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Abstract

As wireless networks continue streaking through more aspects of our lives, it

is seriously constrained by limited network resources, in terms of time, frequency

and power. In order to enhance performance for wireless networks, it is of great

importance to allocate resources smartly based on the current network scenarios.

The focus of this dissertation is to investigate radio resource management algorithms

to optimize performance for different types of wireless networks.

Firstly, we investigate a joint optimization problem on relay node placement and

route assignment for wireless sensor networks. A heuristic binary integer program-

ming algorithm is proposed to maximize the total number of information packets

received at the base station during the network lifetime. We then present an opti-

mization algorithm based on binary integer programming for relay node assignment

with the current node locations. Subsequently, a heuristic algorithm is applied to

move the relay nodes to the locations iteratively to better serve their associated

edge nodes.

Secondly, as traditional goal of maximizing the total throughput can result in

unbalanced use of network resources, we study a joint problem of power control and

channel assignment within a wireless mesh network such that the minimal capacity

of all links is maximized. This is essentially a fairness problem. We develop an

upper bound for the objective by relaxing the integer variables and linearization.

Subsequently, we put forward a heuristic approach to approximate the optimal so-

lution, which tries to increase the minimal capacity of all links via setting tighter

constraint and solving a binary integer programming problem. Simulation results

show that solutions obtained by this algorithm are very close to the upper bounds



obtained via relaxation, thus suggesting that the solution produced by the algorithm

is near-optimal.

Thirdly, we study the topology control of disaster area wireless networks to facil-

itate mobile nodes communications by deploying a minimum number of relay nodes

dynamically. We first put forward a novel mobility model for mobile nodes that

describes the movement of first responders within a large disaster area. Secondly,

we formulate the square disk cover problem and propose three algorithms to solve

it, including the two-vertex square covering algorithm, the circle covering algorithm

and the binary integer programming algorithm.

Fourthly, we explore the joint problem of power control and channel assignment

to maximize cognitive radio network throughput. It is assumed that an overlaid

cognitive radio network (CRN) co-exists with a primary network. We model the op-

portunistic spectrum access for cognitive radio network and formulate the cross-layer

optimization problem under the interference constraints imposed by the existing pri-

mary network. A distributed greedy algorithm is proposed to seek for larger network

throughput. Cross-layer optimization for CRN is often implemented in centralized

manner to avoid co-channel interference. The distributed algorithm coordinates the

channel assignment with local channel usage information. Thus the computation

complexity is greatly reduced.

Finally, we study the network throughput optimization problem for a multi-hop

wireless network by considering interference alignment at physical layer. We first

transform the problem of dividing a set of links into multiple maximal concurrent

link sets to the problem of finding the maximal cliques of a graph. Then each con-

current link set is further divided into one or several interference channel networks,

on which interference alignment is implemented to guarantee simultaneous trans-

mission. The network throughput optimization problem is then formulated as a
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non-convex nonlinear programming problem, which is NP-hard generally. Thus we

resort to developing a branch-and-bound framework, which guarantees an achievable

performance bound.
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Chapter 1

Introduction

This chapter discusses the motivation and describes context for the problems con-

sidered in this dissertation in Section 1.1. A description of related works is provided

in Section 1.2. The organization of this dissertation is presented in Section 1.3,

followed by a summary of the main contributions in Section 1.4.

1.1 Motivation

The past decade has witnessed a tremendous proliferation of the use of wireless

networks, driven by the rapid growth of portable computing, communication and

embedded devices. Accompanying this trend is the revolutionary advances in the

wireless communication technologies, which enables the realization of a wide range

of heterogenous wireless systems, such as cellular networks, wireless local area net-

works, wireless sensor networks, etc. This technological development is further

inspiring the researchers to envision many new scenarios, such as wireless regional

area networks, disaster area wireless networks, vehicular ad hoc networks, etc. How-

ever, as wireless networks continue streaking through more aspects of our lives, it

is seriously constrained by limited network resources, in terms of time, frequency
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and power. In order to enhance performance for wireless networks, it is of great

importance to allocate resources smartly based on the specific network applications.

Resource allocation for wireless networks is the process of deciding how a set of

network resources are used. In this dissertation, scenarios of wireless systems con-

tain resources in terms of time, frequency, and power. Allocating time resources can

be mainly exemplified by link scheduling. In particular, resource allocation is the

process of selecting which link(s) to be active during a specific time slot. The same

time slot can be assigned to multiple links as long as they are not generating inter-

ference to any other link. Resources in terms of frequency is limited as any wireless

system is always constrained by bandwidth. Each active link necessitates a certain

amount of bandwidth to be able to send data. Frequency resources require careful

allocation because two mutually interfered links can not be active within the same

bandwidth simultaneously. Power resource allocation is mainly referred as setting

transmit power in this dissertation. Transmit power levels of nodes largely deter-

mine the performance of wireless systems. In particular, the transmitter’s power

determines the capacity of a wireless link, which further influences the throughput

the whole network. On the other hand, setting larger transmit power levels would

result in more interference collisions, thus decrease the performance of the wireless

network.

Based on different network scenarios, smart resource allocation leads to opti-

mization of different performance objectives. In this thesis, we consider various

performance objectives according to specific models. For example, throughput is

the objective that is always desirable for most kinds of wireless networks. For wire-

less sensor networks, the network lifetime is regarded important. Coverage is critical

to disaster area wireless networks.

This dissertation is motivated by the desire to explore advanced resource al-
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location techniques designated for modern wireless networks. Although resource

allocation has been a extensive research topic for decades, there are still many un-

resolved issues regarding emerging types of wireless networks, such as disaster area

wireless networks, wireless regional area networks, etc. This thesis tackles signif-

icant unresolved resource allocation problems to optimize for various performance

objectives. The research challenges are summarized as follows.

1.1.1 Relay Management for Wireless Sensor Networks

Many recent research efforts are focused on maximizing the lifetime of wireless sen-

sor networks [87, 42, 58, 82, 34], while others try to address the problem of max-

imizing the capacity or throughput in wireless local area networks (WLANs) [74].

The strategies they adopt consist of power control, relay node placement, channel

assignment, link scheduling, etc. However, few studies available in the literature

investigate approaches to maximize the absolute amount of information packets re-

ceived during the network lifetime. As placing relay nodes between sensor nodes

and base stations can increase packet reception rate, we propose to deploy a fixed

number of energy-constrained relay nodes to help uplink data transmission. Instead

of studying solely network lifetime elongation or network throughput optimization,

we propose to investigate the joint problem of both on how to maximize the network

data reception within the network lifetime, which is defined as the time period from

start till all relay nodes die. As a result, the proposed approach can be applied to

many other task-oriented data-collection wireless networks. For instance, in a burn-

ing forest, the amount of temperature information from widely distributed sensors

matters as much as the extent to which firefighters can control the fire; farmers can

well adjust the environmental parameters if they obtain much feedback information

from greenhouse sensors.
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1.1.2 Capacity Fairness for Wireless Mesh Networks

Fairness of network throughput among users is another important issue. The reason

is that the traditional goal of maximizing the summation of throughput on all links

could result in unbalanced use of network resources. More importantly, emphasizing

on fairness can satisfy more network users and thus generate more revenue for service

providers. Few research efforts truly address the max-min fairness problem of general

wireless mesh networks via channel assignment and power control. We study a joint

problem of channel assignment and power control such that the minimal capacity

of all links is maximized. We develop an upper bound of the max-min performance

and propose a heuristic approach to increase the minimal capacity of all links via

setting tighter constraints.

1.1.3 Dynamic Resource Allocation for Disaster Area Wire-

less Networks

Public safety organizations increasingly rely on wireless technology to provide effec-

tive communications during emergency and disaster response operations. However,

any previously installed wireless network infrastructure may be damaged or com-

pletely destroyed in a major disaster event, such as earthquake, hurricane, tsunami,

etc. It is necessary to develop wireless networks that can be quickly deployed to

build a replacement communication system to connect all first responders. Consid-

ering the first responders as mobile nodes (MNs), the communication range of each

MN is often limited by its power constraint. Mobile relay nodes (RNs) can be in-

troduced to relay the communications between MNs and the far-away base stations.

The RNs installed on wheeled vehicles can be deployed at places where the first re-

sponders are actively working in the field. As mobile nodes have different locations

4



at time goes, RNs need to be relocated dynamically within the disaster area to cover

mobile nodes. We study the dynamic resource allocation problem to place RNs such

that most number of mobile nodes can be covered within the disaster area wireless

networks (DAWN).

1.1.4 Distributed Optimization for Cognitive Radio Net-

works

Traditional spectrum allocation can be very inefficient due to fixed assignment and

exclusive use. Emerging cognitive radio technology becomes a promising approach

to exploit the under-utilized spectrum [3]. In a cognitive radio network, unlicensed

wireless users (secondary users (SUs)) are allowed to dynamically access the licensed

bands, as long as the licensed wireless users (primary users (PUs)) in those partic-

ular bands are not interfered. Wireless devices equipped with cognitive radios are

implemented with flexibility, including frequency agility, transmit power control,

access coordination etc., which render more efficient use of available spectrum.

Cognitive radio networks (CRN) may operate in infrastructure-based systems.

As a practical application, IEEE 802.22 wireless regional area networks (WRAN)

dynamically allocates TV spectrum to SUs [16] while keep provisioning service to

PUs. The TV bands are selected because they feature very favorable propagation

characteristics and are scarcely used due to popularity of cable and satellite TV

services. We investigate the joint problem of power control and channel assign-

ment to maximize WRAN-based cognitive radio network throughput. As WRAN

are spreading out in rural area, an omniscient central entity to operate the whole

network is impractical. Therefore, it is highly desirable to introduce a distributed

method which only entails local knowledge but optimize WRAN in terms of overall

performance.
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1.1.5 Interference Alignment for Multi-hop Wireless Net-

works

Interference has been considered harmful for throughput performance of wireless

networks. However, the emergence of the idea of interference alignment provides a

new perspective to achieve higher throughput by allowing concurrent transmissions.

Initially introduced in [14], interference alignment allows a transmitter to align its

interference to unused directions of other links, generating no harmful interference

at the receiver ends. Consequently, the implementation of interference alignment

can greatly improve the network throughput. The canonical example of interference

alignment is a communication scenario where every user is able to achieve one half

of the capacity that could be achieved in the absence of all interference.

Recent works on interference alignment mainly focus on multi-user interference

channel networks [14] and multi-input multi-output networks [24], our study of

optimizing end-to-end throughput of multi-hop wireless networks is among one of

the first research efforts to employ interference alignment on multi-hop networking.

1.2 Related Works

1.2.1 Relay Node Placement in Wireless Networks

There are many researches focusing on the RN placement problem for sensor wireless

networks. In [42], a joint problem of energy provisioning and relay node placement

for wireless sensor network is considered to maximize the network lifetime. In [58],

the authors seek to deploy a minimum number of relay nodes such that all the

network nodes are connected, when sensor nodes and relay nodes have different

communication ranges. In [82], the problem to deploy a minimum number of relay
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nodes to guarantee connectivity of sensor nodes and the base station is studied.

The network modelling also considers communication range of sensors and relay

nodes. In [57], the relay node placement problem in two-tiered wireless sensor

network is considered. The objective is to place minimum number of relay nodes

to forward packets from sensor nodes to the sink. Likewise, communication ranges

for sensor nodes and relay nodes are also considered in the network modelling.

Few papers focus on the amount of data reception at the BS during the network

lifetime. Concerning techniques utilized in RN placement in wireless networks, many

researches have done significant achievements that motivate us to pursue our goal.

In [52], the optimal power is calculated for peer to peer communication with respect

to fixed Signal-to-Noise ratio. Besides, many heuristic and iterative approaches

are employed to solve the RN placement problems with different objectives. For

example, A heuristic algorithm is presented in [5] for energy provisioning and RN

placement in wireless sensor networks. In [74], an integer programming optimization

formulation and an iterative approach are proposed to compute the best placement

of a fixed number of RNs. In [84], a novel BIP formulation of the BS placement

problem is proposed to find the optimal BS position in an interference-limited indoor

wireless system. Not only in sensor network area, RNs have also been used in cellular

networks and WLAN. In [85], the iCAR architecture is introduced to use RNs to

redirect the cellular communication traffic from congested cell to its neighboring

cells. Another aspect of relay network applications is wireless LAN. Relay points

[74] with access to power supply are strategically placed to improve the throughput of

wireless LAN. In [27], we studied the optimal relay association problem to maximize

the data reception during the network lifetime. The RNs in the network scenario

have fixed positions. Based on the previous work, we investigate the RN placement

problem by iteratively moving the RNs to ”better” locations based on the optimal
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relay routing assignment of the current network scenario.

1.2.2 Power Control

Power control schemes has been extensively studied to enhance wireless network

performance. Sun et. al propose that increasing nodal transmit power can lessen

the interference caused by hidden node problem, and thus the network throughput

could be increased [76]. Behzad and Rubin analyze and investigate the effect of nodal

transmit power on the maximum level of the source-destination throughput [10]. It

adopts a different system model: the network nodes are accessing the channel based

on time-division-multiple-access (TDMA) scheme to transmit packets. Tang et. al

study joint link scheduling and power control in a TDMA-based multihop wireless

network with the objective of maximizing network throughput [79]. The successful

transmission is guaranteed only when the SINR is above a certain threshold value.

Narayanaswamy et. al propose that within a heterogeneous ad hoc network, all

the network nodes choose identical transmit power can maximize traffic carrying

throughput, extend battery life as well as reduce contention at MAC layer. The so-

called COMPOW protocol selects a common minimum transmit power for all nodes

such that network connectivity is preserved [61]. Kawadia and Kumar consider

the power control problem when nodes are non-homogeneously dispersed, and pro-

poses three solutions, CLUSTERPOW, tunnelled CLUSTERPOW, and MINPOW

for joint clustering and power control problem [46]. All above-mentioned works are

assuming that network nodes are sharing a common transmit channel, thus are dif-

ferent from our network model. In [66], Qiao et. al analyze the relationship among

different radio ranges and transmit power’s effects on the interference in 802.11a/h

systems, and proposes several frame-based intelligent power control mechanisms,

which employs the best combination of the physical layer mode and transmit power
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level. The objective is different from ours: it pursues the minimization of communi-

cation energy consumption in 802.11 systems. In [35], Ho and Liew point out that

the minimum transmit power scheme[61] can create hidden node problems, thus

decrease network performance. However, most of the power control schemes are

implemented in a scenario with one common shared channel.

1.2.3 Channel Assignment

A number of channel assignment schemes has been proposed in recent years. In [17],

Chin et. al address the problem of dynamically assigning channels in ad-hoc wireless

networks via power control in order to satisfy their minimum QoS requirements.

The objective then is to maximize the number of co-channel links subject to some

stability conditions. In [62], a cluster-based multipath topology control and channel

assignment scheme is proposed, which explicitly creates a separation between the

channel assignment and topology control functions, thus minimizes flow disruptions.

In [68], Raniwala et. al propose a greedy load-aware channel assignment scheme

when network nodes are with multiple radios. The goal of channel assignment is

to bind each network interface to a radio channel in such a way that the available

bandwidth on each link is proportional to its expected load. In [4], Alicherry et. al

mathematically formulate the joint channel assignment and routing problem, taking

into account the interference constraints, the number of channels in the network

and the number of radios available at each mesh router. A centralized algorithm

is developed to solve the problem to yield the optimized network throughput. The

channel assignment algorithm is used to adjust the flow on the flow graph to keep the

increase of interference for each channel to a minimum. In [67], Ramachandran et. al

propose an interference-aware channel assignment algorithm and protocol for multi-

radio wireless mesh networks. The proposed solution intelligently assigns channels
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to radios to minimize interference and thus enhance network performance. Few

research efforts have addressed the problem of utilizing power control mechanism

to influence the interference as well as channel gains between network nodes and

further determine the optimal channel assignment.

1.2.4 Fairness for Wireless Networks

In the area of Operations Research, the max-min problem has been extensively

studied. In [78], Tang develops a nonsimplex-based algorithm that finds an opti-

mal solution to a max-min allocation problem with nonnegative integer variables.

Fairness has been well studied in both network layer and MAC layer. Recently, in

[41], Hou et. al develop an elegant polynomial time algorithm to calculate the rate

allocation under a network lifetime constraint with respect to a two-tiered wireless

sensor network. In [79], a Linear Programming (LP) formulation is provided to

solve the max-min guaranteed maximum throughput bandwidth allocation prob-

lem. In addition, the Lexicographical Max-Min Bandwidth Allocation (LMMBA)

problem is solved by a polynomial time optimal algorithm. In [56], Liang et. al

investigate resource allocation for fading relay channels under separate power con-

straints, which falls into max-min problems. However, it is studied within a context

of three-terminal networks.

1.2.5 Disaster Area Wireless Networks

[22] describes the use of radio frequency spectrum dedicated for public safety com-

munications in the United States. Regarding research efforts focusing on first re-

sponder networks, [70, 20, 7] discuss incorporating public safety communication

wireless technologies into commercial wireless networks, which provides public safety

communication terminals with unified network resources to satisfy tactical require-
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ments. [59] examines two hierarchical network solutions which allow the delivery

of mission-critical multimedia data between rescue teams and headquarters over

extremely long distances using a combination of wireless network technologies and

multimedia software applications to meet the requirements of disaster rescue com-

munication scenarios. However, the mobility model assumes that mobile nodes move

randomly within the large disaster area that is supposed to be covered, which does

not apply practically in reality. Ad hoc network has also been applied to scenarios

such as disaster area [77] and battle field [81]. However, the topology of ad hoc

network is static or very slow in motion, otherwise it would be difficult to maintain

the connectivity of all network nodes. According to DAWN, all the MNs (We will

use our terminology to describe related works) are randomly moving within busy

square. [64] introduces a sensor network designed for disaster area relief operations.

However, the sensors distributed over the disaster area are fixed and are used by

survivors to contact first responders. Such kind of network can not be adopted

either, because first responders can not use fixed sensors to contact each other as

they are moving all over the disaster area.

1.2.6 Mobility Model

In recent years, a lot of different mobility models have been proposed and used for

performance evaluation of networks. Models like the abstract Random-Waypoint-

Mobility-Model[45] or Gauss-Markov-Mobility-Model [55] describe random-based

movement and distribute the nodes over the complete simulation area. However, a

distribution and movement of the nodes over the complete simulation area does not

fit into the characteristics of DAWN. To study more realistic non-equally distributed

movement, [11] proposes a mobility model in which the probability that a node se-

lects an attraction point or a point in an attraction area as next destination is larger
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than the choice of other points. Thus, some nodes visit several spots within the sim-

ulation area more frequently than others. This mobility model does not apply to

large scale disaster area as the disaster intensity is measured in large areas. [48] di-

vides the simulation area into pixels similar to the squares in our proposed scenario.

However, the mobility pattern of MNs within the area follows moving from pixel to

pixel according to probabilities. Such a moving pattern do not exactly match the

needs for relieving a disaster area as our mobility model does. The Reference Point

Group Mobility Model [39] considers the movement of groups and relative move-

ment inside groups. Disaster area relief might favor such a group-based movement

pattern, since first responders work in groups identified by each square. However,

the concepts of splitting up and reassembling fail to be introduced to help cover the

whole simulation area. Thus this model does not apply to our large scale disaster

area. [12, 26] divides the whole simulation area into small subareas and a different

mobility model is utilized in each subarea. Therefore, nodes moving between differ-

ent subareas are subject to changes of moving pattern. Since in a large scale disaster

area, usually different small subareas are similar except CI values, thus various kinds

of mobility models would only increase the complexity of the model. Furthermore,

there are two approaches [6, 63] that describe two event-driven role-based mobility

model for disaster area relief applications. However, these two models only apply in

small area with specific disaster sites instead of large-sized disaster area.

1.2.7 Coverage in Wireless Networks

There have been many research efforts dedicated to covering targets using RNs while

maintaining connectivity of RNs. In [19], a similar problem named as Connected

Dominating Set is studied. However, it abides by that the transmission range of

MNs and RNs are the same and RNs can only be deployed at the positions of the
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MNs. In DAWN, the placement of RNs does not have this constraint. In[31],the

Connected Sensor Cover problem is studied, which involves placing the minimum

number of RNs such that they form a connected network, while still covering a

specified area. According to DAWN, as MNs are randomly moving within each

busy square, we aim to place RNs in a way that each busy square has to be fully

covered by at least one RN to ensure all MNs can access the backbone network.

Therefore, the target covering area is divided into several small squares that needs

to be covered by RNs respectively. There are plenty of work done to study covering

a set of specified target points ([79, 75, 33, 44, 23]). All of these research efforts

differ with ours in the goal that is pursued: Given the transmission range of MNs,

their aim is to cover those specified target points, while RNs are deployed to cover

several squares in our work. Furthermore, different from many of researches done

on the RN placement in wireless networks, the connection between RNs is not a

issue in our scenario, as the transmission range of RNs are very large compared to

the simulation area.

1.2.8 Channel Assignment and Power Control for Cognitive

Radio Networks

Regarding channel assignment and power control for cognitive radio networks, our

work is related with [36, 37, 86, 21, 73, 9]. In [36], Hoang and Liang consider the

joint problem of downlink channel assignment and power control for CRN. Our

problem is different from that, because our objective is to achieve the maximum

network throughput instead of supporting the most number of SUs. In [37], the

problem is studied to maximize the throughput for a cognitive radio network while

not affecting the performance of primary users. In [86], the problem of selecting the

maximum subset of SUs to maximize the total secondary revenue of the cognitive
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radio network is investigated, while the Quality of Service (QoS) requirements for

both PUs and admitted SUs should be guaranteed. In [21], a joint problem of

optimizing power control and channel assignment is considered for cognitive radio

networks. However, only one base station is introduced to control and support a set

of SUs at fixed locations for all the works above. In our network model, multiple base

stations are jointly considered to support the secondary users, which results in inter-

cell interference and thus leads to a more complex problem to deal with. In [73], Shi

et. al study the problem of channel allocation, power control and routing assignment

for multi-hop cognitive radio networks and a distributed algorithm is proposed. The

difference with our work mainly lies in the fact that traffic flows from a set of BSs

to a unknown subset of user nodes in our network model, while the destination

nodes are pre-specified in [73]. In [9], a distributed cross-layer optimization scheme

is proposed, which incorporates scheduling, power control and channel assignment.

However, interference constraint is not considered in the problem formulation due

to the assumption that the time-sharing sub-intervals are non-overlapping across all

users. Regarding cross-layer design for cognitive radio networks, our work is related

with [80, 40]. In [80], Tang et. al study joint spectrum allocation and scheduling

problems in cognitive radio wireless networks with the objective of achieving fair

spectrum sharing. In [40], a joint problem of spectrum sharing, scheduling and

routing assignment is investigated for cognitive radio network. Compared with

these two papers, our main contribution is on the computation of power control and

the distributed implementation of the proposed approach.

