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Abstract

We provide an introduction to the longest common subsequence (LCS) problem and the
Chvátal-Sankoff constants, and obtain new results related to these areas. By improving
upon a previous lower-bound algorithm, we obtain state-of-the-art lower bounds for all but
one Chvátal-Sankoff constant, with particular attention paid to the Chvátal-Sankoff for two
binary strings. Accompanying this, we also prove various properties describing the effect of
modifying a pair of strings on their longest common subsequence. We additionally create a
web application with interactive visualizations designed to allow users to learn and explore
these properties and other facets of the LCS problem.
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Chapter 1

Introduction

The longest common subsequence (LCS) problem arises frequently in computer science.
Given two or more strings, the longest string that is a subsequence of all of those strings is
called the longest common subsequence of those strings. For instance, abba is an LCS of the
strings ababa and acbbca . Note that the input strings do not have to match in length. A
group of strings may also have more than one longest common subsequence. As an illustration,
the strings abac and babc have two longest common subsequences: abc and bac . Longest
common subsequences play a pivotal role in various domains such as computational biology
[27, 41], cryptography [13, 40], and computational linguistics [34, 26, 37]. Understanding
longest common subsequences and the statistics surrounding them provides crucial insights
into the similarities and differences between sequences of symbols.

One major area of active research in this field is determining the expected length of the
LCS of two uniformly random strings, divided by the length of the strings, as their lengths
tend to infinity. These values are known as the Chvátal-Sankoff constants, with one constant
for each alphabet size (or one constant for each pair of alphabet size and string set size, in
the extended notation) [14, 30]. While the values of these constants are not known, it is
known that each one converges to a specific numerical value as the lengths of the strings
grows to infinity, and there have been extensive efforts in the literature to improve upper and
lower bounds on their values.

During the course of this project, we achieved several significant results related to the
LCS problem and the Chvátal-Sankoff constants, which we have divided into the following
categories:

Improved Lower Bounds on the Chvátal-Sankoff Constants We demonstrate new
best lower bounds for the Chvátal-Sankoff constants, improving upon all but one lower bound
previously calculated in the literature. Our research focuses primarily on improving the lower
bound for the Chvátal-Sankoff constant for pairs of binary strings, but we also extend our
analysis to encompass arbitrary alphabets and varying numbers of strings, thereby providing
improved bounds applicable to a broader spectrum of data. This extension is significant as it
addresses real-world scenarios where data may not conform strictly to binary representations,
enabling more accurate assessments in fields such as computational biology and anomaly
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detection.

Properties of Longest Common Subsequences We give a summary of some properties
of longest common subsequences, accompanied by their proofs in the appendix. While a
number of the properties we present were already known, we also believe that, to the best of
our knowledge, we prove several new properties concerning single and two-character edits
and the occurrences of longest common subsequences of particular lengths. By investigating
the complicated links between sequences and their LCS, we hope to contribute to the
development of more efficient algorithms for calculating Chvátal-Sankoff constants and to
further understanding of the LCS problem more generally.

BLISS Playground Lastly, we introduce BLISS (Binary Longest Inter-String Subsequence)
Playground, an interactive web application with visualizations and puzzles to help users
better understand both the longest common subsequence problem and its many interesting
properties. BLISS Playground aims to provide an interactive tool for visually exploring the
longest common subsequence problem beyond just its dynamic programming solution, both
for educational and research purposes.

In the following sections, we present an outline of our research’s scope and objectives, as
well as discuss the theoretical foundations, techniques, experimental results, and implications
of our findings.
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Chapter 2

Background and Related Work

2.1 Definitions and Context
To introduce the longest common subsequence problem, we begin by defining some basic
concepts. A mathematically well-versed reader may find it possible to skip this section.

Definition 1. A set is “a well-defned collection of objects” [21, p. 1]. “The objects in a set
are called its elements or members... The order of describing a set doesn’t matter, nor
does repetition of its members” [43, pp. 3, 4]. A set can be denoted in one of two ways:

1. Roster Notation: A set can be denoted by listing its elements within braces, separated
by commas. For example, the set containing the elements a , b , and c can be denoted
as {

a , b , c
}
=
{
a , a , b , c , b

}
=
{
a , c , b

}
2. Set-Builder Notation: A set can also be denoted by specifying the properties that its

elements must satisfy.{
x | x is positive, even, and less than 10

}
=
{
2, 4, 6, 8

}
Definition 2. A sequence is “a list of objects in some order” [43, p. 6]. Unlike a set, the
repetition and arrangement of the elements of a sequence is significant. For our purposes, we
additionally provide the constraint that all of the elements of a sequence belong to the same
set. We denote a sequence by listing its elements within parentheses, separated by commas.(

a , b , c
)
̸=
(
a , a , b , c , b

)
̸=
(
a , c , b

)
Using these concepts, we can formally introduce some important definitions from formal
language theory.

Definition 3. An alphabet is “a finite, non-empty set of objects called symbols” [43,
p. 13]. We use Σ to represent an alphabet. For example, Σ =

{
0 , 1

}
represents an alphabet

containing the symbols 0 and 1 (this particular alphabet is called the binary alphabet).
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Definition 4. A string over an alphabet is “a finite sequence of symbols taken from that
alphabet” [43, p. 14]. The term character is often used interchangeably with symbol in the
context of strings. However, for our purposes, we add a slight nuance to its definition: A
character is a symbol that has a specific position within a string.

Symbols in string little : l , i , t , e
Characters in string little : l , i , t , t , l , e

For convenience, the characters of a string are written one after another, rather than being
separated by commas.

cat = (c , a , t )

The length of a string is “the number of characters it contains” [43, p. 14]. We use |s| to
denote the length of a string s. The string of length zero is called the empty string and is
denoted by λ.

With these definitions out of the way, we can now define the pivotal concept of subsequences.

Definition 5. A subsequence of some sequence S is “a sequence that can be obtained by
deleting elements of S” while preserving the order of the remaining elements [33, p. 366].
For example, meats is a subsequence of the string mathematics , but cheat is not because
the ordering of the characters has not been maintained. It is important to note that the
characters in a subsequence do not need to be contiguous in the original string. Also, the
subsequence does not need to have fewer characters than the original string, meaning that
any string is a subsequence of itself.

We indicate that a string s is a subsequence of a string w by writing s ⊑ w. Additionally,
for brevity, we write s ⊑ s1, s2, . . . , sk to indicate that s is a subsequence of each of the strings
s1, s2, . . . , sk.

Definition 6. A substring of some string w is “a string of consecutive characters in w” [35,
p. 19]. For example, put is a substring of the string computer , but mute is not because not
all of the characters are contiguous. A substring is also sometimes called a slice due to how
it captures the idea of extracting a portion of a string.

We define s[i, j) as the substring of s beginning with the ith character (inclusive) and
ending with the jth character (exclusive). If i = j, then s[i, j) = λ. Additionally, we use s[k]
as a shorthand for s[k, k + 1), i.e., the kth character of s.

understandable [5, 10) = stand

Finally, we have reached the point where we can define the focus of this section, the longest
common subsequence (LCS):

Definition 7. “Given two sequences X and Y , we say that a sequence Z is a common
subsequence of X and Y if Z is a sequence of both X and Y . In the longest common
sequence problem... the goal is to find a maximum-length common subsequence of X
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and Y ” [15, p. 394]. This problem is naturally extendable to the maximum-length common
subsequence of n sequences, which we refer to as the n-longest-common-subsequence problem.
In both cases, we abbreviate longest common subsequence as LCS.

Note that a longest common subsequence of a set of strings is not necessarily unique. For
instance, aa , bb , and ab are all a longest common subsequence of the strings baba and
aabb . We denote the set of all possible LCS as LCS

(
s1, s2, . . . , sn

)
and the length of these

strings (which is one value since they are all equal length) as L
(
s1, s2, . . . , sk

)
.

2.2 Calculating Longest Common Subsequences
One question that arises often in computer science is: how can we find the LCS, given input
strings x, y? We begin by outlining a naive approach. Take two strings, x with length m and
y with length n, where n ≤ m. Then, iterate through every possible subsequence of y. For
each subsequence s, if s ⊑ x, then s is a common subsequence. If s is at least as long as the
currently saved strings, then save it and remove all shorter subsequences currently saved. At
the end of the program, the saved strings will be an LCS of x and y.

Definition 8. “Given functions f, g : R→ R with g nonnegative, we say

f = O(g)

if and only if there exist a constant c ≥ 0 and an x0 such that for all x ≥ x0, |f(x)| ≤ cg(x)”
[15, p. 530].

For example, the runtime of taking the average of a set of numbers is O(n), where n is the
amount of numbers in the set. The singular step of dividing the total sum by the amount of
numbers is not represented in the runtime, as with large enough n the singular step’s impact
on the runtime is negligible. In this notation, coefficients are typically omitted, ie. we would
write O(x2) instead of O(2x2).

Definition 9. Dynamic programming is a programming technique that recursively splits
problems into sub-problems, storing the results of each sub-problem as it is calculated to avoid
having to calculate the result multiple times [15, p. 362]. Dynamic programming problems
are typically optimization problems, where the goal is to maximize or minimize some value
[15].

Definition 10. An a1 × a2 × . . . an array is an n-dimensional grid of elements. Along each
axis i ∈ {1, . . . , n}, there are ai indices, and each element in the array is associated with one
index per axis. As a result, each element in an array is unique identified by their n indices.

We use computer science convention, so indices are zero-indexed, meaning that the index
for axis i is a value in {0, . . . , ai − 1}. Notably, this means that ai is not a valid index.

Definition 11. “A vector is a one-dimensional array of numbers” [15, p. 1215]. We write
vectors as a comma-separated list of symbols, enclosed by square brackets to differentiate
them from sequences, e.g., [a, b, c].
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Definition 12. “A matrix is a rectangular array of numbers” [15, p. 1214], and is typically
written as a grid of whitespace-separated symbols enclosed by a single pair of square brackets,
e.g., [

1 0
0 1

]
While the naive algorithm for finding the LCS proposed earlier works, it is highly inefficient.
It is easy to see that the runtime for iterating through each possible subsequence will be
O(2n), where n is the length of the binary string. Checking if the subsequence is also in
X will take approximately O(n). Combined, the asymptotic runtime becomes O(n · 2n).
Instead, a dynamic programming technique can be applied to find the LCS much more
efficiently. In fact, the resultant algorithm for finding an LCS is so elegant that it is often
used by textbooks as an example to explain dynamic programming (see e.g., Introduction to
Algorithms [15]).

For calculating the length of the LCS, we observe that the problem is an optimization
problem where our goal is to maximize the length of our chosen common subsequence. We
apply dynamic programming by recursively removing characters from the ends of one of our
strings. For each pair of partial strings, we calculate their LCS length, store the subsequence
of that length, and slowly add back more and more of the original strings until we have found
the maximum common subsequence length for our original strings.

Algorithm 1 defines a simple dynamic programming algorithm for finding the length of
the LCS for two strings, x and y. It utilizes a two-dimensional array to store the results of
partial input strings, and references those stored results rather than recalculating everything
for every iteration. The algorithm outputs an m× n matrix T , where T [i][j] corresponds the
LCS of the first i characters of x and the first j characters of y. Thus, we can get the LCS of
x and y by accessing the table at T [m][n].

For example, with x = apple , y = ape , T [3][2] is 2, while T [5][3], which we expect to be
the LCS length of the original strings, is 3, as expected.

We now prove that this algorithm correctly obtains the LCS length for two strings. Proof.
Let x and y be input strings to our function. We define a recursive equation for T [i][j] as the
length of the longest common subsequence of x[0, i) and y[0, j) in such a way that T [i][j] is
only dependent on previously calculated values. Trivially, by storing all values of T when
they are calculated, we will only need to calculate each value once.

T [i][j] =


0 if i = 0 or j = 0

T [i− 1][j − 1] + 1 if x[i− 1] = y[j − 1]

max
(
T [i][j − 1], T [i− 1][j]

)
otherwise

This equation for T is well-known, and can be derived in a straight forward manner using
properties defined later, specifically Property 3 and Property 4. ■

Note that Algorithm 1 can easily be expanded to find the k-LCS length by using a
|s1| × |s2| × · · · × |sk| array and updating the code accordingly [28].
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Algorithm 1: Longest Common Subsequence Table [7]
Input: x: string, y: string
Output: T : longest common subsequence table

m← |x|
n← |y|
T ← (m+ 1) by (n+ 1) matrix of zeros
for i← 1 to m+ 1

for j ← 1 to n+ 1
if x[i− 1] = y[j − 1]

T [i][j] = T [i− 1][j − 1] + 1
else

T [i][j] = max
(
T [i][j − 1], T [i− 1][j]

)
return T

We now consider the runtime of Algorithm 1. Since the algorithm applies dynamic
programming and saves previous results, each element in T only performs a single calculation.
Thus, the runtime is O(nm).

This runtime is exponentially better then the naive approach, which had a runtime of
O(n · 2m). Further improvements are minimal or rely on additional assumptions, as it is
conjectured that sub-quadratic runtimes are near-impossible [1].

While there is minimal room to improve algorithms for directly finding the LCS length,
there is also a class of algorithms dedicated to finding the approximate LCS length. For
instance, Hajiaghayi et al. take advantage of several properties of the LCS to obtain an
approximately O

(√
n
)

runtime [22]. For alphabets with only two characters, Xiaoyu He and
Ray Li defined an approximately linear

(
O(n)

)
runtime [24].

