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Abstract 
 

This project completed a series of base systems for a team of drone to compete in challenges 1 and 

3 of the 2020 Mohamed Bin Zayed International Robotics Challenge (MBZIRC). Using an 

architecture previously selected by the team at Osaka University, the project team prototyped and 

finalized several of the critical elements required for basic functionality. The sensors, drones, and 

computers the Osaka University team had collected were also integrated into a complete system 

that is ready for additional functionality. The result is a complete platform that demonstrates the 

basic functionality required for the challenges with room for additional features.  



 

ii 

 

Acknowledgments 
 

The authors would like to thank several people without whose contributions this project could not 

have been completed. Firstly, we would like to thank our project sponsor, Professor Photchara 

Ratsamee, for providing us with this opportunity and for his guidance during the project. In 

addition, we would like to thank our teammates on the MBZIRC project for their insight and hard 

work in ensuring that the system we were all working to build came together as a cohesive whole. 

We would also like to thank the other students and faculty of Takemura Lab, in particular lab head 

Professor Takemura Haruo, for the warm welcome we received and for their kindness and patience 

as hosts. We would like to thank the organizers of the Mohamed Bin Zayed International Robotics 

Challenge for hosting this competition and for their support of our entry. Finally, we would like to 

thank our advisor Professor William Michalson for his feedback and advice throughout the project, 

as well as Professors Jennifer deWinter and Ralph Sutter for their invaluable help preparing us for 

our three months stay in Japan. 

  



 

iii 

 

Table of Contents 

1. Introduction 1 

1.1 MBZIRC 1 

1.1.1 Challenge 1 1 

1.1.2 Challenge 3 2 

1.1.3 Purpose 3 

1.2 Team and Existing Work 3 

1.2.1 Osaka University Team 3 

1.2.2 Proposal 3 

1.2.3 Existing Work 5 

1.3 Project Requirements 6 

1.3.1 Challenge 1 6 

1.3.1.1 Capture the Ball 6 

1.3.1.2 Criteria for Evaluation 6 

1.3.2 Challenge 3 7 

1.3.2.1 Fly the Parent Drone Around the Building Using Sensors 7 

1.3.2.2 Criteria for Evaluation 8 

1.3.2.3 Pump Water from the Parent Drone 8 

1.3.2.4 Criteria for Evaluation 8 

2. Background 9 

2.1 Drones 9 

2.1.1 Mechanics 9 

2.1.2 Applications 10 

2.2 Items Selected Prior 11 

2.2.1 DJI Matrice 100 (DJI M100) 11 

2.2.2 Parrot Bebop 2 12 

2.2.3 Hokuyo UST-20LX Laser Rangefinder (Hokuyo LIDAR) 13 

2.2.4 Intel Realsense D435I Depth Camera (Intel Realsense) 13 

2.2.5 Intel NUC 7 NUC7i7BNKQ (Intel NUC) 13 

2.2.6 Water Pump 13 

2.2.7 ROS Kinetic 14 

2.3 System Architecture 15 

2.4 Testing 15 

2.4.1 Simulation 15 

2.4.2 Real-World Testing 16 

2.4.2.1 Location 16 

2.4.2.2 Mock Building 16 



 

iv 

 

2.4.2.3 Replica Apartment Building 17 

3. Electrical Systems 19 

3.1 System Architecture 19 

3.2 Intel NUC 19 

3.2.1 Design 19 

3.2.2 Results 19 

3.3 Water Pump 19 

3.4 Hokuyo LIDAR 20 

4. Software 21 

4.1 Overview 21 

4.2 System Architecture 21 

4.3 Program Logic 22 

4.3.1 Takeoff 22 

4.3.2 Approach 23 

4.3.3 Scan 23 

4.4 Program Design 23 

4.4.1 Building Detection 23 

4.4.2 Iteration 1 23 

4.4.2.1 Implementation 23 

4.4.2.2 Testing 24 

4.4.3 Iteration 2 24 

4.4.3.1 Implementation 24 

4.4.3.2 Testing 24 

4.4.4 Iteration 3 25 

4.4.4.1 Implementation 25 

4.4.4.2 Testing 25 

5. Mechanical Design 26 

5.1: Platform 26 

5.2: Landing Gear 26 

5.2.1: Rationale 26 

5.2.2: Requirements 26 

5.2.3: First Revision 27 

5.2.4: Second Revision 28 

5.2.5: Final Revision 29 

5.2.6: Testing & Results 30 

5.3: Pump System 32 

5.3.1: Rationale 32 



 

v 

 

5.3.2: Requirements 32 

5.3.3: Approach 32 

5.3.4: Testing & Results 34 

5.4: Capture Claw 35 

5.4.1: Rationale 35 

5.4.2: Requirements 35 

5.4.3: Gearbox 36 

5.4.4: Cage 39 

5.4.5: Testing & Results 43 

6. Conclusion 45 

6.1 Results 45 

6.1.1 Complete Tasks 45 

6.1.2 Incomplete Tasks 45 

6.2 Recommendations for Future Work 46 

6.2.1 General Upgrades 46 

6.2.2 MBZIRC Specific 46 

7. Bibliography 47 

  



 

vi 

 

List of Figures 
Figure 1.1: The approximate arena dimensions for challenge 1    2 

Figure 1.2: The approximate arena dimensions for challenge 3    2 

Figure 1.3: Intended team composition for challenge 1     4 

Figure 1.4: Intended team composition for challenge 3     5 

Figure 1.5: Rough diagram of the adversary drone for challenge 1    7 

 

Figure 2.1: The arrangement of counter-rotating propellers on a  

quadcopter drone         9 

Figure 2.2: The effects of differential motor speeds on a quadcopter   10 

Figure 2.3: One of the two M100 drones owned by Takemura Lab    12 

Figure 2.4: Basic system architecture        15 

Figure 2.5: Screenshot of the modified Gazebo simulation     16 

Figure 2.6: Mock building used for testing       17 

Figure 2.7: Google Earth render of the replica apartment building  

used for testing         18 

 

Figure 4.1: Program flowchart        21 

Figure 4.2: ROS rqt_graph Node Plot       22 

 

Figure 5.1: One of the stock air spring modules retrieved from the  

broken landing gear         26 

Figure 5.2: Side view of M100 in Solidworks showing stock ground clearance  27 

Figure 5.3: The first revision of the landing gear      28 

Figure 5.4: The second revision of the landing gear      29 

Figure 5.5: One of the M100 drones fitted with the aluminum legs    30 

Figure 5.6: Factor of Safety plot from static simulation     31 

Figure 5.7: Photo of a soft drink bottle of the same brand and size  

as the one used in the pump system       33 

Figure 5.8: Positions of pump and reservoir relative to bottom of M100   34 

Figure 5.9: Pump system Solidworks assembly viewed from the rear (Left)  

and the left (Right)         34 

Figure 5.10: Sketch showing acceptable range of positions for adjusted  

center of mass          36 

Figure 5.11: Resting ball position        37 

Figure 5.12: Free body diagram of maximum mass ball acting on claw   37 

Figure 5.13: Exploded view of the gearbox       39 

Figure 5.14: Static stress simulation of the cage basket main bars experiencing  

the force of 4 N necessary to release the payload from the target drone  39 

Figure 5.15: Detail of the connection point between the right-side cage riser  

and one of the funnel extensions       40 

Figure 5.16: Right portion of the ramp and rail assembly     40 

Figure 5.17: Sensor bay with ball in place       41 

Figure 5.18: Placement of RealSense camera showing FoV cone  

enveloping the ball         42 

Figure 5.19: Updated balance information after masses attached  



 

vii 

 

to rear landing gear         43 

Figure 5.20: One of the M100s fitted with the full capture assembly   43 

 

List of Tables 
Table 5.1: Mass additions and Moments of Inertia about the Z axis  

by landing gear revision        31 

  



 

1 

 

1. Introduction 
 

For the Japan 2019 Robotics Engineering MQP, we worked with a team of students at the 

Takemura Lab at Osaka University to modify and program a team of drones for the Mohammed 

Bin Zayed International Robotics Competition (MBZIRC). Both the competition and previous 

work by the Osaka U team formed the basic framework upon which we built. Our task was to turn 

the solutions envisioned by our sponsor into reality. 

 

 

1.1 MBZIRC 

 

The Mohammed Bin Zayed International Robotics Competition is a robotics competition that takes 

place in Abu Dhabi. Organized by Mohammed Bin Zayed, the crown prince of Abu Dhabi, the 

competition intends to showcase the forefront of current robotics technology. The 2020 

competition placed a special emphasis on Unmanned Aerial Vehicles (UAVs), colloquially 

referred to as “drones”. The competition is divided into three challenges, with a triathlon-type 

“grand challenge” combining all three. Organizations were invited to submit proposals for any 

number of challenges that they would like to participate in; selected teams are given grant money 

for the competition, while those that do not receive grants may be invited to compete self-financed 

if they so choose. The challenge requires regular progress reports to ensure continued grant money; 

in this case the next submission was due on September 30th, providing a hard deadline for technical 

functionality approximately two weeks before the end of the project. Osaka University’s Takemura 

Lab submitted proposals for challenges 1 and 3, receiving grant money for both. 

