


ABSTRACT

We use the method of dimensional continuation to isolate singularities

in integrals containing products of Green’s functions or their deriva-

tives. Rules for the extraction of the finite part of so-called hypersin-

gular integrals are developed, which should be useful in methods based

on boundary integral techniques in science and engineering. In appli-

cations to potential theory, electromagnetic scattering, and crack dy-

namics in continuum mechanics, boundary integrals now can be readily

evaluated using computational techniques without recourse to complex

analysis or contour distortions since the hypersingularities occurring

in intermediate steps of the computations can be isolated and ignored

while taking the finite parts of the integrals into account in a consistent

manner. We have also identified new forms of the Dirac δ-function in

D dimensions which are useful and convenient in the calculations. A

summary of the integrable singular integrals is given in tabular form.
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I. INTRODUCTION

The properties of Green’s functions and other generalized functions are defined1 by the

“company they keep,” in the sense that their behavior is determined by an integration of such

functions multiplied by well-behaved functions.2 However, frequently in physical calculations

in science and engineering we encounter derivatives of Green’s functions as in the boundary

integral method, or its numerical implementation in the boundary element method (BEM).

This leads to non-integrable singularities that require careful attention in treating them.

In quantum field theory, we have an analogous situation in which products of Green’s

functions appearing in loop diagrams lead to infinities. Particularly lucid comments on this

issue of the need to define new rules for the evaluation of products of singular functions have

been given by Bogoliubov and Shirkov.3 The method of analytic continuation in spatial

dimension D of the integrals, to isolate the singular part and to identify the relevant finite

values of the integrals, is used in relativistic field theory in perturbative evaluations of

physically relevant quantities. In QFT, the nature of the divergences require “dimensional

regularization” by which the infinities are absorbed into physically observable parameters

through the process of renormalization.

Fortunately, in potential theory, electromagnetic field computations, and in the theory of

crack dynamics and continuum mechanics, the singularities occurring in intermediate stages

of the calculations can be shown to cancel out. Thus, while renormalization is not an issue

in this case, managing the infinities in the theory and performing numerical analysis is an

issue and it can be troublesome. Several investigations in the literature refer to the integrals

appearing in the integral representation of potentials and fields and their evaluation by the

BEM as hypersingular integrals.4–6,17

Here we wish to explore the use of dimensional continuation in the evaluation of integrals

of the well known Green’s functions in potential theory, in electromagnetic field calculations,7

and in elasticity theory, and their derivatives. We identify the rules for obtaining consistent

results through the use of such methods for the hypersingular integrals occurring in the

BEM.8 We provide a systematic approach to the identification of the singularities in typical

integrals and show how to isolate them using the dimensional continuation method. These

results are then used in examples of such integrals occurring in the above-mentioned physical

applications. We have also identified Dirac δ-functions in D dimensions that are useful in
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simplifying and understanding the results. A summary of the integrable singular integrals

is reported in tabular form in Tables I-III in Appendix A.

It is hoped that the present approach will provide an effective, practical method of eval-

uating the so-called hypersingular integrals in computational science and engineering appli-

cations, with an automated approach to accounting for these issues in a direct manner.
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II. SINGULAR INTEGRALS

In this section we first classify a set of singular integrals that frequently occur in our dis-

cussion of integral equations. This is followed by identifying combinations of these integrals

that are of physical interest.

We begin by considering singular integrals of the form

∫

|r|<R

f(r)

|r|d d
Dr, (1)

where f(r) has a Taylor series expansion around the origin. In Eq.(1), D is the dimension of

space which we will take to be continuous. We will introduce a shift in the denominator9,17

by substituting |r| ⇒
√
r2 + ǫ2 in order to easily isolate the infinite part of the singular

integral. At the end of the calculation, the limit ǫ → 0 will be used.

For convenience, we use the substitutions

ρ2 = r2 + ǫ2, (2)

r = (x1, x2, . . . , xD), (3)

δ = D − d, (4)

AD =
2π

D

2

Γ(D
2
)
. (5)

We will always use d as the order of the singularity of the integrand, i.e. the power of r in the

denominator of the integrand, and D as the dimension of the multi-dimensional integration.

It will be shown below that whether an integral is singular and if so the type of the infinite

part, is determined by δ = D − d.

