
ScreamaeraX: Modeling Laryngeal
Surgical Robots Using Differential

Dynamic Logic

A Major Qualifying Project (MQP) Report
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements
for the Degree of Bachelor of Science in

Computer Science

By:

Natalie McClain

Project Advisors:

Prof. Rose Bohrer
Prof. Loris Fichera

Date: April 2023

This report represents the work of one or more WPI undergraduate students submitted to
the faculty as evidence of completion of a degree requirement. WPI routinely publishes

these reports on the web without editorial or peer review. For more information about the
projects program at WPI, see http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

Abstract

Surgical robots are a benefit to both doctors and patients, but carry risks in their usage. Modeling them
as cyber-physical systems allows us to formally prove that they will not violate safety conditions. The
Super-elastic Continuum Robot for Endoscopic Articulation and Manipulation (SCREAM) is a laryngeal
endoscopic robot designed for better reachability within the larynx. We created mathematical models with
differential equations of a SCREAM’s motion in progressively more complex ways. We used Differential
Dynamic Logic (dL) to prove the safety of these models with a proof assistant. In this, the safety condition
was not stabbing the larynx of a patient. We created four models, one in two-dimensions and three in
three-dimensions, each one with a closer to accurate model of motion than the previous.

i

Acknowledgements

I would like to thank my advisors, Professors Rose Bohrer and Loris Fichera, for their support and feedback
throughout the project. Professor Bohrer provided familiarity with software verification and experience with
the topics as well as keeping me focused on the project. Professor Fichera’s experience with robotics was
invaluable, especially as I got into more complex movements of the robot. I’d also like to thank Boots
McClain and the little team of other solo-MQP students who helped keep me on track the last several
months.

ii

Contents

1 Introduction 1

2 Background: Differential Dynamic Logic and KeYmaera X 1

2.1 Hybrid Programs . 2

2.2 Formulas . 2

2.3 Defining Systems and Proofs . 3

2.4 KeYmaera X . 4

3 Related Work 4

3.1 SCREAM . 4

3.2 Previous Verification with a Surgical Robot . 5

4 Preparation 6

5 Models and Results 7

5.1 Two Dimensional Model . 7

5.2 Three Dimensional Translation Model . 8

5.2.1 Polar Model . 9

5.2.2 Cartesian Model . 10

5.3 Three Dimensional Hinge Model . 11

6 Conclusion and Future Work 14

Appendices 16

A 2d Model and Proof 16

B 3d-translatePolar Model and Proof 18

C 3d-translate Model and Proof 21

D 3d-Hinge Model and Proof 28

References 38

List of Tables

List of Figures

1 The location of 3d-translate in a cross section of the larynx 9

2 The movement of 3d-hinge . 12

iii

1 Introduction

The use of an endoscopic instrument to treat a benign or pre-malignant tumor in the folds of the larynx

presents a more appealing option for patients than alternatives [1]. The procedure is less invasive than

traditional methods, and can often be completed in an outpatient setting while the patient is awake, removing

the need to recover from general anesthesia. Previous Major Qualifying Projects have designed such a robot

to better access the laryngeal folds, and use a laser to remove the tumors [2].

For this project, we sought to model this robot as a Cyber-Physical System. By modeling the

movement of this robot and it’s environment, we can prove safety statements. Because individuals’ larynges

are different, and very complex shapes, the models are forced to use a simplified shape [3].

To create these models, we used KeYmaera X, an axiomatic Tactical Theorem Prover for Hybrid

Systems [4]. This program gave us a framework to define the problem, and assisted in proving the model. For

this project we developed three models, with increasing complexity. Chapters 2 and 3 will explain KeYmaera

X and Differential Dynamic Logic (dL) in further detail, as well as further detailing how this method has

been used with surgical robots previously. In chapter 4, we will explain the preparation undergone in the

early stages of this project. Chapter 5 will explain the models and how we proved them, and finally chapter

6 will explain what further work can be done in this field.

2 Background: Differential Dynamic Logic and KeYmaera X

Cyber-physical systems (CPS) are, as the name suggests, systems that are both cyber and physical. In

this case, cyber describes computation, control, and communication while physical describes motion or any

other physical properties. They are used to model everything from planes to robots to autonomous vehicles.

Previous work has been done to prove how CPS can be used to verify safety across the abstraction gaps

between a model and real physics [5]. Through the use of sandboxing, a potentially unsafe model can be caught

if it violates safety conditions by making a nondeterministic choice, and instead will follow a deterministic

path that is known to be safe. Cyber-physical systems are often modeled with hybrid programs, which we

will be focusing on from now on.

For this project, we used dL to create our models [4]. We describe dL’s syntax and semantics, i.e.,

notations and their meanings. The semantics are state-based: each state ω maps variables x to real numbers

ω(x) in ∈ R. The syntax consists of terms, hybrid programs, and formulas. Terms are polynomials with real

1

values and a numeric meaning in each state. Hybrid programs may nondeterministically change the state

when run. Formulas are either true or false in each state. Hybrid programs and formulas may contain each

other.

2.1 Hybrid Programs

We are using the definitions from Chemical Case Studies in KeYmaera X [6]. Hybrid programs α, β are

defined by

α, β ::= ?P | x := e | x′ = f(x)&Q | α ∪ β | α;β | α∗

The hybrid programs (HP) are defined by how they run. From a defined start state, what final

states can they reach? They can be deterministic, nondeterministic, or terminate early and not reach any

final state.

The test program, or ?P never modifies the state. In this context, P is a formula, meaning it is

either true or false (see above). In this case that it is true, the test ends in the current state. But if it

is false, then there is no final state, instead causing an execution failure. The next program, deterministic

assignment x := e updates the state by setting the value of x to the current value of e. Next, x′ = f(x)&Q,

are ordinary differential equations (ODEs), which are a powerful feature of hybrid programs. This is how

continuous is modeled within a hybrid system. The sample system. ODEs here models how x evolves in

continuous time with regards to f ′(x), where f(x) is a term. How long this lasts is nondeterministic, in this

problem, Q is the evolution domain constraint. If a formula Q is provided, Q is tested continuously and

the evolution must stop before it becomes false. A choice, α ∪ β, nondeterministically runs either α or β,

but not both. Composition α;β runs both, first α then β in the resulting state. Finally loops, α∗ run a

nondeterministic but finite number of repetitions, zero, one, or many.

These programs fit together into varied ways. For example, nondeterministic choice can be combined

with a test to create an if-else statement. The program “if(P)α else β” is equivalent to {?P ;α} ∪ {?¬P ;β}

2.2 Formulas

Formulas in dL are limited to:

2

P,Q ::= e ≥ ẽ|¬P |P ∧Q|P → Q|[α]P |⟨α⟩P

Formulas are either true or false about the state ω. The first formula, comparison e ≥ ẽ is true

when e is greater than or equal to ẽ. Logical connectives allow for the definition of all other comparisons

(>,=, ! =,≤, <), allowing for any comparison to be used in a formula. Negation, ¬P , is true when P is

false. Conjunction, P ∧Q, is true when both P and Q are true, equivalent to a logical “and”. Implication,

P → Q, is true when P being true implies Q being true as well. Combinations of negation and conjunction

allow for the definition of all other logic operators. For example ¬(¬P ∧ ¬Q) defines logical disjunction, or

the “or” operator P ∨Q.

The final two formulas define dL, and allow the inclusion of hybrid programs within formulas. Box

formula, [α]P , is true if in state ω, every run of α starting in ω ends in a state where P is true. Diamond

formula ⟨α⟩P , is true if some run of α from ω will result in a state where P is true.

2.3 Defining Systems and Proofs

In order to prove a model, we must first create it. For each model, we define a loop invariant and a safety

condition. The invariant must hold true before and after each loop is completed. The safety condition

must be true at all times. Because of this, the invariant is a formula that implies the safety condition.

