

WORCESTER POLYTECHNIC INSTITUTE

ELECTRICAL AND COMPUTER ENGINEERING PROGRAM

Automate Model Data into a Physics-Based Analytic

Software

A Major Qualifying Project

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science by:

Maya Ellis

Project Advisors:

Professor Shamsnaz V. Bhada

Worcester Polytechnic Institute

John J. Roberts

Alex Mouw

MITRE

Sponsored By:

The MITRE Corporation

This report represents the work of one or more WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on the web

without editorial or peer review.

October 12, 2022

2

Acknowledgements

 Thank you to Professor Shamsnaz V. Bhada, John J. Roberts, and Alex Mouw for

advising this project and ensuring its success. Additional thanks to MITRE’s Taz Biesinger and

Jim Dalton. This project would not have been possible without all your contributed time and

expertise. Thank you for the opportunity to work on this project and learn from it.

3

Table of Contents
Acknowledgements ... 2

Table of Tables ... 6

Abstract ... 7

1. Introduction ... 8

2. Background ... 10

2.1 System Engineering .. 11

2.2 Digital Engineering ... 11

2.3 SysML Architecture Models ... 12

Cameo .. 13

2.4 Physics-based Models ... 13

Systems Tool Kit ... 14

2.4 Current Challenges and Limitations ... 14

3. Operational Scenario Description ... 16

3.1 Operational Scenario ... 16

3.2 Command and Control Aircrafts ... 17

3.3 Surface-to-Surface Missiles .. 18

4. Research Description .. 19

Hypothesis 1: Data from SysML in Cameo to physics-based models such as STK can be

integrated one way by a Python script. ... 20

Hypothesis 2: Data from SysML in Cameo to STK can be integrated by a Python script to

automate the flow bi-directionally. .. 20

5. Integration ... 21

5.1 Cameo Model .. 22

5.2 Exporting via XML ... 24

5.3 Exporting via CSV .. 25

5.4 Native STK Information ... 26

5.5 Creating the Python Script .. 26

6. Analysis Methodology .. 30

7. Results ... 31

7.1 Missile Design Results .. 31

7.2 Aircraft Design Results ... 34

8. Future Work .. 38

Bibliography ... 39

4

Appendix A: Current Python Code for STK & Cameo Integration .. 41

5

Table of Figures
Figure 1: Timeline of Industrial Revolution [19] ... 12

Figure 2: Fictious Operational Scenario to be Analyzed ... 17

Figure 3: E-3 Sentry (AWACS) [20] ... 18

Figure 4: Preliminary Verification Architecture for Integrating Cameo and STK 22

Figure 5: Cameo Block Definition Diagram of Aircraft ... 23

Figure 6: Cameo Block Definition Diagram of Missile .. 24

Figure 7: Output XML Failed Attempt ... 25

Figure 8: Algorithm 1 ... 27

Figure 9: Algorithm 2 ... 28

Figure 10: Algorithm 3 ... 28

Figure 11: Algorithm 4 ... 29

Figure 12: Flow of Analysis Methodology ... 30

Figure 13: Missile and Target Layout in STK .. 31

Figure 14: Scenario 1: Altitude vs. Ground Range, Max Altitude = 4200km .. 32

 Figure 15: Scenario 1: LLA Position, Max Altitude = 4200km ... 32

Figure 16: Scenario 2: Altitude vs. Ground Range, Max Altitude = 1000km .. 33

Figure 17: Scenario 2: LLA Position, Max Altitude = 1000km .. 33

Figure 18: Aircraft Waypoints in STK .. 34

Figure 19:Scenario 1 Facility – Aircraft 1 Communication Access ... 35

Figure 20: Scenario 1 Facility – Aircraft 2 Communication Access .. 35

Figure 21: Scenario 1 Facility – Aircraft 3 Communication Access .. 35

Figure 22: Scenario 2 Facility – Aircraft 1 Communication Access (slower speed) 36

Figure 23: Scenario 2 Facility – Aircraft 2 Communication Access (slower speed) 36

Figure 24:Scenario 2 Facility – Aircraft 3 Communication Access (slower speed) 37

6

Table of Tables

Table 1: Value Properties and their Default Values from Cameo……………………………………………..26

Table 2: Scenario 1: Ground Range, Altitude, Time, Max Altitude = 4200km……………………………….33

Table 3: Scenario 2: Ground Range, Altitude, Time, Max Altitude = 1000km……………………………….33

Table 4: Scenario 1 Facility – Overall Aircraft Callback Time………………………………………………..35

Table 5: Scenario 2 Facility – Overall Aircraft Callback Time (slower speed)……………………………...37

7

Abstract

Digital engineering (DE), an emerging aspect of systems engineering, has the potential to

continue to increase efficiency and improve the quality and performance of both commercial and

military systems. As technology and the practice of DE evolve, previously used modeling

processes need to be adapted to enable effective DE-based design and development. Digitizing

engineering artifacts means end to end integration of all domain-specific modeling tools with

each other and with Systems Modeling Language (SysML). There is a lack of integration

between SysML architecture models containing system design details and physics-based models

of the deployed system in operational use to understand missions impacts of proposed design. If

fully integrated these tools could show performance differences due to design changes quickly

and iteratively. In this research, a mission scenario was simulated to understand how to

implement an end-to-end integration between SysML using Cameo tool and a physics-based

simulator, Systems ToolKit, to demonstrate how design changes to two types of system can be

shown to produce different operational capabilities long before the systems are fully designed

and physically constructed.

8

1. Introduction

Systems engineering (SE) and digital engineering (DE) processes are heavily utilized by

commercial industry as well as for DoD programs. Model based systems engineering (MBSE)

uses digital models to represent systems engineering artifacts which allows for efficient design

and analysis performance compared to previous paper document-centered systems engineering

processes [1].

The MITRE Corporation has been pioneering the evolution of a DE platform. They have

provided both the initial DE modeling problem statement and resources to permit this project to

be executed. MITRE began in 1958 as a private, not-for-profit company to provide engineering

and technical guidance for the United States Air Force. This served as the foundation for the

growth of federally funded research and development centers (FFRDC) managed by MITRE.

Today, MITRE operates six of 42 FFRDCs in existence [2]. MITRE addresses complex national

challenges that threaten the United States’ safety, security, and prosperity.

A current gap related to military systems modeling is the lack of integration between

Systems Modeling Language (SysML) architecture models containing system design details and

physics-based models of the deployed system in operational use to understand mission impacts

of proposed design changes quickly and iteratively. This project focused on prototyping and

demonstrating a bridge for that gap.

This project’s Python implementation of an end-to-end integration between a system

design captured SysML in Cameo and its operational deployment, as implemented in Systems

ToolKit (STK), could be used for future modeling and analysis. This integration will allow for

smoother and more efficient information distribution between industry developers and

9

operational users of systems. Additionally, with a successful integration between the

applications, future work can focus on furthering automation between the two enabling increased

productivity.

10

2. Background

For the United States Department of Defense (DoD), the heightened use of modeling,

simulation, and analysis (MS&A)’s as part of DE enables the transition of military system

acquisition from paper document-intensive to computer based. Although, as modeling

technology progresses, new barriers can be introduced. A challenge related to MBSE is the

current lack of integration between SysML-based models, such as Cameo, and physics-based

models such as Systems ToolKit (STK). STK and other physics-based models are primarily used

to understand how the systems under development will perform in realistic operational scenarios.

Defense contractors design the proposed “to-be-built" systems modeled through SysML. Without

integration of design models and real-world scenario testing, not all stakeholders will be able to

efficiently access the critical system information and assess the quality and expected

performance of a system design. This project utilized a fictitious operating environment of an

internal Continental United States operation (to avoid possible classification issues by

introducing real world scenarios) with changing system design parameters to research and

implement the end-to-end integration capability between SysML in Cameo and STK through

Python. To provide background for the topics of this project, this chapter describes:

• Systems Engineering

• Digital Engineering

• SysML Architecture Models

• Physics-based Models

• Current Challenges and Limitations

11

2.1 System Engineering

According to the International Council on Systems Engineering, INCOSE, “systems

engineering is a transdisciplinary and integrative approach to enable the successful realization,

use, and retirement of engineered systems, using system principles and concepts, and scientific,

technological, and management methods” [3]. The concept focuses on the entire technical effort

to ensure all parts can function correctly in the proposed operational environment. The

Government Accountability Office (GAO) research shows that programs with early detailed

systems engineering before development began had better project outcomes [4]. Until recently,

systems engineering was conducted through a documented-intensive process. What used to be

writing out documentation for requirements, technical reviews, and architecture design

transitioned to models in a digital engineering environment [5]. Although systems engineering

has transitioned to models it still lacks integration with domain specific digital tools such as STK

for physics-based models.

2.2 Digital Engineering

Digital Engineering, the fourth industrial revolution, is evolving the work in the defense

industry at a rapid rate [6]. Figure 1 illustrates a timeline of the sequential industrial revolutions.

In June 2018, the U.S. Under Secretary of Defense for Research and Development released the

U.S. Department of Defense (DoD) Digital Engineering Strategy (DES). The DES anticipates

that with the rise of more complex systems, such as in the realm of new weapon systems for the

DoD, digital engineering (DE) will lead to greater efficiency and improved quality of systems.

The crux of digital engineering is the creation of computer readable models to represent all

12

aspects of the system and to support all the activities for the design, development, manufacture,

and operation of the system throughout its lifecycle [5].

Figure 1: Timeline of Industrial Revolution [19]

Many engineering disciplines have adopted digital engineering approaches, such as

aerospace and mechanical engineers utilizing computer aided design tools (CAD) instead of

drafting boards. Another example is software engineers using software GUIs and one single

environment for writing, checking, compiling, and running code instead of their previously used

text editors. Similarly, systems engineers have adopted model-based system engineering (MBSE)

to perform analysis and design tasks more efficiently than ever before [7]. These models or

digital twins provide a digital representation of a system, mission, or process that is comprised of

transdisciplinary models and simulations [6].

2.3 SysML Architecture Models

SysML architecture models are used for general-purpose systems architecture modeling.

