calculated for all tests from each group. This drastically reduces the number

of calculations needed.

A2: Source code.doc

Main select form (group_select):

Multiple Testing Correction: 	

	 C None 	 Bonferonni 	 Beyri FDP, 	

Permute output to worksheet

Code from main select form (group_select):

Private col(0, 0) As Double
Private groups() As Integer
Private boxes(5) As Object
Private test As Integer

. 	 . 	 .

24

Private Sub CommandButtonl_Click()
Dim col() As Double
Dim length, offset() As Integer
Dim num_var As Integer
Dim eachGroup() As Double

num_var = 0
length = 0
If (boxes(1).Value <> "") Then

num_var = Range(boxes(1).Value).Rows.Count
length = length + Range(boxes(1).Value).Columns.Count
Dim inc, temp As Integer
inc = 1
ReDim eachGroup(1 To inc)
eachGroup(inc) = length
inc = inc + 1
For a = 2 To TextBoxl.Value

ReDim Preserve eachGroup(1 To inc)
If (boxes(a).Value = "") Then

MsgBox ("error: blank input")
Exit Sub

End If
If (Range(boxes(a).Value).Rows.Count <> num_var) Then

MsgBox ("error: #variables doesn't match")
Exit Sub

End If

temp = Range(boxes(a).Value).Columns.Count
length = length + temp
eachGroup(inc) = temp
inc = inc + 1

Next a
Else

MsgBox ("error: blank input")
Exit Sub

End If
ReDim col(1 To num_var, 1 To length)
ReDim groups(1 To TextBoxl.Value)
ReDim offset(1 To num_var)
For a = 1 To num_var

offset(a) = 1
Next a
For a = 1 To TextBoxl.Value

Set r = Range(boxes(a).Value)
groups(a) = r.Columns.Count
For b = 1 To r.Rows.Count

For c = 1 To r.Columns.Count
If IsNumeric(r.Cells(b, c)) Then

col(b, offset(b)) = r.Cells(b, c)
offset(b) = offset(b) + 1

Else
MsgBox ("error: a value is not a number")
Exit Sub

End If
Next c

Next b
Next a
If (OptionButton4.Value = False) Then

If (TextBox3.Value < 0 Or TextBox3.Value > 1) Then
Exit Sub

End If
End If
Dim seed As Variant
If Me.OptionButton9.Value = True Then

If Me.TextBox4.Value = "" Then
seed = Empty
Else

seed = Me.TextBox4.Value
End If

Else
seed = Empty

End If

If (OptionButtonl.Value) Then
Call perm_a_groups2(col, groups)

Else
If (OptionButton2.Value) Then

MsgBox ("randomization test")
If IsNumeric(group_select.TextBox2.Value) = False Or _

group_select.TextBoxl.Value = "" Then
MsgBox ("error: invalid number of permutations")
Exit Sub

End If

Dim col0(), groups0(), vars0() As Double
Dim counter, incr, numCol As Integer

numCol = UBound(groups) * UBound(col, 1)

ReDim col0(1 To numCol)
ReDim vars0(1 To (UBound(col, 2) * UBound(col, 1)))

Dim i, j As Integer
Static k As Integer
Dim numVars As Integer

numVars = UBound(col, 1)
'store numbers in vars0()
k = 1
For i = 1 To UBound(col, 1)

For j = 1 To UBound(col, 2)
vars0(k) = col(i, j)
k = k + 1

Next j
Next i

j = 1
'store number in col0
For i = 1 To numCol

col0(i) = eachGroup(j)

26

j = j + 1
If j > UBound(eachGroup) Then

j = j Mod UBound(eachGroup)
End If

Next i

Dim pv() As Variant
ReDim pv(1 To UBound(col, 1))
If seed = Empty Then

Call Module3.multiVariables(vars0, co10, numVars, pv,
Me.TextBox2.Value)

Else
Call Module3.multiVariables(vars0, co10, numVars, _

pv, Me.TextBox2.Value, seed)
End If

Else
If (OptionButton3.Value) Then

'MsgBox ("bootstrap test")
If IsNumeric(group_select.TextBox2.Value) = False Or _

group_select.TextBox2.Value = "" Then
MsgBox ("error: invalid number of permutations")
Exit Sub