 

 

1.1.1 Challenge 11 

 

Challenge 1 takes place in a 100m by 60m arena, with a flight ceiling of 20m. For this challenge, 

a team of up to three drones will work together to collect balloons placed randomly around the 

arena, as well as intercept an “adversary” drone and claim its payload, which in this case is a foam 

ball. As shown in Figure 1.1, the adversary drone flies in a randomly oriented figure eight pattern 

somewhere in the arena. In addition to the adversary drone and balloons, the arena will also contain 

randomly placed obstructions. Points are earned for collecting the balloons as well as claiming the 

adversary’s payload. The written brief states that the drone which captures the adversary’s payload 

 
1
 It should be noted that the descriptions of the challenge rules provided here omit several key details or contain 

apparently contradictory statements. This vagueness, as far as the authors are aware, constitutes a deliberate part of 

the competition’s challenge structure. Key details are withheld by the organizers until predetermined times, with some 

changes to the rules occurring as late as the day of the competition. Therefore, while the given summary of the 

challenges is true and correct as far as it goes and at the time of writing, the authors of this paper are aware that it is 

incomplete, and it is possible that it will no longer be accurate in the future. 
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should carry it to a ten-meter square target area and land without releasing it. However, an early 

briefing video shows an interceptor drone depositing the payload in a large box [4]. Twenty 

minutes are allotted to complete the task. For this challenge, full points will be awarded for a team 

of drones that acts completely autonomously. Human intervention is allowed but incurs a points 

penalty. All localization methods are allowed, however the use of Real-Time Kinematic (RTK) or 

Differential GPS (DGPS) incurs a points penalty [5]. 

 

 
Figure 1.1: The approximate arena dimensions for challenge 1. Note that the projection of the 

adversary drone’s flight path forms a figure-8 pattern on the ground regardless of orientation. 

The size and location of the 10m square scoring area are speculative. 

 

1.1.2 Challenge 3 

 

Challenge 3, as illustrated in Figure 1.2, takes place in a 60m by 50m arena with a 20m flight 

ceiling. For this challenge, a team of drones (and optionally 1 Unmanned Ground Vehicle) work 

together to extinguish “fires” located on the ground and inside of a building in the arena. Details 

provided on the building are sparse, but it will have a number of windows and be a maximum of 

20 m tall. Points are awarded for using any of the permitted methods (sprayed water or chemical 

fire extinguisher) to “extinguish” the simulated fires, with the number of points being dependent 

on the amount of fire suppressant accurately dispensed on the target. Twenty minutes are allotted 

for this challenge. As in challenge 1, full points are available for fully autonomous teams, while 

human intervention is allowed with a penalty. RTK/DGPS is similarly penalized [5]. 

 

 
Figure 1.2: The approximate arena dimensions for challenge 3. Note the multiple 

fire locations throughout the target building. Position and layout of the 

target building are speculative. 
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1.1.3 Purpose 

 

The intent of the competition is to showcase the forefront of current technologies and show how 

they can be applied to difficult-to-solve problems. By focusing on drones, the competition 

organizers are attempting to showcase a new technology that has captured a great deal of 

mainstream attention. The challenges are also meant to emulate real-life scenarios. Challenge 1 

represents a terrorist attack or similar where a drone carrying a bomb or other dangerous payload 

must be safely intercepted. Challenge 3 showcases a potential application for drones in fighting 

fires in high-rise apartment buildings where it is normally difficult for firefighters to reach. By 

providing grants and holding a competition, the MBZIRC hopes to kickstart innovation in some 

of these areas. 

 

1.2 Team and Existing Work 

 

1.2.1 Osaka University Team 

 

Takemura Lab is an interdisciplinary graduate research laboratory located at Osaka University. 

Under the direction of Professor Haruo Takemura, the lab has a focus on human-computer 

interaction, with research topics including augmented reality, virtual reality, robotics, and 

computer vision. Professor Photchara Ratsamee, an associate professor at the lab, submitted a 

proposal to the MBZIRC for challenges 1 and 3. These were both accepted, and awarded grant 

money. He then assembled a team of students from the lab. While all students working on the 

project have an interest in robotics, most come from a computer science background, and were 

unfamiliar with platforms such as ROS. 

 

1.2.2 Proposal 

 

Proposals were submitted for each challenge prior to our attachment to the project. The grant 

money for the project is provided based on the proposal; as such, our final design must include the 

core elements indicated in the proposal. This meant that several significant decisions had been 

made before we were attached to the project, and that we would have to work to incorporate these 

ideas into our final design. 

 

The challenge 1 proposal would leverage a small drone team (seen in Figure 1.3) to complete the 

challenge. Two small “scout” drones would use their onboard cameras to collect video of the 

adversary drone, which would be relayed to a PC running ROS. This would generate a predictive 
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model of the adversary’s flight path2 and relay it to a third “catcher” drone. This drone would be 

equipped with a depth camera and a capture claw. It would use the depth camera to track the target 

and align itself for capture, and the claw to catch and hold the payload. Due to the opacity 

surrounding the scoring policy this drone would be capable of either depositing the payload into a 

box, or simply making a safe landing with it still in hand. There was also some confusion regarding 

the balloons, as the documentation at various times implies that they may be either simple obstacles 

or scoring targets. In the end it was decided that the adversary’s payload would take priority, with 

any further development to allow balloon capture contingent upon a rules clarification. 

 

 
Figure 1.3: Intended team composition for challenge 1, 

two light scout drones and one heavy catcher drone. 

 

For challenge 3, the most significant element of the proposal included two drones flying in 

formation fixed together by a physical tether, as seen in Figure 1.4. In this system a larger drone 

acts as the “parent.” This drone carries a water reservoir and pump, as well as sensing equipment 

for navigation and to detect and track the smaller “child” drone. The child is attached to the parent 

by silicone tubing or similar material to carry pressurized water and carries a nozzle to control the 

flow of water and direct the spray. The parent’s job is to scan the outer surface of the target building 

using its LIDAR sensor, identify points of entry, and pump water to the child when requested. The 

child’s job is to enter rooms and locate fires using machine vision or a thermal camera. Upon 

locating a fire, it would aim the nozzle it carried and signal the parent to begin pumping. Since the 

parent would carry most of the heavy sensing equipment and could track the child’s position, the 

child could be relatively small and light. This would allow the use of smaller drone frames for the 

child, enabling it to enter small spaces which might be unsafe for the parent drone. 

 

 
2
 The sponsor deemed the predictive modeling and relay functions to be outside of the scope of our involvement in 

the project. Therefore, while we were aware of them and helped implement the foundational platform integration 

which would allow them to be completed, we had no direct hand in their development. 
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Figure 1.4: The parent/child pairing envisioned for challenge 3. 

 

1.2.3 Existing Work 

 

By the time the project started, the project team at Osaka University had already established a 

number of design elements based on this proposal. A DJI Matrice 100 (see: section 2.2.1) had 

already been selected as the catcher for challenge 1 and the parent for challenge 3, along with the 

sensors to be used. A pair of Parrot Bebop 2s (see section 2.2.2) had also been selected as the 

scouts for challenge 1, with one also serving as the child for challenge 3. The Osaka University 

team had also made the decision to use ROS Kinetic to manage the system with all code written 

in Python 2.7. 

 

The drone and sensors selected were based on a project done by the JSK Laboratory [3] at the 

University of Tokyo, which used a drone equipped with a camera and laser rangefinder to identify 

a target tree and fly in a circle around it. By making their drone similar to the JSK drone, the Osaka 

University team hoped to use the JSK team’s code as an example. This code included a modified 

version of the drone’s SDK (reportedly to fix some of the major bugs and improve performance) 

and a simulation of the drone using the physics simulation software Gazebo. However, the drone 

had not been flight tested using the JSK code. Furthermore, while all devices for this project were 

selected for compatibility with the JSK team’s code, they had not been used as a complete system. 

 

The Osaka University team had also established the basic concepts for the drone’s mechanical 

systems. Based on the proposal for challenge 1, they developed a basic idea for a ball-catching 

mechanism. Their requirements stated that it be capable of handling a ball as specified in the 

challenge documents. It must also be light enough that a drone loaded with it, all of its sensors, 

and the ball from the challenge be under the drone’s maximum takeoff weight. 

For challenge 3, the parent drone required a pump system. As envisioned by the team, the pump 

and reservoir would mount on the underside of the drone creating the need for an extended landing 

gear. There were no hard requirements for this system determined, except that it carry as much 

water as possible. 
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1.3 Project Requirements 

 

The most basic requirement for this project was demonstrable functionality for challenges 1 and 3 

for the submission on September 30th of 2019. To meet this requirement, we determined that we 

must identify some basic tasks related to the challenges and demonstrate completion of those. 

These basic tasks are detailed below. 

 

1.3.1 Challenge 1 

 

1.3.1.1 Capture the Ball 

 

The most basic functionality possible for challenge 1 is capturing the ball from the adversary drone. 

While autonomous operation is required for full points, the drone must be capable of handling the 

ball in some way. With this requirement having been completed, we can show progress towards 

the completion of challenge 1 and enable further development on more advanced functionality. 

 

1.3.1.2 Criteria for Evaluation 

 

While in flight, the drone must be capable of capturing and handling a suspended ball as described 

in challenge 1. For demonstration, the ball does not necessarily need to be suspended from a drone. 