They support specification, analysis, design, verification, and validation of a broad range of

13

systems [8]. One of these tools is Cameo Enterprise Architecture (referred to as simply Cameo).

Other SysML-based architecture tools include Rhapsody, Visual Paradigm, and Microsoft Visio.

Cameo was selected for this project because of prior experience with the application. It fully

supports all architectural framework products ensuring necessary results. Cameo is used widely

within MITRE and worked well for this project’s research goals.

Cameo

The Cameo Enterprise Architecture tool is developed CATIA No Magic. It is primarily

used to measure and visualize architecture to improve project results. Cameo conveys knowledge

of, well represents and communicates complex architecture, reducing assumption,

misconception, and system risks [9].

2.4 Physics-based Models

Physics-based models and simulations are constrained by the laws of physics to provide

virtual environments to simulate the experience of what could be in the real world [10].

Examples of physics-based models and simulations include BEM, which simulates building

energy use and COMSOL Multiphysics, which simulates device designs and processes.

Government contractors use various modeling tools within collaborative, DE-based

weapon system design and development environments for the simulation of proposed systems.

One of these physics-based models is Systems ToolKit (STK). Other physics-based models and

modeling frameworks used to analyze mission effectiveness of DoD systems include EADSIM,

Brawler, and AFSIM.

STK was selected for this project because STK can model all the assets involved in

complex, critical systems such as communications, radar, coverage, and can visually report

14

results. This application allows users to see what impact all system elements have on the entire

mission.

Systems Tool Kit

Systems ToolKit is developed by Ansys. It is primarily used in the domains of aerospace,

defense, telecommunications, and other industries. It utilizes a physics-based modeling

environment to permit analysis of platforms and payloads in a realistic mission context. A user is

able to model systems inside a realistic, time-dynamic, three-dimensional scenario that includes

high resolution terrain, imagery, and radio-frequency environments. The application creates the

ability to simulate an entire system-of-systems at any location and time to gain an understanding

of mission performance and behavior [11].

2.4 Current Challenges and Limitations

One challenge identified by MITRE in the MBSE domain is the lack of integration of

MBSE tools with physics-based models. Although MBSE supports the system engineering

activities of requirements, architecture, design, verification, and validation, these efforts need to

be connected to physics-based models to be used to understand design change impacts on

mission effectiveness. Without proper representation of a system’s data, not all stakeholders will

be able to access the necessary information [5]. As the sponsor of this project, MITRE has been

pioneering the evolution of a Digital Engineering (DE) Platform to enable more efficient and

effective design, development, and deployment of systems to enhance national security for the

DoD. MITRE analysts use MBSE tools to understand overall mission effectiveness implications

of design changes. Within current DE environment instances based on this platform, analysts do

not yet have an end-to-end capability that automates the ingestion of updates to system design

15

data, as contained in MBSE tools, into physics-based mission simulation tools. This integration

would permit continuous examination of system behaviors when faced with various operational

threat scenarios. The integration between MBSE and physics-based models can improve

predictive, prescriptive, and cognitive capabilities of military systems [12].

16

3. Operational Scenario Description

 The Department of Defense (DoD) is America’s largest government agency. Their

mission is to provide the military forces needed to deter war and ensure the United States’

national security. Components of the DoD include the Army, the Marine Corps, the Navy, the

Air Force, Space Force, Coast Guard, and National Guard [13]. This project will utilize a

hypothetical Air Force example, focusing on generic airborne command and control aircraft and

surface-to-surface missiles as the example systems under study for potential next generation

enhancements using DE processes, enabled by modeling and simulation.

3.1 Operational Scenario

The operational scenario for this project, shown in figure 2, was a Continental United

States (CONUS) only fictitious situation to avoid any potential security issues that could result

from using potential adversary countries and real system performance parameters. In this

scenario, the CONUS is separated down the middle into “RedLand” (Adversary Territory) and

“BlueLand” (Friendly Territory). The BlueLand’s priority is upgrading key systems to conduct

future strikes on the RedLand if needed to respond to adversary actions. Within the figure, there

are command and control (C2) Aircrafts and surface-to-surface missiles (SSMs), both newly

funded systems in this fictitious example. Since they are assumed to be newly funded, analysis

needs to be performed continually during the design and development cycles to characterize the

operational benefits to design implementation choices.

17

Figure 2: Fictious Operational Scenario to be Analyzed

3.2 Command and Control Aircrafts

Command and control (C2) as a concept is a means toward creating value, such as

accomplishing a mission. It's the effort of multiple individuals, organizations, and resources to

achieve the same end goal [14]. An example of an airborne C2 system is the E-3 Sentry, known

as the Airborne Warning and Control System (AWACS). The E-3 is an airborne C2,

management, surveillance, target detection, and tracking platform. The E-3 radar has a range of

more than 250 miles (375.5km), its max speed is 360mph, and its engine range is more than

5,000 nautical miles (9,250km) [15]. We will use and vary generic parameters such as these in

the investigation of the redesign of a hypothetical platform of this type.

18

Figure 3: E-3 Sentry (AWACS) [20]

3.3 Surface-to-Surface Missiles

There are multiple kinds of surface launched missiles such as surface-to-air missiles

(SAMs) and surface-to-surface missiles (SSMs). This project will examine the redesign of SSMs.

SSMs are missiles designed to be launched from the ground or sea with a strike target on land or

sea. This differs from SAMs, which launch from the ground, but target airborne objects such as

an aircraft [16]. For the purpose of this project scenario in creating an end-to-end integration, the

SSMs used will not be ICBM because the United States, from a latitude perspective is less than

5500km. Typically, ICBMs have a range greater than 5500km. Therefore intermediate-range

ballistic missiles (IRBMs) will be utilized as they have a range between 3500km and 5500km.

This project will use and vary generic parameters such as these in the investigation of a

hypothetical missile of this type.

19

4. Research Description

Digital Engineering is becoming increasingly essential for more efficient and effective

design, development, and deployment of systems to enhance the national security for the

Department of Defense (DoD) [13]. Although, a challenge that affects the growth of digital

engineering and MBSE in the DoD setting is the gap of integration between MBSE tools and

physics-based models, which are utilized by the contractors designing and building these

proposed systems. The language primarily used in MBSE environments is Systems Modeling

Language (SysML). Currently, SysML does not have a bi-directional interface with Physics-

based modeling tools such as STK. The advantages of integrating SysML modeling tools such as

Cameo with STK include automating the capabilities of both tools without the need to switch

between applications, extending the types of analysis needed to perform mission capabilities as

Cameo lacks what STK has, and visualizing a 3D scenario to interpret SysML data, another

capability Cameo does not have.

This project simulated a fictitious operational scenario in Cameo utilizing SysML to

research how to implement an end-to-end integration capability between SysML and STK

through Python. To limit the scope of this project, the parameters selected were made for

simplified system designs. In a real-world simulation, the scenario would be more complex. The

system design parameters utilized for this project included launch performances for the missile.

The aircraft parameters varied included the engines and external communications performance.

Through this research and implementation, data was obtained to make informed conclusions.

Overall, the research question is: How can a bi-directional interface between Cameo and a

physics-based modeling platform such as STK be achieved?

This question was answered by:

20

• Implementing a python script that integrates data one way from SysML to a physics-

based model. This is Hypothesis 1, which tested data flow accuracy for all known

variables from Cameo to STK.

• Improving the baseline python script to integrate data bi-directionally. This is Hypothesis

2, which tested the data flow accuracy for all known variables from Cameo to STK and

STK to Cameo.

Hypothesis 1: Data from SysML in Cameo to physics-based models such as STK can

be integrated one way by a Python script.

The first goal of this project was to get the data from the system designs in Cameo to be

readable and used within STK to create data for design trade analyses. The two ideas on how to

go about doing the initial integration were to export the data via XML or CSV. Both exports had

their pros and cons and whatever became most accessible in the process became the files of

choice.

Hypothesis 2: Data from SysML in Cameo to STK can be integrated by a Python

script to automate the flow bi-directionally.

Once the initial integration was complete, the next step was to create a foundation for

extracting the data to be readable for a user to adapt the initial system design. The most efficient

way to do so with the current Python script and resources was to write the results from STK to a

CSV file. This file could then be interpreted by a user or could even be reuploaded to Cameo to

change the initial system design values.

21

5. Integration

 This section details the process for integrating Cameo and STK. Figure 4 displays the

preliminary verification architecture in the form of a sequence diagram. The goal of the research

was to thread the information from Cameo to STK and back. This system design parameters

from Cameo would be exported to the Python Interface Script. The goal of this script was for the

model information to be translated into data that STK could understand. This process requires

the analyst to first develop and implement an operational scenario in STK. STK would then

internally simulate the scenario for the data parameters given. After completion of the STK

simulation runs, the information from STK would be sent back to the Python Interface Script.

The Python Script would create a CSV file containing the STK information results. A CSV file is

used to import and export data from various applications. It’s a plain text file that stores tables

and spreadsheet information. The user could utilize this information for supplemental

information alongside STK graphical results in a design trade analysis. If and when subsequent

changes are made to a system design, the analyst can then edit the Cameo model to initiate the

process again.

22

Figure 4: Preliminary Verification Architecture for Integrating Cameo and STK

5.1 Cameo Model

Figure 5 illustrates the aircraft block definition diagram (BDD) in Cameo. This diagram

contains the example E3AWACS as the physical system being the aircraft. This simplified

diagram of the system shows two of the key subsystems associated with it, the engines, and the

external communications which include the antenna and transmitter. The engine’s subsystem

design includes properties such as the engine’s maximum range, the engine’s maximum altitude,

and maximum speed. For this example, the engine maximum range parameter is set to 9,250km,

the engine maximum altitude parameter is set to 9.15km, and the engine maximum speed is

0.2km/s. The antenna subsystem design information is split into several value properties:

23

frequency, physical length, efficiency, refraction atmosphere altitude, and knee bend factor. The

transmitter subsystem design information is split into the following properties: frequency, power,

data rate, polarization reference, and tilt.

Figure 5: Cameo Block Definition Diagram of Aircraft

Figure 6 illustrates the missile BDD in Cameo. This diagram contains an example

missile as the physical system. In this scenario, the system has one defined physical subsystem,

the engines. The engines subsystem has a set value property of the missile altitude range, or how

far the missile can physically travel upward. This altitude range parameter is currently set at

4,200km.