A. The basic integral I0(R; d, δ) =

∫

|r|<R

1

|r|d dDr

Doing the “angular” integrations in D dimensions, we note that

dDr = AD rD−1dr. (6)

We change |r| in the denominator to ρ =
√
r2 + ǫ2 to write

I0(R; d, δ) ⇒ AD

∫ R

0

rD−1

ρd
dr. (7)
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The integral then becomes

I0(R; d, δ)

AD
=

∫ R

0

ρ−d/2 rD−1 dr

=

∫ ∞

0

rD−1

ρd
dr −

∫ ∞

R

rD−1

ρd
dr. (8)

The first integral can be expressed in terms of Gamma functions,
∫ ∞

0

rD−1

ρd
dr = ǫδ

(

Γ(−δ/2) Γ(D/2)

2 Γ(d/2)

)

, (9)

and the second integral can be expressed as a hypergeometric function
∫ ∞

R

rD−1

ρd
dr = −

(

Rδ

δ

)

2F1

(

d

2
,−δ

2
; 1− δ

2
;− ǫ2

R2

)

, (10)

where

2F1(a, b; c; z) =

∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
, (11)

with ξn = [(a)n, (b)n, (c)n] defined to be

(ξ)n = ξ(ξ + 1)(ξ + 2) · · · (ξ + n− 1); (ξ)0 = 1. (12)

From the series expansion of the hypergeometric function, to leading order in ǫ, we have
∫ ∞

R

rD−1

ρd
dr = −Rδ

δ
(1 +O(ǫ2)). (13)

Therefore,
I0(R; d, δ)

AD

= ǫδ
Γ(−δ/2) Γ(D/2)

2 Γ(d/2)
+

Rδ

δ
. (14)

We now consider three limits for the integral I0:

(a) When δ > 0, the first term vanishes when ǫ → 0. In fact, in this case I0 is not a

singular integral.

(b) When δ → 0, we have

ǫδ = 1 + δ ln ǫ+O(δ2), (15)

Rδ

δ
= δ−1 + lnR +O(δ), (16)

Γ

(

D

2

)

= Γ

(

d+ δ

2

)

= Γ

(

d

2

)

+
1

2
Γ′

(

d

2

)

δ +O(δ2), (17)

Γ

(

−δ

2

)

= −2

δ
− γ +O(δ), (18)
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where γ is Euler’s constant γ = 0.5772. Combining these expressions together we have

I0(R; d, δ)

AD
= − Γ′(d/2)

2 Γ(d/2)
− γ

2
+ ln

R

ǫ
+O(δ). (19)

In this case, the integral has a logarithmic singularity.

(c) When δ < 0, we have

I0(R; d, δ)

AD
=

Rδ

δ
+ ǫ−|δ|

(

Γ(−δ/2) Γ(D/2)

2 Γ(d/2)

)

. (20)

In this case, the singular integral has an ǫ−|δ| type infinity.

Therefore, we separate the infinite part of the singular integral I0(R; d, δ) as follows. We

have

I0(R; d, δ)

AD
=



















































Rδ

δ
, for δ > 0, no infinity;

− Γ′(d/2)

2 Γ(d/2)
− γ

2
+ ln

R

ǫ
, for δ = 0, log infinity;

Rδ

δ
+ ǫ−|δ|

(

Γ(−δ/2) Γ(D/2)

2 Γ(d/2)

)

, for δ < 0, ǫ−|δ| infinity.

(21)

Notice that the nature of the infinite part is determined only by δ = D − d.

B. Integrals of the type I1(R; d, δ, n) =

∫

|r|<R

xn

|r|d+n
dDr

In this case, we make the substitutions

x = r cos θ, (22)

dDr = AD−1r
D−1 sinD−2 θ dr dθ, (23)

and shift the denominator from |r| to ρ =
√
r2 + ǫ2 to write

I1(R; d, δ, n) ⇒ AD−1

∫ π

0

∫ R

0

rn cosn θ

ρd+n
rD−1 sinD−2 θ dr dθ

= AD−1

∫ R

0

ρ−(d+n) r[(D+n)−1] dr

∫ π

0

cosn θ sinD−2 θ dθ

= I0(R; d+ n, δ) · AD−1

AD

∫ π

0

cosn θ sinD−2 θ dθ. (24)
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The last integral is a Beta-function and we have

AD−1

AD

∫ π

0

cosn θ sinD−2 θ dθ =























0, for n odd;

Γ(D
2
) Γ(n+1

2
)

√
π Γ(D+n

2
)
, for n even.

(25)

When n is even, the Gamma functions can be simplified further to obtain

I1(R; d, δ, n) =
(n− 1)(n− 3) · · · 1

(D + n− 2)(D + n− 4) · · ·D I0(R; d+ n, δ). (26)

Since the type of infinity just depends on δ, I1(R; d, δ, n) has the same singular behavior as

I0(R; d, δ). For example, the most commonly occurring non-zero case in typical applications

is when n = 2, for which we obtain

I1(R; d, δ, 2) =

∫

|r|<R

x2

|r|d+2
dDr =

1

D
I0(R; d+ 2, δ). (27)

C. Integrals of the type I2(R; d, δ,m, n) =

∫

|r|<R

xm1 xn2
|r|d+m+n

dDr

For such integrals we make the substitutions

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

dDr = AD−2r
D−1 sinD−2 θ1 sin

D−3 θ2 dr dθ1 dθ2, (28)

and as usual change |r| in the denominator to ρ =
√
r2 + ǫ2 to obtain

I2(R; d, δ,m, n) ⇒ AD−2

∫ π

0

∫ π

0

∫ R

0

rm+n cosm θ1 sin
n θ1 cos

n θ2
ρd+m+n

×

rD−1 sinD−2 θ1 sin
D−3 θ2 dr dθ1 dθ2

= I0(R; d+m+ n, δ)×
AD−2

AD

∫ π

0

cosm θ1 sin
D+n−2 θ1 dθ1

∫ π

0

cosn θ2 sin
D−3 θ2 dθ2

=























Γ(D
2
) Γ(m+1

2
) Γ(n+1

2
)

π Γ(D+m+n
2

)
I0(R; d+m+ n, δ), both m and n are even;

0, otherwise.

