
Black Hole and Quantum
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I Abstract

This report explores the properties of two unusual heat engines. The first, the
black hole engine, operates between two thermal reservoirs consisting of black
holes and extracts energy from the emitted Hawking radiation. The unusual
features of this engine are explored. The second engine, the quantum Szilard
engine, is used to understand why the violation of the second law of thermody-
namics by a quantum Maxwell’s demon turns out not to be the case.
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1 Introduction

Heat engines are devices that extract energy from one or more thermal reser-
voirs and convert it partially into work. This report studies two unconventional
heat engines: a black hole heat engine and a quantum Szilárd engine.

In the 1970s Bekenstein [7] realized that when an object falls into a black
hole, the entropy of the hole increases as a result. He also found the entropy
of the black hole to be proportional to its surface area and not its volume, as
is the case in ordinary thermodynamics. Stephen Hawking [8,9] verified this
prediction by applying quantum field theory to the region just outside a black
hole. Hawking found that a black hole emits radiation (now termed ”Hawking
radiation”) and behaves like blackbody at a temperature that is inversely pro-
portional to its mass [2].

In chapter 2 we use these discoveries to show how a Carnot engine can be
made to operate between two black hole heat reservoirs, following the treat-
ment of Opatrný and Richterek [1]. We give derivations of some of the basic
expressions in black hole thermodynamics, and also recall the operation of the
idealized Carnot cycle. We then discuss the thermodynamics of a black hole
in a box, and show how two such black holes could serve as the hot and cold
reservoirs of a heat engine. The cycle of the black hole heat engine is described
and analyzed, and it is shown to operate at the Carnot efficiency. We end the
discussion of the black hole heat engine by describing its work output with and
without any use of the cosmic microwave background radiation.

The idea of Maxwell’s demon was first put forward by James Clerk Maxwell
in his 1871 book, Theory of Heat, where he imagined a small creature, or de-
mon, who was able to perform actions that led to a violation of the second law
of thermodynamics [3]. The demon opens and closes a hatch between two sec-
tions of a box, allowing only faster particles to pass in one direction and slower
particles in the other, creating a buildup of faster particles on one side of the
box. The hatch is assumed to be massless and frictionless, so that the demon
does no work in the process. However the demon succeeds in creating a tem-
perature difference between the two halves of the box without doing any work,
which is a violation of the second law of thermodynamics [4]. In 1929, 58 years
after Maxwell’s book, Leo Szilárd introduced a model of a single molecule heat
engine and used it to analyze the paradox of Maxwell’s demon. He reasoned
that once the demon was considered to be a part of the system the paradox
could be resolved by considering the demon’s memory as a valid entropic cost.
However, his analysis was limited since it was carried out entirely within the
classical domain. Wojciech Zurek [10] later introduced a quantum version of
Szilárd’s engine to give a more complete resolution of the paradox.

In chapter 3, we discuss a variation of Zurek’s engine given in a paper by
Davies, Thomas, and Zahariade [5], which we refer to as the quantum harmonic
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Szilárd engine. This engine has the advantage over Zurek’s engine that it allows
analytical calculations to be performed of all the stages of the engine’s cycle and
thus permits a more transparent resolution of the paradox of Maxwell’s demon
to be given.

A concluding chapter recapitulates the results of this work and indicates
some areas in which new aspects of the problems studied here are being pursued.
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2 Black Hole Heat Engine

This chapter explores the properties of a heat engine that operates in a Carnot
cycle between two thermal reservoirs consisting of black holes. The laws of
classical thermodynamics are used to analyze the properties of this engine and to
gain an understanding of both its possibilities and its limitations. The account
given below is based largely on the work of Opatrný and Richterek [1].

2.1 Black Hole Thermodynamics

In order to understand how black holes could be used in a heat engine, we
must first explore their unique thermodynamic properties. For this analysis we
will consider non-rotating, uncharged black holes. Black holes of this form are
commonly referred to as a Schwarzschild black holes, and have a Schwarzschild
radius of

RS =
2GM

c2
, (1)

where M is the mass of the black hole, c is the speed of light and G is Newton’s
constant of gravitation. Black holes were once thought to be truly black, with no
emission occurring from them. However, Beckenstein and Hawking discovered
that black holes actually radiate at the Beckenstein-Hawking temperature

TBH =
h̄c3

8πkGM
, (2)

where h-bar is Planck’s constant and k is Boltzmann’s constant. We can use the
Beckenstein-Hawking temperature to learn more about black holes by combining
the first and second laws of thermodynamics in a joint form,

TdS = dU + dW. (3)

If we consider our system to be an isolated black hole then it does no work on
its surroundings, dW = 0. Expressing the energy of the black hole as U = mc2,
with a temperature T = TBH , equation (3) becomes

TBHdS = c2dm, (4)

which can be converted into a differential equation

dS

dm
=

c2

TBH
=

8πGk

ch̄
m. (5)

Integrating this equation under the boundary condition S = 0 at m=0 gives the
entropy of a black hole of mass M,

SBH =
4πGk

ch̄
M2. (6)
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The above equation can be written in terms of the surface area of the black
hole, A = 4πR2

S . This results in

SBH =
kc3

4Gh̄
A. (7)

Notice how the entropy of the black hole depends on its surface area rather than
its volume, diverging from the usual expectations of ordinary thermodynamics.
This strange property is an expression of the holographic principle, which states
that all the information about a black hole is encoded on its boundary.