24

Figure 6: Cameo Block Definition Diagram of Missile

5.2 Exporting via XML

 The initial attempt of exporting the information from Cameo was to export via an

Extensible Markup Language (XML) file. The reason for choosing this export was because XML

is a language that defines a set of document coding rules in a format that is both human-readable

and machine-readable. Typically, there are both tags and text in the file, which are used to give

the data in the structure.

 Exporting XML from Cameo was not a straightforward process for this scenario. The

Report Wizard portal was referred to as a solution to export via XML when looking through

Cameo documentation. However, the export did not include any of the necessary data needed for

the Python script as shown in figure 7. It may be worth looking further into XML and Cameo

integration in the future. Nevertheless, to continue the integration process for this project in the

necessary timeframe, another approach was taken.

25

Figure 7: Output XML Failed Attempt

5.3 Exporting via CSV

 The next attempt for exporting the information out of Cameo was to do so by a Comma

Separated Values (CSV) file. Similarly, to XML, it’s a format that stores structured data using

text files. However, in a CSV file, each line is a data record. This made it easier to visually read

the CSV file, and for Python to interpret the data than it was with an XML file.

 The Aircraft and Missile BDDs were first expressed in a generic table within Cameo. The

generic table allowed for a user to choose which element types are displayed in the table.

Originally, the table showed the element types chosen for this scenario including the element

name, owner, applied stereotype, part, attribute, and default value. Although these element types

gave context for the scenario created, essential information from this table were the name of the

element and the default value shown in table 1. This was because the values from the Cameo

diagram would be used to input into the Python script for analysis.

 The generic table from Cameo was then exported via a CSV file. This file held all the

needed information and displayed it almost exactly to how the generic table looked in Cameo.

26

Value Property Default Value

Missile Altitude 4200km

Engine Range 9250km

Engine Altitude 9.15km

Engine Speed 0.2km/s

Transmitter Data Rate 15Mb/s

Transmitter Frequency 14Ghz

Transmitter Polarization Ref 1

Transmitter Polarization Tilt 15 Degrees

Transmitter Power 25dBW

Antenna Refraction Knee Bend Factor 0.2

Antenna Refraction Atmosphere Alt. 1000m

Antenna Physical Length 2m

Antenna Efficiency 85%

Antenna Frequency 15Ghz

Antenna Refraction Ceiling 5000m
Table 1: Value Properties and their Default Values from Cameo

5.4 Native STK Information

The scenario information that could be found in STK was independent of the system

designs in Cameo. It included the physical laydown of Blue Order of Battle locations, the strike

plan including weapon assignments, the bomber capabilities, the threat systems (for this

scenario, only including the RedLand targets), the weather, date, and time.

5.5 Creating the Python Script

The next step was creating the Python script that would be read by STK to execute

simulation runs of the scenario in Cameo. To ensure that the CSV files could be read correctly

via Python, Algorithm 1 (figure 8) was implemented. The SysML file was read with the CSV

reader function in Python. Then, the data was put into a Pandas Data Frame. A Pandas Data

Frame is a two-dimensional size-mutable, tabular data structure with labeled axes. The three

principle components of the data frame consist of data, rows, and columns [17]. The purpose for

this was to print all the data from the excel file, then put the necessary data (data names and

27

values) into a table. From there, the values of the properties were separated into their own strings

with indexes to create the ability for the values to be inputted when needed to for various STK

objects.

Figure 8: Algorithm 1

Algorithm 2 (figure 9) shows the process for starting up the automation process of STK,

taking in the information from the SysML CSV reader, and generating a scenario.

28

Figure 9: Algorithm 2

Algorithm 3 (figure 10) computes the access of the STK objects; the access was

dependent on their property settings from Cameo.

Figure 10: Algorithm 3

29

Finally, Algorithm 4 (figure 11) took the accessed data from STK and passed it through a

panda data frame. This data frame was sent to a CSV file for supplemental data for design trade

analysis.

Figure 11: Algorithm 4

 The result of the integration process was a simple automation of data flow

between Cameo and STK. This created a foundation of a thread that can be built upon for future

use. This attempt allowed a Python Script to ingest CSV data from SysML in Cameo and pass it

through to STK to create a simulation analysis. A user could use this information from the

analysis to change the initial system design data in the Cameo model.

30

6. Analysis Methodology

 The integration between Cameo and STK using Python provides a new linkage that was

previously nonexistent. With this link, varying system designs were created to compare the

measure of effectiveness between different sets of runs of the fictitious scenarios. The analysis

methodology followed the flow shown in figure 12. First, the initial design was created in

Cameo, then it was interpreted through the Python script and placed into the operational scenario

as implemented in STK. The simulation was then run, and the access values were extracted from

the tool. The second step repeated the process, but with modified system design information.

Finally, the results of the initial design runs were compared to the results of the modified design,

this created the basis for an analysis of various designs. The initial design values that were

changed were the missile altitude and aircraft maximum speed to determine if the analysis was

accurate.

Figure 12: Flow of Analysis Methodology

31

7. Results

This section discusses the results from the design trade analysis of the initial scenario and

the modified scenario. The results of the figures and tables labeled “Scenario 1” refer to the

initial system design first modeled in Cameo, similarly, figures and tables labeled “Scenario 2”

refer to the modified system design in Cameo.

Figure 13: Missile and Target Layout in STK

7.1 Missile Design Results

 The initial missile design had a maximum engine altitude range of 4200km, the modified

missile design had a maximum engine altitude range of 1000km. To simplify the analysis, only

one missile and one area target were viewed. The analysis reports generated from STK included

the Altitude vs. Ground Range, the LLA Position, and a table of the Ground Range, Altitude, and

Time next to each other to compare. The altitude and ground ranges were taken out of STK to

validate that the proper maximum altitude was input from the Cameo scenario. In both cases this

32

can be seen as true as the highest altitude shown in figure 14 of scenario 1 is 4200km and the

highest altitude shown in figure 16 of scenario 2 is 1000km.

 The LLA Position Analysis graphs shown in figures 15 and 17 provided the missile angle

(latitude and longitude) and the altitude over a function of time. This perspective gave the

measure of effectiveness of the two missile designs. It can be seen in the first scenario that the

missile takes approximately 48 minutes to impact its target location. This is significantly longer

than scenario 2’s missile, which only takes approximately 18 minutes. The analysis between the

missile system designs showed that a shorter maximum altitude within a missile engine allows

for shorter flight and therefore quicker impact at the desired location.

Figure 14: Scenario 1: Altitude vs. Ground Range, Max Altitude = 4200km

Figure 15: Scenario 1: LLA Position, Max Altitude = 4200km

33

 Ground Range (km) Altitude (km) Time (sec)

0 0 0 0

1 78.95629422 403.5340009 60

2 151.5996594 776.2207818 120

3 219.2745992 1121.183935 180

4 282.9551015 1440.909112 240

5 343.3685098 1737.412467 300

… … … …

45 2267.026904 1050.730767 2700

46 2334.980571 700.1549283 2760

47 2408.104768 321.2575055 2820

48 2470.415069 -7.78E-10 2867.367537
Table 2 Scenario 1: Ground Range, Altitude, Time, Max Altitude = 4200km

Figure 16: Scenario 2: Altitude vs. Ground Range, Max Altitude = 1000km

Figure 17: Scenario 2: LLA Position, Max Altitude = 1000km

 Ground Range (km) Altitude (km) Time (sec)

0 0 0 0

1 159.9128855 220.6665997 60

2 311.4045463 411.2124209 120

3 456.2670009 573.2337775 180

4 595.9293872 707.9901634 240

5 731.5667916 816.4665884 300

… … … …

15 2051.442491 533.9185117 900

16 2197.766944 364.6373001 960

17 2351.137093 166.4517772 1020

18 2470.415069 -3.46E-11 1064.451801

34

Table 3: Scenario 2: Ground Range, Altitude, Time, Max Altitude = 1000km

7.2 Aircraft Design Results

 To test the design of the Cameo modeled aircraft, access between the North, Middle, and

South Facility antennas in and the aircraft transmitters were analyzed. The idea behind the initial

scenario and modified scenario was to test when the aircraft was out of communication access.

Communication access and callback time is important in real world missions. If an aircraft flies

out of bounds of the access point, the facilities would be unable to give further instructions or

even abort a mission.

Figure 18: Aircraft Waypoints in STK

 The initial scenario tested the aircraft transmitter parameters as modeled and followed

simple waypoints. As shown in figure 18, the aircrafts initially flew from their respective facility

centers to area targets “G”, “B”, and “D” and then flew back to the facilities. When this was

analyzed, it was shown that the communication access was lost a little over an hour of flying to

the target as shown in Table 4. Figures 19-21 show the facility and aircraft communication

access (or lack of). The red lines in the graphics display the times in which there was access

35

between the two objects. The blank space displays no valid access between the facility and

aircraft. With these results, scenario 2 aimed to create better communication access. Maximizing

the amount of time a facility has communication access to an aircraft can increase the overall

callback time in a given scenario.

Figure 19:Scenario 1 Facility – Aircraft 1 Communication Access

Figure 20: Scenario 1 Facility – Aircraft 2 Communication Access

Figure 21: Scenario 1 Facility – Aircraft 3 Communication Access

Aircraft Initial Callback Time

North Aircraft (1) 69.05 minutes

Middle Aircraft (2) 68.98 minutes

South Aircraft (3) 57.93 minutes
Table 4: 1 Scenario 1 Facility – Overall Aircraft Callback Time

36

 In scenario 2, a couple options were explored for elongating the communication access

between the aircrafts and their respective launch facilities. The first attempt was to decrease the

speed at which the aircraft were hitting the waypoints. As shown in table 5, the slower the

aircraft was going, the more time the facility had to callback and abort the mission. Although this

was an effective method for this scenario, this would not be ideal in a time sensitive mission.

Due to time constraints more design scenarios were not completed, however this set the

foundation for communication access trade analysis. Furter research for this scenario to

understand the communication systems within the fictitious aircraft in STK could look at the

antenna, transmitter, and radar sensing. This could help evaluate a better idea of how

communication parts impact overall aircraft access.