The exact specifications for the adversary drone have not yet been provided, and ball collection in 

this case would require significant testing and operator practice--neither of which demonstrate 

actual progress on challenge 1. However, sufficient details on the adversary’s payload system were 

provided that a reasonable test procedure could be assembled. As shown in Figure 1.5, a carbon 

fiber rod would be connected by flexible wire joints to the drone at one end and a neodymium 

magnet at the other. A corresponding magnet permanently attached to the ball would be used to 

hold the ball on the end of the rod. As outlined in the competition rules, a force of no more than 

4N would be required to separate the magnets and release the ball. 
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Figure 1.5: Rough diagram of the adversary drone and payload ball, 

derived from images on the MBZIRC website [5]. 

 

For this requirement, ball capture is under manual operation only. This is intended to ensure that 

the capture system is basically functional before implementation of autonomous ball capture.  

 

1.3.2 Challenge 3 

 

1.3.2.1 Fly the Parent Drone Around the Building Using Sensors 

 

As the size and shape of the building likely will not be known for the competition, the parent drone 

must be capable of navigating around the building for the challenge using only its sensors (in this 

case, a scanning laser rangefinder and a depth camera). Furthermore, the location of the fires and 

layout of the building during the challenge is not known, requiring some strategy to search the 

building and locate the fires. In this case, the most simple search possible is checking each window 

to see if there is a fire inside. This can be accomplished simply by flying around the exterior of the 

building while observing the interior from each window. 

 

Given the above, a simple way to demonstrate the beginning functionality of challenge 3 is to fly 

the drone around the outline of a building autonomously. This should be done using sensor inputs 

only; dead reckoning is unacceptable, as the location and dimensions of the building for the 

challenge will likely be unknown. This requirement also demonstrates full functionality of the 

drone and its sensors as part of a ROS system. Since none of the components have been tested as 

part of a complete system, this necessitates their integration and will leave a platform ready for 

further software development. 

 

While this requirement demonstrates basic functionality for challenge 3, other processes must run 

concurrently with the navigation during the challenge. This includes future functionality such as 
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mapping the building, detecting fires, or flying while tethered to a child drone. While not a strictly 

real-time system, the resource usage by the program is an item of concern so that other critical 

processes can run without excessive latency. To this end, the resource usage of the navigation 

software should be minimized. 

 

1.3.2.2 Criteria for Evaluation 

 

Using a laser rangefinder and GPS for navigation, the drone must take off, approach the building, 

and follow its outline for a complete circuit. Through the duration of the flight, the drone must 

maintain a designated following distance from the building. The drone must also maintain a 

constant facing towards the building. Throughout the traversal, the drone should be relatively 

insensitive to features that cause it to deviate from the true outline of the building, especially 

windows. While the challenge provides 20 minutes, a significant portion of time must be allotted 

to actually extinguishing fires. Therefore, this must be demonstrated in 10 minutes as an absolute 

maximum. 

 

ROS Kinetic does not support real-time tasks. As such it is difficult to determine the execution 

time of the algorithm and the processor resources required by it. Therefore, observation of the 

drone and the processes while executing the program is necessary. Success or failure in this case 

is best determined by the observed responsiveness of the drone to changing conditions. While an 

objective measurement of performance is desirable, this was not practical in the context of this 

project. 

 

1.3.2.3 Pump Water from the Parent Drone 

 

Points are scored for this challenge by spraying mock fires with water. As such, the team of drones 

must be capable of moving water in some way at the absolute minimum. Without a drone capable 

of extinguishing a fire in some way, it is impossible to score any points in the challenge and 

therefore impossible to show any real progress towards accomplishing something. 

 

1.3.2.4 Criteria for Evaluation 

 

The drone must be able to take off, maneuver, and land while carrying the pump and a full reservoir 

of water. In this case, maneuver is defined and a full range of motions (x and y translation, altitude 

adjustment, and yaw adjustment) at low or medium speed. If possible, the drone shall be capable 

of 20 minutes of continuous flight low speed flight while fully loaded, including the use of the 

pump to drain the reservoir. Changes is reservoir level shall have no observable impact on drone 

dynamics. 
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2. Background 

 

2.1 Drones 

 

“Drone” conventionally refers to an Unmanned Aerial Vehicle (UAV), and especially to small 

rotorcraft such as quadcopters in common usage. Because of the simplicity of their controls, small 

size, and flexibility, quadcopters and other rotorcraft are seeing extensive use by consumers, 

corporations, researchers, and even the military. Drones are being tested for applications ranging 

from package delivery to firefighting, while their accessibility has caught the attention of the 

mainstream. Today, a drone that can be operated using a cell phone can be obtained for less than 

$100, further sparking public interest in their applications. 

 

2.1.1 Mechanics 

 

Most drones on the market today are quadcopters. Drones of this type use four brushless motors 

connected to fixed-pitch propellers to generate both lift and thrust. Two rotors spin clockwise while 

two spin counterclockwise (see Figure 2.1); these are arranged such that no adjacent rotors spin in 

the same direction. This balances the moments from each rotor and keeps the drone from constantly 

rotating in the direction of the rotors.  

 

 
Figure 2.1: The arrangement of counter-rotating propellers on 

a quadcopter drone. 

 

Because of the multi-rotor configuration, the speed of one or more rotors can be adjusted 

independently. As shown in Figure 2.2, changing the speeds of particular motors can cause the 

drone to move in predictable ways. Increasing the speed of two adjacent motors while reducing 

the speed of the opposing pair will cause the drone to pitch in the direction of the slowed motors, 

which due to the lifting force applied will cause the drone to shift in that direction (commonly 

referred to as “strafing”). Increasing the speed of the motors on opposing corners will unbalance 

the moments they exert on the drone, causing it to yaw. Finally, increasing or decreasing the speed 

of all motors by the same amount at once changes the lift generated, allowing the drone to adjust 

its altitude.  
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Figure 2.2: The effects of differential motor speeds on a quadcopter. 

 

Other related varieties of rotorcraft exist using different numbers of rotors (ex: six-motored 

hexcopters). These generally hold to the same design principles as quadcopters, such as using even 

numbers of counter-rotating propellers to balance moments. Similarly, they use the same principle 

of varying motor speed to change rotation, altitude, or position. A larger number of rotors tends to 

increase the stability, lifting strength, and speed of the drone. However, it also increases cost, 

energy use, and overall size. A larger number of rotors also increases the complexity of any 

calculations the drone must perform in order to determine the proper motor speeds required to 

achieve a desired movement. For these reasons quadcopters tend to be the most popular and 

accessible variety of drone, except in applications where the added lift and stability of hex- or 

octocopters are absolutely required. 

 

2.1.2 Applications 

 

As their costs have come down, drones have seen increased use in several fields, from recreational 

to military. Their ability to both hold position steadily and move quickly and smoothly has made 

them desirable for both photographers and videographers. Various companies have investigated 

the use of drones as a supplement or replacement for traditional parcel delivery services. The 

simple fact that they are able to fly while carrying variable payloads makes them able to negotiate 

delivery routes which land-based couriers would struggle with for a variety of reasons (for 

example, developing or degrading road networks). Gains in drone speed and improvements in 

control software have even led to the creation of drone-based sports such as First-Person View 

(FPV) racing. In this activity pilots take control of high-speed quadcopters and attempt to complete 

complex obstacle courses in the shortest time possible. As the name implies, a pilot will operate 

their drone in virtual first-person perspective via a front facing camera, with the feed often 

delivered by a visor similar to a virtual reality headset. 

 

The same characteristics of drones which make them desirable to hobbyists and commercial 

interests also spur interest from government bodies. Applications in emergency response, security, 
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and military support are all being pursued. Carrying complex sensors quickly and effectively while 

avoiding obstacles allows drones to be used to scout ahead and identify danger, or to tirelessly 

patrol an area from an elevated vantage point. This can be as valuable to soldiers attempting to 

locate booby traps as it can be to emergency responders attempting to locate survivors in a disaster. 

The ability to carry various payloads also means drones can get involved directly in a dangerous 

situation. While the ethics of weaponized robots are still hotly debated, the use of drones to carry 

medical supplies or firefighting equipment in times of crisis is much less controversial. And in the 

event that a drone is used maliciously, another drone is often the best counter. Unlike conventional 

aircraft they can be deployed rapidly, can operate in tight quarters such as near ground level in a 

city center, and are agile enough to intercept a hostile drone with minimal potential for collateral 

damage. 

 

2.2 Items Selected Prior 

 

The following components and systems were selected by the Osaka University team in the early 

stages of the MBZIRC project and would form the basis of our work. 

 

2.2.1 DJI Matrice 100 (DJI M100) 

 

The Matrice 100, shown in Figure 1.6, is a quadcopter released by the Chinese company DJI in 

2016. The drone is marketed as a “drone for developers,” featuring a modular construction, UART 

ports for communication with the flight controller (utilizing an SDK published alongside the 

drone), and additional ports provided to obtain power from the drone’s battery. The drone features 

expandable payload bays and a large number of unused threaded screw holes, enabling the 

mounting of first-party or custom hardware upgrades. DJI offers several accessories for the drone, 

notably a camera gimbal and the Guidance module. The Guidance module consists of an array of 

cameras and ultrasonic sensors that allow the drone to detect obstacles in any of its four facings. 