From equations (2) and (7), we can infer a key feature of black hole thermo-
dynamics; as a black hole emits radiation, its mass and surface area decrease,
and its temperature increases. This can also be seen by combining equations
(1) and (2) to get

RS =
h̄c

4πkTBH
, (8)

which further confirms that a black hole with a smaller Schwarzschild radius,
and hence a smaller surface area, has a higher temperature. Thus, as a black
hole radiates heat, its temperature increases. This implies that black holes have
a negative heat capacity, C, which we can confirm through calculation,

C =
dE

dTBH
= c2

dM

dTBH
= −8πGk

h̄c
M2. (9)

This is a strange yet crucial result in understanding the thermodynamic prop-
erties of black holes. The more heat black holes give off, the smaller and hotter
they become. Hence, black holes with smaller a surface area have a higher tem-
perature, and black holes with a larger surface area have a lower temperature.
This principle will be crucial in exploring the use of black holes in a heat en-
gine, with the goal of constructing a heat engine with maximal efficiency. But
in order to do that we must first define a specific type of engine to emulate.

2.2 The Carnot Cycle

According to the second law of thermodynamics, no heat engine can have 100%
efficiency, as not all heat can be fully converted into work. The highest possible
efficiency is attained with an idealized engine that operates in a reversible man-
ner between two heat reservoirs. The cycle of this hypothetical engine is known
as a Carnot cycle. To ensure that the engine achieves maximum efficiency, it
must avoid all irreversible processes. Hence, every process in the Carnot cycle
must be carried out quasi-statically (i.e. with infinite slowness) to prevent any
irreversible heat flow. Thermodynamic equilibrium must also be maintained at
every stage of the process. There are four reversible processes in the Carnot
cycle:

1. Isothermal Expansion

2. Adiabatic Expansion
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3. Isothermal Compression

4. Adiabatic Compression

After adiabatic compression, the system is back in its initial state and the
process repeats. The efficiency of a Carnot engine is given by

eCarnot = 1− TC
TH

. (10)

Hence, the maximal efficiency of a heat engine only depends on the temperatures
of the two reservoirs [6]. A conventional Carnot engine has an ideal gas as its
working substance. However, we will explore the properties of a Carnot engine
using black holes as the heat reservoirs and the photon gas emitted by them
as the working substance. Now that we have familiarized ourselves with the
thermodynamic properties of black holes and the properties of the Carnot cycle,
we are ready to construct a theoretical model of a black hole heat engine.

2.3 Black Hole in a Box

The heat engine we will discuss consists of two Schwarzschild black holes as heat
reservoirs and the gas of photons they are in equilibrium with as the working
substance. First we will consider a single one of these black holes inside a box
filled with the radiation it emits, and take it to be in thermal equilibrium with
this radiation at the temperature T . The total energy of the box, or thermal
reservoir, is the sum of the energy of the black hole and the radiation,

E =Mc2 + aV T 4, (11)

where the first term on the right is the energy of the black hole and the sec-
ond term is the energy of the blackbody radiation in a box of volume V at
temperature T , and

a =
π2k4

15c3h̄3
(12)

The entropy of the system is

Stot = SBH + Srad, (13)

with SBH given by equation (7) and the radiation entropy

Srad =
4

3
aV T 3. (14)

By using equation (11), we can solve for the radiation temperature in terms
of the total energy and black hole mass, and plug this into equation(14) to get
an expression for the total entropy as a function of M:

Stot = k

[
4πG

h̄c
M2 +

4

3

4

√
π2V c3

15h̄
(Mtot −M)

3
4

]
(15)
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where Mtot ≡ Etot

c2 . We now want to determine the conditions under which the
system is stable. The system is stable at the equilibrium entropy, which also
happens to be the maximum entropy. Hence, we need to find local maximums
of the total entropy. One local maximum of equation (15) is at the boundary
M=0, which is when the black hole has completely evaporated, leaving only
radiation in the box. In order to find the other local extrema we set the partial
derivative of the entropy equal to zero,(

∂Stot

∂M

)
= 0, (16)

and obtain

M4 (Mtot −M) =
π2c7h̄V

15 (8πG)
4 . (17)

This equation has real solutions between 0 and Mtot only for V sufficiently
small V,

V ≤ V ∗ =
2203π2G4M5

tot

54c7h̄
. (18)

For larger volumes, the black hole will evaporate completely by the emission of
Hawking radiation before it has the time to absorb radiation reflected by the
walls and come to equilibrium with it. Condition (18) determines the length of
the box required to maintain the black hole in thermodynamic equilibrium as

lbox ≤ 40lp

(
M

mp

)2/3

(19)

where lp =
√

Gh̄
c3 is the Planck length and mp =

√
h̄c
G is the Planck mass. In

the black hole heat engine we will study, the thermal reservoirs are taken to be
black holes in equilibrium with cavity radiation in boxes whose dimensions obey
the constraint (19).

2.4 Black Hole Carnot Cycle

Consider a black hole heat engine with two thermal reservoirs of the kind de-
scribed above. The larger black hole has a lower temperature and will serve as
the cold reservoir, while the smaller black hole has a higher temperature and
will serve as the hot reservoir. This is due to the thermodynamic properties of
black holes described in equations (2), (8), and (9). In between the two reser-
voirs there is a cylinder with a movable piston. The cylinder’s walls and piston
reflect radiation perfectly, and the volume of the cylinder is very small in com-
parison to the two boxes. During the process, the cylinder can be completely
isolated or open to one of the two reservoirs.

