

Expanding the Impact of the EEROS Open Source Robotics

Framework

An Interactive Qualifying Project

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfilment of the requirements for the

degree of Bachelor of Science

by

Nicholas Brown

Nicholas Hassan

Nathan Hughes

Ryan Lang

Date:

1 May 2015

Report Submitted to:

Professor Einar Nielsen

NTB Buchs

Professor Scott Jiusto

Professor Ruth Smith

Worcester Polytechnic Institute

This report represents work of WPI undergraduate students submitted to the faculty as evidence

of a degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

ii

Abstract
This report, prepared for the developers of the EEROS Real Time Robotics Software

Framework, explored options to expand the impact that EEROS would have on the open source

robotics community. This open source framework was examined to discover how a healthy

development community might grow in a new project. Through increasing EEROS’s presence,

analyzing its community, exploring sustainable funding options, organizing and streamlining

development and identifying new partners, we gained an understanding of the birth of an open

source project.

iii

Table of Contents
Abstract ... ii

Table of Figures .. v

Table of Tables ... v

Chapter 1: Introduction ... 1

Chapter 2: Background ... 3

2.1 Free Software, the Open Source Movement and Open Source Communities 3

2.1.1 What Is the Open Source Movement? ... 3

2.1.2 History of the Open Source Movement ... 4

2.1.3 Ideologies of the Open Source Movement... 5

2.1.4 Why the Open Source Movement Is Successful .. 6

2.1.5 Why People Contribute to the Open Source Movement .. 7

2.1.6 Security Concerns and Quality Control of Open Source Software................................ 7

2.2 Creating and Managing Open Source Software.. 8

2.2.1 Tools and Community Involvement .. 8

2.2.2 Licenses.. 10

2.2.3 Ethics of Licenses .. 10

2.2.4 Examples of Licenses .. 11

2.3 What makes an Open Source Software Project Successful? .. 11

2.3.1 Case Study: Red Hat .. 11

2.3.2 Other Open Source Business Models .. 13

2.3.3 Crowdfunding and Open Source Software .. 15

2.4 The Robotics Community ... 15

2.4.1 The History of the Robot ... 16

2.4.2 Social Aspects of the Robotics Community .. 17

2.4.3 Differences Between Education and Industry.. 17

2.5 Open Source Robotics Frameworks.. 18

2.5.1 ROS .. 19

2.5.2 ROS-Industrial, Urbi, and The Player Project ... 20

2.5.3 The Orocos Project .. 21

2.6 EEROS .. 22

2.6.1 Introduction to EEROS .. 22

2.6.2 Problems EEROS Attempts to Solve ... 23

2.6.3 Current State of Development ... 24

2.7 Building a Community for EEROS .. 25

2.7.1 EEROS and the Robotics Industry ... 25

2.7.2 Potential Funding Options in Industry ... 26

2.7.3 EEROS and the World of Educational Robotics ... 27

2.7.4 Potential Funding Options in Education .. 27

Chapter 3: Methodology ... 30

3.1 Increasing EEROS Presence in the Robotics Community .. 31

3.1.1 EEROS Website ... 31

3.1.2 EEROS Wiki .. 32

3.1.3 Social Media .. 32

iv

3.1.4 Other Materials .. 32

3.2 Providing access to Sustainable Funding .. 33

3.3 Organizing and Streamlining EEROS Development .. 34

3.4 Maintaining a Healthy Open Source Community ... 35

3.5 Identifying New Partners .. 36

Chapter 4: Results and Findings ... 38

4.1 Presence .. 38

4.1.1 EEROS Website ... 38

4.1.2 EEROS Wiki .. 40

4.1.3 Social Media .. 41

4.1.4 Wikipedia Page .. 41

4.1.5 Informational Brochure .. 42

4.2 Funding Proposal .. 42

4.3 Organizing and Streamlining EEROS Development .. 43

4.4 Maintaining a Healthy Open Source Community ... 44

4.5 Identifying New Partners .. 46

Chapter 5: Recommendations and Conclusions ... 47

5.1 EEROS Presence ... 47

5.2 Sustainable Funding .. 48

5.3 Streamlined Development ... 48

5.4 Healthy Community .. 49

5.5 New Partners ... 50

5.6 Conclusions ... 50

Bibliography ... 52

Appendix A: Interview Notes ... 56

Appendix B: Before and After Screenshots of EEROS Homepage ... 60

Before:... 60

After: ... 61

Appendix C: Website Screenshots .. 62

Appendix D: Community Analysis Math ... 64

Appendix E: Development Resources Annotated Bibliography .. 67

Appendix F: Annotated List of Partners ... 69

v

Table of Figures
Figure 1: A brief history of Red Hat ... 12

Figure 2: The three main components of Orocos .. 22

Figure 3: The relationship between blocks, signals, and time domains .. 24

Figure 4: Methodology Outline .. 30

Figure 5: Project Timeline .. 31

Figure 6: Funding Phases .. 34

Figure 7: Website Homepage.. 39

Figure 8: Visualization Tool ... 44

Figure 9: Old EEROS Homepage ... 60

Figure 10: New EEROS Homepage ... 61

Figure 11: “What is EEROS?” page ... 62

Figure 12: “Applications” page .. 62

Figure 13: “Get Involved” page .. 63

Figure 14: “The EEROS Team” page ... 63

Table of Tables
Table 1: A summary of open source revenue models (Source: Modified from Rajala, 2007) 14

Table 2: Interview Notes ... 56

Table 3: Development Resources Annotated Bibliography .. 67

Table 4: Annotated List of Partners .. 69

1

Chapter 1: Introduction
Writing software for robots is difficult. With such a large diversity of robots being

developed, engineers and researchers spend a considerable amount of time rewriting old code for

new robots. Currently, there is no way to avoid this waste of resources; most robotics software

ends up being too specialized to transfer from robot to robot. As the field of robotics becomes

increasingly complex and prevalent in everyday life, researchers and programmers will want to

reuse established processes and algorithms. This means making sure these aspects of robotics

are shared among the robotics community. Rather than be constructed from a stagnant point of

view, sharing information allows a project to grow and adapt to new innovations and

requirements.

A solution is currently in development by Professor Einar Nielsen at the Interstaatliche

Hochschule für Technik Neu-Technikum Buchs (NTB), a Swiss systems engineering university.

This solution is EEROS, the Easy, Elegant, Reliable, Open and Safe Real-Time Robotics

Software Framework, which aims to be a common platform for robotics software development.

EEROS is an operating system for robots, just as Windows and Mac are operating systems for a

home computer. Windows can run the same programs on a variety of computers, while EEROS

is designed to run the same algorithms on a variety of robots. This flexibility is a powerful tool

that gives EEROS the potential to become an international standard. Unfortunately, EEROS is

not yet mature enough for this scale of use. In this early stage, a project typically needs heavy

community contribution and involvement to succeed. In projects like EEROS, this means

acquiring funding and marketing resources to spark the creation of a passionate, self-sustaining

community (Athey & Ellison, 2014).

To create this kind of community, EEROS follows the open source software development

paradigm. In a technical sense, open source means the software’s source code is available for

anyone to read and modify. Over its four decade history, open source has matured from a

development model into an ideology that promotes user contribution. Especially successful open

source projects have a devoted community of users and developers. For example, Linux, a

successful open source alternative to Windows or Mac, was developed entirely by the

community that uses it. Like most open source software, Linux is distributed free of charge, but

companies like Red Hat have implemented creative ways of generating revenue from a free

product (Young, 1999).

EEROS is not the first robotics software framework. It has many competitors, several of

which are already popular and successful. ROS, the Robotics Operating System, is one of the

most successful open source robotics software frameworks. It draws that success from the

software’s flexibility, multitude of contributors, extensive documentation and devoted

community (ROS, 2015). Other projects, such as Orocos and the Player Project, have found

success for similar reasons. EEROS aims to solve several problems that have not been fully

addressed by its competitors. While most other robotics frameworks depend on Linux to

2

function, EEROS is completely free standing. It also prioritizes safety, which is important for

industrial applications. Finally, it offers real-time support, which has not been integrated into

most robotics software frameworks. These features offer solutions to current issues in robotics

today; this is why EEROS has the potential to find a place in the robotics community beside

these other software frameworks. EEROS is also developed in an university where students and

professors frequently build new robots, which has created an ethos that the framework needs to

become flexible enough to handle new areas of robotics that have yet to be created.

EEROS is at a critical stage; it is transitioning from a local project to a community

developed open source framework. As of now, the EEROS community consists of the core

developers and a handful of users, all at NTB. To change this, effective marketing needs to be

used to grow the community. Additionally, most open source projects are exclusively software

based, but EEROS depends on hardware as well, which requires a reliable funding source. This

dependency on hardware also creates a disconnect between contributors and users. Software

developers are not necessarily roboticists, and vice versa. This leaves EEROS with the problem

of attracting people who will use the software and be able to contribute to it. Also, reliability and

safety, two of the essential attributes of EEROS, may conflict with keeping the software open. A

system will have to be established to ensure the quality and safety of code that is shared among

end users. All these problems challenge the potential for EEROS to reach its own vision of

success.

The goal of this project is to work with the researchers, students, and professors currently

developing the EEROS Open Source Robotics Software Framework to expand the impact it will

have on the robotics community, and to understand how a developing open source project can

transition to a successful project. Specifically, we aimed to work with the EEROS team to

increase EEROS’s presence in the robotics community, to analyze the development community

health, to help the team gain access to sustainable funding, to organize and streamline EEROS

development, and to identify new partners for expansion. Completing these objectives allowed

us and the EEROS team to understand the challenges that face a burgeoning open source project

and how a project can eventually transition to a global standard.

3

Chapter 2: Background
The motivation for the EEROS open source robotics framework is to provide a common

software platform for the robotics community that will foster a culture of collaboration and

openness between community members. This provides several questions to explore: What is the

robotics community? Why is a common platform for programming robots useful to the robotics

community, and why hasn’t it been done before? What does open source mean? Why would

someone make a project open source? How can EEROS draw upon the successes of previous

open source projects? These are all important questions, and we address them in this section of

the paper. We first explore the concept of open source software, then move on to examining

successful open source projects to give some perspective into how EEROS was developed.

Finally, we explore the robotics community and how EEROS aims to fulfill some of their current

needs.

2.1 Free Software, the Open Source Movement and Open Source

Communities

 The idea of open source is a driving force behind how software is developed. So what

exactly does open source mean? To illustrate this, we start by explaining the history of the open

source movement, then move on to the ideologies of the movement itself. We then examine why

open source projects are successful, and the community behind them. Finally, we address some

concerns of the open source movement, particularly with the quality and security of open source

software.

2.1.1 What Is the Open Source Movement?

The easy way to describe the open source movement is to say it is a group of

programmers who began writing open source software. In reality, the situation is far more

complex than that, and we start with the question: What exactly is open source software? To the

layperson, the difference seems very much like the difference between generic and brand-name

food. Open source software is usually inexpensive or free, but is much less exciting to use.

When you’re looking for software to fulfill functionality, such as a word processor, most users

will pick the more established, more marketed version, like Microsoft Word. The same

experience could be had for free by using LibreOffice Writer, a prominent open source

alternative. When looking for new software, many users do not consider open source as enough

of a benefit to switch (Carillo & Okoli, 2008).

 This is because the typical user doesn’t have any use for the basic distinction between

open source software and proprietary software (Bonaccorsi & Rossi, 2003). The distinction is

that the source code for the software is open, or available for public viewing. If Microsoft Word

was open source, any user could take the code and reconstruct Microsoft Word on their own

computer. In addition, any user could then make modifications to the code. If you didn’t like

how Word does their toolbars, you could write your own toolbar system. And if you thought

4

your version of Word was better, you could release it under a new name for more people to

download and use.

 Not all open source software allows modifications and redistribution of source code. We

go over the distinctions between the different permissions users have later in detail, but these

different permissions arose from the how the open source movement started in the first place.

2.1.2 History of the Open Source Movement

Even though the open source movement is simple to define, the history of the movement

is a little more unique. Open source software comes with a lot of ethical dilemmas, and most of

them caused schisms in the community (Grinzo & Fernandez, 1999). This is impressive given

how recent the movement started, but unsurprising given how ubiquitous and relevant the ideas

are. In this section, we look at three major figures of the open source movement that each

marked the arrival of a significant faction of the open source movement.

The first of these is Richard Stallman. His contribution to the open source movement

began with a printing problem; and as a programmer, his first solution was to change some of the

printer code. Unfortunately, the code that controlled the printer wasn’t available for him to

change (Williams, 2004). This is one of the typical reasons an open source software project

starts and the real purpose of open source software comes into play: An end user runs into a

limitation of an original software project, and wants to make a change to continue using the

software (Bonaccorsi & Rossi, 2003). Stallman recognized this need and founded the Free

Software Foundation (FSF) in 1985. The FSF is dedicated to making sure that software allows

users to view, modify, and redistribute source code at will (Carillo & Okoli, 2008). Since then,

the FSF has made several significant contributions to the open source movement, primarily by

writing the GNU Public License (abbreviated as GPL) (Carillo & Okoli, 2008), the importance

of which will be addressed when we discuss licenses later in this paper. Richard Stallman

championed the right for users to freely view, modify, and redistribute source code.

The next figure is Linus Torvalds. Torvalds didn’t so much change the ideology of the

open source movement as make it successful. Torvalds started two major open source projects:

Linux, and git (Carillo & Okoli, 2008). These two projects were very different from a typical

project, as Eric Raymond puts it:

Linus Torvalds's style of development—release early and often, delegate everything you

can, be open to the point of promiscuity—came as a surprise. No quiet, reverent

cathedral-building here—rather, the Linux community seemed to resemble a great

babbling bazaar of differing agendas and approaches (aptly symbolized by the Linux

archive sites, who'd take submissions from anyone) out of which a coherent and stable

system could seemingly emerge only by a succession of miracles. (Raymond, 1999)

Torvalds began a community-based development model; i.e. he realized Richard Stallman’s

vision that programmers would be able to freely contribute and advance the development of

software that they use. Linux and Git, Torvalds’s most significant projects, were tools to enable

5

open source development. Linux is an open source operating system (like Windows or OSX),

and Git is a way to manage changes to source code from multiple people. These two tools

served as a platform for open source developers to begin collaborating (Fitzpatrick & Collins-

Sussman, 2012).

 The third figure, Eric Raymond, marked a shift in ideology. Raymond realized that

community based development (the Torvalds model of writing software) was an extremely

powerful tool in creating software, but most companies were thrown by Stallman’s notion of

“free” software (Carillo & Okoli, 2008). He, along with another member, Brian Peren, coined

the term open source software to try and alleviate some of those fears (Carillo & Okoli, 2008).

Raymond’s argument is best summed up by:

Perhaps in the end the open source culture will triumph not because cooperation is

morally right or software “hoarding” is morally wrong (assuming you believe the latter,

which neither Linus nor I do), but simply because the closed-source world cannot win an

evolutionary arms race with open source communities that can put orders of magnitude

more skilled time into a problem. (Raymond, 1999)

Raymond’s major contribution was that he turned the ideology and social activism of Stallman

and the FSF into an effective business and development strategy.

