
Project Number: MQP MXC-W054

Deutsche Bank’s TaskMan System and the Job Execution Framework

A Major Qualifying Report: submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the

Degree of Bachelor of Science

by:

Matthew Piette

mpiette@wpi.edu

Justin Zipkin
zip@wpi.edu

In cooperation with:
Deutsche Bank

December 17, 2005

Professor Michael Ciaraldi, Major Advisor

 i

Abstract
The goal of this project was to aid Deutsche Bank in the migration from a deprecated
time based scheduling system to a new service-oriented Job Execution Framework.
Throughout the project we identified shortcomings that plagued the old system and
designed processes to avoid reinventing these problems in the replacement framework.
We also created a system to visually represent the running jobs in the old system, and
created a methodology around it for the migration of tasks to their new framework.

 ii

Acknowledgments
First and foremost, we would like to thank Greg Friel for sponsoring this project.

Without his support and enthusiasm, we would not have had this opportunity to live and
work in London at one of the world’s top investment firms. We would also like to thank
Professors Art Gerstenfeld and Mike Ciaraldi for all the time they devoted to organizing
and advising this project.

We would like to acknowledge our colleagues at Deutsche Bank who helped make
this project successful. In particular, Ian Ramsay, who took the time to help us get
acclimated to our new surroundings and aided us in getting the project off the ground.
We’d also like to thank John Hawkins for sharing with us his vast knowledge of the inner
workings of the Deutsche Bank applications and technical infrastructure. Special thanks
go out to Vilas Hirani and Owen Davies for taking the time to answer our many questions
about TaskMan and its supporting applications.

Finally, we would like to thank all of GES IT for the support and assistance they
gave us during our stay here: Andy Manton, Steve Mainstone, Brian Keogh and Nick
Sharp. Thank you all!

 iii

Executive Summary
Deutsche Bank conducts thousands of trades per day in its Global Exchange

Services (GES) division alone. In order to get vital information to those who need it
most, the TaskMan job scheduling system is used to execute over 1600 jobs per day.
Since TaskMan’s inception in 1998, however, the company has grown exponentially and
this scheduling framework now needs to be replaced. The replacement system, known as
the Job Execution Framework (JEF), is in the early development stages and still needs to
be molded to implement all of the functionality that TaskMan currently offers.
Additionally, JEF aims to be expandable by utilizing a Service-Oriented Architecture
(SOA) coupled with an Enterprise Service Bus (ESB). This will result in a much more
robust architecture than TaskMan. A three stage, in-depth analysis of the TaskMan
system was conducted, the purpose of which was to determine the best path to
implementing the replacement system, as well as to suggest design decisions.

Phase one of this process focused on the analysis of all jobs within the TaskMan
software. This analysis also included over 400 jobs run by similar, but less heavily used,
scheduling systems around Deutsche Bank, such as RANTask and the Sydney scheduling
Perl scripts. During this analysis a series of useful reports was created. These include
lists of disabled tasks, explanations and analyses of job types, and an in-depth review of
all TaskMan Stored Procedures. After a complete study of the three systems was
conducted, it was discovered that forty-one TaskMan job types fell under four abstract
categories that should be implemented in JEF: file manipulation, SQL procedure, e-mail,
and batch or other customizable process.

During this phase, preliminary research into the transition of jobs from TaskMan to
JEF was also conducted. Specifically, suggestions were made for how jobs can be
represented in the new framework. For example, a clear mapping of all current TaskMan
job types to the proposed JEF job types was decided upon. A sampling of user stories has
also been included to aid in the development of appropriate business process templates
and to give a better understanding of the flow of data. These user stories are a method of
the extreme programming (XP) process, which will allow this project to have shorter
iterations during development, as well as aid in the creation of acceptance tests. These
automated tests will result in a higher quality of code without sacrificing valuable time.

The middle phase of this project was dedicated to the creation of the TaskMan
Event Calendaring System (TECS). This system is a web-based application, consisting
of a back-end MySQL database and front-end PHP web interface. TECS was constructed
in order to provide detailed information about tasks within the TaskMan system and to
ease migration of jobs to JEF. TECS can also aid support staff in situations that
necessitate the manual shutdown and startup of select tasks, such as when certain markets
close during the holiday season. This assistance is accomplished by the calendaring
system through its ability to rapidly and intuitively visualize job structures within
TaskMan. While TECS will be particularly helpful in the transition from TaskMan to
JEF, it is suggested that JEF natively incorporates similar functionality to that of TECS
rather than requiring the use of an external application.

While designing TECS, ease of use without sacrificing functionality was a primary
concern. A short development cycle led to certain sacrifices such as a simplified user

 iv

interface and data passing mechanism. However, this proved to have negligible negative
impact on the final product. Some of the key features that were implemented in TECS
include:

• A simple and intuitive calendar based interface.

• Report-type breakdown.

• Detailed Day and Task views.

• Extensive report generation capabilities.

Perhaps the most important feature of TECS is its extensive report generation
capabilities. Options for generating reports as CSV files, XML files, and Microsoft
Project compatible Gantt charts are all included. The Gantt charts in particular allow the
user to view a visual representation of running jobs in an easy to read manner. Gantt
charts can be configured to generate in a format for easily determining job times, job
dependencies, or even creating a chain of dependencies centered on a single task. These
options are all well documented in this report, as well as in the application itself.

Even during the development phase TECS was able to prove its usefulness. The
creation process of TECS led to the discovery of several discrepancies in the TaskMan
system. These errors range from cyclic dependencies, to jobs waiting on disabled and
nonexistent tasks. Multiple jobs were also discovered that have stop times that occur
before their start times. Jobs of these types would never run, leaving them to clutter up
the system. During the migration process, TECS’ ability to visualize task ‘trees’ will also
greatly aid in finding any other logical errors within TaskMan.

The final stage of the TaskMan analysis process focused on the input and
maintenance of TaskMan jobs, as well as future-proofing JEF and its work-request
system: the Global Incident Management System (GIMS). While the steps taken to
'future-proof' each application are different, there are several key areas that were analyzed
throughout the process. As a whole, JEF will suffer if GIMS requests cannot provide
sufficient information for support personnel to respond appropriately. Also, as JEF is
meant to be a superior replacement application, not only must the remaining problems
that plague TaskMan be corrected, but ways to prevent other problems from cropping up
in the future must be guarded against.

GIMS is the key support application that manages incidents related to the TaskMan
system, and is planned to be used in conjunction with JEF as well. By extracting all the
entries in the TaskMan GIMS for the 3rd Quarter of 2005, a fairly broad view of the
distribution of requests was acquired. During the analysis of these entries it was
discovered that while there are predefined ‘Fault Categories’, the requests would actually
fit better into a different set of groupings. Additionally, the unstructured style of entering
a request into GIMS resulted in a large variation in the quality of data received for each
request. By reconstructing the ‘Fault Categories’ for JEF’s GIMS and developing a
template to enhance the data collection process, a consistently higher quality of data can
be collected, resulting in a system that can allow problems and requests to be handled in a
more streamlined and effective manner. To this effect, a sample template has been
generated, as well as a preliminary set of overhauled ‘Fault Categories’.

 v

Another problem with TaskMan is the fact that if a newly created job was based off
of another, there was no easy way to identify this. This makes managing similar tasks
that follow identical templates difficult to group together. By tightening up the GIMS
process, the buildup of duplicated and unused jobs can be reduced greatly. By
standardizing the type of data that is submitted with each request, a high-quality history
can maintained, allowing for useful reporting features to be employed. Giving support
personnel the ability to view a ‘History’ of requests within the GIMS system will also
increase worker efficiency, and assist in the prevention of duplicated jobs. Additionally,
by using this history to require that running jobs be reconfirmed by the requesting
department at set intervals of time, the amount of duplicated or deprecated jobs can be
efficiently reduced.

As portions of TaskMan’s functionality will be assigned to JEF soon, the creation
of a methodology detailing the transfer of jobs from TaskMan to JEF was of vital
importance. Through the use of knowledge gained from the first stage of the project, as
well as the use of TECS, a series of solid principles were developed upon which this
methodology is based. The proposed system of classification for all the jobs within
TaskMan will allow for a rapid and safe transfer of functionality from the old system to
its successor in the future. By migrating tasks based on their dependencies and
complexity, portions of task trees can be easily moved to JEF and run, while the
remaining portions can be run from TaskMan seamlessly. Running both systems in
parallel is part of Deutsche Bank’s prescribed plan, and running them in this manner
allows for a highly redundant system during the normally unstable process of testing and
implementing a new application of this scale.

 vi

Table of Contents
ABSTRACT ... i
ACKNOWLEDGMENTS.. ii
EXECUTIVE SUMMARY ... iii
TABLE OF CONTENTS.. vi
LIST OF FIGURES.. vii
LIST OF TABLES... viii
CHAPTER 1: INTRODUCTION ... 1
CHAPTER 2: BACKGROUND.. 2

EXCHANGE TRADED FUTURES AND OPTIONS ... 2
DEUTSCHE BANK.. 2
TASKMAN .. 4
JOB EXECUTION FRAMEWORK.. 6

CHAPTER 3: METHODOLOGY .. 9
ANALYZING TASKMAN’S JOB TYPES ... 9
EVENT CALENDAR.. 10
JOB INPUT AND MAINTENANCE .. 14

CHAPTER 4: PRELIMINARY ANALYSIS ... 16
TASKMAN TYPE CLASSIFICATIONS .. 16
ASIA-PACIFIC TYPE CLASSIFICATIONS ... 18
RANTASK TYPE CLASSIFICATIONS.. 18

CHAPTER 5: TASKMAN EVENT CALENDARING SYSTEM.. 19
DOCUMENTATION... 19

CHAPTER 6: JOB INPUT AND MAINTENANCE... 23
LOGGING A TASKMAN REQUEST.. 23
ANALYSIS OF GIMS REQUESTS .. 26
METHODOLOGY OF TRANSFERRING A TASKMAN TASK TO JEF.. 27

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS... 31
JEF TYPE CLASSIFICATIONS... 31
RECOMMENDATIONS FOR JEF JOB REQUEST SYSTEM ... 32
RECOMMENDATIONS FOR APPLYING PREVENTATIVE MEASURES TO JEF... 33
JEF USER STORIES ... 36

APPENDIX A: GLOSSARY OF TERMS.. 37
APPENDIX B: RANTASK TASK TYPES .. 38
APPENDIX C: TASKMAN JOB TYPES .. 44
APPENDIX D: TASK DISCREPANCIES... 47
APPENDIX E: INCLUDED MEDIA.. 48
APPENDIX F: WORKS CITED... 49

 vii

List of Figures
FIGURE 1: OVERVIEW OF TASKMAN IN THE U.K... 5
FIGURE 2: SERVICE ORIENTED ARCHITECTURE... 7
FIGURE 3: TECS MAIN VIEW.. 20
FIGURE 4: TECS DETAIL VIEW ... 21
FIGURE 5: TASK VIEW... 22
FIGURE 6: EXAMPLE TASK GANTT CHART .. 22
FIGURE 7: LOGGING A REQUEST .. 23
FIGURE 8: USER VIEW OF GIMS.. 24
FIGURE 9: JOB TYPES BY PREDECESSOR STATUS... 27
FIGURE 10: MIGRATION OF A LEAF JOB .. 28
FIGURE 11: MIGRATION OF A COMPLEX JOB (GOOD) .. 28
FIGURE 12: MIGRATION OF A COMPLEX JOB (BAD)... 28

 viii

List of Tables
TABLE 1: MYSQL VERSUS ORACLE .. 11
TABLE 2: LIST OF TASKMAN TASK TYPES .. 16
TABLE 3: TASKMAN CORE TYPES... 17
TABLE 4: STORED PROCEDURE COMPOSITION .. 17
TABLE 5: EXPLANATION OF RELEVANT FIELDS ... 25
TABLE 6: GIMS TASKMAN FAULT CATEGORIES .. 25
TABLE 7: BASIC FUNCTIONALITY OF REQUESTS .. 26
TABLE 8: JEF JOB DOCUMENTATION .. 30
TABLE 9: GLOSSARY OF TERMS .. 37

 1

Chapter 1: Introduction
As Deutsche Bank continues to grow as a company, the technological infrastructure

must also grow to keep up with industry requirements. This report will focus on an in-
house software product at Deutsche Bank known as TaskMan and its replacement: the
Job Execution Framework (JEF). TaskMan is in charge of the majority of job scheduling
needs within the Global Exchange Services (GES) IT department of Deutsche Bank, and
as of this writing is running more than 1600 miscellaneous jobs every day. These jobs
consist of moving data, transforming files, creating and delivering reports, and many
other house-keeping operations. Through a great deal of research, tests and analyses, this
project presents the current state of TaskMan in detail. Information such as its
development history, functions, and shortcomings are elaborated on. Additionally,
features of the current TaskMan system are compared to those of JEF.