2.3 Applications

2.3.1 Computational Biology

A sequence’s edit distance is one of the most foundational aspects of computational biology,
with the longest common subsequence being one of the most common ways of defining the
edit distance. While the LCS has, over time, been replaced with edit distance metrics better
aligned with underlying biological meaning, it continues to have strong connections to the
field of computational biology.

Sequence Alignment

Given multiple sequences of biological data, a common goal is to align the sequences,
such that as many characters as possible are located at the same index within the sequence.
Doing this makes it much easier to analyze the sequences. In order to align characters, spaces
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are inserted into the sequence to shift characters. It is known that finding the maximal
alignment is equivalent to finding the LCS of the sequences [19]. The traditional LCS problem
is equivalent to global alignment, which aligns the entire sequence. However, it is more
common for computational biologists to make use of local sequence alignment, which finds
alignments for substrings instead of the entire sequence (e.g. BLAST [8]).

Phylogenetic Construction and Analysis

Phylogenetic construction is the process of creating an ancestry tree for species. In
creating a phylogenetic tree, the goal is to place new species on the tree such that they are
close to other species that diverged from a recent common ancestor, and far away from species
who diverged from a common ancestor a long time ago. Here, the challenge is to create a
metric for how related two species are to each other. One way of doing this is to take the
LCS of the two species’ DNA. If the species are closely related, their DNA should be similar.
If the species are unrelated, random mutations over time result in their DNA being effectively
unrelated. Thus, if the DNA’s LCS is significantly longer than expected, it can be inferred
that the two species are more closely related [41]. Of course, since DNA sequences are so long,
the expected value of the LCS length is almost exactly the (un-normalized) Chvátal-Sankoff
constant. (Additional LCS-based criterion for sequence homology can be found in [25]).

2.3.2 Computational Linguistics

In computational linguistics, the Longest Common Subsequence, as an edit distance
metric, proves to be particularly useful in natural language processing, where it is used to
compare words, sentences, and documents. Specific applications include spelling correction,
file comparison, plagiarism detection, and sequence pattern matching.

Spelling Correction

One significant application of the LCS lies in spelling correction. A real-time spell-check
system within a word processor or a search engine works by identifying and rectifying
misspelled words. A dictionary of recognized words is stored. When a user inputs a
misspelled word, the system generates a list of suggestions by comparing the misspelled word
with the words in the dictionary. The LCS algorithm is instrumental in this process. If the
LCS metric edit distance between the misspelled word and a word in the dictionary is within
a certain threshold, the word is added to the pool of suggestions. The top suggestions, based
on the probability of the word being the intended word, are then presented to the user. [32,
34, 50]

Data Comparison and Revision Control

When comparing files, the LCS method is a valuable tool for identifying differences
between two files. Version control systems like Git, collaborative writing tools like Google
Docs, and file comparison tools like Unix’s diff make considerable use of this technique.
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These tools employ algorithms which compare the previous and current versions of a file by
identifying the longest common subsequence between them, sometimes using entire words or
lines (in the case of code) as symbols. The differences between the two versions are typically
highlighted using this information, making it possible to trace file alterations over time
with efficiency. With these discrepancies brought to light, a streamlined collaboration and
document management processes is made possible. [26]

Plagiarism Detection

The LCS algorithm can also be used in plagiarism detection. By comparing a document
with a database of existing documents, the algorithm can identify the longest common
subsequence using the file comparison technique previously described. Typically, the length
of the LCS is weighted against the total length of the document to calculate a similarity
score. This helps to limit the occurrence false positives and negatives. If the similarity score
is above a certain threshold, the document is flagged for further review. This capability is
instrumental in academia, publishing, and content creation industries, where maintaining
originality and integrity is paramount. [4]

Sequence Pattern Matching

Furthermore, the LCS algorithm proves invaluable in sequence pattern matching tasks.
For example, when searching for a specific pattern within a text, the algorithm can be
used to identify the longest common subsequence between the pattern and the text. This
information can then be used to determine the presence of the pattern within the text. This,
in conjunction with matching algorithms that determine the position of the pattern within
the text, is used in search engines, text editors, and data processing tools. [23]

2.3.3 Other Fields

As Chvátal and Sankoff note, one motivation for studying the longest common subsequences
of random strings is in calibrating interpretation of results for LCS computations on strings
whose values are not random [14]. If a sequence is returned whose length is significantly
above or below the expectation, it can be inferred that the strings correspond (or do not
correspond) in some meaningful way. This idea is the basis for most applications which make
explicit use of the Chvátal-Sankoff constants: the LCS of (usually two) strings is used as
a (basis for a) similarity metric between those strings, and the Chvátal-Sankoff constant is
used as a prior to understand what similarity score represents a significant deviation from
the average case. Among other uses, this notion can be directly applied to perform anomaly
detection.

Anomaly Detection

Given multiple sequences of data, we are often interested in detecting if one of the
sequences diverges greatly from the other sequences at some point. To determine if a sequence
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has diverged "enough" to be significant, there are many different similarity metrics that can
be used to assign a numerical value to the divergence. There are several similarity metrics
which use the LCS. Of note is the normalized LCS (nLCS) similarity metric, defined as (for
two strings of length n and m) as:

nLCS =
L
(
x, y
)

√
xy

The expected value of this metric is equal to a variant of the Chvátal-Sankoff constant
defined for strings of unequal length, indicating that the Chvátal-Sankoff constants serve as a
reasonable threshold for marking sequences as significant outliers. [10]

Data Compression

Biological data can grow to be very large. As such, efficient data compression is a necessity.
Fortunately, biological data tends to have substrings that repeat often, such as the substrings
representing amino acids within DNA, or on a larger scale, entire chromosomes. Unfortunately,
random mutations often result in a large number of small differences between substrings that
would otherwise be identical.

One way of compressing biological data while accounting for these random mutations
is to instead look for common subsequences. If two subsequences are similar enough, then
we can encode the substrings containing those subsequences with the same common value,
and then use a much smaller amount of additional data to encode the differences from the
common value. Of course, to maximize the efficiency of these encoded substrings, we want
the common subsequences to be as long as possible - the LCS of the substrings. Using the
LCS in this way is a key part of the GRS algorithm and other similar algorithms. [6, 48]

Of course, nothing here strictly requires that the data be biological. These algorithms can
also be applied to other fields. In fact, the GRS algorithm is based on Unix’s diff command,
so the algorithm originated outside of computational biology to begin with.

Stratigraphy

Stratigraphy is the study of geological strata, or the layers of rock that form over time.
One point of interest in stratigraphy is to analyze the amount that two different locations’
strata are related. One method of doing this is to treat the strata obtained at each location
as a sequence, where the symbols are the specific lithographic units (types of rock) that make
up each strata. Then, the two locations are more correlated with each other if the LCS of
their strata is longer. [44]
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Chapter 3

Improving Bounds on the
Chvátal-Sankoff Constants

In this chapter, we begin by formally describing the Chvátal-Sankoff constants and the
basic mathematical concepts required to understand them. Then, we give a brief history
of the previous work in the literature on calculating the constants. Next, we describe an
important algorithm by Kiwi and Soto [30] for calculating lower bounds on the general
Chvátal-Sankoff constants and explain how it simplifies in the binary two-string case. We
then detail our modifications to the algorithm which allowed us to compute new best lower
bounds, with a focus on the binary algorithm. Finally, we report the new world-record lower
bounds we obtained through these computations.

3.1 The Chvátal-Sankoff Constants
In order to describe the Chvátal-Sankoff constants, we first begin by introducing the

probabilistic definitions that underlie the constants. We focus mainly on random events with
finite or countably infinite number of outcomes, as this type of event is most relevant to the
Chvátal-Sankoff constants. (For d strings of length l using an alphabet of size σ, there are
exactly σdℓ unique outcomes for a random string, a finite number). We first give a formal
treatment of the definitions, and then an informal summary afterward.

Necessary Definitions

Formally, we must understand the following four definitions:

Definition 13. “A probability space has three components:

• A sample space Ω, which is the set of all possible outcomes of the random process
modeled by the probability space.

• A family of sets F representing the allowable events, where each set in F is a subset of
the sample space Ω; and
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• a probability function Pr : F → R satisfying Definition 14” [38, p. 3].

Definition 14. “A probability function is any function Pr : F → R that satisfies the
following conditions:

Condition 1. For any event E, 0 ≤ Pr(E) ≤ 1

Condition 2. Pr(Ω) = 1

Condition 3. For any finite or countably infinite sequence of pairwise mutually disjoint
events E1, E2, E3, . . . ,

Pr

⋃
i≥1

Ei

 =
∑
i≥1

Pr(Ei)” [38, p. 3].

Definition 15. “A random variable X on a sample space Ω is a real-valued function on Ω:
that is, X : Ω→ R. A discrete random variable is a random variable that takes on only
a finite or countably infinite number of values.

The event ‘X = a’ includes all the basic outcomes of the sample space in which the
random variable X assumes the value a. That is ‘X = a’ represents the set {s ∈ Ω|X(s) = a}.
We denote the probability of that event by

Pr(X = a) =
∑

s∈Ω | X(s)=a

Pr(s)” [38, pp. 20–21].

Definition 16. “The expectation of a discrete random variable X, denoted by E[X], is given
by E[X] =

∑
i iPr(X = i) where the summation is over all values in the range of X. The

expectation is finite if
∑

i iPr(X = i) converges; otherwise, the expectation is unbounded”
[38, p. 21].

Informally, to generally understand the Chvátal-Sankoff constants, one need only grasp
the concept of expectation. The expectation of some variable essentially denotes the average
value of that variable across all of its possible values (weighted by their likelihood). It is like
asking the question, "On average, what should I expect this value to be?"

The Constants

In 1975, Chvátal and Sankoff [14] began investigating the expected length of a longest
common subsequence of two uniformly random strings of length ℓ over an alphabet of size σ.
They observed that the function that returns the expected length of the LCS of those strings,
divided by ℓ, is superadditive with respect to ℓ.

Definition 17. A function f is superadditive if

f(x+ y) ≥ f(x) + f(y)

for all x, y in the domain of f [14].
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In other words, if we randomly select two pairs of strings of length ℓ1 + ℓ2, on average, the
normalized length of their LCS will be at least as large as the sum of the normalized LCS
length of a random pair of strings length ℓ1 and the normalized LCS length of a random pair
of strings length ℓ2. This superadditive property has also been shown to hold for arbitrary
numbers of (more than just two) strings.

This property is very useful. Since the normalized expected length of the LCS is bounded
above by 1 (the length of the LCS cannot exceed the lengths of the strings), this means that
as the lengths of d random strings grow to infinity, the expected length of their LCS, divided
by the strings’ length, converges to a constant (by Fekete’s Theorem) [14]. These constants
are precisely what are known as the Chvátal-Sankoff constants, with one constant for each
pair of d and σ values. Formally,

Definition 18. The Chvátal-Sankoff constant for γσ,d is defined as

γσ,d = lim
ℓ→∞

E(Xσ,d,ℓ)

ℓ

where Xσ,d,ℓ is a discrete random variable for the length of the longest common subsequence
of d strings of length ℓ with each character independently and uniformly selected from an
alphabet with σ symbols.

When γ is left without subscripts, it indicates γ2,2, the constant for pairs of strings
containing only two possible symbols (e.g., 0 and 1 ). This is sometimes referred to as simply
‘the Chvátal-Sankoff constant’.

The Chvátal-Sankoff constants serve as proportionality constants, crucial for understanding
the behavior of LCS under random conditions. However, while we have upper and lower
bounds on them, their exact values are not known. Determining them is a well-known open
problem in computer science–appearing in several textbooks–and there have been extensive
efforts to both tighten these bounds and estimate the true values of the constants [46, 49].

3.2 History
In this section, we give a brief history of the efforts that have gone into bounding and

approximating the Chvátal-Sankoff constants, highlighting the most important works. We
focus pimarily on the constant that deals only with pairs of binary strings, as it is by far the
most studied in the literature.

As a result of the superadditive property discussed in Section 3.1, one possible approach
to estimate a lower bound for the Chvátal-Sankoff constant is to compute the LCS for all
possible pairs of strings of length n, and then calculate the mean length of those subsequences.
However, while effective for small values of n, this method requires O(2n · 2n) LCS calculations,
and in practice the mean grows very slowly relative to the number of calculations required.
To achieve strong lower bounds, more sophisticated methodologies are necessary.