1.2.9 Distributed Optimization of Wireless Networks

There have been extensive research efforts on distributed optimization for wireless

networks. Some of these algorithms focus on channel assignment problem [15] or
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power control problem [2], without addressing cross-layer optimization. Research

efforts addressing cross-layer optimization problems in distributed fashion include

[9, 73, 32]. In [9], scheduling, power control and channel assignment are consid-

ered within one problem and a distributed optimization algorithms is proposed.

The authors assume that time-sharing sub-intervals are non-overlapping, thus no

interference exists. In [73], a cross-layer optimization problem for cognitive radio

networks is studied, with joint consideration of power control, scheduling and rout-

ing. In [32], a distributive non-cooperative game is proposed to perform channel as-

signment, adaptive modulation and power control for multi-cell multi-user OFDMA

networks. Compared with these two works, our main contribution is the protection

of PUs.

1.2.10 Capacity of Multihop Wireless Networks

Jain et. al study a routing problem between a pair of nodes to calculate the through-

put bounds for a multi-hop wireless network, adding wireless interference constraints

into the maximum flow formulations [47]. Zhai and Fang study the path capacity

of traditional routing in a multi-rate scenario [89]. Zeng et. al propose a method to

compute the end-to-end throughput bounds of opportunistic routing for a multi-hop

wireless network [88]. Distinguished from the previous works, we solve a through-

put maximization problem for a multi-hop wireless network by assuming interference

alignment at the physical layer, which can bring fundamental changes to wireless

networking problem formulation and can substantially improve the performance.

1.2.11 Interference Alignment

Investigations on Degrees of Freedom (DoF) on the two-user interference channel

leads to the later discovery of interference alignment. In [60], an elegant coding
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scheme is proposed for two-user interference channel, which achieved b4
3
Mc DoF

when all nodes are equipped with M antennas. According to the scheme, the use of

iterative optimization of transmit precoding and receive combining vectors is a im-

plicit implementation of interference alignment. The idea of interference alignment

was first coined in [14], where it is proved that every user in a wireless interference

network is able to achieve one half of the capacity that he could achieve in the ab-

sence of all interference. Following that work, Gomadam et. al propose an iterative

algorithms that utilize the reciprocity of wireless networks to achieve interference

alignment with only local channel knowledge at each node [25]. The algorithms also

provide numerical insights into the feasibility of interference alignment. Different

from the early works, this chapter focuses on cross-layer optimization of multiple

layers, incorporating assignment of DoF in physical layer, scheduling in MAC layer

and routing in network layer.

1.3 Organization

This dissertation is organized based on research studies of resource allocation schemes

for different kinds of wireless networks. We first address a relay placement and route

assignment problem for wireless sensor networks. Secondly, we study a joint prob-

lem of power control and channel assignment for a wireless mesh network. Thirdly,

we investigate a dynamic resource allocation problem for a disaster area wireless

network. We then present a study on throughput maximization for WRAN-based

cognitive radio networks. At last, we consider the network throughput optimization

problem for a multi-hop wireless network by considering interference alignment at

physical layer. The contents of each chapter are described as follows.

Chapter 2 presents a two-tiered wireless network architecture in which relay
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nodes are temporarily added to overcome the long distance communications between

the edge nodes and the base station. Then, a joint-optimization problem is defined

and analyzed for relay node placement and assignment. Subsequently, an elegant

yet practical solution is proposed using binary integer programming and weighted

clustering techniques.

Chapter 3 addresses a joint problem of power control and channel assignment

within a wireless mesh network. A wireless mesh network is made up of two kinds

of nodes: mesh routers and user nodes. The mesh routers form a backbone network,

while user nodes receive data from the backbone network by connecting to the

mesh routers via one hop. This chapter aims to find the optimal joint solution of

power control and channel assignment of the wireless mesh networks such that the

minimum capacity of all links is maximized. We develop an upper bound for the

objective by relaxing the integer variables and linearization. Subsequently, we put

forward a heuristic approach to approximate the optimal solution, which tries to

increase the minimal capacity of all links via setting tighter constraint and solving

a binary integer programming problem.

Chapter 4 investigates the disaster area communication system using relay-

assisted wireless network for first responders as mobile nodes. At first, a novel

mobility model is proposed to describe the movement pattern of mobile nodes within

a large disaster area. Secondly, we study the relay management of finding a min-

imum number of Relay Nodes and their dynamic locations to cover all the mobile

nodes within the disaster area. A Square Disk Cover (SDC) problem is formulated

and three different algorithms, including the Two-Vertex Square Covering (TVSC)

algorithm, the Circle Covering algorithm and the optimal algorithm, are proposed

to solve the SDC problem.

Chapter 5 presents an investigation on an overlaid cognitive radio network with
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existing primary network. We model the opportunistic spectrum access for cogni-

tive radio networks and formulate the cross-layer optimization problem under the

interference constraint imposed by the existing primary network. Then we propose

a distributed greedy algorithm to approximate the optimal network throughput.

Chapter 6 studies the network throughput optimization problem for a multi-hop

wireless network by considering interference alignment at physical layer. We first

transform the problem of dividing the set of links into multiple maximal concurrent

link sets into finding all maximal cliques of a graph. Then each concurrent link set

is further divided into one or several multi-access interference networks, on which

interference alignment is implemented to guarantee simultaneous interference-free

transmission. The network throughput optimization problem is then formulated as

a non-convex nonlinear programming problem, which is NP-hard generally. Thus we

resort to developing a branch-and-bound framework, which guarantees an achievable

performance bound.

1.4 Contributions

This thesis has made outstanding contributions in the research field of resource

allocation for wireless networks. In system modelling aspect, we have brought up

quite a lot of networking models to fit into different wireless network scenarios. For

instance, we advocated two-tiered model for data transmission from wireless sensor

nodes to the data center [27]. To study disaster area wireless networks, we put

forward a macroscopic mobility model to analyze moving patterns of first responders

[28]. In addition, we also proposed a distributed scheme to model the procedure to

implement optimization of wireless regional area networks as in Chapter 5. Last but

not least, we incorporate interference alignment into modelling of multi-hop wireless
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networks to improve the capacity performance [30]. In theoretic aspect, we explore

many optimization algorithms to be applied to various resource allocation problems.

We sought heuristic algorithms to approximate the optimal solution which is of very

high complexity or non-obtainable. As an example, for nonlinear problems, we can

approximate the optimal solution by iteratively doing linear computation [29]. We

can also divide the conquer by splitting the task into subtasks and assign them to

multiple entities as in Chapter 5. The main contributions of this dissertation can

be summarized as follows:

• Chapter 2

— We study an optimization problem to maximize the total number of

information packets received at the base station during the network lifetime.

— We demonstrate a solution to obtain the optimal transmit power for a

relay node such that it can send the maximum number of packets to the base

station during the network lifetime.

— The proposed weighted clustering algorithm is a heuristic approach to

move relay nodes to better locations iteratively to better serve edge nodes in

terms of received packets. The proposed scheme demonstrates better perfor-

mance than other methods.

• Chapter 3

— The key obstacle lies in the nonlinearity of the objective function. We

successfully transform the max-min objective to a more solvable linear objec-

tive with additional constraints in compromise of optimality. In particular, we

propose a heuristic approach to iteratively increase the minimal throughput of

all links tightening the constraint that the capacity of each link is larger than

a threshold value.
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—We prove that when the sum rate of all links are maximized and each

link share the same capacity, it is guaranteed that max-min performance is

optimized. Then the upper bound of max-min fairness problem can be easily

acquired by solving a linear programming problem. The upper bound offers a

benchmark to measure the quality of the feasible solution obtained from the

heuristic approach.

• Chapter 4

— We propose a novel and practical mobility model for mobile nodes in

disaster area. We describe typical movement pattern of first responders in

a disaster area. Since the movement pattern for all the first responders is

not random within the disaster area as in the Waypoint model[45], and they

basically are heading deep into the disaster area from the boundary, we put

forward our mobility model for mobile nodes (MNs) by combining these two

traits together. The disaster area are divided into many small square regions

(we call them squares in this chapter later), each square with a Catastrophic

Intensity (CI) to show how severe the disaster is in that area. The larger

the CI value is, the more time and first responders are required to relieve

that square. At the beginning, first responders are disseminated into several

arbitrarily chosen starting squares on the boundary of the disaster area, and

then each time after they finish relieving one region, the first responders in

that square are divided into 3 groups, entering the 3 adjacent squares based on

their CI values. Therefore, we actually observe the mobility pattern of MNs

as a square based moving behavior. Then what is the moving pattern for MNs

within each square? We model it by using the Waypoint model that gives

MNs freedom to displace themselves within the square, which can be justified
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by our ignorance of the situation in each square.

— We strive to place minimum number of relay nodes such that each mo-

bile nodes can connect to at least one relay node. We formulate the square disk

cover problem and propose three algorithms to solve it, including the Two-

Vertex Square Covering (TVSC) algorithm, the Circle Covering algorithm and

the binary integer programming algorithm. We also investigate carefully into

the performance comparison between the TVSC algorithm, the Circle Cover-

ing algorithm, and the binary integer programming algorithm. As the optimal

approach, the BIP algorithm yields the deployment of the least number of

RNs, while having the largest computational complexity O(N3); the TVSC

algorithm yields the deployment of the second least number of RNs, and con-

suming much less computational resources in O(N2) ; the Circle Covering

algorithm yields the deployment of the most number of RNs, but consuming

the least computation resources only in O(N). In practice, the TVSC algo-

rithm and Circle Covering algorithm might be more preferable because they

require much less computational complexity, but yield only a small number of

the RNs deployed more than the BIP algorithm does.

• Chapter 5

— An overlaid CRN is constructed with existing primary network. We

model the opportunistic spectrum access for CRN formulate the cross-layer

optimization problem under the interference constraint imposed by the existing

primary network.

— A distributed greedy algorithm is proposed to approximate the optimal

network throughput. Cross-layer optimization for CRN is often implemented

in centralized manner to avoid co-channel interference. The distributed al-
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gorithm coordinates the channel assignment with local channel usage infor-

mation. Thus the computation complexity is greatly reduced. In particular,

we compare the distributed algorithm with 4 other algorithms, the optimal

algorithm, two-phased algorithm and dynamic interference graph allocation

and power-based algorithm. The computation complexity of the distributed

algorithm is O(N4) and the optimal algorithm is of O(2N). Simulation re-

sults show that the distributed algorithm outperforms 3 other algorithms and

perform close to the optimal.

• Chapter 6

— We study the network throughput optimization problem for a multi-hop

wireless network by considering interference alignment at physical layer. We

first transform the problem of dividing the set of links into multiple maximal

concurrent link sets into finding all maximal cliques of a graph.

—Each concurrent link set is further divided into one or several multi-

access interference networks, on which interference alignment is implemented

to guarantee simultaneous interference-free transmission. The network through-

put optimization problem is then formulated as a non-convex nonlinear pro-

gramming (NLP) problem, which is NP-hard generally.

— We resort to developing a branch-and-bound framework, which guar-

antees an achievable performance bound. We use numerical results to validate

the efficacy of the algorithm and to offer insights on the throughput enhance-

ment brought by interference alignment.
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1.5 Discussions

In this dissertation, we solve problems stemmed from various kinds of wireless net-

works. Once the network model is specified and optimization objective determined,

a mathematical problem can be formulated and solved accordingly. Some of the

problems are NP-hard to solve for the optimal solution, thus suboptimal solutions

are sought with algorithms of much smaller complexity. Fig . 1.1 demonstrates the

procedure of researching a resource allocation problem within a wireless network

scenario.

Although the resource allocation problems we study are formulated out of differ-

ent network scenarios, they do share some similarities. For instance, some problems

have the same constraints stemmed from different wireless networks, such as one

channel per base station can support at most one node, and one node can access

at most one channel. Interference constraint is often set as two geographically close

links can not be active on the same channel simultaneously. Performance objectives

also have the same terms. For example, the capacity of one link is often calculated

using the shannon formula. Some problems study the same objects, such as channel

assignment, power control, etc.

We also employ some technique as part of the solution procedure for many prob-

lems. For instance, since many problems can be transformed into mixed-integer

linear programs, we resort to the traditional branch-and-bound algorithm for the

optimal solution. As the optimal solutions are often of high complexity, the heuris-

tic approaches, which are based on specific problems, are needful to render low-

complexity implementation.
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Figure 1.1: Procedure of researching a resource allocation problem within a wireless
network scenario.
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Chapter 2

Relay Management for Wireless

Sensor Networks

Wireless sensor networks have been used in a wide range of applications. As one

example of disaster communications, spatially distributed temperature sensors in an

ablaze forest can provide critical information about fire distribution, which helps to

control the fire diffuse. Another example can be found on the farms. Farmers use

transducers to gather information about environmental parameters in their green-

houses. In both scenarios, Edge Nodes (ENs), such as sensors and transducers, are

deployed at strategic positions with fixed sensing and transmit power, thus they

can sustain a fixed length of lifetime. In addition to the deployment of ENs, a

Base Station (BS) is needful to collect data from the sensing field. However, due to

geographic reasons, sometimes the BS could only be established far away from the

sensing field, resulting in very low data reception rate if there is any. To address this

problem, a small number of Relay Nodes (RNs), as energy-limited as ENs, can be

placed between the sensing field and the BS to forward data packets. Here we only

consider two-hop relay routing from ENs to the BS. It is assumed that the power of
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Lower tier: ENs 

Figure 2.1: A two-tiered wireless network

RNs can be adjusted to amplify the faded signals received from ENs and forward it

to the BS. Therefore, the ENs, RNs, and BS build up a two-tiered wireless network

in such applications.

To define relayed network designations, we have to specify the RN placement

and the corresponding dynamic mapping from ENs to RNs. These two issues are

highly interdependent. Directly applying the optimization techniques to solve the

joint problem is unrealistic due to a large number of varying parameters. Therefore,

we resort to develop an efficient iterative algorithm, called Weighted Clustering

with Binary Integer Programming (WCBIP). It is a three-step iterative process: (1)

based on the current locations of RNs, calculate the optimal power for each RN

to maximize its capability to transmit data, then compute the network lifetime;

(2) determine the optimal relay routing table using Binary Integer Programming

(BIP), which provides the dynamic mapping from ENs to RNs; (3) update each

RN’s position using weighted clustering method based on the current routing table.

These three procedures are executed recursively until the algorithm converges.

The main contributions are as follows: first, we present a two-tiered wireless
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network architecture in which RNs are temporarily added to overcome the long

distance communications between the ENs and the BS and the RNs are energy con-

strained; secondly, a joint-optimization problem is defined and analyzed for relay

node placement and assignment; thirdly, an elegant yet practical solution is pro-

posed using BIP and weighted clustering techniques; finally, the simulation results

are presented to demonstrate that the WCBIP algorithm outperforms other relay

placement schemes.

In Section 2.1, we describe the network model and formulate the RN placement

problem. In Section 2.2, we present the BIP scheme together with its implementation

to figure out the optimal association between ENs and RNs. In Section 2.3, we

present the WCBIP algorithm to solve the RN placement problem. The simulation

results are demonstrated in Section 2.4.

2.1 Network Modeling and Problem Formulation

2.1.1 Network Architecture

We focus on a two-tiered architecture for wireless sensor networks. As shown in

Figure 2.1, there are three types of nodes in the network: ENs, RNs and the BS.

ENs, constituting the lower tier of the network, are portable or quasi-stationary

user terminals that are usually battery powered and are equipped with wireless

transceivers. They could also be low-bandwidth application-specific sensor devices.

As ENs are responsible for collecting local task-based information, we assume that

ENs are pre-deployed in the field at strategic positions. The operation mode for ENs

is very simple: Once triggered by an event, each EN sends an F-bit packet directly

to a relay node in one hop per time period using a constant transmit power. Each

EN may select a different path to BS by choosing a different RN from time to time.
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Therefore, the ENs associated with each relay may change over time. Since RNs

are supposed to be energy constraint, we assume that ENs keep alive before all the

RNs die. It should also be noted here that because ENs are very close to each other

and the BS is far away from ENs, multi-hop routing among ENs is not necessary as

it will not bring any distinct benefits to the data transmission.

The upper tier of a network is made up of RNs. During each period, each RN

simply forwards all packets received from ENs to the BS. RNs share equivalent

receiving power, but differ with each other in the aspect of transmit power. Since

RNs are deployed between ENs and the BS, and are associated with different ENs

during the network lifetime, their optimal locations are subject to the distribution

of ENs and location of the BS to yield the best performance. Suppose their initial

energy levels are the same, RNs may deplete their energy at different time because

of different traffic load and transmit power. When one RN runs out its energy, the

ENs associated with this RN in the previous period may switch to another RN to

send packets in the next period. Here we also disregard multi-hop data transmission

among RNs, because the transmit power of RNs are adjustable to amplify the signals

to reach the BS. Moreover, as it is easily understood that more RNs would achieve

a larger amount of packets received at the BS, a fixed and moderate number of RNs

are introduced in this network model.

The data sink in a two-tiered wireless network is the BS. As the BS collects all

information packets forwarded by the RNs from the ENs, it is assumed that the BS

has sufficient energy provided by a large or constantly-reprovisioned battery source.

It is also assumed that the BS has a fixed position as an information gathering

center.
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2.1.2 Joint Problem of RN Placement and Assignment

As an ultimate goal, RNs should be placed in locations resulting in the largest

amount of data reception at the BS within the network lifetime. For a two-tiered

wireless network with every node placed at certain fixed position, the optimal as-

sociation between ENs and RNs needs to be computed such that the amount of

correct packets received at the BS is maximized. It is obvious that different network

topologies could yield different maximized amount of data reception. Then for a

network with a BS, a group of ENs, and a given number of RNs waiting to be de-

ployed, the question becomes: where should we place these RNs and what are the

optimal associations between ENs and RNs, such that the total amount of correct

packets received at the BS during the network lifetime is maximized?

From the above analysis, we can see that the two issues of RN placement and

the corresponding dynamic mapping from ENs to RNs are highly interdependent.

As we are desirous of finding the optimal RN placement, we should also consider

the corresponding association between ENs and RNs for the node locations as well

as the maximized amount of data received at the BS.

In the definition of system objective and constraint functions, Table 2.1 contains

all adopted conventions.

Since packets are transmitted through a two-hop transmission, the total number

of correct packets received at the BS would be (2.1)

n∑

i=1

m∑

j=1

T∑

t=1

PRR(ei, rj)PRR(rj, BS)xt
ij (2.1)

The RNA problem is defined as follows: For a two-tiered network, e = e1, e2, ..., en

are placed at eix, y(i = 1, 2, ..., n); r = r1, r2, ..., rm are placed at rjx, y(j = 1, 2, ..., m);

the BS is placed at s(x, y);
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Table 2.1: Notation of relay management of wireless sensor networks
Symbol Definition
{e1, e2, ..., en} the set of ENs
ei(x, y) the XY location of ei

{r1, r2, ..., rm} the set of RNs
rjx, y the XY location of rj

s(x, y) the XY location of BS
PRR packet reception rate (PRR)
T network lifetime in periods
Xij number of times that ei sends packets to rj during T periods
xt

ij if ei sends data to rj in the t-th period, xt
ij = 1; else xt

ij = 0

buffer(j) number of packets that rj can transmit;
Ptj transmit power of rj;
Ntotal total number of packets received within network lifetime

max
n∑

i=1

m∑

j=1

T∑

t=1

PRR(ei, rj)PRR(rj, BS)xt
ij (2.2)

m∑

j=1

xt
ij = 1 (2.3)

n∑

i=1

T∑

t=1

xt
ij ≤ buffer(j) (2.4)

RNP problem: Given a deployment of ENs and one BS, find the positions for a

fixed number of RNs, such that the maximum number of correct packets from ENs

can be received at the BS.

2.2 Technical Approach for RNA

In this section, we present a BIP method based on power control for RNA problem.

Given a two-tiered topology with known locations of all nodes, we can calculate

the optimal power for all the RNs and compute the network lifetime. Then we can

obtain two constraints and adopt the BIP method with the constraints to find a
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solution for RNA problem under current network deployment.

2.2.1 Optimal Power Control for RNs

Path Loss Model

The RNA solution depends heavily on the relationship between transmit power and

packet error rate, which can be modeled using path loss channel model in physical

layer. The following path loss model is used.

Pad
α
a = Pbd

α
b (2.5)

Pa and Pb are the signal power measured at da and db meters away from the

transmitter respectively. α denotes the path loss exponent. If we set da to be 1

meter, thus Pa is the reference signal power measured at 1 meter away from the

transmitter. Then (5.1) is simplified as (2.6).

Pb =
Pad

α
a

dα
b

(2.6)

Pa can be calculated using the free space propagation model as (2.9).

Pa = GtGr(
λ

4π
)2 × Pt (2.7)

Pt denotes the transmit power, Gt and Gr are the transmitter and receiver an-

tenna gains respectively. λ = c
f

is the wavelength of the transmitted signal, and c

is the velocity of radio-wave propagation in free space, which is equal to the speed

of light. The received power Pr at a distance d meters away from the transmitter

can be calculated as (2.8).
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Pr =
GtGr(

λ
4π

)2 × Pt

dα
(2.8)

Suppose Pnoise denotes the power of noise, then the signal-to-noise ratio (SNR)

at the receiver end is:

SNR =
Pr

Pnoise
(2.9)

The bit error rate can be determined by the SNR based on the error probability

model. For illustration purpose, we take BPSK [65] as the modulation scheme and

the bit error rate is given by:

Pb =
1

2
e−

1
2
SNR (2.10)

Assuming bit error rate occurs independently, the packet reception rate (PRR)

is:

PRR = (1− Pb)
F = (1− 1

2
e−

1
2
SNR)F (2.11)

Optimal Power Control

Considering a peer-to-peer communication between a relay ri and the BS, there is

a certain distance di between ri and the BS. We assume ri uses transmit power Pti,

and it relays zt
i packets to the BS in time period t, or there are zt

i ENs sending

packets to ri in the tth period. Using above-mentioned error probability model, the
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total number of packets that the BS receives from ri is:

Mi =
T∑

t=1

zt
i(1−

1

2
e
−ρ

Pti
dα
i )F (2.12)

ρ = 1
2
GtGr(

c
4πf

)2 1
Pnoise

and T is the overall number of periods, also referred as

the relay network lifetime. The total number of packets that can be transmitted by

ri is restricted by its energy. Then we have:

T∑

t=1

zt
i =

Ev

Pti + PelecF
(2.13)

E denotes the total energy each RN holds, v is the transmission bit rate, Pelec

denotes the electronic power consumed by receiving one packet. Combining (2.12)

and (2.13) yields:

Mi =
Ev

Pti + PelecF
(1− 1

2
e
−ρ

Pti
dα
i )F (2.14)

To maximize Mi, we need to find the optimal power Pti. Take a derivative of Mi

with respect to Pti, and set the derivative to zero, we get the following characteristic

equation from convex theory:

1

2
(Pti + Pelec)Fe

−ρ
Pti
dα
i

ρ

dα
i

+
1

2
e
−ρ

Pti
dα
i − 1 = 0 (2.15)

Let us set Ω to be the collection of all solutions to (2.15). By optimizing theory,

the optimal point Pt∗i maximizing the function MiPti must lie in the union of the
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set Ω and the boundary points of Pti. Note that (2.15) is transcendental and may

not have closed form solutions. Numerical solutions for an experimental setup will

be provided in Section 2.4.