As this project was conducted over a strict period of eight weeks, the research was
broken into three discrete phases. Each phase is represented by a separate chapter and
sometimes a deliverable. Also, each phase refers to its own set of appendices, provided
together at the end of this report.

The first phase analyzed the types of jobs run by the TaskMan system. It
considered how jobs are logically classified within the program, and how they could be
better classified. Additionally, phase one includes research into the specific jobs run by
TaskMan.

Phase two of this project focused specifically on creating and implementing a
software deliverable known as the TaskMan Event Calendaring System (TECS). This
section includes design decisions made when developing TECS, and a user guide for its
use. Provided with this project is the source code for TECS, a task diagram, and job
discrepancies that were discovered during development.

The final phase of this project focused on job maintenance, job input, and a
methodology for transferring TaskMan jobs to JEF. Additionally, the process for logging
TaskMan incidents was carefully analyzed. This included all aspects from conception all
the way through actualization.

 2

Chapter 2: Background
The intent of this chapter is to provide the reader with a greater sense of this Major

Qualifying Project’s (MQP) goals. To successfully accomplish this, the material
provided in this section is presented in a broad fashion, introducing concepts that
different audiences may not be familiar with. Firstly, a couple of basic financial concepts
will be acknowledged, as well as a very brief history of Deutsche Bank. The financial
concepts presented will be limited to basic futures and options trading, and the role that
Deutsche Bank has within that industry. Secondly, important technologies related to job
scheduling at Deutsche Bank will be introduced. This includes industry standard
technology, as well as in-house software used specifically by Deutsche Bank.

While the majority of this report will delve more deeply into the concepts explained
in this chapter, it is important to have an overall understanding of the technologies in use.
Additionally, although not completely crucial, a solid understanding of the financial
aspects in the banking industry will help clarify portions of this report.

Exchange Traded Futures and Options

Basic Services
A futures contract is a standardized forward contract that is traded on a futures

exchange. This means that it is a standardized contract to buy or sell a certain asset at a
pre-agreed future point in time. The exchange acts as counterparty to all trades and sets
the margin requirements. In many instances, options are traded on futures. A ‘put’ is the
option to sell a futures contract, while a ‘call’ is the option to buy a futures contract. In
either instance, the ‘strike price’ is the futures price at which the future is traded, if the
option on it is exercised (Veale, 2001).

The Life Cycle of a Futures Trade
Each trade has a definitive start and end point, and what occurs between these

points is what is known as the lifecycle of a trade. Futures are often traded amongst
investors for the duration of their life, and the responsibility of a futures contract can be
transferred to many different people prior to its expiration. When a future finally does
expire, the holder is simply responsible for either collecting, or paying the losses of, the
difference between the entry price and settlement price. It is nearly unheard of for an
investor to purchase a contract with the intent of obtaining the goods contracted in a
future, and the hope is that the settlement price will yield a gain for the holder (Ian
Ramsay, Personal Communication, 2005-10-24).

Deutsche Bank

Company History
Deutsche Bank has come a long way since their humble beginnings in Berlin in

1870, expanding to encompass about 964 billion Euros worth of assets, and retain nearly
64,000 employees. They are currently one of the world’s leading international financial
service providers, with branches in 74 countries. The institution has five core businesses:

 3

Global Markets, Global Banking, Private & Business Clients, Private Wealth
Management, and Asset Management (Deutsche Bank, 2005). This project deals
primarily with Global Markets and Banking, and those are the areas that will be focused
on for its duration. Specific attention will be given to the Futures and Options business.

Global Exchange Services at Deutsche Bank
Global Exchange Services (GES) is a sub division of the Operations, BAC, and

Infrastructure IT department (OBI IT). GES provides comprehensive facilities to support
execution and clearing of listed derivatives on all global exchanges. By providing access
to a broad range of electronic execution and clearing facilities, they further simplify the
process for their consumers.

All applications provided by GES are designed and supported by the Information
Technology (GES IT) division. This same division has been responsible for maintaining
and modifying a software product known as TaskMan, the focus of this report. GES IT is
now also tasked with developing its successor (John Hawkins, Personal Communication,
2005-10-24).

RANsys and RANbase
For day-to-day storage of its many GES related transactions, Deutsche Bank

utilizes RANsys, a collection of servers purchased in-house, and maintained by Rolfe and
Nolan (RAN) at one of their datacenters. RANsys is a back office processing system
used primarily for exchange traded futures and options. It is a flexible system that has
the ability to cover global markets 24 hours a day, and is completely functional in all
currencies (Rolfe and Nolan, 2005). At the end of each day, all data from the RANsys
servers is transferred to the RANbase system for persistent storage, via Fobkin or COOL
SQL and FTP tasks run on a regular basis. RANbase is used for long-term storage of
important data. Data is typically stored for at least a year on the RAN servers in their
datacenter. More important pieces of data can be stored for even more years, by being
passed to servers dedicated to even longer term data storage (John Hawkins, Personal
Communication, 2005-10-31).

Global Incident Management System (GIMS)
The Global Incident Management System (GIMS) is an application used

throughout Deutsche Bank globally to log application incidents. The types of incidents
that are logged range from feature requests, to mission critical problems and general
inquiries. GIMS is the incident logging application of choice for Deutsche Bank and is
likely to be used for future applications developed by GES IT.

 4

TaskMan

History
TaskMan is an in-house scheduler application, created circa 1998 to run 8-10

Structured Query Language (SQL) scripts in sequential order. The jobs1 performed by it
are defined within a specified configuration (TKL) file which holds all of the information
necessary to complete the task. It was developed and is maintained using Microsoft C++
compiled to run under the Windows XP and Windows 2000 server environments (OBI
Support Group, 2005).

After the initial implementation of TaskMan, word of the software’s functionality
spread to other departments and other scripts and reporting features were added to it.
Every time a new type of job was identified, TaskMan was modified on an ad hoc basis
to be able to run that job. This type of piecemeal development continued until 2004, at
which point TaskMan was populated with approximately 2500 jobs2 (Ian Ramsay,
Personal Communication, 2005-09-23). At this point, official development work related
to TaskMan was frozen. Jobs were (and are) still added on an almost daily basis, but no
new functionality is being built in to TaskMan.

Architecture
Although TaskMan exists as a single piece of software, it is dependent on multiple

other applications to function. It is directly linked to an Oracle database where it stores
and reads successfully executed jobs. This database is extremely important for
TaskMan’s “wait-on” functionality, which allows it to execute jobs in sequence and fail if
a preceding job has not successfully completed.

In addition, TaskMan is tied very strongly to the Rolfe and Nolan RANSys and
RANBase databases, as the initial purpose of the application was to transfer data between
these two systems. Figure 1 on the next page gives a good layout of how TaskMan
communicates with its surrounding systems.

1 The operations that TaskMan executes are generally referred to by users as ‘tasks’. We will call them
‘jobs’ in this document simply because the replacement system (JEF) that is to replace TaskMan will call
them ‘jobs’. In JEF a ‘task’ instead refers to the building blocks of a ‘job’.
2 While TaskMan at the time of this writing contained somewhere in the vicinity of 2500 jobs, only
between 1800-1900 were enabled and running. The others are all either deprecated, or function as place-
holders in the TaskMan software.

 5

Problems
Although TaskMan was a good solution at the time of its development, it was not

designed with the current situation in mind. TaskMan lacks various features and
architectural characteristics that would allow it to excel in the ever growing environment
that it is currently housed in. It is important to catalog the shortcomings of TaskMan
related to its current situation if it is to be replaced by a more suitable solution.

Over the years, many people have added to or modified TaskMan in order to make
the program fulfill an ever increasing array of responsibilities. Although each alteration
of TaskMan was developed in accordance with current IT standards in regards to design,
coding, and testing, each of these changes was self-contained. That is, each change was
made without an overall design strategy in mind. As a result, the existing code base has
become monolithic in nature, with very few personnel truly understanding the whole of
it. Due to this, the creation of new jobs, as well as modifications to old ones have to be
done by experienced Information Technology (IT) staff that have specialized knowledge
of TaskMan. These factors have resulted in increased company costs and the slow down
of the business handled by the scheduling system. (Owen Davies, Personal
Communication, 2005-10-25).

Figure 1: Overview of TaskMan in the U.K.

(Obtained from: OBI Support Group, 2005)

 6

In addition, there are numerous operations that TaskMan performs very regularly,
but in a roundabout manner due to the lack of supporting code. Some of the most notable
shortcomings are the following:

• Lack of SFTP or SCP support

• Lack of E-mail support

• Lack of encryption support

• A purely time-based execution cycle (no event triggering)

• A weak scheduling system (e.g. impossible to exclude specific dates)

Retiring TaskMan
Although TaskMan has enjoyed a long and successful life, the time for its

retirement is fast approaching. As a new reporting system is implemented, TaskMan will
slowly be phased out, and ultimately become completely deprecated. The timeframe for
this is uncertain as the new system is still in the development stages, but near-production
level testing is expected to start for certain pieces as early as the end of 2005 (John
Hawkins, Personal Communication, 2005-12-12). After all of TaskMan’s functionality is
implemented in the new system, dual usage of both will most likely continue for a certain
period of time, until the new system has proven itself to the Deutsche Bank staff (Ian
Ramsay, Personal Communication, 2005-10-25).

Job Execution Framework
As it became apparent that the current system had a number of failings that were

costing Deutsche Bank both time and money, the project to develop a superior
replacement system for the aging TaskMan began. Initiated in April 2005, the TaskMan
replacement project, known as the Job Execution Framework (JEF), aims to create a
comprehensive framework for scheduling, job execution, monitoring and workflow. By
building a framework rather than a monolithic system, the company aims to incorporate
bank standard technologies where appropriate and allow for inclusion of future bank
developments (Operations, BAC, & Infrastructure IT, 2005).

Service Oriented Architecture
 Deutsche Bank's Job Execution Framework will be constructed using a design

concept known as Service-Oriented Architecture (SOA). An SOA consists of a
collection of services that communicate with each other. The communication can involve
either simple data passing between two services, or it could involve several services
coordinating some activity. For example, a Transform service could call a Pickup service
to acquire a file, run the Transform on it, and then finally coordinate with the Deliver
service to put the changed file back (Steve Mainstone, Personal Communication, 2005-
10-28).

Typically business operations running in an SOA consist of a number of
invocations of these different components, often in an event-driven or asynchronous
fashion that reflects the underlying business process needs. Service-oriented
architectures are popular for a number of reasons. They clean up interfaces between

 7

components and enable composite applications to be assembled from a mix of existing
and new components. SOAs also adapt naturally to a business process approach and can
dramatically improve reuse of many software solutions (Sonic Software, 2003).

Enterprise Service Bus
The most common infrastructure used to enable an SOA is known as an Enterprise

Service Bus (ESB). This is a category of middleware infrastructure products or
technologies, based on Web services standards that enable a service-oriented architecture
via an event-driven and XML-based messaging engine. This definition is deliberately
vague, as ESBs vary to one degree or another. Despite these differences, there are some
key things to look for when finding the correct ESB for a specific application.