End If
Call Module4.bootstrap(col, groups,

group_select.TextBox2.Value, seed)
End If

End If
End If

End Sub

Private Sub CommandButton2_Click()
Dim d As Double
Dim top, num_groups As Integer
d = 1
num_groups = TextBoxl.Value
For a = 1 To num_groups

If boxes(a).Value = "" Then
Exit Sub

End If
Next a

'loop to find true combination
For i = 1 To num_groups - 1

top = 0
For j = i To num_groups

top = top + Range(boxes(j).Value).Columns.Count
Next j
d = d * Module2.combination(top,

Excel.Range(boxes(i).Value).Columns.Count)
Next i
MsgBox ("total number of possible permutations = " & d)

End Sub

Private Sub OptionButtonl_Click()

27

Me.TextBox2.Enabled = False
Me.TextBox4.Enabled = False
Me.OptionButton9.Enabled = False
Me.OptionButton8.Enabled = False
Me.CommandButton2.Enabled = False

End Sub

Private Sub OptionButton2_Click()
Me.TextBox2.Enabled = True
Me.TextBoxl.Enabled = True
Me.OptionButton9.Enabled = True
Me.OptionButton8.Enabled = True
Me.CommandButton2.Enabled = True

End Sub

Private Sub OptionButton3_Click()
Me.TextBox2.Enabled = True
Me.TextBoxl.Enabled = True
Me.OptionButton9.Enabled = True
Me.OptionButton8.Enabled = True
Me.CommandButton2.Enabled = True

End Sub

Private Sub OptionButton8_Click()
Me.TextBox4.Enabled = False

End Sub

Private Sub OptionButton9_click()
Me.TextBox4.Enabled = True

End Sub

Private Sub SpinButtonl_Change()
Me.TextBox1.Value = SpinButton1.Value
For a = 2 To TextBoxl.Value

boxes(a).Visible = True
Next a
For a = TextBoxl.Value + 1 To 5

boxes(a).Visible = False
Next a

End Sub

Private Sub UserForm_activate()
Set boxes(1) = Me.RefEditl
Set boxes(2) = Me.RefEdit2
Set boxes(3) = Me.RefEdit3
Set boxes(4) = Me.RefEdit4
Set
test

boxes(5)
= 0

= Me.RefEdit5

End Sub

Private Sub CommandButton3_Click()
Dim d As Double

Dim top, num_groups, counter As Integer
d = 1
counter = 0
num_groups = TextBoxl.Value
For a = 1 To num_groups

28

If boxes(a).Value = "" Then
Exit Sub

End If
Next a

'loop to find true combination
For i = 1 To num_groups - 1

top = 0
For j = i To num_groups

top = top + Range(boxes(j).Value).Columns.Count
Next j
d = d * Module2.combination(top,

Excel.Range(boxes(i).Value).Columns.Count)
counter = counter + Range(boxes(i).Value).Columns.Count

Next i
counter = counter +

Range(boxes(num_groups).Value).Columns.Count
If (Me.OptionButtonl.Value = True) Then

MsgBox ("seconds: " & CStr((0.000000000103156 * (d) * (d)) + _
(0.0001159 * d * Range(boxes(1).Value).Rows.Count) +

(0.0005167 * d)))
End If
If (Me.OptionButton2.Value = True) Then

MsgBox ("seconds: " & CStr((0.05965 * counter) + _
(0.2976 * Range(boxes(1).Value).Rows.Count) + (0.00004905 *

(Me.TextBox2.Value))) ^ 2)
End If
If (Me.OptionButton3.Value = True) Then

MsgBox ("seconds: " & CStr((0.02671 * counter) + _
(0.24874 * Range(boxes(1).Value).Rows.Count) + (0.00002153

* (Me.TextBox2.Value))) ^ 2)
End If

End Sub

Module 1 code:

Sub Start_Perm()
'show input form
'UserForm1.Show
group_select.Show

End Sub

Sub Start_perm2()
group_select2.Show

End Sub

Private Function Max(ByRef a, ByRef b)
If a > b Then

Max = a
Else

Max = b
End If

End Function

Public Sub screen_output(ByRef pvalue, ByRef start_time, ByRef
end_time)