In 1975, Chvátal and Sankoff, whom the constants were later named after, were the
first people to suggest the existence of a constant. They established in their original paper
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Researchers Year Bounds Estimate
Chvátal and Sankoff [14] 1975 0.697844 ≤ γ ≤ 0.866595 γ ≈ 0.8082

Deken [20] 1979 0.7615 ≤ γ ≤ 0.8575

Steele [45] 1986 γ
?
= 2

1+
√
2
≈ 0.8284

Dančík and Paterson [17, 18, 16] 1995 0.77391 ≤ γ ≤ 0.83763 γ ≈ 0.81225± 0.00025
Boutet de Monvel [9] 1999 γ ≈ 0.812282
Baeza-Yates et al. [5] 1999 γ ≈ 0.8118

Bundschuh [12] 2001 γ ≈ 0.812653
Lueker [36] 2009 0.788071 ≤ γ ≤ 0.82628

Bukh and Cox [11] 2019 γ ≈ 0.8122

Table 3.1: History of prominent bounds and estimates of the binary Chvátal-Sankoff constant

Figure 3.1: The best upper and lower bounds on γ and estimates of γ over time.
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that the Chvátal-Sankoff constant for the binary case (i.e., γ2,2) falls between 0.697844 and
0.866595. Through two sets of Monte-Carlo simulations, a technique built upon extensive
and repeated random sampling, they approximated the value to be around 0.8082. Deken [20]
initiated efforts to refine these bounds in 1979, culminating in 1983 with a tighter interval of
0.7615 to 0.8575, achieved via diverse matching algorithms. Despite their differences, these
algorithms adhere to a common procedural framework; the algorithms initialize a pointer on
each sequence, alternate movements until encountering an increase in the count of differing
elements between the pointers, match characters when possible, and resume the process from
the matched points, disregarding any prior characters.

In 1986, Steele [45] postulated that the exact value of the binary Chvátal-Sankoff constant
equals 2

1+
√
2
. This conjecture stemmed from a heuristic approach inspired by coin-flip

sequences, assuming an independent and identical distribution of each coin flip. Much of this

15



conjecture’s development was spurred by the contributions of Arratia and Waterman [2, 3].
Dančík and Paterson [18] introduced a novel method in 1995 utilizing deterministic finite

automata to scan symbols from both strings and generate a common subsequence, albeit
not necessarily the longest. They use a Markov chain simulation, which is a simulation
that performs graph traversal where edges represent memoryless transition probabilities, to
efficiently generate LCS probabilities. Their findings hinted that the Chvátal-Sankoff constant
likely approximates 0.81225± 0.00025.

Boutet de Monvel [9], in early 1999, conducted extensive Monte-Carlo simulations akin
to Chvátal and Sankoff, albeit optimized, parallelized, and with increased sample size. His
prediction for the binary constant stood at 0.812282. Later that year, Baeza-Yates, Gavaldà,
Navarro, and Scheihing [5] estimated the constant at 0.8118, leveraging finite state automata
and analysis of string generation complexity (via Kolmogorov complexity analysis). In 2001,
Bundschuh employed a lattice framework to tackle the longest common subsequence problem,
resulting in an approximated value of 0.812653.

In 2009, Lueker [36] optimized and adapted Dančík and Paterson’s algorithm to refine
the bounds to 0.788071 to 0.82628. This disproved Steele’s conjectured value for the binary
constant, as Lueker’s upper bound fell below Steele’s prediction. That same year, Kiwi and
Soto [30] used a generalized version of Lueker’s lower-bound algorithm to compute lower
bounds for a wider range of alphabets and numbers of strings. These were the state-of-the-art
results before our project.

In 2019, Bukh and Cox [11] defined an alternate Markov chain based on a model of
frog dynamics. They first define ∆(2n) = L

(
st, uv

)
= L

(
s, u
)
− L

(
t, v
)

where s, t, u, v are
independent, random strings of length n. They propose a conjecture asserting the existence
of constants c1 and c2 such that E[∆(n)] is asymptotically equivalent to c1 3

√
n, and the

square root of the variance of ∆(n) is asymptotically equivalent to c2 3
√
n. Analysis of their

computational data provided to support their conjecture indicated values close to c1 ≈ 1
2

and c2 ≈ 1
4
. Using their conjecture, they estimate the value of the binary Chvátal-Sankoff

constant as 0.8122.
Also of note is work by Kiwi, Loebl, and Matoušek [31] in 2005 which proves, via

subadditivity arguments, that lim
σ→∞

γσ,2
√
σ = 2. Additionally, in 2022, Tiskin [47] demonstrated

that by linking γ2,2 to the parameters of a specific stochastic (i.e., random) particle process,
the constant is the solution to an explicit (but intractably large) system of polynomial
equations with integer coefficients.

3.3 The Kiwi-Soto Algorithm
Here we introduce the algorithm of Kiwi and Soto [30] for calculating lower bounds on the

Chvátal-Sankoff constants, which we used, with several modifications, to obtain our results.
This algorithm is based on the overall process described by Lueker [36], but generalized for
arbitrary values of σ and d. The algorithm takes as inputs the size of the alphabet (σ), the
number of strings (d), the string length used in calculating a lower bound (ℓ), and the number
of iterations to attempt to converge to a lower bound (n). For a matrix v, we use vi to
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represent the ith row of v. Throughout this paper, we adopt the convention that all matrices
and vectors are represented in bold. A numerical value in bold is a vector where every
element is that value. Additionally, all vectors contain real numbers and are of length σdℓ,
corresponding to the number of possible d-tuple of strings where each string has ℓ characters
taken from an alphabet of size σ.

Definition 19. “A [finite] sequence with k elements is called a k-tuple” [43, p. 6]. Unlike a
regular sequence, we allow the elements of a k-tuple to belong to different sets.

Algorithm 2: The Feasible Triplet Algorithm
Function FeasibleTriplet(σ, d, ℓ, n):

v← 0 // 0 is a d× σdℓ matrix of zeros
(u, r, ϵ)← (v0, 0, 0)
for i = d, . . . , n

w← F (vd,vd−1, . . .v1)
R← max

0≤j<σdℓ
(w − vd)[j] // where [j] denotes the jth element

W← w + dR1− F (w + (d− 1)R1,w + (d− 2)R1, . . . ,w)
E ← max{0, max

0≤j<σdℓ
W[j]}

if R− E ≥ r − ϵ
(u, r, ϵ)← (w, R,E)

Shift the rows of v up by 1
vd ← w

return (u, r, ϵ)

Motivating this algorithm, Kiwi and Soto proved the following pivotal lemma:

Lemma 1. Suppose a function F : (Rσdℓ
)d 7→ Rσdℓ satisfies the following three properties:

1. Monotonicity. Given two d-tuples of vectors (v1, . . .vd) ≤ (u1, . . . ,ud) component-wise,
then F (v1, . . .vd) ≤ F (u1, . . . ,ud) component-wise.

2. Translation Invariance. ∀ r ∈ R, F (v1 + r1, . . . ,vd + r1) = F (v1, . . . ,vd) + r1.

3. Feasibility. There exists a feasible triplet for F. That is, there exists a 3-tuple
(u, r, ϵ) ∈ Rσdℓ × R× [0, r] such that F (u+ (d− 1)r1, . . . ,u+ r1,u) ≥ u+ (dr − ϵ)1
component-wise.

Then, for any feasible triplet of F , we have that γσ,d ≥ d(r − ϵ).

Thus, if a feasible triplet is found for σ and d, it can be used to calculate a lower bound
on γσ,d [30]. The overall goal of the Feasible Triple algorithm (Algorithm 2) is to calculate
a good feasible triplet, that is, a feasible triplet where (r − ϵ) is as large as possible, for a
specific F with these properties.
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In Algorithm 2, we use the function F , which can be any function meeting the criteria of
Lemma 1, but we use the choice of F given by Kiwi and Soto (see (3.6) on page 526 of [30]).
Furthermore, we define an ordering

ϕ : {1, ..., σdℓ} ←→ {(s1, . . . , sd) | s1, . . . , sd strings of length ℓ}

to help with indexing vectors in F . This ordering assigns a unique integer to each d-tuple of
strings such that each number assigned is a valid index in our vectors (which are all of length
σdℓ). We use this ordering for all vectors in the algorithm.

We assume that F and all sub-functions have access to parameters σ, d, and ℓ. As defined
by Kiwi and Soto (see (3.6) on page 526 of [30]):

F (v1, . . . ,vd) = b+max{Fz(v1, . . . ,vd) : z ∈ Σ}.

Here, b is 1 if every string in the tuple at index i starts with the same character, and 0
otherwise. Next, we will describe how to compute Fz (Algorithm 3). For this purpose, we
introduce two new definitions.

Definition 20. For a string a, we define the first character of a to be the head of a, denoted
as h(a). We define the rest of a to be the tail of a, denoted T (a). Note that a = h(a)T (a).

Given d vectors and a character z ∈ Σ as input, Fz outputs a new vector. The calculation
for the output of Fz at index i is independent of the calculations for any other index. Thus,
to simplify our description of Fz, we let the index i be given, use our ordering to obtain
strings (s1, . . . , sd), and calculate the value of the output vector at i using them.

Here, N is an ordered set containing the positions of strings in the tuple (s1, . . . , sd) that
do not start with some character z. The variate function iterates through all combinations
of {c1, . . . , c|N |}, where each c can be any character in Σ. For each combination, variate
sums the value of v|N| at the index corresponding to removing the head of each string that
doesn’t start with z, and appends ci to each string, i.e., for a string si not starting with z, it
is replaced with T (si)ci when indexing v|N|. Finally, Fz divides by the number of possible
variations to obtain the mean value of v across all combinations. In essence, variate takes
all strings that do not start with z, removes their first character, and adds some new character
to the end of each string, doing this for all possible combinations of new characters at the
end of the strings. Fz then calculates the mean value of v|N| at the indices corresponding to
all σ|N | of the d-tuples created by variate.

The Binary Case

The algorithm and related definitions can be greatly simplified (see Algorithm 4) when
working only with pairs of strings with an alphabet of size two (that is, d = 2, σ = 2).

Here, we describe how F simplifies in the binary case. As in the general case, we define an
ordering that assigns an integer index to every possible pair of strings. We use the indexing
v[a, b] to represent indexing v at the index corresponding to the pair of strings (a, b).

F (v1,v2)[a, b] = s+max(F0(v1,v2), F1(v1,v2)).
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Algorithm 3: Calculating Fz

Function Fz(v1, . . . ,vd):
N ← (j | j ∈ (1, . . . , d), h(sj) ̸= z)

return σ−|N |· variate(v|N |, N)
Function variate(vi, N):

len← |N |
r ← 0
for c1 ∈ Σ

sN [1] ← T (sN [1])c1 // where N [1] is the first element of N
for c2 ∈ Σ

sN [2] ← T (sN [2])c2
. . .

for clen ∈ Σ
sN [len] ← T (sN [len])clen
r ← r + vi[s1, . . . , sd]
Restore all s to their original values

return r

Here, s is 1 if a and b start with the same character, and 0 otherwise, and F0 and F1 are
sub-functions that simplify Fz to the binary case.

We now define F1 and F0. Note that F0 has the same definition as F1, but swaps 0 and 1
when evaluating h(A) and h(B):

F1(v1,v2)[a, b] =



0, h(a) = 1 h(b) = 1 ,
1
2
(v1[a, T (b)0] + v1[a, T (b)1]) h(a) = 1 h(b) = 0 ,

1
2
(v1[T (a)0, b] + v1[T (a)1, b]) h(a) = 0 h(b) = 1 ,

1
4

 ∑
c1,c2∈{0,1}

v2[T (a)c1, T (b)c2]

 h(a) = 0 h(b) = 0 .


(3.1)

F0(v1,v2)[a, b] =



0, h(a) = 0 h(b) = 0 ,
1
2
(v1[a, T (b)0] + v1[a, T (b)1]) h(a) = 0 h(b) = 1 ,

1
2
(v1[T (a)0, b] + v1[T (a)1, b]) h(a) = 1 h(b) = 0 ,

1
4

 ∑
c1,c2∈{0,1}

v2[T (a)c1, T (b)c2]

 h(a) = 1 h(b) = 1 .


(3.2)

Essentially, when one or more of the strings in an index of F1 starts with 0 , F1 returns the
average of all permutations of those strings where we remove the first character and append
an arbitrary new character. When all strings start with 1 , the average is 0, since there are
no strings to permute. F0 does the same but for strings that start with a 1 .
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Algorithm 4: The Binary Feasible Triplet Algorithm
Function BinaryFeasibleTriplet(ℓ, n):

v0 ← 0 // 0 is a vector containing 22ℓ zeroes
v1 ← 0
(u, r, ϵ)← (v0, 0, 0)
for i = 2, . . . , n

v2 ← F (v1,v0)
R← max

0≤j<22ℓ
(v2 − v1)[j]

W← v2 + 2R1− F (v2 +R1,v2)
E ← max{0, max

0≤j<22ℓ
W[j]}

if R− E ≥ r − ϵ
(u, r, ϵ)← (v2, R,E)

v0 ← v1

v1 ← v2

return (u, r, ϵ)

3.4 Algorithm Modifications
Since a value must be computed for every possible d-tuple of strings over an alphabet

of size σ, the Feasible Triplet Algorithm (Algorithm 2) has a time complexity of Ω(σdℓ),
and since it must store d vectors of size σdℓ, it has a space complexity of O(dσdℓ). As the
values of σ, d, and ℓ increase, this exponential scaling quickly becomes a barrier to progress.
In this section, we describe our approach to overcome some of these limitations. We focus
primarily on optimizing the Binary Feasible Triplet Algorithm: of the following techniques,
only parallelization was implemented for both versions of the Feasible Triplet Algorithm.

3.4.1 Parallelization

As noted previously, each value of the new vector vd is computed independently of every
other value in vd. Accordingly, the algorithm is amenable to parallelization. To implement
this, a chosen number of threads is spun up, with each thread calculating the values of vd for
a distinct slice of the vector.