The arithmetic to define these conditions is often complex, especially as the functions defining movement

become more complex. Previous work has been done to determine criterion for checking invariants for hybrid

systems. This criterion resulted in a method of generating invariants, however it relies there existing such

an invariant that fits a predetermined template [7]. We did not use this method for defining our invariants.

This project focused on time-triggered style models, which mean that the models follow a pattern

of 1. setting initial conditions, 2. control, where changes are defined, 3. the changes are acted upon for a

nondeterministic amount of time up to T , 4 the loop invariant is checked, and then the steps 2-4 loop [4].

Some of the proofs required use of differential cuts, invariants and weakening. Differential cuts are

similar to a logical cut, and allow the user to define a lemma with regards to the premise, use it to help prove

the premise, and get proved itself. The differential cut proves a post-condition then assumes it in the domain

constraint, which places a pseudo-restriction on the domain of the differential equation, but ultimately does

not change the problem [4].

In our proof assistant, the dIRule, or differential invariant rule, proves a formula P to be true

3

locally by reducing it to it’s differential (P)′. It reduces a property of an ODE, x ′ = f (x) to that of a

discrete assignment, x ′ := f (x). This allows for complex ODEs with nontrivial solutions to be checked

easily. Instead of solving the ODE, the proof merely requires deriving the post-condition P and substitution

[4].

2.4 KeYmaera X

KeYmaera X is a prover for modeling and proving cyber-physical systems. It analyzes control programs

along with physical behavior of the system to verify safety and reachability properties of the systems [8].

It proves truth in every state, or validity [6]. The prover component is interactive and tactic based [9]. At

each step, the user selects a proof technique, each of which are implemented as tactics. This allows complex

methods to be reduced to simpler components, which are more trustworthy in their simplicity.

3 Related Work

Previous work has been done with both the robot that is the focus of these models, and in utilizing Cyber-

physical systems and dL with surgical robots.

3.1 SCREAM

The subject of the modeling in this project is SCREAM, or Super-elastic Continuum Robot for Endoscopic

Articulation and Manipulation [2], which was developed to better reach the area around the vocal folds

within the larynx with an endoscope [1]. This robot has three degrees of motion: translation through the

larynx, rotation within the larynx, and bending of the instrument at the end of the endoscope.

The key pieces of information we will use in our models are the degrees of motion, as well as the

limits on how far they can move in any direction, for example the probe cannot bend past 90 degrees.

The benefits of endoscopic nasal surgeries include that the treatments do not require a general

anesthetic and are often in a doctor’s office as opposed to operating room, both of which can lead to lower

charges for the patient. These surgeries utilize a laser and fiber optic cables to fire laser pulses at diseased

tissue until the cells are killed. However, the ability to reach all of the larynx with existing optical fibers

is limited, as the doctor has little control over the direction of the laser while still maintaining a view of

the field. The previous project, SCREAM, was designed to overcome these problems by describing a new

robotic device to enable bending of the optic fiber to aim the laser.

4

Previous use of cyber controlled medical systems have had dire consequences. In the mid 1980s,

Therac-25, a software-controlled radiation therapy machine greatly overdosed six people resulting in injury

and death [10]. Conducting software verification builds safety inherently into the cyber-physical system. Pro-

fessor Nancy Levenson reflected on the incident 30 years later, stating “Almost all software-related accidents

have involved requirements flaws, not coding or implementation errors...we have to focus less on assurance

and more on identifying the safety-critical requirements and building safety into these machines from the

beginning of development” [10]. Software verification fits well to fulfill this. By identifying what safety

means in the context of a system, we can use verification to ensure that these safety-critical requirements

are sufficient.

3.2 Previous Verification with a Surgical Robot

Previously, quantified differential dynamic logic (QdL) has been applied to a surgical robot, using a relative

of KeYmaera X [11][12]. This research created a model of algorithm and physics of the system, utilized a

language to precisely specify it, and then conducted a rigorous proof to show the behavior of the model was

exactly that of the specification. They created a hybrid program as described above, but specifically used

QdL, which is a generalization of dL. QdL adds quantified programs, new variable types, and decidability

which is important for the proof later on. The advantage of QdL was it allowed them to have as many

dimensions as they needed to represent the envelope of the robot, which was the complex shape that defined

the footprint of the robot.

In using QdL, previous researchers were able to find a flaw in the algorithm of a surgical robot.

They proved it was in general unsafe, and applied QdL to develop a new algorithm which would provide

for safe operation. They then created a proof with QdL that guaranteed the safety of this algorithm for all

possible inputs. Unlike the robot at the focus of this project, the robot in this paper was one designed to

be used by a surgeon in a more invasive surgery involving the patient being unconscious. This robot is used

within the patient, and its more complexly shaped environment, compared to the simplified environment

that SCREAM acted in, were also substantial differences that resulting in this project not requiring QdL.

The movement of this robot also did not involve rotation, unlike SCREAM.

5

4 Preparation

For the first part of this project we worked through part of a graduate special topics class that utilized

KeYmaera X to familiarize ourselves with the concepts and proof assistant. We worked through a number of

homework assignments, and created both time- and event-triggered models of simple movement, for both of

these a ball bouncing and simple autonomous vehicles. These vehicles helped to familiarize us with designing

invariants, and defining systems through mathematical functions. We were able to apply these examples

directly to the earliest model with simple translating motion.

6

5 Models and Results

In this project we modeled the movement of a hand-held robot for in-office laser surgery on a patient’s vocal

folds. The robot has three degrees of motion - translation, rotation, and bending of the instrument on the

end. There are many goals for proof in the context of this robot. The primary goal for this project was to

prove safety of robot usage by ensuring it does not stab the walls of the larynx. We proved this through

progressively more complex models.

The complexity of the model was based on both how we allow the robot to move, and how the

larynx is modeled. We began with a two-dimensional model, with the larynx modeled by a simple rectangle,

and the robot only translating in two directions within it. This model will be referred to as the 2d model.

It was followed by a shift to three dimensions, with the larynx now modeled as a cylinder. The first three-

dimensional model has simplified movement, with rotation and translation in two directions, replacing the

hinging motion with another translation. This model is the 3d-translate model. We continued to model the

larynx as a cylinder, first with a model replacing that second degree of translation with a hinging motion (3d-

hinge model). The most complex model would be a model that utilizes a more complex, and thus realistic,

model of a larynx, which would also introduce the challenge of reaching various points in the larynx.

Beyond this Nasal Scope Safety (NSS) model, there are other safety measures that could be modeled.

For example, ensuring the laser is not pointed at any point of the larynx for too long as to not cause additional

scarring. After proving safety, the next step would be proving the ability to reach the previously difficult-

to-reach points in the larynx, which is the advantage of SCREAM [1], and then proving both safety and

reachability simultaneously.

All of the models we designed use a time-triggered framework as opposed to an event-triggered

framework because in the context of this robot, controlled by a doctor, only being able to receive commands

every set time interval was more realistic. This framework allows for a nondeterministic choice to allow for

a change in behavior at every control cycle, lasting at most some time T > 0.

5.1 Two Dimensional Model

The first step we took in creating the initial model, 2d, was to decide how to define the shape of the larynx.

Our initial thought was to define it with value defining lines marking each edge of the rectangle. However

we realized it would be simpler to place the corner of the rectangle on the origin, and define just a height

and width to the rectangle. These were defined as RHeight and RWidth respectively. The location of the

7

robot was defined with xScream and yScream, representing x and y coordinates. From there, we defined

the safety condition as never hitting the ”end” of the larynx, represented in this model by x = RWidth, or

hitting either wall of the larynx, represented by y = rHeight and y = 0. The final safety constraint was

xScream < RWidth ∧ yScream < RHeight ∧ yScream > 0

For this model, the invariant is the same as the safety condition. A maximum velocity for both

x and y directions is defined initially, as xVelLimit and yVelLimit . One of the initial conditions placed on

these velocities is that in one control cycle, the robot will not travel across the entire larynx in any direction.