Figure 22: Scenario 2 Facility – Aircraft 1 Communication Access (slower speed)

Figure 23: Scenario 2 Facility – Aircraft 2 Communication Access (slower speed)

37

Figure 24:Scenario 2 Facility – Aircraft 3 Communication Access (slower speed)

Aircraft Callback Time

North Aircraft (1) 138.1 minutes

Middle Aircraft (2) 137.9 minutes

South Aircraft (3) 137.9 minutes
Table 5: Scenario 2 Facility – Overall Aircraft Callback Time (slower speed)

This section highlighted the results of running the initial design simulation and a

modified scenario after the analyzed data from STK was outputted via CSV files and graphs.

These scenarios were used to understand the accuracy of the integration process. The missile

design showed that the higher the missiles maximum altitude is, the longer it took for the missile

to impact the target area. The second missile design showed that changing the missile altitude

from 4200km to 1000km showed that the missile took significantly less time to reach its impact

area. For the aircraft design, the goal was to create more access time between the facility and the

aircraft. This would increase the amount of time the facility would have to abort a mission if

necessary. The modified scenario lowered the maximum speed of the aircraft engine which then

made the rate from waypoint to waypoint slower, increasing the amount of access time. A future

modified scenario could be to change the communication systems of the aircrafts and their

respective facilities.

38

8. Future Work

 This research project started a foundation for the future capabilities of linking modeling

platforms to physics-based modeling platforms. From this integration attempt, a user can upload

a CSV file input from Cameo to the python script. Additionally, users can change the CSV file

from Cameo to updated values and upload that to the python script. Then, by running the script, a

user can view the view an automated analysis in STK and make informed decisions on how to

edit the SysML Cameo model based on those results. The STK analysis currently shows graphs

with the STK application and creates a CSV file that prints points from those respective graphs.

 For future capabilities automating the export process out of Cameo would be a good

addition to this research. This project focused more on Python integration within STK than it did

within Cameo. It would be interesting and a fundamental addition to see if Cameo or SysML

data in general has the capability to be automated via a coding script. In addition to this

capability, fully automating the bidirectionality from Cameo to STK and STK to Cameo is one of

the end goals of this research. This would lessen or eliminate communication issues that may

occur from translating design data across various stakeholders.

Lastly, an extended addition to this research, once bidirectional automation is achieved,

would be implementing a publisher/subscriber (pub/sub) ability for this integration. A pub/sub is

used for streaming analytics and data integration pipelines to ingest and distribute data. It can be

considered the “middleware” for service integration [18]. This implementation could create a

notification communication that would deliver data, in this case a fictitious system design,

whenever it has been updated. This pub/sub capability could also be implemented on MITRE’s

software, which could create better access for MITRE and their stakeholders.

39

 Bibliography

[1] Henderson, K, Salado, A. Value and benefits of model-based systems engineering (MBSE):

Evidence from the literature. Systems Engineering. 2021; 24: 51– 66.

https://doi.org/10.1002/sys.21566

[2] R&D Centers. (n.d.). MITRE. from https://www.mitre.org/our-impact/rd-centers

[3] System and SE Definitions - Systems Engineering Definition. (n.d.). International Council on

Systems Engineering. https://www.incose.org/about-systems-engineering/system-and-se-

definition

[4] Weapon System Requirements: Detailed Systems Engineering Prior to Product Development

Positions Programs for Success. (2016, November 17). Government Accountability Office.

Retrieved October 26, 2022, from https://www.gao.gov/products/gao-17-77

[5] Guide_to_the_Systems_Engineering_Body_of_Knowledge_Part_8.pdf (sebokwiki.org)

[6] A Capability Maturity Assessment Framework for Creating High Value Digital Engineering

Opportunities. (2022, January 13). Content Delivery Network (CDN). Retrieved October 26,

2022, from https://cpb-us-

w2.wpmucdn.com/wp.wpi.edu/dist/b/380/files/2022/01/A_Capability_Maturity_Assessment_Fra

mework_for_Creating_High_Value_Digital_Engineering_Opportunities.pdf

[7] Cloutier, R. (n.d.). Model-Based Systems Engineering Adoption Trends 2009-2018. SEBoK.

Retrieved October 26, 2022, from https://www.sebokwiki.org/wiki/Model-

Based_Systems_Engineering_Adoption_Trends_2009-2018

[8] SysML FAQ: What is SysML? What is the Systems Modeling Language? (n.d.). SysML.org.

Retrieved October 26, 2022, from https://sysml.org/sysml-faq/what-is-sysml.html

[9] Cameo Enterprise Architecture - CATIA. (n.d.). Dassault Systèmes. Retrieved October 26,

2022, from https://www.3ds.com/products-services/catia/products/no-magic/cameo-enterprise-

architecture/

[10] 4.2 Introduction to Physics Simulation – Big Data E-Book. (n.d.). Sites at Penn State.

Retrieved October 26, 2022, from https://sites.psu.edu/bigdataebook/chapter4/04-02/

https://doi.org/10.1002/sys.21566
https://www.mitre.org/our-impact/rd-centers
https://www.incose.org/about-systems-engineering/system-and-se-definition
https://www.incose.org/about-systems-engineering/system-and-se-definition
https://www.gao.gov/products/gao-17-77
https://www.sebokwiki.org/w/images/sebokwiki-farm!w/a/a5/Guide_to_the_Systems_Engineering_Body_of_Knowledge_Part_8.pdf#page=36
https://cpb-us-w2.wpmucdn.com/wp.wpi.edu/dist/b/380/files/2022/01/A_Capability_Maturity_Assessment_Framework_for_Creating_High_Value_Digital_Engineering_Opportunities.pdf
https://cpb-us-w2.wpmucdn.com/wp.wpi.edu/dist/b/380/files/2022/01/A_Capability_Maturity_Assessment_Framework_for_Creating_High_Value_Digital_Engineering_Opportunities.pdf
https://cpb-us-w2.wpmucdn.com/wp.wpi.edu/dist/b/380/files/2022/01/A_Capability_Maturity_Assessment_Framework_for_Creating_High_Value_Digital_Engineering_Opportunities.pdf
https://www.sebokwiki.org/wiki/Model-Based_Systems_Engineering_Adoption_Trends_2009-2018
https://www.sebokwiki.org/wiki/Model-Based_Systems_Engineering_Adoption_Trends_2009-2018
https://sysml.org/sysml-faq/what-is-sysml.html
https://www.3ds.com/products-services/catia/products/no-magic/cameo-enterprise-architecture/
https://www.3ds.com/products-services/catia/products/no-magic/cameo-enterprise-architecture/

40

[11] Ansys STK | Digital Mission Engineering Software. (n.d.). Ansys. Retrieved October 28,

2022, from https://www.agi.com/products/stk

[12] Klie, H. (2021, May 3). A Tale of Two Approaches: Physics-Based vs. Data-Driven Models.

JPT. Retrieved October 28, 2022, from https://jpt.spe.org/a-tale-of-two-approaches-physics-

based-vs-data-driven-models

[13] (n.d.). U.S. Department of Defense. Retrieved October 28, 2022, from

https://www.defense.gov/

[14] UNDERSTANDING COMMAND AND CONTROL. (n.d.). DTIC. Retrieved October 28,

2022, from https://apps.dtic.mil/sti/pdfs/ADA457162.pdf

[15] E-3 Sentry (AWACS) > Air Force > Fact Sheet Display. (n.d.). AF.mil. Retrieved October

28, 2022, from https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104504/e-3-sentry-

awacs/

[16] surface-to-air missile | military weapon | Britannica. (n.d.). Encyclopedia Britannica.

Retrieved October 28, 2022, from https://www.britannica.com/technology/surface-to-air-missile

[17] Python | Pandas DataFrame. (2019, January 10). GeeksforGeeks. Retrieved November 1,

2022, from https://www.geeksforgeeks.org/python-pandas-dataframe/

[18] What is Pub/Sub? | Cloud Pub/Sub Documentation. (n.d.). Google Cloud. Retrieved

November 1, 2022, from https://cloud.google.com/pubsub/docs/overview

[19] (Zimmerman, P., (INCOSE MBSE Workshop, January 25, 2014). Model-Based Systems

Engineering (MBSE) in Government: Leveraging the ‘M’ for DoD Acquisition [PowerPoint

slides])

[20] (https://media.defense.gov/2021/Sep/29/2002864356/-1/-1/0/190228-F-EV310-9145.JPG)

https://www.agi.com/products/stk
https://www.defense.gov/
https://apps.dtic.mil/sti/pdfs/ADA457162.pdf
https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104504/e-3-sentry-awacs/
https://www.af.mil/About-Us/Fact-Sheets/Display/Article/104504/e-3-sentry-awacs/
https://www.britannica.com/technology/surface-to-air-missile
https://www.geeksforgeeks.org/python-pandas-dataframe/
https://cloud.google.com/pubsub/docs/overview

41

Appendix A: Current Python Code for STK & Cameo Integration

from itertools import chain

from os import times

from agi.stk12.stkengine import STKEngine

from agi.stk12.stkdesktop import STKDesktop

from agi.stk12.stkobjects import *

from agi.stk12.stkutil import *

import os.path as path

######READING TEST########

import csv

import pandas as pd

import numpy as np

print('Adding csv information')

Cameo_data =

open("C:\\Users\\mellis\\Documents\\MQP_9_25\\SimpleMQP3.csv", "r"); #Read

Excel File

Cameo_data = list(csv.reader(Cameo_data))

print(Cameo_data)

cName = []

cValue = []

ctr = 0

#Getting information for the components of the model

for col in Cameo_data:

cName.append(col[1])

cValue.append(col[6])

ctr = ctr +1

cName = pd.Series(cName, name = 'Name')

cValue = pd.Series(cValue, name = 'Cameo Value')

df = pd.concat([cName, cValue], axis = 1)

print(df)

print(cValue.to_string(index=True))

print('Trying to get just the numbers')

print(cValue.to_string(index=False))

print(cValue[8])

def startup_stk(simpleMQPScenario):

 import time

 startTime = time.time()