The engine operates in a four-stage cycle that differs slightly from that in
the usual Carnot engine. The cycle begins with the piston close to the hot
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Figure 1: Black Hole Heat engine with the small black hole serving as the hot
reservoir and the large black hole as the cold reservoir.
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reservoir, with the volume of the working substance being equal to zero. In
the first stage of the cycle, the cylinder is opened to the hot reservoir and
the hot radiation enters the cylinder and pushes the piston toward the cold
reservoir. The radiation in the cylinder expands isothermally and the volume

of the working medium increases to V1. Radiation pressure is given by p = aT 4

3 ,
which only depends on temperature, implying that an isothermal process is also
an isobaric process. The work done by the system during this first stage is

W1 = pHV1 =
1

3
aT 4

HV1, (20)

where pH and TH are the pressure and temperature of the hot reservoir respec-
tively. The energy extracted from the hot reservoir is

Q1 = TH∆S1 =
4

3
aV1T

4
H . (21)

In the second stage, the cylinder is isolated from the two reservoirs, and the
radiation expands adiabatically, by pushing the piston to volume V2, cooling the
temperature to TC , the temperature of the cold reservoir. Since the radiation
expands adiabatically, the radiation entropy in equation (14) is constant. Thus,

the resulting volume is V2 = V1 (TH/TC)
3
. During this process, pressure is not

constant, so we must do an integral to calculate the work done during this stage,
which is

W2 =

∫ V2

V1

pdV =
a

3

∫ V2

V1

T 4dV. (22)

We can use the relation V = V1 (TH/T )
3
to convert the integral over V into one

over T to get

W2 = −aV1T 3
H

∫ TC

TH

dT. (23)

which results in,

W2 = aT 4
HV1

(
1− TC

TH

)
. (24)

In the third stage, the cold radiation is pushed out of the cylinder isother-
mally into the cold reservoir. Work is done on the system in this process, since
the radiation is pushed into a region of nonzero pressure. The work done on the
system is given by

W3 = −pCV2 = −1

3
aT 3

HTCV1, (25)

and the heat energy pushed into the cold reservoir is

Q3 = TC∆S3 =
4

3
aV2T

4
C =

4

3
aV1T

3
HTC . (26)

In the last stage of the cycle, the piston is returned to its original position
through an empty cylinder by a mechanism in the heat engine that performs no
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work. Therefore, the net work in one cycle is

Wnet =W1 +W2 +W3 =
4

3
aV1T

3
H (TH − TC) = Q1 −Q3. (27)

We have thus described a complete cycle of our black hole heat engine. Using
equation (27), we can calculate the efficiency of the engine to be

e =
Wnet

Q1
=
Q1 −Q3

Q1
= 1− Q3

Q1
. (28)

By dividing equation (27) by equation (21), we obtain the relationship

Q3

Q1
=
TC
TH

. (29)

Therefore, the efficiency becomes

e = 1− TC
TH

, (30)

which matches equation (10) exactly, showing that our black hole heat engine
operates with the same efficiency as an ideal Carnot engine between the same
reservoirs.

2.5 Work Extraction and Power

Now that we have a working model of a black hole Carnot engine, we must
discuss how much work can actually be extracted from it. So far, we have
only considered a single cycle during which the reservoirs remain relatively un-
changed. However, each cycle extracts heat from the hot reservoir and transfers
it to the cold reservoir. Hence, over several cycles, the temperatures of the
two heat reservoirs will change. By using equation (29), and the relationships
dQ1 = −dM1c

2 and dQ3 = dM2c
2, we can write

dM1

dM2
= −TH

TC
. (31)

This equation describes how the change in the black hole masses resulting from
the energy transfer is constrained by the temperatures of the two reservoirs.
From equation (2), we know that the temperature is inversely proportional to
mass, allowing equation (31) to be expressed as

M1dM1 = −M2dM2. (32)

This can easily be integrated to find the solution

M2
1 +M2

2 =M2
1,0 +M2

2,0 (33)

where M1,0 and M2,0 are the initial masses of the small (hot) and large (cold)
black hole, respectively. During the entire Carnot process the hot reservoir
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loses mass and becomes hotter, while the cold reservoir gains mass and becomes
colder. This strange behavior is again due to the black hole’s negative heat
capacity, which causes its temperature to increase when energy is extracted.
This process will continue until the black hole in the hot reservoir completely
evaporates, leaving the cold black hole with the final mass

Mf =
√
M2

1,0 +M2
2,0 (34)

We can use the decrease in mass in conjunction with Einstein’s mass-energy
equivalence to express the total work extracted over the entire Carnot process
as

Wtot =
(
M1,0 +M2,0 −

√
M2

1,0 +M2
2,0

)
c2 (35)

However a real engine would not be able to operate in a perfectly reversible
fashion, and as a result some some of the energy would be lost to irreversible
processes. So equation (35) is really an upper limit to how much work can
be extracted from our black hole heat engine. Truly reversible processes are
infinitely slow. Thus, for any practical heat engine maximal efficiency and
maximal power cannot coexist. There must be some sacrifice of efficiency if
we want to have an engine that produces a sufficient amount of energy in a
reasonable amount of time. For the black hole Carnot engine, the power is
limited by the rate at which the hot reservoir releases energy and also by the
rate at which the cold reservoir absorbs energy. The total power of the engine
is the difference between these two powers,

P = PH − PC . (36)

The power radiated by a black hole that emits only photons is given by the
classical thermodynamic equation

PBH = eσAT 4, (37)

where e is the emissivity, σ = ac/4 is the Stefan-Boltzmann constant. On using
A = 4πR2