The drone can be configured to brake when an obstacle is detected or to engage in active obstacle 

avoidance. The Guidance module also allows the drone to measure its distance to the ground, 

enabling monitored takeoff and landing as well as improving the drone’s ability to maintain 

altitude during maneuvers. 
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Figure 2.3: One of the two M100 drones owned by Takemura Lab. 

 

The drone itself has a weight of 1.755 kg, while the largest battery weighs 0.676 kg. Its max takeoff 

weight is listed at 3.6 kg, allowing for a theoretical 1.169 kg payload capacity. At 1 kg of payload, 

the drone has a listed hovering time of 16 minutes with the largest battery. 

 

The 24V battery used by the drone is a proprietary component referred to as the “DJI Intelligent 

Battery.” It features smart charging and some degree of communication with the drone’s operating 

system. This is essentially a “black box” component, meaning that the battery is only compatible 

with other DJI products. There are multiple ports on the drone which can relay power from the 

battery to other devices; however, these terminals all supply the battery’s full voltage. There are 

no specifications about battery voltage or maximum ripple. Therefore, it is assumed that significant 

voltage drop can be seen on these terminals during maneuvers making these ports only suitable for 

non-critical systems. 

 

2.2.2 Parrot Bebop 2 

 

The Bebop 2 is a quadcopter produced by the company Parrot, marketed as an iteration on their 

popular Bebop model which itself is an iteration of their older ARDrone. The Bebop 2 is a 

relatively low-cost drone aimed at consumers. It is piloted by smartphone app and communicates 

via a wireless access point it broadcasts. Being a low-cost consumer drone, it has no specified 

payload capacity and is bereft of features besides its 1080p camera. It has an advertised 26 minutes 

of flight time. 
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2.2.3 Hokuyo UST-20LX Laser Rangefinder (Hokuyo LIDAR) 

 

The UST-20LX is a laser rangefinder (LIDAR) produced by the Japanese company Hokuyo. The 

sensor has a detection angle of 270 degrees and an angular resolution of 0.25 degrees. The 

detection distance is advertised up to 60 meters but is best within 20 meters. The sensor package 

itself is quite small and light, weighing just 130 g, making it attractive for drone applications. 

However, the sensor is not filtered for direct sunlight, which can introduce excessive noise into 

the scan. The module includes an ethernet connecter to interface with a PC. 

 

2.2.4 Intel Realsense D435I Depth Camera (Intel Realsense) 

 

The Realsense D435I is a depth camera produced by Intel. The unit contains stereo IR cameras for 

depth measurement up to 10 meters. In addition, the unit contains an RGB camera module and an 

inertial measurement unit (IMU). This allows for easier visualization of the output and allows the 

camera to act as a standalone localization and mapping module. The camera communicates 

through USB. Intel maintains and distributes an SDK for the camera module, which includes a 

ROS wrapper. The weight of the module is not included in the specification; this was determined 

experimentally to be approximately 10 grams. 

 

While this sensor was selected for use on the drone, it did not play an essential role in the 

fulfillment of the requirements. In testing, the unit interfered with the M100’s GPS systems. Since 

it was not strictly necessary to integrate this sensor to meet the project requirements, its 

functionality was never implemented. 

 

2.2.5 Intel NUC 7 NUC7i7BNKQ (Intel NUC) 

 

The Intel “NUC” is a desktop PC built to an ultra-small form factor. The PC includes an Intel Core 

i7-7567U, a dual-core 3.5 GHz laptop CPU with integrated graphics. It also features 16 GB of 

DDR4-2133 RAM, 512 GB of NVMe solid state storage, and integrated Wi-Fi. To save on size 

and cooling, the unit accepts a 12-19 V DC power input. The specification does not indicate typical 

current draw or the noise suppression capabilities of the unit; the device itself indicates a maximum 

current draw of 3.43 A, which is identical to the output of the supplied mains adapter. There is 

weight given in the specification; this was determined experimentally to be approximately 400 

grams. 

 

2.2.6 Water Pump 

 

A centrifugal water pump was acquired by the team prior to our arrival and would form the 

centerpiece of the physical architecture for challenge 3. While a datasheet was not available for 

the pump, some characteristics were explicit based on its markings, and we were able to determine 
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others experimentally. The pump had a mass of 350g, a 10mm inner diameter suction tube, and a 

7.5mm ID discharge tube. It was rated for 24V and drew 0.6A of current under normal operating 

conditions, providing 4m of head. The pump was of a variety which requires a flooded suction in 

order to operate properly. While this was not a major issue under laboratory conditions, it caused 

some erratic behavior in the field, especially when an attached reservoir began to run dry. 

 

2.2.7 ROS Kinetic 

 

ROS is a middleware designed to simplify robotics development and prevent duplication of work 

by providing a set of tools to accomplish tasks commonly necessary in robotics applications. Each 

ROS release is designed to run over a long-term support distribution of Ubuntu Linux; in the case 

of ROS Kinetic, it is designed to run on Ubuntu 16.04. Processes in ROS are separated into 

individual nodes. In ROS, the machine a node runs on does not matter. In this way, multiple 

computers can be used to run individual parts of a system and can be swapped out or shifted around 

with no software changes. Nodes communicate via messages through the publisher/subscriber 

topologies or by request via services. ROS organizes messages into topics. Any node can publish 

any kind of message to a given topic. Nodes can subscribe to a certain type of message on a certain 

topic and will be notified when a new message is available on that topic. A node can publish and/or 

subscribe to any number of topics. Nodes can also advertise services. The service can be called by 

sending a request with some data for the service (usually arguments) to which the node will send 

a response. This is useful for computationally expensive processes that do not need to operate 

continuously, such as path planning.  

 

In addition to this, ROS includes tools for package management, wrappers for popular software 

libraries, and tools for debugging program execution. While these make ROS seem very attractive, 

it does have a number of disadvantages. First, ROS and Ubuntu combined have a very large 

overhead, typically necessitating a PC with at least a laptop-class CPU to run. This means that 

every drone and sensor used must have a high-bandwidth link of some sort to a relatively powerful 

computer to handle communication with ROS. Second, ROS is non-deterministic in its execution, 

and is in many cases at the mercy of wireless networks. This can create latency problems for time-

critical tasks and forces the developer to minimize time-critical tasks instead of providing 

resources to support them.  
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2.3 System Architecture 

 

 
Figure 2.4: Basic system architecture 

 

The system architecture as shown above was not implemented at the start of the project. As 

envisioned this system, the Intel NUC is located on the M100 and communicates with a laptop 

base station over 5 GHz Wi-Fi. The NUC runs the driver nodes required to interface with the drone 

and its associated devices. The laptop base station acts as the master of the system, and runs any 

computationally expensive processes, specifically navigation in terms of this project. One base 

station PC is used for the whole system, but more machines could be integrated if necessary. The 

base station also runs a driver node for the Bebop 2 and communicates with that drone over the 

same 5 GHz Wi-Fi network. 

 

This basic architecture shown in Figure 2.1 is used for challenges 1 and 3. There are minor 

differences between challenges; notably, the LIDAR is intended for use in challenge 3 only and is 

thus not considered in the claw design for challenge 1. Future implementations may also utilize 

additional Bebop 2 or M100 drones. These will follow the pattern set out in this system 

architecture. 

 

2.4 Testing 

 

2.4.1 Simulation 

 

The Gazebo simulation created by the JSK team (shown in Figure 2.2) uses a model of the drone 

equipped with a USB webcam and a laser rangefinder nearly identical to the Hokuyo UST-20LX. 

To facilitate testing for challenge 3, one of the Osaka University students modified the JSK 

simulation to include a building similar to the building specified in the challenge.  
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Figure 2.5: Screenshot of the modified Gazebo simulation 

 

2.4.2 Real-World Testing 

 

2.4.2.1 Location 

 

Because the M100’s size and weight, real-world testing must be done outdoors. While flying 

drones outdoors is legal in Japan, there are a number of restrictions on outdoor flight. This includes 

limiting flights to certain areas and obtaining a permit before each flight. Because of the 

administrative work required, the Osaka University team secured permission from the Kobe City 

Fire Academy to test on pre-arranged days. The Fire Academy is not located in a densely populated 

area and has an arrangement with the local government regarding drone flight on their premises. 

While this limited the days we could test the drones and necessitated careful scheduling, this 

location provided plenty of space to engage in safe test flights. 

 

2.4.2.2 Mock Building 

 

For some preliminary tests, a small mock building was constructed using steel tube and a tarp as 

shown in Figure 2.3. This provided a space for small-scale testing and was used when the large 

training grounds at the Fire Academy were unavailable.  
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Figure 2.6: Mock building used for testing 

 

2.4.2.3 Replica Apartment Building 

 

The Kobe Fire Academy maintains a number of replica buildings on the premises for firefighter 

training. One of these, seen in Figure 2.4, is a three-story replica apartment building complete with 

windows, a fire escape, and balconies. This building was made available for testing by the Fire 

Academy. Since specifications on the building for challenge 3 are sparse, this was used as an 

approximation of the challenge building. The building also adjacent to a large open training 

ground. 
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Figure 2.7: Google Earth render of the replica apartment building used for testing 
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3. Electrical Systems 
 

3.1 System Architecture 

 

In this system, all components communicate through standard ports and protocols as detailed in 

the background. Electrical considerations were limited to power considerations for the devices 

mounted on the M100. 