 The history of the open source movement highlights how it grew from meager beginnings

in a lab at MIT (Williams, 2004) into a worldwide movement with many successful projects to

its name. The thing to remember is the relatively short time span in which it developed, and how

quickly it became a huge phenomenon. Stallman founded the FSF in 1985, Torvalds started

Linux in 1991, and Raymond released his essay, “The Cathedral and the Bazaar” in 1998

(Carillo & Okoli, 2008) (Raymond, 1999). The continued activism of these three figures, along

with many others, has led to very different visions of the open source movement, and a very

relevant force in software development.

2.1.3 Ideologies of the Open Source Movement

 The different visions of the open source movement boil down into two categories: free

software, and open source software. While these two visions were discussed briefly in the

section before, it is important to understand how exactly they differ; they play a large role in the

type of community formed around a project.

 Free software is software that protects a user’s specific rights. To paraphrase Stallman,

free software gives the user the ability to run the software, obtain the source code, modify the

source code, and release the source code (Stallman, 2009). Free software is a bit of a misnomer;

as Stallman puts it, “Think of ‘free speech,’ not ‘free beer’” (Stallman, 2009). To avoid

confusion, the term gratis is used for software that is free of cost, while libre is used to mean free

speech. For our purposes, we will use free when referring to gratis software, and open source

when referring to libre software. Stallman’s intended purpose of making software “free” isn’t

6

commercially seated, but rather is concerned with preserving basic liberties of the user. This

leads to some conflict with open source software.

Open source software shares many of the hallmarks of free software, and often, open

source software can also be considered free software (Stallman, 2009). However, open source is

more appropriately defined as a development model, rather than an ideology. By making

software open source, you invite contributions from a community surrounding that software, but

companies can still limit how it is distributed and contributed to.

2.1.4 Why the Open Source Movement Is Successful

 Open source software is a very foreign concept to a typical business. Raymond claims

that most traditional software development managers feel that a very organized, very structured

product is the only way to get work done (Raymond, 1999). Bonaccorsi and Rossi (2003), claim

that “at first sight [the open source movement] would seem like nonsense.” It seems hard to

coordinate the hundreds of people who get involved in a project without any defined hierarchy.

Furthermore, contributors come and leave as they please, leaving work unfinished. Finally, there

is no clear sense of direction to the project, because there is no upper management to define what

the project is intended to accomplish. These issues make trying to develop open source software

seem like a “nonsense” idea.

 Many of these problems are simply a disconnect between traditional management styles

and open source development. Many of the reasons we just provided seem valid, when trying to

analyze open source development from a traditional context. But open source development is

quite different than traditional management of projects, and trying to approach it in the same way

is a mistake. These three reasons described above actually play a huge part in why open source

development is successful.

 To coordinate hundreds of developers, open source structures create hierarchy on the fly,

depending on the needs of the project (Bonaccorsi & Rossi, 2003). This is why there is such a

disconnect between traditional projects and open source projects. A manager in a traditional

project is assigned at the beginning of the project, and carries out the same role for the duration

of the project (Bonaccorsi & Rossi, 2003). Instead, a higher up in open source software is

responsible for managing a component that they are knowledgeable about, by selecting

appropriate solutions to problems provided by lower level contributors (Bonaccorsi & Rossi,

2003). After that certain component is developed, there is no longer a need for that higher-up,

and the position dissolves.

 What about the other problems with open source? If contributors don’t ever finish

developing a critical component of the project before leaving, the project isn’t going to move

forward. At least in a traditional software project, the managers can assign people to focus on

those areas to make sure that the project can move forward. The benefit of open source software

in this case is that if the project does end up stalling, contributors will know to focus on that area

to make the project succeed (Bonaccorsi & Rossi, 2003). This, like the dynamic hierarchical

7

structure, offers the open source community a unique advantage of being flexible and responsive

to the problem being solved. This flexibility is the reason why open source software projects

tend to be so successful.

2.1.5 Why People Contribute to the Open Source Movement

 We’ve explored the generalities of open source software so far: how it arose, the ethos of

the different factions of the open source movement, and why it’s been so successful. But how do

you start a piece of open source software? How do you get people to contribute to your project?

These are two of the questions that the EEROS developers should be asking. The answer usually

lies in forming a community around some need or problem. But forming a community isn’t

always easy. There’s not a lot of external motivation for contributing to an open source project,

in some cases, you won’t be paid for it, and you’re not any more likely to get famous from an

open source project than a proprietary project. As Glass (1999) says, “I don’t know who these

crazy people are who want to write, read and even revise all that code without being paid

anything for it at all.” So why do people contribute?

 Bonaccorsi and Rossi (2003) outlines three intrinsic reasons why programmers contribute

to an open source project: there’s a sense of satisfaction from solving a complex problem, a

sense of pride over how elegant a particular solution is, and a sense of creative freedom not

found in proprietary software. Lerner and Tirole (2001) states that contributors do so for

recognition from their peers in the community. Contribution itself motivates other community

members to contribute. By contributing some fixes, members of the project depend on the fact

that another member, later down the road, will come up with a fix they need (Lerner & Tirole,

2001), which is considered reciprocal altruism (Athey & Ellison, 2014).

All of these reasons tend to build stronger, more skilled communities around software

projects. Raymond (1999) states that open source projects usually attract the top 5% of

programmers, and that these top programmers can contribute about 100 times as much as the less

skilled programmers. Extraordinary communities develop from skilled programmers with a

powerful motivation to contribute to an open source project. To build this kind of community

around a project, you have to try to create a culture that promotes these motivations. This is

something that EEROS needs to tap into to be successful.

2.1.6 Security Concerns and Quality Control of Open Source Software

 A lot of what we’ve discussed on open source software relies on contributors being

motivated, competent, and altruistic. But what happens when a contributor makes a mistake in

his or her part of the code? Or what if a contributor maliciously adds security flaws? These two

concerns are at the heart of any open source project.

 The first problem is dealt with by a quality assurance process. Different open source

projects have different mechanisms to do this, but they primarily rely on two things: a

mechanism to report and track bugs (errors in the code that cause undesirable behavior for the

user) that the project has produced, and a specified procedure for dealing with bugs (Barham,

8

2013). Many software projects also include a third step: a release process that only allows code

that has been reviewed thoroughly enough to be redistributed to the public (Fitzpatrick &

Collins-Sussman, 2012).

 The second problem is how to make sure that a contributor doesn’t have malicious intent

in developing the source code. This is also dealt with an effective quality control process. With

regard to security, Silic and Back (2013) states, “still, I know for mature projects there is [a] very

clear code release process… I guess it would be difficult to change something.”

 Even though an effective quality control process can help minimize the effects of

incompetent or malicious contributions to an open source project, they are not perfect. Silic and

Back (2013) also states, “there are millions of lines of code… it would take you an eternity to

check it,” which indicates that the scale of most open source projects makes it impossible to

guarantee with one hundred percent certainty that the code is right. These quality concerns

become important whenever software is used in critical applications such as medical devices or

critical infrastructure; EEROS’s focus on safety provides opportunity for hackers to exploit its

features.

2.2 Creating and Managing Open Source Software

 In this section, we discuss specifics of an open source project: the tools involved in

managing an open source community, and how to protect a piece of open source software. We

first explain some of the common tools used by software developers that were adopted by the

open source movement, and then move onto software licenses and how they offer protection for

both the original owner of the software, and contributors to the same piece of software. We do

this to afford the reader the opportunity to understand how EEROS will function as an open

source project.

2.2.1 Tools and Community Involvement

We have discussed the ideologies and concerns of the open source movement, and the

common elements between different open source software projects. However, we’ve neglected

to mention how open source software projects (and software projects in general) use technology

to their advantage, especially how EEROS can use existing technology to help community

members communicate.

The key element of any open source project is communication. When dealing with

hundreds of contributors who come and go as they please, with no predetermined task or

directive, communication between contributors is very important. But conventional

communication methods don’t work for managing such a large community, especially when the

community is geographically diverse. Imagine how much time someone would spend on the

phone trying to coordinate everything between different groups of the community. Face to face

meetings would suffer the same fate as phone calls: the amount of time needed for these

meetings would eat up the entire productivity of the community. Instead, open source projects

9

rely on forms of asynchronous communication, such as E-mail, mailing lists and newsgroups, or

Internet forums (Bonaccorsi & Rossi, 2003).

The scale and chaos that make communication between members of an open source

project difficult also makes collaboration between the same members tricky as well. If all the

members of the project simply worked on different parts of the project in parallel, and agreed on

how everything should fit together, then there wouldn’t be any problems trying to assemble a

final project. But this relies on writing down exactly how hundreds of different parts of the

project are going to fit together before knowing exactly what each part does. This is nearly

impossible to accomplish. Instead, open source projects rely on two different ideas: object-

oriented programming (OOP) and version control.

Object-oriented programming is the idea that every piece of code that a programmer

writes defines how other code can interact with it, rather than just fulfilling a certain objective.

By using OOP, members of an open source project can make it easier for other members to come

in and understand exactly how to use that part of the code. This leads to a much more modular

design, and helps promote coordination between different members of the project (Bonaccorsi &

Rossi, 2003).

The other technology that open source projects frequently use is version control. Imagine

you have five different people working on editing a paper. They go off on their own and

perform their edits and come back to put them all together. Naturally, some of the editors will

add material in the same spots that other editors deleted material from. How do you end up

actually putting all the edits together? Once you put the edits together, what if you want to go

back to the original version? Or maybe you want to go back and only look at the paper if one

editor had put in all their edits? These problems are manageable if you only had one round of

edits, but what if you had hundreds or thousands of rounds of edits? It would be almost

impossible to keep track of all the necessary information. Many people still try and do this in a

rudimentary fashion by adding version numbers to their different papers. This is what version

control technology does, except on a much larger scale. Many open source software developers

use version control technologies like Git and Mercurial (Fitzpatrick & Collins-Sussman, 2012).

Git and Mercurial keep track of every single change that occurs to the code of the project, and

allow project members to control how different versions of the same file get put together in the

end.

These three technologies: asynchronous communication, object-oriented programming,

and version control, are hallmarks of an open source project. They provide the means for

managing a decentralized, flexible project, which is exactly what an open source project is.

There is another type of technology worth mentioning; open source movements tend to

have a centralized website or application that brings together the technologies we just discussed.

Websites such as GitHub or BitBucket allow users to upload code via version control, view other

code uploaded by users, make comments and have discussions over particular changes to code.

10

These websites end up being the epicenter of the community; and is an important tool for

EEROS to exploit to create a healthy community.

2.2.2 Licenses

 Another important part of open source software is licensing. In the next few sections,

we’ll explore what exactly a software license is, why you can’t just distribute code without a

license and consider it open source, some of the ideology behind licenses, and examine several

different open source licenses.

 A software license is a statement that declares how the software and the source code can

be used, distributed and modified. There are two main types, copyleft and permissive. A

copyleft is a license that is designed to guarantee the rights of the user (Phillips, 2009). A

permissive license, on the other hand, details what the user can and can’t do with that piece of

software. There is a significant difference between the two different types of licenses that we’ll

explore in depth in the next section. But first, why even bother with a license at all?

 A license seems unintuitive for open source software. After all, the goal of open source

software is to give the user freedom to do what they want with the source code. But without any

license, users (and even the original owners) open themselves to litigation (FSF, 2014). If you

distribute a piece of software you create, without the license, then someone else can take your

original code, copyright it, and then sue you for copyright infringement if you continue

redistributing or modifying your own code. This obviously is a barrier to the development of

open source software, and is the motivation behind copyleft licenses.

2.2.3 Ethics of Licenses

 Now we understand why licenses are important in software development. But what’s the

real difference between a permissive license and a copyleft license, and is one more ethical than

the other?

 As mentioned before, a permissive license is a license that states what a user can do with

a piece of the software or source code. A good example of this is the software agreement you

have to read through to use iTunes, or other popular commercial software. If you take the time

to read through the entire agreement, you’ll notice that Apple, the distributor, protects itself from

blame if the software is used for something illegal, if it ends up damaging the user’s computer, or

if any other similar situations occur. These licenses also typically make sure that the user

doesn’t try and distribute copies of the software (Holthorf & Kelly, 2009)

The idea of a copyleft license is slightly different. The goal of a copyleft license is to

protect the user’s intrinsic rights in regards to the software, much like a bill of rights for the user.

This is expressed in Stallman’s quote: “Think of free as in speech” (Stallman, 2009). These

“inalienable” rights of a user are to view, modify, and redistribute the software as the user

pleases, provided it doesn’t violate any of the same rights of another end user.

Copyleft licenses are more important in an open source setting than permissive licenses.

They help form the community behind a software project, rather than protecting the original

11

“owner” of the project from users who use the owner’s software the wrong way. These copyleft

licenses let contributors to an open source project participate in the project without fear of

retaliation from the owner.

2.2.4 Examples of Licenses

 In the previous sections, we discussed how copyleft licenses work, and why they are

important to open source projects. But how do you write a copyleft license? What goes into a

software license in general?

 The easiest way to write a license, and understand what a license looks like is to examine

several different examples of current licenses. The first of these is the GPL, or GNU Public

License (GNU stands for GNU is not Unix). The GPL was developed by Richard Stallman and

the Free Software Foundation (Carillo & Okoli, 2008). The latest version of the GPL (version 3)

can be found on the FSF website (www.fsf.org). The GPL allows the user to view or obtain the

source code, to modify the source code, and to redistribute the source code. It has clauses for

handling a mix of copyrighted and GPL software, and requires that any redistributed software is

distributed either under the GPL, or more permissive licenses (FSF, 2014).

 Another important license is the Apache Public License (APL), specifically version 2.

EEROS is written under the APL, so it seems like a good idea to examine its terms as well. The

APL is very similar to the GPL, only that it doesn’t give the contributor access to the trademarks

of the original source code, so that redistributed software can’t use the same trademarked logos,

etc (FSF, 2014).

 These are only two of many open source licenses. A comparison of many open source

licenses can be found on the FSF website. The full text of the GPL and APL can also be found

there.

2.3 What makes an Open Source Software Project Successful?

 Open source software is generally provided free of charge, which would seemingly make

it difficult to run a successful business around an open source product. In this section we

describe how revenue can be generated from the creation and distribution of open source

software. First, we discuss a well-known, highly successful open source software company.

Then, we discuss some open source revenue models and highlight some companies that have

been successful with these models.

2.3.1 Case Study: Red Hat

Red Hat, Inc. is one of the most well-known providers of commercial open source

software. They develop numerous enterprise products such as Red Hat Enterprise Linux

(RHEL), Red Hat Enterprise Virtualization, and more recently, Red Hat Enterprise Linux

OpenStack Platform. Figure 1 summarizes some of Red Hat’s key milestones since its founding

in 1993.

12

Figure 1: A brief history of Red Hat

 By nature, open source software is free of cost, so Red Hat does not make any money

from selling software. To a more traditional proprietary software company, giving away their

primary product for free seems like a recipe for failure. However, Red Hat’s business model

depends upon providing a free software product, and selling support subscriptions and training

for that product. This model is known as Value-Added Service, which generally refers to a

software company that provides an open source platform free of charge, but charges customers

for support and other services (Fitzgerald, 2006). Specifically, Red Hat follows the “Support

selling” model shown in Table 1. In 2014 alone, Red Hat earned over $1.5 billion in revenue

from these services (Red Hat Inc, 2014). Despite having a different source of revenue than

proprietary software, making money in open source depends on the same tenets: building a brand

that emphasizes quality of the software and excellence in customer service (Young, 1999).