Dim sorted() As Double

29

Dim sorted_temp(1 To 2) As Double
ReDim sorted(1 To 2, 1 To UBound(pvalue))

'output to screen in msgbox or worksheet
If group_select.out_worksheet_checkbox.Value = False Then

Dim out As String
If (group_select.OptionButton4.Value) Then

For a = 1 To UBound(pvalue)
out = out + CStr("Variable " & a & " P-value = " &

pvalue(a) & Chr(10))
Next a

End If
If (group_select.OptionButton5.Value) Then

For a = 1 To UBound(pvalue)
out = out + CStr("Variable " & a & " P-value = " &

pvalue(a))
If (pvalue(a) <= CDbl(group_select.TextBox3.Value))

Then
out = out + CStr(" Significant: yes" & Chr(10))

Else
out = out + CStr(" Significant: no" & Chr(10))

End If
Next a

End If
If (group_select.OptionButton6.Value) Then

For a = 1 To UBound(pvalue)
out = out + CStr("Variable " & a & " P-value = " &

pvalue(a))
If (pvalue(a) <= (CDbl(group_select.TextBox3.Value) /

UBound(pvalue))) Then
out = out + CStr(" Significant: yes" & Chr(10))

Else
out = out + CStr(" Significant: no" & Chr(10))

End If
Next a

End If
If (group_select.OptionButton7.Value) Then

For a = 1 To UBound(sorted, 2)
sorted(1, a) = pvalue(a)
sorted(2, a) = a

Next a
top_index = UBound(sorted, 2) - 1
Do While top_index >= 1

For a = 1 To top_index
If sorted(1, a) > sorted(1, a + 1) Then

sorted_temp(1) = sorted(1, a)
sorted_temp(2) = sorted(2, a)
sorted(1, a) = sorted(1, a + 1)
sorted(2, a) = sorted(2, a + 1)
sorted(1, a + 1) = sorted_temp(1)
sorted(2, a + 1) = sorted_temp(2)

End If
Next a
top_index = top_index - 1

Loop
rbh = 0
For a = 1 To UBound(sorted, 2)

30

If (sorted(1, a) <= ((group_select.TextBox3.Value) *
(a / UBound(sorted, 2)))) Then

rbh = Max(rbh, sorted(1, a))
End If

Next a
For a = 1 To UBound(pvalue)

out = out + CStr("Variable " & a & " P-value = " &
pvalue(a))

If (pvalue(a) <= rbh) Then
out = out + CStr(" Significant: yes" & Chr(10))

Else
out = out + CStr(" Significant: no" & Chr(10))

End If
Next a

End If
If (Len(out) > 1024) Then
out = CStr("Sorry, there is too much output to fit in a

window." & Chr(10))
End If
out = out + CStr("seconds to calculate: " & (end_time -

start_time))
Call MsgBox(out, vbInformation, "Results")

Else
Dim newsheet As Worksheet
Set newsheet = Application.Worksheets.Add
newsheet.Range("al").Value = "Variable"
newsheet.Range("b1").Value = "P-Value"
For a = 1 To UBound(pvalue)

newsheet.Range(CStr("a" & a + 1)).Value = CStr(a)
newsheet.Range(CStr("b" & a + 1)).NumberFormat =

"#######0.000000"
newsheet.Range(CStr("b" & a + 1)).Value = CStr(pvalue(a))

Next a
If (group_select.OptionButton5.Value) Then

newsheet.Range("c1").Value = "Significant"
For a = 1 To UBound(pvalue)

If (pvalue(a) <= CDbl(group_select.TextBox3.Value))
Then

newsheet.Range(CStr("c" & a + 1)).Value = "yes"
Else

newsheet.Range(CStr("c" & a + 1)).Value = "no"
End If

Next a
End If
If (group_select.OptionButton6.Value) Then

newsheet.Range("c1").Value = "Significant"
For a = 1 To UBound(pvalue)