 

3.2 Intel NUC 

 

3.2.1 Design 

 

Since the NUC handles all communication between the drone and the rest of the ROS system, it is 

a critical component that cannot fail. Therefore, while weight is a concern, more weight can be 

devoted to the NUC to ensure constant functionality. While the M100 provides several power 

terminals, the voltage drop at these terminals under maneuvers is unknown. The NUC also does 

not specify the maximum tolerable voltage sag. This makes providing the NUC with its own power 

supply more desirable. Finally, the drone is indicated to draw up to 65 W of power (3.43 A at 19 

V), which at 20 minutes equates to approximately 22 Wh of energy, or 15% of the drone’s battery 

capacity. This equates to approximately 3 minutes of lost flight time, which exceeds our tight 

power budget. 

 

3.2.2 Results 

 

Given the NUC’s critical status as well as the scarcity of power available on the drone, a 27 Wh 

lithium-polymer battery was selected to power the NUC. This provides power for the NUC for the 

duration of the challenge at maximum power draw. The battery itself is fairly light (XX g) and 

ensures consistent operation of the NUC for at least 20 minutes, which is enough for the duration 

of the challenge. 

 

3.3 Water Pump 

 

Powering the pump with a dedicated battery was considered. In order to determine if the reduced 

draw on the main battery would be worth the extra weight the pump’s power use had to be 

established. Lacking a datasheet, a current test was conducted at a known voltage. This was used 

to estimate the pump’s impact on flight time: 

 

-Source Voltage: 24 V 

-Measured Current: 0.6 ± 0.05 A 
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-M100 battery capacity: 4500 mAh [1] 

-Flight time on full charge (from previous experiments): 20 min 

-Current draw of drone: 
4500 𝑚𝐴ℎ

1
×

1

20 𝑚𝑖𝑛
×
60 𝑚𝑖𝑛

1 ℎ
= 13,500 𝑚𝐴 =  13.5 𝐴 

-13.5 𝐴 +  0.6 𝐴 =  14.1 𝐴  

-Modified flight time: 
4,500 𝑚𝐴ℎ

1
×

1

14,100 𝑚𝐴
×
60 𝑚𝑖𝑛

1 ℎ
= 19.1 𝑚𝑖𝑛 

 

A drop in flight time of 0.9 minutes was predicted. This prediction was predicated on the drone 

running the pump constantly throughout its flight, which was not part of the game plan for 

challenge 3. Furthermore, it was anticipated that if the drone had not found and extinguished the 

fire after nineteen of the allotted twenty minutes, the remaining one minute was not likely to make 

a difference. For these reasons a dedicated pump battery was not used. 

 

3.4 Hokuyo LIDAR 

 

Per the specification, the LIDAR requires less than 150 mA of supply current. This equates to 

approximately 1 Wh of energy over a 20-minute period at 24 V. As this is less than 1% of the total 

battery capacity, it was decided that the LIDAR would have little to no effect on the flight time of 

the drone. Furthermore, since the LIDAR accepts 12-24 V, it be run off of full battery voltage. Per 

the specification, it is actually capable of 10-30 V operation with 10% ripple, making the device 

insensitive to variations in voltage caused by drone maneuvers. This meant the LIDAR was an 

excellent candidate to be powered by the drone battery, simplifying wiring requirements. 
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4. Software 
 

4.1 Overview 

 
Figure 4.1: Program Flowchart 

 

The above flowchart illustrates the basic structure of the challenge 3 program, which navigates the 

M100 around a building using GPS and a laser rangefinder. This uses the M100’s GPS to monitor 

height and the LIDAR to measure the distance to the building. The orientation of the drone relative 

to the building is also determined using the LIDAR. This program uses ROS drivers to interface 

with the M100 as well as the Hokuyo LIDAR. The monitored takeoff is a feature of the M100’s 

flight controller and is accessed via its ROS driver. 

 

No software was implemented for challenge 1 as part of this project. Challenge 1 required use of 

the depth camera, which was not integrated. Furthermore, since challenge 1 required the ball 

capture mechanism for testing, it was assigned a lower priority than the project requirements 

indicated in this document. 

 

4.2 System Architecture 
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Figure 4.2: ROS rqt_graph Node Plot 

 

The rqt_graph from ROS showing the nodes involved is pictured above. Here /urg_node and 

/dji_sdk are drivers for the Hokuyo LIDAR and DJI M100, respectively. As indicated above, these 

nodes are run on the NUC. /urg_node publishes laser rangefinder data as a ROS LaserScan 

message on the /scan topic. /dji_sdk subscribes to the topic /flight_control_setpoint_generic, which 

provides velocity control instructions to the robot in the form of a ROS Joy message. In this case, 

the message data is provided as (x, y, z, yaw, flag) where flag indicates how the flight controller 

is to interpret the axis messages. The drone publishes the drone’s GPS position in the local ground 

frame to /local_position. The reference point for this frame is set by calling the /set_local_pos_ref 

service, which is advertised by the /dji_sdk node. The /dji_sdk node advertises two other relevant 

services. The first is /sdk_control authority, which regulates SDK control of the drone. By calling 

this service, the SDK can either request or release control of the drone, enabling or disabling 

autonomous flight. The second is /drone_task_control, which allows the SDK to initiate a 

monitored takeoff or landing. 

 

The nodes /laserscan_to_pointcloud and /wall_scan both run on the base station. 

/laserscan_to_pointcloud subscribes to LaserScan data on the scan topic and converts the laser 

scan data to a 2D point cloud in the laser reference frame. This data is published as a PointCloud2 

on the /converted_pc topic. The node /wall_scan functions as the main control node, subscribing 

to both /local_position and /converted_pc. Based on the program logic, /wall_scan calls the 

/sdk_control_authority, /set_local_pos_ref and /drone_task_control services while publishing 

velocity control data to /flight_control_setpoint_generic. 

 

4.3 Program Logic 

 

The program logic is located entirely in the /wall_scan node. Basic control flow is established 

through a state machine. During initialization, the program first attempts to take control of the 

drone. Succeeding this, the program then attempts to set the local position reference. If these 

services complete successfully, the drone moves to the first state of the state machine.  

 

4.3.1 Takeoff 

 

In the first state, the /drone_task_control service is called, initiating a monitored takeoff. Because 

the program does not have access to the Guidance data or any other indication that the takeoff has 

resolved, it must monitor the GPS to determine when the drone has reached the correct altitude. 

Once the drone has risen to the appropriate height and is accepting commands, the program moves 
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to the next state and initiates a change in altitude through velocity control moving the drone to the 

final desired height. Height is still monitored using GPS. 

 

4.3.2 Approach 

 

When the drone is at the correct height, it begins to approach the building. This is done using 

proportional control with a low maximum speed cap. Once the drone has reached the required 

distance from the building, it changes to its final state, the building scan. 

 

4.3.3 Scan 

 

To keep consistent travel around the building, the program sets the drone’s y velocity to a low, 

constant value. This keeps the drone’s movements around the building consistent. The x velocity 

is set via proportional control and attempts to keep the drone a set distance from the building. The 

yaw velocity is also set via proportional control and attempts to minimize the angle between the 

drone and the closest point on the wall. Based on these behaviors, the drone will complete a full 

circuit of the building while maintaining a consistent distance from the wall and a constant facing 

towards the building. 

 

4.4 Program Design 

 

4.4.1 Building Detection 

 

Based on the challenge details, we determined the best way to detect the building was by finding 

the closest point on the laser scan. During the challenge, there will be nothing else in the arena 

besides the drones and the building; this makes the assumption that the building will be the closest 

object quite safe. This also greatly reduces the difficulty of identifying the building. Instead of 

identifying straight lines present in the laser scan and determining which lines represent the 

building, the program must instead find the minimum value of a list. This greatly reduces the 

amount of operations required and reduces the difficulty in implementation. 

 

4.4.2 Iteration 1 

 

The first iteration of the program was developed for testing in simulation. This served to test the 

basic program logic and ensure that the drone would operate safely in a real-world test. 

 

4.4.2.1 Implementation 

 

This iteration of the program differs from the final architecture explained above. In this version, 

the program operates the laser scan data directly instead of converting it to a point cloud. From 
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this data, the program would find the minimum measurement in the scan and calculate the angle 

that the measurement was taken at. Using this angle, the distance from the front of the drone to the 

wall along the drone body x axis is calculated. This calculation was done to avoid problems with 

situations as pictured below. 

 

This calculated distance was fed to the x velocity and yaw velocity via proportional control. Since 

the distance from the front of the drone to the wall is used, an error in distance could indicate 

improper facing or an incorrect distance to the wall. The drone will therefore attempt both 

corrective actions, causing the proper action to “win” and bring the drone to the correct position 

and orientation. 

 

4.4.2.2 Testing 

 

This iteration was tested extensively in simulation to ensure stability. This was to avoid any 

potential “runaway drone” incidents. With some tuning to the proportional control constants, the 

drone navigated around the building consistently and accurately. 

 

4.4.3 Iteration 2 

 

The second iteration of the program was a reimplementation of the first for testing on the physical 

drone. At this point, all of the components had been integrated and tested with ROS; this was to 

show that they could work together as a complete system. 