2.2.2 Fixed Relay Network Lifetime

Based on the analysis in Section 2.2.1, each RN has an optimal transmit power

Pt∗i setup for best energy efficiency. Given the total energy constraint E, the total

number of packets ri can relay is:

buffer(i) =
Ev

(Pt∗i + Pelec)F
(2.16)

Relay network lifetime is defined as the total number of network operating pe-

riods, represented by T . The total number of packets received from ENs equals to

the total number of packets forwarded by all RNs. Thus,

T =
1

n

m∑

i=1

Ev

(Pt∗i + Pelec)F
(2.17)

m denotes the number of RNs and n denotes the number of ENs. For ri with

fixed location in a two-tiered wireless network, Pt∗i can be determined from (2.15).

Therefore, the relay network lifetime T is fixed if the energy levels of RNs are known.

2.2.3 Binary Integer Programming Optimization

Binary integer programming is a linear programming (LP)-based branch-and-bound

algorithm. The algorithm searches for an optimal solution to the BIP problem

by solving a series of LP-relaxation problems. The branch-and-bound method is

described briefly below. More details can be referred to [83].
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The algorithm creates a search tree by repeatedly adding constraints to the

problem, called ”branching”. At a branching step, the algorithm chooses a variable

xj whose current value is not an integer and adds the constraint xj = 0 to form one

branch and the constraint xj = 1 to form the other branch. This process can be

represented by a binary tree, in which the nodes represent the added constraints.

At each node, the algorithm solves the LP-relaxation problem using the con-

straints at that node and decides whether to branch or to move to another node

depending on the outcome. There are three possibilities: (1) If the LP-relaxation

problem at the current node is infeasible or its optimal value is greater than that

of the best integer point, the algorithm removes the node from the tree, after which

it does not search any branches below that node. The algorithm then moves to a

new node according to the pre-specified method. (2) If the algorithm finds a new

feasible integer point with lower objective value than that of the best integer point,

it updates the current best integer point and moves to the next node. (3) If the

LP-relaxation problem’s optimal value is not an integer and the optimal objective

value of the LP relaxation problem is less than the best integer point, the algorithm

branches below this node.

As the algorithm could potentially search all 2n binary integer vectors, the run-

ning time for binary integer programming is O(2n). n is the number of variables

that need to be specified. As future work, we can transform the Binary Integer

Programming problem into a linear optimal distribution problem [54] by generating

a directed graph, to reduce the computation complexity to only O(n3).
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2.3 WCBIP: an Iterative Approach for RNP

In this section, we first provide an analysis on how to maximize the amount of

correct data reception with respect to different relay node placements. Then the

analysis results are used to bring forward an efficient algorithm called WCBIP.

2.3.1 Analysis on RNP Problem

Section 2.2 gives a detailed description on how to assign ENs to RNs within a

fixed scenario, such that the amount of correct data received at the BS can be

maximized. As can be seen, the result of assigning every edge node to the relay

node in each transmission period is illustrated as (2.1). Each relay node functions

as a cluster head to forward packets from its cluster members. As we observe

this two-tiered network system in this cluster view, maximizing the total number of

correct packets received at the BS is tantamount to maximizing performance of each

cluster. Because within the current network scenario, the edge nodes are immobile

while the relay nodes are temporarily placed, intuitively, we construct the clustering

function for relay node rj as:

fj =
n∑

i=1

Xij

buffer(j)
RijRj =

n∑

i=1

Xij

buffer(j)
(1− 1

2
e
−ρ

Ptedge

d2
ij )F (1− 1

2
e
−ρ

Pti
d2
ij )F (2.18)

Ptedge denotes the constant transmit power of edge nodes. dij represents the

distance between edge node ei and relay node rj. fj is a function of the x-y location

of rj. The weighted factor Xij

buffer(j)
denotes the contribution each edge node makes

to the overall cluster performance. As we move rj, we can search for the position

where the clustering function reaches its maximal value.
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2.3.2 Implementation of WCBIP

Based on the relay placement analysis, we propose an iterative procedure to search

for the optimal positions of all RNs so that the maximum amount of correct data

can be received at the BS.

• Step 1: According to the EN deployment, RNs are evenly distributed within

the coverage area;

• Step 2: Calculate optimal power for each RN and compute the network life-

time;

• Step 3: With respect to current node locations (the positions of ENs, RNs and

the BS), BIP is applied to obtain the relay’s assignment result X and the total

number of correct packets received at the BS at this optimal point is Ntotal.

• Step 4: According to the assignment result, for each relay node rj, construct

the clustering function fj, as a function of rjx, y. Search for the maximal value

of fj, move rj to the new position.

• Step 5: The algorithm terminates when any one of the following conditions

is true: (1) Predefined number of iterations are completed. (2) Ntotal has not

increased for Cth consecutive times. Otherwise, the procedure goes back to

Step 2.

2.4 Simulation Results

2.4.1 Experimental Study on RNA Problem

For experimental setup, we establish the network scenario as follows: 10 edge nodes

are randomly distributed on one sixth of circles with their center located at (0, 0),
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Figure 2.2: Total number of packets correctly received at the BS from relays using
different transmit power

and radius varying between [40, 50]; the relay nodes, with the equal radians between

each other, are also placed on the same set of concentric circles with their radius at

30. The BS is placed at XY coordinate [10, 0]. The assumptions and experimental

parameters are: unit gain of both the transmitter and receiving antenna; the fre-

quency of the electromagnetic signal is 2.4GHz; the noise power is 2.15×10−8Watts,

the electronic power for forwarding one packet is 2.53× 10−2 Watts; the size of one

packet is 80 bits; the edge nodes each use a constant transmit power of 10−2 Watts;

the bit rate that the relay nodes send data is 11Mb/s [5]; the total energy for one

relay node is 5 × 10−5 Joule. (We render the energy of relay nodes such small for

simulation purpose.)

Given the fixed position of the relay nodes and the BS, we can draw the number

of packets that ri is able to forward with different transmit power based on (2.15).

Transmission at the optimal power provides the best energy efficiency for the relay

nodes.
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Figure 2.3: The number of correct packets received using 3 different assignment
schemes.

As shown in Fig. 2.2, for each relay node, the optimal transmit power can be

obtained at the peak point. It can also be observed that the optimal transmit power

is larger if the relay is further away from the BS.

To demonstrate the advantages of the proposed method, we compare it with two

other assignment schemes under the current network topology. One scheme is called

the nearest relay assignment method [69], namely that every edge node sends its

packets to the nearest active relay node. The other scheme requires that all RNs

manage their members(ENs) as the cluster heads [42]. The RNs are assigned ENs

according to their capacity. Technically, the number of edge nodes assigned to is in

inverse proportion to based on the energy constraint as in (2.14). Fig. 2.3 shows the

performance of these three methods for the cases the number of edge nodes varies

from 10 to 40.

For each experimental setup, the locations of edge nodes are placed almost ran-
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domly. Therefore, the PRR from edge nodes to relay nodes changes. The number

of packets correctly received at BS varies. But for any given experimental cases,

Fig. 2.3 clearly shows that the BIP method results significantly more information

packets received at the BS than the other two techniques.

2.4.2 Experimental study on WCBIP for RNP problem

The BIP method can be used to find the fixed relay scheme to maximize the num-

ber of correct packets received at the BS. As prescribed in Figure 4, the WCBIP

method incorporates the BIP for each relay as part of iteration, and in every itera-

tion searches for a ”better” location to improve the value of each clustering function.

The search function we choose is the simplex search method [51], as one kind of un-

constrained nonlinear optimization. In our simulations, we adopt the fminsearch

function in Matlab to implement this optimization method.

We change the energy level for RN to 2 × 10−5. The total number of correct

packets received at each iteration is demonstrated in Fig. 2.4. To demonstrate

its advantage, we also adopt the other two methods, called as weighted clustering

nearest assign and weighted clustering cluster-based assign. As they are named,

these methods updates the placement of RNs similarly as WCBIP, but based on

their own association table. For WCBIP, the number of correct packets received

increases greatly after the first iteration, followed by small improvement in the next

a few iterations. This is because the first iteration has already moved each relay

node close to its optimal place. As shown in Fig. 2.4, WCBIP algorithm has

the advantage of quick convergence with significant performance improvement. In

contrary, results for the other two methods remain much lower.

We also consider the impact that the range of ENs in radian has on the data

reception performance. From Fig. 2.5, we can see the total number of packets
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Figure 2.4: Iterations vs. Total number of received packets for 3 weighted clustering-
based methods.
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Figure 2.5: Number of received packets with respect to different Range of ENs in
radian and number of RNs.

received increases as the number of RNs increases. This is because more RNs induces

more energy to transmit data. Besides, as the radian of range increases, the number

of packets received at the BS decreases slightly. The reason is that with a larger

range, every packet would travel longer distances thus decreases its own reception

rate.

To demonstrate the relationship between EN’s locations and the number of pack-

ets received, we set up another network scenario as follows: 20 edge nodes are evenly

distributed on one sixth of a circle with its center located at (0, 0), and radius chang-

ing. The BS is placed at XY coordinate [0, 0]. We employ the WCBIP method to
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Table 2.2: RN placement with respect to different EN locations
EN locations r1 r2 r3 r4 r5
35 (4.9, 1.2) (6.4, 0.8) (5.8, 3.6) (3.4, 3.0) (4.7, 5.2)
40 (8.4, 0.6) (8.1, 2.4) (7.3, 4.0) (6.6, 5.6) (5.1, 6.6)
45 (12.2, 3.6) (12.4, 1.0) (11.1, 6.0) (9.6, 8.2) (7.5, 10.0)
50 (17.0, 1.4) (16.5, 4.9) (15.2, 8.1) (13.1, 11.1) (10.5, 13.6)
55 (21.8, 1.7) (21.1, 6.3) (19.4, 10.6) (16.6, 14.2) (13.3, 17.2)
60 (26.7, 2.1) (25.9, 7.6) (23.4, 12.6) (20.3, 17.4) (16.4, 21.3)
65 (31.6, 2.5) (30.7, 9.1) (28.0, 15.1) (24.5, 20.8) (19.4, 25.1)
70 (37.0, 2.8) (35.5, 10.5) (32.5, 17.7) (28.1, 24.0) (22.7, 29.6)

35 40 45 50 55 60 65 70
0

50

100

150

200

250

300

350

400

450

500

distance between Edge nodes to the BS

 C
o

rr
e

ct
 p

a
ck

e
ts

 r
e

ce
iv

e
d

 

 

 

WCBIP
direct transmission

Figure 2.6: Number of received packets with respect to different Range of ENs in
radian and number of RNs.

place 5 RNs between the BS and ENs. The placement results are shown in Table

2.2. Each of the dual numbers represents the XY-location of the corresponding RN

when ENs are placed at the corresponding distance away from the BS. As can be

seen from the table, the RN placements become further away from the BS as the

ENs are placed at a larger distance away.

Fig.2.6 depicts the number of correct packets received with respect to WCBIP

and direct transmission from ENs to the BS without data relay when ENs are placed

at different distances from the BS. From the figure, it can be seen that introducing a
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tire of relay nodes brings much benefits in increasing the number of packets received.

Although results for both methods decreases as the ENs are placed further away from

the BS, packets received through direct transmission goes down much more rapidly

than the case that RNs are placed with WCBIP to help forward packets from ENs.

2.5 Conclusion

In this chapter, we investigate the joint problem of RNA and RNP for two-tiered

wireless sensor networks. Since these two problems are highly interdependent, we

developed an efficient iterative algorithm, called as WCBIP to find the optimal the

RN placement to maximize the data received at the BS within a network lifetime.

This approach firstly derives the optimal transmit power for each RN as well as

the fixed relay network lifetime. Subsequently, we determine the dynamic optimal

RNA in every period using BIP such that the BS receives the maximum number

of effective information packets. Then we update each RN’s position by optimiz-

ing their data transmission performance under current assignment results using a

weighted clustering method. These three steps are executed iteratively until the

algorithm converges. Experimental results show that within a fixed network sce-

nario, the proposed BIP method yields much better performance than the other two

schemes, nearest relay assignment and cluster-based assignment. The simulation

results demonstrate that RNs can send the most information packets when taking

the optimal transmit power. Moreover, we observe that WCBIP converges within a

few steps, yielding better results than other two weighted clustering methods and

direct data transmission from ENs to the BS. Finally, we quantify the effects of

EN locations, with respect to angle and distance from the BS, on RNP and the

maximum number of information packets received.
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Chapter 3

Capacity Fairness for Wireless

Mesh Networks

Recently fairness of network throughput of channels has been placed with great

importance. The reason is that the traditional goal of maximizing the summation

of throughput on all links could result in unbalanced use of network resources. In this

chapter, we consider a two-tiered wireless mesh network that consists of a number of

user nodes (UNs) and multiple Mesh Routers (MRs). UNs are deployed at strategic

positions, transmitting and receiving information to/from the nearby MR via a

single hop (see Fig. 3.1). We aim to enhance the fairness of network throughput by

maximizing the minimal capacity of all users. In our proposed two-tiered wireless

network model, one main issue is to deal with an increasing number of UNs while

using orthogonal frequency-division multiple access (OFDMA) as a multiple access

mechanism. Obviously, the fairness of network throughput is highly dependent on

the channel assignment as well as power control of each MR. Transmissions on the

same channel could seriously depreciate each other’s capacity due to interference.

Therefore, in this chapter, we aim to exploit channel reuse to maximize the minimal
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Figure 3.1: Reference architecture for a two-tiered wireless mesh network. The
dashed line represents the link connection between network UNs and MRs. The
solid line represents the links between MRs.

capacity of all assigned links.

Jointly studying power control on physical layer and channel assignment on MAC

layer falls into cross-layer design problems. It would be natural to consider the power

control parameter as a continuous variable and the channel assignment parameter

as a binary integer variable. As a result, the fairness problem formulation falls into

mixed integer non-linear programming (MINLP), which is NP-hard in general. Thus

we resort to approximating the problem by setting the power control parameter as a

discrete variable, e.g. a finite number of equally-spaced power levels. Subsequently,

we put forward a heuristic approach: Binary Integer Programming-based Algorithm

with fairness constraint (BIPA) to achieve suboptimal result when the power of MRs

can only be set as discrete variables. In particular, the channel assignment and power

control results are updated via solving a binary integer programming problem at

each iteration when the fairness constraints are set tighter. In order to measure the

quality of the suboptimal results obtained by BIPA, we develop an upper bound of

the fairness objective by relaxing the integer variables and linearization. Simulation
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results show that the results obtained by BIPA are very close to the upper bound,

thus suggest that (1) the upper bound is very tight; and (2) the solution obtained

by BIPA is near-optimal.

The rest of this chapter is organized as follows. In Section 3.1, we describe the

network and interference model. In Section 3.2, we formulate the channel assignment

and power control problem to maximize the minimal capacity of all assigned links.

In Section 3.3, we propose BIPA as the heuristic approach followed by the method to

obtain the upper bound solution presented in Section 3.4. In Section 3.5, simulation

results are presented to compare the solutions obtained by BIPA and the upper

bound. Section 3.6 concludes this chapter.

3.1 Network Modelling

In this section, we present an example of cross-layer optimization problem for a

wireless mesh network. We first address some technical aspects of this mesh network

in terms of network architecture, path loss model as well as interference model. Then

we set out to formulate the cross-layer optimization problem. We list the notation

in this chapter in Table 3.1.

3.1.1 Network architecture

We focus on a two-tiered wireless mesh networks. There are two types of nodes in

a mesh network: UNs and MRs. All nodes are placed at fixed locations. Each UN

can connect to only one MR by establishing a channel with an adjustable transmit

power. Since the mesh network uses OFDM for multiple access, we assume each MR

can support the same limited number of channels. As for typical mesh network, the

downlink data traffic is much more than uplink data traffic, thus we only consider
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Table 3.1: Notation of capacity fairness of wireless mesh networks
Symbol Definitions
d0 An amount of distance.
d1 An amount of distance.
P0 Signal power measured at d0 meters from transmitter.
P1 Signal power measured at d1 meters from transmitter.
Pt General transmit power.
Gt Transmitter antenna gain.
Gr Receiver antenna gain.
λ Wavelength of the transmitted signal.
c Velocity of radio-wave propagation in free space.
Pr General received power.
Pnoise Noise Power.
A General Capacity of a channel.
W Bandwidth of the channel.
d Distance between the transmitter and receiver.
N Number of UNs.
M Number of MRs.
U Set of UNs.
R Set of MRs.
ui The ith UN.
ri The ith MR.
Pmax Maximum transmit power.
Q Number of power levels.
l Index of a power level
Prlk

ij Received power at uj when the transmitter
power of ri is set as l

Q
Pmax on channel k

tI Interference threshold.
tR Receiving threshold.
A Channel capacity matrix A.
Prij Power of the received signal at uj from ri .
ρlk

ij Binary assignment variable indicating
the assignment of the kth channel of ri

to uj at the transmit power of l
Q
Pmax(1 ≤ l ≤ Q)

ζ Minimum capacity of all assigned links
τ Obtained second smallest capacity of all assigned links.
X A general set of continuous variables.
xi A general variable within the set X .
σ Optimal max-min value of X .
η Summation of all variables X .
n Number of variables in X .
µ Value of variables in X , when x1 = x2 = ... = xn.
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the downlink case. It is also assumed that MRs can connect to each other without

distance and interference constraints. At least one of the MRs can access to the

backbone network.

3.1.2 Path loss model

The network throughput depends heavily on the packet reception rate, which can

be modelled using path loss channel model in physical layer. In this chapter, the

following path loss model (3.1) is being used.

P0d
α
0 = P1d

α
1

(3.1)

P0 and P1 are the signal power measured at d0 and d1 meters away from the

transmitter, respectively. α denotes the path loss exponent. If we set d0 to be 1

meter, thus P0 is the reference signal power measured at 1 meter away from the

transmitter. Then (3.1) is simplified as P1 = P0

dα
1
. P0 can be calculated using the free

space propagation model [8] as (3.2).

P0 = PtGtGr(
λ
4π

)2 (3.2)

Pt is the transmit power. Gt and Gr are the transmitter and receiver antenna

gains respectively. λ = c/f is the wavelength of the transmitted signal. c is the

velocity of radio-wave propagation in free space, which is equal to the speed of light.

Then the received power Pr at a distance d meters away from the transmitter can

be calculated as (3.3).

Pr =
PtGtGr( λ

4π
)2

dα
(3.3)

Let Pnoise denote the noise power, then the signal-to-noise ratio (SNR) at the
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receiver end as (3.4).

SNR = Pr

Pnoise
(3.4)

Based on Shannon formula [71], the capacity of the channel of a link can be

expressed as (3.5).

A = W × log2(1 + PtGtGr(λ/4π)2

dαPnoise
) (3.5)

where A denotes the capacity of the channel, W denotes the bandwidth of the

channel, d denotes the distance between the transmitter and receiver of the link.

3.2 Problem Formulation

First of all, we need to provide some notation. Let the number of UNs be N , the

number of MRs be M and the number of OFDM channels be C. Denote the set

of UNs as U = {u1, u2, ..., uN}, the set of MRs as R = {r1, r2, ..., rM}. Denote the

maximum transmit power as Pmax. We then introduce an integer parameter Q that

represents the total number of power levels to which a transmitter can be adjusted,

i.e. 1
Q
Pmax,

2
Q
Pmax, ..., Pmax. If the transmitter power of ri is set as l

Q
Pmax(1 ≤ l ≤

Q) on channel k, the received power at uj is denoted as Prlk
ij . Secondly, receiving

constraint is considered regarding a successful transmission. Suppose there is a

transmission from ri to uj, then the received power at uj should be no less than the

receiving constraint, denoted as tR. Then we can define a channel capacity matrix

A as (3.6).

Alk
ij =





W × log2(1 +
Prlk

ij

Pnoise
) : if Prlk

ij ≥ tR;

0 : otherwise;
(3.6)
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Let us denote the ρlk
ij as the binary assignment variable with ρlk

ij = 1 indicating

the assignment of the kth channel of ri to uj at the transmit power of l
Q
Pmax;

ρlk
ij = 0 means the kth channel at power level l is not assigned between ri and uj.

Then we consider constraint on interference. Suppose there is a transmission from

ri to uj on the kth channel, then there is a limitation on the transmission powers

of all other concurrent transmissions on the same channel. Specifically, we consider

the interference power on uj due to all other concurrent transmissions on the same

channel is negligible if the overall received interference power is less than a threshold

tI (tI ≤ tR), as shown by (3.7).

∑M
a=1

∑N
b=1

∑Q
l=1 ρlk

ab × Prlk
aj ≤ tI (3.7)

Note that (3.7) only holds when uj receive signals on the kth channel. Therefore,

it is necessary to develop (3.7) into a more general form as shown in (3.8).

∑M
a=1

∑N
b=1

∑Q
l=1 ρlk

ab × Prlk
aj + (ε− tI)×∑M

i=1

∑Q
l=1 ρlk

ij ≤ ε (3.8)

where ε is a large value such that ∀ j (1 ≤ j ≤ N),
∑M

a=1

∑N
b=1

∑Q
l=1 ρlk

ab×Prlk
aj ≤ ε

always holds. In (3.8), the term
∑M

i=1

∑Q
l=1 ρlk

ij accurately indicates if uj is working

on the jth channel.

Using the channel capacity matrix (3.6) and the interference constraint as (3.8),

our fairness problem can be formulated as (3.9).
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Fairness Problem :(Optimal channel assignment and power control problem)

maximize ζ

s.t. ρlk
ij ∈ {0, 1}

∑M
i=1

∑C
k=1

∑Q
l=1 ρlk

ij = 1

∑M
a=1

∑N
b=1

∑Q
l=1 ρlk

ab × Prlk
aj + (ε− tI)×∑M

i=1

∑Q
l=1 ρlk

ij ≤ ε

∑M
i=1

∑C
k=1

∑Q
l=1 ρlk

ij ×Alk
ij ≥ ζ

∀ri, uj, 1 ≤ k ≤ C, 1 ≤ l ≤ Q

(3.9)

The objective our optimization problem is to maximize the minimal capacity

of all assigned links, which is denoted as ζ in (6.2). The second constraint is to

guarantee that each UN can only be assigned to one channel linked to an MR.

The third constraint is to ensure each transmission is interference free from other

transmissions on the same channel, as the interference constraint (3.8).

3.3 BIPA: Binary Integer Programming based Al-

gorithm with Fairness Constraint

We now take a closer look at the fairness problem as formulated in (3.9) in Section

3.2. Observe that the objective is not a linear function of the set of variables ρlk
ij ,

which obstructs many classic algorithms from being applicable. In other words,

the key obstacle in solving this fairness problem lies in the transformation of the

objective function, while still maintaining the motive of the max − min problem:

the minimal capacity of all assigned links are maximized. To this end, it comes

down very naturally that the sum of the capacity of all assigned links could be

recognized as the simplest linear function. Based on the foregoing discussion, the

newly generated problem is described as (3.10).