 #Set true to use engine, false to use gui

 useStkEngine = False

 ###

 #Scenario Setup

42

 if (useStkEngine):

 #Launch STK Engine with NoGraphics mode

 print("Launching STK Engine...")

 stk = STKEngine.StartApplication(noGraphics = True)

 #Create root object

 stkRoot = stk.NewObjectRoot()

 else:

 #Launch GUI

 print("Launching STK...")

 stk = STKDesktop.StartApplication(visible = True, userControl =

True)

 #Get root object

 stkRoot = stk.Root

 #Set date format

 stkRoot.UnitPreferences.SetCurrentUnit("DateFormat", "UTCG")

 #Create new scenario

 print("Creating scenario...")

 stkRoot.NewScenario('MQP_Test')

 scenario = stkRoot.CurrentScenario

 #Set units

 stkRoot.ExecuteCommand('Window3D * Maximize')

 stkRoot.UnitPreferences.Item('LatitudeUnit').SetCurrentUnit('deg')

 stkRoot.UnitPreferences.Item('LongitudeUnit').SetCurrentUnit('deg')

 stkRoot.UnitPreferences.Item('Distance').SetCurrentUnit('km')

 #Set time period

 scenario.SetTimePeriod("1 Oct 2022 16:00:00", "+24hr")

 if (useStkEngine == False):

 #Graphics calls are not available when running STK Engine in

NoGraphics mode

 stkRoot.Rewind()

 totalTime = time.time() - startTime

 splitTime = time.time()

 print("--- Scenario creation: {a:4.3f} sec\t\tTotal time: {b:4.3f} sec

---".format(a=totalTime, b=totalTime))

 ###

 #Import data from excel file

 import csv

 import pandas as pd

 import numpy as np

 print('Adding csv information')

 Cameo_data =

open("C:\\Users\\mellis\\Documents\\MQP_9_25\\SimpleMQP3.csv", "r"); #Read

Excel File

 Cameo_data = list(csv.reader(Cameo_data))

43

 print(Cameo_data)

 cName = []

 cValue = []

 ctr = 0

 #Getting information for the components of the model

 for col in Cameo_data:

 cName.append(col[1])

 cValue.append(col[6])

 ctr = ctr +1

 cName = pd.Series(cName, name = 'Name')

 cValue = pd.Series(cValue, name = 'Cameo Value')

 df = pd.concat([cName, cValue], axis = 1)

 print(df)

 print(cValue.to_string(index=True))

 print('Trying to get just the numbers')

 print(cValue.to_string(index=False))

 print(cValue[8])

 ###

 #Create Scenario Objects

 #Creating 5 Targets Test

 print("Creating 5 Targets...")

 #Use NewOnCentralBody to specify explicitly the central body

 areaTarget = stkRoot.CurrentScenario.Children.New(2, 'A')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget.AreaType = 1 #ePattern

 patterns = areaTarget.AreaTypeData

 patterns.Add(45.00, -110.50)

 patterns.Add(44.00, -109.50)

 stkRoot.EndUpdate()

 areaTarget.AutoCentroid = True

 areaTarget2 = stkRoot.CurrentScenario.Children.New(2, 'B')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget2.AreaType = 1 #ePattern

 patterns2 = areaTarget2.AreaTypeData

 patterns2.Add(43.00, -108.50)

 patterns2.Add(42.00, -107.50)

 stkRoot.EndUpdate()

 areaTarget2.AutoCentroid = True

 areaTarget3 = stkRoot.CurrentScenario.Children.New(2, 'C')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget3.AreaType = 1 #ePattern

 patterns3 = areaTarget3.AreaTypeData

 patterns3.Add(41.00, -106.20)

44

 patterns3.Add(40.00, -105.50)

 stkRoot.EndUpdate()

 areaTarget3.AutoCentroid = True

 areaTarget4 = stkRoot.CurrentScenario.Children.New(2, 'D')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget4.AreaType = 1 #ePattern

 patterns4 = areaTarget4.AreaTypeData

 patterns4.Add(39.00, -104.50)

 patterns4.Add(38.00, -103.50)

 stkRoot.EndUpdate()

 areaTarget4.AutoCentroid = True

 areaTarget5 = stkRoot.CurrentScenario.Children.New(2, 'E')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget5.AreaType = 1 #ePattern

 patterns5 = areaTarget5.AreaTypeData

 patterns5.Add(37.00, -102.50)

 patterns5.Add(36.00, -101.50)

 stkRoot.EndUpdate()

 areaTarget5.AutoCentroid = True

 constellation =

stkRoot.CurrentScenario.Children.New(AgESTKObjectType.eConstellation,

"TargetConstellation")

 constellation.Objects.AddObject(areaTarget)

 constellation.Objects.AddObject(areaTarget2)

 constellation.Objects.AddObject(areaTarget3)

 constellation.Objects.AddObject(areaTarget4)

 constellation.Objects.AddObject(areaTarget5)

 #Creating 5 More Targets Test

 print("Creating 5 More Targets...")

 #Use NewOnCentralBody to specify explicitly the central body

 areaTarget6 = stkRoot.CurrentScenario.Children.New(2, 'F')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget6.AreaType = 1 #ePattern

 patterns6 = areaTarget6.AreaTypeData

 patterns6.Add(45, -122)

 patterns6.Add(44, -121)

 stkRoot.EndUpdate()

 areaTarget6.AutoCentroid = True

 areaTarget7 = stkRoot.CurrentScenario.Children.New(2, 'G')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget7.AreaType = 1 #ePattern

 patterns7 = areaTarget7.AreaTypeData

 patterns7.Add(43, -120)

 patterns7.Add(42, -119)

 stkRoot.EndUpdate()

45

 areaTarget7.AutoCentroid = True

 areaTarget8 = stkRoot.CurrentScenario.Children.New(2, 'H')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget8.AreaType = 1 #ePattern

 patterns8 = areaTarget8.AreaTypeData

 patterns8.Add(41, -118)

 patterns8.Add(40, -117)

 stkRoot.EndUpdate()

 areaTarget8.AutoCentroid = True

 areaTarget9 = stkRoot.CurrentScenario.Children.New(2, 'I')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget9.AreaType = 1 #ePattern

 patterns9 = areaTarget9.AreaTypeData

 patterns9.Add(39, -116)

 patterns9.Add(38, -115)

 stkRoot.EndUpdate()

 areaTarget9.AutoCentroid = True

 areaTarget10 = stkRoot.CurrentScenario.Children.New(2, 'J')

 #Define a boundary from list on latitude and longitude

 stkRoot.BeginUpdate()

 areaTarget10.AreaType = 1 #ePattern

 patterns10 = areaTarget10.AreaTypeData

 patterns10.Add(37, -114)

 patterns10.Add(36, -113)

 stkRoot.EndUpdate()

 areaTarget10.AutoCentroid = True

 constellation2 =

stkRoot.CurrentScenario.Children.New(AgESTKObjectType.eConstellation,

"TargetConstellation2")

 constellation2.Objects.AddObject(areaTarget6)

 constellation2.Objects.AddObject(areaTarget7)

 constellation2.Objects.AddObject(areaTarget8)

 constellation2.Objects.AddObject(areaTarget9)

 constellation2.Objects.AddObject(areaTarget10)

 ###

 #Create Aircraft

 print("Creating Aircraft")

 aircraft = scenario.Children.New(AgESTKObjectType.eAircraft,

"Aircraft1")

 #Set the Waypoints of the aircraft

 aircraft.SetRouteType(9) #ePropagatorGreatArc

 route = aircraft.Route

 route.Method = 0 #eDetermineTimeAccFromVel

 route.SetAltitudeRefType(0) #eWayPtAltRefMSL

 #Add first point

 waypoint3 = route.Waypoints.Add()

46

 waypoint3.Latitude = 45.30

 waypoint3.Longitude = -90

 waypoint3.Altitude = 5 #km

 waypoint3.Speed = .1 #km/sec

 #Add Target Point

 waypoint = route.Waypoints.Add()

 waypoint.Latitude = 43.00

 waypoint.Longitude = -119

 waypoint.Altitude = 5 #km

 waypoint.Speed = .1 #km/sec

 waypoint4 = route.Waypoints.Add()

 waypoint4.Latitude = 39

 waypoint4.Longitude = -100

 waypoint4.Altitude = 5 #km

 waypoint4.Speed = .1 #km/sec

 #Add return point

 waypoint2 = route.Waypoints.Add()

 waypoint2.Latitude = 45.30

 waypoint2.Longitude = -90

 waypoint2.Altitude = 100 #km

 waypoint2.Speed = .1 #km/sec

 #Adding point for out of bound scenario

 # waypointL = route.Waypoints.Add()

 # waypointL.Latitude = 42

 # waypointL.Longitude = 71

 # waypointL.Altitude = 1000 #km

 # waypointL.Speed = .20 #km/sec

 #Propagate the route

 route.Propagate()

 #Insert Antennas

 print("Creating Aircraft Antenna...")

 airAntenna = aircraft.Children.New(AgESTKObjectType.eAntenna,

"AircraftAntenna")

 #IAgAntenna antenna: Antenna object

 airAntenna.SetModel('Dipole')

 antennaModel = airAntenna.Model

 antennaModel.DesignFrequency = int(float(cValue[19])) #GHz

 antennaModel.Length = int(float(cValue[17])) #m

 antennaModel.LengthToWavelengthRatio = 45

 antennaModel.Efficiency = int(float(cValue[18])) #Percent

 #IAgAntenna antenna: Antenna object

 airAntenna.UseRefractionInAccess = True

 airAntenna.Refraction = 3 #eITU_R_P834_4

 refraction = airAntenna.RefractionModel

 refraction.Ceiling = int(float(cValue[20])) #m

 refraction.AtmosAltitude = int(float(cValue[16])) #m

 refraction.KneeBendFactor = int(float(cValue[15]))

 #Insert Transmitters

 print("Creating Aircraft Transmitter...")

 airTransmitter = aircraft.Children.New(AgESTKObjectType.eTransmitter,

"AircraftTransmitter")