 Since Red Hat provides an open source product, they do not license intellectual property

for their own use. However, in a world where software companies are constantly patenting

13

software, Red Hat must do more than just release their software under an open source license. In

an act of self-defense against competitors to open source, Red Hat has reluctantly filed numerous

software patents. Along with these patents, Red Hat released a promise not to pursue legal

action against those using patented Red Hat software as part of an open source product (Red Hat

Inc, 2014).

 Red Hat is in a unique position because they are not the only company working to

improve their product. Due to the open nature of Linux, other large companies often have it in

their interest to make improvements to the Linux system. By making these improvements for

themselves, Red Hat can adopt these improvements and integrate them into their own system.

Jim Zemlin, Executive Director of the Management Team for the Linux Foundation, puts it

nicely in an article featured on Linux.com:

Since Linux has grown, so have the benefits Red Hat receives (and gives to others).

When Facebook contributes code to make their data centers more efficient, Red Hat

benefits; when Red Hat contributes code to improve file systems, mobile device makers

benefit; when mobile device makers contribute code to improve power consumption,

super computer cooling costs go down; when super computer users contribute code to

make Linux faster, Wall St. benefits with faster trading systems -- and so on and so forth.

So you can see that the positive feedback loop that is represented in the billions of figures

above shows no signs of slowing down. (Zemlin, 2012)

Every year, the Linux Foundation releases a report called “Linux Kernel Development: How Fast

is it Going, Who is Doing It, What They are Doing, and Who is Sponsoring It.” In 2013, it was

found that there were over 10,000 unique developers that contributed to Linux, and they were

sponsored by more than 1,000 different companies. According to this report, Red Hat was the

number one company sponsor since the last report in 2012, where Red Hat was also number one.

In fact, Red Hat has been the number one company contributing to Linux since the Linux

Foundation began releasing this report in 2008 (Corbet, 2013). Red Hat uses this community to

drive their business model; with a strong community, EEROS could derive success as well.

2.3.2 Other Open Source Business Models

 Red Hat holds certain lessons for EEROS, but Red Hat is not the only successful

company providing free and open source software. Other companies, like Google and Canonical

(the developers of Ubuntu Linux), also make money while distributing open source software, but

they do not follow the same revenue model as Red Hat. Most open source software companies

will follow one or more of the eight revenue models summarized in Table 1. Red Hat mostly

follows the support selling model, but they also use concepts from the service enabler model

with their OpenStack platform.

14

Table 1: A summary of open source revenue models (Source: Modified from Rajala, 2007)

Revenue Model Description License

Types
Revenue Sources

Support selling Company provides software for free

(gratis) but sells support contracts to

users.

Any Media distribution,

branding, training,

consulting, post-sales

support

Loss-leader Open source software provided for free in

hopes that it will stimulate demand for a

paid product from the company.

Varies Other software products

Widget-frosting Companies that sell hardware provide

open source software such as drivers or

interface code.

Any Hardware

Accessorizing Companies that distribute materials like

books or hardware that are associated

with open source software.

Any Supplementary

offerings

Service enabler Open source software is developed and

used as a platform to selling consulting

contracts or other online services.

Any Service fees

Brand licensing Company charges others for the right to

use its brand and trademarks in derivative

products

Strong

reciprocity
Royalties received for

brand licensing

Sell it, Free it Software starts out as commercial, but is

eventually released as open source.
Alteration of

license type
Initial revenue from

commercial product,

other models used once

converted to open

source

Software franchising Combination of brand licensing and

support sellers
Strong

reciprocity
Franchiser supplies

companies with training

and licensing for a fee

 Of the eight models listed here, four are important to us because they apply directly to

companies that provide both hardware and software, such as those in the robotics and embedded

systems industries. The widget-frosting, accessorizing, service enabler and loss-leader models

are directly applicable to hardware companies. For example, Arduino makes use of both the

widget-frosting and accessorizing models. They sell microcontroller development boards, but

provide open source software for working with these boards. In fact, the hardware itself is also

open source, but Arduino generates revenue by selling prefabricated boards. They also sell

accessories in the form of expansion boards with additional hardware (Arduino, 2015). These

15

models easily fit the EEROS ecosystem; revenue could be generated by selling robots and

additional software, while the EEROS software platform is distributed for free.

2.3.3 Crowdfunding and Open Source Software

 In recent years, many new products have been successfully funded using crowdfunding.

Crowdfunding calls for many individuals to make small financial contributions to a project, and

in return, individuals will generally be able to get the final product at a reduced price or receive

some other kind of compensation (Mollick, 2014). Often these projects look to crowdfunding

websites, like KickStarter or Indiegogo, to simplify the crowdfunding process. These websites

allow project founders to create an advertisement for their product and set up different

contribution levels with rewards based on the amount contributed. For example, OUYA, an

Android-based video game console, was successfully funded on KickStarter in 2012. The

project founders offered ten different reward levels, ranging from a $10 to $10,000. The rewards

for these contributions ranged from being able to get a username before launch, to receiving one

of the first production models, to getting the contributors name engraved on all models from the

first production run (OUYA, 2012).

 Although it depends on some open source software, OUYA is not primarily an open

source product. One open source project that was successfully funded is Parallella, an open

source hardware and software product developed by Adapteva that aims to make research in the

field of parallel computing easy and affordable. It was successfully funded on KickStarter in late

2012, and like OUYA, it offered a wide range of contribution levels. The important thing to note

is that Parallella follows the widget-frosting and accessorizing revenue models described in the

previous section (Adapteva, 2012). The accessorizing revenue model is often used in

crowdfunding situations, and the widget-frosting model is common among hardware products,

especially robotics.

 These examples show that crowdfunding can be an effective way for a new product to

gain traction and popularity quickly. If a product has a devoted community, a crowdfunding

campaign can successfully fund the initial development and manufacturing costs for a new

product.

2.4 The Robotics Community

 The world of robotics is in many ways similar to the world of open source software,

described in section 2.1. Both seem to have developed a sense of community between

innovative minds that want to contribute to the world around them. First, we discuss the history

of the robot itself, and how that history has managed to create such a community. Then we move

on to discussing aspects of the community itself and the kinds of applications that robots see in

industry and education today.

16

2.4.1 The History of the Robot

 The development of the robot has greatly impacted the industrial world since its

introduction in the 1950’s. Historically, the robot is not really a novel development, but rather a

natural development of human engineering. When the production line was developed, it left

workers toiling with monotonous and often dangerous tasks for long shifts. Robotics began with

automation, as manufacturers tried to use conveyor belts and other mechanical systems to try to

accomplish tasks with machines instead of humans. In the late twentieth century, advancements

in computing made artificial intelligence possible, and the robot as we know it soon followed.

Since then robotics has had a profound impact on the world, changing everything from the

industrial world to our everyday lives.

 In 1495, Leonardo da Vinci designed what is accepted to be the first humanoid robot, a

machine made in man’s image (Sargent, 2015). However, the actual word ‘robot’ wasn’t used

until 1921, when Czech dramatist Karel Capek created a play in which mechanical beings

created by humans are used to serve their makers (Sargent, 2015). The first development in

modern robotics was seen in 1946, when John von Neumann developed the concept of stored

code, i.e. a computer program. This would allow a robot to repeat a task indefinitely, using just

one program (Sargent, 2015). At this point, mechanical and electrical engineering had advanced

enough to support complex systems. The development of computer science had been the

missing link, and as it advanced, robots became ever more possible.

 With the groundwork for robotics established, it was of no real surprise that the first

industrial robot was in operation by 1961. Called Unimate, it was essentially a gigantic arm used

by General Motors to move and weld die-castings on an assembly line, a dangerous job for

humans. Unimation “designed and machined practically every part in the first Unimates. They

also invented a variety of new technologies, including a unique rotating drum memory system

with data parity controls” (Unimate, 2003). From here the world of industrial robotics was born.

It would develop over the next half century to become a highly advanced field, with applications

in nearly every manufacturing or other industrial field.

 Today, industrial robotics has had a massive impact on the manufacturing world. Nearly

any assembly line can be seen using robots in some way to assist product creation. Like their

Unimate predecessor, most industrial robots are used to do jobs considered too dirty, dull or

dangerous for humans (Spencer, 2002). Robots can also accomplish tasks at a level of precision

that humans cannot match; an example of this is the automotive industry. Parts need to be

welded and fitted together with extreme precision, as well as pieces painted and fastened. These

tasks are not only dangerous, but also tedious (imagine a worker fastening the same screw on a

car model for nine hours every day) (Spencer, 2002). While most industrial robots are nothing

more than pre-programmed robotic arms, there are emerging examples of robots that are more

autonomous that can act as a worker on a factory floor. This continually developing world of

industrial robotics has indeed given rise to a robotics community, who share a passion for

robotics, industrial or not, and artificial intelligence.

17

2.4.2 Social Aspects of the Robotics Community

 When the history of robotics is analyzed, it is no surprise that a thriving community has

developed around robots. Recall that the limiting factor on robots has typically been the

limitations of computing and software. This means that researchers working on robots were

typically software-oriented and had close ties with open source community members. As the

open source movement developed, the ideologies shared by open source enthusiasts were also

prevalent in those researching with robotics. This association can be seen in the robotics

community today and in the culture surrounding robots and technology.

The robotics community has been influenced heavily by a recent cultural shift. As

industrial robotics grew over the years, the sci-fi movies of the 50’s seemed closer to reality than

fiction. People’s interest turned to awe as the abilities of machines surpassed that of man. In the

past fifteen years or so, this has given rise to a new phenomenon: the rise of “Geek Culture.”

Sharply contrasting the mainstream idea of being “too cool for school,” it has become cool to be

a geek, and this has led to people sharing and celebrating things like robotics; something not

accepted under the previous definition of cool (Harrison, 2013). This ties in closely with the

open source software movement; geek culture is run by younger people interested in STEM

fields, and they are naturally drawn to the cutting edge areas. In the past ten years, robotics and

software have seen huge developments, so it is no surprise to find that these Open Source

advocates overlap with robotics communities on the web.

 There are several great examples of online communities who share amongst themselves

the recent developments in robotics as well as their own homemade robotic creations.

Community of Robots, RoboCommunity, and the Robotics SubReddit all feature some sort of

open forum where members contribute stories, articles, pictures and other media. The

emergence of these communities closely ties in with the Open Source movement, and they share

the same ideologies. Magazines such as Make claim to support the ‘Makers Movement’, an

analog to software’s open source movement. A good example of this is shown in Make

Magazine’s fourth issue, sporting the phrase “If you can’t open it, you don’t own it” as the title

of their so called ‘Maker’s Bill of Rights’ (Jalopy, 2005). This phrase elegantly describes one of

the ideologies shared by the robotics and open source communities.. They do not want to be just

consumers; they are capable of innovation themselves, and they want to contribute to the world

of technology with their own thoughts, ideas, and inventions. According to a member of these

communities, if you simply use someone else’s proprietary software or buy someone else’s

machine, it’s not really yours (Jalopy, 2005). You can only claim ownership of something you

helped to create, and these communities take pride in being able to produce their own

innovations.

2.4.3 Differences Between Education and Industry

 With the ideologies and social aspects of the robotics community in mind, it is time to

discuss in greater detail where robots are used. Even in recent years, robotics has seen nothing

18

but growth. In 2007, 6.5 million robots were in operation worldwide, with a predicted 18 million

in 2011 (Guhl, 2009). This growth comes from a symbiotic relationship between two main areas

of robotic use: education and industry. However, these areas are near polar opposites of each

other in terms of goals and applications. Industrial robots represent the pinnacle of safe, reliable,

robust, well-tested and precise machines. They are built to perform a single task perfectly. In

the world of industry, there is no room for mistakes, and safety is held in high regard. In

addition, accountability is a major issue in industry. If something goes wrong, it needs to be

absolutely clear what caused the error so it will not be repeated in the future. These aspects

make designing and programming any industrial robot a challenging process. However, travel to

a robotics laboratory in an educational institution, and you will discover a vastly different scene.

 Parts and tools are strewn amongst papers, hand-drawn designs and hastily scribbled

notes and calculations. A prototype, held together by zip ties and duct tape, sits on a table, ready

for testing. This is a sharp contrast to the highly regulated and efficient industrial world. This is

where innovation happens: students and professors work together to push their robotic invention

to new levels, to accomplish something no one else has done before. Perhaps this robot can

communicate in real time with others, or it can navigate a room full of obstacles by using a

complex array of sensors coupled with advanced algorithms. Here, a failure is seen not as an

error, but something to be learned from. Safety is still important, so it’s best to keep your

distance in case something does go wrong. It may seem like the educational world is largely

inferior to the industrial one, but in this chaotic laboratory the envelope is pushed and innovation

is born. Ten years from now, a similar concept, now rigorously tested and refined, may be used

in some industrial application. These two worlds need each other to evolve and continue to

grow. The educational world produces important research that will allow the next generation of

industrial robots to evolve. At the same time, the demand for these new robotic advancements

wouldn’t be nearly as great without any industrial applications, and projects don’t get funded for

their cool factor.

As different as these worlds may be, there is certainly one factor that every robot shares,

that helps define the very nature of a robot: it uses software. Today, there are many options for

robotics software packages, many of which are designed with certain applications in mind. And

given what we know about the Open Source and robotics community, it was only a matter of

time before someone developed open source software that could be used on almost any robot.

This software, called ROS, is one of the most widely used tools in educational and industrial

robotics alike, and has to some degree become the standard to which other robotic software is

compared. ROS, however, is just one example of an open source robotics framework,

community-developed software meant to standardize the way robots are programmed.

2.5 Open Source Robotics Frameworks

Open source robotics frameworks are becoming increasingly common. A simple search

reveals that dozens exist, each attempting to solve some set of problems within the robotics

19

community. Several companies even create robots designed specifically to be used with their

frameworks. This section examines some of the largest contenders in open source robotics

software: what they have done well, where they have fallen short, what licenses they have used,

and other aspects. This helps us to better understand the market EEROS will be entering and

what competition it may face.

2.5.1 ROS

ROS, the Robotics Operating System, is perhaps the most successful open source robotics

framework on the market today. It is a collection of tools, libraries, and conventions which aim

to simplify creating complex and robust robotic systems. ROS provides hardware abstraction,

low-level device control, message passing between processes, package management, as well as

other standard operating system services. Keeping with its open source nature, ROS has been

designed mainly to run on Unix-like operating systems such as Ubuntu Linux (ROS, 2015).

ROS has four main goals, the first of which is easy integration with other robot software

frameworks. This is one of the major reasons why ROS is so successful. Language

independence is the second goal, which is accomplished by allowing users to write code in C++,

Python, or Lisp. The third goal, easy testing, is realized by the built in test framework rostest.

Scaling, the final goal, allows for ROS to be used in large systems and development processes

(ROS Introduction, 2015). These features and goals make ROS desirable to developers and

roboticists.

Development of ROS began in 2007 at the Stanford Artificial Intelligence Laboratory

under the name switchyard. In 2008, development was moved to Willow Garage where it

remained until 2013. While at Willow Garage, ROS saw enormous growth, and Willow Garage

has even released several robots designed especially for use with ROS. Their success would not

have been possible without the collaboration of researchers at over 20 institutions. In mid-2013,

ROS development was moved to the Open Source Robotics Foundation where it currently

remains (ROS History, 2015).