51



suboptimal fairness problem:

max
∑N

j=1

∑M
i=1

∑C
k=1

∑Q
l=1 ρlk

ij ×Alk
ij

s.t. ρlk
ij ∈ {0, 1}

∑M
i=1

∑C
k=1

∑Q
l=1 ρlk

ij = 1

∑M
a=1

∑N
b=1

∑Q
l=1 ρlk

ab × Prlk
aj + (ε− tI)×∑M

i=1

∑Q
l=1 ρlk

ij ≤ ε

∑M
i=1

∑C
k=1

∑Q
l=1 ρlk

ij ×Alk
ij ≥ ζ

∀ri, uj, 1 ≤ k ≤ C, 1 ≤ l ≤ Q

(3.10)

In (3.10), the second constraint is to guarantee that each UN can only be assigned

to one channel with one MR. The third constraint is to ensure each transmission is

interference free from other transmissions on the same channel, as the interference

constraint (8). We notice that the fourth constraint demands that each of the

assigned links have a capacity larger than ζ. It is obvious that if ζ is set the same

as the maximized value of the minimal capacity of all assigned links, the optimal

solution of the fairness problem can be yielded. Naturally, the key to obtain the

optimal result to the fairness problem resides in adjusting the value of ζ. The value

of ζ is very subtle to the extent that the suboptimal fairness problem would be

infeasible with very high value of ζ while we would end up obtaining a solution

that is far from the optimal when ζ is set too low. Then the intuition would be to

reach the maximal value of ζ such that the suboptimal fairness problem is feasible.

It would seem quite straightforward to update the value of ζ after each iteration

with the minimal value of all assigned links. However, a closer examination would

repel this idea due to the fact that the updated constraint would not alter the

results in following iterations since the current solution is already optimized. But

since possibilities still remain that the minimal capacity could be increased if the

constraint is set tighter, we choose to take the risk that the suboptimal fairness
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problem be infeasible by updating ζ with the second smallest capacity of all assigned

links yielded by the previous iteration. Since transmit power on all assigned links

has been maximized (otherwise there is still space for the summation of all assigned

links to increase, which violates the objective of the suboptimal fairness problem), it

would also be justifiable to point out that setting ζ as the second smallest capacity

could break the current assignment: eliminating the link with smallest capacity

and assigning that corresponding UN a ”better” link. Since the cases that the two

smallest capacities are equal are very rare due to different distances among all UN-

MR pairs, this iterative procedure terminates as soon as it can not reach a feasible

problem.

We also need to justify the validity of the transformation of the objective function

from maximizing the minimal capacity to maximizing the summation of the capacity

of all assigned links. Given a value of ζ, the objective of the suboptimal fairness

problem should help produce solutions with higher minimal capacity of all assigned

links. Based on this consideration, the objective of maximizing the summation

of capacity on all assigned links has the following two merits: 1) it is the most

simplified form of linear functions; 2) it pushes the minimal capacity of all assigned

links higher.

To solve the suboptimal fairness problem, we use a linear programming (LP)-

based branch-and-bound algorithm [83]. The algorithm creates a search tree by

repeatedly adding constraints to the problem, called Branching. At a branching

step, the algorithm chooses a variable xj whose current value is not an integer

and adds the constraint xj = 0 to form one branch and the constraint xj = 1 to

form the other branch. This process can be represented by a binary tree, in which

the nodes represent the added constraints. At each node, the algorithm solves the

LP-relaxation problem using the constraints at that node and decides whether to
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branch or to move to another node depending on the outcome. There are three

possibilities: (1) If the LP relaxation problem at the current node is infeasible or its

optimal value is greater than that of the best integer point, the algorithm removes

the node from the tree, after which it does not search any branches below that node.

The algorithm then moves to a new node according to the pre-specified method. (2)

If the algorithm finds a new feasible integer point with lower objective value than

that of the best integer point, it updates the current best integer point and moves

to the next node. (3) If the LP-relaxation problem’s optimal value is not an integer

and the optimal objective value of the LP relaxation problem is less than the best

integer point, the algorithm branches below this node.

From the foregoing, we propose BIPA algorithm as the following.

• step 1: Set ζ = 0;

• step 2: Solve the suboptimal fairness problem as (3.10);

• step 3: Obtain the second smallest value τ of all assigned links based on the

channel assignment solution obtained from step 2;

• step 4: Update ζ with τ , repeat step 2 and 3 until no feasible solution exists.

3.4 Upper Bound

In Section 3.3, we propose a heuristic approach to aggressively approximate the

maximized minimal value by iteratively tightening the constraint that the capacity

of each link is larger than a threshold value ζ. In this section, we develop an upper

bound for the objective function. First of all, we claim Theorem 1 and give the

proof subsequently.
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Theorem 1 (Equivalent Conditions for Max-min Objective): Given a set

of continuous variables X = {x1, x2, ..., xn}, max−min X is achieved iff

• ∑X is maximized;

• x1 = x2 = ... = xn.

Proof : Suppose xi = σ denotes the optimal max-min value. Since xj ≥ xi (∀
j 6= i), then we can reduce the value of xj (j 6= i) to the point that x1 = x2 = ... = xn.

Because max-min value σ can not be increased with respect to the set X , then

∑X = n× σ is maximized. Thus the necessary condition is validated.

We will validate the sufficient condition based on contradiction. Assume
∑X =

η is maximized, x1 = x2 = ... = xn, and the optimal max-min value µ ≥
∑

X
n

.

Then we can set x1 = x2 = ... = xn = µ, obviously n × µ ≥ η, which violates the

assumption that
∑X is maximized. Therefore the sufficient condition is proved to

be true. 2

max
∑M

i=1

∑N
j=1

∑C
k=1

∑Q
l=1 ρlk

ij ×Alk
ij

s.t. ρlk
ij ∈ [0, 1]

∑M
i=1

∑C
k=1

∑Q
l=1 ρlk

ij = 1

∑M
a=1

∑N
b=1

∑Q
l=1 ρlk

ab × Prlk
aj + (ε− tI)×∑M

i=1

∑Q
l=1 ρlk

ij ≤ ε

∑M
i=1

∑C
k=1

∑Q
l=1 ρlk

i1 ×Alk
i1

=
∑M

i=1

∑C
k=1

∑Q
l=1 ρlk

i2 ×Alk
i2

= ...

=
∑M

i=1

∑C
k=1

∑Q
l=1 ρlk

iN ×Alk
iN

∀ri, uj, 1 ≤ k ≤ C, 1 ≤ l ≤ Q

(3.11)

Inspired by Theorem 1, we figure out that the optimal max-min capacity of all
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assigned links can be achieved iff the overall network capacity is maximized and all

assigned links have the same capacity. Now we reexamine the fairness problem in

(3.9). Since the capacity values are discrete due to a finite number of power levels,

it is hardly possible to reach a point that the same capacity is achieved on all links

with different distances of MR-UN pairs. To render the capacity values continuous,

we can relax the binary integer requirement on ρlk
ij by setting 0 ≤ ρlk

ij ≤ 1. In this

way, we can pursue an upper bound for the objective when the throughput of each

assigned link is equal to each other. Such relaxation enables us to formulate the

max−min problem as (3.11).

In (3.11), the second constraint is to guarantee that each UN can only be assigned

to one channel with one MR. The third constraint is to ensure each transmission

is interference free from other transmissions on the same channel. The fourth con-

straint demands the capacity values of all links are the same. This new (relaxed)

formulation falls into a standard linear programming (LP) problem. We can obtain

the solution in polynomial time. Due to the relaxation, the solution to this LP prob-

lem corresponds to an upper bound to the objective of the original problem in (3.9).

There may not exist a feasible solution to achieve this upper bound. Nevertheless,

this upper bound offers a benchmark to measure the quality of the feasible solution

obtained from BIPA proposed in Section 3.3.

3.5 Simulation Results

In this section, we present simulation results on max-min capacity values yielded by

BIPA and the corresponding upper bound. In particular, we compare the fairness

performance yielded by BIPA and the upper bound by proposing a new evaluation

metric named performance ratio. We produce performance ratios under different
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parameter sets to investigate the impact of different factors on the fairness per-

formance, such as the number of channels, the number of power levels and the

interference threshold.

3.5.1 Simulation Setup

A set of UNs are randomly distributed in a square region ({(x, y)|0 ≤ x ≤ 100, 0 ≤
y ≤ 100}, (x, y) denotes the Cartesian coordinate of a point). Totally 4 MRs are

placed within the area at coordinates (25 25),(25 75),(75 75), (75 25) respectively.

The bandwidth of each channel is set as 1 MHz. The transmitter and receiver

antenna gains are both set as 100. The path loss exponent α = 2. The wavelength

λ is set as 3×108

2.4×109 meters, which corresponds to the center frequency of 2.4GHz. The

noise power is set as 1× 10−6 watt. For each set of system parameters, we generate

20 instances of the network scenarios with randomly distributed UNs to obtain the

average performance.

Intuitively, the following parameters may have significant impact on system per-

formance: the number of users (N), the total number of channels (C), the number

of power levels (Q) and the interference threshold (tI). To obtain extensive results,

we vary the values of three parameters: Q, C and tI . To construct different network

topologies, we randomly place 10 UNs in the given region at the first trial and 15

UNs at the second trial.

3.5.2 Evaluation Metric

To evaluate the performance of BIPA, we propose a metric named as performance

ratio, as the main evaluation measure for the simulation results. The performance

ratio is defined as the ratio of the suboptimal solution yielded by BIPA to the upper

bound. As the suboptimal solution is always less than the upper bound, BIPA yields
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Figure 3.2: An example showing channel assignment with respect to our simulation
scenario without power control. The number on the line between a UN-MR pair
shows the index of channel assigned for the link.

better solutions when performance ratios are closer to 1.

3.5.3 Impact of Power Control

Power control exerts a pivotal influence on results of channel assignment for a wire-

less mesh network. In Fig. 3.2 and 3.3, we show an example of channel assignment

with respect to our simulation area. From Fig. 3.2, it can be seen that to avoid

interference, only four UNs can be assigned channels. Any other assigned channel

would be seriously interfered by one of the four channels as all the MRs are trans-

mitting signal at their maximum power. In contrast, Fig. 3.3 shows that all UNs

can be assigned channels when power control can be realized at MRs. This is due

to the fact each MR can automatically adjust its transmit power to avoid causing

interference to other transmissions, and thus channels can be assigned at each MR

to accommodate a lot more UNs.

58



� �
� �

� �

� �

� �

� � �
� �

� �

� 	 � 

� �

� �
� �

� �

� 


�
�

�

�

�

�

�

�

Figure 3.3: An example showing channel assignment with respect to our simulation
scenario with power control. The number on the line between a UN-MR pair shows
the index of channel assigned for the link.

3.5.4 Impact of Number of Channels

In this subsection, we evaluate the impact of number of channels on the performance

ratios in 10-UN and 15-UN network scenarios. The performance ratios are calculated

using the minimal capacity yielded by BIPA and the upper bound computed from

(3.11).

First of all, it can be seen from Fig. 3.4 that most performance ratios are very

close to 1, which shows that the gap between solutions yielded by BIPA and the

upper bound is very narrow. In addition, since the unknown optimal solution is

between the solution obtained by BIPA algorithm and the upper bound, the upper

bound is very tight, and BIPA yields near-optimal solutions.

Secondly, from Fig. 3.4, it is obvious that as we enlarge C from 5 to 9 regarding

the same 20 10-UN scenarios, the points of performance ratios are positioned higher

and the majority of the points are equal to 1 when C = 9. The reason is that

with more channels, the interference constraint would be less tight and some MRs

can increase its transmit power on certain channels. Thus the UN associated with
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Figure 3.4: Performance ratios when C changes for 10-UN scnenario. Pmax = 5
watt. tR = 10−3 watt. Q = 10. tI = 4× 10−4 watt.
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Figure 3.5: Average performance ratios when C changes for 10-UN scenario. Pmax =
5 watt. tR = 10−3 watt. Q = 10. tI = 4× 10−4 watt.
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Figure 3.6: Performance ratios when C changes for 15-UN scenario. Pmax = 2.5
watt. tR = 10−3 watt. Q = 3. tI = 4× 10−4 watt.

the minimal capacity link would have the chance to be assigned a link with higher

capacity.

Accordingly, the same phenomenon is witnessed in Fig. 3.5 where each point

represents the average value of the performance ratios of the 20 10-UN scenarios

corresponding with the same parameter set.

In addition, for 15-UN network scenarios, similar trend can be witnessed as C is

increased from 7 to 13 in Fig. 3.6 and Fig. 3.7.

3.5.5 Impact of Number of Power levels

In this subsection, we evaluate the impact of number of power levels on the per-

formance ratios in 10-UN and 15-UN network scenarios. The performance ratios

are calculated using the minimal capacity yielded by BIPA and the upper bound

computed from (3.11).

First of all, it can be seen from Fig. 3.8 and Fig. 3.9 that most performance

ratios are near 1, which shows that solutions yielded by BIPA is close to the upper

bound. Therefore BIPA yields near-optimal solutions. Secondly, from Fig. 3.8, the
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Figure 3.7: Average performance ratios when C changes. Pmax = 2.5 watt. tR =
10−3 watt. Q = 3. tI = 4× 10−4 watt.
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Figure 3.8: Performance ratios when Q changes for 10-UN scenario. Pmax = 5 watt.
tR = 10−3 watt. C = 5. Q = 10.
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Figure 3.9: Performance ratios when Q changes for 15-UN scenario. Pmax = 2.5
watt. tR = 10−3 watt. C = 7. tI = 4× 10−4 watt.

2 3 4 5
0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

Q

A
ve

ra
ge

 p
er

fo
rm

an
ce

 r
at

io

Figure 3.10: Average performance ratios when Q changes for 10-UN scenario.
Pmax = 5 watt. tR = 10−3 watt. C = 5. tI = 4× 10−4 watt.
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Figure 3.11: Average performance ratios when Q changes for 15-UN scenario.Pmax =
2.5 watt. tR = 10−3 watt. C = 7. tI = 4× 10−4 watt.

points of performance ratios do not get obvious higher positions as Q is increased

from 2 to 5.

However, as we can see from Fig. 3.10, the average value of each set of 20

performance ratios does increase when Q is larger. This is because the larger number

of power levels increases the tunability of the power control, and as a result, the

fairness performance gets closer to the optimal.

Again, for 15-UN network scenarios, although obvious performance enhancement

can not be easily observed in Fig.3.9, the change in average performance ratios

in Fig. 3.11 does suggest that the increase of power levels works in the fairness

performance’s favor. However, it should also be noted that the fairness performance

can not be increased dramatically by more power levels. Due to the exponentially

increased complexity induced by larger Q, it would not be recommended to pursue

better fairness performance by rendering Q a large number.
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Figure 3.12: Performance ratios when tI changes for 10-UN scenario. Pmax = 5
watt. tR = 10−3 watt. C = 5. Q = 10.

3.5.6 Impact of Interference Threshold

In this subsection, we evaluate the impact of interference threshold on the per-

formance ratios in 10-UN and 15-UN network scenarios. The performance ratios

are calculated using the minimal capacity yielded by BIPA and the upper bound

computed from (3.11).

It can be seen from Fig. 3.12 and Fig. 3.13 that most performance ratios are

very close to 1, which shows that the solutions yielded by BIPA is very close to

the upper bound, and thus near the unknown optimal solution. It can also be

implied that the upper bound is very tight. As can be seen from Fig. 3.12 and

Fig. 3.14, the max-min performance is enhanced as tI grows from 4 × 10−4watt

to 8 × 10−4watt. The rationale behind is that when the value of tI is larger, MRs

can transmit at higher power levels without violating the interference constraints,

causing the general link capacities to increase. Therefore the minimal capacity is

increased accordingly. Similar trend is also witnessed in Fig. 3.13 and Fig. 3.15 for

15-UN scenarios.
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Figure 3.13: Performance ratios when tI changes for 15-UN scenario. Pmax = 2.5
watt. tR = 10−3 watt. C = 7. Q = 3.
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Figure 3.14: Average performance ratios when tI changes for 10-UN scenario.
Pmax = 5 watt. tR = 10−3 watt. C = 5. Q = 10.
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Figure 3.15: Average performance ratios when tI changes for 15-UN scenario.
Pmax = 2.5 watt. tR = 10−3 watt. C = 7. Q = 3.

3.6 Conclusion

This chapter addresses fairness problem on the throughput of all links for a two-

tiered wireless mesh network. The fairness problem is formulated with cross-layer

behaviors and constraints, i.e. channel assignment on MAC layer and power con-

trol on physical layer. We successfully transform the max-min objective to more

solvable linear objective with additional constraints in compromise of optimality. In

particular, we propose a heuristic approach BIPA to maximize the minimal capacity

of all links by optimally assigning channels as well as setting transmit powers for

each link. To measure the quality of solutions yielded by BIPA, we develop an upper

bound to estimate the objective function subsequently. Simulation results show that

solutionis yielded by BIPA are very close to the upper bound, which suggests that

they are near-optimal.
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Chapter 4

Dynamic Resource Allocation for

Disaster area wireless networks

Public safety organizations increasingly rely on wireless technology to provide effec-

tive communications during emergency and disaster response operations. However,

any previously installed wireless network infrastructure may be damaged or com-

pletely destroyed in a major disaster event, as occurred during Hurricane Katrina,

it is necessary to develop wireless networks that can be quickly deployed to build a

replacement communication system to connect all first responders. Considering the

first responders as mobile nodes (MNs), the communication range of each MN is of-

ten limited by its power constraint. Mobile relay nodes (RNs) can be introduced to

relay the communications between MNs and the base stations. The RNs installed on

wheeled vehicles can be dynamically relocated to places where the first responders

are actively working in the field. We term such a dynamic communication system

as disaster area wireless networks (DAWN).

When maintaining the functionality of DAWN, understanding the mobility model

of the MNs is an important task because the network topology highly depends on the
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model used. Traditional assumptions are: MNs are allowed to move over the whole

disaster area; MNs are connected to the backbone network all the time. However,

such assumptions do not always apply in reality. First of all, the assumption that

MNs can choose any destination within the disaster area is not valid. For instance,

a firefighter walking across a burning forest would endanger his life. Then, does

it always apply that the MNs can connect to the backbone network? Again, the

answer would be negative in most occasions because MNs have limited transmission

range. As rescue teams move further away from the base station, they risk losing

connections with the backbone network.

Connectivity is of the greatest importance to MNs in DAWN. The frequent lost

connection to the backbone network could decrease disaster relief efficiency, disorder

rescue efforts and even jeopardize first responders’ lives. As we can picture, first

responders can not start their work deep within the disaster area, but at certain

places on the boundary and then proceed into the diaster area. As the transmission

range for MNs is often small, to facilitate their communication to the outside of the

disaster area, we ought to place RNs near the MNs to establish the wireless network.

Note that at different periods, when the locations of first responders are different,

a new network topology is formed with different placement of RNs. To justify this

assumption, we can exemplify the movable RNs as vehicles with powerful antennas

or even satellites, with very long transmission range that communications between

RNs are absolutely positive.

In this chapter, we mainly fulfill two tasks: (1) proposing a novel and practical

mobility model for MNs in disaster area; (2) placing minimum number of RNs

such that the each MN following the mobility model can connect to the backbone

network. Then we need to place a number of mobile RNs, such that each of the

target squares can be fully covered by at least one RN under limited transmission
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Figure 4.1: A realistic scenario of DAWN in the middle of the disaster area relief
process. The squares with head portraits denote busy squares. White squares denote
cleared squares. Shaded squares denote raw squares. The MNs are mainly heading
downward.

range, which is called as Square Disk Cover (SDC) problem. We bring forward three

algorithms in this chapter, the Two-Vertex Square Covering (TVSC) algorithm, the

Circle Covering algorithm and the Binary Integer Programming (BIP) algorithm.

An example of DAWN is described in Fig.4.1.

The rest of this chapter is organized as follows. In Section 4.1, we describe the

mobility model of MNs. Section 4.2 formulates the SDC problem, followed by the

algorithms presented in Section 4.3. Complexity analysis and simulation results are

given in Sections 4.4 and 4.5 respectively. Finally Section 4.6 concludes this chapter.

4.1 The Disaster Area Mobility Model

In this section, we first describe the characteristics of movements in a large disaster

area. Secondly, we propose the disaster area mobility model which represents these
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characteristics. The notation utilized in this section are provided as follows. t

denotes the time counter that records the current time; CIt denotes the CI values

of squares within the disaster area at time t; MN t denotes the distribution of MNs

over the disaster area at time t; 4 denotes the change of MNs over the disaster area

at the next time unit; si,j denotes the square of the ith row and jth column; MNi,j,t

denotes the number of MNs in si,j at time t; CIi,j,t denotes the CI value of si,j at

time t; ξ denotes the time needed for one MN to reduce one unit of CI; MNd
i,j,t

denotes the number of MNs move downward at time t from si,j; MN l
i,j,t denotes the

number of MNs move leftward at time t from si,j; MN r
i,j,t denotes the number of

MNs move rightward at time t from si,j; T denotes the time required to clear three

adjacent squares. Table 4.1 lists the notation in this chapter.

4.1.1 Movements Within a Large Disaster Area

In catastrophic situations, the users that need reliable communication are civil pro-

tection forces, such as troops, fire brigades, rescue teams, etc. Faced with a mission

of relieving a large scale disaster area, first responders ought to start from a few

squares on the boundary of the disaster area. There are two reasons for not to

begin relieving the disaster in the middle of the disaster area. Firstly, it seems un-

necessary and practically difficult to build a passage for first responders to move to

the middle of the disaster area. Secondly, it is dangerous for first responders to be

encompassed by severe unrelieved surroundings, such as fire and toxicant dissemi-

nation, etc.

After justifying the initialization of first responders to relieve the disaster area,

herein we describe how they proceed exploring the disaster area. We first divide

the whole disaster area into small squares, each square with a CI value to show how

severe the disaster is in it. The squares that have never been relieved are called raw
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Table 4.1: Notation of dynamic resource allocation for disaster area wireless net-
works
Symbol Definitions
t Time counter to record the current time
CIt CI values of squares within the disaster area at time t;
MN t Distribution of MNs over the disaster area at time t
MNi The ithe MN
4 Change of MNs over the disaster area at the next time unit;
si,j Square of the ith row and jth column
MNi,j,t Number of MNs in si,j at time t
CIi,j,t The CI value of si,j at time t
ξ How much CI value one MN can reduce with one unit of time
MNd

i,j,t Number of MNs move downward at time t from si,j

MN l
i,j,t Number of MNs move leftward at time t from si,j

MN r
i,j,t Number of MNs move rightward at time t from si,j

T Time required to clear three adjacent squares
r Transmission range of MNs
Vi,j Four vertices of the square si,j

d(a, b) Distance between node/point a and b
e(a, b) Edge connecting node/point a and b
RNi The ith RN
Ck Circle centering at RNk with a radius r
U Set of all busy squares
G A polygon
E Set of all edges of the polygon G
V Set of all vertices of the polygon G
vi The ithe vertex of the polygon G
Cvi,vj

Circle with node/point vi and vj on its border
CR Set of all circle regions
N Number of positions that RNs can be placed
A Set of all possible positions for placing RNs
C A position for placing RN(s)
S A subset of A
SC The set of squares that are covered by the RN placed at C
CRi The ith circle region
ri The row index of the ith busy square
ci The column index of the ith busy square
|B| The cardinality of the set B
xn Binary assignment variable indicating whether to select the

nth position to place one RN
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squares. ξ denotes how much CI value one MN can reduce within one unit of time.

