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Abstract 
 There is a need for cheap transportation in third world countries. Bicycles are a common 

mode of transportation, however are not affordable for widespread use. Bamboo bicycles are a 

cheap alternative, however current manufacturing processes are labor and time intensive. Our 

goal was to design a cost efficient process for manufacturing bamboo bicycles that can be 

assembled in less than one hour. Axiomatic Design was used to decompose the problem into 

functional requirements and design parameters.  Our primary focus was to develop a more 

efficient method for creating the bike joints. The result was a metal brace and gusset structure 

welded together to transfer the loads a bike is subject to. The joints were initially created in 

SolidWorks individually and assembled to form the bicycle frame in order to run a finite element 

analysis software. Testing was done on various components of the bike to better understand how 

they truly function. Our design reduces the cost, skill level, and time it takes to fully assemble a 

bamboo bicycle.   

  



ii 
 

Acknowledgments  
 Our team would like to thank the following people for helping our group complete a 

successful major qualifying project. We would like to thank Christopher Brown for his guidance 

throughout the entire project; Russell Lang for supervising and aiding us with testing in the CE 

lab; Jon Sher from Worcester Earn-a-Bike for his donations of various bicycle components; and 

Bryan Jung for his knowledgeable lessons and support through the manufacturing process.   

  



iii 
 

Table of Contents 
Abstract .......................................................................................................................................................... i 

Acknowledgments ......................................................................................................................................... ii 

Table of Figures ............................................................................................................................................. v 

Table of Tables ............................................................................................................................................ vii 

1. Introduction .............................................................................................................................................. 1 

1.1. Objective ............................................................................................................................................ 1 

1.2. Rationale ............................................................................................................................................ 1 

1.3. State-of-the-Art .................................................................................................................................. 1 

1.3.1. Design .......................................................................................................................................... 1 

1.3.2. Joint Design ................................................................................................................................. 3 

1.3.3. Materials ..................................................................................................................................... 3 

1.4. Approach ............................................................................................................................................ 4 

1.4.1. Axiomatic Design ......................................................................................................................... 4 

1.4.2. State-of-the-Art Difference ......................................................................................................... 4 

1.4.3. Project Management .................................................................................................................. 5 

2. Design Decompositions and Constraints .................................................................................................. 5 

2.1. Level 1 Functional Requirements ....................................................................................................... 6 

2.2. Level 2 Functional Requirements ....................................................................................................... 7 

3. Physical Integration ................................................................................................................................... 8 

3.1. Functional Requirements ................................................................................................................... 8 

3.1.1. Level 1 Functional Requirements ................................................................................................ 8 

3.1.2. Level 2 Functional Requirements .............................................................................................. 10 

3.2. Finite Element Analysis .................................................................................................................... 11 

4. Prototype Production.............................................................................................................................. 13 

4.1. Computer Aided Design ................................................................................................................... 13 

4.1.1. Modeling the Bike Frame .......................................................................................................... 13 

4.1.2. Modeling the Joints ................................................................................................................... 14 

4.1.3. Assembling the CAD Bike Model ............................................................................................... 14 

4.2. Manufacturing the Prototype .......................................................................................................... 15 

4.2.1. Manufacturing the Metal Braces .............................................................................................. 15 

4.2.2. Manufacturing the Gussets ....................................................................................................... 17 

4.2.3. Welding the Joints ..................................................................................................................... 17 



iv 
 

4.2.4. Cutting the Bamboo Tubes ....................................................................................................... 19 

4.3. Assembling the Bike ..................................................................................................................... 20 

5. Testing ..................................................................................................................................................... 21 

5.1. Bamboo and Metal Tube Testing ..................................................................................................... 21 

5.1.1. Overview ................................................................................................................................... 21 

5.1.2. Compression Tests .................................................................................................................... 21 

5.1.3. 3 Point Bending Tests ................................................................................................................ 23 

5.2. Hose Clamp Testing .......................................................................................................................... 24 

5.3. Final Bicycle Frame Testing .............................................................................................................. 25 

6. Data Analysis ........................................................................................................................................... 27 

6.1. Metal vs. Bamboo Test Results ........................................................................................................ 27 

6.2. Hose Clamp Test Results .................................................................................................................. 29 

6.3. Bicycle Frame Test Results ............................................................................................................... 31 

6.4. Testing Videos .................................................................................................................................. 32 

7. Discussion ................................................................................................................................................ 33 

7.1 Accomplishments .............................................................................................................................. 33 

7.2 Design Method .................................................................................................................................. 33 