If (pvalue(a) <= (CDbl(group_select.TextBox3.Value) /
UBound(pvalue))) Then

newsheet.Range(CStr("c" & a + 1)).Value = "yes"
Else

newsheet.Range(CStr("c" & a + 1)).Value = "no"
End If

Next a
End If
If (group_select.OptionButton7.Value) Then

For a = 1 To UBound(sorted, 2)

31

sorted(1, a) = pvalue(a)
sorted(2, a) = a

Next a
top_index = UBound(sorted, 2) - 1
Do While top_index >= 1

For a = 1 To top_index
If sorted(1, a) > sorted(1, a + 1) Then

sorted_temp(1) = sorted(1, a)
sorted_temp(2) = sorted(2, a)
sorted(1, a) = sorted(1, a + 1)
sorted(2, a) = sorted(2, a + 1)
sorted(1, a + 1) = sorted_temp(1)
sorted(2, a + 1) = sorted_temp(2)

End If
Next a
top_index = top_index - 1

Loop
rbh = 0
For a = 1 To UBound(sorted, 2)

If (sorted(1, a) <= CDbl(group_select.TextBox3.Value) *

(a / UBound(sorted, 2))) Then
rbh = Max(rbh, sorted(1, a))

End If
Next a
newsheet.Range("c1").Value = "Significant"
For a = 1 To UBound(pvalue)

If (pvalue(a) <= rbh) Then
newsheet.Range(CStr("c" & a + 1)).Value = "yes"

Else
newsheet.Range(CStr("c" & a + 1)).Value = "no"

End If
Next a

End If
newsheet.Range("d1").Value = "Seconds to calculate"
newsheet.Range("d2").Value = end_time - start_time

End If

End Sub

Module 2 code:

Private result() As Variant
Private initial_result() As Variant
Private pvalue() As Variant
Private num_set() As Variant
Private tempi, temp2 As Variant
Private remain_nums_temp() As Integer
Private overall_mean() As Variant
Private group_mean As Variant
Private mean_offset As Integer
Private groups() As Integer

Sub Auto_Open()
Dim a As Boolean

32

a = False
For b = 1 To CommandBars("tools").Controls.Count

If CommandBars("tools").Controls.Item(b).Caption = "Permutation
Addin" Then

a = True
End If

Next b
If a Then
Else

Set newItem =
CommandBars("Tools").Controls.Add(Type:=msoControlButton,
Temporary:=True)

With newItem
.BeginGroup = True
.Caption = "Permutation Addin"
.FaceId = 0
.OnAction = "Start Perm"

End With
End If
End Sub

Private Function Max(ByRef a, ByRef b)
If a > b Then

Max = a
Else

Max = b
End If

End Function

Public Function combination(ByVal top, ByVal bottom) As Variant
'combinations

Dim a, b As Variant
a = 1
b = 1
For c 	 top bottom + 1 To top

a = a * c
Next c
For d = 1 To bottom

b = b * d
Next d
combination = a / b
'MsgBox (combination) 	 'anything over 32000 is very long

End Function

Function perm_a_groups2(ByRef col, ByRef pub_groups) 	 'setup to
permutate

Dim num_combinations As Variant
Dim top As Integer
Dim start_time
Dim end time
Dim top_index As Integer
Dim rbh As Variant

start_time = Timer

groups = pub_groups

33

num_combinations = 1
'loop to find true combination
For i = 1 To UBound(groups) - 1

top = 0
For j = i To UBound(groups)

top = top + groups(j)
Next j
num_combinations = num_combinations * combination(top,

groups(i))
Next i
ReDim result(1 To UBound(col, 1))
ReDim initial_result(1 To UBound(col, 1))
Dim listbefore(), curgroup, curin, remainnums() As Integer
ReDim remain_nums_temp(1 To UBound(col, 2))
ReDim remainnums(1 To UBound(col, 2))
ReDim listbefore(UBound(col, 2))
ReDim num_set(1 To UBound(col, 1), 1 To UBound(col, 2))
ReDim pvalue(1 To UBound(col, 1))
ReDim overall_mean(1 To UBound(col, 1))