Then ξMNi,j,t denotes how much CI value can be reduced for the square si,j from

time t to t + 1. However, if the current CI value of the square at time t is less than

ξ times the number of MNs in that square at time t, the CI value will be 0 at time

t + 1, as shown in (4.1). Such squares are named as busy squares. Obviously, raw

squares and busy squares are uncleared squares. A square is said to be cleared if

the CI value is reduced to zero. No first responder in the square will stop working

until the square is cleared. When first responders finish clearing one square, they

split up and enter the adjacent uncleared squares. Specifically, the larger number

of first responders working in the square and less the CI value of the square is, the

fewer first responders are entering that square. In this way, from several beginning

squares, the first responders can finally clear the whole disaster area as they go

deeper and wider.

CIi,j,t+1 =





CIi,j,t − ξMNi,j,t : CIi,j,t > ξMNi,j,t

0 : CIi,j,t ≤ ξMNi,j,t

(4.1)

Now we describe the square-based movement pattern for the MNs, then what about

their mobility pattern within each square? As we are unknown about the differ-

ences between the situations in each square, we presume first responders are moving

according to the Waypoint model[45] for simplicity concerns: each picks up a ran-

dom destination within the square and then heads for it. The proposition of MNs’

random movement within a small square would render this mobility model easily

extended to other kinds of disaster area scenarios.
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Table 4.2: Mobility Model for MNs
1 Divide disaster area into squares;
2 while CIt 6= zero /∗ Uncleared square(s) still exist∗/
3 4← 0;
4 for each busy square si,j

5 if CIi,j,t > ξMNi,j,t /∗ si,j can not be cleared now∗/
6 CIi,j,t+1=CIi,j,t-ξMNi,j,t;
7 else
8 4 = Regroup(4,MNt, si,j, CIt);

/ ∗MNi,j,t split up and enter into neighbors of si,j ∗/
9 CIi,j,t+1=0;
10 end if
11 end for
12 MN t+1 = MN t +4;
13 t=t+1;
14 end while

4.1.2 Mobility Model for First Responders

In Section 4.1.1, we discussed the movements of first responders to relieve a large

scale disaster area and provide intuition behind. In this section we formalize the

mobility model of MNs as in Table 4.2.

From Table 4.2, the function Regroup is adopted to compute how the MNs

split up and enter adjacent squares after they clear a square. The procedure of

the function Regroup goes as follows: First obtain the CI values and number of

MNs of the 3 squares adjacent to si,j, which are CIi,(j−1),t, CIi,(j+1),t, CIi+1,j,t and

MNi,j−1,t, MNi,j+1,t, MNi+1,j,t (without loss of generality, we assume that the MNs

enter the disaster area from the top boundary and explore downward, leftward and

rightward). The number of MNs moving towards an square plus the number of MNs

in that destination square should be in inverse proportion to the CI value of the

square, such that the three adjacent neighboring squares can be cleared at the same

time, illustrated as (4.2).
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CIi,j+1,t

MNi,j+1,t+MNr
i,j,t

= CIi,j+1,t

MNi,j−1,t+MN l
i,j,t

= CIi+1,j,t

MNi+1,j,t+MNd
i,j,t

(4.2)

In this case, the time required to clear the 3 adjacent squares would be as (4.3).

T = CIi,j+1,t+CIi,j−1,t+CIi+1,j,t

ξ×(MNi,j+1,t+MNi,j−1,t+MNi+1,j,t+MNi,j,t)
(4.3)

Then we compute the change of the number of MNs in these squares after the

Regroup function is executed at si,j, and add the change into the record matrix 4.

Note that MN r
t,i,j+MN l

t,i,j+MNd
t,i,j=MNt,i,j. However, there are several excep-

tions when MNs do not move as above:

• Ignore Zero-CI squares: When an adjacent square is cleared or is about to be

cleared at the next time, the first responders will not enter it after one unit of

time.

• Small CI or Many MNs : There are already many MNs working in an adjacent

square or the CI value of the adjacent square is small, then this square actually

lose some MNs based on (4.2). Such a condition would be illustrated as (4.4).

(we assume the square considered is the neighbor on the right without loss of

generality);

CIi,j+1,t+CIi,j−1,t+CIi+1,j,t

ξ×(MNi,j+1,t+MNi,j−1,t+MNi+1,j,t+MNi,j,t)
> CIi,j+1,t

ξ×MNi,j+1,t
(4.4)

then only the neighboring squares on the left and beneath are considered in

the Regroup function.

• Boundary Case: When the square that has been just cleared is on the bound-

ary of the diaster area, then the number of adjacent squares would be less
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than 3.

4.2 Problem Formulation

We consider a set of MNs moving within the disaster area following the mobility

model mentioned above and assume that a set of RNs has to be deployed near MNs

to keep all the MNs connected with the backbone network. We assume that all

the MNs have small transmission range r, while the transmission range of RNs is

large, and RNs can communicate with each other wherever their positions are. The

transmission circle of an MN is defined as the boundary of the area of all points

having a distance of no larger than r from the MN. An MN MNi can communicate

bi-directionally with an RN RNj if the distance between them d(MNi, RNj) ≤ r.

In other words, the MN MNi is said to be covered by RNj if RNj is within the

transmission range of MNi.

We also assume that the number of RNs is not bounded, which means more RNs

will be deployed if required. However, we will try to minimize the number of RNs

to be deployed at different time, due to the movement of MNs, causing different

distribution of busy squares. At last, it is also assumed that some command center,

which controls the placement of RNs, has full knowledge of the distribution of busy

squares at each time. We shall define our RN Placement problem within the disaster

area as follows.

RN placement problem: Given a set of MNs moving according to the pro-

posed mobility model, place the smallest number of RNs such that:

• At all times, ∀MN MNi, ∃ RN RNj such that d(MNi, RNj) ≤ r. (Problem SDC);
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4.3 Placing RNs for SDC Problem

In this section, we introduced three algorithms, Two-Vertex Square Covering (TVSC)

Algorithm, Circle Covering Algorithm and the BIP algorithm, to place minimum

number of RNs, such that for every MN MNi, there exists at least one RN RNj satis-

fying d(MNi, RNj) ≤ r. The first two algorithms is based on the greedy strategy[18].

We first provide some notation utilized in this section. We let Vi,j denote the set

of four vertices of si,j. Ck denotes the circle with center as an RN RNk and radius

r. A spot p is said to be covered by Ck if d(p,RNk) ≤ r, denoted as p ∈ Ck. A

polygon G is said to be covered by RNk if ∀ one point p within G, d(p,RNk) ≤ R,

denoted as G ⊂ Ck. Before introducing the algorithms, we first claim Theorem 1

as the primary prerequisite for our algorithms.

Theorem 1 : Assume a polygon G = (V, E), where V and E denote the set of

vertices and edges respectively. If ∀ vertex vi ∈ V , d(vi, RNk) ≤ r, then G ⊂ Ck.

Proof First of all, we need to acknowledge the fact that if d(vi, RNk) ≤ r,

d(vj, RNk) ≤ r, then ∀ p ∈ e(vi, vj) (e(vi, vj) denotes the edge connecting vi and

vj), d(p,RNk) ≤ r (It is obviously true since the edge is fully contained in one circle

if the two terminals is within the same circle). ∀ p ∈ G, we have p ∈ e(p1, p2),

where p1 ∈ e(vm1, vn1) and p2 ∈ e(vm2, vn2). Since ∀ vi ∈ V , d(vi, RNk) ≤ r, then

d(p1, RNk) ≤ r and d(p2, RNk) ≤ r. As a result, d(p,RNk) ≤ r, and G ⊂ Ck.

2

We now claim that the SDC problem is computationally NP-complete. Appar-

ently, the task of deploying the minimum number of RNs to cover the target squares

can be decomposed into two steps: Acquiring the set containing all possible positions

of RNs; choosing the minimum number of RNs from the set obtained in step 1 to

cover the target squares. Step 2 can be more formally restated as: Given a universe
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Figure 4.2: Circles with two points on border potentially cover more nodes

U containing all the squares, a family S of subsets of U , find a subfamily C ⊂ S,

such that the union of C is U and the cardinality of C is minimized. The restatement

of step 2 is equal to the set covering problem in computer science and complexity

theory, which was one of Karp’s 21 problems shown to be NP-complete[?].

4.3.1 TVSC Algorithm

In this section, we will introduce the TVSC algorithm for the SDC problem. We first

give the intuition behind the algorithm. Then we will present the TVSC algorithm

in details, followed by the analysis of the algorithm.

Intuition

We first provide the intuition behind the proposed Two-Vertices Square Covering

(TVSC) algorithm. Considering that all the MNs are moving randomly within each

square, it is impossible to predict the exact position of each MN at specified time.

Thus we need to cover all the busy squares using the minimum number of ”disks”

with a radius of r. According to Theorem 1, if the four vertices of one square are

able to connect to the same RN, then all the MNs within that square are able to

communicate with that RN. In other words, to guarantee that si,j ⊂ Ck, we just

need to make sure that Vi,j are covered by RNk. Therefore, we disregard si,j being

covered if Vi,j can not be covered by one RN RNk.

Hochbaum and Maass introduced a method of covering a set of nodes with
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Table 4.3: TVSC algorithm for SDC problem
TVSC(U)
1 A ← ∅;
2 S ← ∅;
3 ∀vi ∈ Vrp,cp and vj ∈ Vrq ,cq 1 ≤ p, q ≤ |U|
4 if d(vi, vj) ≤ 2r
5 A ← A⋃

Cvi,vj
;

6 while U 6= ∅
7 do select C ∈ A that maximizes |SC ⋂U|
8 U ← U − SC
9 S ← S ⋃ C
10 return S

minimum number of disks[38]. Their method is based on the idea that each disk

deployed should have at least two nodes on its border. This intuition is justified

by the fact that 2 points on the border can determine the position of a disk (there

should be 2 disks determined, one can choose the disk that better serve his interests)

given a fixed radius, while having the most probability to cover other nodes. As

shown in Fig. 4.2, the circle with dashed line can move right and do not lose any

node until two left-most points are on its border, as the circle with the solid line

displays. The solid-line circle clearly covers one more node than the dashed line

circle does. Inspired by this intuition, we propose the TVSC algorithm below.

Two-Vertex Square Covering Algorithm

The Two-Vertices Squaring Covering (TVSC) algorithm aims to solve the SDC

problem through two steps: acquiring the set of all the possible positions for placing

RNs A and choosing a subset S ⊂ A to place RNs such that all the busy squares U
are covered. The TVSC algorithm is presented in Table 4.3. We denote the center

of the two circles with radius r and nodes vi and vj on its border as Cvi,vj
. |U|

denotes the cardinality of the set U .

The algorithm works as follows. The set U contains, at each stage, the set of
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remaining uncovered busy squares. The set S contains the already selected positions

for placing RNs. Line 7 is the greedy decision-making step. A position C is chosen

as the placement for one RN that covers as many uncovered squares as possible.

UC denotes the set of squares that are covered by the RN placed at C. After C is

selected, the corresponding covered squares are removed from U , and C is added into

the subset S. When the algorithm terminates, each of the busy squares is covered

by at least one RN.

4.3.2 Circle Covering Algorithm

Intuition

To begin with, we give the intuition behind the proposed Circle Covering algorithm.

According to Theorem 1, to cover a square with a disk, one ought to place an RN

that is within the transmission range of its four vertices. Then we try to figure out

the feasible area to place the RN so that it can cover the target square. As can be

seen from Fig. 4.3, such a feasible area of one busy square is demarcated by 4 arcs

as part of transmission circles of the four vertices, which approximates to a circle

with radius r −
√

2
2

(Let’s name it as the feasible circle for one square). There are

four approximate regions between the feasible area and the feasible circle. We then

approximately use the feasible circle as the area for placing the RN to cover the

square for simplicity concern. Therefore, to satisfy the requirement imposed by the

SDC problem, it is necessary to deploy at least one RN in the feasible circle of each

busy square (Note that there are cases when one RN can be deployed in the overlap

parts of feasible circles, then one RN could serve the communications for multiple

busy squares). As one can picture, the feasible circles of neighboring squares would

intersect, resulting in circle regions demarcated by arcs from several feasible circles
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Figure 4.3: The feasible area to place the RN to cover one busy square. The 4 circles
demarcate one region around the square, which can be approximated using a circle,
shown as the shadow area.

corresponding to different squares. An example is shown in Fig. 4.4. Therefore, the

solution for the SDC problem when using the Circle Covering algorithm is a set of

such circle regions, each determined by a set of feasible circles.

Table 4.4: Circle Covering algorithm
Circle-Covering(U)
1 S ← ∅;
2 Draw feasible circles for all the squares in U ;
3 Obtain the set of all circle regions CR;
4 while U 6= ∅;
5 Do select CRi from CR that maximize |SCR

⋂U|;
6 U ← U − SCRi

;
7 S ← R

⋃
CRi;

8 return S;
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Figure 4.4: An example of three feasible circles mutually intersected. Each square
has a feasible circle such that an RN placed anywhere within this circle is able to
cover the entire square. An RN placed in the intersection area of all three circles
can cover all three squares.

Circle covering algorithm

With all the feasible circles established, the algorithm to provide the circle covering

algorithm is presented in Table 4.4.

The Circle Covering algorithm works based on a greedy strategy as well. The

set U contains, at each stage, the set of remaining uncovered busy squares. The set

S contains the already selected circle regions for placing RNs. Line 5 is the greedy

decision-making step. A circle region CRi is chosen for placing one RN that covers

as many uncovered squares as possible. After CRi is selected, the corresponding

covered squares are removed from U , and CRi is added into the subset S. When

the algorithm terminates, each of the busy squares is covered by at least one RN.
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4.3.3 BIP algorithm

The BIP algorithm is designed for obtaining the optimal solution to the SDC prob-

lem. Firstly, it is required that all possible positions for placing RNs should be

obtained, which means no approximation method is allowed. To this end, we follow

the first step of TVSC algorithm instead of the Circle Covering algorithm to obtain

all the possible solutions. Then we reformulate the SDC problem as a binary integer

programming problem as follows. Let P = p1, p2, ..., pN denote the set of all possible

positions obtained through executing step 1 of the TVSC algorithm. Let xn denote

the binary assignment variable with xn = 1 indicating that the selection of the nth

position as the placement for one RN and 0 otherwise. Let S = s1, s2, ..., sM denote

the set of all the busy squares. Construct a M by N binary coefficient matrix C
with its element cm,n = 1 if the RN placed at pn can cover the square sm and 0

otherwise. Then the SDC problem is restated as (4.5) to minimize the number of

positions selected while keeping all the busy squares covered.

min ΣN
n=1xn

s.t. xn ∈ {0, 1}, 1 ≤ n ≤ N

ΣM
n=1cm,n · xn ≥ 1

(4.5)

The second constraint is to guarantee that each square is covered by at least one

RN in the optimal solution.

For the second step, we use a linear programming (LP)-based branch-and-bound

algorithm to solve the SDC problem. The algorithm searches for an optimal solution

to the binary integer programming problem as stated in Eq. (4.5) by solving a series

of LP-relaxation problems, in which the binary integer requirement on the variables

is replaced by the weaker constraint 0 ≤ x ≤ 1. More details can be referred to [83].
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4.4 Complexity Analysis

We first discuss the complexity as well as the worst case performance ratios of

the TVSC algorithm. Assume N denotes the number of busy squares. Since the

number of iterations of the loop on lines 3-5 in Table 4.3 is at most 4N(4N−1)
2

. And

the iterations of the loop on lines 6-9 in Table 4.3 would be run N times. Thus

the total computational complexity is 8N2 −N . Since step 2 of TVSC algorithm is

basically a greedy methodology, the TVSC algorithm yields a solution with number

of RNs mostly H(max|SC| : SC ∈ A) times larger than the optimal one[18], where

H(d) denotes the dth harmonic number Hd = Σd
i=11/i.

Secondly, we will analyze the Circle Covering algorithm in terms of computa-

tional complexity as well as its worst case performance ratios. Assume N denotes

the number of busy squares. Since drawing the feasible circle for each busy square

should be done N times, and the iterations of the loop on lines 4-7 in Table 4.4

would be run at most N times, the total computational complexity is 2N . When

the circle covering algorithm is employed, we lose 4 approximate regions for placing

RNs since the area of the feasible circle is less than that of the feasible area. Then

we use β to denote the approximate ratio, which is defined as the ratio of the area

of feasible regions plus the area of feasible circle to the area of feasible circle, shown

as (4.6).

β =
π(r−

√
2

2
)2+4( α

2π
πr2−π(r−

√
2

2 )2

4
− 1

2

√
2

2
r sin α

2
×2)

π(r−
√

2
2

)2
=

2αr2−2
√

2r sin α
2

π(r−
√

2
2

)2
(4.6)

where α = arccos 2
√

2r−1
2r2 represents the radian of the arc, which is served as one

part out of four of the boundary of the corresponding feasible area of a busy square.

r is the transmission range of MNs. Since the Circle Covering algorithm is a greedy

strategy-based algorithm, which has an upper ratio bound H(max|CRi|, 1 ≤ i ≤
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|CR|)[18], the Circle Covering algorithm yields a solution with number of RNs that

is at most βH(max|CRi|, 1 ≤ i ≤ |CR|) times larger than the optimal, where β is

defined as the approximate ratio in (4.6).

In the end, the analysis of the BIP algorithm is presented as follows. For the

SDC problem, the solution space contains all the combinations of N variables, each

with two values 1 and 0, showing whether the position is selected to place one RN or

not. Thus the BIP algorithm could potentially search all 2N binary integer vectors,

and the running time for BIP is O(2N). N is the number of variables that need

to be specified. In [53], it has been shown that such a binary integer programming

problem can be solved using a graph theoretical approach by transforming it into a

linear optimal distribution problem in a directed graph, which has a computational

complexity of O(N3).

Although the BIP algorithm yields the least number of RNs, then is it always

beneficial to resort to the BIP algorithm? According to Table 4.5, the computational

complexity of the BIP algorithm is much more intense than the TVSC algorithm and

Circle Covering algorithm. In contrast, the TVSC algorithm and Circle Covering al-

gorithm yield much less computational complexity, with only a tiny disadvantage in

terms of the number of RNs deployed compared with the BIP algorithm. Therefore,

in real scenario when the computational resource is precious and timing is critical,

the Circle Covering algorithm might be the best approach among all three, followed

by the TVSC algorithm.

4.5 Simulation Results

In this section, we present our simulation results. By adopting the BIP algorithm,

we first give the RN placement results in a simple 4 × 4 square disaster area at
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Table 4.5: Comparison of complexity and approximation ratio for three relay cov-
erage algorithms

Algorithms/Metrics Complexity δ-Approximation

TVSC O(N2) H(max|SC| : C ∈ A)

Circle Covering O(N) βH(max|CRi|, 1 ≤ i ≤ |CR|) (4.6)

BIP O(N3) 1

all time periods when the set of busy squares changes, from the beginning until all

the squares are cleared. Then in a larger 10× 10 square disaster area, we compare

the performance between these three algorithms, the TVSC algorithm, the Circle

Covering algorithm and the BIP algorithm in terms of number of RNs deployed. All

the simulation results are obtained through MATLAB 2007b [1].

4.5.1 simulation setup

We establish a large 10×10 square disaster area. There are totally 100 first respon-

ders. We propose two initial placement for first responders: all at s1,1 and evenly

distributed at four corners s1,1, s1,10, s10,1, s10,10. Besides, we also provide simulation

results when adopting two kinds of distribution of CI values of squares in the disas-

ter area: the CI values of all square are equal to 10; Integer CI values are randomly

chosen from the interval [5, 15]. We also assume ξ = 1.

4.5.2 Results on mobility model

In this section, we present some simulation results on the mobility model we pro-

posed in terms of the impact that the number of first responders and the initial

placement of MNs have on the time required to clear a 10 × 10 disaster area and
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Figure 4.5: Number of time unites needed to ease a 10 × 10 square disaster area
with the mobility model proposed, as the number of first responders changes from
40 to 400.

the average number of busy squares over the whole time period. In Fig. 4.5, we

show how the number of MNs influence the length of disaster area relief period with

different initial placement of MNs and distribution of CI values, based the mobil-

ity model proposed. In Fig. 4.6, we present simulation results in terms of average

number of busy squares over the disaster area relief period based on the proposed

mobility model, when the number of first responders change from 40 to 400.

From Fig. 4.5, it is clear that as the number of MNs increases from 40 to 280,

the length of the disaster area relief period is reduced. However, the plot in Fig. 4.5

goes down more slowly as the number of MNs becomes larger, until it remains

unchanged. This phenomenon is due to the mobility model, which renders many

of the added first responders useless in speeding the relief process, as the number

of first responders might be larger than the CI values in each square. When the

number of all MNs exceeds a large value, then the added first responders would not

87



0 50 100 150 200 250 300 350 400
4

6

8

10

12

14

16

18

20

22

Number of MNs

A
ve

ra
ge

 N
um

be
r 

of
 b

us
y 

sq
ua

re
s 

ov
er

 th
e 

w
ho

le
 ti

m
e 

pe
rio

d

 

 
Uniform distribution of CI values, starting from one corner
random distribution of CI values, starting from one corner
uniform distribution of CI values, starting from four corners
random distribution of CI values, starting from four corners

Figure 4.6: Average number of busy squares over the disaster area relief period with
the mobility model proposed, as the number of first responders changes from 40 to
400.

accelerate the relief process, because they are always in busy squares that can be

cleared in 1 unit of time. Besides, we can tell that the initial place of first responders

have a tremendous impact on the length of disaster area relief period. When the

first responders are evenly divided and assembled at four corners of the disaster

area, the mobility model yields much less time than the case that first responders

are assembled at one corner initially. The reason also lies in the mobility model

of first responders: the wider distribution of MNs can lessen the chance that the

number of MNs in each busy square is larger than its CI value, thus rendering relief

efforts of first responders more efficient. At last, it should be noted that whether

the CI vales are uniformly or randomly distributed does not matter much.