In Deutsche Bank's situation, the key areas of concern are robustness,
scalability/performance, security, and breadth of connectivity (John Hawkins, Personal
Communication, 2005-10-27). A robust ESB will ensure problems do not occur often,
and when they do, that they have little or no impact on the service of the bus. Scalability
is critical in this operation, to provide an extensible, adaptable platform for future growth.
In the past, as news of the efficiency of TaskMan spread, the number of jobs it handled
grew rapidly. A similar situation must be planned for, and such growth taken into
account. Sufficient scalability will permit performance to remain stable, allowing
operator satisfaction to remain high. When dealing with a large amount of finance
related tasks, like Deutsche Bank does on a daily basis, security is a prime concern during
both the implementation phase, and the actual day-to-day operation of the final
framework. Finally, as JEF will need to interact with not only a wide variety of
worldwide databases, but also with a variety of file types, the extent of connectivity
within the ESB is crucial to a successful final integration (Cragg, 2003).

Keeping all these factors in mind, Sonic ESB has been selected for use by the
Deutsche Bank development staff. It utilizes a service-oriented architecture, which is
based in the standards that the development staff is using, such as XSLT and several Java
standards. Additionally, it is highly scalable and provides a fast response time at a lower
hardware cost. Finally, Sonic ESB has a very flexible security infrastructure that allows
for a wide variety of necessary security protocols to be implemented (Sonic Software,
2005).

It is possible to adopt an SOA approach to integration without using ESBs. There
are various forms of Enterprise Application Integration (EAI). This is the use of software
and architectural principles to unite a set of enterprise computer applications. The most
popular method at the time of this writing is to use a bus to connect numerous separate

Figure 2: Service Oriented Architecture
 (Obtained from http://www.service-architecture.com/web-services/articles/service-

oriented_architecture_soa_definition.html)

 8

systems together. Using a bus architecture allows developers to connect several services
over one pathway without creating multiple “point-to-point” tunnels. Aside from using
buses, connecting at the database level or at the user-interface level are the most viable
alternatives. However, they are not widely accepted as the "best" way, and will not be
used in Deutsche Bank's Job Execution Framework.

Control-M
While JEF will be built on an event-driven architecture, it will need an additional

program to schedule its batch processes. To do this, Deutsche Bank is using BMC
Software’s Control-M, “a business integrated scheduling product that focuses on the
production environment's business applications and platforms. It provides advanced
production-scheduling capabilities across the enterprise from a single point of control”
(BMC Software, 2001).

By utilizing this application as a "front-end" for JEF’s scheduling needs, Deutsche
Bank will not have to develop a new piece of in-house scheduling software. There is no
need to reinvent the wheel, as the batch processing capabilities offered by Control-M are
exactly what are needed to execute tasks on JEF efficiently. Specifically, Control-M will
be used to schedule “triggers” which will direct JEF to begin the execution of a stored
job. This produces many benefits, which include cost-savings, a shorter initial
development phase, and most importantly, easy support for new processes (Personal
Communications, John Hawkins, 2005-10-27).

 9

Chapter 3: Methodology
While the overall goal of this report was to assist Deutsche Bank in the migration

from their legacy TaskMan scheduling system to the new Job Execution Framework, this
required research into several technologies utilized by the GES IT department. Software
that we considered throughout our stay included TaskMan itself, RANTask, the Sydney
scheduling Perl scripts, RANBase, RANSys, and GIMS. We analyzed approximately
2500 scheduling jobs, and identified specific features that should be paid attention to
during the migration. Additionally, we have presented the GES IT team with tools to
facilitate re-obtaining the newest versions of the TaskMan data that we have collected
with minimum effort.

To make optimal use of our eight week stay, we decided to break our project up
into 3 discrete phases. Each phase was broken into two week periods, and we allowed an
additional two weeks at the end for cleaning up pending research and finalizing our
report. Each phase is described in detail in the following sections, giving an in-depth
explanation of our methodology.

Analyzing TaskMan’s Job Types
Analyzing the types of jobs supported by TaskMan was crucial in understanding

the functionality provided by the system. Unfortunately, because many TaskMan job
types were added throughout the history of the application’s development lifespan, there
appeared to be no documentation that explained the details of each job type. In addition,
we found that TaskMan’s user interface did not provide a simple means of collecting
detailed information for multiple jobs. This made it difficult to perform any sort of useful
analysis through the use of TaskMan itself. Fortunately, TaskMan stores its database of
scheduled jobs in a single specially formatted binary (.tkl) file per instance. TaskMan
then offers a command line switch for translating a tkl file into a legible ASCII
document. This was a key discovery, and for the duration of our research we based our
findings almost exclusively off of the exported TaskMan tkl files, with only the
occasional need for ever referring to the database through the TaskMan application.

Our first job was to decipher the export files that we had available to us, and
perform varying stages of analysis on them. To do this, we created a Perl script that
allowed us to convert a series of export files into a single comma separated value (CSV)
file. By having the data in a comma separated format, we were able to import it into
Microsoft Excel to perform our analysis. Through modifications in our original Perl
script, the usage of some UNIX command line utilities such as grep and gawk, and the
sorting facilities in Excel we were able to successfully determine characteristics of
TaskMan jobs such as:

• Which jobs were running

• Which job types were in use

• How many of each job type was used

• Where specific types of jobs were running from

 10

After generating several different spreadsheets for our data, we started identifying
the purpose of each job. To accomplish this we spent some time analyzing jobs, and a
great deal of time interviewing experienced Information Technology personnel who were
familiar with the system. Their insight and observations, coupled with our newfound
data of which tasks were in use, aided us in classifying the basic groups of TaskMan job
types.

With this information, we were then able to generate a distribution table of jobs by
type. In analyzing this table, a much smaller list of general job types was generated.
These general types were based on:

• Similarities between TaskMan job types

• The numbers of each type

• Basic functionality of each type

• Functionality that was essential, but missing

These in turn were translated into ‘Generic Job Types’ for JEF, keeping in mind the
areas that TaskMan was lacking in, as well as future expandability of the framework.

Once potential Job Types for JEF were classified, a number of user stories were
created to aid in the actualization process. A user story is simply an event or chain of
events that a user may carry out, written from a user’s prospective. Stories were created
for each proposed JEF Job Type, as well as stories that combined types to various
degrees. Using this method to define requirements is a method of extreme programming
that is being utilized by GES IT to produce code of superior quality in a rapid manner.

Event Calendar
After analyzing the types of jobs that TaskMan provided, we moved on to

analyzing the jobs themselves. While we had initially considered generating a
methodology for analysis and analyzing each job individually, this was quickly dismissed
as unreasonable considering the amount of time and resources available to us. It would
have involved sorting through every job, as well as extensive contact with numerous GES
IT personnel, support personnel, and the operations department whom was in the middle
of a major reorganization. A better option that we settled on was to propose a simple
method for analyzing running jobs that would be useful during analysis and the migration
of tasks. This method developed into what is known as the TaskMan Event Calendar
(TECS).

Producing an application to display the execution of TaskMan jobs in a useful
manner proved to be challenging on many different levels. There were a multitude of
issues that arose due to jobs in the TaskMan system that were scheduled in an illogical
manner. Additionally, we had a tight time frame in which to identify all the issues that
could affect our final product and address them. In the midst of identifying and
addressing these problems, we were also struggling to find a method of visualization that
would be of assistance to the GES IT staff. As a result of our efforts, we wound up
incorporating several types of report generation schemes into TECS, conveying
visualizations that were useful in identifying different types of jobs.

 11

Architectural decisions
Before any code could be written, an overall architecture was designed for TECS.

This design was based on the functionality that the system needed to provide, which we
initially defined simply as “A calendar of TaskMan events”. The specific goal, though,
was to give GES IT a feel for what tasks ran, when they ran, and how they depended on
each other. This would be helpful to the department in a number of key ways. First, it
would allow staff to easily locate “critical points of failure”, jobs that, if stopped, would
cause a variety of other processes to halt as well. Through interviewing members of the
department, we were told it would be useful to have a way of viewing this dependency
chain. This is because sometimes one or more tasks need to be stopped manually, but
there is fear of interfering with other necessary processes. Also, this type of visualization
can be helpful in a number of troubleshooting scenarios.

After understanding these requirements, we gave consideration as to whether this
system should run as a stand-alone application or as a web-enabled application. In this
case, the web-enabled application was best suited for both the environment and the users.
It was clear that in general, web applications offer rapid, simple deployment and
widespread availability. In addition, coupled with a database back-end, a web application
can provide very easy data access and manipulation capabilities.

Technology decisions
Upon concluding that a web application was the most suitable method of

implementation, we decided that a database back-end was a necessary means of
information storage. This would give us easy access while writing the front-end
application, and also a means of viewing data that was cleaner than the raw export files
that we had been working off of previously.

In terms of immediate technological decisions there were two main factors to
consider. The first was choosing a Database Management System (DBMS). In our case
there were two options available: Oracle Server and MySQL Server. Oracle Server is the
DBMS of choice for GES IT, and also is widely considered a more robust server than
MySQL server. Unfortunately, Oracle Server requires a license per instance, and the
administrative consequences of this were substantial. We would need to file a request for
a new instance and wait up to a week for the request to be addressed. Additionally, this
would incur licensing expenses to implement. After some consideration, we decided that
MySQL server would prevent this hassle
and allow development to start on the
application immediately. In addition, the
system would be fairly simple and would
not require extensive server resources. The
syntax of a MySQL SQL statement is also
very similar to that of an Oracle SQL
statement, and would allow any GES IT
personnel who wished to extend the
application to do so with minimal hassle.

The second major technological
consideration was to choose an appropriate

MySQL Oracle

+ Fast connections

+ Easy replication

+ Overall ease of use

+ Free

- Fewer advanced
features

+ Already in use by
company

+ More robust

- Licensing fee

- 'Bureaucratic red tape'

Table 1: MySQL versus Oracle

 12

scripting language in which to write the calendar and its interface. First, we considered
Java Server Pages (JSP), as it provides a means of scripting using native Java libraries.
This would be a desirable solution as GES IT’s preferred in-house programming
language is Java. This would keep TECS’ technology consistent with those currently
being developed in the department. Despite this fact, there were a few factors that made
JSP an undesirable language. Firstly, while we have experience in Java, neither of us has
direct experience with JSP. This would mean for a steep learning curve while trying to
implement such a solution, especially considering the small timeframe for our initial
deployment. Secondly, in the initial trial run of JSP, there were difficulties choosing a
suitable Java Servlet/JSP server as well as in getting expected results from testing servers.
The second consideration, and ultimately final choice, was the PHP: Hypertext Parser.
The advantages for using PHP were numerous. Firstly, it is a very familiar language for
both of us and would allow for rapid deployment of a usable product. Secondly, the new
object oriented features of PHP 5 would allow for the code to be structured in a fashion
very similar to that of a Java program. This feature would make the code more easily
readable and extendable by the GES IT staff with minimal additional training. The main
disadvantage of using PHP is its unfamiliar nature to the department, and this issue was
minimized by following an object oriented programming paradigm, and thoroughly
documenting our code.

Development
The first step that we took in developing our application was devising a method for

populating our MySQL database with TaskMan information. We again decided to use
the data from the TaskMan export files. We developed a Perl script capable of reading in
an export file, parsing it, and then inserting the relevant information into our database.
This script could easily be run on a regular basis, perhaps even as a TaskMan job, to keep
the database up to date.

After we had a populated database we began working on the front end for the
application in PHP. Bearing our timeframe in mind, we tried our best to develop
unrelated pieces in tandem. For example, while the initial data manipulation classes were
being developed, the user interface was also being developed. Although we had a good
idea of how we wanted our program to fit together in terms of class interdependency and
inheritance, we spent time theorizing about the architecture during the development
process, and nothing was finalized until the application’s initial release.