S along with (1) and (12), we can write (37) as

PBH =
π

240

k2T 2

h̄
, (38)

where the emissivity has been set to one for a black hole. Using this equation
for both PH and PC allows us to express the efficiency of the black hole heat
engine as

e =
PH − PC

PH
= 1− T 2

C

T 2
H

. (39)

Notice that this efficiency exceeds that for an ideal Carnot engine given in (10)
(and represents a situation that cannot be achieved in practice).To get around
this difficulty, we can reduce the power PH by the factor TC/TH , while keeping
PC unchanged as this would allow us to operate an engine at the ideal efficiency.
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In order for the two black holes to remain in thermal equilibrium, energy
must be extracted from the hot reservoir at a much lower rate than the black
hole emits it. This is also true for radiation absorption by the cold reservoir.
Therefore,

PH ≪ πk2TH
240h̄

(40)

and

PC ≪ πk2TC
240h̄

. (41)

Using equations (40) and (41), and reducing the hot reservoir’s power by TC/TH ,
we find that the maximum power that can be extracted from the heat engine
must obey the inequality

P ≪ π

240

k2TC (TH − TC)

h̄
. (42)

In order to assess the practicality of this engine, let us consider a numerical
example. We shall consider a hot black hole with a mass of M1 = 5× 1012 kg,
and a cold black hole of mass M2 = 4 × 1025 kg. Using equation (2), we can
compute the corresponding black hole temperatures to be TC = 3.07 × 10−3

K and TH = 2.46 × 1010 K. Using these temperatures, we find from equation
(42) that the output power must be much less than 2× 10−6 W. The maximum
energy that can be extracted from this system can be calculated to be 4.5×1029

J, implying that it would take over 7×1027 years to extract it all. This example
shows that this type of heat engine would be practically useless, even if it could
be realized.

2.6 Considering a Universe With Background Radiation

If the universe outside the heat engine was empty, its temperature would be
zero, TC = 0. Then the universe could be used as the cold reservoir instead of
the cold black hole. In that case we could modify our original heat engine to
only include one black hole; the hot black hole would remain in the hot reservoir,
and waste radiation would be pumped out into the empty universe, which now
serves as the cold reservoir. In the ideal case, the total extractable work is equal
to the total energy of the black hole.

In the real world we must consider background radiation, which is ever-
present in the universe. If the background radiation is colder than any of the
black holes, it would still be simpler to pump the waste photons into space than
a black hole. Using this alternative version of our heat engine, we must account
for the fact that space can absorb heat at an unlimited rate. Now, in equation
(39), PC becomes the problematic factor. To prevent the Carnot limit from
being exceeded, we must increase the emission rate into the cold reservoir by
the factor TH/TC . On doing this, equation (39) reduces to the proper Carnot
efficiency, and we can express the total power of the heat engine as

P ≪ π

240

k2TH (TH − TC)

h̄
. (43)
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If the black hole is allowed to evaporate entirely during the engine’s use, we
can calculate the maximum amount of work that can be extracted by assuming
that no increase in the entropy of the engine or the environment occurs in the
process. We know from equation (6) that the entropy of a black hole with mass
M is

SBH =
4πGk

ch̄
M2. (44)

If the entire black hole were to evaporate, the entropy of the universe would go
down by this amount. In order for the entropy change to be zero, the entropy
of the cold reservoir, or the universe in this case, must go up by this amount.
Let’s assume that the engine emits a fraction f of the energy Mc2 of a black
hole as heat into the cold reservoir. The remainder is then converted into useful
work,

W = (1− f)Mc2 (45)

Therefore, the entropy of the cold reservoir goes up by fMc2/TC . For zero
entropy change, we must have

fMc2

TC
=

4πGk

ch̄
M2. (46)

By solving this equation for f and using equation (2), we find that

f =
TC

2TBH
. (47)

Using this value for f , along with equation (45), allow us to calculate the work
that can be extracted from this engine when the entire black hole evaporates as

W =

(
1− TC

2TBH

)
Mc2. (48)

Notice that Mc2/2 of useful work can still be extracted, even when the
background radiation and black hole start out at the same temperature.

In the event that the black hole is much colder than the background radia-
tion, we can flip this process and now use the radiation as the hot reservoir and
deposit the waste energy into the black hole.

2.7 Comparison to Conventional Carnot Engine

Despite the unconventional nature of its working substance, a black hole heat
engine shares some of the same properties as the conventional Carnot engine.
It consists of two thermal reservoirs that regulate the heat flow, and it follows
a reversible set of operations consisting of isothermal and adiabatic stages like
the usual Carnot engine. Its efficiency also matches that of a Carnot engine
operating between reservoirs at the same temperatures.

However, there are some key differences from the standard Carnot engine.
We have seen that black holes have a negative heat capacity, and thus increase
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in temperature as they give off radiation. As a result of this strange behavior,
the hot reservoir gets hotter until the hot black hole completely disappears.
Meanwhile, the cold reservoir gets colder as it absorbs the radiation and the
temperature difference between the reservoirs therefore diverges. This is in stark
contrast to a conventional Carnot engine, in which the temperatures of the two
reservoirs gradually become equal, and the operation of the engine grinds to a
halt.

It is interesting that the old field of thermodynamics is perfectly up to the
task of working out the properties of as exotic a heat engine as one based on
black holes.
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3 Harmonic Quantum Szilárd Engine

In the previous chapter, we used classical thermodynamics to analyze an unusual
type of heat engine involving black holes. In this chapter we show how the
analysis of a type of heat engine proposed by Szilard [3] through the lens of
quantum mechanics can help to save the second law of thermodynamics from
the attack launched on it by Maxwell’s demon. Our account below is based on
the recent paper of Davies, Thomas, and Zahariade [5].