In Fig. 4.6, we present the simulation results in terms of average number of busy

squares over the whole diaster relief period. It can be seen that the average number

of busy squares is much less when the first responders are placed at the four corners
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Figure 4.7: Number of RNs deployed during diaster relief. At initial stage, all MNs
are in s1,1 at time 0, and CI values of all squares are 10. r=1.7

initially compared with the case that they all start from one single square, which is

very straightforward. It is also worth pointing out that the average number of busy

squares mainly decreases as the number of MNs increases. This is because when the

first responders are widely distributed in the middle of disaster relief period, causing

a small number of MNs in each busy square, scenarios with large number of busy

squares remain for a longer time with a small number of total MNs than the case

with a larger number of them.

4.5.3 Deployment Results

The total number of first responders is 100. When first responders are assembled

at s1,1 at initial stage, and the CI values of all squares are equal to 10, simulation

results are presented in Fig. 4.7 in terms of the number of RNs deployed with the

TVSC algorithm, the Circle Covering algorithm and the BIP algorithm at each
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Figure 4.8: Number of RNs deployed during diaster relief. At initial stage, all MNs
are in s1,1 at time 0, and CI values of all squares are randomly chosen between 5
and 15. r=1.7
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Figure 4.9: Number of RNs deployed during diaster relief. At initial stage, all MNs
are evenly deployed in s1,1, s1,10, s10,1, s10,10 at time 0, and CI values of all squares
are 10. r=1.7
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Figure 4.10: Number of RNs deployed during diaster relief. At initial stage, 100
MNs are evenly deployed in s1,1, s1,10, s10,1, s10,10 at time 0. CI values of all squares
are randomly chosen between 5 and 15. r=1.7

time from the start to the end, when r = 1.7; another set of results under the same

scenario is presented in Fig. 4.11 in terms of the average number of RNs deployed

over the whole disaster relief period with respect to different transmission range of

MNs changing from 1.5 to 2.5. Similarly, when first responders are assembled at

s1,1 at initial stage, and the CI values of all squares are randomly chosen between

5 and 15, simulation results are presented in Fig. 4.8 and Fig. 4.12; When the 100

first responders are initially evenly divided and distributed in s1,1, s1,10, s10,1, s10,10,

the CI values of all squares are firstly set to 10, simulation results are presented

in Fig. 4.9 and Fig. 4.13; At last when the 100 first responders are firstly evenly

divided and assembled in s1,1, s1,10, s10,1, s10,10, and the CI values of all squares are

randomly chosen between 5 and 15, simulation results are presented in Fig. 4.10 and

Fig. 4.14.

From Fig. 4.7, Fig. 4.8, Fig. 4.9 and Fig. 4.10, with all the 4 initializations, we
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Figure 4.11: Number of RNs deployed as the transmission range changes. At initial
stage, all MNs are in s1,1 at time 0, and CI values of all squares are 10.
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Figure 4.12: Number of RNs deployed as the transmission range changes. At initial
stage, all MNs are in s1,1 at time 0, and CI values of all squares are randomly chosen
between 5 and 15.
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Figure 4.13: Number of RNs deployed as the transmission range changes. At initial
stage, all MNs are evenly deployed in s1,1, s1,10, s10,1, s10,10 at time 0, and CI values
of all squares are 10.
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Figure 4.14: Number of RNs deployed as the transmission range changes. At initial
stage, 100 MNs are evenly deployed in s1,1, s1,10, s10,1, s10,10 at time 0. CI values of
all squares are randomly chosen between 5 and 15.
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can see that the number of busy squares increases during initial periods, then it

decreases after reaching its peak value. It is very straightforward in explaining this

trend since during the preliminary periods, first responders expand into adjacent

raw squares, and thus the number of busy squares can increase. However, dur-

ing posterior periods, when first responders have cleared approximately half of the

squares in disaster area, at each time, they keep entering a small number of adjacent

raw squares from a larger set of cleared squares, because all the busy squares are

next to each other, and the movement of MNs from one cleared square can turn

only one or less than one raw square into a busy square. Therefore, it is obvious

that the number of busy squares tends to be decreased within posterior periods.

At each time, the number of RNs deployed to cover the busy squares follows the

same trend. But it can be seen clearly at each time, the BIP algorithm, yields the

least number of RNs to be deployed, coinciding with the fact that it is the optimal

approach; the TVSC algorithm yields more number of RNs to be deployed than the

BIP algorithm, as it utilizes the greedy strategy; Furthermore, the Circle Covering

algorithm also yields more number of RNs than the optimal solution, because it

employs both the greedy strategy and approximation methods.

In Fig. 4.11, Fig. 4.12, Fig. 4.13 and Fig. 4.14, we show how the number of

RNs changes as the transmission range of MNs increases with respect to different

algorithms and different initialization conditions utilized. It is very clear that for

all the 3 algorithms, the number of RNs deployed decreases as r increases. Such

a result is straightforward in that the enlarged transmission range of MNs will

probably render more squares covered by one RN. Thus to cover the same set of

busy squares, one surely needs a smaller number of RNs with a larger r. Again, the

BIP algorithm is the best among the three in terms of the number of RNs deployed

when the transmission range of MNs varies, followed by the TVSC algorithm and
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the Circle Covering algorithm.

4.6 Conclusion

In this chapter, we study the topology control of DAWN to facilitate MNs’ commu-

nication by deploying a minimum number of RNs dynamically. We first put forward

a novel mobility model that describes the movement of first responders within a

large disaster area. Secondly, we formulate the SDC problem and propose three al-

gorithms to solve it, including the TVSC algorithm, the Circle Covering algorithm

and the BIP algorithm. Simulation results demonstrate that based on our proposed

mobility model, first responders can eventually clear the disaster area within a pe-

riod of time, and at each time, RNs only have to cover a small number of busy

squares. We also investigate carefully into the performance comparison between the

TVSC algorithm, the Circle Covering algorithm, and the BIP algorithm. As the

optimal approach, the BIP algorithm yields the deployment of the least number

of RNs, while having the largest computational complexity O(N3); the TVSC al-

gorithm yields the deployment of the second least number of RNs, and consuming

much less computational resources in O(N2) ; the Circle Covering algorithm yields

the deployment of the most number of RNs, but consuming the least computation

resources only in O(N). In practice, the TVSC algorithm and Circle Covering al-

gorithm might be more preferable because they require much less computational

complexity, but yield only a small number of the RNs deployed more than the BIP

algorithm does. Future work would be dedicated to the state-of-art configuration

of RNs to better facilitate communication between MNs and the backbone network

in terms of scheduling, resource allocation, modulation schemes and even MAC and

network layer protocols, especially in disaster area scenarios.
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Chapter 5

Distributed Optimization for

Cognitive Radio Networks

Over the past decade, the demand for wireless spectrum use has been growing

rapidly due to the dramatic development of the mobile telecommunication industry.

According to the traditional access approach, the spectrum are divided into fixed

portions and assigned to license holders for exclusive use. As a result, while many

licensed portions of spectrum remain under-utilized, a lot of unlicensed wireless users

are prevented to access the wireless media. Therefore, the traditional spectrum

allocation can be very inefficient.

In order to fully utilize the scarce spectrum resources, emerging cognitive radio

technology becomes a promising approach to exploit the under-utilized spectrum

[3]. In a cognitive radio network, unlicensed wireless users (secondary users) are

allowed to dynamically access the licensed bands, as long as the licensed wireless

users (primary users) in those particular bands are not interfered. Wireless devices

equipped with cognitive radios are implemented with flexibility, including frequency

agility, transmit power control, access coordination etc., which render more efficient
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use of available spectrum.

In this chapter, we consider a cognitive radio network (CRN) based on Wireless

Regional Area Networks (WRAN)[16], that consists of several secondary base sta-

tions (BSs) and secondary users (SUs). A primary network, consisting of several

primary BSs and primary users (PUs), coexists within the same area. The spec-

trum of interest is divided into a set of multiple orthogonal channels using frequency

division multiple access (FDMA), which are licensed to PUs. We assume that the

channel usage pattern for PUs is fairly static over time so that CRN have ample

time to implement primary-user detection and thereby avoid interfering with PUs’

communications. We consider downlink scenario in the CRN. Each WRAN BS em-

ploys exactly one channel to support an SU. An SU can be active or idle indicating

whether it is supported or not.

In this chapter, we study the joint problem of power control and channel assign-

ment to maximize cognitive radio network throughput. Channel assignment exerts

a great role in cognitive radio network throughput performance. After assigning

channels to all PUs, channel assignment for SUs should be carefully designed to

avoid interfering all other users. In addition, transmit power control of CRN, con-

strained by channel assignment of primary network, influences the interference noise

powers from transmissions of SUs, thus affects the channel assignment of SUs and

thereby the cognitive network throughput. Besides, transmit powers of BSs in CRN

greatly impacts the rates of channels supporting SUs. Therefore, channel assign-

ment and power control in CRN are both of great importance to cognitive radio

network throughput.

The rest of this chapter is organized as follows. In Section 5.1, we describe

the network and interference models and formulate the CRN maximizing through-

put problem. Section 5.2 describes the distributed scheme as a near-optimal low-
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Figure 5.1: An example of WRAN-based cognitive radio networks.

complexity algorithm. In Section 5.3, we present some other related algorithms. In

Section 5.4, simulation results are provided to compare the performance between

the distributed and the optimal algorithm, followed by some discussion in Section

5.5 and conclusion in Section 5.6.

5.1 Network Model and Problem Formulation

We consider a WRAN scenario depicted in Fig. 5.1. The spectrum of interest

is divided into K orthogonal channels through multiple access techniques, such as

FDMA. There is one WRAN BS at the center of each cell, which can access all K

channels. We consider the downlink scenario in which data are transmitted from

WRAN BSs to SUs. We assume that a BS needs exactly one channel to support an

SU. The primary network consists of several primary BSs and many PUs who are

licensed to use the K orthogonal channels. Each primary BS transmits signals to

nearby PUs on an arbitrary channel. Each PU receives signals on a single channel
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from the nearest primary BS. In the same area, a CRN is deployed which consists

of SUs and a group of WRAN BSs. Note that in the CRN, SUs can not introduce

noise signals that violate interference constraints for primary network.

We first need to provide some notation. Let the number of SUs be N , the

number of WRAN BSs be B, the number of PUs be J and the number of primary

BSs be C. Denote the set of SUs as S = {s1, s2, ..., sN}, the set of WRAN BSs as

B = {b1, b2, ..., bB}, the set of PUs as Pu = {pu1 , pu2 , ..., puJ
}, the set of primary BSs

as Pb = {pb1 , pb2 , ..., pbC
}. Denote the maximum transmit power as Pmax. We then

introduce an integer parameter Q that represents the total number of power levels

to which a transmitter can be adjusted, i.e. 1
Q
Pmax,

2
Q
Pmax, ..., Pmax.

5.1.1 Network Model

Path Loss Model

For transmission from bi to PU puj
and SU sj, a widely used model for propagation

gain are shown in (5.1) and (5.2) respectively.

g∗ij = d∗ij
−n (5.1)

gij = dij
−n (5.2)

g∗ij and gij denote the propagation gain from bi to puj
and sj respectively, d∗ij is the

physical distance between bi and puj
, dij is the physical distance between bi and sj,

n is the path loss index.
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Channel Assignment

A WRAN BS needs exactly one channel to support an SU. For CRN, each SU can

be assigned at most one channel associated with a BS, as shown in (5.3).

B∑

i=1

K∑

k=1

Q∑

q=1

xkq
ij ≤ 1 j ∈ {1, 2, ..., N} (5.3)

xkq
ij is a binary assignment variable indicating bi transmits data to sj on channel k

at the qth transmit power level when xkq
ij = 1 and 0 otherwise.

Regarding scheduling in the frequency domain, one WRAN BS needs exactly

one channel to support an SU, as shown in (5.4).

N∑

j=1

Q∑

q=1

xkq
ij ≤ 1 i ∈ {1, 2, ..., B} k ∈ {1, 2, ...K} (5.4)

Transmission Throughput

Receiving constraint is considered regarding a successful transmission. Suppose

there is a transmission from bi to sj on channel k using transmit power qPmax

Q
. The

received power Prkq
ij can be calculated as (5.5).

Prkq
ij =

qgijPmax

Q
(5.5)

i ∈ {1, 2, ..., B} j ∈ {1, 2, ...N} (5.6)

k ∈ {1, 2, ..., K} q ∈ {1, 2, ...Q} (5.7)

The received power at sj should be no less than a preset transmit threshold

power, denoted as tt. Then we can define a channel capacity matrix A as (5.10).
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Akq
ij =





W × log2(1 +
Prkq

ij

No
) : if qPmaxgij

Q
≥ tt;

0 : otherwise;
(5.8)

i ∈ {1, 2, ..., B} j ∈ {1, 2, ...N} (5.9)

k ∈ {1, 2, ..., K} q ∈ {1, 2, ...Q} (5.10)

No denotes the ambient noise power and W represents the bandwidth of one channel.

Interference Constraint

For a link to be interference free from another transmitter, it is required that the

received interference power from any transmitter working on that channel should be

no greater than a preset threshold value, denoted as ti. Thus, for sj to be able to

receive signals on channel k, we derive the following constraint (5.11).

∑

Prkq
ij ≥ti

xkq
il + (Ik

j +
C∑

a=1

yk
a∗j)×

B∑

i=1

Q∑

q=1

xkq
ij ≤ Ik

j (5.11)

i ∈ {1, 2, ..., B} j ∈ {1, 2, ...N} l ∈ {1, 2, ...N} (5.12)

k ∈ {1, 2, ..., K} q ∈ {1, 2, ...Q} (5.13)

Ik
j denotes the cardinality of the set {xkq

il |Prkq
ij ≥ ti, l 6= j, 1 ≤ l ≤ N, 1 ≤ i ≤ B, 1 ≤

q ≤ Q}. We introduce another binary constant yk
a∗j indicating the primary BS pba

is transmitting on channel k and interfering with sj (the received power from pba at

sj is no less than ti on channel k) when yk
a∗j = 1 and 0 otherwise.
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Protecting Primary Users

To protect primary users from interference, it is required that the received power

from secondary links on the same channel that the primary user is operating should

all be less than ti, as shown in (5.14).

∑

cj∗kPrkq
ie∗>=ti

N∑

l=1

xkq
il = 0 (5.14)

i ∈ {1, 2, ..., B} j ∈ {1, 2, ...N} e∗ ∈ {1, 2, ..., J} (5.15)

k ∈ {1, 2, ..., K} q ∈ {1, 2, ...Q} j∗ ∈ {1, 2, ..., J} (5.16)

Prkq
ie∗ denotes the received power from bi to pue on channel k when the transmit

power is qPmax

Q
. In addition, cj∗k is a binary variable indicating puj

is operating on

channel k when cj∗k = 1 and 0 otherwise.

Objective

The objective of our problem is to maximize the total throughput of cognitive radio

networks, which can be stated as (5.17).

Maximize
B∑

i=1

N∑

j=1

K∑

k=1

Q∑

q=1

xkq
ij Akq

ij (5.17)

i ∈ {1, 2, ..., B} j ∈ {1, 2, ...N} (5.18)

k ∈ {1, 2, ..., K} q ∈ {1, 2, ...Q} (5.19)

5.1.2 Problem Formulation

Putting together all the constraints described in Section 5.1.1, we have the following

formulation (5.1.2). The optimization problem is in the form of binary integer
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programming, which is NP-hard in general.

Maximize
B∑

i=1

N∑

j=1

K∑

k=1

Q∑

q=1

xkq
ij Akq

ij (5.20)

s.t.
B∑

i=1

K∑

k=1

Q∑

q=1

xkq
ij ≤ 1 (5.21)

N∑

j=1

Q∑

q=1

xkq
ij ≤ 1 (5.22)

∑

Prkq
ij ≥ti

xkq
il + (Ik

j +
C∑

a=1

yk
a∗j)×

B∑

i=1

Q∑

q=1

xkq
ij ≤ Ik

j (5.23)

∑

cj∗kPrkq
ie∗>=ti

N∑

l=1

xkq
il = 0 (5.24)

xkq
ij ∈ {0, 1} i ∈ {1, 2, ...M} j ∈ {1, 2, ...N} (5.25)

k ∈ {1, 2, ..., K} q ∈ {1, 2, ..., Q} l ∈ {1, 2, ..., N} (5.26)

a ∈ {1, 2, ..., C} e ∈ {1, 2, ..., J} (5.27)

5.1.3 Fairness Considerations

In this chapter, we focus on throughput maximization for the cognitive radio net-

work. Since the cognitive radio network is bandwidth limited and space constrained,

it comes down that some secondary users may suffer from zero rates. Therefore,

when the number of secondary users is large, we need to frequently reassign the

channels to satisfy fairness requirement. In particular, we can divide the set of

secondary users into multiple subsets, and consider these subsets in a round-robin

manner. Given a particular subset of secondary users, we can then apply the dis-

tributed algorithm to maximize the network throughput.
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Figure 5.2: The flow chart showing how our distributed algorithm works. Arrows
with solid line denotes the calling sequence of each module. Arrows with dashed
line denotes the information flow.

5.2 A Distributed Optimization Algorithm

In this section, we present a distributed optimization algorithm. This algorithm

increases the cognitive radio network throughput iteratively until it can not be

increased. The main idea is presented in Section 5.2.1, which includes maximum

power calculation, potential throughput gain estimation, BS sorting and channel

usage implementation. The details of each module is described in Section 5.2.2,

followed by complexity analysis in Section 5.2.3 and convergence proof in Section

5.2.4.

5.2.1 Overview

Our distributed algorithm increases the overall cognitive radio network throughput

iteratively and terminates until the overall network throughput can not be further

increased. Our distributed algorithm consists of the following steps.
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• In the CRN, each WRAN BS maintains the sum of capacity of all links con-

nected with itself. We assume that each WRAN BS also maintains a table of

local information (TLI) of PUs and SUs. In particular, each WRAN BS first

obtains the knowledge of positions of local SUs and PUs. We assume each SU

acquires its position through GPS (Global Positioning System) and sends it

to the WRAN BS. It is also assumed that PUs subscribe to primary network

service providers and register their positions at primary BSs. Therefore, each

WRAN BS can obtain the positions of PUs by communicating with primary

BSs. For those PUs and SUs that have already been assigned channels, the

WRAN BS also understands their associated transmit power settings as well

as channel usage pattern.

• After TLI establishment, each WRAN BS estimates the maximum through-

put it can produce, which includes power control calculation and potential

throughput gain estimation. Before estimating potential maximum through-

put gain, each BS pretends that all existing assigned links connected to itself

are annihilated. Each WRAN BS calculates its possible maximum transmit

power on each channel to avoid interfering with other existing links. Then

each WRAN BS proceed calculating the maximum throughput produced by

itself under the interference constraints imposed by both the primary network

and CRN.

• After estimating the maximum throughput, each WRAN BS exchanges its

result with neighboring WRAN BSs and finally the largest is identified asso-

ciated with one WRAN BS. When there are multiple WRAN BSs with the

same largest cell throughput, we break the tie deterministically based on their

cell IDs. The benefit of the deterministic approach is that a unique WRAN
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BS is always picked in our distributed algorithm. Then the chosen WRAN BS

is required to implement its channel assignment and transmit power setting

to best increase the overall network throughput.

• During the last step of each iteration, the changes of channel assignment

and power control information should be updated in the TLIs of neighbor-

ing WRAN BSs.

The basic diagram of the distributed algorithm is shown in Fig. 5.2.

5.2.2 Details of Each Module

Before we present the details of the distributed algorithm, we first introduce the

following notation. Let lkij denote the link between bi and the sj on channel k. We

assume UBk
q denotes the maximum allowed transmit power that bq can utilize on

channel k without interfering all existing links in neighboring cells that operate on

the same channel. Recall that Pmax is the maximum transmit power. During an

iteration, we may find that, under the interference constraint, UBk
q is usually smaller

than Pmax. We use UBk
q for this purpose, where the acronyms UB indicates the

current upper bound on the transmit power.

We define the excluded channel set as the set of channels that can not be

assigned to one SU, i.e. sqj
, denoted as Ωj. N (bq) denotes the set of neighboring

BSs of bq. nr denotes the current set of unconnected SUs. qi denotes the ith SU

within the cell of bq. rjk denotes the throughput gain of the channel k when assigned

to the jth element of the current set of unconnected SUs. yjk is a binary assignment

variable indicating the kth channel is assigned to the jth element of the current set

of unconnected SUs when yk
ij = 1 and 0 otherwise.
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TLI Establishment

We first present the method of TLI establishment. For each WRAN BS, the TLI only

records the positions of PUs and SUs, channel usage pattern and associated transmit

power settings within the cell as well as neighboring cells. When one WRAN BS

tends to assign one channel, it also entails information of already existing local links,

in terms of positions of user nodes and associated transmit powers, to carefully avoid

causing interference.

Maximum Power Calculation

We now present the method in the module of maximum power calculation. The

maximum transmit power for any assigned link is always bounded by Pmax. The

effort to achieve the maximum transmit power agrees perfectly well with the ob-

jective to produce the maximum cell throughput. In particular, for each cell, the

WRAN BS operates at certain levels of transmit powers on each channel. In order

to produce the largest cell throughput, the WRAN BS would boost its transmit

power on all channels to the point that existing links are about to be interfered.

The procedure of maximum power calculation algorithm is to browse all links in

both CRN and primary network in neighboring cells that operates on the same chan-

nel and chooses the smallest upper link power. The Implementation of the module

should follow the algorithm presented in Table 5.1. bzc represents the maximum

power level that is less than the value of z.

Recording Excluded Channel Sets

Subsequently, we present the method of recording excluded channel set. This module

is necessary because it is possible that some SUs in the cell can not be supported due

to already too much interference noise on certain channels. In other words, even the
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Table 5.1: Maximum power calculation
1 for each channel k,
2 UBk

q = inf
3 for each existing link lkij
4 if UBk

q > ti
gqj

5 UBk
q =

⌊
ti

gqj

⌋

6 end if
7 end for
8 for each PU puj

9 if UBk
q > ti

gqj∗
and cj∗k = 1

10 UBk
q =

⌊
ti

gqj∗

⌋

11 end if
12 end for
13 if UBk

q > Pmax

14 UBk
q = Pmax;

15 end if
16 end for
17 return UB

transmit power is set as Pmax, the link still can not conduct successful transmission

because the SINR requirement is not satisfied.

As mentioned in Section 5.2.1, after calculating the upper bound power for each

channel, each WRAN BS should also be aware that some channels can not be

assigned to certain SUs within the cell because of two much interference noise.

Thus we assume each WRAN BS records excluded channel sets associated with SUs

following the algorithm presented in Table 5.2. Pri∗j denotes the received power

from pbi
to sj.

Maximum Cell Throughput Estimation

We then present the method for each WRAN BS to estimate the maximum cell

throughput. Being aware that some channels can not be assigned to certain SUs,

the WRAN BS sets out to assign each channel to the SUs within the cell after
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Table 5.2: Recording Excluded Channel Sets
1 for each SU sj

2 for each channel k

3 for each existing link lkq
il

4 ifPrkq
il ≥ ti

5 Add the channel k to list of Ωj, break;
6 end if
7 end for
8 for each primary BS pbi

that operates on channel k
9 ifPri∗j ≥ ti
10 Add the channel k to list of Ωj, break;
11 end if
12 end for
13 end for
14 end for
15 return Ω

calculating the maximum transmit powers. This problem can be formulated as the

Assignment Problem, which is one of the fundamental combinatorial optimization

problems in the branch of optimization or operations research in mathematics. It

consists of finding a maximum weight matching in a weighted bipartite graph. The

assignment problem can be solved by the famous Hungarian Algorithm.