ROS has been quite successful since its start in 2007. Their vast list of contributors

continues to grow and improve ROS. It has become a popular tool among educators, and is even

a core component of several classes at WPI. ROS’s flexibility has allowed for integration with

other open source project libraries, including Gazebo, OpenCV, Orocos, and others. Aside from

these successes, ROS does have several drawbacks. It exists as a top layer program, and it needs

third party software like Linux or Unix to run, which introduces undesirable overhead. ROS also

lacks real-time support, meaning that it cannot guarantee a response to an input within a strict

time constraint. ROS can, however, be integrated with real-time code from other project

libraries. Regardless of its drawbacks, ROS has managed to dominate the market for open

source robotics frameworks (ROS Wiki, 2015).

20

2.5.2 ROS-Industrial, Urbi, and The Player Project

ROS is a powerful piece of software, but it can’t do everything by itself. The following

three robotics frameworks can be used to add advanced functionality to ROS, or can be used as

standalone pieces of software.

ROS-Industrial is an open source project with the goal of extending the capabilities of

ROS to manufacturing. Since January 2012, this framework has been designed to address the

problems caused by the limited software architectures of industrial robots. Despite being

incredibly flexible and robust machines, the variety of tasks industrial robots are capable of has

been restricted by poor investment in software. ROS-Industrial aims to solve this problem by

creating a platform for interoperability, meaning that industrial robots will be able to “speak the

same language” regardless of their manufacturing origins, equipment, sensors, or desired task.

Quantifying the success of this software is difficult, as it is has not been in development for very

long. ROS-Industrial, as the name implies, relies heavily on ROS, and thus shares many of its

good and bad attributes. Like ROS, it provides advanced libraries for free and offers a way for

academic research to quickly be applied to industry. It shares the cost saving benefits of open

source, but still lacks native support for real-time control (ROS-Industrial, 2015). Overall, ROS-

Industrial is a new and promising robotics software framework.

Developed by Gostai beginning in 2003, Urbi is an open source software platform used to

create applications for robotics and complex systems. Urbi is fully compatible with hardware

supporting Windows, Mac OS X, and Linux, giving the user more flexibility than ROS in

choosing an operating system. That being said, code for Urbi can only be written in C++.

Support for ROS has been integrated into Urbi, allowing them to share functionality. An

interesting aspect of this software, though, is its licensing system. It uses a dual license model

which gives the software to individual users for free while organizations must pay Gostai for

support and advanced features (Gostai, 2015). What Urbi seems to lack though, is the sense of

being driven by community that is so prevalent in ROS and other open-source projects.

Development of Urbi appears to be the sole effort of Gostai, as no mention of community

development is found on their website (Gostai, 2015). This means that Urbi might be limited in

growth potential compared to other open source projects that have a thriving community since

community plays such an important part in the development of open source software.

The Player Project is “probably the most widely used robot control interface in the

world.” Utilized by over 100 laboratories around the globe, the Player Project aims to create free

software for research in robotic systems and has been developed by an international team of

robotics researchers since 2000. The project has created three pieces of software: A robot device

interface called Player, a multiple robot simulator called Stage, and a 3-D multiple robot

simulator called Gazebo. Player is unique in that it allows robot control programs to be written

in any language and to be run on any computer with a network connection to the robot. The

Player Project has received funding from numerous sources including the National Science

Foundation (NSF), the Defense Advanced Research Projects Agency (DARPA), the Office of

21

Naval Research (ONR), and the Jet Propulsion Laboratory (JPL). It is licensed under the GNU

General Public License, making all code free to use, distribute, and modify. Like many other

robotics software frameworks, support for ROS has been integrated into the Player Project,

allowing ROS users to simulate their robots with Gazebo and Stage (PlayerStage, 2015).

2.5.3 The Orocos Project

 Starting in December 2000, The Orocos Project (Open Robot Control Software) has

aimed to develop a free, general purpose, modular framework for robot and machine control.

The objectives of this project are to be component based, multi-vendor, and to focus on real-time

control of robots and machine tools. The real-time control aspect of Orocos makes it unique, and

is also why Orocos is a valid competitor of EEROS (E. Nielsen, personal communication,

January 30, 2015). Orocos is also able to give ROS real-time capabilities. This software is

targeted towards framework builders, components builders, application builders, and end users.

Operating under the GNU Standard C++ Library license, Orocos has strived to be “industry

friendly”, allowing applications created with Orocos to remain the property of their respective

creators (Orocos, 2015).

The libraries of Orocos include the Real-time Toolkit, Components for control, Bayesian

Filtering Library, and the Kinematics Dynamics Library (see Figure 2). The Real-time Toolkit is

the infrastructure that allows the user to build robotics applications in C++. The Components

Library provides pre-existing components including those for control and hardware access. The

Bayesian Filtering Library provides application independent framework in Dynamic Bayesian

Networks. This is useful for recursive information processing and estimation algorithms. The

Kinematics Dynamics library allows the calculation of kinematics in real-time. This enables

easier control of robotic arms and manipulators. These four components of Orocos give users

the tools they need to easily create complex real-time robotics control applications and have

made The Orocos Project the success it is today (Orocos Overview, 2015).

22

Figure 2: The three main components of Orocos

2.6 EEROS

 We hope that the reader has gained a broad understanding of the world of software and

robotics, and how certain projects have succeeded. Now we address the software at the center of

our project: EEROS. Understanding the world in which this software will be used is crucial in

understanding what it hopes to accomplish. With this in mind, we try to see how EEROS can fit

into the world of robotics.

2.6.1 Introduction to EEROS

 EEROS, as described on its website, is an open-source software solution for the

development of educational and industrial robots (EEROS Team, 2014). This sentence neatly

consolidates the goals of the researchers at NTB University of Technology, Buchs & St. Gallen

into one simple expression. The first thing mentioned is the open-source nature. The researchers

believe that EEROS should not be proprietary; rather it should be fully available to the robotics

community. EEROS is intended for both educational and industrial use. This is a broad target

audience, meaning that the software must be extremely flexible to deal with the different worlds

of industry and education discussed in Section 2.4.3. Indeed, the website goes on to indicate that

EEROS is extremely flexible, and that the acronym, EEROS, is itself indicative of its advantages

over competitors. It stands for Easy, Elegant, Reliable, Open and Safe (EEROS Team, 2014).

These qualities are the foundation of what makes EEROS an exceptional piece of software.

 EEROS is foremost designed to be easy to use. It should not be difficult to implement

the software into a project. This alone can doom a software project that may have otherwise

been successful. Without ease of use, a potential user will become frustrated and move on to

another program. The elegance of EEROS is seen when looking at its core design. It integrates

three sub-systems: “The Core System, the Safety System and the Sequencer Framework”

(EEROS Team, 2014). By having separate systems for core interactions, safety guarantee and

23

real time support (sequencer) EEROS has a leg up on the competition. This kind of safety

system or real time sequencer is usually built on top of a framework, rather than integrated with

the core system. EEROS allows for better safety guarantees and more reliable real-time support.

This alludes to the third attribute: reliability. If software is unreliable, its chances of success are

greatly diminished. If software is reliable (works as intended nearly all the time) it shows

legitimacy, which is important for new software. We have already talked about the importance

of EEROS being open. Community driven software naturally appeals to the robotics

community, and it provides for greater potential impact than a proprietary release. Finally,

EEROS must be safe. No industry will give a second thought to an unsafe program, so EEROS

needs to be rigorously tested before it is ready for commercial use. However, the integrated

safety sub-system allows for EEROS to become safer than its potential competitors. This is one

of the key problems that EEROS aims to solve.

2.6.2 Problems EEROS Attempts to Solve

 One of the biggest requirements for software to succeed is that it should solve some

problem that other software has failed to solve in the past. This is really an extension of simple

economic logic; why would a consumer buy your product if another product he or she already

has can do the same thing? EEROS does solve some important problems, but without the

background discussed previously it may mean little to the reader. Other robotic software is safe,

so what makes EEROS special? By nature, EEROS is unlike many other programs and software

that has been developed for use with robotics. EEROS is a framework, and acts like an operating

system for the robot. Other programs, like one that may move a robotic arm, are executed within

the framework. By integrating the safety features directly into the framework, EEROS lets

developers define events (like a sensor, or emergency stop button) that would either stop the

robot from moving or command a change in its actions (EEROS Team, 2014). In addition,

EEROS defines a continuously updating safety level which evaluates based on sensor input how

safe the workspace is, and lets a developer define events based on the safety level.

Let’s look at a simple example. A robot consists of a large and powerful arm that can lift

the frame of an automobile. As a worker walks closer, a proximity sensor’s input tells EEROS

that the workspace has become less safe. As a result, the speed of the arm slows down,

eventually stopping when the area is at a critically unsafe level. This kind of integrated safety

feature allows a developer to define events and outcomes that will override the current program

(EEROS Team, 2014). By having a safety feature built in at the framework level, EEROS is

inherently more safe than its competitors. EEROS has another feature that gives it an advantage

over its competitors; it supports real-time robot control. Other systems provide complicated

ways to add real-time support, but EEROS goes a step further by building these tools into the

base system. Again, an example may help illustrate this problem.

 Say an assembly line robot running competitor software receives two inputs called input

A and input B. Although these are simultaneous, the line-by-line nature of computing forces the

24

robot to process them sequentially. This can lead to problems where the output becomes out of

sync. Programs that can prevent this are said to offer real time support, and this can be an

important feature in an industrial setting where even small errors can be costly. EEROS provides

real-time support by using a time domain system (EEROS Team, 2014). By attaching every

block (blocks can be inputs or signals) to a time domain, it accounts for these small differences

by slowing certain blocks in reaching their destination to assure that the program executes

computations correctly in real-time. Figure 3 shows the processing of two input signals in a

single time domain.

Figure 3: The relationship between blocks, signals, and time domains

 The differences between EEROS and its competitors are not easily understood, and to the

layman may seem too trivial to make any real impact. However, in the industrial world these

differences are enough that EEROS could become a new global standard for robotics control

software. By being safer and taking a novel approach to real-time support, EEROS has the

potential to be extremely successful.

2.6.3 Current State of Development

 EEROS is still in the early stages of development. In 2014, selected users were allowed

to use the first prototype version of EEROS. Additionally, the EEROS development team has

started an open platform called EEDURO, the EEROS Education Robotics Platform, which aims

to create a few different robots that showcase the features of EEROS. Currently, the EEDURO

platform consists of a delta robot, shown in the figure below. The EEROS team has expressed

that they are developing more robots for this education platform. The EEDURO code and

25

hardware specification are available for free online, although neither are production-ready at the

time of writing (EEROS Team, 2014).

 Currently, the EEROS developers have a legal team looking into licensing solutions for

the EEROS framework. Until they develop a more comprehensive plan, EEROS will be licensed

under version 2.0 of the Apache Software License (EEROS Team, 2014), the same license used

by Google’s Android Open Source Project. This license allows complete freedom of use,

modification and redistribution so long as a few conditions are met:

1. The license owner cannot be held liable for any damages caused by the software.

2. Trademarks cannot be used by licensees.

3. The original copyright must be mentioned.

4. The full text of the license must be available in any redistributed software.

5. When redistributing, significant changes must be stated.

6. If there is an additional “Notice” file, this file must be included with redistributed

versions of the software.

For EEROS, this license protects the EEROS brand while still allowing third parties to use the

software and source code in any way they choose.

2.7 Building a Community for EEROS

 Many open source projects arise when a group of people collaborate to solve a shared

problem. Understanding this problem and how the project addresses it is important in

understanding how the project will grow, and what it needs to evolve. EEROS has two potential

groups of users that will unite around their software, specifically education and industry.

Understanding how these groups might benefit from EEROS is key to understanding what we

have to do to help expand the impact of the software, and also provide context to understand how

the birth of an open source project comes about.

2.7.1 EEROS and the Robotics Industry

 The robotics industry has already been discussed in detail. Now, we are prepared to

discuss how EEROS will perform in the commercial world. According to their site, EEROS’s

developers say that it is designed to be used in commercial robot systems (EEROS Team, 2014).

EEROS addresses the fact that safety is a top priority in any industry using robots. The built in

safety feature would be a compelling reason for a developer to use EEROS over a competitor.

EEROS is also easy to use by design, meaning that developers wouldn’t be frustrated trying to

build their programs on top of the EEROS framework. The real-time support further helps

EEROS be a relevant competitor in industrial settings, where precision is of the utmost

importance and real-time calculations are ever more prevalent as applications become more

complex. The open source nature of EEROS would allow the robotics industry to advance at a

faster pace as well. Code that was written by one person could be reused for another purpose,

because the nature of open source projects not only allows but encourages this kind of

26

information sharing. However, the open source nature of EEROS could potentially be a

downside if it isn’t accounted for.

 Open source projects, by their very nature, are not always suitable for commercial use.

Even ROS, one of the most successful frameworks, has a separate program entirely (ROS

Industrial) to satisfy the rigorous regulations in industry. Given that anyone can update the

software with their own modifications, how will EEROS guarantee safety and reliability, two of

its most important attributes? It is apparent that EEROS will need to use a variation on the

traditional open source methods to be successful in industry. A potential solution would be to

offer a guaranteed stable version of EEROS, while allowing the community to make changes to a

second, more experimental version. Major changes in the experimental version would have to be

approved and tested before being added to the stable version. This way, industries would have a

safe and approved version to use, while the community would grow the experimental version

separately. This method is nothing new; Red Hat develops Fedora Linux for non-enterprise

users. This Linux distribution is used as a testing platform by Red Hat to gauge the success of

new features before integrating them into their larger Red Hat Enterprise Linux product. A

similar system may work well with EEROS.

 Industrial platforms need to have accountability as well. With an open source project, it

is not always clear who is accountable when something goes wrong. The aforementioned system

would help with this, as industries would know that they could contact the producers of EEROS

with problems they have using the stable version. There is also the problem that individual

companies may not want their edits to EEROS to be available, given the time, energy and

funding that they use to develop solutions to their problems. While it doesn’t strictly follow the

open source doctrine, a compromise must be made between proprietary and open source if

EEROS is to succeed in the commercial world. One solution would be a kind of “app store,”

where companies could charge for programs and algorithms that they wrote for their own

applications. Of course, contributors could still update EEROS under the open source license,

and could offer their algorithms for free so others could use their work instead of solving the

same problem again. This allows EEROS to proceed in an open source manner, but uses a

model that has been successful in the commercial world already. With this kind of modified

open source outlook, EEROS would be able to fully be applied in the industrial world of

robotics.

2.7.2 Potential Funding Options in Industry

 With any project comes the question of funding. EEROS is no different. Being able to

fund the project is an integral part of its success. As of now, the development of EEROS has

been funded by grants (EEROS Team, 2014). However, once it is fully developed and ready for

the public, EEROS will need new sources of funding. Many open source projects come up with

creative ways to make money. Since they don’t charge for the software itself, often they look to

make a profit from areas that are often taken for granted in proprietary software. These include

27

customer support and help features. This method, called the Service Enabler revenue model (as

detailed in Table 1) would be an excellent candidate for EEROS. As discussed before, Red Hat

uses this method to fund their Linux software, and is quite successful in doing so. Linux and

EEROS both act as operating systems, or platforms for applications to run on, so this revenue

model could be a promising choice.