3.1 Maxwell’s Demon and the Classical Szilárd Engine

Maxwell’s demon is a thought experiment that was proposed in 1867 by the-
oretical physicist James Clerk Maxwell. In this thought experiment, a demon
is in control of a massless door, positioned between two chambers of gas. The
demon quickly opens and closes the door, conspiring to only allow fast moving
particles to pass in one direction and slow moving particles in the other. After
this action is repeated for awhile, one chamber will be full of faster moving par-
ticles, while the other will contain slower moving particles. Hence, the demon
would have caused one chamber to heat up and the other to cool down without
doing any work. The demon has therefore succeeded in making the entropy of
the system decrease without doing any work, seemingly violating the second law
of thermodynamics.

This apparent contradiction was addressed in 1929 by Leo Szilárd [3], who
sought to resolve the issue by introducing a theoretical device that we now know
as the Szilárd engine. Szilárd imagined an engine consisting of a single classical
particle confined to a rigid box, immersed in a thermal bath at temperature T.
In order to extract work from this engine, the demon needs to determine which
half of the box the particle is located and then insert a movable barrier in the
middle of the box. The barrier slides like a piston without friction and is used to
extract work through the isothermal expansion of the single particle ideal gas.
Szilárd showed that the demon would need a method of measuring the speed of
the particle to determine where it was, and then use this information to make
the engine do work. However, the act of obtaining information would demand
an expenditure of energy, which would cause an increase in the demon’s own
entropy, that would be larger than the loss in the gas’s entropy. Thus Szilárd
showed that the violation of the second law could be resolved if the demon was
considered to be a part of the system, so that his entropy increase was taken
into account. However,Szilard’s analysis is carried out within the framework of
classical mechanics and is not definitive.

In this chapter, we will focus on a quantum Szilárd engine, in which a particle
is confined by a harmonic oscillator potential while being in contact with a heat
reservoir at a fixed temperature with which it can exchange energy. The use
of such a model was recently suggested by Davies, Thomas, and Zahariade [5],
and we will see how it can be used to give a better resolution of the paradox
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Figure 2: Maxwell’s demon allows the faster moving particles to enter the right
side of the box and the slower particles to enter the left side of the box.
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than many of the other approaches that have preceded it.

3.2 Quantum Szilárd Cycle

Before we can examine the cycle of this heat engine, we first need to characterize
its initial state. The Hamiltonian of the engine at the start of the cycle is the
standard Hamiltonian for a quantum harmonic oscillator,

Ĥin =
p̂2

2m
+

1

2
mω2q̂2, (49)

with energy eigenvalues

En =

(
n+

1

2

)
h̄ω, (50)

for n = 0, 1, 2, 3, ..., etc. However, the engine is in contact with a thermal
reservoir at temperature T, so the probability of finding the system in any
given energy level is

Pn = Ae−βEn , (51)

where β = 1
kT . Due to the normalization condition,

∞∑
n=0

Pn = 1, (52)

we can write

A

∞∑
n=0

e−βEn = 1, (53)

and solve for A to find

A =
1∑∞

n=0 e
−βEn

. (54)

where the quantity in the denominator is the so called partition function

Z :=

∞∑
n=0

e−βEn =

∞∑
n=0

e−β(n+ 1
2 )h̄ω. (55)

The partition function is useful because it can be used to derive many other
properties of a system in thermodynamic equilibrium. Using the partition func-
tion, we can express the average energy as

E = − 1

Z

dZ

dβ
, (56)

and the useful work that can be extracted from the system, otherwise known as
the Helmholtz free energy, can be written as

A = − 1

β
lnZ. (57)
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We now apply these equations to determine the initial state of the quantum
harmonic Szilárd engine. The initial Hamiltonian is given in equation (43) and
because the particle is in a thermal state at a temperature T, its initial density
matrix is

ρ̂in =
1

Zin

∞∑
n=0

e−β(n+ 1
2 )h̄ω|ψn⟩⟨ψn|, (58)

with |ψn⟩ being the eigenstates of the oscillator with the energy given by (50).
The initial partition function is then of the same form as equation (49),

Zin =

∞∑
n=0

e−β(n+ 1
2 )h̄ω. (59)

This equation can be expressed as

Zin =

∞∑
n=0

e−
1
2βh̄ωe−nβh̄ω =

∞∑
n=0

e−
1
2βh̄ω

(
e−βh̄ω

)n
, (60)

which is a geometric series. Therefore, equation (60) can be summed to give

Zin =
e−

1
2βh̄ω

1− e−βh̄ω
, (61)

which can be rewritten using hyperbolic trigonometry as

Zin =
1

2
csch

(
βh̄ω

2

)
. (62)

Now that we have the initial partition function we can find the Helmholtz free
energy,

Ain = − 1

β
lnZin =

1

β
ln

[
2 sinh

(
βh̄ω

2

)]
, (63)

and the average energy,

Ein = − 1

Zin

dZin

dβ
=

1

2
h̄ω coth

(
βh̄ω

2

)
. (64)

Finally, we calculate the initial entropy of the system

Sin = −dAin

dT
= k

[
βh̄ω

2
coth

(
βh̄ω

2

)
− ln

(
2 sinh

(
βh̄ω

2

))]
. (65)

We can check that (64) has the expected limiting behaviors at both low and
high temperatures. In the low temperature limit, where β ≫ 1, the average
energy becomes 1/2h̄ω, which is the ground state energy of the simple harmonic
oscillator. This result agrees with equation (44) for n=0. For high temperatures,
where β ≪ 1, the average energy is kT . This is consistent with the equipartition
theorem, which states that each degree of freedom adds 1/2kT energy to the
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system. Our harmonic well has two degrees of freedom; the momentum p, and
the displacement from equilibrium q, which agrees with the energy value of kT .