(29)
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Thus I2 also has the same singular behavior as I0(R; d, δ).

D. Integrals of the type Ik(R; d, δ, {ni}ki=1) =

∫

|r|<R

xn1

1 xn2

2 · · · xnk

k

|r|d+N
dDr, N =

∑k
i=1 ni

Using the same approach as above, we can obtain a general formula

Ik(R; d, δ, {ni}ki=1) =

∫

|r|<R

xn1

1 xn2

2 · · ·xnk

k

|r|d+N
dDr

=























∏k
i=1(ni − 1)!!

(D +N − 2)(D +N − 4) · · ·D I0(R; d+N, δ), all ni are even;

0, otherwise;

(30)

where (ni − 1)!! = (ni − 1)(ni − 3) · · ·1, and (−1)!! = 1.

E. Integrals of the type Iǫk(R; d, δ, {ni}ki=0) =

∫

|r|<R

ǫn0xn1

1 xn2

2 · · · xnk

k

|r|d+n0+N
dDr, N =

∑k
i=1 ni

We can have a singular integral that has ǫ in the numerator. We assume that ǫ is a

constant when performing the integration. Hence we will simply have

Iǫk(R; d, δ, {ni}ki=0) = ǫn0Ik(R; d+ n0, δ − n0, {ni}ki=1). (31)

We only need consider the case when all ni, i ≥ 1, are even, since the integral vanishes

otherwise. For non-zero cases, we have

Iǫk(R; d, δ, {ni}ki=0) =

∏k
i=1(ni − 1)!!

(D +N − 2)(D +N − 4) · · ·D ǫn0I0(R; d+N + n0, δ − n0). (32)

To simplify the notation we define

Iǫ0(R; d, δ, n0) = ǫn0I0(R; d+ n0, δ − n0), (33)

so

Iǫk(R; d, δ, {ni}ki=0) =

∏k
i=1(ni − 1)!!

(D +N − 2)(D +N − 4) · · ·D Iǫ0(R; d+N, δ, n0). (34)

Therefore, Iǫk is transformed to Iǫ0, so that we need discuss the property of Iǫ0. This is done

in the following.
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F. The integral Iǫ0(R; d, δ, n0) = ǫn0I0(R; d+ n0, δ − n0) =

∫

|r|<R

ǫn0

|r|d+n0
dDr

With the result for I0 derived above, we have

Iǫ0(R; d, δ, n0) = ǫδ

(

Γ
(

− δ−n0

2

)

Γ
(

D
2

)

2Γ
(

d+n0

2

)

)

+ ǫn0

(

Rδ−n0

δ − n0

)

. (35)

Because n0 is always greater than 0, the second term vanishes in the limit ǫ → 0. Notice

that we make the above definitions for Iǫk and Iǫ0 because we want to make them also to have

the factor of ǫδ. Here we consider the three limits:

(a) When δ > 0, we simply get Iǫ0(R; d, δ, n0) = 0.

(b) When δ → 0, we have

Iǫ0(R; d, δ, n0) =
Γ
(

n0

2

)

Γ
(

D
2

)

2Γ
(

d+n0

2

) +O(d), (36)

which is finite.

(c) When δ < 0, we have

Iǫ0(R; d, δ, n0) = ǫ−|δ|

(

Γ
(

− δ−n0

2

)

Γ
(

D
2

)

2Γ
(

d+n0

2

)

)

, (37)

which has a singularity arising from the ǫ−|δ| factor.
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III. INTEGRABLE SINGULAR INTEGRALS

If two singular integrals have the same infinite part their difference is a finite number.

More generally, a linear combination of singular integrals may sum to a finite number when

their infinite parts cancel. We call such combinations as integrable singular integrals (ISI).10

As will be shown below, most of the singular integrals in physics applications of potential

theory and engineering analysis using Green’s functions are ISI’s.11

For the non-zero cases, the integrals Ik(R; d, δ, {ni}ki=1) are always a multiple of I0(R; d+

N, δ), so that both types of integrals have the same type of infinity, logarithmic infinity when

δ = 0, and ǫ−|δ|-type infinity when δ < 0. Therefore, we can take the linear combination of

Ik(R; d, δ, {ni}ki=1) and I0(R; d, δ) to cancel the singular parts and obtain ISI’s. (We don’t

want to use I0(R; d+N, δ) because this is an integral in D +N dimension). Such ISI’s are

given by

I0(R; d, δ)− (d+N − 2)(d+N − 4) · · ·d
∏k

i=1(ni − 1)!!
Ik(R; d, δ, {ni}ki=1)