 

4.4.3.1 Implementation 

 

This version was based off of a newer release of the DJI SDK and did not utilize any of the JSK 

team’s code. Despite some small changes to add the required service calls and reformatting the 

odometry and velocity control functions, this implementation was identical to the first iteration. 

 

4.4.3.2 Testing 

 

The second iteration was tested on both the mock building and the replica apartment building. In 

both cases, the drone was able to take off, approach, and follow the wall. However, on approaching 

a corner, it would veer off in the wrong direction. This was eventually determined to be the fault 

of the distance calculation implemented in iteration 1. Because the distance from the front of the 

drone to the theoretical wall was calculated, corners were functionally invisible to the program and 

would cause unintended behavior. We were unable to determine why this approach worked in 

simulation, however. 

 



 

25 

 

4.4.4 Iteration 3 

 

4.4.4.1 Implementation 

 

This implementation uses the architecture explained above. When the /wall_scan node receives a 

point cloud message from the converter, the node converts the point cloud message to a list of 

points in polar coordinates. The minimum range measurement is fed to the x velocity using 

proportional control to bring the drone to the desired range. The associated angle is fed to the yaw 

velocity via proportional control to minimize the angle measurement. This allows the drone to see 

corners properly and removes any ambiguity from incorrect facing. 

 

4.4.4.2 Testing 

 

This iteration was also tested on the mock building and the replica building. The program 

performed as expected, bringing the drone on a smooth path around the exterior of the building 

while maintaining a consistent facing. In practice, the difference between the true difference 

between the raw distance measurement and the distance as calculated in iteration 1 was very small, 

making the calculation redundant. 

 

The drone was able to complete a full circuit of the mock apartment building in approximately 7 

minutes while travelling at 0.25 m/s. This fits within the time criteria, especially given the large 

size of the apartment building and the low speed utilized by the drone. At the test site, there was 

no way to evaluate the latency or resource usage by the program. However, there were no major 

latency issues observed, as the drone successfully completed the circuit.  
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5. Mechanical Design 

 

5.1: Platform  

 

For both challenges the M100 would serve as the primary flight platform, filling the role of 

catcher for challenge 1 and parent for challenge 3. Thanks to its large payload capacity relative 

to the Bebop 2s it was capable of mounting much more extensive hardware modifications. 

 

5.2: Landing Gear 

 

5.2.1: Rationale 

 

Challenge 3 was predicted to be the most physically demanding for the M100. In order to 

extinguish a fire, the drone had to carry some quantity of water as well as the hardware necessary 

to dispense it. The stock landing gear consist primarily of plastic tubes with a wall thickness of 1 

mm, and the sponsor anticipated problems if these were required to bear the drone’s full takeoff 

weight under anything other than ideal circumstances. It was also predicted early on that the most 

efficient way to carry the pump hardware would be underneath the drone, potentially causing 

ground clearance issues. We were therefore asked to develop supplemental or replacement landing 

gear to address these issues. 

 

5.2.2: Requirements 

 

The primary requirement for the new landing gear was that they should support the drone’s 

maximum takeoff weight at rest. A minimum factor of safety of 3 was established for this 

condition. In addition, the sponsor requested some amount of shock absorption in case of a rough 

landing. Since the stock landing gear included air springs (see Figure 5.1), it was decided that the 

new landing gear should leverage these if possible. 

 

 
Figure 5.1: One of the stock air spring modules retrieved from the broken landing gear. 

 

The secondary requirement was ground clearance for the pump system. By default, the drone has 

a ground clearance of approximately 40mm, as shown in Figure 5.2. Since the landing gear and 
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pump system were developed in tandem an initial added length of 10cm was established. This was 

altered for later revisions as the pump layout was finalized. 

 

Finally, the landing gear must have minimal weight. No initial benchmark was established for this 

condition, although collectively the landing gear and pump system had a maximum mass of about 

500g. This requirement was expanded to include minimal changes in the drone’s moments of 

inertia after preliminary field tests with the second revision of the design (see below). 

 

 
Figure 5.2: Side view of M100 in Solidworks showing stock ground clearance. 

The large block at the bottom is a stand-in for the Guidance sensor package. 

 

 

5.2.3: First Revision 

 

The initial concept for the landing gear prioritized strength and shock absorption. This would have 

consisted of floating stilts which fit over the end of each stock landing gear leg. These would be 

connected by several long plastic leaf springs to a bracket attached to the drone’s bumper mounts. 

To improve stability and compensate for the loss of the stock bumpers, the corners of each leaf 

spring on a leg would be joined by a new bumper. This would allow the stock air springs and the 

new leaf springs to work in tandem to absorb landing forces. These parts were designed to be 3D 

printed, with the leaf springs using a concentric infill to improve flexibility. 
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Figure 5.3: Left: The first revision of the landing gear. 

Right: The second revision in place on the drone showing the interaction 

between the stock landing gear (highlighted green) and the additional stilt. 

 

 

The full assembly was modeled in Solidworks, as shown in Figure 5.3, and a small number of test 

pieces were printed using an Ultimaker S5 and Polylactic Acid (PLA) filament to check for fitting. 

However, it quickly became clear that even with an unacceptably low infill this design would use 

the entire payload capacity of the drone. Attempts to refine it were discontinued in favor of a new 

design. 

 

5.2.4: Second Revision 

 

The second design revision was much simpler while retaining the floating stilt concept from the 

first design. This version consisted of stilts which fit over the stock landing gear, as shown in 

Figure 5.4. Rather than using mounting hardware they were designed to be held on by the drone’s 

antennae. Flexible bumpers were incorporated to prevent damage to the stilts or frame components 

in the event of collision during stilt movement. 
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Figure 5.4: Left: The assembly for the second revision of the stilt. 

Right: Cutaway view of the second revision in place on the M100. 

Stock landing gear highlighted green. 

 

 

A full set of these stilts were printed on the Ultimaker for testing. Rigid parts were printed in PLA, 

while the flexible bumpers were printed in Thermoplastic Polyurethane (TPU). In early flight tests 

pilots noted that the M100 felt sluggish and difficult to control when the stilts were mounted. The 

likely cause of this was a shift in the drone’s moments of inertia due to the extra mass at its 

extremities. This was deemed unacceptable and a third revision was created. 

  

5.2.5: Final Revision 

 

The final version of the landing gear abandoned the addition paradigm which had guided previous 

versions in favor of total replacement. These were primarily composed of lightweight aluminum 

tubing with the same dimensions as the plastic tubes composing the original landing gear, cut to 

length by hand. Threaded caps were modeled in Solidworks and printed, allowing the tubes to be 

screwed into the sockets for the stock landing gear. Air springs were harvested from a set of stock 

landing gear which broke in an early test and inserted into the opposite ends of the tubes. 
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Figure 5.5: One of the M100 drones fitted with the aluminum legs. 

 

5.2.6: Testing & Results 

 

Final testing consisted of a simulation and live test phase. Static simulation in Solidworks indicated 

that a single tube of the correct dimensions and the intended length could support the full weight 

of the drone with a factor of safety of 26, as shown in Figure 5.6. The threaded caps were identified 

as a point of weakness under these conditions. This was deemed acceptable as they were easy to 

mass produce. Additionally, in the event of a landing at an angle the screw cap breaking would 

prevent the torque applied by the longer legs from being applied to the drone’s body, reducing 

further damage. The entire set was found to be very lightweight, representing a weight savings of 

at least 50% over the previous version. Moments of inertia were also modeled using an official 

CAD model of the drone [1] with material properties applied. It was found that the Z moment in 

particular (see Table 5.1), which was cited as the likely cause of the previous sluggishness, was 

greatly reduced compared to the previous iterations. 
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Figure 5.6: Factor of Safety plot from static simulation. The force applied was equal to the full 

weight of the drone. Note the minimum FoS at the bottom of the text box. 

 

Table 5.1: Mass additions and Moments of Inertia about the Z axis by landing gear revision. 

Mass values based on experimental data when available, otherwise by Cura mass predictions. 

Moments of inertia based on Solidworks mass evaluations, with NUC and Hokuyo in place. 

 

Revision Added Mass (g) Z Moment of Inertia (g*m2) 

Base - 56.28 

1 838 208.05 

2 248 99.23 

3 120 60.46 

 

A full set of the aluminum landing gear was then fabricated, fitted to the drone (see Figure 5.5), 

and flight tested. The first test was performed with no other peripherals fitted to the M100. No 

adverse events occurred, and the pilot noted only a minor change in responsiveness. A second test 

was carried out with the pump system in place and dummy weights to simulate the other 

components of the intended final assembly. Under these conditions the drone experienced 

significant control issues consistent with previous tests involving the pump system. This prompted 

a shift in priorities for the pump system as outlined below, and while the aluminum legs were 

deemed acceptable on their own merits, they were also deemed redundant and scrapped. 
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5.3: Pump System 

 

5.3.1: Rationale 

 

Outfitting the M100 to act as the parent in challenge 3 required outfitting it with a pump system. 

This system would need to be fully controlled by the M100, free of leaks or unexpected pressure 

losses, and capable of relaying water consistently to the child regardless of its own absolute altitude 

or the child’s relative altitude. It would also need to be securely mounted in such a way that it 

would change the M100’s flight characteristics as little as possible. 