'setup num_set(,)
For i = 1 To UBound(col, 2)

remainnums(i) = i
For a = 1 To UBound(col, 1)

num_set(a, i) = col(a, i)
Next a

Next i
curgroup = 1
curin = 1
For a = 1 To UBound(pvalue)

pvalue(a) = 0
Next a

'find overall mean
For a = 1 To UBound(pvalue)

overall_mean(a) = 0
For b = 1 To UBound(num_set, 2)

overall_mean(a) = overall_mean(a) + (num_set(a, b))
Next b
overall_mean(a) = overall_mean(a) / UBound(num_set, 2)

Next a

'find initial result
For a = 1 To UBound(listbefore)

listbefore(a) = a
Next a
Dim templ, temp2, group_mean As Variant
For a = 1 To UBound(num_set, 1)

templ = 0
temp2 = 0
mean offset = 0
group_mean = 0
For b = 1 To UBound(groups)

'set group mean
group_mean = 0
For c = 1 To groups(b)

34

group_mean = group_mean + (num_set(a, listbefore(c +
mean_offset)))

Next c
group_mean = group_mean / (groups(b))

For c = 1 To groups(b)
'set bottom fraction
temp2 = temp2 + ((num_set(a, listbefore(c +

mean_offset))) - group_mean)_
* ((num_set(a, listbefore(c + mean_offset))) -

group_mean)
Next c

'add top of fraction
templ = templ + (groups(b) * (group_mean - overall_mean(a))

*
(group_mean - overall_mean(a)))

mean_offset = mean_offset + (groups(b))
Next b
If (temp2 = 0) Then

initial_result(a) 	 0
Else

initial_result(a) 	 templ / temp2
End If

Next a

'permutate
Call permgroups2(listbefore, curgroup, curin, remainnums,

UBound(remainnums), 0)
For a = 1 To UBound(pvalue)

pvalue(a) = pvalue(a) / num_combinations
Next a

end_time = Timer

'output to screen in msgbox or worksheet
Call Modulel.screen_output(pvalue, start_time, end_time)
'MsgBox ("Seconds to calculate: " & end_time - start_time)

End Function

Private Sub permgroups2(ByRef listbefore, ByVal curgroup, _
ByVal curin, ByVal remainnums, _
ByVal remainnums_length, ByVal listbefore_length)

If curgroup < UBound(groups) Then

If curin <= groups(curgroup) Then

For j = 1 To remainnums_length

If (remainnums(j) > listbefore(listbefore_length)) Or curin
= 1 Then

offset = 0
For k = 1 To remainnums_length

35

If k = j Then
offset = 1

Else
remain_nums_temp(k - offset) = remainnums(k)

End If
Next k

listbefore(listbefore_length + 1) = remainnums(j)

Call permgroups2(listbefore, curgroup, curin + 1, _
remain_nums_temp, remainnums_length - 1, _
listbefore_length + 1)

End If
Next j

Else
Call permgroups2(listbefore, curgroup + 1, 1, remainnums, _

remainnums_length, listbefore_length)
End If

Else
Call perm_out2(listbefore, curgroup, curin, remainnums)

End If
End Sub

Private Sub perm_out2(ByRef listbefore, ByRef curgroup, _
ByRef curin, ByRef remainnums)

'ReDim Preserve listbefore(UBound(num_set))
Dim templ, temp2, group_mean As Variant

offset = 1
For j = UBound(num_set, 2) - groups(UBound(groups)) + 1 To

UBound(num_set, 2)
listbefore(j) = remainnums(offset)
offset = offset + 1

Next j

'find output for result

For a = 1 To UBound(num_set, 1)
templ = 0
temp2 = 0
mean_offset = 0
group_mean = 0
For b = 1 To UBound(groups)

'set group mean
group_mean = 0
For c = 1 To groups(b)

group_mean = group_mean + (num_set(a, listbefore(c +
mean_offset)))

Next c
group_mean = group_mean / (groups(b))

For c = 1 To groups(b)
'set bottom fraction
temp2 = temp2 + ((num_set(a, listbefore(c +

mean_offset))) - group_mean)_

36

* ((num_set(a, listbefore(c + mean_offset))) -
group_mean)

Next c

'add top of fraction
tempi = templ + (groups(b) * (group_mean - overall_mean(a))