3.4.2 Indexing

A pair of binary strings can be represented as a single 64-bit unsigned integer so long
as their combined length does not exceed 64 characters and a consistent indexing scheme
is identified. Given two strings a and b, we chose to index them by interleaving their bits
starting with a and filling the remaining bits with zeros on the left. For instance, a pair of
strings a = 1011 and b = 0010 is represented as 0...10001110. We say a 64-bit integer is an
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interleaved string pair, or simply a pair, if it represents two binary strings interleaved in
this fashion.

This scheme has several desirable properties. Firstly, calculating v2 can be done (in
sequential order) by simply iterating through all integers from 0 to 22ℓ − 1, which we
denote [0, ..., 22ℓ). Secondly, we need not check whether the first bit of a and b match: we
know ahead of time that pairs [0, ..., 22ℓ−2) have the same first bit (0) for a and b, pairs
[22ℓ−2, ..., 22ℓ−1 +22ℓ−2) have different first bits, and pairs [22ℓ−1 +22ℓ−2, ..., 22ℓ) have the same
first bit (1). Lastly, this indexing will allow us to determine a method of reading disk memory
sequentially once arrays become too large to fit in RAM (Section 3.4.4).

3.4.3 Array Reductions and Symmetries

In the binary case, Lueker notes how it is not necessary to store arrays vi, for three
consecutive integers i, in memory, as the recurrence can be simplified by storing only two
arrays (that is, v1,v2) and iterating on those instead, with the bound calculation adjusted
appropriately [36]. We also adopt this optimization. As Lueker also notes, one can further
observe that since complementing both a and b does not impact the length of their longest
common subsequence, we get that

vi[(a, b)] = vi[(a, b)],

where a represents the binary complement of a [36]. With the indexing scheme defined in
Section 3.4.2, for any two indices i and j such that

22ℓ−1 > i ≥ 0 and j = 22ℓ − 1− i,

we have that
22ℓ > j ≥ 22ℓ−1 and (ai, bi) = (aj, bj). (3.3)

Thus, we need only iterate strings pairs represented by the integers [0, ..., 22ℓ−1).

3.4.4 Sequential Memory Access

As ℓ grows, memory becomes a limiting factor far faster than computation time. For
instance, at ℓ = 20 with 4 bytes for each value stored in the vector, a naive implementation
requires

22·20 · 4 = 4 398 046 511 104 bytes ≈ 4.4 TB

per vector. Even if symmetry is fully exploited, this requires roughly a terabyte of memory
per vector. With our resources, it is infeasible to store all of these values in RAM.

Accordingly, vectors must be read from and written to external (disk) memory. However,
operating exclusively from external memory is also infeasible: we experienced over a 100x slow
down when reading and writing values only from disk. File I/O time dwarfed the time taken
to actually perform the computations for the recurrence, largely because memory accesses
were non-sequential.
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To alleviate this overhead, reading from and writing to disk must be done in large
sequential blocks. As such, a recursive approach is taken to identify contiguous blocks of
integers from [0, ..., 22ℓ−1) whose accessed values also span a contiguous block of integers.
This section outlines the approach taken and justifies why it is correct.

The function as implemented contains three primary loops: L0,0, L0,1, and L1,0. Each
loop is valid only for a predetermined range of string pairs, but accepts a start parameter
and end parameter to allow for subdivision of that range.

L0,0

L0,0 iterates over string pairs whose first bits match and calculates the new value in the
recurrence according to the last case of F1 (see Equation 3.1). For a particular a, b string
pair, with the interleaved indexing, this is accomplished by the following simple procedure:

Input: x, an interleaved a, b string pair
Output: The new recurrence value for index x

function SameFirstBit(x):
Bitshift x left by 2
return 1 + 1

4
(v1[x] + v1[x+ 1] + v1[x+ 2] + v1[x+ 3])

Since L0,0 iterates only within [0, ..., 22ℓ−2), the first bit of a and b will always be 0. Thus,
this procedure always accesses the values at 4x, 4x+ 1, 4x+ 2, and 4x+ 3. For x ≥ 22ℓ−3,
it will access pairs ≥ 22ℓ−1, so we use (3.3) to transform the pairs back to their symmetric
position within the vector. As a result, if x is iterated in sequential order, L0,0 first accesses
values sequentially within [0, ..., 22ℓ−1) and writes out values sequentially within [0, ..., 22ℓ−3),
and then accesses values sequentially within (22ℓ−1, ..., 0] and writes out values sequentially
within (22ℓ−2, ..., 22ℓ−3].

L0,1 and its Recursion

L0,1 iterates over string pairs whose first bits do not match. It calculates the second case
(h(a) = 0, h(b) = 1) from F0 (see Equation 3.2). This can be accomplished by another simple
procedure:

Input: x, an interleaved a, b string pair
Output: The new recurrence value for index x

function DifferentFirstBit(x):
a← even bits of x
b← odd bits of x
Zero out first bit of b
Bitshift b left by 2
i← a | b // Bitwise OR to recombine a and b
return 1

2
(v1[i] + v1[i+ 1])

Since the string pairs are iterated only within [22ℓ−2, ..., 22ℓ−1), the first bit of a is always
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0 and the first bit of b is always 1. As such, the second bit of b uniquely determines whether
it is necessary to access values from [0, ..., 22ℓ−2) or [22ℓ−2, ..., 22ℓ−1) to calculate the new value
for a particular string pair. Similarly, the second bit of a uniquely determines whether it
is necessary to access values from the first half or second half of the range determined by
the second bit of b, for a total of four possible access ranges of size 22ℓ−3. For example, by
looking at only the second bit of a and b for string pair 0...011010 (ℓ = 3), we know we
need only access values from [22ℓ−3, ..., 22ℓ−2). In fact, we know that every string pair in
the range [22ℓ−2 + 22ℓ−3, ..., 22ℓ−2 + 22ℓ−3 + 22ℓ−4) is constrained to accessing values from the
range [22ℓ−3, ..., 22ℓ−2). Additionally, since each string pair accesses two distinct values, it is
guaranteed that every value in one of these ranges is accessed exactly once.

Within each of these four ranges, we can again subdivide into four blocks of equal size
based on the next bit of a and of b, again with the same guarantees on access. This subdivision
can be performed recursively until the vector has been divided into chunks small enough
to fit into RAM (based on a chosen stop_depth). At this point, each chunk can be read
sequentially into RAM, computation performed for the chunk’s corresponding values, and
results written sequentially out to disk. This recursion is demonstrated as follows:

function Recurse(offset, index_offset, depth):
num_strs← 22(ℓ−depth)−2

if depth < stop_depth
Recurse(offset, index_offset, depth+ 1)
Recurse(offset+ num_strs/4, index_offset+2× num_strs/4, depth+1)
Recurse(offset+2× num_strs/4, index_offset+ num_strs/4, depth+1)
Recurse(offset+ 3× num_strs/4, index_offset+ 3× num_strs/4,
depth+ 1)

else
load in v1[index_offset] through v1[index_offset+ 2× num_strs]
start← 22ℓ−2 + offset
end← start+ num_strs
L0,1(start, end)
write out values v2[start] through v2[end]

L1,0 and its Recursion

L1,0 calculates the third case (h(a) = 0, h(b) = 1) from F1 (see Equation 3.1). A similar
recursion as for L0,1 can be defined for L1,0. However, when the second bit of a is 1, the
string pair will access values above 22ℓ−1− 1. In this case, we use (3.3) to transform the value
accesses to their symmetric position within the vector.

Essentially, these recursions serve as wrappers for the algorithm, dictating the portions of
v2 to calculate and the values from v1 that must be loaded in to facilitate those calculations.
By dividing the calculations into specific contiguous chunks, the recursions guarantee that

23



disk memory is read from sequentially, with no unnecessary values read in, while maintaining
the property that disk memory is written to in sequential chunks.

3.5 Results
In our experiments we ran Algorithm 2 for various values of σ, d, and ℓ, and Algorithm 4

for increasingly large values of ℓ. The results from our binary-case computations compared
to the results obtained by Lueker are shown in Table 3.2. When reported in the tables, lower
bounds are rounded down to their 6th decimal place. To our knowledge, for ℓ ≥ 16, these
bounds exceed any previously reported lower bounds on γ. We also believe that for all
but σ = 14, d = 2, the results in Table 3.3 exceed all previously reported lower bounds
for γσ,d.
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Figure 3.2: Runtime of the Feasible Triplet and Binary Feasible Triplet algorithms for γ2,2.
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ℓ
Lower bound on γ

(Lueker)
Lower bound on γ

(ours)
1 0.666666 0.666666
2 0.727272 0.727272
3 0.747922 0.747922
4 0.758576 0.758576
5 0.765446 0.765446
6 0.770273 0.770273
7 0.773975 0.773975
8 0.776860 0.776860
9 0.779259 0.779259
10 0.781281 0.781281
11 0.783005 0.783005
12 0.784515 0.784515
13 0.785841 0.785841
14 0.787017 0.787017
15 0.788071 0.788071
16 - 0.789021
17 - 0.789882
18 - 0.790668
19 - 0.791389
20 - 0.792052

Table 3.2: Lower bounds on γ for values of ℓ, the string length parameter, from 1 to 20. Bold
numbers represent new best lower bounds.
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Alphabet size σ = 2
Lower bound on γ2,d

d Previous best Our results ℓ
2 0.788071 0.792052 20
3 0.704473 0.711548 10
4 0.661274 0.664722 6
5 0.636022 0.639248 5
6 0.617761 0.621057 4
7 0.602493 0.607261 3
8 0.594016 0.598782 3
9 0.587900 0.592177 3
10 0.570155 0.582348 2
11 0.570155 0.578463 2
12 0.563566 0.574268 2
13 0.563566 0.571067 2
14 0.558494 0.558494 1
15 - 0.558494 1

Alphabet size σ = 3
Lower bound on γ3,d

d Previous best Our results ℓ
2 0.671697 0.682218 9
3 0.556649 0.564841 5
4 0.498525 0.509237 4
5 0.461402 0.474304 3
6 0.421436 0.445434 2
7 0.413611 0.434513 2
8 0.405539 0.425774 2
9 - 0.400949 1

Alphabet size σ = 4
Lower bound on γ4,d

d Previous best Our results ℓ
2 0.599248 0.614333 8
3 0.457311 0.472979 4
4 0.389008 0.405702 3
5 0.335517 0.365329 2
6 0.324014 0.349848 2
7 - 0.317032 1

Alphabet size σ = 5
Lower bound on γ5,d

d Previous best Our results ℓ
2 0.539129 0.549817 5
3 0.356717 0.394945 3
4 0.289398 0.324337 2
5 0.273884 0.302235 2
6 - 0.263369 1

Alphabet size σ = 6
Lower bound on γ6,d

d Previous best Our results ℓ
2 0.479452 0.499229 4
3 0.309424 0.347798 3
4 0.245283 0.277835 2
5 - 0.231234 1

Alphabet size σ = 7
Lower bound on γ7,d

d Previous best Our results ℓ
2 0.44502 0.466481 4
3 0.234567 0.273275 2
4 0.212786 0.242798 2
5 - 0.200004 1

Alphabet size σ = 8
Lower bound on γ8,d

s Previous best Our results ℓ
2 0.42237 0.438799 4
3 0.207547 0.244709 2
4 - 0.187869 1

Alphabet size σ = 9
Lower bound on γ9,d

d Previous best Our results ℓ
2 0.40321 0.414876 4
3 0.186104 0.221554 2
4 - 0.168164 1

Alphabet size σ = 10
Lower bound on γ10,d

d Previous best Our results ℓ
2 0.38656 0.393811 4
3 0.168674 0.202401 2
4 - 0.152193 1

Table 3.3: Lower bounds for γσ,d with the value of the string length parameter ℓ we set to
achieve our bounds. Bold numbers represent new best lower bounds.

26



Chapter 4

LCS Properties and BLISS Playground

4.1 Foundations and Rationale
When discussing the properties of longest common subsequences, we consider two main

categories: edit and distribution properties. An edit operation is a mapping that transforms
one string into another. The four most common edit operations are insertions, deletions,
substitutions, and permutations [39]. Distribution properties, on the other hand, are properties
that describe how the set of longest common subsequences is distributed across all possible
pairs of strings.

For the purposes of this chapter, we will focus on the LCS of two strings. Namely, we will
consider the strings x and y, of lengths n and m respectively, over the arbitrary alphabet
Σ. Before we outline the properties of longest common subsequences, we first provide some
definitions and notation, as well as the motivation behind the use of these properties.

Definition 21. Let w be a subsequence of string x. We say that a character c in w is critical
if removing c from x would make w no longer a subsequence of x.
For example, consider the string apple and subsequence apl . l is critical, since apl is not
a subsequence of appe . p is not critical, since apl is still a subsequence of aple .

Definition 22. An affix is a character or string that is added to another string to construct
a new string. If the affix is added to the beginning of the string, it is called a prefix. If the
affix is added to the end of the string, it is called a suffix. If the affix is added at any other
position in the string, it is called an infix. Additionally, if part of the affix is added to the
beginning of the string and the remainder is added to the end of the string, it is called a
circumfix.

Definition 23. A permutation is a bijective mapping that rearranges the elements of a
collection. We will consider two types of permutations:

1. A character permutation is a permutation that rearranges the characters in a string.
We use the notation ϕ(x) to denote the string x with its characters permuted according
to ϕ.
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2. A symbol permutation is a permutation that rearranges the symbols in an alphabet.
In the case where Σ is a binary alphabet, we call the non-trivial symbol permutation
complementation. We use the notation φ(x) to denote the string x with its symbols
permuted according to φ.