We assumed the acceleration for this model (and all subsequent models) to be negligible, so in each

control cycle there is a non-deterministic assignment of velocity for each direction. The possible velocity for

each direction was the positive of the initially declared maximum, the negative of that value, or zero. The

robot can always safely not move at all in either direction (set both velocities to zero). Because negative

velocity is only safe in some cases, the velocity limits, xVelLimit and yVelLimit , must be positive. Because

we are assuming no acceleration, the calculation of the potential locations at the next control cycle is simple.

For each nondeterministic choice for velocity, the new position is calculated for that dimension. If it does not

break the safety condition it is acceptable. No test is conducted for setting velocity to zero because not moving

is always safe in this model. This movement does not address the possibility of diagonal movement because

for the rectangle model, diagonal movement poses no different risk than two one-directional movements. In

order for a diagonal movement to be unsafe, the motion is also unsafe on either the x or y axis. The control

for the x direction is shown below.� �
?(xScream + xVelLimit * T < length); xVel := xVelLimit ;}

++ xVel := -xVelLimit;

++ xVel := 0;} /* assign an x velocity */� �
This model can be proved with just the auto tactic because of the invariant and safety condition.

See Appendix A for the full model and proof.

5.2 Three Dimensional Translation Model

As we moved to the third dimension for this model, we began to model the larynx as a cylinder. We realized

that adding the rotation would make the arithmetic for determining the location of the robot as well as how

it moved significantly more complex in a Cartesian coordinate system. As shown below in Figure 1, the

8

movement for 3d-translate is very easily expressed in terms of polar coordinates - the robot has a distance

from a central z-axis and an angle relative to the y-axis - so we designed an intermediate model called

3d-translatePolar to use as a stepping stone to determine movement functions.

SCREAMθ

(rScream, thScream)

R

r

X

YZ

Figure 1: The location of 3d-translate in a cross section of the larynx

5.2.1 Polar Model

This model was similar to the two dimensional model, but now instead of having x and y directions, we

used r, θ, and z directions. As in the previous model, we assume acceleration to be negligible. Because it

is rotational, we defined the velocities as speed for changes in angle, rVel for changes in radius, and zVel

for changes in z. Similarities between this and the previous models extend to the control for the z and r

values, which is nearly identical to the y and x control previous. Because a change in angle cannot result in

a dangerous outcome in a perfectly cylindrical larynx, the control for the angle was quite simple. Either the

speed had a value of 0 and it did not change, or it had a value of speedLimit assigned as an initial condition

to be positive. This control is shown below.� �
{speed := speedLimit;

++ speed := 0;} /* assign an angular speed (change in angle)*/� �
9

The continuous dynamics for this model were also relatively simple. A velocity for each coordinate

was defined in the control and used in the ODE. The invariant and safety constraint were once again the

identical, ensuring rScream remained less than the radius of the larynx, and greater than the negative

radius, and that zScream was less than the length of the cylinder, ensuring it would not go past the end of

the larynx.� �
/* Continuous Dynamics */

t := 0;{

{rScream ’ = rVel ,

thScream ’ = speed , zScream ’ = zVel ,

t’ = 1 & t <= T} /* evolution domain and time -trigger */

}

}* @invariant(rScream < radius & rScream > -radius & zScream < length) /* loop

invariant */

]

(rScream < radius & rScream > -radius & zScream < length) /* safety condition */� �
The initial conditions were defined such that the dimensions of the cylinder were positive and the

robot began at the origin, at the center of one end of the cylinder. We defined limits for the velocities,

making them all positive and that in a full time step T they would not go past any face of the cylinder. This

intermediate model was able to be proved with a loop invariant and auto. The complete model and proof

can be found in Appendix B.

5.2.2 Cartesian Model

With the intermediate model completed, we could move on to the model with the same motion, but instead of

defining the location of SCREAM based on polar coordinates, it would be defined by Cartesian coordinates.

This model used a similar control to the previous model, but instead of having a defined rScream, we defined

a function symbol called norm that would calculate the distance from the z-axis given and x and y position.� �
Definitions

Real norm(Real x, Real y) = (x^2 + y^2) ^(1/2);

End.

{{?(norm(xScream , yScream) + rVelLimit * T < radius); rVel := rVelLimit ;}

++ {?(norm(xScream , yScream) - rVelLimit * T > -radius); rVel := -

10

rVelLimit ;}

++ rVel := 0;} /* assign a radius velocity (change in radius)*/� �
Because the motion was still inherently polar, and was defined as such, it made the ODE more

complicated than previous. We used partial derivatives of the functions to convert polar to Cartesian to

adjust. The continuous dynamics for xScream and yScream are shown below.� �
xScream ’ = -yScream * (speed/norm(xScream , yScream)) + (xScream*rVel)/norm(

xScream , yScream),

yScream ’ = xScream * (speed/norm(xScream , yScream)) + (yScream*rVel)/norm(

xScream , yScream)� �
The invariant and safety condition were again identical, and also similar to the previous with the

usage of the norm function again.� �
zScream < length & norm(xScream , yScream) < radius� �

Proving this model however, was more complicated than previous. While most of the branches

of the proof proved automatically, the two cases with an increasing radius and change in the z value were

beyond the scope of the auto tactic, so a differential cut was used to characterize the movement. This

additional statement (below) clarified that the maximum change in radius from the current point in the

remaining time in the control cycle could not result in a movement past the edge of the cylinder.� �
(xScream ^2+ yScream ^2) ^(1/2)+rVelLimit ()*(T()-t) < radius ()� �

With that the prover was able to complete the proof using the auto tactic.

5.3 Three Dimensional Hinge Model

The movement of the final model can be seen in Figure 2. The two angles, one measured from the z-axis

and one from the y-axis, can be seen and are labeled as θ and ϕ respectively.

11

Z

Y

X

R

φ

θ SCREAM

length(xHinge,yHinge,zHinge)

Figure 2: The movement of 3d-hinge

Allowing for rotation in two directions presented its own share of problems. Because the hinging

motion is in only one direction, and that direction is relative to the relative y-axis that is twisting with

the other rotation, the two rotations must be combined. We did this using rotation matrices. The twisting

motion of this model is about the z-axis, so the rotation matrix can be represented by

Rtwist =

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

The hinge motion is about the y axis, so its rotation matrix is represented as such

Rhinge =

cosϕ 0 −sinϕ

0 1 0

sinϕ 0 cosϕ

12

To combine the rotations, we simply multiply them

Rtwist×hinge =

cosθcosϕ −sinθ −cosθsinϕ

sinθcosϕ cosθ −sinθsinϕ

sinϕ 0 cosϕ

To find the location of the end of the instrument based on the known location of the hinge point,

we multiplied Rtwist×hinge by the vector v = ⟨r, 0, 0⟩ where r is the length of the hinging arm. Completing

this multiplication left us with the matrix

Rfinal =

−rcosθsinϕ

−rsinθsinϕ

rcosϕ

These three values, when added to the x, y and z coordinates of the hinge point, give the coordinates

of the end of the hinge. To compute the change in sine and cosine of each angle, we used similar equations to

the previous model. The change in the sine of a given angle is equal to the cosine of the angle multiplied by

the angular velocity, and the change in cosine is equal to the negative of the sine multiplied by the angular

velocity. Using these equations, we represented the safety condition as� �
xHinge - r*ctheta*sphi < R &

yHinge - r*stheta*sphi < R &

zHinge + r*cphi < length� �
To define the location and state of the robot in this model, we maintained variables with the

Cartesian coordinates of the hinge point, as well as the sine and cosine of each angle, and the velocities

of each direction and angle. Because square roots can make the proof more complex, we opted for a more

conservative norm, the L1-norm, which is the sum of the absolute values of the x and y distances.