*
(group_mean - overall_mean(a)))

mean_offset = mean_offset + (groups(b))
Next b

If (temp2 = 0) Then
If (templ = 0) Then

result(a) = 0
Else

result(a) = 1.79769313486231E+308
End If

Else
result(a) = templ / temp2

End If
Next a
For a = 1 To UBound(num_set, 1)

If (result(a) >= initial_result(a) * (1 - 0.000000000000001))
Then 	 ' add to remove divide errors

'If (result(a) >= initial_result(a)) Then
pvalue(a) = pvalue(a) + 1

End If
Next a

End Sub

Module 3 code:

Public Function Rand(Upper As Integer, Lower As Integer) As Integer
'generate a number from Lower to Upper Bound inclusively
Rand = Int((Upper - Lower + 1) * Rnd + Lower)

End Function
Public Function RandomNumbers(ByRef arrNums As Variant, ByVal
totalNumber, ByVal HowMany As Integer, Unique As Boolean) As Variant

'RandomNumbers() function - randomly generate a group of unique
numbers and

' store these numbers in arrNums array
Dim x 	 As Integer
Dim n 	 As Integer
Dim colNumbers As New Collection
Static i
i = 1

Do Until i > UBound(arrNums)
With colNumbers

'First populate the collection
For x = 1 To totalNumber

.Add x
Next x

37

For x = 1 To HowMany
n = Rand(0, colNumbers.Count + 1)
arrNums(i) = colNumbers(n)
If Unique Then

colNumbers.Remove n
End If
i = i + 1

Next x
End With
'Redim colNumbers As New Collection
Do Until colNumbers.Count <= 0

arrNums(i) = colNumbers(1)
colNumbers.Remove 1
i = i + 1

Loop
Loop

End Function

Public Function SortRandom(ByVal arrayl As Variant, num0fRand As
Integer, ByRef new_arrl As Variant) As Variant

'call randomNumbers to randomly sort an array of numbers and store
in ranTemp()

Call RandomNumbers(arrayl, new_arrl, numOfRand, True)
End Function
Private Function calculate_F_obs(ByVal arrayl As Variant, ByVal array2

As Variant, _
ByVal totalElements As Integer,

ByVal total_mean As Variant, ByRef F_value As Variant) As Variant
Dim group_sum(), group_mean(), top(), bottom() As Variant
ReDim group_sum(1 To (UBound(arrayl) / totalElements) *

UBound(array2))
ReDim group_mean(1 To (UBound(arrayl) / totalElements) *

UBound(array2))
ReDim top(1 To UBound(arrayl) / totalElements)
ReDim bottom(1 To UBound(arrayl) / totalElements)

Dim i, j, k, temp

k = 1
temp = 1
'finding the group_sum and group_mean
For i = 1 To UBound(group_sum)

group_sum(i) = 0
For j = 1 To array2(temp)

group_sum(i) = group_sum(i) + arrayl(k)
k = k + 1

Next j
group_mean(i) = group_sum(i) / array2(temp)
temp = temp + 1
If temp > UBound(array2) Then

temp = 1
End If

Next i

'finding top fraction
k = 1
temp = 1

38

For i = 0 To UBound(top)
For j = temp To UBound(group_mean) / UBound(total_mean) * k

If j Mod UBound(array2) = 1 Then
i = i + 1
top(i) = 0

End If
top(i) = top(i) + (group_mean(j) - total_mean(k)) ^ 2
temp = temp + 1

Next j
k = k + 1
If i < UBound(top) Then

i = i - 1
End If

Next i

Dim temp2, array2Count
temp = 1
array2Count = array2(temp)
temp2 = 1
k = 1

'finding bottom fraction
For i = 1 To UBound(bottom)

bottom(i) = 0
For j = 1 To totalElements

If j > array2Count Then
temp2 = temp2 + 1
temp = temp + 1
array2Count = array2Count + array2(temp)

End If
bottom(i) = bottom(i) + (arrayl(k) - group_mean(temp2)) ^ 2
k = k + 1

Next j
temp2 = temp2 + 1
temp = 1
array2Count = array2(temp)

Next i

'now calculate f_stats
For i = 1 To UBound(F_value)