We should also look into the Widget-frosting and Accessorizing revenue models, also

explained in Table 1. These are both examples of open source models that have seen success in

hardware related open source projects. While EEROS is software, it is closely tied to robotics

hardware, so these are relevant revenue sources to consider. In a way, the EEROS team has

already started using this as a revenue model. The team does contract work for companies that

require specialized robots; they build them at NTB and program them with EEROS (E. Nielsen,

personal communication, March 16, 2015). Other open source projects simply ask for payment

or donations based on the honor system. While more risky, this method has seen success

because it trusts the goodwill of the users, most of which are appreciative enough to give back.

With a combination of some or all of these methods, we believe that EEROS can be funded

successfully without being dependent on grants.

2.7.3 EEROS and the World of Educational Robotics

 To have the greatest impact that it can on the robotics community, EEROS will need to

be useful for educational purposes as well. Since it is a framework, EEROS is designed to be

extremely flexible, and it should be able to adapt to educational use readily. There are countless

universities and colleges in the United States with strong robotics programs. Among them is

Worcester Polytechnic Institute (WPI), with the first ABET accredited undergraduate program

for robotics engineering (Dorsey, 2011). We should be looking to build a network of institutions

that use EEROS in their programs, perhaps starting at home (with WPI). This will become the

backbone of the open source community that we hope to support EEROS with. As is the case

with many open source projects, once a thriving community is established the software will

begin to develop and advance without assistance. EEROS is currently being shared by NTB

Buchs with a small number of partners; once it is ready for release, we will look for other

universities and institutions to become partners with NTB in supporting EEROS.

2.7.4 Potential Funding Options in Education

 The educational world could provide numerous opportunities for supporting EEROS as

well. If EEROS expands to have several universities that use it as an educational tool, these

partners could contribute to the project by supplying additional resources and funding. EEROS

will need a community that wants to use it and develop code for it. This support, while less

tangible than funding, is invaluable to EEROS. Having several institutions that use EEROS

would help promote its legitimacy. Furthermore, the institutions that use EEROS will eventually

form the backbone of the community we want to build around it. If EEROS is successful, they

will contribute many projects, algorithms, and additions due to EEROS’s open source nature.

28

We can also look to obtain financial support directly through the educational world. Every

institution that uses EEROS could apply for grants to help fund its development as a promising

open source educational tool. This financial and community support make the educational world

a worthwhile investment for EEROS’s future.

Another avenue worth exploring is the use of advertising for EEROS in the educational

world. Holding expositions and similar events should be part of the long term plan for EEROS.

This will get the newest generation of robotics engineers interested in using EEROS, and they

will bring that interest into whatever company, institution or startup that they join after

graduating. This targeted advertising will help secure a long term future for EEROS. This kind

of advertising fits well with the open source mindset that we have discussed. The spirit of the

advertisement is not to appeal enough so a consumer gets his wallet out, but to involve them in

the project and allow them to contribute and learn about EEROS.

The EEROS team has looked into funding prospects in education. They have started to

develop a platform of relatively low-cost, open source robots that they call the EEROS

Educational Robotics (EEDURO) Platform. They are currently working on two robots, a small

delta robot and a seven-axis robotic arm, both shown below. The intention behind these robots is

that a school could purchase one or many of them, and use them to teach students how to write

robotics software. For example, the EEDURO Delta Robot has a USB port which allows for its

users to use either a mouse or XBox controller to control its movements, and it could be possible

for students to develop different user input mechanisms. These robots run EEROS; so if students

learn EEROS at their university, it is possible that EEROS could become more prevalent in

industry once these students graduate.

29

While many of these things may be farther in the future than the scope of this project, it is

important to see the larger picture to understand what this project should aim to accomplish. Our

plan has to take steps to ensure the future success of EEROS, and now that we understand what

that future success may look like, we are ready to explore more tangible steps to expand the

impact of EEROS.

30

Chapter 3: Methodology
The goal of this project is to work with the researchers, students, and professors currently

developing the EEROS Open Source Robotics Software Framework to expand the impact it will

have on the robotics community, and to understand how a developing open source project can

transition to a successful project. Expanding the impact of EEROS was a broad goal and it

endures past the timespan of our project. Rather than directly expand EEROS, we worked with

the EEROS team to identify what they needed to expand the project themselves. From this, we

outlined five main objectives:

1. Increase EEROS presence in the robotics community

2. Provide access to sustainable funding

3. Suggest a streamlined and organized development process

4. Analyze the development community health

5. Identify partners for the expansion of EEROS

Our project focused on providing tools that the EEROS team will be able to use to reach

their specific goals. Objectives 1 and 2 focused on helping EEROS communicate with the

community of EEROS users, while objectives 3 and 4 dealt with giving EEROS the tools it

needs to have a symbiotic development culture and meet the needs of the development

community. Objective 5 brings these two sides, developers and users, together. Open source

software is based blurring the lines between developers and users; it’s only natural that both

parties are involved in expanding EEROS into community-developed software

 Our process for accomplishing these objectives is outlined in the graphic below. Each of

our objectives translates into one or more deliverables. In some cases, the deliverables we

produced affect more than one of our objectives. The methods required to create these

deliverables are outlined in this chapter.

Figure 4: Methodology Outline

 Our timeline for the development of these tools is shown below in the Gantt chart. Note

that the objectives are presented somewhat chronologically, since the first objectives pave the

way for later ones to be more easily completed.

31

Figure 5: Project Timeline

3.1 Increasing EEROS Presence in the Robotics Community

 Our background research shows that EEROS is a promising solution to many problems in

the robotics community. However, technical promise is not enough to give a software project a

significant place in any community. People needed a way to learn about EEROS and become

excited about it. We created tools and materials that the EEROS team can use to create a larger

presence for EEROS. The tools included:

● A new website for EEROS

● An updated EEROS Wiki

● Social media integration

● A brochure that shows the advantages of EEROS

3.1.1 EEROS Website

Before we arrived in Switzerland, we took the time to interview several WPI Robotics

Engineering (RBE) professors, both in person and via email. They were provided with a brief

summary of EEROS that we had developed, along with a link to the EEROS website, and asked

to answer several questions (included in the appendix). The purpose of the interview was to

understand why professors would be likely to use or contribute to EEROS, but we also gained

valuable insight into how the professors perceived EEROS based on the website.

 What we found was that the professors did not get a good or accurate representation of

EEROS from the website. Two of the professors asked for extra information after examining the

website; they didn't have enough context to understand why EEROS would be useful. With a

properly structured website, these professors would have been less lost, and hopefully more

encouraged to use or develop EEROS. The EEROS team was aware that their website was not

ideal and a better website could increase EEROS’s presence in the open source and robotics

communities. Because the EEROS team was busy developing working software, they did not

have time to focus on the EEROS web presence. Therefore, our first deliverable to the EEROS

team was a new website.

With an improved website design, the EEROS team will be able to use the website as a

medium for informing users, developers, and potential investors about the EEROS Real-Time

32

Robotics Framework. Additionally, we worked specifically towards making the website

maintainable, so that the busy EEROS team will be able to keep it updated with minimal effort.

3.1.2 EEROS Wiki

 A Wiki is a powerful tool for organizing relevant information related to a topic. A Wiki

had already been set up for EEROS, but it wasn’t organized effectively to convey necessary

information about EEROS. We overhauled the Wiki so that potential users and developers could

have a place to find pertinent information. We made three major changes to the Wiki:

1. Reorganize the pages in an easy-to-follow, hierarchical fashion

2. Translate German to English and fix existing translation mistakes

3. Add content where it would be useful

 These changes served two purposes. The first was to make the EEROS Wiki more useful

to new users or developers. The second was to give the Wiki enough structure for the EEROS

team to easily update it by adding new pages or editing existing ones.

3.1.3 Social Media

 Social media presence provides a powerful platform to attract new users and developers.

Services such as Facebook, LinkedIn, Twitter, and YouTube could provide the EEROS team

with an easy way to inform the community about updates and news.

 We took the following steps to help EEROS become more recognized within the robotics

community:

● Created Twitter and Facebook accounts for EEROS

● Provided ease of management for these services

● Added a blog/news section to the EEROS website

Social media users will see updates on their Twitter, Facebook and LinkedIn news feeds

that will guide them to EEROS news in the blog section of the website. This will allow the

EEROS team to quickly disseminate interesting and relevant information among the community,

keeping current community members informed and attracting new community members.

3.1.4 Other Materials

 We found some other miscellaneous avenues for increasing EEROS’s presence. One of

these was the creation of a Wikipedia page for EEROS. After researching this, we determined

that it wasn’t feasible at this time. In the future, EEROS may develop enough to warrant a

Wikipedia page, so we have set up an account on Wikipedia for the EEROS team to use, and we

used the sandbox features to construct some basic features for a future page.

33

 We also created a pamphlet for the EEROS team to use when presenting the project to

investors, developers or even users. Having paper materials is a good way to ensure that these

potential partners are informed. It also offers a concrete and proven way to distribute

information. They can be exceptionally useful at meetings or expositions, so that people

interested in EEROS have some materials to remind them about the project later on. We will

give the EEROS team the template used so they can continue to update the pamphlet as their

project grows and changes.

3.2 Providing access to Sustainable Funding

 EEROS is currently funded entirely by grants. To allow EEROS to grow immediately,

they will need to apply for more funding in the form of grants. The EEROS team recently

applied for large grant called the Horizon 2020, but unfortunately did not receive it. The team

was in the process of applying for a grant from the Swiss Commission for Technology and

Innovation (CTI). As part of a short-term deliverable, we assisted the EEROS team with the CTI

funding application. We primarily proofread for English mistakes, since the German-speaking

team has identified English as a potential obstacle. Ensuring proper grammar and phrasing goes

a long way in showing legitimacy for a relatively new project. Additionally, we reviewed their

development strategy, which has to be stated in the proposal. We found that the development

strategy was well thought out, and it aligned with our preliminary ideas.

Looking forward, we provided some suggestions for future funding plans, although these

kinds of plans are susceptible to change as the project evolves. As EEROS expands, it will need

a long term funding strategy that adapts to its current state. Given the data collected and insights

drawn from our background research, we developed a potential funding plan that changes based

on certain milestones, such as the first official release of EEROS or the community hitting a

certain size. Ideally, there would be three main phases of funding, as shown in Figure 6.

34

Figure 6: Funding Phases

 To ensure access to sustainable funding, we covered both short and long term funding.

Originally, we had planned to focus on long term funding, but upon arriving at the project site,

we quickly learned that a long term plan is not as useful as the short term deliverable. After all, a

long term funding plan is no use if the project cannot acquire funding in the short term.

3.3 Organizing and Streamlining EEROS Development

 We researched different development methods and related subjects to help the EEROS

team understand the different options. To make our findings accessible to the EEROS team, we

created a report that summarizes our findings and proposes options for the EEROS team. This

document includes:

● Resources on best development practices

● Documentation explaining how to use the community analysis tools

35

The EEROS team has some development guidelines in place, but as the project evolves, it

may turn out that these practices are no longer applicable. For example, when using Git for a

small project, committing to the “master” branch is an acceptable practice. However, in a large

scale project with more than just a few contributors, it is important to create separate branches of

the code and merge them together when features are completed. This helps prevent against

breaking the master version of the software. To make adapting to project changes easier, we

have created a short annotated bibliography of resources about different development practices,

such as the Agile method, Scrum, and Kanban. Scrum is a development model that focuses on

short iterations of development called sprints. It also focuses on quick feedback loops and

efficient communication between developers. Kanban, which was originally developed for lean

manufacturing, creates a pipeline of development where different groups work on tasks from the

backlog, passing along their finished iteration to the next stage of the pipeline. Additionally, we

have provided sources about open source projects in general. Because the EEROS project is so

young, it is hard to predict exactly how it will change. This document will give the EEROS team

many different options, so that they can choose which best fits their unique need when the time

comes.

The final piece of this report is documentation on how to use the community analysis

tools that we have developed. Under the hood, the tool is somewhat complicated, as it uses some

fairly complex math and has many software components. However, our hope is that the simple

user interface will allow the team to easily view the results from this analysis. We provided a

section in the report explaining how to use the tool and how to interpret the various metrics it

provides.

This report should help guide the EEROS team through this critical stage of development.

By reporting our findings in a formal manner, we made recommendations for the EEROS team

based on the work we did in Switzerland. The research we did may be useful for other open

source startups as well, because of the broad approach that we have taken. Part of helping

EEROS achieve its full potential has been looking at previous case studies as examples, a step

that any open source project should take to ensure success. In the future, we hope that EEROS

will be successful enough to become an example of excellence in open source.

3.4 Maintaining a Healthy Open Source Community

 The EEROS team's eventual goal is to have a strong global community surrounding their

project. During our background research we found that a strong community forms around an

open source software project that fulfills some common need of that community. Whether or not

EEROS will eventually have a strong community surrounding it depends on whether it meets the

needs of the robotics community, and whether they are able to communicate how they meet the

robotics community's needs successfully (which we addressed with our first objective).

However, in all our research, we found that meeting a community’s need doesn't guarantee

success. The open source mindset typically requires a specific community culture to be

36

successful, which is very multifaceted. Creating and preserving this community culture involves

making sure that the developers of the project are interacting in a positive, productive way. This

involves both providing guidelines for developers (which our previous objective suggests) and

also making sure that those guidelines encourage developers work in a healthy, productive

environment. This is what our methodology is focused on for this objective; being able to

monitor whether the development community is interacting correctly.

 Monitoring the development community involves keeping track of a lot of different

aspects of the community: how they communicate about objectives, how they determine whether

code is ready to be released, or how they interact while writing code. Understanding how

characteristics of each of these aspects correspond to the health of the development community

would be really hard if the EEROS team had no previous examples to look to. Thankfully there

are many different open source projects and lots of research on these kinds of topics, see

Bonaccorsi & Rossi (2003), Lerner & Tirole (2001), and Athey & Ellison (2014).

 Understanding this research is critical for EEROS if they want to be able to judge how

well the development team works together, especially as the project gets bigger. However, the

EEROS team’s primary focus is on developing their software, and they don’t have the resources

to both develop EEROS and research how best to maintain their community. To serve this need

we created a simple tool for them to visualize the state of the development community.

 As mentioned before, a typical open source community interacts on many levels while

developing code. Unfortunately these interactions can be quite varied between different projects,

and creating a tool to measure all of these interactions is well beyond the scope of our work to

help the EEROS team. To narrow the scope of this analysis tool, we focused just on how the

developers of different open source projects interact while writing code. We developed a

mathematical model and a visualization technique to present this kind of information. By having

this information, the EEROS team should be able to make informed decisions about which of

their development practices are working, and which are causing strife between developers.

3.5 Identifying New Partners

 Like any successful open source project, EEROS needs a passionate community of users

and contributors. However, in its current state, the EEROS community consists of the core

developers, a few clients, and the grant foundation that has funded EEROS so far. Because

EEROS is not yet ready for widespread use, we have identified two different types of partners:

1. One or two targeted partners that would be interested in working closely with the EEROS

team to either use EEROS or help develop EEROS

2. A database of potential partners that may be interested in EEROS once it is ready for

widespread use

37

 The EEROS developers do not yet have the necessary infrastructure in place to support a

large community of users and developers. It would be better for EEROS to spread slowly at first

to one or two specific partners, since the current state of EEROS would likely require direct

communication between the core EEROS developers and any EEROS users.