In an effort to simplify the model, the control was changed to use tests to abbreviate the previously

bulky velocity assignments. Rotation simply assigned any value to each of thetaVel and phiVel , then checked

to ensure it was non-negative and less than the respective limit. The simplest of the translation assignments

can be seen with zvel below� �
{zvel :=*;

?(-zVelLimit <= zvel & zvel <= zVelLimit);

?(zHinge + r + zvel* T < length);}

13

� �
We assigned both x and y velocities at the same time as a part of the control. After checking

to confirm the velocities assigned were within the correct range, the L1-norm is computed using both new

velocities to ensure that this movement will not move the robot within a range where either rotational motion

could cause harm. The full control can be found in Appendix D.

For the continuous dynamics, the translation is the simpler case than rotation. The changes in

xHinge, yHinge and zHinge are their respective velocities assigned previously. However, because we are

not storing the angles themselves but rather their sines and cosines, their changes are based on product of

the velocities and their mathematical derivative.

For this model we added some invariants to the continuous dynamics to avoid having to add them

in as differential cuts during the proof. They included sin2 + cos2 = 1 for each angle, ensuring the robot

remained on a circle around the center, and that t >= 0.� �
@invariant(t >= 0, cphi^2 + sphi^2 = 1, ctheta ^2 + stheta ^2 = 1)� �

The invariant for this model was different from the safety condition, while the safety condition

calculated the actual location of the end of the instrument, the invariant just ensures the the hinge point stays

at least the instrument’s radius r from the walls of the larynx, as well as once again ensuring sin2+ cos2 = 1

for each angle.

The proof for this model was mostly a process of breaking the problem into simpler pieces by

unfolding and with box ands. These could be separated into rotational motion, x- and y-axis motion, and z-

axis motion. The two rotational motions were proved using a diRule that proved once again, sin2+ cos2 = 1

for each angle, and that the x and y positions were equal to the old ones plus the velocity multiplied by t,

also ensuring that t >= 0. Each absolute value had to be expanded which lead to several branches. These

branches could be solved with the auto tactic once the irrelevant information was hidden, as that information

caused the prover to take too long and fail on auto. The complete proof for this model is in Appendix D

6 Conclusion and Future Work

As we reach the end of this project, we reflect on what we completed and what we were unable to complete

in the time frame. For this project, we set the initial goal to complete four models of progressing difficulty - a

two dimensional and three three-dimensional models with different movement. We were not able to complete

14

the stretch goal, which would have included an approximation of bending motion more complex but more

accurate than the hinge. We were able to demonstrate how logical verification can be used to prove safety

of a real system.

In the future, this stretch goal could be completed and proved. Additionally, a more realistic model

of the larynx, at least one with changing diameters, could be used to ensure non-stabbing safety. There are

also other risks to the patient, including the laser at the end of the instrument being aimed at one point in

the patient for too long, causing burns. Future models could take that into account.

Outside of safety, there are other aspects of this robot that could be modeled. The goal of previous

SCREAM projects has been to increase the ability of the instrument to reach points in the larynx [2]. With

more complex laryngeal models, that would be helpful to determine how successful this robot is.

The farthest potential for future work would be combining what these models with the robot itself.

Implementing what is learned and determined in the models into the actual instrument, and that instrument

being used on patients in real medical settings [5].

Through this project, we were able to model the movement of a robot that has the potential to help

patients, and show that it could be used safely, albeit in simplified context. We determined what restrictions

were necessary for the robot to be unable to cause harm, and proved them through use of differential dynamic

logic.

15

Appendices

A 2d Model and Proof� �
/* Exported from KeYmaera X v5.0 */

Theorem "2D"

Definitions

Real length;

Real height;

Real xVelLimit;

Real yVelLimit;

Real T;

End.

ProgramVariables

Real xScream;

Real yScream;

Real xVel;

Real yVel;

Real t;

End.

Problem

/* INITIAL CONDITIONS */

(height > 0 & length > 0 & yScream < height & yScream > 0 & xScream = 0 & (

xVelLimit * T) < length & (yVelLimit * T) < height & xVelLimit > 0 & yVelLimit

> 0)

->

[

{

/* CONTROL */

16

{

{{?(xScream + xVelLimit * T < length); xVel := xVelLimit ;}

++ xVel := -xVelLimit;

++ xVel := 0;} /* assign an x velocity */

{{?(yScream + yVelLimit * T < height); yVel := yVelLimit ;}

++ {?(yScream - yVelLimit * T > 0); yVel := -yVelLimit ;}

++ yVel := 0;} /* assign a y velocity */

}

/* CONTINUOUS DYNAMICS */

t := 0;

{

{xScream ’ = xVel ,

yScream ’ = yVel , t’ = 1 & t <= T} /* evolution domain and time -trigger

*/

}

}* @invariant(xScream < length & yScream < height & yScream > 0) /* loop

invariant */

]

(xScream < length & yScream < height & yScream > 0) /* safety condition */

End.

Tactic "2D: Proof"

auto

End.

End.� �

17

B 3d-translatePolar Model and Proof� �
/* Exported from KeYmaera X v5.0 */

Theorem "3dTranslationPolar"

Definitions

Real length;

Real radius;

Real speedLimit;

Real rVelLimit;

Real zVelLimit;

Real T;

End.

ProgramVariables

Real thScream;

Real rScream;

Real zScream;

Real speed;

Real rVel;

Real zVel;

Real t;

End.

Problem

/* INITIAL CONDITIONS */

(rScream = 0 & thScream = 0 &zScream = 0 & radius > 0 & length > 0 &

(zVelLimit * T) < length & (rVelLimit * T) < radius &

rVelLimit > 0 & speedLimit > 0 & zVelLimit > 0)

->

18

[

{

/* CONTROL */

{

{{?(zScream + zVelLimit * T < length); zVel := zVelLimit ;}

++ zVel := -zVelLimit;

++ zVel := 0;} /* assign a z velocity */

{speed := speedLimit;

++ speed := 0;} /* assign an angular velocity (change in angle)*/

{{?(rScream + rVelLimit * T < radius); rVel := rVelLimit ;}

++ {?(rScream - rVelLimit * T > -radius); rVel := -rVelLimit ;}

++ rVel := 0;} /* assign a radius velocity (change in radius)*/

}

/* CONTINUOUS DYNAMICS */

t := 0;

{

{rScream ’ = rVel ,

thScream ’ = speed , zScream ’ = zVel ,

t’ = 1 & t <= T} /* evolution domain and time -trigger */

}

}* @invariant(rScream < radius & rScream > -radius & zScream < length) /* loop

invariant */

]

(rScream < radius & rScream > -radius & zScream < length) /* safety condition */

End.