7.3 Constraints ........................................................................................................................................ 34 

7.4 Impact ............................................................................................................................................... 34 

7.5 Improvements to Prior Art ................................................................................................................ 34 

7.6 Potential Commercial Use ................................................................................................................. 35 

8. Concluding Remarks ................................................................................................................................ 36 

8.1 Major Design Accomplishments ....................................................................................................... 36 

8.2 Including Issues Remaining ............................................................................................................... 36 

10. References ...................................................................................................................................... 37 

11. Appendices ...................................................................................................................................... 39 

11.1. Appendix A: Decompositions ......................................................................................................... 39 

11.2. Appendix B: Tables of Testing Components Dimensions ............................................................... 42 

11.3. Appendix B: Components after Testing ......................................................................................... 44 

11.4 Gusset Dimensions .......................................................................................................................... 50 

 

  



v 
 

Table of Figures 
Figure 1: Members of a Diamond Frame ...................................................................................................... 2 

Figure 2: Calfee Design Bamboo Bicycle 2014 .............................................................................................. 2 

Figure 3: 2012 Bamboo Bicycle Frame .......................................................................................................... 3 

Figure 4: Head Tube Joint Decomposition .................................................................................................... 7 

Figure 5: Bottom Bracket SolidWorks Model with DPs ................................................................................ 8 

Figure 6: Seat Joint SolidWorks Model with DPs .......................................................................................... 9 

Figure 7: Rear Dropout SolidWorks Model ................................................................................................. 10 

Figure 8: Head Tube SolidWorks Model with DPs ...................................................................................... 10 

Figure 9: Deformation Plot of the bicycle frame. Red are the highest deformations and blue are the 

lowest. ......................................................................................................................................................... 12 

Figure 10: Stress Plot of the bicycle frame. Red is the highest stress while blue is the lowest.................. 12 

Figure 11: SolidWorks Diagram of Frame Geometry .................................................................................. 13 

Figure 12: SolidWorks Frame Assembly ...................................................................................................... 15 

Figure 13: Bench Grinder for Final Touches ................................................................................................ 16 

Figure 14: Templates for Gussets ............................................................................................................... 17 

Figure 15: Jig for Welding Joints ................................................................................................................. 18 

Figure 16: Welding of Seat Stays-Seat Tube Joint ....................................................................................... 19 

Figure 17: Full Bicycle Assembly ................................................................................................................. 20 

Figure 18: Compression Tests ..................................................................................................................... 22 

Figure 19: Bamboo from 2013 MQP Main Tube, 2013 MQP Stays, Purchased, Non-Treated, .................. 22 

Figure 20: 3 Point Bending Tests ................................................................................................................. 23 

Figure 21: Heat Treated, Non-Treated, Purchased, 2013 MQP Stays, ........................................................ 24 

Figure 22: Setup for 3 Point Bending Test .................................................................................................. 25 

Figure 23: CPSC Frame Test ........................................................................................................................ 26 

Figure 24: Results from Compression Tests ................................................................................................ 27 

Figure 25: Results From 3 Point Loading tests ............................................................................................ 28 

Figure 26: Heat Treated Bamboo #3 After Compression ............................................................................ 28 

Figure 27: Heat Treated Bamboo #1 After 3 Point Loading ........................................................................ 29 

Figure 28: Results from Hose Clamp Test ................................................................................................... 30 

Figure 29: Failure of Hose Clamp after Testing ........................................................................................... 31 

Figure 30: Failed Head Tube Weld from Frame Test .................................................................................. 31 

Figure 31: Head Tube Decomp .................................................................................................................... 39 

Figure 32: Bottom Bracket Decomp ............................................................................................................ 39 

Figure 33: Seat Post Decomp ...................................................................................................................... 40 

Figure 34: Drop-Out (Chain Stay-Seat Stay Joint) Decomp ......................................................................... 40 

Figure 35: Manufacturing Decomp ............................................................................................................. 41 

Figure 36: Non-Treat Bamboo #1 after Compression ................................................................................. 44 

Figure 37: Purchased Bamboo #1 after Compression ................................................................................ 44 

Figure 38: Bamboo Stays #1 from 2013 MQP after Compression .............................................................. 45 

Figure 39: Bamboo Main #3 from 2013 MQP after Compression .............................................................. 45 

Figure 40: Steel Tubing #1 after Compression ............................................................................................ 46 

Figure 41: Heat Treated Bamboo #1 after 3 Point Loading ........................................................................ 46 