One of the least planned sections of the application during development was the
report generation facilities. We had a basic idea that we wanted to be able to visually
represent the running tasks, and while on one hand we knew we could easily create a
“calendar view”, we also wanted to produce something more detailed. In the early stages
of development two export features were designed: export CSV and export XML. While
these reporting capabilities were somewhat helpful, they still did not provide quite the
visualization we were looking for. After a preliminary demonstration of our system’s
functionality to our supervisors, it was suggested that we come up with some type of
visualization similar to that of Microsoft Project. At that point we began doing a bit of
research and discovered that Microsoft Project had a well defined XML schema for
importing Gantt charts. Being that Microsoft Project is the planning software of choice at

 13

Deutsche bank, we proceeded to work on an export feature geared specifically towards
generating Microsoft Project Gantt charts. While programming the reporting
functionality, we discovered three methods for generating Gantt charts that created useful
and mutually exclusive results. In our final distribution of TECS, we allow the creation
of three different types of Gantt charts:

• A single day’s time-based representation

• A single day’s dependency-based representation

• A single tasks dependency chain

The first two types of charts show the same tasks, but allow the user to view
different aspects that may be useful. The time-based representation will give an accurate
depiction for the time that all tasks run on a given day. In contrast, the dependency-based
representation will not accurately portray times, but will create dependency chains for all
tasks that wait on other tasks for execution. The decision to implement separate report
generating options for these is due to the design of Microsoft Project and its inability to
represent tasks that depend on other tasks that are not yet complete. The final Gantt chart
type will create a chain of dependencies based off of a single task, which is often more
legible than generating a Gantt chart for an entire day.

During the implementation of our report generating facilities, we also came across
several discrepancies in the scheduling of TaskMan jobs. The miss-scheduled jobs
became evident during both the development phases, and while reviewing the output
charts generated by TECS. Although we had not initially planned to be detailing problem
tasks during this phase of the project, we have both addressed the problems with the
appropriate staff and included our findings as appendices to this report.

Design Issues
There were some minor design issues that we encountered very early on in the

development process. One example of this is hardships that we faced in designing a
visually pleasing, easily usable interface. Fortunately, this issue was remedied in little
time, and through the use of cascading style sheets we were able to easily fine tune the
interface throughout the development cycle.

Technologically, the most difficult part of development was writing the report
generating facilities to iterate through data in the MySQL database and parse out the
necessary data in a good format. While attempting this, we discovered that our Perl
script that populated our database did not take certain, previously unknown,
considerations into account. This was mostly because the TaskMan export files did not
always appear to be populated as expected. One particular idiosyncrasy that we found
was a task that had the first “wait-on” field populated blankly, and then the second one a
coherent task. This task turned out to have a cyclic dependency issue as well, but the
strange order of wait-on’s threw our Perl script’s interpretation of the dependencies off.
Additionally, the cyclic dependency confused Microsoft Project when our PHP script
tried to generate Microsoft Project compatible XML. Once this was realized, we made
minor modifications to our database population script and noted so in the internal script
documentation.

 14

Some other logic based challenges included discrepancies within the TaskMan
system itself. There were a number of tasks that had end times that unexpectedly took
place before their start times. Upon realizing this, though, it was fairly easy to account
for within our program. Additionally, numerous tasks “wait-on” other tasks that are no
longer set to run. By disabling a task at the “head” of a chain of other tasks, it effectively
shuts down all tasks that wait-on it, either directly or indirectly (Vilas Hirani, Personal
Communication, 2005-11-15). Our findings of unusual tasks are detailed in the attached
appendices and can be researched in greater detail by referring to Appendix D: Task
Discrepancies as well as referring to our included files listed in Appendix E: Included
Media.

Job Input and Maintenance
While we spent a large portion of our time familiarizing ourselves with the

TaskMan system and creating utilities to help in the analysis of jobs, the ultimate goal
was to offer suggestions about the migration to JEF. Following the release of TECS, we
shifted our studies towards factors that would assist in a successful JEF deployment.
Before drawing any conclusions, we started at the beginning, and decided that if there
was anything that needed to work well in the initial deployment, it was the job input
facilities. We had already known that TaskMan was lacking in this area, because of the
general lack of knowledge for what TaskMan was doing at any given time.

We decided to start by analyzing the request system for dealing with TaskMan
requests, and turned our heads towards GIMS. Through communication with Owen
Davies and Vilas Hirani, we sketched out the cycle of events that occurs each time a
request is entered in GIMS. Doing this enabled us to acquire an understanding of how
the system worked. However, a more detailed analysis would be needed in order to
produce useful information. As a result, we decided to extract and analyze a portion of
GIMS requests from the 2005 fiscal year.

We exported the entire group of 3rd Quarter 2005 requests from GIMS into a
spreadsheet. By analyzing its contents, we were able to acquire a good insight into
exactly what type of information is collected by TaskMan’s GIMS, as well as the quality
of this data. By organizing each request by a new set of “fault categories,” a new
distribution table was created. This reclassification would assist support personnel in
dealing with the tasks that come in. Additionally, a standardized template was created in
order to heighten the quality of data submitted via GIMS.

Another important aspect of this phase was to present suggestions for preventing
JEF from inheriting TaskMan’s deficiencies. The various technologies that JEF will be
comprised of, such as the Sonic ESB and Control-M, were all analyzed to make sure that
they lent a measure of future-proofing to the framework. We also point out specifically
useful design considerations to keep in mind that we have discovered through our
research.

After suggesting best practices and documentation procedures for creating jobs in
JEF, we began working towards a methodology for transferring tasks from TaskMan into
JEF. As JEF is supposed to be a full fledged and superior replacement for TaskMan, it
will be important to have a method of moving data from system to system. There also

 15

seemed to be interest within the department of having some sort of suggestion for how to
do this. After our thorough analysis of the different types of TaskMan jobs, we
proceeded to locate and categorize them based off of how they depended on other jobs
and what actions they performed. We then proposed a safe method for migrating these
tasks based on a redundancy principle, allowing the department to “fail back” to the
proven TaskMan job in the event that there is an error with an early release of JEF. By
acting as a failsafe, TaskMan can be kept in operation until it is proven that JEF will
execute at an expected level of efficiency and reliability.

 16

Chapter 4: Preliminary Analysis
TaskMan is a small and powerful application that has grown far larger than

originally intended. The initial planning phases of TaskMan never accounted for a
system that would be running thousands of jobs, and the architecture is not sufficient for
such a scenario.

This chapter includes a thorough analysis of the current architecture of TaskMan,
specifically considering the types of jobs that have been added over the past several
years. To easily retrieve similar data from the TaskMan export files in the future, a series
of useful Perl scripts have been written. Please refer to Appendix E: Included Media for
information regarding included source code.

TaskMan Type Classifications
TaskMan currently contains 41 “pre-defined” task types. Of these 41 types only 27

are in use today. Below, Table 2 shows these types, bolding the ones currently in use.
For a brief description of the non-deprecated types refer to Appendix C: TaskMan Job
Types.

Posting
(Old)

GENLED BSR Export
Mappings

(Proposal)
Archive

(Proposal)
R&N Report

Premium Profit &
Loss

Variation
Margin

Cash
Settlements

Stored
Procedure

P&L
Premium

Exercise
Premium

Import
Mappings

FFTFAX Capital
Adjustments

Tidy
Reports

SAPGD (run
1)

SAPGD
(run 2)

FOGL Run SQL
File

Intermeadiate
IM

Initial
Margin

Commission

Volume
Reports
(daily /
monthly)

Volume
Reports
(Equity /
Global)

RANBase
Integrity
Check

Convert File
Format

File Import Squash /
Difference
GENLED

Launch
Ranrec

Generate
COOL 'doc'
Files

Bulk File
Import

CV Feed
(LCF)

CV Feed
(Customer)

Export
COOL
Reports

Database
Table
Archive

Replix
FAX

File
Import2

PalRep Event
Monitor

Table 2: List of TaskMan Task Types

Of the 27 running job types defined in TaskMan, four of them comprise over 90%
of the entire system. These four core types are shown in Table 3, along with their
associated job count. Please note that this includes all tasks, both running and disabled.
Also be aware that this information is current as of 2005-10-24.

While this method of classification makes it simple to see what types of operations
are being performed, the 142 “Other” tasks and 454 stored procedures (essentially batch
files) say little about what is actually being done. It is more advantageous to classify the

 17

jobs using abstract functional types. In analyzing the
current system, every job type that is being used today can
be functionally classified as one of the following.

File Manipulation Operation
File manipulation operations consist of jobs that

perform any sort of transform on a file. A transform can be
moving a file, reorganizing data in a file, adding to a file, or

deleting from a file. The built-in TaskMan types that can be
classified as file manipulation operations include: Bulk File Import, Convert File Format,
FFTFAX, File Import, File Import2, Replix Fax, and Squash / Difference GENLED
Files.

SQL procedure
In its simplest form, a SQL procedure simply takes a .sql file containing SQL code

and runs it against a database server. This is how the built-in Run SQL File type works.
There are also other job types in the system that are essentially just running SQL code
that has been hard-coded into the program. These files could probably be rewritten as
simple SQL procedures, and may be in the future. Built-in job types that work this way
include: BSR, Database Table Archive, Event Monitor, Export Mappings, GENLED,
PalRep, Run SQL File, and Volume Reports (daily / monthly).

Fobkin (Futures & Options Back Office Interface) Procedure
Fobkin procedures consist of code that moves data from the day-to-day RANSys

database to the more persistent RANBase archive. Essentially, Fobkin is performing
SQL queries itself, but they are of a special type that sets them apart from other general
SQL procedures. The initial job types that TaskMan was based around existed for the
purpose of invoking Fobkin procedures. The built-in TaskMan types that can be
classified as Fobkin procedures include: Capital Adjustments, Cash Settlements,
Commission, Exercise Premium, FOGL, Initial Margin, Intermeadiate IM, P&L
Premium, Premium, Profit & Loss, and Variation Margin.

Batch Job
A batch job is a single job triggered individually that

invokes one or more other operations. In TaskMan a batch
job is a simple MS-DOS batch script that is custom tailored
to suit a specific need that defies any one of the above job
types. Many of the DOS batch scripts perform simple and
common operations such as sending an e-mail, making a
secure FTP transaction, or even performing standard
TaskMan jobs with a special check. Batch jobs are
represented in TaskMan as the built-in Stored Procedure
type. Table 4 gives a more detailed breakdown of the
types of tasks that occur in batch jobs.

Classification Job
Count

Bulk File Import 235
File Import 392
SQL File 1024
Stored Procedure 454
Other 142
Table 3: TaskMan Core Types

Classification Job
Count

.CTL Linkers 114
Email 78
File creation 17
FTP 87
SQLPLUS 25
Misc 54

Table 4: Stored Procedure Composition

 18

Asia-Pacific Type Classifications
The Sydney branch uses a UNIX cron daemon to schedule and run its Perl scripts.

This is a good solution, as it does not need to run as many tasks per day as TaskMan
does, and allows for great flexibility. One of these Perl scripts, ran2db.pl, acts as the
main driving engine behind the remaining scripts. It does this by accepting a
configuration file in the command line. Parameters within the configuration file then tell
the Perl script how to execute. Tasks performed based on these parameters include:

• Log onto any R&N ftp server, using an encoded username and password

• Retrieve a file

• Place a flag on the FTP server to indicate that the trade date's data has been
processed

• Poll a specified number of times before timing out

• Email the file out to a list

• FTP the file out

• Send it to a Samba mount

• SCP the file to another server

• Delete a file

While many of these parameters mimic functionality of the File Manipulation and
Stored Procedure Job Types from TaskMan, SQL Procedures are not covered. This is
where something known as a “hook process” comes in. This allows for the main Perl
script to call other, custom Perl scripts through the configuration files. By doing this, the
Asia-Pacific region can fulfill a wide range of customer needs, from custom reports to
database extraction and manipulation (Vietlong Le, Personal Communication, 2005-11-
03).

RANTask Type Classifications
In Frankfurt, another scheduling system called RANTask is used in addition to

TaskMan. RANTask provides similar functionality to TaskMan, but makes
implementing some jobs simpler. Job types in RANTask can be added by installing
additional modules to custom tailor the software to companies needs. For a listing of
supported RANTask types refer to Appendix B: RANTask Task Types.