Tactic "3dTranslationPolar: Proof"

pending("implyR(’R==\" rScream =0& thScream =0& radius () >0&length () >0&zVelLimit ()*T() <

length ()&rVelLimit ()*T() < radius ()&rVelLimit () >0& speedLimit () >0&zVelLimit ()

>0->[{{{? zScream+zVelLimit ()*T() < length ();zVel:= zVelLimit ();++ zVel:=-

zVelLimit ();++ zVel :=0;}{ speed:= speedLimit ();++ speed :=0;}{? rScream+rVelLimit ()*T

() < radius ();rVel:= rVelLimit ();++? rScream -rVelLimit ()*T() >=0;rVel:=-rVelLimit

();++ rVel :=0;}}t:=0;{ rScream ’=rVel ,thScream ’=speed ,zScream ’=zVel ,t’=1&t<=T()

19

}}*](rScream < radius ()&zScream < length ())\") ; loop (\" rScream < radius ()&

zScream < length ()\", ’R==\"[{{{? zScream+zVelLimit ()*T() < length ();zVel:=

zVelLimit ();++ zVel:=- zVelLimit ();++ zVel :=0;}{ speed:= speedLimit ();++ speed :=0;}{?

rScream+rVelLimit ()*T() < radius ();rVel:= rVelLimit ();++? rScream -rVelLimit ()*T()

>=0;rVel:=-rVelLimit ();++ rVel :=0;}}t:=0;{ rScream ’=rVel ,thScream ’=speed ,zScream

’=zVel ,t’=1&t<=T()}}*](rScream < radius ()&zScream < length ())\") ; <(

\"Init \": todo ,

\"Post \": auto ,

\"Step \": auto

)");

auto

End.

End.� �

20

C 3d-translate Model and Proof� �
/* Exported from KeYmaera X v5.0 */

Theorem "3dTranslation"

Definitions

Real length;

Real radius;

Real zVelLimit;

Real rVelLimit;

Real speedLimit;

Real T;

Real norm(Real x, Real y) = (x^2 + y^2) ^(1/2);

End.

ProgramVariables

Real xScream;

Real yScream;

Real zScream;

Real speed;

Real rVel;

Real zVel;

Real t;

End.

Problem

/* INITIAL CONDITIONS */

(xScream = 0 & yScream = 0 & zScream = 0 & radius > 0 & length > 0 & T >= 0 &

speed > 0 & (zVelLimit * T) < length & (rVelLimit * T) < radius & zVelLimit > 0

& rVelLimit > 0)

21

->

[

{

/* CONTROL */

{

{{?(zScream + zVelLimit * T < length); zVel := zVelLimit ;}

++ zVel := -zVelLimit;

++ zVel := 0;} /* assign a z velocity */

{speed := *;

{?(speed >= 0 & speed <= speedLimit);};} /* assign an angular velocity (

change in angle)*/

{{?(norm(xScream , yScream) + rVelLimit * T < radius); rVel := rVelLimit ;}

++ {?(norm(xScream , yScream) - rVelLimit * T > -radius); rVel := -

rVelLimit ;}

++ rVel := 0;} /* assign a radius velocity (change in radius)*/

}

/* CONTINUOUS DYNAMICS */

t := 0;

{

{xScream ’ = -yScream * (speed/norm(xScream , yScream)) + (xScream*rVel)/

norm(xScream , yScream),

yScream ’ = xScream * (speed/norm(xScream , yScream)) + (yScream*rVel)/norm

(xScream , yScream),

zScream ’ = zVel , t’ = 1 & t <= T} /* evolution domain and time -trigger */

}

}* @invariant(zScream < length & norm(xScream , yScream) < radius) /* loop

invariant */

]

(zScream < length & norm(xScream , yScream) < radius) /* safety condition */

End.

Tactic "3dTranslation: Proof"

expand("norm");

22

implyR(’R=="xScream =0& yScream =0& zScream =0& radius () >0&length () >0&T() >=0&speed >0&

zVelLimit ()*T() < length ()&rVelLimit ()*T() < radius ()&zVelLimit () >0& rVelLimit ()

>0->[{{{? zScream+zVelLimit ()*T() < length ();zVel:= zVelLimit ();++ zVel:=-

zVelLimit ();++ zVel :=0;}{ speed :=*;? speed >=0& speed <= speedLimit () ;}{?(xScream ^2+

yScream ^2) ^(1/2)+rVelLimit ()*T() < radius ();rVel:= rVelLimit ();++?(xScream ^2+

yScream ^2) ^(1/2) -rVelLimit ()*T()>-radius ();rVel:=-rVelLimit ();++ rVel :=0;}}t

:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVel/(

xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))

+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=zVel ,t’=1&t<=T() }}*](zScream

< length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())");

loop("zScream < length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ()", ’R=="[{{{?

zScream+zVelLimit ()*T() < length ();zVel:= zVelLimit ();++ zVel:=-zVelLimit ();++

zVel :=0;}{ speed :=*;? speed >=0& speed <= speedLimit ();}{?(xScream ^2+ yScream ^2) ^(1/2)

+rVelLimit ()*T() < radius ();rVel:= rVelLimit () ;++?(xScream ^2+ yScream ^2) ^(1/2) -

rVelLimit ()*T()>-radius ();rVel:=- rVelLimit ();++ rVel :=0;}}t:=0;{ xScream ’=-

yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVel/(xScream ^2+ yScream ^2)

^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))+yScream*rVel/(

xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=zVel ,t’=1&t<=T()}}*](zScream < length ()&(

xScream ^2+ yScream ^2) ^(1/2) < radius ())"); <(

"Init":

auto ,

"Post":

auto ,

"Step":

unfold; <(

"[?(xScream ^2+ yScream ^2) ^(1/2)+rVelLimit ()*T() < radius ();rVel:= rVelLimit ()

;][t:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVel/(

xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))

+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’= zVelLimit (),t’=1&t<=T()}](

zScream < length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())":

boxAnd(’R=="[{xScream ’=-yScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))+

xScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(

xScream ^2+ yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,

zScream ’= zVelLimit (),t’=1&t<=T()}](zScream < length ()&(xScream ^2+ yScream ^2)

^(1/2) < radius ())");

23

andR(’R=="[{xScream ’=-yScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))+xScream*

rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed/(xScream ^2+

yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=

zVelLimit (),t’=1&t<=T()}] zScream < length ()&[{ xScream ’=-yScream *(speed/(xScream

^2+ yScream ^2) ^(1/2))+xScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’=

xScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+

yScream ^2) ^(1/2) ,zScream ’= zVelLimit (),t’=1&t<=T()}](xScream ^2+ yScream ^2) ^(1/2)

< radius ()"); <(

"[{xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*

rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed/(xScream ^2+

yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=

zVelLimit (),t’=1&t<=T()}] zScream < length ()":

dC("(xScream ^2+ yScream ^2) ^(1/2)+rVelLimit ()*(T()-t) < radius ()", ’R=="

[{xScream ’=-yScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVelLimit ()/(

xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))

+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’= zVelLimit (),t’=1&t<=T

()}] zScream < length ()"); <(

"Use":

auto ,

"Show":

auto

),

"[{xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*

rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed/(xScream ^2+

yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=

zVelLimit (),t’=1&t<=T()}](xScream ^2+ yScream ^2) ^(1/2) < radius ()":

auto

),

"[?(xScream ^2+ yScream ^2) ^(1/2)+rVelLimit ()*T() < radius ();rVel:= rVelLimit ()

;][t:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVel/(

xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))

+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=- zVelLimit (),t’=1&t<=T()}](

zScream < length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())":

auto ,

24

"[?(xScream ^2+ yScream ^2) ^(1/2)+rVelLimit ()*T() < radius ();rVel:= rVelLimit ()

;][t:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVel/(

xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))

+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=0,t’=1&t<=T()}](zScream <

length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())":

boxAnd(’R=="[{xScream ’=-yScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))+

xScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(

xScream ^2+ yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,

zScream ’=0,t’=1&t<=T()}](zScream < length ()&(xScream ^2+ yScream ^2) ^(1/2) <

radius ())");

andR(’R=="[{xScream ’=-yScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))+xScream*

rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed/(xScream ^2+

yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=0,t

’=1&t<=T()}] zScream < length ()&[{ xScream ’=-yScream *(speed /(xScream ^2+ yScream ^2)