=



























[

1− (d+N − 2)(d+N − 4) · · ·d
(D +N − 2)(D +N − 4) · · ·D

]

AD

δ
Rδ, for δ < 0;

1

2

[

Ψ

(

d+N

2

)

−Ψ

(

d

2

)]

AD, for δ = 0,

(38)

where all ni are even, and Ψ(x) = Γ′(x)/Γ(x) is the digamma function. Ψ((d+N)/2)−Ψ(d/2)

can be written as

Ψ

(

d+N

2

)

−Ψ

(

d

2

)

=
2

d
+

2

d+ 2
+ · · ·+ 2

d+N − 2
. (39)

Another type of ISI’s includes Iǫk. Because Iǫk can always be transformed to Iǫ0, we just

need to consider Iǫ0. We note that Iǫ0 is finite when δ = 0, and is integrable. When δ < 0,

we have

I0(R; d, δ)−
(

Γ
(

− δ
2

)

Γ
(

− δ
2
+ n0

2

)

Γ
(

d
2
+ n0

2

)

Γ
(

d
2

)

)

Iǫ0(R; d, δ, n0) =
AD

δ
Rδ. (40)

We call these the fundamental ISI because all the other ISI’s can be written as linear

combinations of these ISI’s. Some simple examples of fundamental ISI’s are given as follows.

(a) By setting k = 1, n1 = 2 in Eq.(38), we obtain the simplest ISI given by

I0(R; d, δ)− d I1(R; d, δ, 2) =

∫

|r|<R

(

1

|r|d − d
x2

|r|d+2

)

dDr =
AD

D
Rδ. (41)
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It can be checked that this formula holds for all δ ≥ 0, or δ < 0.

(b) By setting n0 = 2 in Eq.(40), we have another ISI obtained from I0 and Iǫ0, which we

call ǫ2-ISI, for which

I0(R; d, δ)− d

d−D
Iǫ0(R; d, δ, 2) =

∫

|r|<R

(

1

|r|d − d

d−D

ǫ2

|r|d+2

)

dDr =
AD

δ
Rδ. (42)

14



IV. EXAMPLES OF ISI IN PHYSICS APPLICATIONS

We now illustrate the above considerations with three applications. The first is the case

of calculating the potential and its derivatives using Poisson’s solution of the electrostatic

problem. The second is the evaluation of electromagnetic fields emitted by a conducting

surface, where again integrable singularities occur. The final example is from the field of

fracture dynamics.

A. Poisson’s Equation

1. Poisson’s equation in 3D

The solution of Poisson equation,

∇2ϕ(r) = −4πρ(r), (43)

is given by7

ϕ(r) =

∫

ρ(r′)

|r− r′| d
3r′. (44)

Here the potential is represented by ϕ(r), and our use of ρ(r) for the charge density, in order

to conform to the usual notation, should cause no confusion. The Green’s function for the

Poisson problem is G(r, r′) = 1/|r− r′|.
The potential’s first and second order derivatives are

∂iϕ(r) = −
∫

(ri − r′i)ρ(r
′)

|r− r′|3 d3r′, (45)

and

∂i∂jϕ =

∫
(

− ρ(r′)δij
|r− r′|3 +

3(ri − r′i)(rj − r′j)ρ(r
′)

|r− r′|5
)

d3r′. (46)

When i = j, we should have for Eq.(46) the result

3
∑

i=1

∂i∂iϕ(r) = ∇2ϕ(r) = −4πρ(r), (47)

from the standard identity ∇2G(r, r′) = −4πδ(r− r′). Thus we should be able to carry out

the above integral explicitly, and we expect to have

3
∑

i=1

∫
(

− 1

|r− r′|3 +
3(ri − r′i)

2

|r− r′|5
)

ρ(r′) d3r′ = −4πρ(r). (48)
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To verify the above we take a series expansion of ρ(r′)

ρ(r′) = ρ(r) + (r′ − r) · ∇ρ(r) +O((r′ − r)2). (49)

The leading term of the expansion gives

3
∑

i=1

∫
(

− 1

|r− r′|3 +
3(ri − r′i)

2

|r− r′|5
)

ρ(r) d3r′ = −3ρ(r)

∫
(

1

|s|3 − 3s2i
|s|5
)

d3s, (50)

where s = r′ − r. This is the simplest ISI with d = D = 3. So from Eq. (41) we have

3
∑

i=1

∫
(

− 1

|r− r′|3 +
3(ri − r′i)

2

|r− r′|5
)

ρ(r) d3r′ = −3ρ(r)
A3

3
= −4πρ(r). (51)