47

 # IAgTransmitter transmitter: Transmitter object

 airTransmitter.SetModel('Complex Transmitter Model')

 txModel = airTransmitter.Model

 txModel.Frequency = int(float(cValue[11])) #GHz

 txModel.Power = int(float(cValue[14])) #dBW

 txModel.DataRate = int(float(cValue[10])) #Mb/sec

 # IAgTransmitter transmitter: Transmitter object

 txModel.EnablePolarization = True

 txModel.SetPolarizationType(3) #ePolarizationTypeLinear

 polarization = txModel.Polarization

 polarization.ReferenceAxis = int(float(cValue[12]))

#ePolarizationReferenceAxisY

 polarization.TiltAngle = int(float(cValue[13])) #deg

 ###

 #Create Second Aircraft

 print("Creating Second Aircraft")

 aircraft2 = scenario.Children.New(AgESTKObjectType.eAircraft,

"Aircraft2")

 #Set the Waypoints of the aircraft

 aircraft2.SetRouteType(9) #ePropagatorGreatArc

 route2 = aircraft2.Route

 route2.Method = 0 #eDetermineTimeAccFromVel

 route2.SetAltitudeRefType(0) #eWayPtAltRefMSL

 #Add first point

 waypoint6 = route2.Waypoints.Add()

 waypoint6.Latitude = 39

 waypoint6.Longitude = -90

 waypoint6.Altitude = 5 #km

 waypoint6.Speed = .1 #km/sec

 #Add Target Point

 waypoint5= route2.Waypoints.Add()

 waypoint5.Latitude = 43

 waypoint5.Longitude = -108

 waypoint5.Altitude = 5 #km

 waypoint5.Speed = .1 #km/sec

 waypoint7 = route2.Waypoints.Add()

 waypoint7.Latitude = 39

 waypoint7.Longitude = -100

 waypoint7.Altitude = 5 #km

 waypoint7.Speed = .1 #km/sec

 #Add return point

 waypoint8 = route2.Waypoints.Add()

 waypoint8.Latitude = 39

 waypoint8.Longitude = -90

 waypoint8.Altitude = 5 #km

 waypoint8.Speed = .1 #km/sec

 #Propagate the route

 route2.Propagate()

 #Insert Antennas

48

 print("Creating Aircraft Antenna...")

 airAntenna2 = aircraft2.Children.New(AgESTKObjectType.eAntenna,

"AirAntenna2")

 #IAgAntenna antenna: Antenna object

 airAntenna2.SetModel('Dipole')

 antennaModel2 = airAntenna2.Model

 antennaModel2.DesignFrequency = int(float(cValue[19])) #GHz

 antennaModel2.Length = int(float(cValue[17])) #m

 antennaModel2.LengthToWavelengthRatio = 45

 antennaModel2.Efficiency = int(float(cValue[18])) #Percent

 #IAgAntenna antenna: Antenna object

 airAntenna2.UseRefractionInAccess = True

 airAntenna2.Refraction = 3 #eITU_R_P834_4

 refraction2 = airAntenna2.RefractionModel

 refraction2.Ceiling = int(float(cValue[20])) #m

 refraction2.AtmosAltitude = int(float(cValue[16])) #m

 refraction2.KneeBendFactor = int(float(cValue[15]))

 #Insert Transmitters

 print("Creating Aircraft Transmitter...")

 airTransmitter2 =

aircraft2.Children.New(AgESTKObjectType.eTransmitter, "Transmitter2")

 # IAgTransmitter transmitter: Transmitter object

 airTransmitter2.SetModel('Complex Transmitter Model')

 txModel2 = airTransmitter2.Model

 txModel2.Frequency = int(float(cValue[11])) #GHz

 txModel2.Power = int(float(cValue[14])) #dBW

 txModel2.DataRate = int(float(cValue[10])) #Mb/sec

 # IAgTransmitter transmitter: Transmitter object

 txModel2.EnablePolarization = True

 txModel2.SetPolarizationType(3) #ePolarizationTypeLinear

 polarization2 = txModel2.Polarization

 polarization2.ReferenceAxis = int(float(cValue[12]))

#ePolarizationReferenceAxisY

 polarization2.TiltAngle = int(float(cValue[13])) #deg

 ###

 print("Creating Third Aircraft")

 aircraft3 = scenario.Children.New(AgESTKObjectType.eAircraft,

"Aircraft3")

 #Set the Waypoints of the aircraft

 aircraft3.SetRouteType(9) #ePropagatorGreatArc

 route3 = aircraft3.Route

 route3.Method = 0 #eDetermineTimeAccFromVel

 route3.SetAltitudeRefType(0) #eWayPtAltRefMSL

 #Add first point

 waypoint9 = route3.Waypoints.Add()

 waypoint9.Latitude = 34

 waypoint9.Longitude = -90

 waypoint9.Altitude = 5 #km

 waypoint9.Speed = .1 #km/sec

 #Add Target Point

49

 waypoint10 = route3.Waypoints.Add()

 waypoint10.Latitude = 39

 waypoint10.Longitude = -104

 waypoint10.Altitude = 5 #km

 waypoint10.Speed = .2 #km/sec

 waypoint11 = route3.Waypoints.Add()

 waypoint11.Latitude = 39

 waypoint11.Longitude = -100

 waypoint11.Altitude = 5 #km

 waypoint11.Speed = .1 #km/sec

 #Add return point

 waypoint12 = route3.Waypoints.Add()

 waypoint12.Latitude = 34

 waypoint12.Longitude = -90

 waypoint12.Altitude = 5 #km

 waypoint12.Speed = .1 #km/sec

 #Propagate the route

 route3.Propagate()

 #Insert Antennas

 print("Creating Aircraft Antenna...")

 airAntenna3 = aircraft3.Children.New(AgESTKObjectType.eAntenna,

"Antenna3")

 #IAgAntenna antenna: Antenna object

 airAntenna3.SetModel('Dipole')

 antennaModel3 = airAntenna3.Model

 antennaModel3.DesignFrequency = int(float(cValue[19])) #GHz

 antennaModel3.Length = int(float(cValue[17])) #m

 antennaModel3.LengthToWavelengthRatio = 45

 antennaModel3.Efficiency = int(float(cValue[18])) #Percent

 #IAgAntenna antenna: Antenna object

 airAntenna3.UseRefractionInAccess = True

 airAntenna3.Refraction = 3 #eITU_R_P834_4

 refraction3 = airAntenna3.RefractionModel

 refraction3.Ceiling = int(float(cValue[20])) #m

 refraction3.AtmosAltitude = int(float(cValue[16])) #m

 refraction3.KneeBendFactor = int(float(cValue[15]))

 #Insert Transmitters

 print("Creating Aircraft Transmitter...")

 airTransmitter3 =

aircraft3.Children.New(AgESTKObjectType.eTransmitter, "Transmitter3")

 # IAgTransmitter transmitter: Transmitter object

 airTransmitter3.SetModel('Complex Transmitter Model')

 txModel3 = airTransmitter3.Model

 txModel3.Frequency = int(float(cValue[11])) #GHz

 txModel3.Power = int(float(cValue[14])) #dBW

 txModel3.DataRate = int(float(cValue[10])) #Mb/sec

 # IAgTransmitter transmitter: Transmitter object

 txModel3.EnablePolarization = True

 txModel3.SetPolarizationType(3) #ePolarizationTypeLinear

 polarization3 = txModel3.Polarization

50

 polarization3.ReferenceAxis = int(float(cValue[12]))

#ePolarizationReferenceAxisY

 polarization3.TiltAngle = int(float(cValue[13])) #deg

 ###

 #Create Facilities

 print("Creating Command Center...")

 facility = scenario.Children.New(AgESTKObjectType.eFacility,

"CommandCenter")

 facility.Position.AssignGeodetic(42.30, -71, 0) #LAt,Long,Alt

 #Set altitude to a distance above the ground

 facility.HeightAboveGround = .1 #km

 #Add Facility Antenna

 print("Creating Command Center Antenna...")

 FAntenna = facility.Children.New(AgESTKObjectType.eAntenna,

"FacilityAntenna")

 # IAgAntenna antenna: Antenna object

 FAntenna.SetModel('Dipole')

 antennaModel = FAntenna.Model

 antennaModel.DesignFrequency = 30 # GHz

 antennaModel.Length = 1 #m

 antennaModel.LengthToWavelengthRatio = 45

 antennaModel.Efficiency = 85 #Percent

 # IAgAntenna antenna: Antenna object

 FAntenna.UseRefractionInAccess = True

 FAntenna.Refraction = 3 #eITU_R_P834_4

 refraction = FAntenna.RefractionModel

 refraction.Ceiling = 1000 #m

 refraction.AtmosAltitude = 10000 #m

 refraction.KneeBendFactor = 0.1

 #Add FAcility Transmitter

 print("Creating Command Center Transmitter...")

 FTransmitter = facility.Children.New(AgESTKObjectType.eTransmitter,

"FacilityTransmitter")

 # IAgTransmitter transmitter: Transmitter object

 FTransmitter.SetModel("Complex Transmitter Model")

 txModel2 = FTransmitter.Model

 antennaControl = txModel2.AntennaControl

 antennaControl.SetEmbeddedModel('Isotropic')

 antennaControl.EmbeddedModel.Efficiency = 85 #Percent

 # IAgTransmitter transmitter: Transmitter object

 FTransmitter.SetModel("Complex Transmitter Model")

 txModel2 = FTransmitter.Model

 txModel2.EnablePolarization = True

 txModel2.SetPolarizationType(3) #ePolarizationTypeLinear

 polarization = txModel2.Polarization

 polarization.ReferenceAxis = 1 #ePolarizationReferenceAxisY

 polarization.TiltAngle = 15 #deg

 ###

51

 print("Creating North Facility...")

 facility2 = scenario.Children.New(AgESTKObjectType.eFacility,

"NorthFacility")

 facility2.Position.AssignGeodetic(45.30, -90, 0) #LAt,Long,Alt

 #Set altitude to a distance above the ground

 facility2.HeightAboveGround = .1 #km

 #Add Facility Antenna

 print("Creating North Facility Antenna...")