^(1/2))+xScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed

/(xScream ^2+ yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,

zScream ’=0,t’=1&t<=T()}](xScream ^2+ yScream ^2) ^(1/2) < radius ()"); <(

"[{xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*

rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed/(xScream ^2+

yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=0,t

’=1&t<=T()}] zScream < length ()":

ODE(’R=="[{xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+

xScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(

xScream ^2+ yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,

zScream ’=0,t’=1&t<=T()}] zScream < length ()"),

"[{xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*

rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed/(xScream ^2+

yScream ^2) ^(1/2))+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=0,t

’=1&t<=T()}](xScream ^2+ yScream ^2) ^(1/2) < radius ()":

dC("(xScream ^2+ yScream ^2) ^(1/2)+rVelLimit ()*(T()-t) < radius ()", ’R=="

[{xScream ’=-yScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVelLimit ()/(

xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))

+yScream*rVelLimit ()/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=0,t’=1&t<=T()}](

xScream ^2+ yScream ^2) ^(1/2) < radius ()"); <(

"Use":

25

auto ,

"Show":

auto

)

),

"[?(xScream ^2+ yScream ^2) ^(1/2) -rVelLimit ()*T()>-radius ();rVel:=- rVelLimit ()

;][t:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVel/(

xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))

+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=0,t’=1&t<=T()}](zScream <

length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())":

auto ,

"[?(xScream ^2+ yScream ^2) ^(1/2) -rVelLimit ()*T()>-radius ();rVel:=- rVelLimit ()

;][t:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVel/(

xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))

+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=- zVelLimit (),t’=1&t<=T()}](

zScream < length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())":

auto ,

"[?(xScream ^2+ yScream ^2) ^(1/2) -rVelLimit ()*T()>-radius ();rVel:=- rVelLimit ()

;][t:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+xScream*rVel/(

xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+ yScream ^2) ^(1/2))

+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’= zVelLimit (),t’=1&t<=T()}](

zScream < length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())":

auto ,

"[rVel :=0;][t:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+

xScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+

yScream ^2) ^(1/2))+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=-zVelLimit

(),t’=1&t<=T()}](zScream < length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())":

auto ,

"[rVel :=0;][t:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+

xScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+

yScream ^2) ^(1/2))+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’=0,t’=1&t<=T

()}](zScream < length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())":

auto ,

"[rVel :=0;][t:=0;{ xScream ’=-yScream *(speed/(xScream ^2+ yScream ^2) ^(1/2))+

xScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,yScream ’= xScream *(speed /(xScream ^2+

26

yScream ^2) ^(1/2))+yScream*rVel/(xScream ^2+ yScream ^2) ^(1/2) ,zScream ’= zVelLimit ()

,t’=1&t<=T()}](zScream < length ()&(xScream ^2+ yScream ^2) ^(1/2) < radius ())":

auto

)

)

End.

End.� �

27

D 3d-Hinge Model and Proof� �
/* Exported from KeYmaera X v5.0 */

Theorem "3dHinge"

Definitions

Real length;

Real radius; /* radius of larynx */

Real r; /* length of hinge portion */

Real xVelLimit;

Real yVelLimit;

Real zVelLimit;

Real thetaVelLimit;

Real phiVelLimit;

Real T;

Real norm(Real x, Real y) = (x^2 + y^2);

Real l1norm(Real x, Real y) = abs(x) + abs(y);

End.

ProgramVariables

Real xHinge;

Real yHinge;

Real zHinge;

Real xVel;

Real yVel;

Real zVel;

Real stheta;

28

Real ctheta;

Real sphi;

Real cphi;

Real thetaVel; /*twist */

Real phiVel; /*hinge angle */

Real t;

End.

Problem

/* INITIAL CONDITIONS */

(xHinge = 0 & yHinge = 0 & zHinge = 0 &

r > 0 & r < radius & radius > 0 & length > 0 & T >= 0 & r < length &

(xVelLimit * T) < radius -r & (yVelLimit * T) < radius -r & (zVelLimit * T) <

length -r &

zVelLimit > 0 & xVelLimit > 0 & yVelLimit > 0 &

stheta = 0 & sphi = 0 & ctheta = 1 & cphi = 1

/*TODO: add initial conditions for angle velocities */

)

->

[

{

/* CONTROL */

{

/* Rotation */

{thetaVel := *;

{?(thetaVel >= 0 & thetaVel <= thetaVelLimit);}}; /* assign an angular

velocity (twisting)*/

{{ phiVel := *;

{?(phiVel >= 0 & phiVel <= phiVelLimit);}} /* hinge motion */

}

/* Translation */

29

{{zVel :=*;

?(- zVelLimit <= zVel & zVel <= zVelLimit);

?(zHinge + r + zVel* T < length);}

/* assign a z velocity */

{xVel :=*; yVel :=*;

?(- yVelLimit <= yVel & yVel <= yVelLimit);

?(- xVelLimit <= xVel & xVel <= xVelLimit);

?(abs(xHinge + xVel * T) + abs(yHinge + yVel * T) < radius -r);

/* assign x and y velocities */

} }

}

/* CONTINUOUS DYNAMICS */

t := 0;

{

{zHinge ’ = zVel , xHinge ’ = xVel , yHinge ’ = yVel ,

ctheta ’ = -stheta*thetaVel , stheta ’ = ctheta*thetaVel ,

cphi ’ = -sphi*phiVel , sphi ’ = cphi*phiVel ,

t’ = 1 & t <= T & cphi >= 0} @invariant(

t >= 0,

cphi^2 + sphi^2 = 1,

ctheta ^2 + stheta ^2 = 1) /* evolution domain and time -trigger */

}

}* @invariant(zHinge + r < length & l1norm(xHinge , yHinge) < (radius -r) & cphi

^2 + sphi^2 = 1 & ctheta ^2 + stheta ^2 = 1) /* loop invariant */

]

(xHinge - r*ctheta*sphi < radius &

yHinge - r*stheta*sphi < radius &

zHinge + r*cphi < length) /* safety condition */

End.

Tactic "3dHinge: Proof"

implyR(’radius =="xHinge =0& yHinge =0& zHinge =0&r() >0&r() < radius ()&radius () >0&length

() >0&T() >=0&r() < length ()&xVelLimit ()*T() < radius ()-r()&yVelLimit ()*T() <

radius ()-r()&zVelLimit ()*T() < length ()-r()&zVelLimit () >0&xVelLimit () >0&

30

yVelLimit () >0&stheta =0& sphi =0& ctheta =1& cphi =1->[{{{ thetaVel :=*;? thetaVel >=0&

thetaVel <= thetaVelLimit ();}{ phiVel :=*;? phiVel >=0& phiVel <= phiVelLimit ();}{ zVel

:=*;? - zVelLimit () <=zVel&zVel <= zVelLimit ();? zHinge+r()+zVel*T() < length ();}xVel

:=*; yVel :=*;?- yVelLimit () <=yVel&yVel <= yVelLimit ();?-xVelLimit () <=xVel&xVel <=

xVelLimit ();?abs(xHinge+xVel*T())+abs(yHinge+yVel*T()) < radius ()-r();}t:=0;{

zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,ctheta ’=-stheta*thetaVel ,stheta ’= ctheta*

thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*phiVel ,t’=1&t<=T()&cphi >=0}}*](xHinge -r

()*ctheta*sphi < radius ()&yHinge -r()*stheta*sphi < radius ()&zHinge+r()*cphi <

length ())");

loop("zHinge+r() < length ()&abs(xHinge)+abs(yHinge) < radius ()-r()&cphi ^2+ sphi