Definition 24. Given a string x, we define the reverse of x, denoted as xR, to be the string
formed by reversing the order of the characters in x. For example, the reverse of the string
x = abc is xR = cba .

Definition 25. We use the notation x \ x[k] to denote the string x with the character at
index k removed.

Motivation for Edit Properties Many of the applications of the LCS problem described
in Section 2.3 involve the LCS of two strings that have strings edits applied to them. Edit
properties describe the relationship between these edited strings and the original strings.

Motivation for Distribution Properties Since the Chvátal-Sankoff constants depend on
the expected value of the LCS of random strings, they are inherently tied to the distribution
of LCS lengths. Developing stronger distribution properties might help uncover methods for
more efficiently calculating the constants.

4.2 Properties of Longest Common Subsequences
We provide an outline of the properties of longest common subsequences here, along with a
brief summary of their meaning and significance. The proofs of each property can be found in
Chapter B. However, these properties can be difficult to digest on their own. We recommend
utilizing BLISS Playground, discussed in the follow section, to better understand them.

4.2.1 General Properties

Property 1. The Length Bounds Property:

For all x ∈ Σn and y ∈ Σm,

0 ≤ L
(
x, y
)
≤ min(n,m)

Summary: The length of the longest common subsequence of two strings is always between
0 and the length of the shorter string. This property is a direct consequence of the definition
of the longest common subsequence.
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Property 2. The Commutative Property:

For all x ∈ Σn and y ∈ Σm,
LCS

(
x, y
)
= LCS

(
y, x
)
.

Summary: The longest common subsequence of two strings is the same regardless of the
order of the strings. This property is a direct consequence of the definition of the longest
common subsequence.

Property 3. The Concatenation Property (Same String)

For all x ∈ Σn, y ∈ Σm, and H,T ∈ Σ⋆,

LCS
(
HxT,HyT

)
=
{
HzT | z ∈ LCS

(
x, y
)}

=⇒ L
(
HxT,HyT

)
= |H|+ L

(
x, y
)
+ |T|

Summary: The longest common subsequence of two strings prefixed (suffixed) by the same
strings is the longest common subsequence of the original strings prefixed (suffixed) by the
same strings. This implies that the length of the longest common subsequence of two strings
prefixed (suffixed) by the same strings is the sum of the lengths of the prefix (suffix) and the
longest common subsequence of the original strings.

Property 4. The Concatenation Property for Distinct Strings

For all x ∈ Σn, y ∈ Σm, and A,B ∈ Σ⋆ such that LCS
(
A,B

)
= {λ},

LCS
(
Ax,By

)
⊆ LCS

(
Ax, y

)
∪ LCS

(
x,By

)
LCS

(
xA, yB

)
⊆ LCS

(
xA, y

)
∪ LCS

(
x, yB

)
Summary: Given two strings and an associated prefix (suffix) for each, the longest common
subsequence of the strings with both their prefixes (suffixes) is also a longest common
subsequence for the strings when only one has a prefix (suffix).
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4.2.2 Edit Operation Properties

Property 5. The Character Insertion Property

For all x ∈ Σn, y ∈ Σm, and C ∈ Σ, let z be the string formed by inserting C into
y at index k. If there exist some u ⊑ y[0, k) and v ⊑ y[k⟩ such that uCv ⊑ x, z and
uv ∈ LCS

(
x, y
)
, then

L
(
x, z
)
= L

(
x, y
)
+ 1

If this is not the case, then
L
(
x, z
)
= L

(
x, y
)

Summary: When a character is inserted into one string, the length of the longest common
subsequence increases by one if the character is critical to the new longest common subsequence.
Otherwise, the length remains the same.

Property 6. The Character Deletion Property

For all x ∈ Σn and y ∈ Σm, let z be the string formed by deleting the character at index
k from y. If there exists some w ∈ LCS

(
x, y
)

such that w ⊑ y \ y[k], then

L
(
x, z
)
= L

(
x, y
)

If this is not the case, then
L
(
x, z
)
= L

(
x, y
)
− 1

Summary: When a character is removed from one string, the length of the longest common
subsequence stays the same if the character was not critical to some previous longest common
subsequence. Otherwise, the length decreases by one.

Property 7. The Character Substitution Property

For all x ∈ Σn, y ∈ Σm, and C ∈ Σ, let z be the string formed by substituting the character
at index k in y with C. Consider the following conditions for some w ∈ LCS

(
x, y
)
:

1. w ⊑ y \ y[k]
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2. uCv ⊑ x, z where u ⊑ y[0, k), v ⊑ y[k⟩, and w = uv

If both of the conditions are satisfied, then

L
(
x, z
)
= L

(
x, y
)
+ 1

If only one of the conditions are satisfied, then

L
(
x, z
)
= L

(
x, y
)

If neither condition is satisfied, then

L
(
x, z
)
= L

(
x, y
)
− 1

Summary: When a character is substituted in one string, the effect on the length of the
longest common subsequence depends on the net result of removing the original character
and inserting the new character.

Property 8. The Character Permutation Property

For all x ∈ Σn and y ∈ Σm, let ϕ be a permutation of the characters in y. If z is the
string formed by applying ϕ to y, then

L
(
x, z
)
= L

(
x, y
)
+ δ

where δ is an integer in the range [−k, k]

Summary: When the characters in one string are permuted, the effect on the length of the
longest common subsequence depends on the net result of substituting each original character
with its corresponding character in the permutation.

Property 9. The Symbol Permutation Property

For all x ∈ Σn and y ∈ Σm, let φ be a permutation of the symbols in Σ.

LCS
(
φ(x), φ(y)

)
=
{
φ(z) | z ∈ LCS

(
x, y
)}

=⇒ L
(
x, y
)
= L

(
φ(x), φ(y)

)
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Summary: When the symbols in an alphabet are permuted, such that the symbols in each
string are permuted in the same way, the length of the longest common subsequence remains
the same.

Property 10. The Reversal Property

For all x ∈ Σn and y ∈ Σm,

LCS
(
xR, yR

)
=
{
zR | z ∈ LCS

(
x, y
)}

=⇒ L
(
x, y
)
= L

(
xR, yR

)

Summary: When each string has the order of its characters reversed, the length of the
longest common subsequence remains the same.

Property 11. The Slice-Concatenation Property

For all HxT ∈ Σn, HyT ∈ Σm, P ∈ Σ|H|, and S ∈ Σ|T|,

L
(
HxT,HyT

)
= L

(
PxS, PyS

)

Summary: When the common prefix (suffix) of each string is replaced by a different prefix
(suffix) of the same length, the length of the longest common subsequence remains the same.

Property 12. The Removed Character Property

For all x ∈ Σn, y ∈ Σm, and n,m ≥ k, if L
(
x \ x[k], y \ y[k]

)
= L

(
x, y
)
− 2, then

x[k] ̸= y[k].

Summary: If the length of the longest common subsequence decreases by two when the kth
character is removed from both strings, then the kth characters of the strings must be different.
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4.2.3 Distribution Properties

Property 13. The LCS Count Property:

For all x ∈ Σn and y ∈ Σm,

1 ≤
∣∣∣LCS(x, y)∣∣∣ ≤ min(n,m).

Summary: The number of longest common subsequences of two strings is always between 1
and the length of the shorter string.

Property 14. The Substring Property:

For every z ∈
min(n,m)⋃

k=0

Σk, there exist x ∈ Σn and y ∈ Σm such that z ∈ LCS
(
x, y
)
.

Summary: Every possible string of length k < min(n,m) over an alphabet is a longest
common subsequence of some pair of strings of lengths n and m over that alphabet.

Property 15. The n− 1 Distribution Property:

Across all possible d-tuples of strings of length n and alphabet size σ ≥ 2, every
possible string of length n − 1 over that alphabet each appears as an LCS exactly
(σn− n+ 1)d − (σn− n+ 1) times in total.

Note that for pairs of binary strings, this simplifies neatly to n(n+ 1).

Summary: Given any string s of length n− 1 from an alphabet of size σ ≥ 2, if you tallied
the number of times it appears as an LCS for every possible combination of d strings of length
n from that same alphabet, that tally would exactly equal (σn− n+ 1)d − (σn− n+ 1).

4.3 BLISS Playground
To supplement the theoretical and practical aspects of the properties of longest common

subsequences, we have developed a suite of interactive tools to help visualize and understand
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the various properties and algorithms associated with the LCS problem. The Binary Longest
InterString Subsequence (BLISS) Playground1 is designed to be user-friendly and intuitive,
allowing users to interact with the underlying algorithms and data structures in real-time.
The tools are web-based, making them accessible to a wide audience. In this chapter, we
provide an overview of the interactive tools and their features, as well as instructions on how
to use them.

Figure 4.1: The BLISS Playground homepage

1The BLISS tool suite can be found at https://statistics-of-subsequences.github.io/
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4.3.1 Edit Properties Explorer

The Edit Properties Explorer visualizes the properties of Section 4.2.2 and helps users
further explore the ideas presented in the Matrix Builder tool. The tool presents a matrix
containing all pairs of strings of lengths n and m, respectively. The values of n and m can be
set by the user, with a maximum value of 5 due to the exponential growth of the data. This
matrix can be visualized in two distinct modes: elevation and orthographic mode.

In elevation mode, the matrix cells are extruded, offering users a three-dimensional
representation where they can observe the length of the longest common subsequence as
a three dimensional plot. Users can interactively manipulate the matrix through panning,
zooming, and rotating. Orthographic mode presents the matrix in a two-dimensional format,
allowing users to more easily view large portions of the matrix at once.

In both modes, users have the ability to input two binary strings of length n and m,
with the corresponding cell highlighted on the matrix. Additionally, the tool displays the
LCS length and the set of possible LCS for the given pair of strings. Upon selecting a cell,
users can apply various edit operations, including substitution, permutation, slicing and
concatenation, complementation, and reversal, to observe how these changes affect the longest
common subsequence length. Notably, insertion and deletion operations are excluded since
they would alter the string lengths, thus altering the shape of the matrix. Overall, the Edit
Properties Explorer aims to expound upon the properties of the longest common subsequence
concerning different edit operations, allowing users to investigate the consequences of the
properties and of string edits in general in more detail.

Figure 4.2: The user is presented with a 3× 4 matrix in the Edit Properties Explorer tool.
The matrix is displayed in both elevation and orthographic mode. We can see the length of
the LCS for each pair of strings by comparing the colors of the cells to the key.
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Figure 4.3: The user inputs the strings 011 and 0001 into the Edit Properties Explorer tool.
The cell at the intersection of these strings is highlighted in red. Below where we entered the
strings, we can see that the length of the LCS is 2, and the set of LCSs is {01 }.
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Figure 4.4: The user has applied the substitution operation to the cell at index 1. The new
cell is highlighted in orange, and the length of the LCS has increased to 3, and the set of
LCSs has been changed to {011 }.

4.3.2 Matrix Builder

The Matrix Builder tool is used to visualize the relationship between LCS length of
different pairs of strings, of length n and m respectively. Similar to the Edit Properties
Explorer, the maximum values for n and m are capped at 5 due to the exponential growth
of the data. The matrix is structured with all binary strings of length n as columns and
all binary strings of length m as rows, initially empty. There are two modes of interaction:
exploratory and puzzle.

Exploratory Mode

In general interaction mode, users can select individual cells within the matrix to display
the LCS length for that specific pair of strings, denoted by a distinctive color. This interactive
selection process allows users to explore and identify LCS lengths for various string pairs.
Once users have selected the desired cells, they have the option to fill in the matrix. The user
may additionally choose to toggle which properties will be used to fill in the matrix. The
tool automatically populates the matrix, but fills in only the cells that can be derived from
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the user’s original selection (taking into account which properties are selected in the toggle).
This feature provides users with a comprehensive visualization of how edit properties can be
used to reduce the amount of work needed to calculate LCS lengths.

Figure 4.5: The user constructs a 4× 3 matrix in the Matrix Builder tool. Several cells have
been selected, and we can see the LCS length for each pair of strings. Additionally, the user
has toggled the “Complement”, “Reverse”, and “Slice and Suffix” properties.
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Figure 4.6: The matrix has become populated based on the enabled properties and previously
selected cells. If we hover over the cell at the intersection of the strings 1110 and 010 , we
can see that the LCS length is 2. We also see that it was derived from suffixing the substrings
1111 [0,2) and 011 [0,1) with 10

Puzzle Mode

In puzzle mode, users are presented with an empty matrix, a goal matrix, and a set of
edit properties. The user must fill in the empty matrix to match the goal matrix using
the provided edit properties. This mode is designed to challenge users to think critically
about how to apply edit properties to achieve a specific LCS length. The puzzle mode is
an engaging way for users to test their understanding of the properties of the LCS and the
impact of different edit operations on the LCS length. The game encourages the player to
find the minimum number of cells to fill in order to reach the goal matrix, promoting efficient
problem-solving strategies.
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Figure 4.7: The user is presented with the level select for the Puzzle Mode of the Matrix
Builder tool. There are a total of thirty levels, six for each of the five difficulties.