 As EEROS expands, the team will need to reach out to more potential partners to expand

their reach in the robotics community. We plan to research different institutions within the

different fields of robotics to identify those that may benefit from using EEROS. We created a

list of these institutions containing the field of robotics in which they specialize. This list will

give the EEROS team options to choose from when looking into new partners, which allows

them to create a well-rounded community from the beginning of expansion.

38

Chapter 4: Results and Findings
 We now look to present the deliverables we created and try to link them to some of the

more overarching themes of our paper. Over the course of this project, we worked closely with

Professor Nielsen and the rest of the EEROS development team to understand what aspects of an

open source community that EEROS could benefit from. We also looked into how being an

open source project would fit with their vision of the EEROS software and the kinds of

applications it would have. The tools and materials that we have created reflect our efforts to

provide the EEROS team a way to establish the culture they want in their open source

community surrounding their project. To do this, it was important to keep in mind the culture

EEROS is trying to promote: a very diverse community united around trying to provide and use

Easy, Elegant, Reliable, Open, and Safe robotics software. This means that we had to make our

tools and materials intuitive, i.e. that they represent the ethos of EEROS.

 These tools and materials that we provided are grouped by the objectives that we outlined

in our methodology. We first present ways in which we worked with the EEROS team to

understand how they want to communicate with the community: both in how they want to

increase their presence in the community and how they could be supported by the community.

We then transition to how we worked with the EEROS team to understand their vision of

development: both in discussing important development concepts and providing a way of

understanding how the development process is going. We end on information we found about

how EEROS can expand to reach new users.

4.1 Presence

 When discussing our methods for increasing EEROS’s presence, we mentioned the

existing perception of EEROS from the viewpoint of robotics professors at WPI. The general

consensus was that the website was hard to navigate and that the purpose of EEROS was not

clear. Our own research showed that information about EEROS was not widely available on the

Internet. Without direct communication with Professor Nielsen or another member of the

EEROS team, it would have been difficult to use or learn more about the framework. Our

solution was to create a web platform as a place for a community to develop around EEROS.

4.1.1 EEROS Website

 The EEROS developers had already put together a website containing a wealth of

information. However, the site had some organizational and aesthetic problems. To a potential

user, the layout made it hard to find relevant information, and the quality of the information was

tarnished by grammatical errors from the German to English translation. When we met our

sponsor for the first time, he explained to us that the website was created quickly to fulfill a

requirement for a funding application, and that a new website was one of our priorities.

 After the first week, we had created a working prototype using HTML, CSS, Javascript,

and PHP. We used the Bootstrap CSS libraries to create a rich, modern-looking website. The

39

website was further refined over the following weeks. The new homepage features a short

description of EEROS with links to the most useful pages for someone who is new to EEROS.

Figure 7: Website Homepage

To see an enlarged version of this image in comparison with the old homepage, see Appendix B.

 In addition, we included a page describing the framework, pages on EEROS in education

and industry, a page that will help users get started with EEROS, a community section, a section

about the EEROS team, and a contact page. Also included are quick links to the Wiki,

40

Application Programming Interface (API) Reference, and GitHub pages. As previously

discussed, the EEROS wiki contains organized information that is useful to both users and

developers. The API Reference contains detailed information on the code that EEROS is

comprised of, and the GitHub repository is where current and past versions of the EEROS source

code are stored. Providing quick access to these resources should greatly improve the overall

experience users have while searching for information on EEROS.

 To make the website easy to maintain for the EEROS team, we were instructed to migrate

the website from being hard-coded to being organized by a Content Management System (CMS).

We chose to use WordPress to accomplish this. Aside from making the management of content

easier, WordPress allowed us to easily add interactive content, such as forms and a search bar.

Finally, we created a file containing website documentation which will help guide anyone

who needs to modify the website. This documentation file includes short tutorials such as

“Making a New Page” and “Modifying the Navbar,” along with other useful information and

notes. This should serve to ease the learning curve associated with website development and

shorten the time required to make edits and additions to the EEROS website. The website is

currently online at http://eeros.org.

4.1.2 EEROS Wiki

 Part of increasing EEROS’s web presence meant having an accessible, useful Wiki for

the EEROS community. The structure is now more logical; all information can be easily found

from the home page. We also translated pages from German to English, and checked for

grammatical issues or phrases that don’t translate to English well. Finally, we added new

material in the form of coding guidelines, tutorials, and information about projects that are

currently using EEROS.

 We started by translating any stray German phrases and consolidating repeated

information. The information was present, but it was difficult for users to find what they might

be looking for. The EEROS team asked us to address these concerns, so that the Wiki would be

production-ready. By making sure that all information was given entirely in English and that it

was concise and easy to understand, we helped EEROS further realize its goal of ease-of-use.

We continued by organizing these pages in a logical format so that any users could easily find

whatever page they needed without navigating the sitemap. We made sure clear links were given

to the EEROS website, the API Documentation and the GitHub repository so a user could

quickly find these tools and information.

 The other major step in revamping the Wiki page was adding content. We added pages

about the EEDURO platform and the OmniMoBot to give readers an idea of what projects were

currently using EEROS. These pages featured media such as YouTube videos and pictures to

help users get an idea of what these projects were. EEROS is applicable to a wide range of

robots and robotic solutions, so we want to make sure that potential users see that the EEROS

community is diverse and innovative. We also added pages for potential developers; these

http://eeros.org/

41

included information on coding style guidelines and technical information such as inter-thread

data sharing in EEROS. This information was already present in the Subversion (SVN)

repository kept by the EEROS team, and it is necessary information for any developer that wants

to work with EEROS. We concluded by adding a lengthy tutorial for setting up a DC electric

motor to be controlled by EEROS. This tutorial was already made by the team, and by posting it

on the Wiki, we have given users an easy way to start using EEROS with a concrete example

project. The tutorial shows how to set up many of the important features that EEROS

implements, such as the safety system, control system and sequencer. It will provide any

potential users with a good starting place for learning how to work with EEROS.

 The revised Wiki has had a significant effect on how a user might see EEROS. With this

more extensive and well organized documentation, EEROS becomes easier to use, a core tenet of

its ethos. Compared to the website, the Wiki is written in a neutral tone, aiming only to inform

readers rather than persuade them. This isn’t to imply that persuasive writing is inappropriate for

the website; rather, that a user will look to the wiki as a trustworthy source since it only acts as a

directory. The Wiki will be the tool that developers and users utilize when working with

EEROS. It is crucial for open source projects that this kind of documentation is in place, since it

helps foster a community around the project. The Wiki will allow users and developers to

understand the culture of EEROS and give them the tools they need to advance and use the

software.

4.1.3 Social Media

 At the start of our project, EEROS had a small presence on LinkedIn and YouTube. The

LinkedIn page was largely unused, and the YouTube channel had many videos but few

subscribers. To get the word out about EEROS, a better presence on social media was needed.

 We created accounts for EEROS on both Twitter and Facebook. The EEROS Twitter

account is @eeros_framework and the page can be seen at http://twitter.com/eeros_framework.

The Facebook page can be found at https://www.facebook.com/eeros.framework. To give the

EEROS team easy social media integration, we used the WordPress blog functionality with the

Jetpack plugin. The Jetpack plugin provides a feature called Publicize, which allows all blog

posts to be automatically published to linked social media accounts. This means that when a

new blog post is published, posts will be made on social media linking to the new blog post.

4.1.4 Wikipedia Page

We had planned to create a Wikipedia page for EEROS when we began the project.

However, it was determined that EEROS is not yet developed enough to pass the strict guidelines

that Wikipedia enforces on its content. All of the currently published information about EEROS

comes from NTB, and Wikipedia requires that there be a significant amount of third party

sources before a neutral article can be written. We did set up an account for the EEROS

developers to use, and we began to format the page in the sandbox feature that comes with the

account. Wikipedia should be utilized once EEROS is used and developed outside of NTB.

http://twitter.com/eeros_framework
https://www.facebook.com/eeros.framework

42

Wikipedia is a powerful tool that would aid the expansion and recognition of EEROS. Often the

best way for software developers to get quick, concise information about a software project is to

look at the Wikipedia page before looking at the project’s website. Therefore, having a

Wikipedia page available could prove invaluable in generating interest from potential partners.

4.1.5 Informational Brochure

 We created an informational brochure for the EEROS team to give to potential partners.

Having this kind of material for expositions or meetings can be extremely useful. It concisely

highlights the important points about EEROS in a professional manner, and it serves as a

reminder for them later on. If they have the pamphlet they are more likely to search our website

and Wiki for more information later on.

 Informational pamphlets can help demonstrate legitimacy for a new project such as

EEROS. Pamphlets or information sheets are commonplace in the business world, and if

EEROS is to succeed in an industrial setting its developers should be using this means of

communication and advertisement. With this combination of tools, the EEROS team will be able

to expand the presence of EEROS readily.

4.2 Funding Proposal

 As it becomes more developed, EEROS needs new sources of funding to succeed. In its

current stage, these sources are mostly comprised of grants. By working with the EEROS team,

we learned how they wanted EEROS to be portrayed. This information enabled us to identify

key parts of the Commission for Technology and Innovation Project application that needed to

be revised. As stated in the methodology, we revised their most recent funding application by

proofreading for proper English and looking for wording that may not translate well from

German to English. These kinds of changes can help give EEROS more of an edge in the

application process, especially in a country where English is not the primary spoken language.

 Since they have not submitted the proposal yet, we do not currently know if they have

received the grant. However, we believe that using proper grammar and phrasing goes a long

way in making an application more professional and that our efforts should allow whoever

reviews the application better understand why EEROS deserves this grant.

 Since we have developed tools for measuring the strength and size of the EEROS

community, the EEROS development team can use the tools to determine the criteria for the

Community Interest Milestone shown in Section 3.2. Our hope is that when this milestone is

reached, it will be the ideal time to launch a crowdfunding campaign on KickStarter or another

crowdfunding platform. If there is enough community interest, a crowdfunding campaign should

generate enough revenue to push forward to the first official release of EEROS.

 If EEROS has a large enough community upon its release, then the “Algorithm Market”

should be an effective source of revenue for the EEROS developers. The idea behind the

Algorithm Market is to have a platform similar to the Apple App Store or the Google Play Store.

Users would be able to submit algorithms that will either be distributed for free or for a price.

43

Algorithms that are sold would provide revenue for the seller, and EEROS would get a

percentage of each sale. In addition, more experimental algorithms, such as those developed

within educational communities, would be released freely for testing purposes. This would

create a positive feedback loop within the community where industry would be able to purchase

algorithms at a lower cost than rewriting them, giving them time to perhaps improve upon some

more experimental algorithms. A connection between education and industry like this would

open a path for faster innovation within the EEROS community.

 In the future, our long term plan will give the developers options for possible funding

sources as EEROS continues to expand and become truly community-developed. It is likely that

this plan will change, meaning that instead of an absolute plan of action it will instead be used as

a guideline. Our sponsor has indicated that long term plans are generally limited in how useful

they can be, so we made sure that we emphasized the short term proposal over the long term

funding plan. This mindset may prove more useful in the long run, as it gives the EEROS team

options so they can adapt to overcome future obstacles.

4.3 Organizing and Streamlining EEROS Development

 Through our interviews with some of the EEROS users and developers, we learned that

while EEROS development has guidelines and standards, many of these are either not followed

or too underdeveloped to follow. For example, the EEROS team has stated that they want to use

an automated testing system, a common practice for large software projects. However, there are

no defined guidelines for testing, so the team rarely writes tests.

 Additionally, the team has told us that they want to use an Agile development model.

Agile, a movement which officially started in 2001, is defined as any software development

model that follows the Agile Manifesto:

We [the authors of the Agile Manifesto] are uncovering better ways of developing

software by doing it and helping others do it. Through this work we have come to value:

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

● Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

(Beck et al., 2001)

Because Agile on its own is not a development model, the EEROS team will have to further

define their development model. There are many different Agile models, making it difficult to

choose the best one for a particular team.

 We have developed a short annotated bibliography of resources on topics related to the

project management side of software development. We have included resources on coding

guidelines, testing guidelines, and Agile development models. Because of the nature of Agile

development, it is likely that the EEROS team will need to adapt to changes in the project.

44

Therefore, providing the team with resources they can use is more useful than creating an entire

development plan for them. This document has been provided in an electronic format that the

EEROS team can edit as they see fit, and hopefully they can use it as the software becomes

community-developed. An adapted version of this document can be seen in Appendix E.

 We have discovered that this point in EEROS’s development marks an important turning

point. Up until this point, EEROS was small enough that its developers didn’t need to worry

about using a specific model. It was already a small community, and as such it was very

informal and it used implicit rules for development standards. For the community to expand, the

EEROS developers need to make sure they define explicit standards for development and adhere

to them. This more formal and explicit definition of practices and guidelines will allow a

community to form around EEROS by making communication and collaboration much easier.

4.4 Maintaining a Healthy Open Source Community

 Over the course of the term, we developed a tool to visualize the EEROS community.

This visualization tool contains data and statistics about the EEROS community based on their

own code development. Additionally, the same data and statistics are shown for other open

source projects, for comparison. A screenshot of the visualization tool is shown below in the

figure below.

Figure 8: Visualization Tool

45

 The statistics shown are metrics of community health. For example, the Estrada index

measures how responsive the community is to contributions. If one person makes a change, do

others react, making changes of their own or implementing new things? This represents health

from a community activity perspective. A more healthy community tends to have a higher index

since they interact more and respond to changes. The other metric, average closeness, is more

descriptive as it shows how quickly information can travel between different developers. This

doesn’t necessarily mean that a community is healthy, just that they are closely knit. In some

cases, communities will have several groups of closely knit members who interact very strongly.

While individual clusters of developers can be further apart, the community overall can still be

healthy, especially in a larger project.

Many of these metrics are derived from the interactions between users. To capture the

interactions between users and get useful, intuitive data from them we created a mathematical

“network” or graph to model the EEROS development community. A graph is a collection of

nodes and their connections (edges). The nodes are the developers of EEROS; edges occur

between two developers once they’ve interacted enough with each other. To create this graph we

analyzed the different versions of the EEROS software on the EEROS Git repository. As

developers worked on the same areas of the code, we increased or decreased the “value” of their

interaction. The interaction value increased when two developers collaborated together, and the

interaction value decreased when they contradict each other’s work. This allowed us to identify

when users are “poisonous” to the project, i.e. when a developer decides to try and implement

their ideas when the rest of the community opposes them. We used these interactions to both

determine if an edge existed between two nodes and to assign an importance to each developer.

This importance takes into account all the interactions the developer has with the community,

and how frequently the developer contributes to the project. The specific details on how we

calculated these values can be found in Appendix D.

Using these metrics, this tool is designed to provide insight to the EEROS team on how

their community fits in with the global open source community. Therefore, we applied our

analysis tool to two other open source projects: WPI-Suite and ROS. However, this is a very

small sampling of the open source community, so we released the analysis tool as an open source

project under a custom license with the intent that it will grow and adapt to the needs of any open

source project. As this analysis tool grows, it will allow the EEROS team and other open source

projects that use it to understand whether the developers are working together well. As a

disclaimer, our analysis tool does not encompass the complete notion of health for a community.