We can show that the further terms in the series expansion are zero. Actually, any integral

of the following form can be expressed as

3
∑

i=1

∫

|s|<R

(

1

|s|3 − 3s2i
|s|5
)

saxs
b
ys

c
z d

3s = λ I0(R; d, δ), (52)

where d = 3 − a − b − c, δ = D − d = a + b + c > 0, and λ is a constant that is obtained

by doing the angular integration and is given by Eq.(30). Because δ > 0, we know this is a

regular integral with no singularity, and from Eq.(21) with D = 3 we obtain

3
∑

i=1

∫

|s|<R

(

1

|s|3 − 3s2i
|s|5
)

saxs
b
ys

c
z d

3s = 4π λ
Rδ

δ
. (53)

On the other hand, by evaluating the difference between two such integrals over the ranges

[0, R1] and [0, R2] with R2 > R1 we have

3
∑

i=1

∫

R1<|s|<R2

(

1

|s|3 − 3s2i
|s|5
)

saxs
b
ys

c
z d

3s = 4π λ
Rδ

2 − Rδ
1

δ
. (54)

We note that for s 6= 0
3
∑

i=1

(

1

|s|3 − 3s2i
|s|5
)

=
3

|s|3 − 3s2

|s|5 = 0. (55)

Hence the left side of Eq.(54) is zero, so that λ = 0. Therefore the integral in Eq.(53)

vanishes. Combined with Eq.(51), we reconstruct the relation

3
∑

i=1

∫
(

− 1

|r− r′|3 +
3(ri − r′i)

2

|r− r′|5
)

ρ(r′) d3r′ = −4πρ(r). (56)

This can be generalized to higher dimensions.
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We note that

δ(D)(r) =
1

AD

D
∑

i=1

(

1

|r|D − D r2i
|r|D+2

)

, (57)

is a Dirac δ-function in D dimension in the sense that12

1

AD

D
∑

i=1

∫
(

1

|r− r′|D − D(ri − r′i)
2

|r− r′|D+2

)

f(r′) dDr′ = f(r). (58)

Also, we can write the δ-function as a limit

δ(D)(r) =
D

AD

lim
ǫ→0

(

1

(
√
r2 + ǫ2)D

− r2

(
√
r2 + ǫ2)D+2

)

=
D

AD

lim
ρ→r+

(

1

ρD
− r2

ρD+2

)

. (59)

2. Poisson’s equation in 2D

In the 2D Poisson problem, cast in terms of the boundary integral method, we have8

φ(r) =
1

4π

∮

dl′
(

G(r, r′)
∂φ(r′)

∂n′
− φ(r′)

∂G(r, r′)

∂n′

)

, (60)

where G(r, r′) = −2 ln |r − r′|. we can assume φ and ∂n′φ to be constants, as a worst case

scenario, over a small line element from ℓa to ℓb, so that we need to evaluate the singular

integrals

I1 =

∫ ℓb

ℓa

ln s dl′, (61)

I2 =

∫ ℓb

ℓa

s · n′

s2
dl′, (62)

where s = r− r′. I1 is a well-defined integrable end-point singular integral typified by
∫ R

0

ln x dx = lim
ǫ→0

(x ln x− x)|Rǫ = R lnR− R. (63)

The integral I2 can be evaluated using the point-shifting technique used earlier. We make

use of the geometry displayed in Fig. 1 and write

dl′ =
s dθ

cosα
=

s dθ

ŝ · n′
. (64)

Then,

I2 =

∫ ℓb

ℓa

s · n′

s2
s dθ

ŝ · n′

=

∫ ℓb

ℓa

dθ. (65)
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This integral in the limit ǫ → 0 corresponds to an angle subtended by the contour at the

singular point, so that for a straight contour (See Fig. 2a ) we have I2 = π, while for a corner,

as shown in Fig. 2b, we have I2 = 3π/2, as an exterior angle.
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B. Electromagnetic Scattering

The technique of the integrable singular integral and dimensional continuation developed

here can also be used in calculations with Helmholtz equation13 and for electromagnetic

scattering.14

1. 3D Scattering

In 3D, the electric field radiated by a conducting surface takes the form9,15

E = −ikZ0

∫

S

[

G(r, r′)J(r′) +
1

k2
∇∇G(r, r′) · J(r′)

]

dS ′, (66)

where the Green’s function is given byG(r, r′) = eik̺/4π̺, with ̺ = |r−r′|, and Z0 =
√

µ0/ǫ0

is the impedance of free space.13 The second term in the integral involves a second derivative

of the Green’s function, and therefore the corresponding integral is a hypersingular integral.