Figure 4.8: The user has selected Level 11. The goal matrix shows what the matrix (to the
left) should look like in order to complete the level. Additionally, the enabled properties for
this level are “Complement” and “Slice and Prefix”. The user has started to fill in the matrix
to solve the puzzle.
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Figure 4.9: After submitting their solution, the user is informed whether their solution is
incorrect, correct but suboptimal, or optimal. For those who achieve the optimal solution, a
cascade of confetti adds a celebratory touch!

4.3.3 Derivation and Configuration Visualizer

The Derivation and Configuration Visualizer is an interactive tool designed to enhance
user understanding of the dynamic programming algorithm for finding the longest common
subsequence of two strings. Users can input two strings into the tool, and the system will
automatically generate and display the memoization table. This feature enables users to
visualize the intermediate values the dynamic programming algorithm uses to calculate the
length of the LCS.

If a longest common subsequence exists for the given input strings, a dedicated button will
appear below the table. Clicking this button initiates an animated backtracking algorithm,
allowing users to dynamically observe the derivation of the LCS. Furthermore, users have
the option to explore all possible configurations of the LCS within each of the input strings,
additionally seeing the derivation using that configuration. The Derivation and Configuration
Visualizer offers a visually intuitive representation of the derivation process, providing
users with a comprehensive insight into both the dynamic programming algorithm and the
underlying structure of the LCS.
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Figure 4.10: The user inputs the strings abbab and babab into the Derivation and
Configuration Visualizer. The memoization table is generated and we observe that the
longest common subsequences of the two strings are abab and bbab , as indicated by the
buttons below the memoization table.

Figure 4.11: Upon clicking the button for the LCS abab , the tool animates the backtracking
algorithm, allowing us to observe the derivation of the LCS from the memoization table. We
also notice below the buttons a list of configurations of abab within the two input strings.

42



Figure 4.12: Upon selecting the second configuration of abab within abbab , the tool animates
the backtracking algorithm again, this time using the second configuration as the path.

4.3.4 Distribution Explorer

The Distribution Explorer tool provides users with an interactive platform to explore the
distribution of LCS strings taken from all pairs of strings of length n and m over an alphabet
of size σ. The maximum values for n and m are capped at 10 and the maximum value of σ
is capped at 15. This is to allow for a more comprehensive analysis of the data while still
accounting for the exponential growth of the data. Upon inputting the values for n, m, and σ,
users can examine a bar chart showcasing how many times each substring occurs as an LCS
of the two strings. This feature provides insights into the frequency distribution of different
substrings appearing as the LCS. Several edit properties can also be seen as patterns within
the distribution. To make the bar chart easier to parse for large sizes of n and m, users can
also apply some filters to the chart based on the distribution properties introduced earlier.
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Figure 4.13: The user inputs the lengths of two strings, one of length three and the other
of length four, over an alphabet of size two into the Distribution Explorer tool. The tool
displays the frequency of each LCS length, as well as the range of LCS lengths. By default,
the tool sorts the strings by their binary value. Upon hovering over the bar representing the
substring 1 , a popup appears informing the user that it occurs as an LCS 11 times.
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Figure 4.14: The user selects the option to sort the strings by their lexicographic order.
Furthermore, the user has elected to remove the second-longest substrings, since those appear
an equal number of times and thus do not provide any additional information.

4.4 Implementation Details

4.4.1 Edit Properties Explorer

Model Generator

The pre-generated models utilized within the Edit Properties Explorer are crafted through
a Python script. Each model is defined within two files adhering to the Wavefront Object
format: a .obj file containing vertex, normal, and texture coordinate data, and a .mtl file
specifying material properties. These files, following a consistent naming convention, facilitate
seamless loading and rendering within the Edit Properties Explorer. The script is structured
as follows:

1. modelZero(): This function generates a scaled 3D representation of the number zero,
used within the labels of the model. The function takes four parameters:

• position – a 3D vector representing the position of the model in space

• scaleFactor – the amount the label should be scaled to fit the model

• vertexList – a list of 3D coordinates representing the vertices of the model

• nextVertexIndex – the index of where the next vertex will be added to vertexList
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The function begins by defining two lists: zeroVertices, which contains the coordinates
that make up the zero model, and vertexIndices, whcih defines the faces of the
model using indices into zeroVertices. Subsequently, each vertex in zeroVertices
undergoes scaling by scaleFactor and translation by position before being appended
to vertexList. Next, a list of faces is created and populated with Face objects,
each defined by a list of vertex indices. Finally, position is updated to determine
the placement of subsequent label models, and a FaceComponents object is returned,
encapsulating the vertexList, faces, and nextVertexIndex, which are essential for
further model construction.

2. modelOne(): Analogous to modelZero, this function generates a scaled 3D representation
of the number one, contributing to label model creation.

3. constructFace(): This function is responsible for creating faces within a 3D model.
It takes five parameters:

• vertices – the vertices of the face

• vertexList – the vertices already defined in the model

• vertexMap – a dictionary mapping vertices to their indices in vertexList

• normalIndex – the index of the normal for the face

• nextVertexIndex – the index of where the next vertex will be added to vertexList

The function starts by initializing the empty array vertexIndices to record the indices
of the vertices of the face. Next, the function iterates over vertices to populate
vertexIndices. During each iteration, it checks if the current vertex is already in
vertexMap. If it is, the function retrieves the index of this vertex from vertexMap
and assigns it to the corresponding position in vertexIndices. If the vertex is not in
vertexMap, the function appends the vertex to vertexList, adds the vertex and its
index to vertexMap, assigns the index to the corresponding position in vertexIndices,
and increments nextVertexIndex. Upon completion, a Face object is instantiated
from vertexIndices and normalIndex, and a FaceComponents object is returned,
comprised of the newly created Face object, the updated vertexList, vertexMap, and
nextVertexIndex.

4. genObj(): This function is responsible for creating the .obj file for the model. It takes
three parameters: n and m are dimensions for the matrix, and objWriter is a file writer
object that writes the generated model to a file. The function starts by writing a line to
the file that specifies the material library for the model. It then constructs a matrix of
size n by m which is used as the basis for the model. The base of the model is set, and
vertexMap and nextVertexIndex are initialized for later use in tracking vertices. The
function then initializes empty lists for vertices, UVs, and normals. It also initializes an
empty list for objects, which will store the 3D objects (cubes and labels) that make
up the model. The function then enters a nested loop that iterates over the matrix.
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For each cell in the matrix, it creates a cube object. The cube is defined by its corners,
which are calculated based on the cell’s position in the matrix and its value. The cube
is then added to the list of objects. After creating all the cubes, the function creates
labels for the rows and columns of the matrix. These labels are also added to the list
of objects.Finally, the function writes all the vertices, UVs, normals, and objects to the
file. Each object is written following the format required by the .obj file format.

5. genMtl(): This function is responsible for generating the material library for a 3D
model. The function takes three parameters: n and m are dimensions for the matrix,
and mtlWriter is a file writer object that writes the generated material library to a
file. The function starts by determining the number of colors needed. It then creates
a gradient of colors based on a specific set of color stops. The function then enters a
loop that iterates over the colors. For each color, it writes a new material to the file.
The material is defined by its ambient color (Ka), diffuse color (Kd), and specular color
(Ks), which are all set to the current color. The material also has an emissive color
(Ke), which is set to black, a specular exponent (Ns), which is set to 10.0, an optical
density (Ni), which is set to 1.45, a dissolve factor (d), which is set to 1.0, and an
illumination model (illum), which is set to 2. After writing all the color materials, the
function writes a material for the string labels. This material is black and has the same
properties as the color materials.

Exploratory Tool

The Edit Properties Explorer was created using WebGL. WebGL is a JavaScript API for
rendering interactive 2D and 3D graphics within any compatible web browser without the use
of plug-ins. For this project, we created a modular system that allows for the easy creation
of new visualizations. This system spans over fifteen files, seventeen classes, and roughly
2000 lines of code. Leveraging this system facilitated the tool’s development, debugging, and
revision process. The driver code for the visualization is organized as follows:

1. main(): This function initializes the application, establishing global references to HTML
input elements. It sets up the WebGL canvas, configures viewport, enables depth buffer
and backface culling, activates shader program, initializes models, lighting, and camera,
and registers event listeners for user input. Subsequently, it initiates the render loop.

2. render(): Serving as the main rendering loop, this function draws each frame of the
3D scene. It clears the canvas, checks if the 3D model is loaded, updates camera matrix,
adjusts camera position and orientation, updates lighting parameters, model matrix,
and draws the 3D model. This function continuously requests the next frame to be
drawn, thus maintaining a rendering loop.

3. changeMatrix(): This function adjusts the matrix dimensions based on user input. It
validates input values, prompts the user if larger models may lead to longer rendering
times, and reinitializes the model, lighting, and camera to prepare for rendering the
updated matrix.
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4. changeLCS(): Responsible for selecting the cell in the matrix requested by the user,
this function parses binary strings, calculates the index of the mesh, retrieves the length
of the LCS, generates the set of LCSs, and updates the user interface accordingly before
clearing edit operation inputs.

5. performOperation(): This function executes specified operations on provided binary
strings, displaying the result in the matrix. Depending on the operation, this function
either complements the kth bit of the second string, permutes the characters of the
second string, computes bitwise complements, or reverses both strings. It calculates
the index of the new cell, selects it, retrieves the length of the LCS, generates the set of
LCSs for the new strings, and updates the user interface.

4.4.2 Matrix Builder

Exploratory Mode

The Matrix Builder is built using JavaScript and heavily relies on scalable vector graphic
(SVG) elements to visualize the matrix, as they are dynamic and automatically scale to fit
the content. The code is organized into several helper functions, each performing a specific
task:

1. setup(): This function establishes global references to various HTML input elements,
configures the SVG matrix, and sets up event listeners for input elements. Additionally,
it generates the color gradient for the matrix and initializes the matrix with a default
size of 1x1. The matrix is comprised of Cell objects, a data structure simplifying the
matrix update process. The Cell object tracks the cell’s location, value, and derivation
method.

2. selectCell(): This function is used as an event handler for click events on the cells
of the matrix. This function begins by calculating the row and column of the clicked
cell. It then checks if the cell has existing information. If so, the function resets the
cell’s information, removing it from the selected cells array if applicable. If the cell has
no information, the function calculates the LCS length of the cell. The cell is marked
as user-selected, added to the selected cells array, and its fill color is set based on the
length property. The color is obtained from the gradient map using the length as the
index.

3. fillMatrix(): It begins by creating an empty queue and populating it with the
currently selected cells. The function then enters a loop until the queue is empty. In
each iteration, the function removes the first cell from the queue, retrieves its row and
column, and checks four properties for each cell: commutative, complement, reverse, and
concatenation. Depending on certain conditions, the function updates the corresponding
cell in the matrix and adds it to the queue. The commutative property is only checked
if the matrix is square, and it fills in symmetric cells with respect to the principal
diagonal. The complement property fills in symmetric cells with respect to the counter

48



diagonal. The reverse property fills in the cell at the reverse of the coordinates in
their binary representation. The concatenation property fills in cells resulting from
concatenating a string with a portion of that cell. The function updates the length and
derivation of the cell in the matrix, changes the fill attribute to match the current cell,
and adds it to the queue.

Puzzle Mode

The Puzzle Mode of the Matrix Builder uses the same underlying structure as the
Exploratory Mode, with additional functionality to support the puzzle-solving process.

1. loadLevelData(): This function takes a level number as input and loads the corresponding
level data from a JSON file. The function starts by asychronously fetching the JSON
file from the server. The fetched data is then parsed as text and stored in several
variables:

• rows – the number of rows in the matrix
• columns – the number of columns in the matrix
• allowedProperties – a map of which edit properties are enabled for the level
• goal – the path to the SVG file containing the goal matrix
• optimalSolution – the optimal solution for the level
• notes – additional information about the level

The function then initializes the matrix with the specified dimensions, sets the allowed
properties for the level, and loads the goal matrix from the SVG file. The goal matrix
is displayed to the user, alongside the notes for the level.

2. checkSolution(): This verification function begins by evaluating the user’s solution
and applying the fillMatrix() function from Exploratory mode to the input matrix.
It then compares the input matrix with the goal matrix. If the values in both are the
same, the function proceeds to check if the user’s solution is optimal, meaning the
user selected the fewest number of entries required. If the user’s solution is optimal,
a success message is displayed. In case the solution is correct but not optimal, the
function indicates so with an appropriate message. If the matrices fail to match, the
function notifies the user of the failure and resets the matrix.

4.4.3 Derivation and Configuration Visualizer

The Derivation and Configuration Visualizer, similar to the Matrix Builder Tool, is
constructed using JavaScript and SVG elements. The code is also organized in a modular
fashion, with each function serving a specific purpose:

1. setup(): This function establishes global references to various HTML input elements
and configures the SVG table.

49



2. fillTable(): This function is responsible for populating the table with values from the
input strings. It retrieves the input values, truncates strings longer than 10 characters
to manage the LCS complexity, clears and appends a new SVG table, and manages the
display of the configurations section based on the existence of an LCS.

3. generateSVGTable(): This function generates an SVG table representing the LCS
problem. It calculates the dimensions, applies the dynamic programming algorithm to
compute the LCS table and subsequences, creates buttons for each subsequence, sets
table dimensions and outlines, populates cells with appropriate values, and appends
the table to the HTML document.

4. displayLCSInformation(): Displays information about a specific LCS in a separate
HTML element, updating the content of the configurations section and triggering
animation of the backtracking process.