If bottom(i) = 0 Then
bottom(i) = 1

End If
F_value(i) = top(i) / bottom(i)

Next i

End Function
Private Function RandTest(ByVal arrayl As Variant, ByVal array2 As
Variant, ByVal numVar As Integer, ByVal numPerm As Variant, _

ByVal elementInlVar As Integer, ByVal
totalSum As Variant, ByVal totalmean As Variant, ByRef p_val As
Variant) As Variant

Dim counter(), new_arrl(), sort_index(), total_sum() As Variant
Dim F_orig(), F_new() As Variant
ReDim total_sum(1 To numVar)
ReDim F_orig(1 To numVar)
ReDim new_arr1(1 To UBound(arrayl) * numPerm)

39

ReDim F_new(1 To numPerm * numVar)
ReDim counter(1 To numVar)

Dim i, j, k, st, en, num0fRan
For i = 1 To UBound(counter)

counter(i) = 0
Next i

Dim newArrlCount

num0fRan = elementInlVar - array2(UBound(array2))
ReDim sort_index(1 To elementInlVar * numPerm)

'find f_obs original value
Call calculate_F_obs(arrayl, array2, elementInlVar, totalmean,

F_orig)

Call RandomNumbers(sort_index, elementInlVar, numOfRan, True)

newArrlCount = 0
'update arrayl
k = 1

For j = 1 To UBound(F_orig)
For i = 1 To UBound(sort_index)

new_arrl(k) = arrayl(sort_index(i) + newArrlCount)
k = k + 1

Next i
newArrlCount = newArrlCount + elementInlVar

Next j

'find new F_obs value
st = Timer
Call calculate_F_obs(new_arrl, array2, elementInlVar, totalmean,

F_new)
en = Timer
Value = en - st
j = 0
For i = 1 To UBound(F_new)

If i Mod (UBound(F_new) / numVar) = 1 Then
j = j + 1

End If
If F_new(i) >= F_orig(j) Then
counter(j) = counter(j) + 1

End If
Next i
'find p_value
For i = 1 To UBound(p_val)

p_val(i) = counter(i) / numPerm
Next i
'return p_value
RandTest = p_value

40

End Function

Public Function multiVariables(ByVal arrayl As Variant, ByVal array2
As Variant, ByVal numVars As Variant, ByRef p_values As Variant, ByVal
numPerm As Variant, Optional ByVal seed As Variant) As Variant

Dim k, numOfG, sumG As Integer
Dim new_arr2(), total_sum(), total_mean() As Variant
Dim start_time, end_time, total_time As Variant
Dim total_element, i, j

'number of Groups
numOfG = UBound(array2) / numVars

ReDim new_arr2(1 To numOfG)
ReDim total_sum(1 To numVars)
ReDim total_mean(1 To numVars)

If IsMissing(seed) Then
Rnd
Math.Randomize

Else
Rnd [-1]
Math.Randomize [seed]

End If

start_time = Timer

For k = 1 To numOfG
new_arr2(k) = array2(k)

Next k

total_element = 0
For k = 1 To UBound(new_arr2)

total_element = total_element + new_arr2(k)
Next k

i = 1
'find the total sum and total mean of each group
For k = 1 To UBound(arrayl)

total_sum(i) = 0
For j = 1 To total_element

total_sum(i) = total_sum(i) + arrayl(k)
k = k + 1

Next j
total_mean(i) = total_sum(i) / total_element
k = k - 1
i = i + 1

Next k
' total_time = end_time - start_time

'call randTest()
Call RandTest(array1, new_arr2, numVars, numPerm, total_element,

total_sum, total_mean, p_values)
end_time = Timer

41

Call Module1.screen_output(p_values, start_time, end_time)

End Function

Module 4 code:

Function bootstrap(ByRef datalength() As Double, ByRef grouplength() As
Integer, ByRef numofperm As Variant, seed As Variant) As Double
Dim rndval As Integer
Dim grouptotal, diff1, squal, totalmean, ssto, totsum, groupmean,
squa2, diff2, sse As Double
Dim fstat As Double
Dim store() As Double
Dim temp() As Double
ReDim store(1 To UBound(datalength, 1))
Dim pvalue() As Double
ReDim pvalue(UBound(datalength, 1))
Dim start_time
Dim end_time
Dim orignal() As Double
Dim z As Integer
Dim other() As Double

start_time = Timer

If seed <> Empty Then
Rnd (-1)
Math.Randomize (seed)