 19

Chapter 5: TaskMan Event Calendaring System
The TaskMan Event Calendaring System (TECS) is a web-based application

designed and implemented as a major deliverable for this project. It consists of a back-
end MySQL database and front-end PHP web interface. TaskMan task3 information is
populated into the MySQL database through a Perl script that is run against TaskMan
export files. It is the aim of TECS to make the transfer of tasks from TaskMan to JEF as
easy as possible through visualizing running tasks in a well-structured and easy-to-
navigate manner.

Documentation
As a fairly basic web application, the only client-side requirements to run it are a

current web browser, and access to the server that the application is installed on. This
application has been tested successfully with both Internet Explorer 6 and FireFox 1.0.7.
The computer that the application is run on must have at least MySQL 5.0.15 and PHP
5.0.5 installed, as well as sufficient hardware capabilities to act as a server.

Looking at the main screen there is a fairly basic layout, as seen in Figure 3. At the
top, there is a title bar. Taking up the left hand side of the screen is a navigation bar that
containing links that take the user to their desired month within the current year, and also
back to the current date. Occupying the upper portion of the center of the page is the
calendar itself. It contains links to the previous and next months, links to each day of the
month, as well as select days from the end of the previous month and beginning of the
next. These days can be easily differentiated from days of the current month, as they are
shaded light grey. The blue box in the calendar denotes the currently selected day.

3 Although this report makes an attempt to always refer to TaskMan tasks as “jobs” to be consistent with
JEF terminology, this particular chapter is an exception. As TaskMan does not actually have “jobs”, TECS
has been programmed to recognize a TaskMan task simply as a Task. For the sake of readability, this
chapter will maintain that terminology.

 20

Figure 3: TECS Main View

Directly below the calendar is information denoting the current date, as well as a

summary of all tasks that run on that day. Taking up the lower portion is a breakdown of
the running tasks by job type. Located below the calendar and above the distribution are
two hyperlinks. The “Generate Reports” link takes the user to a webpage that explains
the purpose of each type of available report in detail. The four download links allow the
user to save a file containing the current day’s data in a variety of formats including
standard XML, CSV, or a specialized Microsoft Project compliant XML file that can be
loaded into Project to display a Gantt chart. The time-based Gantt chart will show the
start and end times of all tasks running on that day accurately, but will not show any task
interdependencies. The dependency-based chart disregards an accurate depiction of the
times in favor of a more accurate showing of the predecessors and descendants of each
task. The “Home” link will take a user from the current page back to the main page.

 21

Figure 4: TECS Detail View

The “View Details” link, either on the main screen or the report generation screen,
will take the user to a webpage that contains a more in-depth view of the tasks that run on
the selected day as shown in Figure 4. Tasks displayed in this manner are ordered by
their start times, with their names formatted as hyperlinks. Clicking on one of these will
bring the user to a screen that contains highly detailed information concerning that task,
including links to all tasks that it must “wait-on” in order to run, as seen in Figure 5. This
allows a user to quickly and easily view a hierarchy of tasks that rely on each other.

 22

Figure 5: Task View

At the top of this screen is another Gantt chart link. Downloading this file and
loading it into Microsoft Project will display a chart that details the predecessors and
descendants of the current task only, as shown in Figure 6. The uppermost task in this
Gantt chart is the root task. Directly below it are its predecessors, and then finally any
descendants that rely on the root task to function. It is important to note that the Gantt
chart will only depict predecessors of predecessors, and descendants of descendants.
That is, if TECS identifies task B as a predecessor for task A, it will continue to try and
find predecessors for task B, but will not try and find other descendants (other than task
A) for task B. This rule holds true for descendants of task A as well, where TECS will
only find decedents of the descendants, and not predecessors of them. Additionally, if
the root task relies on any “special tasks”, such as RANBASE EOD COMPLETE, then
the special task(s) will be listed directly under the root task, followed by the predecessors
and then descendants. A special task is one that is not executed by TaskMan, but
TaskMan can recognize its completion. This is accomplished by some external process
modifying the TaskMan database.

Figure 6: Example Task Gantt Chart

 23

Chapter 6: Job Input and Maintenance
The study of the input and maintenance of jobs in a scheduling system was

essential in understanding the manual labor and costs associated with a particular system.
This chapter focuses on the system that is currently in place for addressing issues with
TaskMan jobs: the Global Incident Management System (GIMS). In studying this
system, special detail was invested into discerning shortcomings and failings within
GIMS. As there is not yet a process for supporting the new JEF system, this document
should be of specific interest when a request system for the new framework is
implemented.

In addition to simply documenting GIMS, this chapter also makes suggestions for
some implementation considerations when deploying JEF. Specifically, what types of
information should be required when creating jobs, and how this can be accomplished.
These suggestions have been reached through the GIMS analysis, interviews with
department personnel, and research into current industry standards.

Finally, this chapter proposes a methodology for transferring tasks from TaskMan
to JEF. A useful method of classification is proposed for already running jobs, and the
tools for performing this classification are detailed as well.

Logging a TaskMan Request
There is currently a well defined procedure for logging a request related to the

TaskMan system. The procedure involves a user, a GIMS request, and a member of
support staff to analyze and react to the request. A user will file a request with the GIMS
system in one of two circumstances. The first situation is if the user needs a new job
created. Some users may know that they need a specific job created, especially if it is
very similar to a job that they already have running in the TaskMan system. Other users
may come to the conclusion that they need a TaskMan job through the recommendation
of GES IT staff. The second situation where a user may file a TaskMan GIMS request is
if a problem with an already running report occurs. In this instance, the user will file an
inquiry using a method identical to that of a report creation GIMS. Below is a simplified
version of inputting a current TaskMan request.

Figure 7: Logging a request

 24

Although the above process seems quite simplistic, Figure 7 fails to show the
amount of manual labor that is involved in each of the three processes.

User Input
When a user submits a TaskMan ticket, they are presented with a screen similar to

that shown in Figure 8. The user is required to acknowledge all fields that are designated
“primary fields”, and can additionally fill in “optional fields” if they choose.

Figure 8: User view of GIMS

 25

Analyze Request
One of the first pieces of information filled in by the

user is a “fault category” for their entry. The fault categories
available are listed in Table 6. Unfortunately, these options
do not properly correspond to regularly entered requests.
The deviation is so great, in fact, that very similar entries will
often be entered with different associated fault categories. A
more appropriate means of classification would include fault
categories that account for regularly logged events.

After a request has been submitted, it is then delegated by
GIMS to an experienced support staff member for analysis. This consists mainly of
deciding exactly what the staff member will need to do. Realistically, a user will
generally be asking for one of two things: Creation or modification of a report, or the
troubleshooting of a problem.

Create/Modify/Delete a Job
If the request involves creating or modifying a report, the support staff needs to

hope that the information necessary is available to them in the GIMS request. In the case
of creating a job, this includes a detailed enough description to properly implement the
job in TaskMan. Being that GIMS allows the user to request anything they want, without
forcing them to state any explicit information, the information is not always descriptive
enough. In the event that sufficient data is not available, the support staff will need to
contact the user for clarification. Additionally, oftentimes the request to create a new job
is based on an already existing job. This means that the support staff will essentially be
digging through jobs that already exist, locating the one they need, copying it, making a
slight change, and closing the case. The newly created job will also never be linked to
the one it was copied from, allowing this process to happen multiple times for the same
job.

In the event the user requests to modify a job, the same issue arises of there not
always being sufficient information in the GIMS request to successfully make the
modification. Also, once the modification finally is made, there is no formal log that the
change was made, other than the archived GIMS request. This makes it hard to relate
logged requests to each other if a similar issue arises in the future.

Severity – Choose a level of severity that the user believes their project is.
Fault Category – Choose a fault category based on the types available in GIMS.
Problem Description – A written description of the problem.
RANsys Source – If the issue is related to RANsys, the source can be selected.
Logged in Location – Determines what city your incident is routed to.
Date Required – When the issue needs to be addressed by.
Date Logged – Represents the date that the issue was logged.
Foreign System Reference Details – Only used if problem needs to be addressed by an
external vendor.

Table 5: Explanation of relevant Fields

Application Problem
Configuration
Logon Problem
LS2 Related
Static Data
User Administration

Table 6: GIMS TaskMan
Fault Categories

 26

Finally, if the request comes through to delete a job, the support staff will simply go
into the TaskMan program and switch the job’s schedule to “off”. This means that the
job will remain on the main screen of TaskMan, indistinguishable from the ones currently
running unless a more detailed investigation is conducted. It also means that if there are
any running jobs that rely on the disabled one to run, they will stop running as well,
without any prior notification.

Troubleshooting an Issue
Although a very broad category, it is quite common for a request to be made that is

related to troubleshooting an issue. One common situation is when a user has not
received a report that they expected to have delivered to them. This often leads to the
user quickly inputting a GIMS request. It is then the responsibility of the support staff to
determine why the report has not been sent out, or if it has, why the user has not received
it. Generally, this process is labor intensive and can involve searching a database of
completed jobs and manually relating jobs that depend on each other.

Other troubleshooting issues that are logged include requesting copies of SQL
statements that are used in report generation, the creation of FTP dropboxes, and
manually starting jobs that need to be rerun or have not yet started. All of these require
the support staff to go in and perform some sort of action that does not follow a clear
methodology.

Analysis of GIMS requests
The current GIMS system used for TaskMan job requests is hindered by the same

lack of rules that has caused the scheduling system to atrophy as it has grown over the
years. As it is assumed that JEF will also use GIMS as its job request system, care must
be taken to ensure that this aspect of the replacement system is as strong as the rest.
Having conducted a detailed analysis of the way that job requests are handled for
TaskMan, a number of ways have been researched in order to rectify many of the
problems currently plaguing GIMS.

Review of GIMS requests, 3rd quarter 2005
Four hundred fifty-four requests were

generated by the Global Incident
Management System between 2005-07-01
and 2005-30-09. As the fault category can
be ambiguous, or is not always correctly
selected by the person logging the request, a
series of “Basic Functions” were developed
to better classify the types of requests.

As can be seen in Table 7, missing
reports and problems with existing reports
make up nearly half of the requests. An
additional 152 requests deal with the
modification of either the functionality of a
job, or who receives the reports generated by

of
Requests

Type of Request

205 Troubleshoot a job or report
89 Modify a job’s distribution
63 Modify a job’s function
45 Create a job
13 File request
10 Disable/re-enable a job
5 Delete a job
3 FTP dropbox creation

21 Other Issue

Table 7: Basic Functionality of requests

 27

it. Approximately 10% of the requests during this quarter were for the creation of new
jobs. However, many of these appeals ask to use an existing job as the basis for the new
one, demonstrating that there is indeed a heavy replication of existing jobs. Of the
“Other” jobs, 11 are tests, 9 are unique enough to be unclassifiable, and the last one was
mistakenly submitted in GIMS. Please see the included gims_q3_2005.xls Excel
Workbook for a detailed spreadsheet of these requests. Appendix E: Included Media
provides a listing of where all included files can be found.

Methodology of Transferring a TaskMan task to JEF
Migrating existing jobs from TaskMan to JEF is an essential step in

decommissioning TaskMan and will progress more rapidly and efficiently through the
use of a well defined methodology. Rather than simply stepping through jobs in
TaskMan sequentially or randomly choosing them to migrate, key factors must be taken
into account. Although JEF is being designed as a robust and theoretically superior
system to TaskMan, there is always a risk of error during the early stages of
implementation. While TaskMan continues to function with a reasonable deal of
reliability, jobs should be transitioned off gradually. Due to the flexible architecture that
JEF employs, both systems should be able to run in tandem until it is clear that JEF is
reliably providing all of the functionality once offered only by TaskMan.

Identifying Migratory Jobs
The first step in such a migration is classifying jobs based on their suitability for

transference. For the purposes of this migration there are four types of jobs to consider:

1. Independent Jobs
2. Leaf Jobs
3. Complex Jobs
4. Root Jobs

Independent jobs are

those that do not wait on any
other jobs, and do not have any
jobs that wait on them. These
are particularly good
candidates for early migration.
Early in the migration phase, these jobs can be transferred to the JEF system and not
affect any other jobs in the event of an error. Additionally, for the most essential jobs,
TaskMan and JEF can run them simultaneously to ensure their completion. After JEF
has run a job in parallel with TaskMan for a sufficient period of time it can be officially
disabled in the TaskMan software.