There are many other important and relevant ways to measure how healthy a community is.

What this tool provides is a mathematical comparison of how developers interact between

different communities. While certainly not complete, it is an objective measure of certain

important concepts to a project.

46

4.5 Identifying New Partners

The next major step in EEROS’s future is to expand to other partners. This is something

that the developers have known for quite some time. They have been planning for this move,

and through personal contacts and NTB connections, they have a substantial list of partners that

may be interested in using EEROS. Several have already expressed interest in using the software

as soon as it is ready for release. Part of our work was to catalog these partners into a

comprehensive annotated list of partners. This simply lets the team organize their connections

and plan the expansion with ease.

Bringing EEROS to North American universities will also help EEROS grow, as many

top robotics programs are located at United States universities. We have contacts at several of

these universities, so we gave these to the EEROS developers so they can expand to these places.

WPI can also serve as an invaluable partner moving forward. We have contacted the Computer

Science and Robotics faculty and student. Several professors have expressed interest in using

EEROS in their research and plan to encourage students to use EEROS for projects, such as the

MQP. The MQP program at WPI is a great platform for further developing EEROS. This would

provide dedicated users who could also help develop the software and make suggestions for

future improvements. This kind of project would be a great asset in further developing EEROS

in a relatively forgiving academic environment. Additionally, we have expressed interest in

contributing to or using EEROS, and we plan to be active members of the EEROS community

upon completion of this project.

47

Chapter 5: Recommendations and Conclusions
 We now look to provide the EEROS developers with recommendations as they continue

their work. These suggestions are directly related to our original objectives. Our findings have

shown that these recommendations should not be taken as long term plans, but rather a means to

continuously improve as the EEROS community expands, which aligns with the Agile mentality.

It is important to assess the current state of EEROS, and try to understand what kind of

challenges and issues the EEROS team will face in the immediate future. Finally, we step back

and examine our work with EEROS with a global perspective. These larger themes are the

means to understanding the greater impact that our project has had. These conclusions also help

to encapsulate what it means to be a new open source project, both in the potential that comes

with such a venture and the challenges that a project will face at this stage.

5.1 EEROS Presence

 The EEROS developers should take several steps to ensure that EEROS continues to

have a thriving web presence. First and foremost, the website should be kept up to date. An out

of date website can be a huge detriment to any open source project; it can appear that the project

is no longer actively developed and supported. Continually updating the information on the

website will make EEROS more attractive, since potential users will know that the developer

team is devoted to helping the user base and improving their experience.

 Most community interaction will take place on the EEROS blog page, on social media

sites, or simply over E-mail. Public forums like the blog or social media are aimed primarily at

users, but strong developer interaction can help these places become more helpful. Therefore,

we recommend that the developer team takes the lead in promoting these tools by using the blog

and social media to promote new features and improvements. They should interact with the

community as much as possible. Helping users work around problems that they discover not

only reveals new issues and bugs, but also promotes EEROS as well-supported software. This

kind of user feedback is valuable and helpful to developers.

 Another area that can benefit from community contribution is the Wiki. Traditionally,

Wikis are written by a community and they can be edited by users in that community. This

doesn’t mean that the Wiki should be free for anyone to edit, but allowing EEROS users to

submit content will be helpful in allowing EEROS to grow. It can be worrisome allowing others

to change crucial information. It requires trust that they will not harm the page in some way or

provide false information. However, open source communities are in general very appreciative

of this trust, and as a community grows it regulates information and changes better than a

dedicated team could. In the long run, this change will be an important step in allowing EEROS

to be truly community-developed, marking a transition for the EEROS team from developing

code to developing a culture in the robotics community around robotics software being Easy,

Elegant, Reliable, Open, and Safe.

48

5.2 Sustainable Funding

 The EEROS team already has a good track record of maintaining funding for EEROS.

By applying for funding applications from a variety of European sponsors, they have been able

to maintain the development of EEROS. This has worked well for them, and so they should

continue using funding applications until a better method is required. However, many of these

applications are written in English, and since the EEROS team’s native language is German,

phrases and grammar don’t always translate well. Proper proofreading for English grammar

mistakes can go a long way to getting a funding application approved, and taking the time to

have a native speaker proofread their applications will be a worthwhile investment.

 Once EEROS has developed a much larger user base, crowdfunding and donations may

prove to be viable sources for continued, sustainable funding. Setting up a way for users to

donate to the EEROS team is a good idea as well, but will not likely bring in significant funds at

this stage of development. Crowdfunding may prove useful if the EEROS team requires

additional funding for a new, larger project surrounding EEROS. Websites such as Kickstarter

and Indiegogo are excellent examples of crowdfunding websites that the EEROS team should

look into. They could also provide funding for new EEDURO robots that will expand EEROS’s

user base.

5.3 Streamlined Development

 So far, the core EEROS developers have created a working version of their software.

However, it would be helpful for the team to start implementing important development practices

before the project grows any larger. The team should decide on standards for coding, software

testing, Git (version control), and documentation. The resources we have provided should give

the team a good starting point to initially develop and adapt these guidelines for themselves.

 One obstacle to the expansion of EEROS right now is the lack of documentation. While

the Wiki contains some good tutorials, the EEROS API documentation isn’t as well developed.

We recommend that the team start the process of streamlining their development by creating

standards for documentation and ensuring that contributions to EEROS meet the documentation

standards before they are accepted. Good documentation will allow new EEROS users to use the

framework without needing to be in direct communication with the core developers.

 Since the EEROS team eventually wants EEROS to become community-developed

software, it is important that the team comes up with a process for using Git. Currently, the

EEROS GitHub is not very active and changes are rarely committed. As development continues,

there should be a process for committing new changes to EEROS. Our annotated bibliography

contains some resources on proper Git usage, and we recommend that the EEROS team start

following a Git branching model.

 Once the documentation and Git process have been defined, EEROS will be ready for a

general use release. It will also be in a good position to start accepting contributions from the

community rather than just the core team. Once the software is released, the team will start

49

receiving feedback, which will allow the Agile development model to show its strengths. We

recommend using Agile development because we have found that it works well in practice, not

just because it has become a standard in software development. If the development model

chosen is not working, it would be beneficial to adapt to another model. We have provided

resources on various Agile methods, and hopefully one or more of these will be helpful to the

EEROS team.

5.4 Healthy Community

As mentioned earlier in our paper, it is important for the EEROS team to monitor the

community surrounding their project, as much of their success depends on the community. We

developed an analysis tool for the EEROS team to analyze how the members of the development

community interact when writing code. This information will be valuable to the EEROS team so

that they can understand what’s going on in the project, but not by itself. To make the

information that the tool provides useful, the EEROS team will need to use information about

development practices that we present in this paper and their own experience to both interpret the

information that the tool provides, and determine how to fix it. For example, they might ask why

two or three developers seem to be counterproductive when they’re working on a part of the code

that constantly is rewritten, or understanding that a sudden influx of new developers may lower

how responsive the developers are to different problems because the new developers aren’t

acclimated to the community yet.

The EEROS developers should remember the limitations of our analysis as well. It only

considers interaction between developers in regards to writing code. There are a lot of practices

that are important to the development community that can only be measured individually, such

as a certain developer’s habits in regard to coding guidelines, or a general adherence to release

schedules and best practices. When working on a software project, there is a tendency to stop

following these practices to try and finish critical work when a deadline approaches. While this

may occur, the EEROS team needs to promote certain expectations among its developers in an

effort to cultivate a healthy environment.

Finally, the EEROS team should keep in mind that the health of their community isn’t

only measured by how the developers interact through writing code. EEROS aims to serve a

much larger community where many users will never contribute to the code, but where the usage

will inform the development. As important as it is to monitor the developers, the EEROS team

needs to also monitor the website and other social media tools. This can be done through the

analytical tools that we installed through WordPress for the website, but also by keeping an eye

on how active users are on the social media platforms the EEROS teams are using.

These three areas are important for EEROS to continue to keep track of if they want to

make sure that they cultivate a healthy community that will make their framework a success.

50

5.5 New Partners

 The developers are currently looking for new partners to reach out to. We worked

together to create an annotated list of local and international partners, but we also want to make

recommendations about when to reach out to the different types of partners. We believe that the

developers should first look to educational partners. These will provide a solid group of test

users for EEROS, and some of them will become the first developers not at NTB. From here,

EEROS will be used in research projects, further testing and developing its capabilities. This

step will allow EEROS to become stable enough for industrial use. Industrial partners should

come last, since they need software that is fully developed and completely stable. EEROS will

get to that point after it has seen widespread use in the educational world. This is a guideline,

not an absolute rule. If industrial partners want to try EEROS now, they should, providing that

they understand that all features may not be implemented. All new partners are good, and will

provide useful feedback in some form (even rejection of EEROS can be useful). However, the

EEROS team should focus their efforts to find new partners in the provided order to have the

most impact moving forward.

 We believe that WPI could be an extremely effective partner, especially at this early

stage. As mentioned before, WPI’s MQP program is a great platform to test and further develop

EEROS. By establishing contacts at WPI, the EEROS developers will gain a valuable foothold

in educational robotics in the United States. Having this beginning of a global community will

allow EEROS to expand at a much more rapid rate. We recommend that the EEROS developers

take full advantage of these contacts, and continue to build a relationship between NTB and WPI

by developing EEROS. This way, EEROS has the chance to succeed overseas as well as

domestically, and it will serve to increase the impact that the software will have on the robotics

community.

5.6 Conclusions

 Over the course of the project, the EEROS team has mentioned that they want to move

towards an Agile development model, which is a way of developing software where the focus is

adapting to change rather than following a plan. The point of the Agile development model is

that the developers constantly check in with the customer or user to make sure that the software

is useful to the user. This will be very important for EEROS as they may have a diverse user

base. The EEROS team will have to work with users to ensure the framework is flexible enough

for all users. The open source model that the EEROS team plans to follow is a way to

accomplish this; in the open source model of development, the users have direct feedback into

how the framework will be developed and how it will serve their needs. If EEROS is able to

establish a community presence early enough, they will be well poised to achieve their goals.

 One of the things we learned when we got to Switzerland was that EEROS was not the

only one that benefitted from an Agile development model. Our original approach to the project

was to provide long term planning and resources that would support the development team’s

51

eventual expansion two or three years after we completed our project. This was the wrong

approach; we were far more successful by constantly checking in with the development team and

providing short term tools that the EEROS team could use to create their own long term plans.

Then they could adapt to unexpected problems that may end up occurring later in the

development process. This taught us that in any project the Agile development model can be

applied to create a better working relationship. The Agile model was originally designed for

software development, which can usually be seen as a project; a group of developers working

towards a common goal. We found that the development model that we suggested to the

developers could be applied quite effectively to describe our own processes, and that we should

interact with them just as they would hope to interact with their users.

 We have made a point in this paper to describe how an open source project needs a

community to thrive. In a way, community development can be seen as a form of Agile

development. The community works constantly on short term implementation and creating

working code, and they can respond to user feedback very quickly. The users and developers

can simply rely on a feature’s popularity to assess its importance to the project. In this way, we

have discovered that the very first research we completed on open source software and

communities (section 2.1) directly relates to this realization that we had at the end of our project.

Perhaps the parallel between open source community interaction and our interaction with the

EEROS developers is not a coincidence. What we’ve found (and what may be at the heart of the

open source movement in general) is that the success of a project can depend more on the

interaction of its creators and end users than the creator’s ability to perceive the project’s

objectives. This interaction provides flexibility, which is a powerful quality that is vital to a

project’s success. As we’ve observed from working with the EEROS team, young open source

projects naturally have this kind of flexibility; the mark of a successful open source project is the

ability to hold on to this flexibility while transitioning into a mature project.

52

Bibliography
Athey, S., & Ellison, G. (2014). Dynamics of open source movements. Journal of Economics &

Management Strategy, 23(2), 294-316. doi:10.1111/jems.12053

Barham, A. (2013). The Emergence of Quality Assurance Practices in Free/Libre Open Source

Software: A Case Study. IFIP Advances in Information and Communication Technology,

404(21), 271-276. Retrieved February 15, 2015.

Beck, K. et al. (2001). Manifesto for Agile Software Development. Retrieved April 23, 2015

from http://www.agilemanifesto.org

Blondel, V. D., Guillaume, J., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of

communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,

2008(10), P10008. doi:10.1088/1742-5468/2008/10/P10008

Bonaccorsi, A., & Rossi, C. (2003). Why open source software can succeed. Research Policy,

32(7), 1243-1258. doi:10.1016/S0048-7333(03)00051-9

Carillo, K., & Okoli, C. (2008). THE OPEN SOURCE MOVEMENT: A REVOLUTION IN

SOFTWARE DEVELOPMENT. The Journal of Computer Information Systems, 49(2), 1.

Collins-Sussman, Brian W. Fitzpatrick. Ben, & Safari Books Online. (2012). Team geek O'Reilly

Media, Inc.

Company profile. (2015). 2015, from http://www.redhat.com/en/about/company

Corbet, J., Kroah-Hartman, G., & McPherson, A. (2013). Linux Kernel Development: How Fast

It is Going, Who is Doing It, What They are Doing, and Who is Sponsoring It.

Dorsey, M. (2011). WPI Recieves Accreditation for First-in-the-Nation Robotics Engineering

Undergraduate Degree Program. Worcester Polytechnic Insitiute. Retrieved April 23, 2015 from

http://www.wpi.edu/news/20112/rbeaccred.html

Fitzgerald, B. (2006). The Transformation of Open Source Software. MIS Quarterly, 30(3), 587-

598.

Form 10-K 2014. Red Hat, Inc.

Glass, R. L. (1999). The loyal opposition of open source, linux...and hype. IEEE Software, 16(1),

128, 126-127. doi:10.1109/52.744583

53

Gostai: Urbi. (2015). Retrieved January 29, 2015, from http://www.gostai.com/products/urbi/

Grinzo, L. & Fernandez, L. (1999). Clarifying the Open Source movement (Vol. 24, pp. 119).

San Mateo: UBM LLC.

Guhl, T., & Bischoff, R. (2009). Robotic Visions to 2020 and beyond – The Strategic Research

Agenda for robotics in Europe. Retrieved 2/15/2015, from

http://robotics.h2214467.stratoserver.net/cms/upload/SRA/2010-06_SRA_A4_low.pdf

Harrison, A. (2013). Rise of the New Geeks: How the Outsiders Won. The Guardian. Retrieved

from http://www.theguardian.com/fashion/2013/sep/02/rise-geeks-outsiders-superhero-movies-

dork

Hodges, A. Alan Turing: The Enigma. Retrieved February 22nd, 2015, from

http://www.turing.org.uk/index.html

Jalopy, M. (2005). Owner's Manifesto. Make.

Krishnamurthy, S. (2005). An analysis of open source business models.

Kelly, Devin W. Student author -- ECE, Holtorf, Gregory K. Student author -- CS, & Rissmiller,

Kent J. Faculty advisor -- SS. (2009). The affects of open source software licenses on business

software. Worcester, MA: Worcester Polytechnic Institute.