^2=1& ctheta ^2+ stheta ^2=1", ’radius =="[{{{ thetaVel :=*;? thetaVel >=0& thetaVel <=

thetaVelLimit ();}{ phiVel :=*;? phiVel >=0& phiVel <= phiVelLimit ();}{ zVel :=*;?-

zVelLimit () <=zVel&zVel <= zVelLimit ();? zHinge+r()+zVel*T() < length ();}xVel :=*;

yVel :=*;?- yVelLimit () <=yVel&yVel <= yVelLimit ();?-xVelLimit () <=xVel&xVel <=

xVelLimit ();?abs(xHinge+xVel*T())+abs(yHinge+yVel*T()) < radius ()-r();}t:=0;{

zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,ctheta ’=-stheta*thetaVel ,stheta ’= ctheta*

thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*phiVel ,t’=1&t<=T()&cphi >=0}}*](xHinge -r

()*ctheta*sphi < radius ()&yHinge -r()*stheta*sphi < radius ()&zHinge+r()*cphi <

length ())"); <(

"Init":

auto ,

"Post":

auto ,

"Step":

unfold;

boxAnd(’radius =="[{zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,ctheta ’=-stheta*

thetaVel ,stheta ’= ctheta*thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*phiVel ,t’=1&t<=T

()&cphi >=0}](zHinge+r() < length ()&abs(xHinge)+abs(yHinge) < radius ()-r()&cphi

^2+ sphi ^2=1& ctheta ^2+ stheta ^2=1)");

unfold; <(

"[{zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,ctheta ’=-stheta*thetaVel ,stheta ’=

ctheta*thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*phiVel ,t’=1&t<=T()&cphi >=0}]

zHinge+r() < length ()":

absExp(’L=="abs(xHinge)+abs(yHinge) < radius ()-r()");

31

dC("zHinge=old(zHinge)+zVel*t&t>=0", ’radius =="[{zHinge ’=zVel ,xHinge ’=xVel

,yHinge ’=yVel ,ctheta ’=-stheta*thetaVel ,stheta ’= ctheta*thetaVel ,cphi ’=-sphi*

phiVel ,sphi ’=cphi*phiVel ,t’=1&t<=T()&cphi >=0}] zHinge+r() < length ()"); <(

"Use":

dW(’radius =="[{zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,ctheta ’=-stheta*

thetaVel ,stheta ’= ctheta*thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*phiVel ,t’=1&(t<=

T()&cphi >=0)&zHinge=zHinge_0+zVel*t&t >=0}] zHinge+r() < length ()");

auto ,

"Show":

dIRule(’radius =="[{zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,ctheta ’=-

stheta*thetaVel ,stheta ’= ctheta*thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*phiVel ,t

’=1&t<=T()&cphi >=0}](zHinge=zHinge_0+zVel*t&t>=0)"); <(

"dI Init":

auto ,

"dI Step":

auto

)

),

"[{zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,ctheta ’=-stheta*thetaVel ,stheta ’=

ctheta*thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*phiVel ,t’=1&t<=T()&cphi >=0}](abs(

xHinge)+abs(yHinge) < radius ()-r()&cphi ^2+ sphi ^2=1& ctheta ^2+ stheta ^2=1)":

dC("cphi ^2+ sphi ^2=1& ctheta ^2+ stheta ^2=1&t>=0& xHinge=old(xHinge)+xVel*t&

yHinge=old(yHinge)+yVel*t", ’radius =="[{zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,

ctheta ’=-stheta*thetaVel ,stheta ’= ctheta*thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*

phiVel ,t’=1&t<=T()&cphi >=0}](abs(xHinge)+abs(yHinge) < radius ()-r()&cphi ^2+ sphi

^2=1& ctheta ^2+ stheta ^2=1)"); <(

"Use":

dW(’radius =="[{zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,ctheta ’=-stheta*

thetaVel ,stheta ’= ctheta*thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*phiVel ,t’=1&(t<=

T()&cphi >=0)&cphi ^2+ sphi ^2=1& ctheta ^2+ stheta ^2=1&t>=0& xHinge=xHinge_0+xVel*t&

yHinge=yHinge_0+yVel*t}](abs(xHinge)+abs(yHinge) < radius ()-r()&cphi ^2+ sphi

^2=1& ctheta ^2+ stheta ^2=1)");

unfold;

expandAll;

unfold;

32

unfold;

andR(’radius =="abs__4+abs__3 < radius ()-r()&cphi ^2+ sphi ^2=1& ctheta ^2+

stheta ^2=1"); <(

"abs__4+abs__3 < radius ()-r()":

orL(’L=="yHinge_0+yVel*T() >=0&abs_=yHinge_0+yVel*T()|yHinge_0+yVel

*T() < 0&abs_=-(yHinge_0+yVel*T())"); <(

"yHinge_0+yVel*T() >=0&abs_=yHinge_0+yVel*T()":

orL(’L=="xHinge_0+xVel*T() >=0& abs__0=xHinge_0+xVel*T()|

xHinge_0+xVel*T() < 0& abs__0=-(xHinge_0+xVel*T())"); <(

"xHinge_0+xVel*T() >=0& abs__0=xHinge_0+xVel*T()":

orL(’L=="yHinge_0 >=0& abs__1=yHinge_0|yHinge_0 < 0& abs__1=-

yHinge_0"); <(

"yHinge_0 >=0& abs__1=yHinge_0":

orL(’L=="yHinge >=0& abs__3=yHinge|yHinge < 0& abs__3=-

yHinge"); <(

"yHinge >=0& abs__3=yHinge":

orL(’L=="xHinge >=0& abs__4=xHinge|xHinge < 0& abs__4

=-xHinge"); <(

"xHinge >=0& abs__4=xHinge":

orL(’L=="xHinge_0 >=0& abs__2=xHinge_0|xHinge_0

< 0& abs__2=-xHinge_0"); <(

"xHinge_0 >=0& abs__2=xHinge_0":

hideL(’L=="cphi >=0");

hideL(’L=="cphi ^2+ sphi ^2=1");

hideL(’L=="ctheta ^2+ stheta ^2=1");

hideL(’L=="zVelLimit ()*T() < length ()-r()"

);

hideL(’L=="zVelLimit () >0");

hideL(’L=="length () >0");

hideL(’L=="thetaVel >=0");

hideL(’L=="thetaVel <= thetaVelLimit ()");

hideL(’L=="phiVel >=0");

hideL(’L=="phiVel <= phiVelLimit ()");

auto ,

"xHinge_0 < 0& abs__2=-xHinge_0":

33

hideL(’L=="cphi >=0");

hideL(’L=="cphi ^2+ sphi ^2=1");

hideL(’L=="ctheta ^2+ stheta ^2=1");

hideL(’L=="zVelLimit ()*T() < length ()-r()"

);

hideL(’L=="zVelLimit () >0");

hideL(’L=="thetaVel >=0");

hideL(’L=="thetaVel <= thetaVelLimit ()");

hideL(’L=="phiVel >=0");

auto

),

"xHinge < 0& abs__4=-xHinge":

hideL(’L=="cphi >=0");

hideL(’L=="cphi ^2+ sphi ^2=1");

hideL(’L=="ctheta ^2+ stheta ^2=1");

hideL(’L=="length () >0");

hideL(’L=="r() < length ()");

hideL(’L=="zVelLimit ()*T() < length ()-r()");

hideL(’L=="zVelLimit () >0");

hideL(’L=="thetaVel >=0");

hideL(’L=="thetaVel <= thetaVelLimit ()");

hideL(’L=="phiVel >=0");

hideL(’L=="phiVel <= phiVelLimit ()");

hideL(’L=="-zVelLimit () <=zVel");

hideL(’L=="zVel <= zVelLimit ()");

auto

),

"yHinge < 0& abs__3=-yHinge":

hideL(’L=="cphi >=0");

hideL(’L=="cphi ^2+ sphi ^2=1");

hideL(’L=="ctheta ^2+ stheta ^2=1");

hideL(’L=="length () >0");

hideL(’L=="r() < length ()");

hideL(’L=="zVelLimit ()*T() < length ()-r()");

hideL(’L=="zVelLimit () >0");