Leaf jobs are those that may depend on other jobs, but have no jobs that depend on
them. These are also good candidates for migration, but should be considered after
independent jobs. After a leaf job is implemented in JEF, all of its predecessors can
continue to run in the TaskMan system and simply send a trigger to JEF invoking the
next job. This will ensure that if JEF is unable to complete a job it will not affect other
jobs that are normally run by TaskMan. In the event that there is a bottleneck once the

Figure 9: Job Types by Predecessor Status

 28

JEF job is reached, the old TaskMan job can always be invoked forcefully until the JEF
issue can be repaired. This method of running an interconnected JEF and TaskMan
architecture is the safest and most reliable method for getting jobs into the new system,
and is possible due to JEF’s flexible architecture. Figure 10 shows an example migration
of a leaf job to JEF.

Figure 10: Migration of a Leaf Job

Complex jobs are those that both depend on other jobs to run, and have jobs that in
turn depend on them to run. Because these jobs are buried deeper in the dependency tree
than a leaf job, they are more difficult to migrate. Complex jobs should be migrated once
all of the jobs that depend on them are first migrated. Only under special circumstances,
such as lack of functionality, should one consider “skipping” a complex job in favor of
another closer to the root. This prevents weaving jobs in and out of each system to the
point where they become unmanageable. Figure 11and Figure 12 compare the two
methodologies, crossing out the migration that is less desirable.

Root jobs are those that do not depend on any other jobs to run, but have jobs that
depend on them. Jobs that are root jobs and have a great deal of other jobs that depend
on them are presumably critical to some sort of operation. Root jobs follow the same rule
as complex jobs where they should not be transferred until all of their dependent jobs are
first transferred.

A Perl script, tm2xls.pl, was written in order to facilitate this classification. Its
source code can be found included with this project. Refer to Appendix E: Included
Media for a listing of file locations. This script parses an XML file, such as one
generated by TECS, and from it generates an Excel file. Contained within this

Figure 11: Migration of a Complex Job (Good)

Figure 12: Migration of a Complex Job (Bad)

 29

spreadsheet is a listing of all running jobs, the number of jobs that each waits on, and the
number that wait on it. Additionally, it detects and notes if there are any dead
dependencies, jobs that appear as if they will never run.

After categorizing jobs as either an independent, leaf, complex, or root job, it is
important to analyze the type of action that it is performing. TaskMan jobs that have a
well defined conversion into a JEF job, or set of JEF tasks, are the best to migrate. These
types of jobs include standard file manipulation operations, SQL operations, and other
types that JEF has defined a template for. Jobs that will need to utilize JEF’s batch
functionality (similar to a TaskMan stored procedure) should be considered last, and only
after the JEF development team has deemed that an expansion to the framework is not
advantageous. Determining if a TaskMan job will have a well defined conversion into
JEF is impossible until the framework has been fully planned and developed, but as a
preliminary measure, any job that maps onto a JEF type classification other than “Batch
Procedure” in Error! Reference source not found. of this report is a good candidate.

Although categorizing jobs into the aforementioned types is a good start for
choosing jobs to migrate, there is always the possibility that circumstances will affect
certain jobs in such a way that makes them poor candidates for initial transfer. The jobs
will ideally be transferred by a developer who is proficient in JEF’s architecture.
Additionally, to ensure each task is transferred properly, an operator who is proficient
with TaskMan should be available to answer any questions that arise.

Special Cases
Jobs that have a simple mapping from TaskMan to JEF should be considered for

transfer early on. This should not be done blindly though. Under certain special
circumstances, there may be technologies already employed at Deutsche Bank that are
more suitable for a TaskMan job than JEF would be.

Jobs that are classified in TaskMan as a type of Run SQL File should have
particular attention paid to them. The SQL file should be analyzed by an experienced
TaskMan support member and classified as either a job that moves data, or a job that
generates a report. TaskMan jobs that generate formatted reports and send them to users
(such as in an XML or PDF format) may belong in a Business Objects environment as
opposed to a JEF environment. This would give the user the flexibility to generate their
report whenever they want or schedule it to generate regularly, as well as distribute the
report as they deem necessary. If Business Objects seems like a viable option for a
report, the possibility of migration should be discussed between a TaskMan support
member, a Business Objects support member, and the user requiring the report.

Scheduling Criteria
After the transfer location has been determined, it must be decided whether the job

should remain purely time scheduled, or should be run based on a specific event or series
of events. If it will be made event-driven, determine what the triggering criteria will be.
In many instances, a job’s 'wait-on' criteria can be used. Numerous other triggers can
also be used depending on the individual situation. Examples of these include:

• A field in a database being updated

 30

• A file becoming available in a directory or FTP drop box
• An email being received
• A message appearing on a banks message channel
• A user clicking on a link in a web page
• A user performing an action in a 3rd party application

 (From JEF Twiki, 2005-11-29)

If the job is to continue running as a time based process, it can be scheduled in
Control-M to execute at a specific time. This will cause Control-M to trigger an event in
JEF that will be executed through the framework. Jobs that are transferred to Business
Objects can be scheduled by Business Objects’ own scheduling system, and will remain
completely separate from JEF. Jobs that will employ JEF’s event-based scheduling
feature will need to be triggered by an appropriate event that JEF will recognize.

The next step is the actual transfer of the job’s functionality from TaskMan to JEF.
This is accomplished by combining a suitable set of JEF tasks. These tasks are combined
to form business process templates, which are then applied to specific functions to create
a job. As TaskMan’s jobs are first transferred to JEF, new templates will need to be
constructed at a high pace. However, as the transfer process continues, fewer new
templates will need to be created as previous ones can be applied to jobs of similar types.

The final step will be to fully document the new JEF job. All pertinent information
should be included as part of the standard internal documentation, such as the engineer’s
name and department, the job requestor’s name and department, as well as contact
information for both parties. Additionally, the events that are needed for the job to
trigger should also be listed. The priority level of the job should also be determined at
this time. This can be based on a number of factors including the number of
dependencies it has, the number of applications/departments affected by the job, and the
frequency at which it is run. A summary of these recommended fields can be viewed
below in Table 8. This information is vital to ensure a proper lifecycle for each job, as
well as to allow for both a GIMS “history” and a job recertification process to be
implemented.

 Field Use
Engineer Name Name of the primary programmer
Engineer Department Primary programmer’s department
Engineer Contact Email address of primary programmer
Owner Name Name of the job requester
Owner Department Department of the job requester
Owner Contact Email address of the job requester
Dependencies Criteria to be met for this job to run
Source Source report is generated from (if any)
Priority Level of job urgency
Date Created Date first created
Modified subsequent modification dates, and

secondary programmer names
Table 8: JEF Job Documentation

 31

Chapter 7: Conclusions and Recommendations
Most importantly, the replacement system that is being designed must be able to

fully replace the previous systems’ functionality. Additionally, it must be easily
expandable to prevent a situation like this from occurring again in the near future.

JEF Type Classifications
It will be relatively easy to create modular templates that can be added to the

application by reusing predefined tasks in the future. Many of the jobs running in
TaskMan can easily be replaced by combining one or more JEF tasks into a template.
With its initial release, there should be enough of these job templates to replace the
functionality of TaskMan. This will enable the new application to achieve high levels of
functionality with only a few basic job classifications. The following are the types of
jobs that will be necessary to include in an early implementation of the Job Execution
Framework.

File Manipulation
While TaskMan contained very useful features for file manipulation, many of these

were added on an “as needed” basis. Eventually, development was frozen and anything
not already specifically addressed had to be written as a batch script. JEF should contain
the same functionality built into TaskMan’s hard-coded file manipulation types, as well
as including common operations that were used in batch scripts. The following features
will be essential for a successful implementation that replicates TaskMan’s functionality:

• Creating Files – On-the-fly file creation is very important. JEF should support the
creation and parsing of files. Data written to these files may be either static, or
dynamically generated from information read from another file or set of files.

• Deleting Files – A simple delete function, similar to delete(), as defined in
java.io.file, to remove files that are no longer necessary.

• Renaming Files – A simple rename function, similar to renameTo(), as defined in
java.io.file, to allow files to change names as needed.

• Moving Files – Allow the moving of files from one location or file system, to
another.

• Transfer Files – Allow the transfer of files between multiple systems through an
intermediate protocol. Intermediate protocols that are necessary at this point in
time include:

o FTP – The transfer of files through the standard FTP protocol (RFC959).
o SFTP – The transfer of files through the SFTP (over an SSH connection)

protocol.
o SCP – The transfer of files through SCP (or RCP)
o SAMBA – The transfer of files through the Samba (Windows file sharing)

protocol.
• Reading Files – The reading of files for both report generation and redirection is

very important. The redirection of files should include forwarding them on to an
external application. JEF should also support a simple mechanism for simply
checking if a file exists.

 32

• Transforming Files – The transformation of files is essential in being able to
delete, add, or rearrange information. A standard of implementation such as
regular expression parsing should be implemented for such a task.

SQL Procedure
Similar to the functionality of TaskMan, JEF should also contain a simple way to

run a series of SQL statements. A function that reads in a standard .sql file and executes
it against a database is a must. It would also be desirable to allow for the use of variables
across multiple files, and a way to dynamically generate SQL scripts. This would allow
the replacement of some batch scripts, as well as the complete implementation of Fobkin
procedures without having to hard-code SQL as was done in TaskMan.

In addition, many TaskMan batch types invoked stored procedures on an Oracle
database server. This functionality should be added in such a way that it supports all of
the features listed above.

E-mail
An area in which TaskMan was severely lacking was the ability to easily send e-

mail to one or more parties. Upwards of 75 batch jobs defined in the current TaskMan
system are used for the generation and sending of e-mails. This functionality should be
included in the base system, either through an internal mail procedure or via an external
SMTP server. An e-mail task should handle the sending of simple text based e-mail’s, as
well as multi-part messages in a format such as MIME.

Batch (or other customizable) Procedures
The Job Execution Framework will have tasks that defy any of the three

aforementioned templates. For example, one task could need to load CAM Project
Mapping tables from files and extract them again, or another could need to trigger an
external application. There is no simple way to fulfill these needs easily with the given
templates, and it would not be efficient to create an entirely new template for a single
task. TaskMan accomplished this through the use of batch files. This was a good stop-
gap measure, but would not be recommended as a permanent solution.

With JEF being developed in-house and on a Java platform, it would be prudent to
allow for these types of situations without having to rely on a heap of batch scripts.
Currently, the Asia-Pacific region does this by calling Perl procedures across modules.
The powerful text manipulation functionality of Perl allows them to mold data to fit
highly specific needs. A direct hook into Perl or similar scripting language is one
solution to this problem. A custom template or perhaps the triggering/invocation of
external programs for certain jobs would be other alternatives to consider as well.

Recommendations for JEF job request system
The biggest problem with the TaskMan version of GIMS is the lack of structure

within the information fields. While the system has the ability to take in large volumes of
data for each request, there is no set method of input. This leads to a large disparity in
the quality of the information gathered. As GIMS has limited customizability, an
effective, yet low-cost, solution to this would be to require submitters to simply fill out

 33

and attach a Word template with their request. This template would contain necessary
information such as requestor name, owner name, and requesting department, in addition
to other basic information. This information will help eliminate confusion by leaving a
more descriptive “paper trail”, as well as decrease the time needed on follow-up
communication to acquire necessary data that was not included with the initial request.

The standardization of GIMS requests will make the generation of a “history” of
each set of requests much more viable. By allowing the engineers to quickly and easily
look up all requests made about a particular job, or by a particular user, problems will be
solved with greater efficiency. This will also aid in the detection of duplicated jobs, as
the support personnel will be able to look up a history of requests for job creation. A
suggested Microsoft Word template can be found included with this project, referenced in
the attached Appendix E: Included Media. Data from this template could be much more
easily interpreted by support personal and converted into a functional job. Simple
operations could potentially benefit from the creation of an application that could read
data out of the template and automatically perform a task. A simple example would be
that of creating an FTP dropbox.