For the initial entropy in equation (59), the low temperature limit causes the
entropy to become zero, which is in agreement with the third law of thermody-
namics. In the high energy limit, the entropy approaches Sin = k ln (kT/h̄ω),
which agrees with the prediction of classical statistical mechanics. Thus the
expressions we have derived for the average energy and the entropy make sense.

3.3 Barrier Insertion

We now introduce Maxwell’s demon into the process. His goal is to convert
information about the particle’s whereabouts into work, and attempt to violate
the second law. As in the classical Szilárd engine, the demon inserts a barrier
into the system to gain the information he needs. However, due to the subtleties
involved at the quantum level, a new approach for barrier insertion is required.

In order to localize the particle to the left or right of the potential well’s
center, an infinitely thin potential barrier is quasi-statically inserted at q=0.
This modifies the initial Hamiltonian to

Ĥbar (t) =
p̂2

2m
+

1

2
mω2q̂2 + α (t) δ (q̂) . (66)

The strength of this delta function is given by the time-dependent function
α(t), which satisfies the conditions α(−∞) = 0 and α(+∞) = ∞. These condi-
tions ensure that the barrier gets gradually inserted over a long period of time,
with the second condition ensuring that the particle is unable to tunnel through
the (infinitely high) barrier at late times. We shall also impose a slowness con-
dition |α̇/α| ≪ ω, which allows us to treat the evolution of the wave function
adiabatically. Essentially, by ensuring that the strength of the delta function
increases very slowly compared to the frequency of the oscillator, we are able to
treat the Hamiltonian as fixed at any given moment. This also ensures that the
system is in thermal equilibrium with the bath at a temperature T at every mo-
ment. The evolution must be very slow in order to retain this equilibrium, hence
we call it a quasi-static evolution. During the said evolution, the eigenstates
|ψn⟩ corresponding to the initial Hamiltonian Ĥin slowly vary and continuously
adjust themselves to be instantaneous eigenstates |ψα

n⟩ of Ĥbar. This causes the
density matrix in equation (58) to change. In order to calculate the density
matrix after the barrier has been fully inserted at t = +∞ we need to compute
the instantaneous eigenstates |ψα

n⟩ and their eigenvalues Eα
n at this time. Their

wave functions Ψα
n are solutions of the Schrödinger equation

− h̄2

2m

d2

dq2
Ψα (q) +

1

2
mω2q2Ψα (q) + αδ (q)Ψα (0) = EαΨα (q) . (67)

We can observe that, for odd n, the initial eigenstates |ψn⟩ and their energy
eigenvalues En = (n+1/2)h̄ω will not be affected by the insertion of the barrier.
This is because, for a simple quantum harmonic oscillator, the odd wave func-
tions vanish at q = 0, which is exactly where the barrier is inserted in order to
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divide the well into two equal halves. We can express this as |ψα
2k+1⟩ = |ψ2k+1⟩

and Eα
2k+1 = E2k+1 for all α. This gives odd solutions Ψα

2k+1 = Ψ2k+1 to the
above Schrödinger equation. For even n, the initial eigenstates and eigenvalues
are affected by the inserted barrier. As α increases from 0 to ∞, the initial quan-
tized energy levels, (2k+1/2)h̄ω, converge to (2k+3/2)h̄ω. Thus, Eα

2k = E2k+1

and the even wave functions are

Ψα
2k (q) =

{
Ψ2k+1(q), for q > 0,

−Ψ2k+1(q), for q < 0.
(68)

These are the even solutions to equation (67) in the limit α → ∞, and com-
pletes our description of the eigenstates |ψ∞

n ⟩ after the barrier is fully inserted.
Notice how the new energy solutions for odd and even n both equal E2k+1,
since Eα

2k = E2k+1 and Eα
2k+1 = E2k+1. This means that each energy level is

now twofold degenerate, which effectively produces a spectrum of the simple
harmonic oscillator that has a frequency 2ω and is shifted up by h̄ω. The lowest
energy for n = 0 is now 3/2h̄ω which is h̄ω/2 higher than the initial ground
state energy.

Using these solutions, we can write the final thermal density matrix after
the barrier has been fully inserted as

ρ̂⊥ =
1

Z⊥

∞∑
n=0

e−βh̄ω(2n+3/2)
(
|ψ∞

2n⟩⟨ψ∞
2n|+ |ψ∞

2n+1⟩⟨ψ∞
2n+1|

)
. (69)

The partition function after barrier insertion is

Z⊥ = 2

∞∑
n=0

e−β(2n+3/2)h̄ω, (70)

where we have multiplied the infinite sum by two to account for the twofold
degeneracy of each of the energy levels. As before, we can sum the geometric
series to express the partition function as

Z⊥ =
2e−

3
2βh̄ω

1− e−2βh̄ω
= e−

βh̄ω
2 csch (βh̄ω) . (71)

Now that we have the modified partition function, we can again calculate all
the relevant thermodynamic quantities of the system such as the Helmholtz free
energy and the average energy, respectively, as

A⊥ = − 1

β
lnZ⊥ =

1

β
ln [sinh (βh̄ω)] +

h̄ω

2
(72)

and

E⊥ = − 1

Z⊥

dZ⊥

dβ
= h̄ω coth (βh̄ω) +

1

2
h̄ω. (73)