5. animateBacktracking(): Animates the backtracking process through the LCS table.
It retrieves the backtracking path, disables user interaction during animation, animates
the path by drawing lines and highlighting relevant cells, and re-enables user interaction
after animation completion.

4.4.4 Distribution Explorer

The Distribution Explorer is primarily constructed using Chart.js, which is a third-party
open source library for generating charts in JavaScript. Because there are a lot of parameters
involved in generating a chart, here we give only a high-level overview of the steps taken to
generate a distribution:

The distribution data is pre-generated from a Python file and stored in a JSON file named
after the distribution dimensions. The generateDistribution() function begins by checking
if a chart object already exists. If so, it clears the canvas and removes any residual styling. It
retrieves the values of n, m, and σ from user input boxes and initializes empty arrays for
strings and occurrences. The function determines the filename of the JSON file based on the
values of n, m, and σ, ensuring the correct file retrieval. It generates a gradient map for the
chart’s color bars and resizes the chart area accordingly. Asynchronously, the function fetches
the JSON file where the distribution data is stored. The fetched data is parsed as text and
stored in a variable. The function iterates over the string occurrences property of the data
object, extracting strings and occurrences and populating the respective arrays. Options for
scales and zoom of the chart are then defined. Finally, a new Chart object is created, passing
in the chart area element, chart type, chart data, and options. The chart object is stored in
a variable for further manipulation if needed.

50



Chapter 5

Conclusion and Future Work

The overarching aim of this project was to develop mathematical results and an interactive
tool related to the longest common subsequence problem. Based on our background research,
we chose to focus mainly on the Chvátal-Sankoff constants, where we established new
state-of-the-art lower bounds in the classical two binary string case as well as in the extended,
general cases. We additionally explored properties of the LCS problem more generally,
proving, to the best of our knowledge, several novel results concerning the effects of character
edits on longest common subsequences and the distributions of longest common subsequences
of certain lengths. To complement these results, we created BLISS Playground, a website
which allows for deeper visualizations of the LCS problem. To our knowledge, this is the
only publicly available web application designed to explore the LCS problem beyond just its
dynamic programming solution, and in fact, the only website we could find that correctly
visualizes the dynamic programming algorithm’s ability to locate all the longest common
subsequences of an input, instead of just one of them.

To improve theoretical bounds on the well-studied Chvátal-Sankoff constants, we took
three approaches to improving a previous algorithm in the literature: parallelizing independent
recurrence computations, recursively sub-chunking the problem so that memory I/O could
be performed sequentially, and exploiting symmetries inherent to the LCS problem. While
the techniques we employed here are specific to this particular algorithm, they demonstrate
how restructuring the way sequences are represented as data away from a purely contiguous
format can be of significant benefit, an idea which may be applicable in speeding up other
sequence algorithms.

We created BLISS Playground initially as a tool to aid in our own exploration of the LCS
problem. However, this soon grew into a project aiming to address the gap of a publicly
available research and education tool for visualizing and understanding the LCS problem
more holistically. The vision of BLISS was to aid in the exploration of the LCS problem
through intuitive visualizations and to educate users about the many patterns inherent to the
seemingly simple problem. Indeed, BLISS has already served its purpose well: we discovered
Property 15 as a result of playing around with its Distribution Explorer function. In keeping
with our vision of BLISS as a tool useful for education, exploration, and research alike, the
repository for BLISS is publicly available for anyone to contribute to.
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Combining our mathematical results and interactive website together in this project
makes it both of academic interest and accessible to a wider audience. Subsequences are a
fundamental concept in both computer science and math, and so long as the LCS problem
sees applications in computational biology, computational linguistics, version control, or any
of the other myriad domains it touches, understanding them will remain as important as ever.

5.1 Future Work
While we have made several contributions to the LCS problem, we believe that there is

still room for improvement. In particular, the generalized version of the algorithm we present
in Section 3.4 and Section 3.3 can be further optimized by taking advantage of the powerful
symmetries present in the LCS problem. For example, an LCS of a d-tuple of strings does
not depend on the order of those strings, potentially saving up to a factor of d! (the number
of permutations of d strings) computations. Similarly, the LCS length is independent of the
labelling of each character in the string, meaning the same evaluation is performed up to σ!
times on strings that are identical up to relabelling (e.g., the length of an LCS of bcab and
babc is equal to the length of an LCS of cabc and cbca ). This may allow for significantly
improved lower bounds in the general case, especially for larger values of σ and d.

While approximations of the value of the Chvátal-Sankoff constant for pairs of binary
strings have been made (see Table 3.1), it seems that most of the work for the general case
has been focused on tightening the upper and lower bounds. We believe that performing
similar calculations to obtain precise approximations of different γσ,d could be an avenue for
future research yielding noteworthy results. Kiwi and Soto, as well as Steele, express interest
in finding a relationship between different γσ,d [30, 45]. We agree that such a relationship,
if it exists, would be interesting, and also wonder if having precise approximations for the
constants would aid in finding a relationship.

In a time where artificial intelligence is becoming increasingly popular, we are also curious
if massive parallel computing power combined with techniques such as deep reinforcement
learning [42] and new neural network-based sequence alignment models [29] could lead to
further improvements on the lower or upper bounds on the Chvátal-Sankoff constant. If so, it
would be intriguing to investigate whether these techniques may be used to solve additional
combinatorial string computation problems.

We also believe BLISS Playgounrd could be expanded in a number of ways. For instance,
the Matrix Builder puzzle mode could be extended in such a way as to gradually introduce
the user to LCS properties of increasing complexity in a hands-on way, with accompanying
diagrams and textual explanation. Further, the Derivation and Configuration Visualizer
could be augmented with additional explanation of the dynamic programming algorithm
beyond what this report provides. User testing should additionally be performed to identify
pain points, confusing features, and additional opportunities for improvement. Ultimately,
the goal could be for BLISS to find its way into classrooms as a fun, intuitive way to teach
dynamic programming and explore the LCS problem more holistically.
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Source code for our implementations of the algorithms described in this report and BLISS
Playground can be found at https://github.com/Statistics-of-Subsequences.
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Appendix A

Complete Results for General γσ,d
Constants

Here we list out all of our results for the Feasible Triplet algorithm for all σ, d values,
even for smaller values of ℓ which did not result in better lower bounds.

σ
ℓ = 1 2 3 4 5 6 7 8 9 10

2 0.666666 0.500000 0.400000 0.333333 0.285714 0.250000 0.222222 0.200000 0.181818
3 0.666666 0.488372 0.384615 0.317073 0.269662 0.234567 0.207547 0.186104 0.168674
4 0.615384 0.450000 0.352583 0.289398 0.245283 0.212786 0.187869 0.168164 0.152193
5 0.615384 0.432494 0.335517 0.273884 0.231234 0.200004
6 0.592592 0.421434 0.324014 0.263369
7 0.592592 0.413611 0.317032
8 0.579185 0.405539
9 0.579185 0.400949
10 0.570155
11 0.570155
12 0.563566
13 0.563566
14 0.558494

d

15 0.558494
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σ
ℓ = 2 2 3 4 5 6 7 8 9 10

2 0.727273 0.620690 0.542373 0.480769 0.431138 0.390438 0.356545 0.327935 0.303490
3 0.673913 0.516896 0.421518 0.356717 0.309424 0.273275 0.244710 0.221555 0.202402
4 0.643216 0.484937 0.389008 0.324338 0.277835 0.242798
5 0.626506 0.461402 0.365329 0.302236
6 0.610925 0.445434 0.349848
7 0.602493 0.434514
8 0.594016 0.425774
9 0.587900
10 0.582349
11 0.578464
12 0.574269

d

13 0.571067

σ
ℓ = 3 2 3 4 5 6 7 8 9 10

2 0.747922 0.644966 0.573254 0.521091 0.479452 0.444577 0.414651 0.388537 0.365485
3 0.687410 0.545373 0.457311 0.394945 0.347798
4 0.651309 0.498525 0.405702
5 0.632165 0.474304
6 0.617761
7 0.607261
8 0.598782

d

9 0.592177

σ
ℓ = 4 2 3 4 5 6 7 8 9 10

2 0.758576 0.657642 0.589484 0.539129 0.499229 0.466481 0.438799 0.414876 0.393811
3 0.692950 0.556649 0.472979
4 0.657241 0.509237
5 0.636022

d

6 0.621057

σ
ℓ = 5 2 3 4 5

2 0.765446 0.665874 0.599248 0.549817
3 0.697737 0.564841
4 0.661274d

5 0.639248

σ
ℓ = 6 2 3 4

2 0.770273 0.671697 0.605786
3 0.701317d
4 0.664722
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σ
ℓ = 7 2 3 4

2 0.773975 0.676041 0.610590
d 3 0.704473

σ
ℓ = 8 2 3 4

2 0.776860 0.679441 0.614333
d 3 0.707165

σ
ℓ = 9 2 3

2 0.779259 0.682218
d 3 0.709501

σ
ℓ = 10 2

2 0.781281
d 3 0.711548
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Appendix B

Proofs of LCS Properties

Proof of Property 1.

Let x and y be strings of length n and m, respectively. The length of the LCS of x and
y is bounded by the number of characters in the shorter string. This is because the LCS
is a subsequence of both x and y, so it cannot contain more characters than either string.
Therefore, the length of the LCS is at most min(n,m). The length of the LCS is also bounded
below by zero, since if x and y have no common characters, then the LCS is the empty
string. ■

Proof of Property 2.

The order of characters within x and y do not change, so the set of possible subsequences for
x and y stay the same. The set of LCS is a subset of the set of possible subsequences for
both x and y, so it will also stay the same. ■

Proof of Property 3.

Assume we know LCS
(
x, y
)

for the given strings x and y. Without loss of generality,
consider some z ∈ LCS

(
x, y
)
. Additionally, we define X = Hx and Y = Hy. We begin by

considering the scenario where |H| = 1. Since that the first character X and Y is the same,
it follows that any longest common subsequence of X and Y must begin with this character.
The remaining portion of the strings are x and y, and since we already know that the LCS of
x and y is z, it naturally follows that the LCS of X and Y is Hz.

As the length of H increases, we can iteratively apply the same reasoning, working
backward from the end of H to its beginning. Therefore, the LCS of Hx and Hy must be
Hz, for all H ∈ Σ∗. A similar line of thought can be extended to the situation where we
append the same string to both x and y, however this time we progress forward from the
start of T to its end. Therefore, the LCS of xT and yT must be zT , for all T ∈ Σ∗. ■
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Proof of Property 4.

Assume we have two strings A,B ∈ Σ∗ such that LCS
(
A,B

)
= {λ}. Let z be any LCS of

Ax and By. z cannot simultaneously include characters from both A and B, since that would
violate the non-commonality between A and B. Therefore, z must either include characters
from exactly one of A or B or neither.

In the case that z includes characters from A but not B, it must be a longest common
subsequence of Ax and y, making z ∈ LCS

(
Ax, y

)
. Similarly, if z includes characters from B

but not A, it must be a longest common subsequence of By and x, making z ∈ LCS
(
x,By

)
.

We can see that the case where z includes characters from neither A nor B is already
considered in the previous two cases. Therefore, z ∈ LCS

(
Ax, y

)
∪ LCS

(
x,By

)
. ■

Proof of Property 5.

We know that the LCS of x and z must be at least as long as the LCS of x and y, since y is
a subsequence of z. Therefore, any LCS of x and y will also be a subsequence of x and z.
However, we have to take into account the possibility that the addition of the character C
increase the length of the LCS. This will happen if C is critical with respect to the LCS of x
and z.

C is critical when we can affix C to an LCS of x and y to get a subsequence of x and z.
Let x and y have an LCS w that allows for this. In this scenario, x and z have a common
subsequence one longer than w, since the subsequence is w with C inserted to it. We cannot
remove C from z, as we know that affixing C causes the subsequence to be longer then the
LCS of x and y, and removing C from z gives us y. Thus, C is critical.

This common subsequence must also be an LCS, as any characters other than C that are
part of the LCS would already be part of w, since those characters already existed in both
x and y. Therefore, when C is critical with respected to the LCS of x and z, inserting C
increases the LCS length by one. ■

Proof of Property 6.

Let C denote the character y[k]. We know that the LCS of x and z must be at most as long
as the LCS of x and y, which is true when C is not a part of at least one LCS of x and y (in
which case that LCS is also an LCS for x and z). However, this is not always the case. If C
is critical for every LCS of x and y, then the length of the LCS will decrease since the LCS
of x and z will not include C. Since the change of length is affected by one character, the
length of the LCS of x and z will be one less than the length of the LCS of x and y. ■

Proof of Property 7.

Substitution is equivalent to deleting the kth character of the string and inserting C in the
same position. Therefore, we can determine the effect of a substitution by applying Properties
6 and 5, in that order. There are four possible scenarios to consider:
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1. There is some w ∈ LCS
(
x, y

)
such that y[k] is not critical and the insertion

of C into w forms an LCS of x and z. Under Property 6, deleting y[k] does
not change the LCS length. Under Property 5, inserting C increases the LCS length.
Overall, the LCS increases in length by one.

2. There is some w ∈ LCS
(
x, y

)
such that y[k] is not critical but the insertion

of C into w does not form an LCS of x and z. Under Property 6, deleting y[k]
does not change the LCS length. Under Property 5, inserting C does not change the
LCS length. Overall, the LCS length remains the same.