If we invoke the finite element method to evaluate the integral and discretize the surface

into small elements, we can assume that the current J(r′) is essentially a constant J0 over

a suitably small element. We can then write the second term of the integral explicitly as

∫

∆S

∇∇G(r, r′) · J0 dS = J0 ·
∑

i,j

ˆ̺i ˆ̺j

∫

∆S

Gij dS, (67)

where ∆S is an element containing the singularity and

Gij =

[

(3− 3ik̺− k2̺2)̺i̺j
̺5

− δij(1− ik̺)

̺3

]

eik̺. (68)

The singular integrals in
∫

Gij dS are

I1 =

∫

∆S

(

3̺2i
̺5

− 1

̺3

)

dS, (69)

I2 =

∫

∆S

̺i̺j
̺5

dS, (i 6= j), (70)

where we have expanded the exponential exp(ik̺) ≃ (1 + ik̺) for small ̺ to isolate the

singular terms. If we take the region of integration to be a circle around the singularity, we

find I1 = π/R is the simplest ISI with d = 3, D = 2, and I2 = 0 as is evident from Eq.(29).

In the full calculation, we have to take the integral within and outside the circular region
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separately; we then note that the integral over the exterior of the circle is a regular integral

and can be computed directly. These identifications of the finite parts should substantially

simplify the computational modeling of electromagnetic scattering.

2. 2D Scattering

In 2D scattering, the Green’s function is given by13

G(r, r′) =
eik̺√
̺
, (71)

where ̺ = |r− r′|. Similarly, the components of ∇∇G are

∂i∂jG =

[(

5

4
̺−

9

2 − 2ik ̺−
7

2 − k2 ̺−
5

2

)

̺i̺j +

(

−1

2
̺−

5

2 + ik ̺−
3

2

)

δij

]

eik̺

=
5

4
̺i̺j ̺

− 9

2 − 1

2
δij̺

− 5

2 + ik

(

−3

4
̺i̺j ̺

− 7

2 +
1

2
δij̺

− 3

2

)

+O
(

̺−
1

2

)

. (72)

It can be easily checked that the singular terms in
∫

GijdS also sum to ISI’s. For example,

the leading terms of
∫

GijdS given by

I3 =

∫

̺<R

(

1

̺5/2
− 5

2

̺2i
̺9/2

)

dS, (73)

where I3 = πR−1/2 is the simplest ISI with d = 5/2, D = 2, and

I4 =

∫

̺<R

(

1

̺3/2
− 3

2

̺2i
̺7/2

)

dS, (74)

is of the form of the simplest ISI with d = 3/2, D = 2 and I4 = πR1/2.
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C. Fracture Analysis

A final example, from the theory of crack energetics, again illustrates the issue of resolv-

ing hypersingular integrals using dimensional continuation. For the sake of completeness

we briefly describe the relation appearing in fracture analysis. The relation between sur-

face displacements ui(P ) and tractions τi(P ) for a smooth crack is given by the integral

equation16–18

uj(P ) = 2

∫

∂C

[Uij(P,Q)τi(Q)− Tij(P,Q)ui(Q)]dsQ, (75)

where ∂C is the crack surface. A sum over repeated indices is implied. The displacement

Uij(P,Q) and traction Tij(P,Q) at the observation point P due to source point Q are given

by Kelvin’s solution,

Uij =
1

16π r (1− ν)G
[(3− 4ν)δij + ∂ir ∂jr], (76)

and

Tij = − 1

8π r2 (1− ν)

{

[(1− 2ν) δij + 3 ∂ir ∂jr]
∂r

∂n
+ (1− 2ν)(nj ∂ir − ni ∂jr)

}

, (77)

where r = |rP − rQ|, ν is Poisson’s ratio, and G is the shear modulus. With the normal

force N = Ni ei, the traction τ is given by

τi(P ) = G

[

(∂jui + ∂iuj)Nj +
2ν

1− 2ν
Ni ∂kuk

]

(78)

The derivative of ui can be obtained from Eq.(75) to be substituted here, and we have

τi(P ) = 2GNj

∫

∂C

{ [ ∂jUmi(P,Q) + ∂iUmj(P,Q) ] τm(Q)

−[ ∂jTmi(P,Q) + ∂iTmj(P,Q) ] um(Q) } dsQ
+

4ν

1− 2ν
GNi

∫

∂C

[ τm(Q) ∂kUmk(P,Q) + um(Q) ∂kTmk(P,Q) ] dsQ. (79)

We assume the boundary condition that the traction τm(Q) = 0 on the crack, so the above

integral is simplified to

0 = −2GNj

∫

∂C

[ ∂jTmi(P,Q) + ∂iTmj(P,Q) ] um(Q) dsQ

− 4ν

1 − 2ν
GNi

∫

∂C

um(Q) ∂kTmk(P,Q) dsQ, (80)
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and ∂kTij is given by

∂kTij(P,Q) =
1

8π (1− ν) r3
×

{

3(δjk ∂ir + δik ∂jr − 5 ∂ir ∂jr ∂kr)
∂r

∂n
+ 3nk ∂ir ∂jr

+(1− 2ν)

[

δijnk − δjkni + δiknj

+3

(

ni ∂jr ∂kr − nj ∂ir ∂kr − δij ∂kr
∂r

∂n

)]}

. (81)

We will show that the first integral of Eq.(80) is a singular integral and can be resolved

by the ISI method. The same technique can be applied for the second integral. With the

finite element method approach, we assume the crack surface is flat over a small element