 FAntenna2 = facility2.Children.New(AgESTKObjectType.eAntenna,

"FacilityAntenna2")

 # IAgAntenna antenna: Antenna object

 FAntenna2.SetModel('Dipole')

 antennaModel2 = FAntenna2.Model

 antennaModel2.DesignFrequency = 30 # GHz

 antennaModel2.Length = 1 #m

 antennaModel2.LengthToWavelengthRatio = 45

 antennaModel2.Efficiency = 85 #Percent

 # IAgAntenna antenna: Antenna object

 FAntenna2.UseRefractionInAccess = True

 FAntenna2.Refraction = 3 #eITU_R_P834_4

 refraction2 = FAntenna2.RefractionModel

 refraction2.Ceiling = 1000 #m

 refraction2.AtmosAltitude = 10000 #m

 refraction2.KneeBendFactor = 0.1

 #Add FAcility Transmitter

 print("Creating North Facility Transmitter...")

 FTransmitter2 = facility2.Children.New(AgESTKObjectType.eTransmitter,

"FacilityTransmitter2")

 # IAgTransmitter transmitter: Transmitter object

 FTransmitter2.SetModel("Complex Transmitter Model")

 txModel3 = FTransmitter2.Model

 antennaControl2 = txModel3.AntennaControl

 antennaControl2.SetEmbeddedModel('Isotropic')

 antennaControl2.EmbeddedModel.Efficiency = 85 #Percent

 # IAgTransmitter transmitter: Transmitter object

 FTransmitter2.SetModel("Complex Transmitter Model")

 txModel3 = FTransmitter2.Model

 txModel3.EnablePolarization = True

 txModel3.SetPolarizationType(3) #ePolarizationTypeLinear

 polarization2 = txModel3.Polarization

 polarization2.ReferenceAxis = 1 #ePolarizationReferenceAxisY

 polarization2.TiltAngle = 15 #deg

 ###

 print("Creating Middile Facility...")

 facilityMid = scenario.Children.New(AgESTKObjectType.eFacility,

"MiddileFacility")

 facilityMid.Position.AssignGeodetic(39, -90, 0) #LAt,Long,Alt

 #Set altitude to a distance above the ground

52

 facilityMid.HeightAboveGround = .1 #km

 #Add Facility Antenna

 print("Creating Middile Facility Antenna...")

 FAntennaMid = facilityMid.Children.New(AgESTKObjectType.eAntenna,

"FacilityAntenna3")

 # IAgAntenna antenna: Antenna object

 FAntennaMid.SetModel('Dipole')

 antennaModelMid = FAntennaMid.Model

 antennaModelMid.DesignFrequency = 30 # GHz

 antennaModelMid.Length = 1 #m

 antennaModelMid.LengthToWavelengthRatio = 45

 antennaModelMid.Efficiency = 85 #Percent

 # IAgAntenna antenna: Antenna object

 FAntennaMid.UseRefractionInAccess = True

 FAntennaMid.Refraction = 3 #eITU_R_P834_4

 refractionMid = FAntennaMid.RefractionModel

 refractionMid.Ceiling = 1000 #m

 refractionMid.AtmosAltitude = 10000 #m

 refractionMid.KneeBendFactor = 0.1

 #Add FAcility Transmitter

 print("Creating Middile Facility Transmitter...")

 FTransmitterMid =

facilityMid.Children.New(AgESTKObjectType.eTransmitter,

"FacilityTransmitter3")

 # IAgTransmitter transmitter: Transmitter object

 FTransmitterMid.SetModel("Complex Transmitter Model")

 txModelMid = FTransmitterMid.Model

 antennaControlMid = txModelMid.AntennaControl

 antennaControlMid.SetEmbeddedModel('Isotropic')

 antennaControlMid.EmbeddedModel.Efficiency = 85 #Percent

 # IAgTransmitter transmitter: Transmitter object

 FTransmitterMid.SetModel("Complex Transmitter Model")

 txModelMid = FTransmitterMid.Model

 txModelMid.EnablePolarization = True

 txModelMid.SetPolarizationType(3) #ePolarizationTypeLinear

 polarizationMid = txModelMid.Polarization

 polarizationMid.ReferenceAxis = 1 #ePolarizationReferenceAxisY

 polarizationMid.TiltAngle = 15 #deg

 ###

 print("Creating South Facility...")

 facilityS = scenario.Children.New(AgESTKObjectType.eFacility,

"SouthFacility")

 facilityS.Position.AssignGeodetic(34, -90, 0) #LAt,Long,Alt

 #Set altitude to a distance above the ground

 facilityS.HeightAboveGround = .1 #km

 #Add Facility Antenna

 print("Creating South Facility Antenna...")

53

 FAntennaS = facilityS.Children.New(AgESTKObjectType.eAntenna,

"FacilityAntenna4")

 # IAgAntenna antenna: Antenna object

 FAntennaS.SetModel('Dipole')

 antennaModelS = FAntennaS.Model

 antennaModelS.DesignFrequency = 20 # GHz

 antennaModelS.Length = 1 #m

 antennaModelS.LengthToWavelengthRatio = 45

 antennaModelS.Efficiency = 85 #Percent

 # IAgAntenna antenna: Antenna object

 FAntennaS.UseRefractionInAccess = True

 FAntennaS.Refraction = 3 #eITU_R_P834_4

 refractionS = FAntennaS.RefractionModel

 refractionS.Ceiling = 1000 #m

 refractionS.AtmosAltitude = 10000 #m

 refractionS.KneeBendFactor = 0.1

 #Add FAcility Transmitter

 print("Creating South Facility Transmitter...")

 FTransmitterS = facilityS.Children.New(AgESTKObjectType.eTransmitter,

"FacilityTransmitter4")

 # IAgTransmitter transmitter: Transmitter object

 FTransmitterS.SetModel("Complex Transmitter Model")

 txModelS = FTransmitterS.Model

 antennaControlS = txModelS.AntennaControl

 antennaControlS.SetEmbeddedModel('Isotropic')

 antennaControlS.EmbeddedModel.Efficiency = 85 #Percent

 # IAgTransmitter transmitter: Transmitter object

 FTransmitterS.SetModel("Complex Transmitter Model")

 txModelS = FTransmitterS.Model

 txModelS.EnablePolarization = True

 txModelS.SetPolarizationType(3) #ePolarizationTypeLinear

 polarizationS = txModelS.Polarization

 polarizationS.ReferenceAxis = 1 #ePolarizationReferenceAxisY

 polarizationS.TiltAngle = 15 #deg

 # #Compute access between first aircrat and facility

 # print("\nComputing aircraft and facility access...")

 # access2 = aircraft.GetAccessToObject(facility)

 # access2.ComputeAccess()

 # #Get the Access AER Data Provider

 # accessDP = access2.DataProviders.Item('Access Data')

 # # accessDP2 = accessDP.QueryInterface(stkobjects.IAgDataPrvInterval)

 # results = accessDP.Exec(scenario.StartTime, scenario.StopTime)

 # accessStartTimes = results.DataSets.GetDataSetByName('Start

Time').GetValues()

 # accessStopTimes = results.DataSets.GetDataSetByName('Stop

Time').GetValues()

 # print("The Access Start and End Times are: ")

 # print(accessStartTimes,accessStopTimes)

54

 # aircraftADP = aircraft.DataProviders.Item('Distance') #Distance Data

Provider

 # # aircraftADP2 =

aircraftADP.QueryInterface(stkobjects.IAgDataPrvInterval)

 # aircraftADPElements = ["Time to finish", "Average Speed","Dist to

finish", "Speed"]

 # aircraftTimeVar = aircraftADP.ExecElements(accessStartTimes,

accessStopTimes, 60.0, aircraftADPElements)

 # timeToFinish = aircraftTimeVar.DataSets.GetDataSetByName("Time to

finish").GetValues()

 # averageSpeed = aircraftTimeVar.DataSets.GetDataSetByName("Average

Speed").GetValues()

 # distFinish = aircraftTimeVar.DataSets.GetDataSetByName("Dist to

finish").GetValues()

 # aircraftSpeed =

aircraftTimeVar.DataSets.GetDataSetByName("Speed").GetValues()

 # print("The first aircraft time to finish is: ")

 # print(timeToFinish)

 # print("The first aircraft average speed over time is: ")

 # print(averageSpeed)

 # print("The first aircraft distance to finish is: ")

 # print(distFinish)

 # print("The first aircraft aircraft speed over time is: ")

 # print(aircraftSpeed)

 #Compute facility antenna to aircraft antenna

 print("\nComputing access between the North Facility Antenna and the

First Aircraft transmitter...")

 access3 = FAntenna2.GetAccessToObject(airTransmitter)

 access3.ComputeAccess

 #Access Data Providers

 accessDP3 = access3.DataProviders.Item('Access Data')

 results3 = accessDP3.Exec(scenario.StartTime, scenario.StopTime)

 accessDP3Start = results3.DataSets.GetDataSetByName('Start

Time').GetValues()

 accessDP3Stop = results3.DataSets.GetDataSetByName('Stop

Time').GetValues()

 accessDP3Duration =

results3.DataSets.GetDataSetByName('Duration').GetValues()

 print("The access start and stop times are: ")

 print(accessDP3Start, accessDP3Stop)

 print("The duration of access is: ")

 print(accessDP3Duration)

 #Compute facility antenna to second aircraft antenna

 print("\nComputing access between the Middile Facility Antenna and the

Second Aircraft transmitter...")

 access4 = FAntennaMid.GetAccessToObject(airTransmitter2)

 access4.ComputeAccess

 #Access Data Providers

 accessDP4 = access4.DataProviders.Item('Access Data')

 results4 = accessDP4.Exec(scenario.StartTime, scenario.StopTime)

55

 accessDP4Start = results4.DataSets.GetDataSetByName('Start

Time').GetValues()

 accessDP4Stop = results4.DataSets.GetDataSetByName('Stop

Time').GetValues()

 accessDP4Duration =

results4.DataSets.GetDataSetByName('Duration').GetValues()

 print("The access start and stop times are: ")

 print(accessDP4Start, accessDP4Stop)

 print("The duration of access is: ")

 print(accessDP4Duration)

 #Compute facility antenna to second aircraft antenna

 print("\nComputing access between the South Facility Center antenna

and the Third Aircraft transmitter...")

 access5 = FAntennaS.GetAccessToObject(airTransmitter3)

 access5.ComputeAccess

 #Access Data Providers

 accessDP5 = access5.DataProviders.Item('Access Data')

 results5 = accessDP5.Exec(scenario.StartTime, scenario.StopTime)

 accessDP5Start = results5.DataSets.GetDataSetByName('Start

Time').GetValues()

 accessDP5Stop = results5.DataSets.GetDataSetByName('Stop

Time').GetValues()

 accessDP5Duration =

results5.DataSets.GetDataSetByName('Duration').GetValues()

 print("The access start and stop times are: ")

 print(accessDP5Start, accessDP5Stop)

 print("The duration of access is: ")

 print(accessDP5Duration)

 #Create Missile

 print("Creating Missiles...")