 

5.3.2: Requirements 

 

Our most immediate requirement was that the pump system be able to hold water without spilling 

and dispense it on command. This meant the robot must be capable of carrying the equipment and 

also of activating the pump without input from an operator. While the challenge did not specify a 

maximum amount of water which a drone may carry, it was estimated that due to weight concerns 

the maximum that could be carried would be 250ml. 

As with the landing gear, the pump system must also create minimal disruptions in the drone’s 

flight characteristics. This meant ensuring that its weight was as low as possible. It also had to 

avoid changes in its own center of gravity, either due to flexing or as the reservoir emptied. 

 

Finally, the pump system had to fit within the grant proposal. This meant that it must be able to 

consistently send water to the nozzle carried by the child drone rather than engaging a fire on its 

own. We also had to ensure that the M100’s pump system remained compatible with the 

corresponding nozzle attachment being developed in parallel for the Bebop. 

 

5.3.3: Approach 

 

Before anything else we addressed the question of a reservoir to hold water. Several potential 

solutions including a 3D printed bottle and commercial coolant reservoirs were investigated. 

However, all of these proved to be unsuitable, generally due to weight. Eventually we chose to use 

a commercial soft drink bottle with a relatively regular shape and a volume of 500ml, of the type 

shown in Figure 5.7. This provided us with an easily modified vessel which was lightweight, 

watertight, and readily available. 
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Figure 5.7: Photo of a soft drink bottle of the same brand 

and size as the one used in the pump system. 

 

The other major component of the system was the pump. As one had previously been acquired by 

the team (see: Section 2.2.6) design proceeded on the assumption that it would be used for the final 

system. 

 

Once the basic components were decided upon, they were modeled in Solidworks and placed in 

an assembly with the CAD model used in the landing gear simulations. Using the built-in mass 

evaluation tool various arrangements of parts were tried to identify how they altered the drone’s 

center of mass. The lowest absolute disruption tended to occur when the reservoir and pump were 

stacked vertically below the drone with the three components’ centers of mass aligned as in Figure 

5.8. This also avoided lateral shifts in the center of mass as the reservoir emptied. While this did 

result in the center of mass shifting down significantly, it was hypothesized that this would be 

counteracted by the NUC and other components mounted on the top plate and would have minimal 

effect on the drone’s overall flight characteristics. 
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Figure 5.8: Positions of pump and reservoir relative to bottom of M100. View from left. 

 

With the positions of the components established a retaining bracket was designed (see Figure 

5.9). Mounting was accomplished using the screw holes for the drone’s guidance sensors. In order 

to allow the guidance sensors to be used identical holes were placed on the bottom of the bracket. 

A continuously curved shell design was used to minimize weight while maintaining rigidity. This 

was printed on the Ultimaker in PLA. This included a custom coupling to join the closely spaced 

reservoir and pump. 

 

 
Figure 5.9: Pump system Solidworks assembly viewed from the rear (Left) and the left (Right).  

 

Final integration of the system called for a voltage regulator board linked to the NUC to give the 

M100 control over the pump. However, this was not completed due to the results of the initial tests 

of the bracket. 

 

5.3.4: Testing & Results 
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Once the bracket had been printed the system was fully assembled and put through initial field 

tests. The first of these consisted of a simple test where the pump was manually activated via an 

18v battery while connected to a nozzle carried by the Bebop. This test was very successful, with 

no leaks or other issues on either end and the Bebop able to reliably place the stream on target. 

 

Further tests focused on the M100’s flight characteristics with the bracket mounted. This was done 

first with the revision 2 landing gear and pump system attached to the drone, and again later with 

the revision 3 landing gear as outlined above. In every case the drone would perform to 

expectations for a brief time before beginning to precess. This behavior would progressively 

worsen until a landing was made or a crash occurred. An exact cause of this behavior was never 

adequately established. However, it was hypothesized at the time that the drone’s software was 

overcompensating for the lowered center of gravity. This was supported by further tests with 

weight placed only above the plane of the propellers in which the drone performed a variety of 

maneuvers without issue. 

 

After these tests it was decided that the pump system should be redesigned so that it could be 

mounted to the top of the M100. Due to time constraints the sponsor assigned this task to other 

team members while our focus was shifted to the capture claw for challenge 1. 

 

5.4: Capture Claw 

 

5.4.1: Rationale 

 

Challenge 1 required an M100 to be outfitted for the pursuit and capture of a payload carried by 

another drone. While other members of the team concentrated on the coding for this task, we 

concentrated on giving the drone the physical tools necessary. 

 

5.4.2: Requirements 

 

While the exact specs of the target payload were deliberately vague, some concrete information 

was available through the competition rules. The payload would be spherical, soft, have a mass 

between 100g and 150g, and be attached to the target drone via a carbon fiber rod and a magnet 

which would release it under a force of at most 4N. We therefore needed to outfit the drone with 

a mechanism capable of holding a payload of those sizes and exerting at least that much force 

without risking a break. 

 

Once the catcher drone had received the target’s position from the scouts, it had to be able to 

autonomously pursue the payload and react appropriately upon capturing it. Therefore, one or more 

relevant sensors would need to be worked into the design. Relatedly, since the drone would need 

to intercept the payload under potentially chaotic flight conditions, the mechanism would need to 
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react quickly upon registering a capture, and transition from a wide initial capture zone to a 

narrowly controlled grip. Due to time constraints the sponsor indicated that only providing a means 

to attach the sensors would be sufficient; testing would be carried out manually. 

 

Due to some confusion with the rules (as mentioned in section XX), it was unclear if the catcher 

drone would be required to simply land with the payload after capturing it or deposit it in a scoring 

container while still airborne. As clarification was not forthcoming, it was decided that the capture 

system must enable the drone to accomplish either task. 

 

Finally, as with previous peripherals, the system must disrupt the flight characteristics of the drone 

as little as possible. The Hokuyo was eliminated from the base sensor suite for this challenge, so 

some additional mass was freed up, but a maximum of 400g for the system was still set. 

Additionally, based on the results of the pump system tests, it was decided that any addition which 

lowered the drone’s center of mass would be unacceptable. Upward shifts would be acceptable, 

provided they had a component in the XY plane of less than 5mm total. The acceptable range is 

shown in Figure 5.10. Lastly, as little of the system should extend far from the drone’s main body 

as possible in order to minimize shifts in moment of inertia. 

 

 
Figure 5.10: Sketch showing acceptable range of positions for adjusted center of mass. View 

from left. The center of the circle is its original position. 

 

5.4.3: Gearbox 

 

The design of the capture system was split into two major parts, the cage and the gearbox. Design 

of both began with establishing where the ball would sit once captured. After some deliberation it 

was decided that over the front of the main body would be the most advantageous spot, as shown 
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in Figure 5.11. This would keep the ball and most of the machinery close to the center, minimizing 

changes in moment of inertia, while leaving room behind the ball for sensor mounting. It would 

also reduce the possibility of the propellers contacting any part of the target. 

 

 
Figure 5.11: Resting ball position. View from left. 

 

With the position of the ball established an actuator was designed to hold it in place against the 

planned cage. The actuator was to consist of a single claw driven by a servo. A free-body diagram 

of the claw was created to find the necessary torque at the claw’s axle (see Figure 5.12). Since the 

exact size and orientation of the claw had not yet been established, the FBD was drawn with the 

assumption that the claw would experience the greatest force if it were to support the ball from 

below, and that a system capable of keeping its grip under these circumstances would be capable 

of operating under almost any other circumstances as well. 

 

 
Figure 5.12: Free body diagram of max mass ball acting on claw. 
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Several servos were readily available from the lab’s stores. After consulting their datasheets, a 

lightweight hobby servo was selected and a gear ratio chosen in order to provide a reasonable 

factor of safety: 

 

Required claw input torque: 0.2499 N*m 

Target Factor of Safety: 2 

Tower Hobby 9g servo output torque: 2.5 kg*cm = 0.245 N*m [6] 

With 2:1 gear ratio: 0.245 N*m * 2 = 0.49 N*m 

𝑇𝑚𝑎𝑥

𝑇𝑟𝑒𝑔
 =  𝐹𝑜𝑆 =

0.49 𝑁 ∗ 𝑚

0.2499 𝑁 ∗ 𝑚
 =   1.97 ≈  2 

 

To ensure that the claw could close on the target within a reasonable amount of time, the servo’s 

speed was checked in conjunction with the chosen gear ratio against the claw’s predicted arc of 

travel: 

 

Claw travel angle: 66.34° 

Gear ratio: 2:1 

Servo Speed: 
0.1 𝑠

60°
[6] 

𝜃𝑜𝑢𝑡 ×
𝑂𝑢𝑡

𝐼𝑛
 = 𝜃𝑖𝑛 →  66.34° ×

2

1
= 132.64° 

132.64° ×  
0.1 𝑠

60°
 =  0.22 𝑠 

 

Both the travel time and factor of safety were deemed satisfactory and design proceeded to the 

modeling stage. The servo and claw were modeled in Solidworks, followed by a gearbox to house 

them. There was little expectation of finding appropriately sized gears commercially or finding a 

machine shop to produce them before the deadline, so the gears were modeled and printed on the 

Ultimaker alongside the other components. Large involute teeth were used in order to improve 

resilience and minimize the impact of potential printing errors on gear performance. The gearbox 

and all of its component parts are shown in Figure 5.13. 
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Figure 5.13: Exploded view of the gearbox. View from front left. 