∆S, and choose the local coordinate system so that the normal direction of ∆S is e3. Here

∆S contains the singular point, so that P and Q are points in ∆S. On this element we have

n = e3 and the normal force N = N3e3. Hence the first integral in Eq.(80) becomes

−2GN3

∫

∆S

[ ∂3Tmi(P,Q) + ∂iTm3(P,Q) ] um(Q) dsQ, (82)

and ∂kTij becomes

∂kTij(P,Q) =

(

1

8π (1− ν) r3

) {

3(δjk ∂ir + δik ∂jr − 5 ∂ir ∂jr ∂kr) ∂3r + 3δ3k ∂ir ∂jr

+(1− 2ν)

[

δijδ3k − δjkδ3i + δikδ3j

+3

(

δ3i ∂jr ∂kr − δ3j ∂ir ∂kr − δij ∂kr ∂3r

)]}

. (83)

We further assume that um(Q) is a constant um over the small element ∆S, and consider

the integral in Eq.(80) to be over a small circle centered at P . We then have the singular

integral

Iim = 8π (1− ν)

∫

r<R

[ ∂3Tmi(P,Q) + ∂iTm3(P,Q) ] dsQ

= δim

∫

r<R

[

(3 + 12δ3m)(∂3r)
2 + 3(∂mr)

2 − 30(∂3r)
2(∂mr)

2

r3

+(1− 2ν)
2− 3(∂3r)

2 − 3(∂mr)
2

r3

]

d2r, (84)

with no sum over m. Notice that we take the integral to be on the xy-plane, and the z

direction is actually the direction along which we shift the origin. We therefore write

∂3r =
z

r
=

ǫ

r
. (85)
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Since Iim is zero for i 6= m we are left with

Imm =

∫

r<R

[

3r2m
r5

+
3ǫ2

r5
− 30ǫ2r2m

r7
+ (1− 2ν)

(

2

r3
− 3r2m

r5
− 3ǫ2

r5

)]

d2r, for m 6= 3, (86)

and

I33 =

∫

r<R

[

18ǫ2

r5
− 30ǫ4

r7
+ (1− 2ν)

(

2

r3
− 6ǫ2

r5

)]

d2r. (87)

When m 6= 3, Imm is a linear combination of the integrals

J1 =

∫

r<R

(

1

r3
− 3r2m

r5

)

dS, (88)

J2 =

∫

r<R

(

1

r3
− 3ǫ2

r5

)

dS, (89)

J3 =

∫

r<R

(

1

r5
− 5r2m

r7

)

dS. (90)

Here, J1, J2 and J3 are all ISI’s with no singularities. In the above, J1 = πR−1 is the simplest

ISI with d = 3, D = 2, J2 = −2πR−1 is an ǫ2-ISI with d = 3, D = 2, and J3 = πR−3 is the

simplest ISI with d = 5, D = 2. In fact, we have

Imm = −J1 + J2 + 6ǫ2J3 + (1− 2ν)(J1 + J2) = 2(ν − 2)πR−1. (91)

Returning to I33 we see that it is a linear combination of J2 and J4 given by

J4 =

∫

r<R

[

1

r5
− 5

3

ǫ2

r5

]

dS. (92)

Here J4 = −2πR−3/3 is an ǫ2-ISI with d = 5, D = 2. So we have

I33 = 18ǫ2J4 + 2(1− 2ν)J2 = −4(1− 2ν)πR−1. (93)

In all the above integrals the finite parts are explicitly determined by the ISI method. We

thus see again that dimensional continuation provides a unified approach to all hypersingular

integrals making it easy to isolate the singularities, which actually cancel, leaving a well-

defined finite part.
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V. CONCLUDING REMARKS

We have used dimensional continuation in the evaluation of integrals of the well known

Green’s functions and their derivatives. We have identified the rules for obtaining consistent

results through the use of such methods for the hypersingular integrals occurring in the

BEM, potential theory, electromagnetic scattering, and in crack dynamics. We have pro-

vided a systematic approach to the identification of the singularities in typical integrals and

shown how to isolate them using the dimensional continuation method. We have identified

representations for the Dirac δ-function in D dimensions that are not stated in the standard

literature. These results are then used in the calculation of examples of such integrals oc-

curring in physical applications. A summary of the integrable singular integrals is given in

tabular form in Appendix A.

It is hoped that the present approach will provide an effective, practical method of eval-

uating the so-called hypersingular integrals in computational science and engineering appli-

cations. Our tabulated ISI will lead to an automated computation of the physical quantities

of interest without having to recalculate finite parts of integrals for each specific occurrence.
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FIG. 1. The contour used to identify the terms in the integrand of the boundary integral approach

for evaluating the 2D Poisson potential.
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FIG. 2. The geometry used in evaluating the 2D Poisson contour integral in the boundary element

method, (a) for a straight contour and (b) for an angular edge.