In addition to the template, the GIMS for JEF would also benefit from a new set of
fault categories. The ones currently used for TaskMan do not sufficiently convey the
type of each job. A set of more specific basic functions would be much more in line with
the template-based nature of the Job Execution Framework. Based on the distribution of
these jobs, it makes the most sense to have the following categories included: Create a
Job, Modify a Job, Modify Mailing Distribution, Fix a Problem Request a File,
Disable/Enable a Job, and Other. These cover the most commonly requested actions
clearly, and also allow for requests that may not fall into any of the set categories.

Finally, a web-based interface that allows a client or user to view information
concerning their jobs would ease the burden placed on support staff. This should be
integrated into JEF to a degree that allows both the users and support personnel to easily
analyze job status and issues. Many of the requests that come through GIMS for
TaskMan are from users inquiring to see if a job has run successfully or not. By giving
the user the ability to view information concerning their job, and possibly the option to
re-run the task, this need could be greatly reduced. In turn, this would free the support
staff to deal with more vital matters.

Recommendations for Applying Preventative Measures to JEF
The main reason behind the deployment of the Job Execution Framework is to

replace the aging TaskMan system. However, it is not merely meant to be a simple
substitute, but to expand and improve upon what TaskMan is capable of. By applying
preventative measures to the developing framework, Deutsche Bank can ensure that the
problems that occurred in TaskMan will not decrease JEF’s lifespan. Methods that are
currently utilized in the industry to avoid this type of problem have been researched and
compiled into a list of best practices that Deutsche Bank should strive for.

Reactive Measures
To summarize, there are five major problems within TaskMan.

 34

• Inability to internally utilize key, modern technologies such as secure file
transfer and email.

• Restricted to a time-based scheduling system.

• Contains numerous critical points of failure.

• The jobs within TaskMan do not follow a single overall design strategy.

• Lack of personnel who understand the intricacies of TaskMan, especially
those related to undocumented jobs.

It is necessary to address these concerns early, so that they do not plague the Job
Execution Framework at a later date. JEF will naturally have the technologies that
TaskMan lacks, but the real concern is to allow future technologies to be added to the
framework as they are developed. This was solved by the departmental decision to use a
service-oriented architecture design pattern, coupled with an Enterprise Service Bus for
communication between services. The abstract nature of the framework’s design allows
for access to as-yet undeveloped technologies to be easily incorporated into the system,
with minimal modification to the other services.

TaskMan’s versatility is limited by its time-driven architecture. By limiting the
execution of jobs to a specific set of times, many processes execute slower than the speed
of business. Developing JEF as an event-driven system will alleviate this weakness,
speeding up the execution of numerous processes. In a world where time is money, this
is a crucial selling point. By combining this with a third-party scheduling program, such
as Control-M, maximum versatility and power can be achieved, without sacrificing
performance.

Internally, TaskMan is structured so that there are several points within it where the
failure of a single job can cause many others to also fail. However, there is no easy cure
for these single points of failure. If many jobs ultimately rely on a single, vital one, there
is no simple workaround. The best defense is to identify and monitor these important
processes. The TaskMan Event Calendaring System (TECS) was designed for this
purpose, and will make the identification process far easier. A similar system would be
useful in the upkeep and maintenance of the final JEF implementation.

While each component of TaskMan developed over the years was designed in
accordance with industry standards, the resulting whole was built without an overall
design schema in mind. By designing the new system as a framework, managing
infrastructure is much easier, as its layered architecture isolates each service from the
others, while allowing them to interact in an internally consistent manner. In turn, this
will help to solve the problem of the lack of personnel who are able to sufficiently
understand the job scheduling system. TaskMan’s sprawling, monolithic nature
effectively prevented many people from gaining an understanding of the system as a
whole, limiting in-depth knowledge to a select few people.

Proactive Measures
Even if all the current problems within TaskMan are solved within the Job

Execution Framework, it is not enough. A similar situation must be prevented from

 35

necessitating a JEF replacement in the near future. In order to grant JEF the greatest
possible longevity, the available technologies must be utilized in such a way that future
expansion of the system can be accomplished easily. There are a number of ways to do
this.

One cost-effective method is to incorporate the suggestions listed above for the Job
Execution Framework’s GIMS implementation. The solutions detailed are designed to
eliminate the problems associated with TaskMan’s GIMS implementation. New fault
categories will enable support personnel to more easily identify problem areas. Coupled
with a structured and informative template system, the job request system will be far
more useful. By standardizing the way GIMS requests are viewed and processed, the
possibilities for other future-proofing methods are expanded, as detailed below.

The TaskMan Event Calendar System will be useful in the migration of existing
tasks to JEF. It has the capability to provide a highly detailed view of tasks, broken down
by day and time. Its ability to export the data from a given day allows tasks to be
visualized in a manner that readily displays their dependencies. This will allow for
crucial processes to be easily identified, as well as for critical points of failure to be
discovered.

Additionally, by having a set procedure for transferring necessary jobs from
TaskMan to JEF, problems in the old application can be prevented from occurring within
the new framework. Such a methodology will also ensure that the most suitable jobs are
transferred first, allowing JEF a reasonable break-in period before it is running all
business critical processes. In addition, having a set procedure allows for a greater
degree of standardization amongst the job templates, allowing for easier maintenance and
decommissioning of jobs as more and more processes are added over time.

A potentially large volume of duplicated jobs is also something that must be
prevented from occurring within JEF. These jobs squander not only valuable CPU time,
but the manpower required to maintain them as well. The job templates can be used to
identify jobs that are based on a similar one. By including the source that a report is to be
constructed from, an operator can easily determine if two reports using the same source
are related. If they are, it can be flagged so that it is known which reports are based upon
others. Taking such a measure will make future upkeep and maintenance of groups of
reports much simpler. It will also make deletion of these reports more straightforward.

Another major problem is the large number of jobs that are no longer needed by the
personnel who requested them. Under the current TaskMan GIMS, there is no way to
determine this, as contact information is limited at best, and often out of date. By
introducing a more robust method of maintaining usable contact data, one that includes
the requestor’s department so that contact can be maintained even if the requestor has
since departed the company, a task recertification process can be introduced. This will
involve contacting the issuing departments via e-mail at regular time intervals, such as six
to twelve months. It is the goal of this process to reduce the number of unneeded jobs,
reducing clutter within the JEF system, and prolonging its usable lifespan.

 36

JEF User Stories
The following is a partial collection of user stories to be used as guidelines for what

the JEF system needs to be able to do. They will be used instead of a large requirements
document, in accordance with extreme programming (XP) methods. These stories have
been divided into sections, based on the proposed types of classifications for JEF jobs.

File Manipulation
1. Tasks should be able to create a variety of file types (.txt, .dat, etc) and fill them with
data in a specified format.

2. Files should be able to be renamed in a variety of formats (i.e. .txt to .dat).

3. Tasks should be able to check a file, change specific data within it, and save it to either
its original location, or a new one.

4. Files must be able to be transferred from a machine running MS Windows, to a UNIX-
based machine.

5. It should be possible for files to be encrypted, transmitted securely, and decrypted at a
specified destination.

6. Tasks should be able to delete files that are outdated, or otherwise no longer needed.

SQL Procedure
1. Must be able to move external files into a database, via SQL*Loader.

2. Tasks should be able to manipulate the database through the execution of .sql scripts

3. Tasks must be able to dynamically generate SQL scripts via a variety of methods (data
parsing, etc)

E-mail
1. Tasks must be able to send one or more emails at once.

2. Tasks should be able to construct email messages on the fly before sending them out to
multiple addresses.

3. Email should be able to be used in a multiple part format, or display text other than
standard ASCII.

Batch (or other customizable) Procedures
1. Task must be able to access and execute external programs, in order to fulfill highly
customized needs.

2. Must be highly mutable to meet specific, non-standard needs.

 37

Appendix A: Glossary of Terms

EAI Enterprise Application Integration. An architectural principle linking

together a set of enterprise computer applications. An example of an EAI
is the ESB.

ESB Enterprise Service Bus. A robust, dependable, and flexible infrastructure
that can connect any IT resource, providing foundational services for
more complex service oriented architectures.

FOBKIN Futures & Options Back office Interface. Procedures consisting of code
that moves data from the day-to-day RANSys database to the more
persistent RANBase archive.

GES IT Global Exchange Services Information Technology. The GES IT group
provides technical development and support for the GES Front Office,
Operations and BAC in Europe, the Americas, and across Asia.

GIMS Global Incident Management System. A software program used at
Deutsche Bank for logging application incidents.

JEF Job Execution Framework. Known in its earlier stages as “TaskMan
Replacement”, JEF is a robust replacement for TaskMan employing SOA
technologies through Sonic ESB.

RAN Rolfe and Nolan. This company develops software specifically for the
global derivatives industry. Deutsche Bank utilizes several of their
software products including RANBase, RANSys, and RANTask.

SOA Service Oriented Architecture. A software architectural concept that
defines the use of intercommunicating, self contained services to work
within a distributed systems architecture.

User Story A software system requirement written on a note card (to ensure it does
not grow too large), written as one or two sentences in the every day
language of the user.

Table 9: Glossary of Terms

 38

Appendix B: RANTask Task Types
The following is an alphabetical list of task types available in RANTask. This list

is taken from the document “INFO – Support RANTask” by Maik Hensel.

AppendTable
Rec Builder - Appends one table in the database to another.

Archiving
Standard Functionality - Compresses files using PKzip and stores them in a specified
directory.

BackupDB
Standard Functionality - Allows you to backup a database from within a job.

BusObjDocument
Business Objects - Allows you to run a Business Objects document as part of a job. This
task uses Business Objects database details set up in the BusObj Domain Maintenance
function .

CheckFileDate
Standard Functionality - Checks on which date a file was last modified.

CheckFileSize
Standard Functionality - Checks that the size of a file is within certain limits.

CheckLogFile
Standard Functionality - Searches a log file for a particular message.

ColManipulate
Rec Builder - Enables you to join columns, discard columns, duplicate columns or split
columns in a database.

CreateColumn
Rec Builder - Adds a new column to the selected database table.

CreateTable
Rec Builder - Creates a new table in the selected database.

DropTable
Rec Builder - Deletes a table from the selected database.

Email

 39

Emailing - Enables you to send email messages with attached files or via split report
functionality.

ExecuteSQL
Rec Builder - Enables you to construct your own SQL statements which can then be
executed in the selected database source.

Fax
Faxing - Enables you to send fax messages with attached files or via split report
functionality.

FormatDateCol
Rec Builder - Formats a date column in the selected database table.

FormatNumCol
Rec Builder - Formats a numeric column in the selected database table. The numeric
formats can be applied via a translation table. Translation tables and values are set up in
Translation Maintenance.

FTP
FTP - Transfer Uploads or downloads files between your PC and a host.

Hoovering
FTP - Transfer Downloads all files for a particular date from the Rolfe and Nolan system.

ImportFile
Rec Builder - Imports a file into a new table in the selected database.

Map
Rec Builder - Applies a map to a specified table in the database.

MCMExer
MCM Functionality - Extracts each member’s exercise and assignment instructions from
the MCM database, creating a host file to be imported.

MCMExportTable
MCM Functionality - Exports extracted MCM data to a comma delimited file, which can
then be imported by another System.

MCMGetPrices
MCM Functionality - Extracts collateral (physical) prices from the MCM database to the
RANtask database.

MCMGetTheos

 40

MCM Functionality - Extracts theoretical values and option closing prices from the
MCM database to the RANtask database.

MCMRANrecFiles
MCM Functionality - Extracts open position and trade data from the MCM database to
the RANtask database.

Pause
Standard Functionality - Pauses a job so that the previous task can complete, before
continuing with subsequent tasks.

PCDirectoryCreate
Standard Functionality - Creates a directory on your PC or network.

PCDirectoryDelete
Standard Functionality - Deletes a specified directory from your PC or network. Only an
empty directory can be deleted.