 #IAgScenario scenario: scenario object

 missile = scenario.Children.New(AgESTKObjectType.eMissile, "Missile1")

 missile.SetTrajectoryType(10) #PropagtorBallistic

 trajectory = missile.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory.Launch.Lat = 40 #Around Pennsylvania

 trajectory.Launch.Lon = -80 #Around Pennsylvania

 #Is there anyway to set taqrget without putting lat and lon?

 trajectory.ImpactLocation.Impact.Lat = 44

 trajectory.ImpactLocation.Impact.Lon = -109.50

 trajectory.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

 trajectory.Propagate()

 #Create Missile

56

 #IAgScenario scenario: scenario object

 missile2 = scenario.Children.New(AgESTKObjectType.eMissile,

"Missile2")

 missile2.SetTrajectoryType(10) #PropagtorBallistic

 trajectory2 = missile2.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory2.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory2.Launch.Lat = 41 #Around Pennsylvania

 trajectory2.Launch.Lon = -77 #Around Pennsylvania

 trajectory2.ImpactLocation.Impact.Lat = 42

 trajectory2.ImpactLocation.Impact.Lon = -107.50

 trajectory2.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory2.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

 trajectory2.Propagate()

 #Create Missile

 #IAgScenario scenario: scenario object

 missile3 = scenario.Children.New(AgESTKObjectType.eMissile,

"Missile3")

 missile3.SetTrajectoryType(10) #PropagtorBallistic

 trajectory3 = missile3.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory3.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory3.Launch.Lat = 40.50 #Around Pennsylvania

 trajectory3.Launch.Lon = -78 #Around Pennsylvania

 trajectory3.ImpactLocation.Impact.Lat = 40

 trajectory3.ImpactLocation.Impact.Lon = -105.50

 trajectory3.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory3.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

 trajectory3.Propagate()

 #Create Missile

 #IAgScenario scenario: scenario object

 missile4 = scenario.Children.New(AgESTKObjectType.eMissile,

"Missile4")

 missile4.SetTrajectoryType(10) #PropagtorBallistic

 trajectory4 = missile4.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory4.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory4.Launch.Lat = 41 #Around Pennsylvania

 trajectory4.Launch.Lon = -79 #Around Pennsylvania

 trajectory4.ImpactLocation.Impact.Lat = 38

 trajectory4.ImpactLocation.Impact.Lon = -103.50

 trajectory4.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory4.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

57

 trajectory4.Propagate()

 #Create Missile

 #IAgScenario scenario: scenario object

 missile5 = scenario.Children.New(AgESTKObjectType.eMissile,

"Missile5")

 missile5.SetTrajectoryType(10) #PropagtorBallistic

 trajectory5 = missile5.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory5.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory5.Launch.Lat = 39 #Around Pennsylvania

 trajectory5.Launch.Lon = -78 #Around Pennsylvania

 trajectory5.ImpactLocation.Impact.Lat = 36

 trajectory5.ImpactLocation.Impact.Lon = -101.50

 trajectory5.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory5.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

 trajectory5.Propagate()

 # missileSys =

stkRoot.CurrentScenario.Children.New(AgESTKObjectType.eChain,

"MissileChain")

 # chain.Objects.AddObject(missile)

 # chain.Objects.AddObject(missile2)

 # chain.Objects.AddObject(missile3)

 # chain.Objects.AddObject(missile4)

 # chain.Objects.AddObject(missile5)

 #Create Missile

 print("Creating More Missiles...")

 #IAgScenario scenario: scenario object

 missile6 = scenario.Children.New(AgESTKObjectType.eMissile,

"Missile6")

 missile6.SetTrajectoryType(10) #PropagtorBallistic

 trajectory6 = missile6.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory6.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory6.Launch.Lat = 41 #Around Pennsylvania

 trajectory6.Launch.Lon = -80.50 #Around Pennsylvania

 trajectory6.ImpactLocation.Impact.Lat = 44

 trajectory6.ImpactLocation.Impact.Lon = -121

 trajectory6.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory6.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

 trajectory6.Propagate()

 #Create Missile

 #IAgScenario scenario: scenario object

58

 missile7 = scenario.Children.New(AgESTKObjectType.eMissile,

"Missile7")

 missile7.SetTrajectoryType(10) #PropagtorBallistic

 trajectory7 = missile7.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory7.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory7.Launch.Lat = 40 #Around Pennsylvania

 trajectory7.Launch.Lon = -79 #Around Pennsylvania

 trajectory7.ImpactLocation.Impact.Lat = 42

 trajectory7.ImpactLocation.Impact.Lon = -119

 trajectory7.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory7.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

 trajectory7.Propagate()

 #Create Missile

 #IAgScenario scenario: scenario object

 missile8 = scenario.Children.New(AgESTKObjectType.eMissile,

"Missile8")

 missile8.SetTrajectoryType(10) #PropagtorBallistic

 trajectory8 = missile8.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory8.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory8.Launch.Lat = 39 #Around Pennsylvania

 trajectory8.Launch.Lon = -81 #Around Pennsylvania

 trajectory8.ImpactLocation.Impact.Lat = 40

 trajectory8.ImpactLocation.Impact.Lon = -117

 trajectory8.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory8.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

 trajectory8.Propagate()

 #Create Missile

 #IAgScenario scenario: scenario object

 missile9 = scenario.Children.New(AgESTKObjectType.eMissile,

"Missile9")

 missile9.SetTrajectoryType(10) #PropagtorBallistic

 trajectory9 = missile9.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory9.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory9.Launch.Lat = 40 #Around Pennsylvania

 trajectory9.Launch.Lon = -80 #Around Pennsylvania

 trajectory9.ImpactLocation.Impact.Lat = 38

 trajectory9.ImpactLocation.Impact.Lon = -115

 trajectory9.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory9.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

 trajectory9.Propagate()

59

 #Create Missile

 #IAgScenario scenario: scenario object

 missile10 = scenario.Children.New(AgESTKObjectType.eMissile,

"Missile10")

 missile10.SetTrajectoryType(10) #PropagtorBallistic

 trajectory10 = missile7.Trajectory

 stkRoot.UnitPreferences.SetCurrentUnit('DateFormat', 'EpSec')

 trajectory10.EphemerisInterval.SetExplicitInterval(0, 0) # stop time

later computed based on propagation

 trajectory10.Launch.Lat = 42 #Around Pennsylvania

 trajectory10.Launch.Lon = -79 #Around Pennsylvania

 trajectory10.ImpactLocation.Impact.Lat = 36

 trajectory10.ImpactLocation.Impact.Lon = -113

 trajectory10.ImpactLocation.SetLaunchControlType(0)

#eLaunchControlFixedApogeeAlt

 trajectory10.ImpactLocation.LaunchControl.ApogeeAlt =

int(float(cValue[7])) #km

 trajectory10.Propagate()

 # missileSys2 =

stkRoot.CurrentScenario.Children.New(AgESTKObjectType.eChain,

"MissileChain2")

 # chain.Objects.AddObject(missile6)

 # chain.Objects.AddObject(missile7)

 # chain.Objects.AddObject(missile8)

 # chain.Objects.AddObject(missile9)

 # chain.Objects.AddObject(missile10)

 #Scenario 2 will be changing the missile altitude and seeing how it

affects overall time

 # #Access of ONE missile to its Target

 missileADP = missile.DataProviders.Item('Ground Range')

 missileADP2 = missileADP.Group.Item('Fixed')

 missileElements = ['Time', 'Ground Range', 'Alt']

 missileTimeVar = missileADP2.ExecElements(scenario.StartTime,

scenario.StopTime, 60.0, missileElements)

 missileTime =

missileTimeVar.DataSets.GetDataSetByName('Time').GetValues()

 missileGroundRange = missileTimeVar.DataSets.GetDataSetByName('Ground

Range').GetValues()

 missileAlt =

missileTimeVar.DataSets.GetDataSetByName('Alt').GetValues()

 print("The Missile Time Is: ")

 print(missileTime)

 print("The Missile Ground Range Over Time Is: ")

 print(missileGroundRange)

 print("The Missile Altitude Over Time is: ")

 print(missileAlt)

 #Writing the scenario analysis data to a CSV to be viewed

60

 from csv import writer

 from csv import reader

 import pathlib

 import pandas as pd

 import matplotlib.pyplot as plt

 import numpy as np

 #Looking to get the values of the Aircraft

 #Looking to get the values of the Missile Range vs Missile Altitude

 x = pd.Series(missileGroundRange, name = 'Ground Range (km)')

 y = pd.Series(missileAlt, name = 'Altitude (km)')

 z = pd.Series(missileTime, name = 'Time (sec)')

 #Concatenate to coloums

 df = pd.concat([x, y,z], axis = 1)

 print(df)

 csv_data = df.to_csv("C:\\Users\\mellis\\Documents\\MQP

Resources\\MQP_Missile_Scenario1.csv")

 print(csv_data)

 #Plot the coordinates DOES NOT WORK, plots taken from STK

 #df.plot(y = 'yValues', figsize=(10,6), title ='Missile Altitude vs

Ground Range', xlabel ='Range (km)', ylabel = 'Altitude')

 fpath = "C:\\Users\\mellis\\Documents\\STK 12\\simpleMQScenario"

 startup_stk(fpath)