Being aware that some channels can not be assigned to certain SUs, the WRAN

BS sets out to assign each channel to the SUs within the cell after calculating the

maximum transmit powers. Then the WRAN BS can calculate the rates of each

link associating with all channel-SU pairs. When one channel can not be assigned

to one SU, then the rate associating with this channel-SU pair is set as 0. We now

can generate a gain matrix shown as (5.28).
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r =





r11 r12 ... r1K

r21 r22 ... r2K

: : :

: : :

rnr rnr2 ... rnrK





. (5.28)

Now the problem of maximum cell throughput estimation can be formulated as

(5.29).

max
∑nr

j=1

∑K
k=1 rjkvjk

s.t.
∑nr

j=1 yjk ≤ 1 k ∈ {1, 2, ..., K}

∑K
k=1 yjk ≤ 1 j ∈ {1, 2, ..., nr}

(5.29)

This problem can be formulated as the Assignment Problem, which can be solved

by the famous Hungarian Algorithm. We now present the Hungarian algorithm [49]

to assign channels within each cell, independent to what happens in the rest, as

follows.

• Step 1: If r is not a square matrix (there are more channels than local SUs or

conversely), we have to augment r into a square matrix by adding zero rows

or columns.

• Step 2: Multiply the matrix r by -1.

• Step 3: Subtract the minimum value of each row from row entries.

• Step 4: Subtract the minimum value of each column from column entries.
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• Step 5: Select rows and columns across which you draw lines, such that all

zeros are covered and that no more lines have been drawn than necessary.

• Step 6: If the number of the lines equals the number of rows, choose a combi-

nation of zero elements from the modified gain matrix such that the position

of each chosen element is incident on a unique row and column. Then the

optimal assignment result consists of the channel-SU pairs as represented by

the chosen elements in the modified gain matrix. If the number of the lines is

less than the number of rows, go to Step 7.

• Step 7: Find the smallest element which is not covered by any of the lines.

Then subtract it from each entry which is not covered by the lines and add it

to each entry which is at the intersection of a vertical and horizontal line. Go

back to Step 5.

BS sorting

Subsequently, we discuss the method of BS sorting. This module is aimed to cal-

culate the maximum cell throughput and hence the network throughput can be

increased greedily. The implementation of this module entails a certain amount

of information exchange. After each WRAN BS is associated with a maximum

cell throughput, they can exchange their results with neighboring WRAN BSs in a

distributed fashion. At the end of this process, each WRAN BS should keep the

maximum cell throughput along with the ID of the cell that produces this amount.

This module is aimed to find the maximum cell throughput and hence the net-

work throughput can be increased greedily. The implementation of this module

entails a certain amount of information exchange. After each WRAN BS is as-

sociated with a maximum cell throughput, they can exchange their results with
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neighboring WRAN BSs in a distributed fashion. Once a WRAN BS receives its

knowingly best cell throughput, it propagates this datum to its neighboring WRAN

BSs exactly once. In particular, each WRAN BS is only concerned if its maximum

cell throughput is larger than any other WRAN BS in this iteration. Thus they

would discard their own maximum cell throughput along with the associated chan-

nel usage information once they realizes some other WRAN BSs produces larger

cell throughput. For the case of equal cell throughput, the WRAN BS would also

discard its own results if the WRAN BS that produces the same amount of cell

throughput is indexed smaller. This sorting procedure terminates when any WRAN

BS has not been notified of any larger cell throughput for a preset amount of time.

Channel Usage Implementation

Finally, we discuss the method of channel usage implementation. This module is only

applied at the WRAN BS whose maximum cell throughput is the largest among all

WRAN BSs in each iteration. The WRAN BS implements the calculated channel

assignment and transmit power settings. This WRAN BS also has to inform its

neighboring BSs to update their TLIs for calculating the maximum transmit powers

in the next iteration.

5.2.3 Complexity Analysis

As for the distributed scheme, the modules that do the majority computation include

maximum transmit power estimation, recording excluded channel sets and calculat-

ing the cell throughput. For the module of maximum transmit power estimation, we

mainly investigate the number of loops in Table 5.1. We suggest the main complexity

factor is the number of SUs N , while B, C and J are all of O(1). Since the procedure

between line 2 to line 15 can be iterated at most (BN + J), the computation for
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the module can be as much as O((BN + J) × C)=O(N). Consider the module of

recording excluded channel sets, the procedure is iterated O(nr(N − nr)) according

to Table 5.2. Thus the computation complexity can be O(N2). Then we look at the

module of calculating the cell throughput. Based on [49], the assignment problem

proposed by the module can be solved within running time O(max{C, nr}4). It can

be inferred that the computation for one BS during one iteration can be calculated

as O(N4). As only one BS is required to implement its channel assignment and

power control in one iteration, the total number of iterations is measured as O(B).

Therefore, the overall computation complexity for the distributed scheme at one BS

is O(B× (N +N2 +N4)) = O(BN4) = O(N4), which is much less than the optimal

algorithm.

5.2.4 Convergence Behavior

We now show that the algorithm must converge. We show that each iteration the al-

gorithm increases the throughput performance of CRN. Since the overall throughput

is upper bounded, this implies that the algorithm must converge.

We first denote the sum rates of the links connected to bi as Ti. Then we obtain

(5.30).

Ti =
N∑

j=1

K∑

k=1

Q∑

q=1

xkq
ij Akq

ij i ∈ {1, 2, ..., B} (5.30)

Thus the objective of our throughput maximization problem is
∑B

i=1 Ti. At the

beginning of each iteration, each WRAN BS’s configuration represents a feasible

solution to the maximum throughput problem as shown in (5.1.2). After solving the

maximum throughput estimation problem as shown in (5.29), bi obtains the optimal
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Ti. As a result, the new value of Ti must be no less than the previous iteration.

Subsequently, one WRAN BS bi is chosen to implement its result while keeping

links to other WRAN BSs protected, which means the value of Tj(j 6= i) remain

the same. Therefore, no matter which BS is chosen to implement new settings for

channel assignment and power control, the network throughput is expected to grow

larger than the lower bound at the beginning of the iteration. Since the network

throughput performance monotonically increases after every iteration, convergence

of the greedy algorithm is guaranteed.

5.3 Other Related Algorithms

5.3.1 Optimal Algorithm

Since the problem formulation (5.1.2) falls into the binary integer programs, it can

be solved by the branch and bound algorithm [83], which yields the optimal solution.

The complexity analysis of the optimal algorithm is presented as follows. For the

channel assignment and power control problem, the solution space contains all com-

binations of BNKQ binary variables. Thus the optimal algorithm could potentially

search all 2BNKQ binary integer vectors, and the running time is O(2BNKQ).

5.3.2 Two-phased Algorithm

In [37], a problem of maximizing network throughput for cognitive radio network

is studied. A two-phased scheme is proposed to control transmit power of BSs

and assign channels. In the first phase, a distributed power updating process is

employed to maximize the coverage of the network. In particular, the maximum

transmit powers of BSs on all channels are sought to avoid interfering with PUs. In
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the second phase, centralized channel assignment is carried out within the cognitive

network to maximize its throughput. To specify, given the maximum transmit

powers of BS on all channels, the channel assignment problem can be transformed

into finding a maximum weighted matching from a weighted bipartite graph. The

two-phased scheme has a complexity of O(N4).

5.3.3 Dynamic Interference Graph Allocation

In [36], Hoang and Liang propose the Dynamic Interference Graph Allocation (DIGA)

that implements power control and channel assignment to maximize coverage for

cognitive radio networks. In the DIGA scheme, a channel is allocated to one SU

at a time, until either all SUs are served, or there is no more feasible assignment.

At each iteration, channel assignment and power control should be carefully imple-

mented so that any prior established links and all PUs are protected. According to

DIGA, to establish a link between one WRAN BS and an SU on channel k with a

certain power level, a penalty value is defined as the total number of unserved SUs

that can not be assigned the same channel anymore. Thus, the smallest penalty

value is sought in each iteration to iteratively implement channel assignment and

power control. As for our work, since the objective is to maximize the capacity of

the CRN, we redefine the definition of penalty value to be the total capacity loss

associated with unserved SUs on the specific channel. After this minor adaptation,

we compare the performance of our distributed algorithm with DIGA in Section 5.4.

The complexity of DIGA is O(CN5 + CN2J) = O(CN5) = O(N5) [36].

5.3.4 Power-based Algorithm

In [50], the problem of allocating channels is studied to satisfy the rate requirements

of the application while the total transmit power is minimized. The proposed power-

115



based scheme is also an iterative approach, similar as DIGA[37]. The difference lies

in the definition of the penalty value which is defined as the increase in the total

transmit power of links associated with channel k if this channel is assigned with

a certain transmit power. This scheme is termed as Minimum Incremental Power

Allocation (MIPA). The complexity of the MIPA scheme is O(CN5 + CN2J) =

O(CN5) = O(N5), i.e. at the same order as the complexity of DIGA scheme [50].

5.4 Performance Evaluation

In this section, we evaluate the performance of our distributed algorithm through

simulations. We compute optimal solutions using CPLEX9.0 [43]. We compare the

results of distributed algorithm with the globally optimal method.

5.4.1 Simulation Setup

We consider a square service area of size 100 km by 100 km in which a cognitive

radio network is deployed. 4 WRAN BSs are deployed at the centers of 4 square sub-

areas, as shown in Fig. 5.1. We consider one random scenario of primary network,

with coordinates of primary BSs shown in Table 5.3 and PUs shown in Table 5.4.

SUs are randomly deployed across the entire service area with uniform distribution.

A sample network is shown in Fig. 5.1. The ambient noise power at each each PU

and SU is No = 5 × 10−11 watt. The number of channels K = 4. We establish the

primary network as follows. Each of the 4 primary BSs choose different channels to

serve the PUs. The transmit power for all primary BSs is set as 20mW . According

to the physical distance to each primary BS, each PU is covered by the nearest

primary BS.
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Table 5.3: Node Coordinates of 4 Primary BSs
pbi

(xi, yi) (in meters) pbi
(xi, yi) (in meters)

1 (95970, 75130) 3 (34040, 25510)
2 (58530, 50600) 4 (22380, 69910)

Table 5.4: Node Coordinates of 10 PUs
pui

(xi, yi) (in meters) pui
(xi, yi) (in meters)

1 (65570, 50600) 6 (85770, 82350)
2 (13570, 63180) 7 (94310, 69480)
3 (84910, 67690) 8 (39220, 31710)
4 (33400, 74620) 9 (65550, 55020)
5 (57870, 49710) 10 (27120, 23440)

5.4.2 Simulation Results

In this section, we provide simulation results by comparing the distributed algo-

rithm with other algorithms. In particular, we look into the impacts of 4 different

system parameters, the number of SUs N , the transmit threshold power tt, the

interference threshold power ti, the number of power levels Q. We vary each of

4 system parameters while keeping the others unchanged to produce different pa-

rameter settings. For each set of system parameters, we generated 100 instances

of different deployments of SUs to obtain the average performance. Totally five

schemes are considered, i.e. the global optimal scheme, our proposed distributed

scheme, the two-phase algorithm, the DIGA and MIPA scheme. The simulation

results are discussed next.

The Impact of Transmit Threshold Power

In Fig. 5.3, we look at the impact of transmit threshold power tt on the throughput

of CRN. We compare the performance of the optimal algorithm, the distributed

algorithm, the two-phase algorithm the DIGA scheme and the MIPA scheme. As can

be observed from Fig. 5.3, Global Optimal scheme gives the best performance while
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Figure 5.3: The Impact of Transmit Threshold Power. N = 20, n = 2, Pmax =
50mW , ti = 10−11W , Q = 5

our proposed distributed scheme consistently outperforms the two-phase algorithm,

the DIGA scheme and the MIPA scheme. The performance gain for our distributed

algorithm over other schemes is mainly due to three reasons. First, our distributed

scheme directly addresses the objective of maximizing throughput in each iteration.

The two-phase algorithm tries to maximize transmit powers of BSs on all channels

in the first phase, which might not best serve the interest of maximizing the network

throughput. The DIGA and MIPA schemes introduce the penalty value of potential

throughput loss and transmit power increase for each channel assignment with a

power level, and seeks to minimize the value in each iteration. They ignore the

fact that the newly added link probably will not bring the maximal incremental

throughput, which does not agree with the objective from a greedy perspective.

Secondly, our distributed algorithm uses transmit power more efficiently. Under the

distributed algorithm, each BS boosts its transmit power to provide higher rates for

SUs. While for the two-phase algorithm, after WRAN BSs set their high transmit

power the first phase, SUs may not be able access downlink channels due to high
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Figure 5.4: The Impact of Interference Threshold Power. N = 20, n = 2, tt =
1× 10−10W ,Pmax = 50mW , Q = 5

interference. Thirdly, our distributed algorithm is implemented by each BS, bringing

the maximal incremental throughput by establishing links with multiple SUs at the

same time. The DIGA and MIPA schemes only establish one link at each step,

which probably generates less benefits in terms of maximizing overall throughput.

It can be observed that the overall throughput monotonically decreases as tt is

enlarged. The reason behind is very simple: higher threshold power decreases the

number of feasible links.

The Impact of Interference Threshold Power

Fig. 5.4 investigates the impact of interference threshold power on the throughput

of CRN. The main trend is that the overall throughput increases as the interference

threshold power is enlarged. This can be explained by the fact that larger inter-

ference threshold power generates more opportunities for more links to be active

simultaneously, thus brings throughput increase to the overall performance. It can

also be noted that our distributed algorithm outperforms the two-phase algorithm,
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Figure 5.5: The Impact of Number of SUs. n = 2, tt = 1 × 10−10W ,ti = 10−11W ,
Q = 5, Pmax = 50mW

the DIGA scheme and the MIPA scheme consistently.

The Impact of Number of SUs

Fig. 5.5 shows the impact of number of SUs on the throughput of CRN. The main

trend is that the total throughput is increased as the number of SUs increases. The

rationale behind is that more SUs tend to render more opportunities to establish

links with higher capacity, i.e. the WRAN BSs are closer to their associated SUs.

It should also be noted that the our proposed distributed scheme yields better

performance than the other 3 schemes.

The Impact of Number of Power Levels

Fig. 5.6 depicts the impact of number of power levels on the throughput of CRN. It

is obvious that the number of power levels will increase the throughput performance

of CRN. With larger number of power levels, the transmit power can be more

finely controlled, thus it is probable that multiple links on the same channel can be
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Figure 5.6: The Impact of Number of Powre Levels. N = 20, n = 2, tt = 1 ×
10−10W ,ti = 10−11W , Pmax = 50mW

active simultaneously. However, when Q is large enough, the plots do not obviously

increase because at this point larger Q will have little impact on the assignment

result, i.e. increase the number of assigned channels. Furthermore, it can be also

observed that our distributed scheme produce better solutions in terms of total

throughput of CRN than other three schemes.

5.5 Discussion

The reason that the distributed algorithm demonstrates good performance is due

to the optimization of large set of variables. A detailed investigation at (5.29) and

(5.1.2) would reveal the truth. During each iteration, the distributed algorithm

performs optimization on a set of variables which share the same attributes, i.e.

associated with the same WRAN BS. After each iteration, many variables can be

determined. Let’s consider the extreme case. If only one WRAN BS is available, the

distributed algorithm yields the optimal solution. In contrast, the two-phase scheme

121



over boosts the transmit powers of WRAN BSs during the first phase, which harms

the overall performance by causing too much interference. The DIGA and MIPA

scheme only determines one variable using greedy strategy during each iteration,

which is probably not in the interest of the overall performance of the CRN. Besides,

although some variables associated with one user node can be set to 0 at each step,

many more variables are still unspecified than the distributed algorithm. From the

foregoing, the advantage of the distributed algorithm should be attributed to the

manipulation of large set of variables at each step.

The distributed algorithm performs satisfyingly close to the optimal solution as

shown in Section 5.4. The algorithm ”divides the conquer” by taking advantage of

the computing ability of WRAN BSs, and assigns a considerably smaller computing

task to each WRAN BS. Fortunately, each computing task also involves a very

large set of variables. All the facts above support the advantage of the distributed

algorithm.

5.6 Conclusion

In this chapter, we investigate the cross-layer design and distributed optimization

algorithm for a cognitive radio network. We first developed a mathematical model

for such problem with joint consideration of power control and channel assignment.

The main contribution of this chapter is the development of a distributed optimiza-

tion algorithm that iteratively increases the overall CRN network throughput. This

algorithm consists of several modules, including maximum power calculation, cell

throughput estimation, BS sorting and channel usage implementation. Through

simulation results, we compared the performance of the distributed optimization

algorithm with other algorithms and validated its efficacy.
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Chapter 6

Interference Alignment for

Multi-hop Wireless Networks

Multi-hop wireless networks, such as mobile ad hoc networks, wireless sensor net-

works, and wireless mesh networks, have gained a lot of research attentions in the

past decade. Probable explanation to this trend might be that one-hop networks

are seriously constrained by limited coverage, poor quality-of-service (QoS) per-

formance, restricted applications, etc. In contrast, due to easy deployment and

significant reachability, multi-hop wireless networks can be employed in many prac-

tical scenarios, i.e. tactical communication within a battlefield, disaster rescue after

an earthquake, greenhouse temperature monitor, and last-mile network access.

The QoS performance of a multi-hop wireless network is largely measured by

end-to-end throughput. Recent research on maximizing the throughput of multi-hop

wireless network focus on power control, spectrum access schemes, link scheduling

techniques and routing algorithms. However, the throughput performance is funda-

mentally limited by the available spectrum resources and constrained transmission

power. Consequently, some ground-breaking new techniques should be introduced
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to better exploit the network resources.

The emergence of the idea of interference alignment provides a new perspective

to achieve higher throughput: allowing multiple transmitter-receiver pairs to achieve

interference-free transmission simultaneously. Initially introduced in [14], interfer-

ence alignment allows a transmitter to align its interference to unused directions of

other links, generating no harmful interference at the receiver ends. Consequently,

the implementation of interference alignment transmitter nodes can greatly improve

the network throughput. The canonical example of interference alignment is a com-

munication scenario where every user is able to achieve one half of the capacity that

could be achieved in the absence of all interference. Therefore, interference align-

ment stands as a promising technique to improve throughput of multi-hop wireless

networks.

In this chapter, we study the network throughput optimization problem for a

multi-hop wireless network by considering interference alignment at physical layer.

We first transform the problem of dividing the set of links into multiple maximal con-

current link sets into finding all maximal cliques of a graph. Then each concurrent

link set is further divided into one or several multi-access interference networks, on

which interference alignment is implemented to guarantee simultaneous interference-

free transmission. The network throughput optimization problem is then formulated

as a non-convex nonlinear programming (NLP) problem, which is NP-hard gener-

ally. Thus we resort to developing a branch-and-bound framework, which guarantees

an achievable performance bound. We use numerical results to validate the efficacy

of the algorithm and to offer insights on the throughput enhancement brought by

interference alignment.

The rest of this chapter is organized as follows. In Section 6.2, we describe the

network model and formulate the NLP problem. In Section 6.3, we propose a branch-
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Figure 6.1: Interference Alignment on the three-user interference channel to achieve
4
3

degrees of freedom.

and-bound algorithm to solve the optimization problem. In Section 6.4, simulation

results are presented to demonstrate the efficacy of the proposed algorithm. Section

6.5 concludes this chapter.

6.1 Background: Interference Alignment Applied

to Constant Interference Channel

The fundamental idea of interference alignment, rather than nulling all interference

at the receivers like zero forcing, the transmitters can align the interfering signals in

a direction that is different from the desired signal. Specifically, ”interference align-

ment refers to a construction of signals in such a manner that they cast overlapping

shadows at the receivers where they constitute interference while they remain dis-

tinguishable at the receivers where they are desired” [14].
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A simple example will be illustrated by applying interference alignment to con-

stant interference channel. Consider the 3 user interference channel, comprised of

3 transmitters and 3 receivers. Each node is equipped with only one antenna. The

interference alignment schemes are based on beamforming over multiple symbol ex-

tensions of the interference channel. As shown in Fig. 6.1, User 1 achieves 2 degrees

of freedom by transmitting two independently coded streams along the beamforming

vectors v
[1]
1 , v

[1]
2 while users 2 and 3 achieve one degree of freedom by sending their

data streams along the beamforming vectors v[2], v[3], respectively. we are able to

achieve 4 DoF over 3 symbol extension of the channel with K = 3 single antenna

users, so that a total of 4
3

DoF are achieved per channel use.

To determine the beamforming vectors, let us pick v[2] be the 3× 1 vector of all

ones.

v[2] = 13×1 (6.1)

The remaining beamforming vectors are chosen as follows.

• At receiver 1, the interference from transmitters 2 and 3 are perfectly aligned.

H[12]v[2] = H[13]v[3] ⇒ v[3] = (H[13])−1H[12]13×1 (6.2)

• At receiver 2, the interference from transmitter 3 aligns itself along one of the

dimensions of the two-dimensional interference signal from transmitter 1.

H[23]v[3] = H[21]v
[1]
1 ⇒

v
[1]
1 = (H[21])−1H[23](H13)−1H[12]13×1

(6.3)

• At receiver 3, transmitter 2 aligns its interference along one of the dimensions
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of interference from transmitter 1.

H[32]v[2] = H[31]v
[1]
2 ⇒ v

[1]
2 = (H[31])−1H[32]13×1 (6.4)

Remark : for any ε > 0 it is possible to align interference within a multi-user

interference channel network to achieve ε fraction of 1/2 DoF (per user). The

tradeoff is that the larger the number of symbols (time slots), the smaller the value

of ε. The proof can be found in [14].

6.2 Problem Formulation

We consider a multi-hop wireless network with N single-antenna nodes arbitrarily

located in a 2D space. We assume that there is a single wireless channel and each

active link can cause interference to any other link. Let ni, 1 ≤ i ≤ N denote the

nodes, and dij denote the distance between nodes ni and nj. Let dij denote the

physical distance between ni and nj. ρ denotes the path loss index. lij denotes

the link between ni and nj. P denotes the same power level that all transmitters

employ. The received power from ni to nj is denoted as pij, which can be calculated

using (6.5). Then the capacity of lij, denoted as cij, can be calculated using (6.6),

where pn denotes the noise power and B denotes the bandwidth of the channel.

pij = P
dρ

ij

(6.5)

cij = B × log2(1 + pij

pn
) (6.6)

Each node has a radio transceiver with interference threshold power thi and

transmission threshold power tht (tht ≥ thi). We consider a transmission from ni
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to nj is successful if pij ≥ tht. Similarly, ni can cause interference to nj if pij ≥ thi.