PCFileCopy
Standard Functionality - Copies one or more specified files to another location on your
PC or network.

PCFileDelete
Standard Functionality - Deletes specified files from your PC or network.

PCFileExists
Standard Functionality - Searches for a specific file or a range of files on your PC or
network.

PCFileMerge
Standard Functionality - Appends the contents of a specified file to the end of another.
Both files must exist in the same directory but do not have to be in the same format.

PCFileRename
Standard Functionality - Changes the name(s) of one or more specified files.

PrintFile
Standard Functionality - Prints a specified file on any printer you specify.

ProgramExecution
Standard Functionality - Runs a program that is external to RANtask, using various
parameters to make the task more specific.

RANwebArchive

 41

RANweb - Transfers reports to the RANweb Archive directory so that the reports can be
viewed by RANweb. The archive directory is specified in the Options window on the
Locations page.

RASConnection
Dial-Up Networking - Starts a dial-up networking session with a host.

RASDisconnect
Dial-Up Networking - Closes a dial-up networking session.

Rec
Reconciliations - Applies a reconciliation to a job, which has been created via the Rec
Wizard.

Reconcile
Rec Builder - Compares two tables which have a common theme and writes the results to
a third table, which can then be used for reporting.

RecReport
Rec Builder - Enables you to specify the type of reports required for a reconciliation and
how they are output.

ReformatMCM
MCM Functionality - Extracts each member’s trades for the day from the MCM database,
creating a host file to be imported by another System.

RenameColumn
Rec Builder - Renames a column in the selected table; making it numeric if required.

ReportCheck
Report Generation - Enables you to check that a specific report is available before you
download it.

ReportGeneration
Report Generation - Generates a predefined report on the Rolfe and Nolan system,
comprising the latest information. This task uses report batches set up in the Report Batch
Maintenance function.

Reports
Standard Functionality - Enables you to upload or download reports between a host and
your PC. This task uses report batches set up in the Report Batch Maintenance function.

ReportTemplate
Standard Functionality - Adds extra formatting to a report.

 42

RescheduleJob
Standard Functionality - Reschedules a job, for example, after a convenient time delay
following its failure to run successfully.

RowSelection
Reconciliations - Keeps or removes rows in a table according to the value of a particular
column.

SendKeystrokes
Standard Functionality - Enables you to control programs using keystroke commands as
though you had typed them on your keyboard directly.

SetColumnValue
Rec Builder - Sets a database column to a specified value. If required, this can apply only
to rows where another column has a particular value.

Split
Standard Functionality - Splits certain downloaded reports using the criteria set up in
Split File Maintenance and generates separate report files.

SumCols
Rec Builder - Performs mathematical operations on a database column. If required, this
can apply to rows where another column has a particular value.

Supertask
Standard Functionality - Groups several tasks within a job.

TextTranslator
Text Translator - Searches and replaces text within a specified file or group of files.

TransferData
Data Access - Transfers selected data from one type of data source to another (including
to a file).

TranslateCols
Rec Builder - Translates the values in a database table according to a specified value in a
pre-defined translation table. Translation tables and values are set up in the Translation
Maintenance function.

Translation
Standard Functionality - Replaces coded fields in a report with addresses stored locally in
the Address Maintenance function. Some European countries have a regulatory
requirement whereby the address of a bank or broker must not be stored on a computer of
another company or in another country.

 43

TrimCols
Rec Builder - Discards (trims) a number of characters from a database column. If
required, leading or trailing spaces can also be removed.

UnixDosConverter
Standard Functionality - Converts an imported UNIX file to DOS format, ready for
processing for a reconciliation.

WRQTransfer
WRQ Transfer - Uploads or downloads reports between a host and your PC via
Reflection. This task uses report batches set up in the Report Batch Maintenance
function.

 44

Appendix C: TaskMan Job Types
BSR: Bank Statistical Reviews
Generates statistical reviews for the Bank of England.

Bulk File Import
Used to copy multiple files within one task.

Capital Adjustments
Populates a table with capital adjustment information.

Cash Settlements
Populates a table with cash settlements information.

Commission
Populates a table with commission information.

Convert File Format
Reads in a file, performs a custom transformation, and rewrites the file to a new location.

Database Table Archive
Archives a table to file.

Event Monitor
A task to monitor for sql “.bad” files.

Exercise Premium
Populates a table with premium information.

Export Mappings
Export mappings from a database.

FFTFAX: Frankfurt Fax
Parses a file for sending a facsimile, usually via ftp.

File Import
Copies a file from a specified location.

File Import 2
Copies a file from a specified location, also allows for the filename of the imported file to
be dynamically determined based off of a sequence number.

FOGL: Futures & Options General Ledger

 45

Creates the DMG individual posts general ledger.

GENLED: General Ledger
Creates a report displaying the general ledger.

Initial Margin
Populates a table with initial margin information.

Intermeadiate Margin
Generates a temporary file used in calculating an initial margin.

P&L Premium
Populates a table with premium information for P&L.

PalRep: Profits and Losses Report
Generates a report for profits and losses.

Premium
Populates a table with premium information.

Profit & Loss
Populates a table with profits and losses.

Replix FAX
Parses a file for sending a facsimile using Replix, a third party fax server solution.

Run SQL File
Execute a SQL file against a database server.

Squash / Difference GENLED Files
This procedure will first “squash” (i.e. merge) all of the similar account transactions in a
GENLED file that can be represented individually. It then performs a difference check
against a previous GENLED file.

Stored Procedure
The Stored Procedure type provides a simple way to perform a call on an external batch
file. Any operation needing to be implemented that is not currently supported by
TaskMan is represented as a stored procedure. In doing this Deutsche Bank was able to
effectively freeze development of TaskMan while still being able to meet the
requirements of newer complex scheduling jobs.

Variation Margin
Populates a table with variation margins.

 46

Volume Reports (daily / monthly)
Creates weekly and monthly volume reports.

 47

Appendix D: Task Discrepancies
The following is a list of TaskMan jobs that appear to wait on tasks that do not

exist, or are no longer running (as of 2005-11-17).

TaskAIB_w2k.export 'HOSTTRNAY Load' waits on non-existent task
'HOSTTRNAY Import'

TaskGenUS_w2k.export 'UploadProblemMail' waits on non-existent task
'GENLEDC2 UPLOAD (US)'

TaskGenUS_w2k.export 'UploadProblemMail' waits on non-existent task
'GENLEDC3 UPLOAD (US)'

TaskGenUS_w2k.export 'UploadProblemMail' waits on non-existent task
'GENLEDC4 UPLOAD (US)'

TaskGenUS_w2k.export 'UploadProblemMail' waits on non-existent task
'GENLEDC5 UPLOAD (US)'

TaskGenUS_w2k.export 'UploadProblemMail' waits on non-existent task
'GENLEDC7 UPLOAD (US)'

TaskGenUS_w2k.export 'UploadProblemMail' waits on non-existent task
'GENLEDCL UPLOAD (US)'

TaskMisc2_w2k.export 'HOSTBALS5 US Upload' waits on non-existent task
'HOSTBALS5 Delete Scratchpad'

TaskSAMBA_w2k.export 'COMMODITIES CRAC trades feeder' waits on non-
existent task 'COMMODITIES CRAC'

TaskUAT_w2k.export 'HOSTINF Upload ACS' waits on non-existent task
'HOSTINF Import US'

TaskUAT_w2k.export 'UAT COMMODITIES CRAC trades feeder' waits on
non-existent task 'UAT COMMODITIES CRAC'

TaskUAT_w2k.export 'UAT DREX COMMODITIES trades feeder' waits on
non-existent task 'UAT DREX COMMODITIES'

TaskUAT_w2k.export 'UAT DREX IMAGINE trades feeder' waits on non-
existent task 'UAT DREX IMAGINE'

TaskUAT_w2k.export 'UAT DREX STARS trades feeder' waits on non-existent
task 'UAT DREX STARS'

TaskUAT_w2k.export 'UAT LDN HostINF upload ACS' waits on non-existent
task 'UAT LDN HOSTINF Import'

TaskUAT_w2k.export 'UAT LDN HostINF upload ACS' waits on non-existent
task 'UAT LDN PRICES Import'

TaskUAT_w2k.export 'UAT LDN HostINF upload ACS' waits on non-existent
task 'UAT LDN RECAP Import'

TaskUSAClient_w2k.export 'GlobeOp Intraday Reset' waits on non-existent task
'GlobeOp Intraday FTP'

 48

Appendix E: Included Media
Included with this report is a CD or other form of readable digital media containing

supplementary content. The data provided was either not feasible to include in the body
of this report, or is included but may be more useful in digital form.

Included directory structure
/
DIR.txt – This directory structure.

/doc_templates
gims.doc – Sample Microsoft Word document including forms for making GIMS

requests.

/jobs
all_jobs_24.10.2005.xls – Excel workbook listing all jobs in the system as of

24.10.2005.
complete_job_distributions.xls – Distribution of all (enabled and disabled)

TaskMan job types.
discrepancies.txt – Generalization of job discrepancies.
discrepancies_detail.xls – Excel workbook detailing job discrepancies.
gims_q3_2005.xls – Excel workbook listing all GIMS requests for the third

quarter of 2005 and referencing them to an established “Basic Function”.
job_types.xls – Excel workbook listing all TaskMan and RANTask job types, as

well as their respective functionality.
stored_procedrue_analysis.xls – Analysis of all stored procedures in the

TaskMan system.
task_errors.txt – Text documenting listing specific task discrepancies in the

TaskMan system.
taskman_requests.txt – Text document breaking down the findings of 3rd Quarter

2005.xls.

/misc
jef_diagram.vsd – Visio diagram displaying the layout of the JEF system.

/scripts
tecs-mysql.sql – MySQL script for creating an appropriate schema and table

structure for TECS.
tm2csv.pl – Perl script for converting TaskMan export files into a CSV

representation.
tm2db.pl – Perl script for populating a MySQL database with data from TaskMan

export files.
tm2xls.pl – Perl script for converting TECS xml files into an XLS

representation.

/scripts/include
DBI-1.49.tar.gz – Database independent interface used for all database

interaction in included pl scripts. This is version 1.49 obtained from
CPAN on 13/12/2005.

Spreadsheet-WriteExcel-2.15.tar.gz – WriteExcel Module used in tm2xls.pl. This
module is version 2.15 obtained from CPAN on 13/12/2005.

XML-Parser-2.34.tar.gz – XML::Parser Module used in tm2xls.pl. This module is
version 2.34 obtained from CPAN on 13/12/2005.

/tecs
README – Installation information and release notes for the TaskMan Event

Calendaring System.
tecs-1.0.tar.gz – The TaskMan Event Calendaring System.
tecs-1.0.vsd – Class diagram for the TaskMan Event Calendaring System.

 49

Appendix F: Works Cited
BMC Software. (2001). Business Integrated Scheduling. BMC Software Onsite.

Craggs, Steve. (2003). Best-of-Breed EABs: Identifying best-of-breed characteristics in

Enterprise Services Buses (ESBs). EAI Industry Consortium.

Deutsche Bank. (2005). Deutsche Bank at a Glance. Retrieved 20 September, 2005 from

http://www.db.com/en/content/company/our_company.htm

Dumas, Jonathan et al. (2004). Business Rule Creation for Deutsche Bank’s Dashboard

program. Worcester Polytechnic Institute. 04B028M.

GES-IT. (2003). Current System Description. Deutsche Bank.

OBI Support Group. (2005). TaskMan Application Support. Deutsche Bank.

Operations, BAC, & Infrastructure IT. (2005). Project Initiation Document – TaskMan

Replacement. Deutsche Bank.

Rolfe and Nolan. (2005). RANsys. Rolfe and Nolan.

Sonic Software. (2005). Datasheet: Sonic ESB. Sonic Software Corporation.

Sonic Software. (2003). Whitepaper: Distributed Service-Oriented Architectures. Sonic

Software Corporation.

Veale, Stuart. (2001). Stocks Bonds Options Futures. Prentice Hall Press.