 

5.4.4: Cage 

Once the gearbox had been modeled, the corresponding cage was modeled in Solidworks. This 

was sized so as to contain the largest possible target without leaving room for the smallest to 

escape. The main load bearing bars and their supports were put through physical simulations, as 

shown in Figure 5.14, in order to ensure that they could withstand both the initial collision with 

the ball and subsequent release from the target drone. 

 

 
Figure 5.14: Static stress simulation of the cage basket main bars experiencing the 

force of 4 N necessary to release the payload from the target drone. 
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The top of the scale has been set equal to the standard flexural strength of PLA. 

 

The front ends of the main cage components were flared outwards in order to create a “funnel” 

guiding the ball into its intended resting position during capture. Extensions were fitted to the open 

ends of the bars to further widen this funnel. As shown in Figure 5.15, the connections between 

the main components and these extensions were made modular both to ease replacement in case 

of broken parts and to simplify future changes to the geometry of the opening. 

 

 
Figure 5.15: Detail of the connection point between the right-side cage riser and  

one of the funnel extensions. 

 

A ramp composed of two parallel rails was placed in front of the cage as shown in Figure 5.16, 

extending past the narrowest distance between the propellers. This was intended to allow the drone 

to easily unload the payload by simply allowing it to roll forward and away. Guards were installed 

along the sides to prevent the payload from falling into the propellers on unloading. Both the ramp 

and guards were modeled as continuous curves in order to act as part of the capture funnel. 

 

 
Figure 5.16: Right portion of the ramp and rail assembly, view from front left. 
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Note the use of the same modular attachment points as the funnel extensions. 

 

On the opposite side of the ball, the cage supports were fitted with a pair of vertical supports joined 

to a baseplate connected to both support walls. This sensor bay was intended as an expansion for 

the future addition of a sensor such as a limit switch and included open space and unused screw 

holes to allow a variety of mounting options. The three pairs of screw holes were arranged such 

that the two nearest the cage formed a tangent line with the ball position circle, while the third was 

placed along the corresponding normal line, as shown in Figure 5.17. This was done to assist in 

alignment of future sensor additions, on the understanding that some might need to be oriented 

along a tangent or normal line to their target. 

 

 
Figure 5.17: Sensor bay with ball in place, view from left. Note the plotting lines for the screw 

holes. 

 

The RealSense depth camera to be used for target pursuit also had to be mounted. After discussing 

positioning options with the sponsor, the camera was placed directly behind the ball’s captured 

position in order to ensure that the ball could stay within view during the entire capture attempt. 

While this would result in the camera being obstructed upon a successful capture, it would allow 

additional verification of capture, and it would still be possible for the drone to find its drop-off 

location using its GPS sensor. The camera’s field of view was modeled in Solidworks in order to 

facilitate proper placement as shown in Figure 5.18, with the angles based on those found in the 

series datasheet [2]. 
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Figure 5.18: Placement of RealSense camera showing FoV cone enveloping the ball.  

View from left. 

 

The final modeling task was to balance the system. Each part was exported to Cura and its 

estimated printed mass applied to its Solidworks model. With this applied it was found that the 

drone’s center of mass had shifted up 9.7mm and forward 6.25mm. The vertical shift was deemed 

acceptable, but the forward shift was slightly outside of parameters. Using solid bodies with 

varying weights it was determined that attaching 41g weights (equivalent to the mass of an 

M10x35 bolt and accompanying nut) to each of the rear landing gear would reduce the horizontal 

shift to 0.34mm and the vertical shift to 6.42mm as shown in Figure 5.19. Fabrication of 

appropriate weights was left for future work due to time constraints. 
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Figure 5.19: Updated balance information after masses attached to rear landing gear. 

 

5.4.5: Testing & Results 

 

 
Figure 5.20: One of the M100s fitted with the full capture assembly.  
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Once all components were printed, they were assembled and fitted to the M100 as shown in Figure 

5.20. For testing purposes, a small wi-fi enabled Arduino board was fitted to the drone with a 

dedicated 5v battery. Another team member added a simple program to this board enabling the 

servo to be remotely activated. This was successfully used to move the claw to its fully open and 

closed positions before testing proper began. 

 

Once this was accomplished a static test with an 8cm diameter stand-in ball was performed. For 

this test the drone with full capture system was placed on a table. A team member then tossed the 

stand-in ball into the cage funnel while another attempted to close the claw before it could roll out. 

This test was successfully performed multiple times, with the ball being tossed with varying 

strength and from various advantageous and disadvantageous angles, and in spite of the stand-in 

ball’s smaller size. 

 

Next a basic flight test was performed to assess the drone’s performance with the capture system 

attached. Despite the lack of the rear balancing weights the drone was easily controlled, performing 

basic maneuvers safely. A slight tendency to lose altitude when yawing was noted, likely due to 

the weight of the system, but was not determined to be a significant issue.  

 

Following the testing phase the sponsor declared the capture system satisfactory, and responsibility 

for further refinement and development was transferred to other team members.  
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6. Conclusion 

 

6.1 Results 

 

While not all of the targets were met for the project, the overall effort was quite successful. Several 

important strides have been made in establishing a robust platform both for the MBZIRC 

challenges and for general drone research at Osaka University. 

 

6.1.1 Complete Tasks 

 

Despite many delays on the hardware, software, and documentation fronts, integration of the 

overall platform was successful. While some aspects such as Guidance access through ROS and 

depth camera integration remain incomplete, a strong framework has been created to allow these 

features to be integrated into the overall system. In the meantime, it is now possible for the M100 

and Bebop 2 to be controlled via ROS as a single system. This will enable continued work on the 

particular MBZ challenges and use of the M100 as a research platform for other tasks. 

 

Likewise, despite a tight schedule, the capture claw assembly was completed to specification with 

a minimum of tweaking. It has passed initial tests and is ready to move into more rigorous field 

testing scenarios. And with its modular construction it should be possible for changes to be made 

quickly and easily should the need arise. 

 

6.1.2 Incomplete Tasks 

 

On the other hand, some large tasks remain incomplete. Chief among these is the pump system. 

While aspects of this design were successful, it was an overall failure due to its unacceptable 

effects on the flight characteristics of the M100. This failure can primarily be attributed to 

assumptions made regarding the stability of the drone while carrying underslung loads. Early 

testing with dummy weights could have helped to avoid this pitfall. While it is unfortunate that 

our failure of foresight in this case created a waste of time and resources, the object lesson in 

planning which it provided served us well in later aspects of the project. Furthermore, some of the 

particular insights gained from this episode were instrumental in the completion on time of the 

capture claw system. 

 

Relatedly, the redundancy of the landing gear provides an object lesson in the dangers of 

developing related parts of a system in tandem. While the final revision met all of the established 

criteria, the time and materials put into reaching that point were still wasted when the landing gear 

were made redundant. Again, this could have been avoided with more foresight and preliminary 

testing of hypotheses in the design of the pump system. 
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6.2 Recommendations for Future Work 

 

6.2.1 General Upgrades 

 

There were some aspects of the core platform which were not fully integrated by the time our 

project was concluded. These included ROS control over the Guidance module and use of the 

RealSense depth camera. Completing the integration of these devices will dramatically improve 

the versatility of the drone platform and its utility as a research tool.  

 

Similarly, while the integration of ROS control for the Bebop 2 was completed, there was not 

adequate time for full field testing to ensure that there are no significant bugs left to be worked 

out. Therefore, we recommend that tests be run on this aspect of the system as soon as possible to 

confirm its complete status. 

 

Finally, in line with ongoing concerns over payload weight, we recommend that consideration be 

given to alternate materials for custom peripherals. Most parts created for the drones were 

fabricated out of PLA filament on a 3D printer. While PLA is cheap and offers a decent strength 

to weight ratio, its usefulness in creating large, lightweight structural pieces is limited. The results 

of the landing gear design process demonstrate that for such components other plastics or 

lightweight metals may be more desirable. Composite solutions, such as continuous fiber 

reinforced 3D printed parts, may also bring down overall weight without sacrificing strength. 

 

6.2.2 MBZIRC Specific 

 

The first and most obvious item to be addressed is the pump system. Redesigning it to fit on the 

top side of the drone is a major priority, as this should eliminate the precession problem observed 

in testing. Furthermore, we recommend identifying a smaller and lighter water pump for use with 

the system. The existing centrifugal pump, while powerful, uses approximately 30% of the M100’s 

total payload capacity. Using a lighter pump would increase the amount of water the drone can 

carry into the challenge, which will also increase the team’s potential maximum score. 

 

For challenge 1, further integration of the claw system with the M100 and ROS platform is required 

for successful completion of the challenge. This will entail giving the NUC control over the servo, 

as well as improving sensor integration. Full integration of the RealSense camera as outlined above 

will allow the drone to successfully pursue and capture the payload. The addition of a sensor such 

as a limit switch in the cage’s sensor bay will also provide useful feedback, allowing the drone to 

decide to continue pursuit in case of a failed capture. Live flight tests should also be carried out 

using the capture system to determine if the cage geometry is suitable. In the event that it is not, 

the modular construction should make changes relatively easy to make.  
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