3. For all w ∈ LCS
(
x, y

)
, y[k] is critical but the insertion of C into some w

forms an LCS of x and z. Under Property 6, deleting y[k] decreases the LCS length.
Under Property 5, inserting C increases the LCS length. Overall, the LCS length
remains the same.

4. For all w ∈ LCS
(
x, y

)
, y[k] is critical and the insertion of C into every w

does not form an LCS of x and z. Under Property 6, deleting y[k] decreases the
LCS length. Under Property 5, inserting C does not change the LCS length. Overall,
the LCS decreases in length by one.

Therefore, the effect of a substitution on the LCS length depends on whether y[k] is critical
and whether the insertion of C into the LCS of x and y forms an LCS of x and z. ■

Proof of Property 8.

Permutations of characters are equivalent to performing a series of substitutions. Since
the effect of a substitution changes the LCS length by at most one, the effect of repeated
substitutions is equal to the sum of the effects of each individual substitution. In the case
where every substitution decreases the LCS length, the total decrease in LCS length is equal
to the number of substitutions. In the case where every substitution increases the LCS length,
the total increase in LCS length is equal to the number of substitutions. Since any other
scenario will involve a combination of increasing and decreasing the LCS length, the total
change in LCS length will be in the range [−k, k]. ■

Proof of Property 9.

Let z ∈ LCS
(
x, y
)
. This means z is a subsequence of both x and y, and its length is maximized

among all common subsequences of x and y. We know that z can be obtained by removing
some characters from x and y to form a common subsequence. Therefore, we can remove
the mappings of the same characters to form a common subsequence of φ(x) and φ(y). As a
result, the common subsequence that is formed will be φ(z).

Suppose there exists another common subsequence w of φ(x) and φ(y) such that
|w| >

∣∣φ(z)∣∣. Then, by applying φ−1 to w, we would obtain a common subsequence of
x and y with length greater than |z|, which contradicts the maximality of |z| as an LCS of x
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and y. This means φ(z) has maximum length among all common subsequences of φ(x) and
φ(y). Therefore, φ(z) ∈ LCS

(
φ(x), φ(y)

)
. ■

Proof of Property 10.

Let z ∈ LCS
(
x, y
)
. This means z is a subsequence of both x and y, and its length is maximized

among all common subsequences of x and y. We know that z can be obtained by removing
some characters from x and y to form a common subsequence. Therefore, we can remove the
same characters, however in reverse order, to form a common subsequence of xR and yR. As
a result, the common subsequence that is formed will be zR.

Suppose there exists another common subsequence w of xR and yR such that |w| >
∣∣zR∣∣.

Then, by reversing w, we would obtain a common subsequence of x and y with length
greater than |z|, which contradicts the maximality of |z| as an LCS of x and y. This
means zR has maximum length among all common subsequences of xR and yR. Therefore,
zR ∈ LCS

(
xR, yR

)
. ■

Proof of Property 11.

Using Property 3, we establish that the length of the LCS of HxT and HyT is |H|+L
(
x, y
)
+|T|.

Similarly, applying Property 3 again, we find that the length of the LCS of PxS and PyS
is |P|+ L

(
x, y
)
+ |S|. Since |H| = |P| and |T| = |S|, it follows that the length of the LCS of

HxT and HyT equals that of PxS and PyS. ■

Proof of Property 12.

Let x and y be strings of length at least k such that L
(
x \ x[k], y \ y[k]

)
= L

(
x, y
)
− 2.

Without loss of generality, delete x[k] from x first. Since the LCS length can only decrease
by one per deletion, deleting x[k] must reduce the LCS length by one. Thus, by Property 6,
x[k] is critical for the LCS of x and y. For the same reason, y[k] must be critical for the LCS
of x \ x[k] and y. But if y[k] is critical in the LCS of x \ x[k] and y, then it must exist in
that LCS. Since x[k] has already been deleted, x[k] ̸= y[k]. ■

Proof of Property 13.

The number of LCS is minimized when x and y have no common symbols. In this case, the
only LCS of x and y is the empty string, so the set of LCS has exactly one element.

Without loss of generality, assume n < m. The number of LCS is maximized when x
is composed of distinct symbols and y contains xR as a subsequence, with the remaining
symbols of y being distinct from those in x. In this case, every symbol in x is a subsequence
of y. We can see that there is no subsequence of x and y that is of length greater than one.
This is because if there were, then either x or y would have to contain a repeated symbol,
which would violate the assumption that x and y are each composed of distinct symbols.
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Therefore, the set of LCS is the set of symbols in x, which has n elements. By the same
reasoning, if m < n, the set of LCS has m elements. Therefore, the number of LCS is at
most min(n,m). ■

Proof of Property 14.

Let z be a string of length between 0 and min(n,m). Construct strings x = zC1 . . . C1 and
y = zC2 . . . C2, where C1, C2 ∈ Σ, such that |x| = n and |y| = m. Since exactly the first
|z| characters in x and y are the same, and none of the remaining characters are the same,
z ∈ LCS

(
x, y
)
. ■

Proof of Property 15

Note that this property only applies to pairs of binary strings. We will later expand this
property to the more general case of any number of strings with an arbitrary alphabet. We
will prove the binary property first, which requires new notation.

k-Block Formulation

To facilitate this proof, we introduce the k-block representation of a string. For any binary
string, we can represent it as alternating blocks of contiguous 1 s and 0 s. For example, the
string 1001110 is represented as follows:

1 2 3 1
1 0 1 0

l =

We say that a binary string s of length n − 1 is represented by k0 blocks of 0 s and
k1 blocks of 1 s. Furthermore, we denote the length of each block of 0 s by l01 , ..., l

0
k0

, and
the length of each block of 1 s by l11 , ..., l

1
k1

. We denote the number of 0 characters as
L0 =

∑k0
i=1 l

0
i , and the number of 1 characters as L1 = n− 1− L0 =

∑k1
i=1 l

1
i . Finally, we

define p and q as follows:

p =


0, if s begins and ends with 1
1, if s begins and ends with opposite symbols
2, if s begins and ends with 0

 = 2− q

This representation will make it easier to reason about and demonstrate several useful
properties.
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Placing a Character in a Single String

We are interested in finding how many times a string s of length n− 1 appears as an LCS
in all possible pairs of two strings a and b of length n. To do this, we work in reverse.

Let s = t = u. Clearly, s is an LCS of t and u. Our original problem is equivalent to
counting the number of unique string pairs made by inserting a character to t and a character
to u such that s is still an LCS of both strings. This will necessarily count all possible pairs
of strings of length n whose longest common subsequence is s.

We note that, starting with two copies of s, adding a single character to only one of the
strings does not immediately affect the LCS length. Thus, to count the number of unique
pairs with s as an LCS, we can count the number of unique ways to add a character to one
string, then look at the number of unique ways to add a character to the second string such
that the LCS length does not change.

Lemma 2. There are exactly k0 + L1 − k1 + p unique ways of inserting a 0 in s.

Proof. Firstly, note that where you place a 0 inside or next to any given 0 -block does not
matter. That is, there is only one unique way of placing a 0 inside or next to a given 0 -block.
For instance, the following placements inside 1001110 are identical:

l = 1 3 3 1
1 0 1 0

1000111010001110 10001110

However, it does matter which 0 -block you choose to place a 0 inside of or next to. Thus,
there are exactly k0 unique ways of placing a 0 inside or next to the 0 -blocks in s.

Unlike with 0 -blocks, it does matter where a 0 is placed inside a 1 -block. For instance,
these are unique placements within the same 1 -block in 1001110 :

l = 1 2 1 1 2 1
1 0 1 0 1 0

10010110

is different from
l = 1 2 2 1 1 1

1 0 1 0 1 0

10011010

For a 1 -block of length l1i , there are l1i − 1 ways of placing a 0 inside of it. Again, it also
matters which 1 -block you place a 0 inside of. Thus, there are exactly

∑k1
i=1(l

1
i −1) = L1 −k1

unique ways of placing a 0 inside the 1 -blocks in s.
Since we have considered placing a 0 next to or inside of each 0 -block, and all 1 -blocks

are surrounded by 0 -blocks, we need not consider placing 0 ’s next to 1 -blocks, with one
exception. If a 1 -block occurs at the start of the string, we must consider placing a 0 to the
left of it as a unique possibility, and if a 1 -block occurs at the end of the string, we must
consider placing a 0 to the right of it as a unique possibility.
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l = 1 1 2 3 1
0 1 0 1 0

01001110

The number of additional ways of placing a 0 because of this is exactly equal to q, by
construction.

Combining all of these possible placements, there are exactly k0 + L1 − k1 + q unique
ways of placing a 0 in s. ■

We can use the same argument for the number of placements for a 1 in s to yield the
following Lemma:

Lemma 3. There are exactly k1 + L0 − k0 + p unique ways of inserting a 1 in s.

We can combine these two Lemmas to count all possible ways to insert a character into s:

Lemma 4. There are exactly n+ 1 ways of placing a 0 or 1 in s.

Proof. By Lemmas 2 and 3, there are k0 +L1 − k1 + q unique ways of placing a 0 in s and
k1 + L0 − k0 + p unique ways of placing a 1 in s. Summing these yields

k0 + L1 − k1 + q + k1 + L0 − k0 + p = L1 + q + L0 + p

= L1 + L0 + 2

= (n− 1) + 2

= n+ 1

■

Inserting a Second Character

Let s = t = u. Without loss of generality, add a character to t. We now ask how many
ways we can add a character to u such that s ∈ LCS

(
t, u
)
.

Lemma 5. There are exactly n(n+ 1) ways of placing a 0 or a 1 in t and a 0 or a 1 in u
such that their longest common subsequence is s.

Proof. By Lemma 4, there are exactly n+ 1 unique strings that can be created by inserting
a character into t. Since the LCS of two strings of length n can only be length n if the two
strings are equal, any insertion into u will not affect the LCS length except for the insertion
that results in the same string as t. Thus, there are n + 1 − 1 = n ways of inserting the
second character that result in a different string from t, so there are n(n+ 1) ways in total to
add a character to both strings without modifying the LCS length. ■
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Generalization

We now generalize this distribution property for any number of strings with an arbitrary
alphabet:

Lemma 6. Across all possible d-tuples of strings of length n and alphabet size σ ≥ 2, every
possible string of length n − 1 over that same alphabet each appears as an LCS exactly
(σn− n+ 1)d − (σn− n+ 1) times in total.

Proof. First, let us consider the case where we have only two strings but an alphabet Σ of
size σ ≥ 2. We use the same definitions as in the binary case, as well as one new definition.
In the binary case, a 0 -block can only be next to 1 -blocks or the ends of the string, meaning
we could count all insertions at the edges of a 1 -block as part of our count for an insertion
inside of a 0 -block. In the general case, this is no longer true, as we could, for example, insert
a 0 in between a 1 -block and a 2 -block. To account for this difference, we define a seam as
a position between two blocks or at the ends of the string.

Let a character a ∈ Σ be given. As before, there is exactly one way of placing a inside
any given a-block, so there are ka unique ways of placing a inside all a-blocks. Further, a can
be placed inside the blocks of some other character b in

kb∑
i=1

(lbi − 1) = Lb − kb

ways. Thus, a can be placed inside the blocks of all other characters c ∈ Σ in

∑
c∈Σ\{a}

(
kc∑
i=1

lci − 1

)
=

∑
c∈Σ\{a}

(Lc − kc)

ways.
However, so far we have considered only placing inside blocks, but not next to them at

their seams. There are ∑
c∈Σ

(kc) + 1

seams in total (number of blocks + 1).
Placing a at a seam is a unique placement if the seam does not border an a-block. So the

total ways of placing a character a at seams is∑
c∈Σ

(kc) + 1− 2ka

Each block borders exactly two seams, and since no blocks of the same character may
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border each other, no overcounting occurs. Thus, for placing specifically a, there are

ka +
∑

c∈Σ\{a}

(Lc − kc) +
∑
c∈Σ

(kc) + 1− 2ka = ka +
∑

c∈Σ\{a}

(Lc − kc) +
∑

c∈Σ\{a}

(kc) + 1− ka

= ka +
∑

c∈Σ\{a}

(Lc) + 1− ka

=
∑

c∈Σ\{a}

(Lc) + 1

= n− La

ways. So, for placing any symbol, there are∑
c∈Σ

(n− Lc) =
∑
c∈Σ

(n)−
∑
c∈Σ

(Lc)

=
∑
c∈Σ

(n)− (n− 1)

= σn− n+ 1

ways.
As with the binary case, the second character inserted can be added anywhere so long as

the insertion results in a different string from the first insertion. So there are

(σn− n+ 1)(σn− n)

ways of placing a symbol each in two strings such that the LCS length remains the same.
To generalize this to d ≥ 2 strings, the idea remains the same. The placement in the first

string does not matter. The only restriction is that the placements in the following d − 1
strings cannot all be the same as the placement in the first string. Thus, there are

(σn− n+ 1)((σn− n+ 1)d−1 − 1) = (σn− n+ 1)d − (σn− n+ 1) (B.1)

ways of doing these placements in total.
For each of the (σn− n+ 1) unique strings created from inserting into the first string,

there are (σn − n + 1)d−1 unique combinations for the other d − 1 strings obtained by
inserting a character into each of them. Since we do not want to count the combination where
every resultant string is identical, we subtract that possibility from the count, resulting in
Equation B.1. ■
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