Notice that the insertion of the barrier requires an energy cost,

A⊥ −Ain =
h̄ω

2
+

1

β
ln

[
cosh

(
βh̄ω

2

)]
. (74)
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Therefore, the demon must provide energy to the system in the form of work.
The entropy of the system now becomes

S⊥ = −dA⊥

dT
= kβh̄ω coth (βh̄ω)− k ln [sinh (βh̄ω)] , (75)

which makes sense because the adiabatic insertion of the barrier alters the spec-
trum of the simple harmonic oscillator to have double the frequency, ω → 2ω.
So the modified entropy is of the same form as the initial entropy in equation
(65), but with the factors of one half canceled out by the doubled frequency.
In the high temperature limit, Sin = S⊥ , meaning the barrier insertion has no
effect at very high temperatures.

3.4 Quantum Localization and Measurement

Now that the barrier has been inserted, the demon needs to localize the particle
to the left or right side of the potential well. We introduce the left and right
eigenstates

|Ln⟩ =
1√
2

(
|ψ∞

2n⟩ − |ψ∞
2n+1⟩

)
(76)

and

|Rn⟩ =
1√
2

(
|ψ∞

2n⟩+ |ψ∞
2n+1⟩

)
. (77)

These eigenstates are defined in such a way as to ensure that the particle is
localized to only the left or the right of the barrier. We can rewrite the density
matrix after barrier insertion in terms of these newly defined eigenstates,

ρ̂⊥ =
1

Z⊥

∞∑
n=0

e−βh̄ω(2n+3/2) (|Ln⟩⟨Ln|+ |Rn⟩⟨Rn|) . (78)

Now the demon must determine whether the particle is on the left or right of
the barrier. This can be done by projecting the state of the particle onto one of
the two eigenspaces of the observable

Π̂ =

∞∑
n=0

(|Ln⟩⟨Ln⟩ − |Rn⟩⟨Rn|) , (79)

with associated projection operators

P̂L =

∞∑
n=0

|Ln⟩⟨Ln⟩, (80)

P̂R =

∞∑
n=0

|Rn⟩⟨Rn|. (81)
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A successful projective measurement of Π̂ on the state of the particle reduces
the density matrix ρ̂⊥ to

ρ̂
L
=

1

ZL

∞∑
n=0

e−βh̄ω(2n+3/2)|Ln⟩⟨Ln|, (82)

or

ρ̂
R
=

1

ZR

∞∑
n=0

e−βh̄ω(2n+3/2)|Rn⟩⟨Rn|. (83)

Here, the left and right partition functions can be expressed as

ZL,R =
1

2
Z⊥ =

e−3/2βh̄ω

1− e−2βh̄ω
=

1

2
e−βh̄ω/2csch (βh̄ω) . (84)

Once again, we can use the partition function to calculate all of the important
thermodynamic quantities once the particle has been localized to the left or
right of the potential well. The Helmholtz free energy is found to be

AL,R = − 1

β
lnZL,R =

1

β
ln [sinh (βh̄ω)] +

h̄ω

2
+

1

β
ln (2) , (85)

and the average energy is

EL,R = − 1

ZL,R

dZL,R

dβ
=

1

2
h̄ω + h̄ω coth (βh̄ω) . (86)

Although the measurement process leaves the average energy unchanged, the
entropy of the system does change,

SL,R = −AL,R

dT
= kβh̄ω coth (βh̄ω)− k ln [sinh (βh̄ω)]− k ln (2) (87)

The change in entropy of the system after measurement is

∆S = SL,R − S⊥ = −k ln (2) . (88)

As a result of the demon acquiring information on the localization of the particle,
the entropy of the system has actually decreased. Meanwhile the Helmholtz free
energy increases by the quantity

∆A = AL,R −A⊥ =
1

β
ln (2) . (89)

Now that the demon has accrued a surplus of energy, he will attempt to turn
this into useful work.
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3.5 The Violation of The Second Law

Once the quantum particle has been projected onto one side of the barrier, the
barrier will experience a force that pushes it in the opposite direction. For
example, if the particle is localized to the left side of the barrier, then there will
be a rightward force. This force will do work on the barrier as it slides it to the
right end of the box. This could be used to lift an external weight of some sort.
Eventually, the barrier will be pushed all the way to the end of the box, and the
system will have returned to its initial state, thus completing one cycle. During
this last step, the change in free energy is

Ain −AL = −1

2
h̄ω − 1

β
ln

[
cosh

(
βh̄ω

2

)]
− 1

β
ln 2 (90)

The first two terms of equation (90) correspond to the work the demon supplied
to the system during the partition insertion, while the last term corresponds to
energy that the demon is able to extract from the system. This excess energy, as
previously predicted, could be used by the demon to lift a weight or load. This
amount of extractable energy will emerge every cycle, meaning the demon can do
this indefinitely. The demon can therefore reason that he has accomplished his
goal of violating the second law of thermodynamics since he was able to decrease
the entropy of the universe each Szilárd cycle by k ln 2, whilst also converting
information into work. However, there is a flaw in the demon’s reasoning. The
apparent violation of the second law is a result of not considering the demon as
a part of the system. In order to save the second law of thermodynamics, we
must introduce a new concept into our analysis.