26



Appendix A: Tables of Integrable Singular Integrals

1. A Table of the Simplest ISI:

∫

r<R

(

1

rd
− x2d

rd+2

)

dDr =
AD

D
R−(d−D)

Integral D d Value
∫

r<R

(

1

r
− x2

r3

)

dx 1 1 2
∫

r<R

(

1

r2
− 2x2

r4

)

dx 1 2 2R−1

∫

r<R

(

1

r3
− 3x2

r5

)

dx 1 3 2R−2

∫

r<R

(

1

rd
− dx2

rd+2

)

dx 1 d 2R−(d−1)

∫

r<R

(

1

r2
− 2x2

r4

)

dS 2 2 π
∫

r<R

(

1

r3
− 3x2

r5

)

dS 2 3 πR−1

∫

r<R

(

1

r4
− 4x2

r6

)

dS 2 4 πR−2

∫

r<R

(

1

rd
− d x2

rd+2

)

dS 2 d πR−(d−2)

∫

r<R

(

1

r3
− 3x2

r5

)

dV 3 3 4π/3
∫

r<R

(

1

r4
− 4x2

r6

)

dV 3 4 4πR−1/3
∫

r<R

(

1

r5
− 5x2

r7

)

dV 3 5 4πR−2/3
∫

r<R

(

1

rd
− d x2

rd+2

)

dV 3 d 4πR−(d−3)/3

∫

r<R

(

1

rd
− d x2

rd+2

)

d4r 4 d π2R−(d−4)/2
∫

r<R

(

1

rd
− d x2

rd+2

)

d5r 5 d 8π2R−(d−5)/15
∫

r<R

(

1

rd
− d x2

rd+2

)

dDr D d ADR
−(d−D)/D

TABLE I. A table of Integrable Singular Integrals for spatial dimensionD = {1, . . . 5}, with singular

denominators r−d, with d = {1, . . . 5, d}.
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2. A Table of the Integrals: ǫ2-ISI

∫

r<R

(

1

rd
− d

d−D

ǫ2

rd+2

)

dDr = − AD

d−D
R−(d−D)

Integral D d Value
∫

r<R

(

1

r2
− 2

ǫ2

r4

)

dx 1 2 −2R−1

∫

r<R

(

1

r3
− 3

2

ǫ2

r5

)

dx 1 3 −2R−2/2
∫

r<R

(

1

r4
− 4

3

ǫ2

r6

)

dx 1 4 −2R−3/3
∫

r<R

(

1

rd
− d

d− 1

ǫ2

rd+2

)

dx 1 d −2R−(d−1)/(d− 1)

∫

r<R

(

1

r3
− 3

ǫ2

r5

)

dS 2 3 −2πR−1

∫

r<R

(

1

r4
− 2

ǫ2

r6

)

dS 2 4 −πR−2

∫

r<R

(

1

r5
− 5

3

ǫ2

r7

)

dS 2 5 −2πR−3/3
∫

r<R

(

1

rd
− d

d− 2

ǫ2

rd+2

)

dS 2 d −2πR−(d−2)/(d − 2)

∫

r<R

(

1

r4
− 4

ǫ2

r6

)

dV 3 4 −4πR−1

∫

r<R

(

1

r5
− 5

2

ǫ2

r7

)

dV 3 5 −2πR−2

∫

r<R

(

1

r6
− 2

ǫ2

r8

)

dV 3 6 −4πR−3/3
∫

r<R

(

1

rd
− d

d− 3

ǫ2

rd+2

)

dV 3 d −4πR−(d−3)/(d − 3)

∫

r<R

(

1

rd
− d

d− 4

ǫ2

rd+2

)

d4r 4 d −2π2R−(d−4)/(d− 4)
∫

r<R

(

1

rd
− d

d− 5

ǫ2

rd+2

)

d5r 5 d −8π2R−(d−5)/3(d − 5)
∫

r<R

(

1

rd
− d

d−D

ǫ2

rd+2

)

dDr D d −ADR
−(d−D)/(d −D)

TABLE II. A table of ǫ2-Integrable Singular Integrals for spatial dimension D = {1, . . . 5}, with

singular denominators r−d, with d = {1, . . . 5, d}.

28



3. The Dirac δ-function in ISI: δ(D)(r) =
D

AD
lim
ρ→r+

(

1

ρD
− r2

ρD+2

)

, (ρ2 = r2 + ǫ2)

Dimension δ-function

1 δ(1)(r) =
1

2
lim
ρ→r+

(

1

ρ
− r2

ρ3

)

2 δ(2)(r) =
1

π
lim
ρ→r+

(

1

ρ2
− r2

ρ4

)

3 δ(3)(r) =
3

4π
lim
ρ→r+

(

1

ρ3
− r2

ρ5

)

4 δ(4)(r) =
2

π2
lim
ρ→r+

(

1

ρ4
− r2

ρ6

)

TABLE III. A table of Dirac δ-functions in spatial dimension D = {1, . . . 4} arising in integrable

singular integrals.
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