34

hideL(’L=="thetaVel >=0");

hideL(’L=="thetaVel <= thetaVelLimit ()");

hideL(’L=="phiVel >=0");

hideL(’L=="phiVel <= phiVelLimit ()");

hideL(’L=="-zVelLimit () <=zVel");

hideL(’L=="zVel <= zVelLimit ()");

auto

),

"yHinge_0 < 0& abs__1=-yHinge_0":

hideL(’L=="cphi >=0");

hideL(’L=="cphi ^2+ sphi ^2=1");

hideL(’L=="ctheta ^2+ stheta ^2=1");

hideL(’L=="r() < length ()");

hideL(’L=="zVelLimit ()*T() < length ()-r()");

hideL(’L=="zVelLimit () >0");

hideL(’L=="thetaVel >=0");

hideL(’L=="thetaVel <= thetaVelLimit ()");

hideL(’L=="phiVel >=0");

hideL(’L=="phiVel <= phiVelLimit ()");

hideL(’L=="-zVelLimit () <=zVel");

hideL(’L=="zVel <= zVelLimit ()");

auto

),

"xHinge_0+xVel*T() < 0& abs__0=-(xHinge_0+xVel*T())":

hideL(’L=="cphi >=0");

hideL(’L=="cphi ^2+ sphi ^2=1");

hideL(’L=="ctheta ^2+ stheta ^2=1");

hideL(’L=="length () >0");

hideL(’L=="r() < length ()");

hideL(’L=="zVelLimit ()*T() < length ()-r()");

hideL(’L=="zVelLimit () >0");

hideL(’L=="thetaVel >=0");

hideL(’L=="thetaVel <= thetaVelLimit ()");

hideL(’L=="phiVel >=0");

hideL(’L=="phiVel <= phiVelLimit ()");

35

hideL(’L=="-zVelLimit () <=zVel");

hideL(’L=="zVel <= zVelLimit ()");

auto

),

"yHinge_0+yVel*T() < 0&abs_=-(yHinge_0+yVel*T())":

hideL(’L=="cphi >=0");

hideL(’L=="cphi ^2+ sphi ^2=1");

hideL(’L=="ctheta ^2+ stheta ^2=1");

hideL(’L=="length () >0");

hideL(’L=="zVelLimit ()*T() < length ()-r()");

hideL(’L=="zVelLimit () >0");

hideL(’L=="thetaVel >=0");

hideL(’L=="thetaVel <= thetaVelLimit ()");

hideL(’L=="phiVel >=0");

hideL(’L=="phiVel <= phiVelLimit ()");

hideL(’L=="-zVelLimit () <=zVel");

hideL(’L=="zVel <= zVelLimit ()");

auto

),

"cphi ^2+ sphi ^2=1& ctheta ^2+ stheta ^2=1":

auto

),

"Show":

dIRule(’radius =="[{zHinge ’=zVel ,xHinge ’=xVel ,yHinge ’=yVel ,ctheta ’=-

stheta*thetaVel ,stheta ’= ctheta*thetaVel ,cphi ’=-sphi*phiVel ,sphi ’=cphi*phiVel ,t

’=1&t<=T()&cphi >=0}](cphi ^2+ sphi ^2=1& ctheta ^2+ stheta ^2=1&t>=0& xHinge=xHinge_0+

xVel*t&yHinge=yHinge_0+yVel*t)"); <(

"dI Init":

auto ,

"dI Step":

auto

)

)

)

)

36

End.

End.� �

37

References

[1] A. J. Chiluisa, N. E. Pacheco, H. S. Do, R. M. Tougas, E. V. Minch, R. Mihaleva, Y. Shen, Y. Liu,
T. L. Carroll, and L. Fichera, “Light in the larynx: a miniaturized robotic optical fiber for in-office laser
surgery of the vocal folds,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2022, Kyoto, Japan, October 23-27, 2022, pp. 427–434, IEEE, 2022.

[2] R. Mihaleva, E. Minch, R. Tougas, and J. H. Do, “SCREAM 4: Flexible steerable laser probe for
office-based laryngeal interventions,” tech. rep., Worcester Polytechnic Institute, 100 Institute Road,
Worcester, MA, USA, April 2022.

[3] L. Bailly, T. Cochereau, L. Orgéas, N. Henrich Bernardoni, S. Rolland du Roscoat, A. McLeer-Florin,
Y. Robert, X. Laval, T. Laurencin, P. Chaffanjon, B. Fayard, and E. Boller, “3D multiscale imaging
of human vocal folds using synchrotron X-ray microtomography in phase retrieval mode,” Scientific
Reports, vol. 8, p. 14003, Sept. 2018.

[4] A. Platzer, Logical foundations of cyber-physical systems. Springer, 2018.

[5] R. Bohrer, Y. K. Tan, S. Mitsch, M. O. Myreen, and A. Platzer, “VeriPhy: Verified controller executables
from verified cyber-physical system models,” in Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018, ACM, 2018.

[6] R. Bohrer, “Chemical case studies in KeYmaera X,” in Formal Methods for Industrial Critical Systems
(J. F. Groote and M. Huisman, eds.), (Cham), pp. 103–120, Springer International Publishing, 2022.

[7] J. Liu, N. Zhan, and H. Zhao, “Computing semi-algebraic invariants for polynomial dynamical systems,”
in Proceedings of the 11th International Conference on Embedded Software, EMSOFT 2011, part of the
Seventh Embedded Systems Week, ESWeek 2011, Taipei, Taiwan, October 9-14, 2011 (S. Chakraborty,
A. Jerraya, S. K. Baruah, and S. Fischmeister, eds.), pp. 97–106, ACM, 2011.

[8] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “KeYmaera X: An axiomatic tactical
theorem prover for hybrid systems,” in CADE (A. P. Felty and A. Middeldorp, eds.), vol. 9195 of
LNCS, pp. 527–538, Springer, 2015.

[9] N. Fulton, S. Mitsch, R. Bohrer, and A. Platzer, “Bellerophon: Tactical theorem proving for hybrid
systems,” in ITP (M. Ayala-Rincón and C. A. Muñoz, eds.), vol. 10499 of LNCS, pp. 207–224, Springer,
2017.

[10] N. G. Leveson, “The Therac-25: 30 years later,” Computer, vol. 50, no. 11, pp. 8–11, 2017.

[11] A. Platzer, “A complete axiomatization of quantified differential dynamic logic for distributed hybrid
systems,” Logical Methods in Computer Science, vol. 8, no. 4, pp. 1–44, 2012. Special issue for selected
papers from CSL’10.

[12] Y. Kouskoulas, D. W. Renshaw, A. Platzer, and P. Kazanzides, “Certifying the safe design of a vir-
tual fixture control algorithm for a surgical robot,” in Proceedings of the 16th international conference
on Hybrid systems: computation and control, HSCC 2013, April 8-11, 2013, Philadelphia, PA, USA
(C. Belta and F. Ivancic, eds.), pp. 263–272, ACM, 2013.

38

	Introduction
	Background: Differential Dynamic Logic and KeYmaera X
	Hybrid Programs
	Formulas
	Defining Systems and Proofs
	KeYmaera X

	Related Work
	SCREAM
	Previous Verification with a Surgical Robot

	Preparation
	Models and Results
	Two Dimensional Model
	Three Dimensional Translation Model
	Polar Model
	Cartesian Model

	Three Dimensional Hinge Model

	Conclusion and Future Work
	Appendices
	2d Model and Proof
	3d-translatePolar Model and Proof
	3d-translate Model and Proof
	3d-Hinge Model and Proof
	References