3.6 Rescuing the Second Law

In order to demonstrate that the second law of thermodynamics is not violated
by the quantum Szilárd engine, we must consider the demon itself as part of
the system. The demon can perform one of two possible actions. It can either
attach a string to the left or right of the partition, depending on on the results of
the quantum measurement. As stated before, the motion of the partition would
pull the string, allowing the piston to perform work on some mass. Since the
side of the partition that the demon attaches the string to depends on which side
the particle has been projected to, the state of the demon becomes entangled
with the particle as a result of his measurement and subsequent action. We now
proceed to give the detailed argument that leads to this conclusion. The initial
state of the demon is taken to be

|D0⟩ =
1√
2
|DL⟩+

1√
2
|DR⟩, (91)

where |DL⟩ and |DR⟩ are the states of the demon for measuring the particle on
the left and right side of the harmonic well, respectively. In other words, the
demon is taken to be a two-state quantum object in an equally likely superpo-
sition of the ”left” and ”right” states. The initial density matrix of the engine
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and the demon is
ρ̂in ⊗ |D0⟩⟨D0|. (92)

After the barrier is inserted, the state of the system becomes

ρ̂⊥ ⊗ |D0⟩⟨D0|. (93)

The Hamiltonian then becomes Ĥα ⊗ ID, where ID is the identity operator
for the demon’s Hilbert space. Notice how the analysis we did for the barrier
insertion previously still holds as the demon and the quantum particle have not
yet interacted. During the quantum measurement process however, the demon
and the particle are coupled, with a coupling strength λ. Thus, the interaction
Hamiltonian can be expressed as

Ĥint = iλΠ̂⊗ (|DL⟩⟨DR| − |DR⟩⟨DL|) . (94)

Notice how this Hamiltonian is time independent, meaning that the evolution
operator for the measurement is represented by

Ûint = e−i/h̄Ĥintδt =
1√
2

[
IP ⊗ ID + Π̂⊗ (|DL⟩⟨DR| − |DR⟩⟨DL|)

]
(95)

where IP is the identity operator on the particle Hilbert space. After the mea-
surement process is completed, the density matrix that describes the system is
given to be

Ûint (ρ̂⊥ ⊗ |D0⟩⟨D0|) Û†
int =

1

2
(ρ̂L ⊗ |DL⟩⟨DL|+ ρ̂R|DR⟩⟨DR|) . (96)

Therefore, as a result of the interaction between the particle and the demon, the
two systems become correlated. They are no longer independent of each other.
The particle measurement process causes the state of the demon to become
either |DL⟩ or |DR⟩, for a left or right projection of the particle respectively.
Once the barrier is quasi-statically pushed all the way to one side of the box,
the final state of the system is

1

2
ρ̂in ⊗ (|DL⟩⟨DL|+ |DR⟩⟨DR|) . (97)

Notice how, despite the particle returning to its initial state, the demon has
been put into a mixed state, which has an entropy associated with it (which
counteracts the entropy decrease of the system, and therefore saves the second
law). In order to restart the cycle, the demon must be made pure again, which
requires some input of energy. The energy cost required to return the state to
|D0⟩ would be at least kT ln 2 in terms of free energy, and this would also nullify
the work done by the engine in the course of a cycle. Therefore, the second law
of thermodynamics is not violated by the Szilárd engine. Once the demon is
described as a part of the total system, one can see that the apparent failure
of the second law is actually a misconception. In conclusion, we have shown
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that if the demon is treated as a quantum two-state system and considered as
a part of the engine in analyzing its performance, the net entropy increase of
the system plus demon is at best equal to zero and that the useful work that
can be extracted from the system is also at best zero. Because of non-idealities
in both the engine and the demon, the net entropy increase is usually greater
than zero and a positive amount of work must also be done on the system plus
demon to restore it to its initial state at the start of the cycle.
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4 Conclusion

This report has investigated two unconventional heat engines. First we used
classical thermodynamics to describe the properties of a black hole heat engine
that operated in an ideal Carnot cycle. We reviewed the basic features of black
hole thermodynamics and then discussed the operation of the engine under a va-
riety of conditions. In the second part of the study we used quantum statistical
mechanics to rescue the second law of thermodynamics from Maxwell’s demon
by using a quantum harmonic Szilárd engine. Once the demon is considered
a part of the system, the resolution to the paradox lies in realizing that the
entropy of the demon goes up as he acquires information he needs to extract
work from the engine.

While the black hole engine is certainly possible, at least as a thought ex-
periment, it is very difficult to realize practically and so is mainly of academic
interest. It is nevertheless interesting to see what the laws of physics will allow
in these strange circumstances. Much of the physics discussed in connection
with this engine is relevant for an understanding of primordial black holes and
their evaporation, and was in fact developed by Hawking [8] and others for this
purpose.

The quantum Szilard engine, by contrast, is well within the reach of what
can be done experimentally nowadays. Physicists and biologists have come up
with a number of examples of microscopic engines in which a Maxwell’s demon
can exploit the information he gains about the system to do more work than
allowed by the second law of thermodynamics [11,12]. However there is always
then an increase in the entropy of the environment of the engine and the demon.
This is a fascinating and ongoing area of activity in which we can expect to see
significant progress in the years to come.
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1. Tomáš Opatrný and Lukás Richterek. Black hole heat engine. American
Journal of Physics. 80, 66. 2012.

2. Steven Hawking. Brief History of Time and The Universe in a Nutshell.
2014.

3. Harvey S Leff and Andrew F Rex. Maxwell’s Demon Entropy, Informa-
tion, Computing. Princeton University Press. 08540. 1990.

4. F. Reif. Fundamentals of Statistical and Thermal Physics. Waveland
Press. 1965.

5. P.C.W. Davies, Logan Thomas, and George Zahariade. The harmonic
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