Note that a node may not send and receive at the same time (half-duplex) nor

transmit to more than one node simultaneously (unicast only). Then we will define

the concept of concurrent link set (CLS) as follows. A CLS is defined as a set of

links that can be active simultaneously. Then the maximum concurrent link set

(MCLS) is defined as a CLS that can not grow larger. Suppose there are a total of

K MCLSs within the wireless network. Let I1, I2, ..., IK denote these MCLSs and

λi, 0 ≤ λi ≤ 1 denote the fraction of time allocated to Ii (i.e., the time during which

the links in Ii can be active).

Recent studies show that interference alignment has potential to improve network

throughput [14]. Thus we make the following observation. We view links belonging

to the same MCLS as pairs of transmitters and receivers. Within the same multi-

access interference network, each transmitter can cause interference to all receivers .

With interference alignment, the links within the same interference network can be

active simultaneously. Therefore, each MCLS consists of one or multiple multi-access

interference network(s) between which no interference is generated. Mij denotes the

jth multi-access interference network in Ii. Lij denotes the number of links in Mij.

Then the summation of DoF assigned to each link in Mij is upper bounded by Lij

2

at perfect interference alignment[14].

We consider communication of multiple sessions between pairs of sources and

destinations. We try to schedule MCLSs and assign DoF at each time fraction to

maximize the overall end-to-end throughput. We assume that packet transmissions

at individual nodes can be finely controlled and carefully scheduled by an omniscient

and omnipotent central entity. We then formulate the maximum achievable through-

put problem between the sources and destinations as a maximum-flow problem as
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shown below.

Max
W∑

w=1

∑

lswj∈E
fw

swj (6.7)

s.t. :
∑

lij∈E
fw

ij =
∑

lji∈E
fw

ji ,∀ni ∈ V− {nsw , ndw}, 1 ≤ w ≤ W (6.8)

∑

lisw∈E
fw

isw
= 0, 1 ≤ w ≤ W (6.9)

∑

ldwi∈E
fw

dwi = 0, 1 ≤ w ≤ W (6.10)

fw
ij ≥ 0∀lij ∈ E, 1 ≤ w ≤ W (6.11)

M∑

i=1

λi = 1 (6.12)

λi ≥ 0, 1 ≤ i ≤ M (6.13)
W∑

w=1

fw
ij ≤ cij ×

K∑

lij∈Ik

λkβ
k
ij,∀lij ∈ E, 1 ≤ k ≤ K (6.14)

∑

lij∈Mkm

βk
ij =

Lkm

2
, 1 ≤ m ≤ |Ik| (6.15)

fw
ij denotes the amount of flow on wireless link lij which belongs to the wth

session. E represents the set of all links in the network, and V represents the set of

all nodes. W represents the number of sessions. sw and dw denote the source and

destination node of the wth session, respectively. βk
ij denotes the assigned DoF of

lij when lij ∈ Ik. The objective is to maximize the summation of data flow out of

the source nodes of all sessions.

The constraint of (6.8) represents flow-conservation, i.e., at each node, except

the source and destination, the amount of incoming flow is equal to the amount

of outgoing flow. In (6.9), it is required that the incoming flow to the source is 0,

while in (6.10) it is indicated that the outgoing flow from the destination node is

0. As required by (6.11), the flow on each link to be non-negative. The constraint
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Figure 6.2: An example to show that interference alignment can achieve higher
throughput.

of (6.12) says that at most one MCLS will be scheduled to transmit at any time,

followed by (6.13) saying that the time fraction should be non-negative. Based on

(6.14), the actual flow delivered on each link is limited by the active period of the

MCLSs that contain this link and its correspondingly assigned DoF. From (6.15),

the summation of DoF assigned to each link in Mkm should be equal to Lkm
2

.

We now use a simple example to illustrate that interference alignment has poten-

tial to achieve higher throughput. As shown in Fig. 6.2 , n1 and n6 are the source

and destination nodes respectively. There are 6 links with unit capacity correspond-

ing with the edges in Fig 6.2. We compare the throughput performance of the

example network with and without interference alignment implementation. When

no interference alignment is implemented, each link is interfered by each other. Thus

at any time, only one link is scheduled to be active (each MCLS contains one link).

It can be drawn easily that the optimal throughput is 1/3 with l12, l23, l36 each being

active for 1/3 of time period. However, using interference alignment, each MCLS

can achieve 3/2 DoF as each MCLS consists of 3 disconnected links. We can easily

figure out that the network throughput can achieve 1/2 when each of the two MCLS,

{l12, l45, l36} and {l14, l23, l56}, is scheduled for 1/2 of the time period and each link

assigned 1/2 DoF.
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6.3 Technical Approach

6.3.1 Finding the MCLSs

We first present the method to find all MCLSs within a multi-hop wireless net-

work. We introduce a graph G = (V, E), where ∀vi ∈ V represents a link from the

multi-hop wireless network. Let ti and ri denote the transmitter and receiver of

vi respectively. eij denotes the edge connecting vi and vj. eij exists when vi and

vj can be active at the same time, which means they are either within the same

multi-access interference network or far away from each other that no interference

is generated. We rule out the possibility that vi and vj can be active at the same

time when either ti can cause interference to rj or tj can cause interference to ri,

because the two links are not interference-free from each other in the first place.

Then finding all MCLSs within the multi-hop wireless network is tantamount to

finding all maximal cliques of the graph G. The Bron-Kerbosch algorithm [13] can

be utilized to find maximal cliques in an undirected graph.

Recall that each MCLS contains one or multiple multi-access interference net-

works. Thus we introduce a graph H = (V, E) for each MCLS, where ∀vi ∈ V

represents a link in the MCLS. Let ti and ri denote the transmitter and receiver of

vi respectively. eij denotes the edge connecting vi and vj. eij exists when vi and vj

are within the same multi-access interference network. Based on the same token,

finding all maximal cliques within the MCLS is tantamount to finding all maximal

cliques of the graph H. The Bron-Kerbosch algorithm [13] can be utilized again to

find maximal cliques in an undirected graph.
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6.3.2 Overview of the Solution Procedure

Branch-and-bound is a general algorithm of finding solutions for various optimiza-

tion problems [83]. In this chapter, we present a branch-and-bound based algorithm

that guarantees (1− ε) optimal solution, where ε is a small positive constant. This

algorithm is very similar to the one presented in [73] except the part of local search

algorithm. To begin with, by using some relaxation techniques, the NLP is trans-

formed into a linear programming problem, whose solution provides the upper bound

UB to the objective function. Starting from the relaxation solution, a local search

algorithm is employed to find a feasible solution to the original NLP problem, which

provides a lower bound LB to the objective function. The LB could be far away

from the UB, which calls for a tighter relaxation. Note that the gap between LB

and UB is mainly caused by the linear approximation of the variables in nonlinear

terms (denoted as division variables). Therefore, it is intuitive to achieve tighter

relaxation by narrowing down the value intervals of division variables. The detailed

branch-and-bound algorithm is shown in Table 6.1.

6.3.3 Linear Relaxation

During each iteration of the branch-and-bound procedure, we need a linear relax-

ation to obtain an upper bound of the objective function. The only nonlinear term

is the polynomial term λkβ
k
ij. Reformulation-Linearization Technique [72] enables

us to use new variables to replace those polynomial terms and add linear constraints

for these new variables, thus relaxing a nonlinear constraint into a linear constraint.

Specifically, we introduce a new variable wk
ij for λkβ

k
ij. Let (λk)L ≤ λk ≤ (λk)U and

(βk
ij)L ≤ βk

ij ≤ (βk
ij)U . Then we can obtain the following linear constraints for wk

ij

[72].
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Table 6.1: Branch-and-bound Algorithm
1 Initialization:
2 Let the initial solution ψε = ∅.
3 Let the initial lower bound LB = −∞.

4 Relax the original problem and obtain upper bound UB1 and solution ψ̂1.

5 Add the linear relaxation to the problem list along with UB1 and ψ̂1.
8 Iteration:
9 Select the problem z with the maximum UBz in the problem list.

10 Find a feasible solution ψz from ψ̂z via local search algorithm.
11 Denote the objective value as LBz

12 If(LBz > LB) ψε = ψz and LB = LBz.
13 If(LBz ≥ (1− ε)UBz)) we stop with (1− ε) optimal solution ψz.
14 else remove any problem x with (1− ε)UBx ≤ LB.
15 Define the relaxation error for a division variable as the difference between

the values in ψz and ψ̂z.
16 Select a division variable with the maximum relaxation error and divide

its value interval into two new intervals by its value in ψ̂z.
17 Define two new problems z1 and z2 based on these two intervals.
18 Remove problem z from problem list.
19 If((1− ε)UBz1 > LB) add problem z1 to the problem list.
20 If((1− ε)UBz2 > LB) add problem z2 to the problem list.
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(λk)L × βk
ij + (βk

ij)L × λk − wk
ij ≤ (λk)L × (βk

ij)L

(λk)U × βk
ij + (βk

ij)L × λk − wk
ij ≥ (λk)U × (βk

ij)L

(λk)L × βk
ij + (βk

ij)U × λk − wk
ij ≥ (λk)L × (βk

ij)U

(λk)U × βk
ij + (βk

ij)U × λk − wk
ij ≤ (λk)U × (βk

ij)U

(6.16)

Through the relaxation, we can substitute the nonlinear term λkβ
k
ij with wk

ij in

(6.14) and add the constraints above for wk
ij.

6.3.4 Local Search Algorithm

An linear relaxation, the original problem now can be solved in polynomial time.

Denote the relaxation solution as ψ̂z, which provides an upper bound to problem

z but may not be feasible. We now show how to derive a feasible ψz based on ψ̂z.

We propose a greedy algorithm to iteratively increase the throughput performance

near the infeasible solution ψ̂z until the solution converges. Let T denote the current

scheduling vector, representing the active time fraction for all MCLSs. D denotes the

current assignment of DoF within each MCLS. F denotes the function to calculate

the solution to the liner programming problem given either T or D. During each

iteration, we first obtain T from ψ̂z. Then the solution ψz given T can be computed

with polynomial time using linear programming. D can be obtained from ψz. Using

D, we can update ψz. Because the upper bounded objective value is increased

iteratively, the local search algorithm is guaranteed convergent. The detailed local

search algorithm to determine a feasible solution is shown in Table 6.2.

LBz
old denotes the objective value of ψz after the last iteration, while LBz

new

denotes the objective value of ψz in the current iteration. ε denotes a small constant

positive value.
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Table 6.2: Local Search Algorithm
1 LBz

old = 0;

2 Derive D from ψ̂z;
3 (LBnew, ψz) = F(D);
4 While |LBz

old − LBz
new| <= ε ;

5 LBz
old = LBz

new;
6 Derive T from ψz ;
7 (LBz

new, ψz) = F(T);
8 Derive D from ψz;
9 (LBz

new, ψz) = F(D);

Table 6.3: Cartesian coordinates for the line topology
node Coordinate(x) node Coordinate(x)
n1 230 n2 460
n3 190 n4 50
n5 810 n6 420
n7 390

6.4 Numerical Results

6.4.1 Simulation Setup

In this section, we present numerical results to validate the efficacy of the branch-

and-bound algorithm. We consider both line and square scenarios, where the nodes

are randomly deployed on a line and over 1000× 1000 m2 square area. The coordi-

nates of network nodes for the two scenarios are shown in Table 6.3 and 6.4 respec-

tively. The sessions for the line scenario consists of flows from n1 to n5 and from n6

to n4. For the square scenario, the source-destination pairs includes (n1, n9), (n2, n8)

and (n4, n6). The noise power pn = 10−6watt. The path loss exponent ρ = 2. The

bandwidth B = 1MHz.
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Table 6.4: Cartesian coordinates for the square topology
node Coordinate(x, y) node Coordinate(x, y)
n1 (120, 420) n2 (220, 310)
n3 (450, 310) n4 (650, 720)
n5 (450, 700) n6 (620, 280)
n7 (380, 490) n8 (210, 670)
n9 (550, 510) n10 (200, 500)

6.4.2 No Interference Alignment

To validate the advantage of interference alignment regarding the throughput per-

formance, we compare the results with the case in which interference alignment is

not implemented. Under such circumstances, each MCLS consists of links that are

mutually interference-free. Then, finding all maximal cliques within the multi-hop

network is tantamount to finding all maximal cliques of the graph H. The Bron-

Kerbosch algorithm can be utilized again to find maximal cliques in an undirected

graph. Then the maximum throughput optimization problem for a multi-session

multi-hop wireless network can be formulated similar as in Section 6.2, with minor

modifications: within each MCLS, one DoF is assigned for each link, no matter how

many links the MCLS contains.

6.4.3 Greedy Algorithm

For the purpose of demonstrating the efficacy of the branch-and-bound algorithm,

we compare it with a simple greedy algorithm, which is very similar to the local

search algorithm introduced in Section 6.3. The difference lies in that the scheduling

vector T is set as { 1
M

, 1
M

, ..., 1
M

, } before the first iteration. During each iteration,

the DoF vector D is updated by the computed optimal solution under the current T.

Based on the newly derived D, we can update T by computing the optimal result.

Therefore, the throughput performance is iteratively increased until convergence.
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6.4.4 Impact of P

We first look at the impact of the transmit power P on the throughput performance

of the branch-and-bound algorithm, the greedy algorithm and the case when no in-

terference alignment is implemented. From Fig. 6.3 and Fig.6.4, it can be seen that

as P increases, the overall throughput performance of the 3 cases are all enhanced,

which agrees with (6.6). Moreover, with interference alignment, it is obvious that the

branch-and-bound algorithm achieves better performance than the case when no in-

terference alignment is employed. In addition, as P is enlarged, the benefits brought

by interference alignment seems to grow more apparent. The explanation for this

phenomenon can be two-fold: first, when P grows larger, more links could be mu-

tually interfered, giving rise to more multi-access interference networks. Therefore,

more opportunities for simultaneous transmissions are generated by larger value of

P . On the contrary, larger P means less MCLSs as well as reduced number of links

of each MCLS. It is also worth mentioning that the branch-and-bound algorithm

achieves much better performance than the greedy algorithm.

6.4.5 Impact of tht

Next, we investigate the impact of the transmission threshold tht. From Figure

6.5 and 6.6, it can be drawn that the main trend for both scenario is that the

throughput performance is degraded as tht increases. The reason behind is that the

number of possibly successful links are reduced as the received power constraint is

set tighter. Besides, the advantage of interference alignment is illustrated by the

fact that the branch-and-bound algorithm achieves better performance than the case

that no interference alignment is involved. Compared with the greedy algorithm,

the branch-and-bound algorithm stands as a better approach in terms of the overall
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Figure 6.3: Throughput Performance when P varies. tht = 2 × 10−5 watts. thi =
5× 10−6 watts. Line Scenario.
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Figure 6.4: Throughput Performance when P varies. tht = 2 × 10−5 watts. thi =
5× 10−6 watts. Square Scenario.
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Figure 6.5: Throughput Performance when tht varies. P = 1 watts. thi = 5× 10−6

watts. Line Scenario.

end-to-end throughput.

6.4.6 Impact of thi

At last, we look at the impact of the interference threshold thi on the performance

results in Fig. 6.7 and 6.8. The first impression is that the performance for both

the branch-and-bound algorithm and greedy algorithm decreases as the value thi in-

creases. To explain this, one needs to see that larger thi induces less mutually inter-

fered links, causing less multi-access interference networks. As a result, less opportu-

nities for simultaneous transmission are generated by interference alignment. Again,

the branch-and-bound algorithm achieves better performance than both the greedy

algorithm and the optimal throughput when no interference alignment is employed.

Therefore, it is demonstrated that the branch-and-bound algorithm is effective and

the multi-hop networks with interference alignment result larger throughput.
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Figure 6.6: Throughput Performance when tht varies. P = 1 watts. thi = 5× 10−6

watts. Square Scenario.
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Figure 6.7: Throughput Performance when thi varies. P = 1 watts. tht = 2× 10−5

watts. Line Scenario.

140



2 3 4 5 6 7

x 10
−6

1.5

2

2.5

3

3.5

4

4.5

5

th
i
 (watt)

T
ho

ur
gh

pu
t P

er
fo

rm
an

ce
 (

M
bp

s)

 

 

Branch and Bound
Greedy
No interference Alignment

Figure 6.8: Throughput Performance when thi varies. P = 1 watts. tht = 2× 10−5

watts. Square Scenario.

6.5 Conclusion

In this chapter, we study throughput enhancement for multi-hop wireless networks

using interference alignment. First of all, the set of links within a multihop wireless

network is divided into multiple MCLSs. Then the throughput optimization problem

is formulated as a NLP problem. A branch-and-bound algorithm is proposed to yield

(1 − ε) optimal performance. Numerical results show that interference alignment

does bring throughput enhancement for multi-hop wireless networks and the branch-

and-bound algorithm can solve the throughput optimization problem efficiently.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

As for wireless networks, resource allocation is the process of deciding how to imple-

ment spectrum management, link scheduling as well as power and topology control.

In this dissertation, we address resource allocation and performance optimization

for different kinds of wireless networks. In particular, we incorporate time schedul-

ing, spectrum management, power and topology control into problem formulation

to allocate different kinds of resources. Subsequently, we employ linear and nonlin-

ear optimization techniques to render optimal and heuristic solutions. Results are

presented mainly by comparing the performance of heuristic approach with the op-

timal algorithm. In addition, we also investigate the cost and impacts of the system

parameters. We summarize our results by each chapter below.

In Chapter 2, we study an optimization problem to maximize the total number of

information packets received at the base station during the network lifetime, which

is defined as the time period from start to all the relay nodes die. we demonstrate a

solution to obtain the optimal transmit power for a relay node such that it can send
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the maximum number of packets to the base station during the network lifetime.

The proposed weighted clustering algorithm is a heuristic approach to find the best

placement locations for relay nodes that can assist edge nodes to send packets to

the base station. The proposed scheme demonstrates better performance than the

existing methods in literature.

In Chapter 3, we solve a joint problem of power control and channel assign-

ment within a wireless mesh network such that the minimal capacity of all links

is maximized. The key obstacle lies in the nonlinearity of the objective function.

We successfully transform the max-min objective to more solvable linear objective

with additional constraints in compromise of optimality. In particular, we propose a

heuristic approach to iteratively increase the minimal throughput of all links tight-

ening the constraint that the capacity of each link is larger than a threshold value.

We prove that when the sum rate of all links are maximized and each link share

the same capacity, it is guaranteed that max-min performance is optimized. Then

the upper bound of max-min fairness problem can be easily acquired by solving a

linear programming problem. The upper bound offers a benchmark to measure the

quality of the feasible solution obtained from the heuristic approach. Simulation

results show that solutions obtained by this algorithm are very close to the upper

bounds obtained via relaxation, thus suggesting that the solution produced by the

algorithm is near-optimal.

In Chapter 4, we first propose a novel and practical mobility model for mobile

nodes in a disaster area. Based on the typical movement pattern of first responders

in disaster relief operation. Subsequently, we strive to use minimum number of re-

lay nodes such that each mobile node can connect to at least one relay node. We

formulate the square disk cover problem and propose three algorithms to solve it,

including the Two-Vertex Square Covering algorithm, the Circle Covering algorithm
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and the binary integer programming algorithm. We also investigate carefully into

the performance comparison between the TVSC algorithm, the Circle Covering al-

gorithm, and the binary integer programming algorithm. As the optimal approach,

the binary integer programming algorithm yields the deployment of the least num-

ber of relay nodes, while having the largest computational complexity O(N3); the

TVSC algorithm yields the deployment of the second least number of relay nodes,

and consuming much less computational resources in O(N2) ; the Circle Covering

algorithm yields the deployment of the most number of relay nodes, but consuming

the least computation resources only in O(N). In practice, the TVSC algorithm

and Circle Covering algorithm might be more preferable because they require much

less computational complexity, but yield only a small number of the relay nodes

deployed more than the binary integer programming algorithm does.

In Chapter 5, we explore the joint problem of power control and channel as-

signment to maximize cognitive radio network throughput. It is assumed that an

overlaid cognitive radio network coexists with a primary network. We model the

opportunistic spectrum access for cognitive radio network and formulate the cross-

layer optimization problem under the interference constraint imposed by the existing

primary network. Subsequently, a distributed greedy algorithm is proposed to ap-

proximate the optimal network throughput. Cross-layer optimization for cognitive

radio network is often implemented in centralized manner to avoid co-channel inter-

ference. The distributed algorithm coordinates the channel assignment with local

channel usage information. Thus the computation complexity is greatly reduced.

In particular, we compare the distributed algorithm with 4 other algorithms, the

optimal algorithm, two-phased algorithm and dynamic interference graph allocation

and power-based algorithm. The computation complexity of the distributed algo-

rithm is O(N4) and the optimal algorithm is of O(2N). Simulation results show that
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the distributed algorithm outperforms 3 other algorithms and perform close to the

optimal.

In Chapter 6, we study the network throughput optimization problem for a multi-

hop wireless network by considering interference alignment at physical layer. We first

transform the problem of dividing the set of links into multiple maximal concurrent

link sets into the problem of finding all maximal cliques of a graph. Each concurrent

link set is further divided into one or several multi-access interference networks,

on which interference alignment can be implemented to guarantee simultaneous

interference-free transmission. The network throughput optimization problem is

then formulated as a non-convex nonlinear programming problem, which is NP-

hard generally. We resort to developing a branch-and-bound framework, which

guarantees an achievable performance bound. We use numerical results to validate

the efficacy of the algorithm and to offer insights on the throughput enhancement

brought by interference alignment technique.

7.2 Suggested Future Work

From our extensive study in wireless network resource allocation and performance

optimization techniques presented in this dissertation, we suggest the directions for

future work in this area as below.

First and foremost, it is always of much interest in investigating algorithms with

less complexity. Some schemes proposed in this dissertation are of very high com-

puting complexity. For instance, in Chapter 2, the binary integer programming al-

gorithm could potentially search all 2n binary integer vectors, where n is the number

of variables. However, it has been proved that such a binary integer programming

problem could be transformed into a linear optimal distribution problem [53] by

145



generating a directed graph, to reduce the computation complexity to only O(n3).

It is worth of the effort of transforming the binary integer programming algorithm

to the graph-based scheme.

Another promising research direction is to incorporate other kinds of resources

into the formulation of optimization problem. For instance, in Chapter 5, it is also

meaningful to consider link scheduling during time slots. Since primary users can

access the spectrum any time, considering link scheduling would approximate the

network model more closely to real world applications. In addition, it would be

promising to use directional antennas to limit interference such that little interfer-

ence can be generated towards primary users. Besides, the primary network can be

cooperative with the cognitive radio network.

Finally, there are additional performance objectives that can be explored for

different application scenarios. For example, it is more desirable under certain cir-

cumstances to investigate the fairness among secondary users instead of the overall

performance of cognitive radio networks. In Chapter 3, proportional fairness might

be more convincing than max-min fairness. In Chapter 4, the maximization of

sum rate would be more meaningful as the optimization objective for data-oriented

applications.
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