Lerner, J., & Tirole, J. (2001). The open source movement: key research questions. European

economic review, 45(4/6), 819-826. doi: 10.1016/S0014-2921(01)00124-6

Licenses - GNU Project - Free Software Foundation. (n.d.). Retrieved February 16, 2015, from

http://www.gnu.org/licenses/licenses.html

Orocos Overview. (2007). Retrieved January 29, 2015, from

http://www.people.mech.kuleuven.be/~orocos/pub/documentation/rtt/current/doc-xml/orocos-

overview.html

Phillips, D. E., & Ebrary Academic Complete. (2009). The software license unveiled: How

legislation by license controls software access. Oxford: Oxford University Press.

Raymond, E. S., & eBooks on, E. (1999). The cathedral & the bazaar: musings on Linux and

open source by an accidental revolutionary. Cambridge, Mass: O'Reilly.

Red Hat Patent Policy. (2014). from http://www.redhat.com/legal/patent_policy.html

ROS.org History. (2015). Retrieved January 29, 2015, from http://www.ros.org/history

54

ROS-Industrial. (2015). Retrieved January 29, 2015, from http://www.rosindustrial.org

ROS Introduction. (2014). Retrieved January 29, 2015, from

http://www.wiki.ros.org/ROS/Introduction

ROS.org Powering the world's robots. (2015). Retrieved January 29, 2015, from

http://www.ros.org

ROS Wiki. (2014). Retrieved January 29, 2015, from http://www.wiki.ros.org

Stallman, R. (2009). Why "Open Source" Misses the Point of Free Software (Vol. 52, pp. 31).

New York: Association for Computing Machinery.

Sargent, G. (2015). Robotics History Timeline. from

http://robotics.ece.auckland.ac.nz/index.php?option=com_content&task=view&id=31

Silic, M., & Back, A. (2013). Information Security and Open Source Dual Use Security

Software: Trust Paradox. IFIP Advances in Information and Communication Technology,

404(21), 194-206. Retrieved February 15, 2015.

Spencer, R. (2002). Got a dirty, dangerous, dull job? let a robot do it and keep your workers

safe. Robotics World, 20(2), 14-15. Retrieved from

http://ezproxy.wpi.edu/login?url=http://search.proquest.com/docview/218467975?accountid=291

20

St. Amant, K., & Still, B. (2007). Handbook of research on open source software

technological, economic, and social perspectives (pp. xxxvi, 728 p. ill. 729 cm.). Retrieved from

http://AU4SB9AX7M.search.serialssolutions.com/?V=1.0&L=AU4SB9AX7M&S=JCs&C=TC0

000080965&T=marc&tab=BOOKS

The Player Project. (2014). Retrieved January 29, 2015, from

http://www.playerstage.sourceforge.net

The Orocos Project. (2015). Retrieved January 29, 2015, from http://www.orocos.org

Unimate. (2003). Retrieved February 22nd, 2015, from

http://www.robothalloffame.org/inductees/03inductees/unimate.html

Vaughan-Nichols, S. (2015). Red Hat: The first billion dollar Linux company has arrived |

ZDNet. from http://www.zdnet.com/article/red-hat-the-first-billion-dollar-linux-company-has-

arrived/

55

Williams, S. (2004). Free as in Freedom: Richard Stallman's Crusade for Free Software: Project

Gutenberg U6 - ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-

8&rfr_id=info:sid/summon.serialssolutions.com&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.ge

nre=book&rft.title=Free+as+in+Freedom&rft.au=Williams%2C+Sam&rft.date=2004-01-

01&rft.pub=Project+Gutenberg&rft.externalDocID=1186922¶mdict=en-US U7 - eBook U8

- FETCH-wpi_catalog_11869223.

Young, R. (1999). Giving It Away: How Red Hat Software Stumbled Across a New Economic

Model and Helped Improve an Industry. Open Sources: Voices from the Open Source

Revolution.

56

Appendix A: Interview Notes
The following are our raw notes from interviews with Urs Graf and Adam Bajric, two of the first

developers of EEROS. Urs has been responsible for the software architecture, whereas Adam

has been one of the lead programmers.

Table 2: Interview Notes

What has your role been in EEROS development?

Urs - 5 years or so ago

- Wrote first version in Java

- Like Simulink

- Masters student wrote first full Java version

- Been with the team since the beginning

- Coding and lots of reviews, lots of software architecture

Adam - Working on it since the beginning

- Made math library in framework

- Made sequencer

- Parts of control system

What is good about EEROS?

Urs - Framework that is flexible but has a rigid safety system

- Safety system is the selling point

- Blocks and time domains (still needs implementations)

Adam - Nice interface: biggest feature

- Easy to use

- Interface improved from first prototype a lot

Favorite and least favorite feature?

Urs - Needs profiling features (logging of real-time tasks)

Adam - The subsystem is not completed.

- The safety system has not been rewritten and improved

How does the EEROS development model work? Is there one maintainer? Is Git used properly?

etc.

57

Urs - No real development model yet

- Needs to be defined

- Not using Git flow yet

Adam - Use Git and GitHub and sometimes reviews with pull requests but usually just

look at problems together

- No

How is communication between developers? Mailing list?

Urs - Meetings in the lab

- Mailing list with people from Winterthur

- Conference calls

Adam - Just talk to each other

Are you looking for EEROS to become community-developed? Are you looking for more

developers in general?

Urs - Goal is to be community-developed

- Problem is rigid structure right now

- Conflict between rigid structure yet invite new ideas

- The safety system makes it hard for there to be many developers working on

the core system

- Kernel contribution is difficult, extensions will be easier

Adam - Yes, Development process is important.

- Would like to see people in industry contributing and using it.

- Only students using it now

- Will establish itself better if industry uses it

As a developer, how easy do you think it is to use EEROS? Good documentation? Simple API?

Urs - Wrote most of the information on the Wiki

- API has gone through many iterations

- Times when the API is clunky

Adam - Documentation not very good

- New developer would need effort to get started

- Too time consuming to work on it

- EEROS changes a lot and documentation would have to keep changing

58

What do you think about the EEROS community so far?

Urs - Too small to make a real judgment

Adam - Not very big

What are your hopes for the community and EEROS in the future?

Urs - Hoping that next release will be stable enough for people to use it

- Documentation still not good enough

- Layer in between OS and EEROS not finished

- More hardware

Adam - N/A

What coding style (if any) do you follow? If so, is it established?

Urs - Try to follow the Google C++ style with some modifications

Adam - Google coding guidelines modified

Are there plans for an easier installation process (deb package, etc…)?

Urs - Eventually, but not yet

- External company to create packages

Adam - Thought about making Debian package, didn’t do it

Do you have a release process / is anyone in charge?

Urs - Not yet

- Established in another two open source projects

Adam - Not really

- Would help to have one

- Different for each platform

How prominent is unit testing in your process of development?

59

Urs - JUnit for EEROS Java

- Looking into automatic testing for C++

Adam - Unit tests are general

- Not priority

- Didn’t start with test driven development, so didn’t pick it up

60

Appendix B: Before and After Screenshots of EEROS Homepage

Before:

Figure 9: Old EEROS Homepage

61

After:

Figure 10: New EEROS Homepage

To see more, visit http://www.eeros.org.

http://www.eeros.org/

62

Appendix C: Website Screenshots

Figure 11: “What is EEROS?” page

Figure 12: “Applications” page

63

Figure 13: “Get Involved” page

Figure 14: “The EEROS Team” page

64

Appendix D: Community Analysis Math
The following short document explains the math behind our community analysis tool. The

documentation was written with LaTeX and designed to be viewed as a PDF. You can see the

original document with the other project documents.

65

66

67

Appendix E: Development Resources Annotated Bibliography

Table 3: Development Resources Annotated Bibliography

Title Description Media URL

Agile Manifesto - Describes founding principles for

Agile Development

Website http://agilemanifest

o.org/

DACS State-of-the-Art - History of different development

methods

- Discusses Agile and criteria for when

Agile should be adopted

- Discusses various Agile methods: XP,

Scrum, Crystal Methods, Feature-

Driven Development, Lean, Dynamic

Systems Development

Website http://citeseerx.ist.p

su.edu/viewdoc/do

wnload?doi=10.1.1.

201.2704&rep=rep1

&type=pdf

Handbook of Research on

Open Source Software
- Excellent compilation of academic

papers on everything open source,

from the social aspects to

development models to licensing and

more

Book
(180.00 USD,

but free PDF

can be found)

http://www.igi-

global.com/book/ha

ndbook-research-

open-source-

software/494

Two case studies of open

source software

development

- Case studies for Mozilla and Apache

Open source development

- Look at users and developers

contributions over time in relation to

success of project

- Look at contributions via email and

new code creation, defect fixing, etc.

- How do open source developers

identify and solve problems with no

real timelines

Academic

Research Paper
http://dl.acm.org/cit

ation.cfm?id=56779

5

Quality assurance under the

open source development

model

- How is software QA performed under

open source

- How it differs from traditional

development models

- Can these differences give practical

advantages

- Findings: still developing (world of

open source) and it isn't advantageous

in all scenarios

Academic

Research Paper
http://www.science

direct.com/science/

article/pii/S016412

120200064X

FreeBSD Project Case

Study
- Compares FreeBSD to Apache to look

at open source success

- FreeBSD has 1) smaller set of core

developers 2) larger set of top

developers 3) more well defined

testing process

- Since Apache and FreeBSD are both

successful, perhaps these differences

won’t make or break success

- Both systems have similar ratio of

Academic

Research Paper
http://ieeexplore.iee

e.org/xpl/login.jsp?t

p=&arnumber=146

3231&url=http%3A

%2F%2Fieeexplore

.ieee.org%2Fxpls%

2Fabs_all.jsp%3Far

number%3D146323

1

http://agilemanifesto.org/
http://agilemanifesto.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2704&rep=rep1&type=pdf
http://www.igi-global.com/book/handbook-research-open-source-software/494
http://www.igi-global.com/book/handbook-research-open-source-software/494
http://www.igi-global.com/book/handbook-research-open-source-software/494
http://www.igi-global.com/book/handbook-research-open-source-software/494
http://www.igi-global.com/book/handbook-research-open-source-software/494
http://www.igi-global.com/book/handbook-research-open-source-software/494
http://dl.acm.org/citation.cfm?id=567795
http://dl.acm.org/citation.cfm?id=567795
http://dl.acm.org/citation.cfm?id=567795
http://dl.acm.org/citation.cfm?id=567795
http://www.sciencedirect.com/science/article/pii/S016412120200064X
http://www.sciencedirect.com/science/article/pii/S016412120200064X
http://www.sciencedirect.com/science/article/pii/S016412120200064X
http://www.sciencedirect.com/science/article/pii/S016412120200064X
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1463231&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1463231

68

core developers to debuggers, defect

densities, and developers who are

users

The Impact of Ideology on

Effectiveness in Open

Source Software

Development Teams

- Framework of OSS community

ideology

- Theoretical model to show how

adherence to different parts of

framework affects success

- Success defined as retention of

developer input and generation of

project outputs

- Adherence to some parts of ideology

can increases retention but decrease

outputs

Academic

Research Paper
http://www.jstor.or

g/discover/10.2307/

25148732?uid=2&u

id=4&sid=2110614

0420621

Team Geek - Look at patterns and anti-patterns for

working with other people developing

software

- Human component of software

engineering

- Learning to collaborate and have soft

skills will let you have more impact

for same effort

Book (25.00

USD)
http://shop.oreilly.c

om/product/063692

0018025.do

Software Documentation - Suggested format for good

documentation

- Format, writing style, guidelines,

standards, etc.

PDF http://www.literatep

rogramming.com/d

ocumentation.pdf

Agile/Lean Documentation - Begins with explaining why

documentation is important

- What kinds of documents should be

created for agile development

- Handoffs, updates, other best practices

for documentation upkeep

Website http://www.agilemo

deling.com/essays/a

gileDocumentation.

htm

Software Testing: A

Craftman's Approach
- Comprehensive book about software

testing

- Covers mathematical models, unit

testing, software reviews, etc.

- Has sections specifically for testing in

an Agile environment

Book (about

90.00 USD)
http://www.crcpress

.com/product/isbn/9

781466560680

Continuous Delivery:

Reliable Software Releases

through Build, Test, and

Deployment Automation

- Book about automating as many parts

of the 'deployment pipeline' as

possible

- Seems to be fairly comprehensive

Book (about

40.00 USD)
http://www.amazon

.com/Continuous-

Delivery-

Deployment-

Automation-

Addison-

Wesley/dp/0321601

912

http://www.jstor.org/discover/10.2307/25148732?uid=2&uid=4&sid=21106140420621
http://www.jstor.org/discover/10.2307/25148732?uid=2&uid=4&sid=21106140420621
http://www.jstor.org/discover/10.2307/25148732?uid=2&uid=4&sid=21106140420621
http://www.jstor.org/discover/10.2307/25148732?uid=2&uid=4&sid=21106140420621
http://www.jstor.org/discover/10.2307/25148732?uid=2&uid=4&sid=21106140420621
http://www.jstor.org/discover/10.2307/25148732?uid=2&uid=4&sid=21106140420621
http://shop.oreilly.com/product/0636920018025.do
http://shop.oreilly.com/product/0636920018025.do
http://shop.oreilly.com/product/0636920018025.do
http://shop.oreilly.com/product/0636920018025.do
http://www.literateprogramming.com/documentation.pdf
http://www.literateprogramming.com/documentation.pdf
http://www.literateprogramming.com/documentation.pdf
http://www.literateprogramming.com/documentation.pdf
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.agilemodeling.com/essays/agileDocumentation.htm
http://www.crcpress.com/product/isbn/9781466560680
http://www.crcpress.com/product/isbn/9781466560680
http://www.crcpress.com/product/isbn/9781466560680
http://www.crcpress.com/product/isbn/9781466560680
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912

69

Appendix F: Annotated List of Partners
Table 4: Annotated List of Partners

Name Organization Type Description Focus

Scott Barton WPI Professor Prof. Barton is a music professor at WPI

who runs the music perception and robotics

laboratory. He's interested in robust, real

time software as a way to both synchronize

many robots, and to process audio input

Artistic Robotics

Michael

Gennert
WPI Professor Head of the robotics department at WPI. Not

very active in student projects
Education

Nathan

Hughes
WPI Student Student at WPI, research interests are motion

planning and graph theory.
Motion Planning,

Musical Robotics

Dmitry

Berenson
WPI Professor Prof. Berenson works with human robot

interaction and motion planning. Primarily

uses the PR2 and Baxter robot as research

platforms.

Motion Planning,

Autonomous

Collaboration

Susan Jarvis WPI Professor Prof. Jarvis teaches the embedded computing

courses at WPI. Her research focus on

sensing using robotic platforms

Embedded

Computing, Sensing

Jim

Duckworth
WPI Professor Prof. Duckworth teaches advanced FPGA

courses at WPI. His research focus is real

time systems, and he sponsors several

projects dealing with real time sensing. He

also works a lot with industry

Sensing, Real Time

Systems

Craig Putnam WPI Professor Prof. Putnam teaches the introductory level

courses at WPI, and the manufacturing

courses. He doesn't do research, but sponsors

a lot of student projects, especially the

projects that involve the control of industrial

arms

Manufacturing

Creative

Robotics

Studio

WPI Project Project investigating how to create a

framework for controlling artistic robots (IQP

& MQP)

Artistic Robotics