Else
Rnd
Math.Randomize

End If

orignal() = ankit(datalength, grouplength)

For s = 1 To UBound(pvalue)
pvalue(s) = 0
Next s

For i = 1 To numofperm

For m = 1 To UBound(datalength, 1)
z = 1

For x = 1 To UBound(datalength, 2)
totsum = datalength(m, x) + totsum
Next x
totalmean = totsum / UBound(datalength, 2)
totsum = 0

42

If (m = 1) Then
ReDim temp(UBound(datalength, 2))
For v = 1 To UBound(temp)
rndvalue = Int((UBound(datalength, 2) * Rnd()) + 1)
temp(v) = rndvalue
Next v
End If

For j = 1 To UBound(grouplength)

ReDim other(grouplength(j))

For t = 1 To UBound(other)
other(t) = 0
Next t

For k = 1 To grouplength(j)
other(k) = datalength(m, temp(z))
grouptotal = other(k) + grouptotal
z = z + 1
Next k

groupmean = grouptotal / grouplength(j)

For p = 1 To UBound(other)
diffl = other(p) - groupmean
squal = diffl * diffl
ssto = squal + ssto
Next p

diff2 = groupmean - totalmean
squa2 = diff2 * diff2
sse = squa2 + sse
grouptotal = 0

Next j

If (ssto = 0) Then
If (sse = 0) Then
fstat = 0
Else
fstat = 1.79769313486232E+307
End If

Else
fstat = sse / ssto

End If

store(m) = fstat

ssto = 0
sse = 0
totalmean = 0

43

Next m

For s = 1 To UBound(datalength, 1)
If store(s) > orignal(s) Then
pvalue(s) = pvalue(s) + 1
End If
Next s

Next i

For g = 1 To UBound(pvalue)
pvalue(g) = pvalue(g) / numofperm

Next g

end_time = Timer

Call screen_output(pvalue(), start_time, end_time)

End Function

Function ankit(ByRef datalength() As Double, ByRef grouplength() As
Integer) As Double()
Dim z As Integer
z = UBound(datalength)
Dim fstat As Double
Dim grouptotal, diffl, squal, totalmean, ssto, totsum, groupmean,
squa2, diff2, sse As Double
Dim orignalf() As Double
ReDim orignalf(1 To UBound(datalength, 1))

Dim p As Double
Dim q As Integer
Dim n As Integer
Dim m As Integer
Dim x As Integer
x = 1
q = 0

For y = 1 To UBound(datalength, 1)
For n = 1 To UBound(datalength, 2)
totsum = datalength(y, n) + totsum
Next n
totalmean = totsum / (UBound(datalength, 2))
totsum = 0
For i = 1 To UBound(grouplength)

p = 0

For j = 1 To grouplength(i)
p = datalength(y, x) + p
diffl = datalength(y, x) - totalmean

44

squal = diffl * diffl
ssto = squal + ssto
x = x + 1
Next j
groupmean = p / grouplength(i)
x = j
diff2 = groupmean - totalmean
squa2 = diff2 * diff2
sse = squa2 + sse
grouptotal = 0
Next i

If (ssto = 0) Then
If (sse = 0) Then
fstat = 0
Else

fstat 	 1.79769313486232E+307
End If

Else
fstat 	 sse / ssto

End If

orignalf(y) = fstat

sse = 0
ssto = 0
totalmean = 0
Next y
ankit = orignalf()
End Function

A3: Contents of attached CD:
1) Readme.doc: This contains the instructions on how to install and use the add-in.

2) Source_code.doc: This is all of the source code from the test.xla file. This includes all
of the modules, forms, and code in the forms.

3) Stats.xls: This contains the test times recorded using the installed add-in. It shows
where the formulas came from to produce the Estimate time to calculate button.

4) test.xla: This is the add-in that was produced by this project.

45

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49