Figure 42: Non-Treated Bamboo #1 after 3 Point Loading ......................................................................... 47 

file://filer.wpi.edu/HOME/MY_Documents/MQP/Final%20Report.docx%23_Toc386715768
file://filer.wpi.edu/HOME/MY_Documents/MQP/Final%20Report.docx%23_Toc386715774
file://filer.wpi.edu/HOME/MY_Documents/MQP/Final%20Report.docx%23_Toc386715774
file://filer.wpi.edu/HOME/MY_Documents/MQP/Final%20Report.docx%23_Toc386715775


vi 
 

Figure 43: Purchased Bamboo #2 after 3 Point Loading ............................................................................. 47 

Figure 44: Bamboo Stays #2 from 2013 MQP after 3 Point Loading .......................................................... 48 

Figure 45: Bamboo Main #2 from 2013 MQP after 3 Point Loading .......................................................... 48 

Figure 46: Steel Tubing #1 after 3 Point Loading ........................................................................................ 49 

Figure 47: Chain Stay Plate ......................................................................................................................... 50 

Figure 48: Chain Stay Gusset ....................................................................................................................... 50 

Figure 49: Down Tube Seat Tube Gusset .................................................................................................... 51 

Figure 50: Head Tube Gusset ...................................................................................................................... 51 

Figure 51: Rear Dropout.............................................................................................................................. 52 

Figure 52: Seat Stay Plate ........................................................................................................................... 52 

Figure 53: Seat Stay Gusset ......................................................................................................................... 53 

Figure 54: Seat Tube Spacer ........................................................................................................................ 53 

Figure 55: Top Tube Seat Tube Gusset ....................................................................................................... 54 

 

  



vii 
 

Table of Tables 
Table 1: Table of Constraints ........................................................................................................................ 6 

Table 2: Constraint Violations of Alternative DPs ......................................................................................... 7 

Table 3: Measurements of Metal Braces .................................................................................................... 16 

Table 4: Dimensions of Bamboo ................................................................................................................. 19 

Table 5: Dimensions of Compression Test Components ............................................................................ 42 

Table 6: Dimensions of 3 Point Loading Test Components ........................................................................ 43 

 



1 
 

1. Introduction 

1.1. Objective 
The objective of this project is to design a bamboo bicycle that is less expensive to 

manufacture than current bamboo bicycle designs and can be assembled by a consumer in less 

than one hour. 

1.2. Rationale  

Improving transportation methods can have a large impact on local economy.  

Transporting goods between villages in third world countries is done almost entirely by walking.  

Some countries like Uganda and Burkina Faso have begun using intermediate modes of 

transportation (IMTs), such as bicycles, and have seen their economies improve as a result 

(Riverson & Carapetis).  Bamboo bicycles are currently being sold in parts of Africa, however due 

to the manufacturing method used workers can only construct anywhere from two and a half to 

four per person per eight-hour work day (Millennium Cities Initiative).  The new design aims to 

streamline this process further by making the bicycles both easier and faster to manufacture: it 

could potentially take less than one hour for a single person to assemble a bicycle, which would 

more than double the current output of bamboo bicycles. 

1.3. State-of-the-Art 

 1.3.1. Design 

The state-of-the-art design for bicycles uses a common shape known as the diamond 

frame (see Figure 1). This frame can be broken down into two triangles; the main triangle and 

the rear triangle.  The main triangle consists of the head tube, top tube, down tube, and seat 

tube.  The paired rear triangle consists of the seat tube, chain stays, and seat stays (VanAuken, 

1977). 
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Figure 1: Members of a Diamond Frame 

The current bamboo bicycle design process requires each joint to be wrapped by hand 

with a fiberglass tape and epoxy composite.  The bamboo and metal bicycle components are 

fixed in a jig during this process.  Two types of jigs are used during bamboo bicycle production: 

the tabletop jig and the stand-up jig.  Calfee Design, a bamboo bicycle manufacturer, says, “Each 

of our bamboo frames requires over 40 hours of labor to build” (Calfee, 2014)(see Figure 2). 

 

Figure 2: Calfee Design Bamboo Bicycle 2014 
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1.3.2. Joint Design 

When considering what the state-of-the-art is for bikes, it is important to mention what 

was accomplished by the previous MQP groups.  In 2012, the project group created a vacuum 

formed PETG plastic shell that was then filled with epoxy to structure the joints at the ends of 

the bamboo, Figure 3. The 2013 MQP 

group used aluminum 6061 for a mold 

shell over plastic.  This was done with 

7725 fiberglass that was saturated in 

aero epoxy ES6209.  It was then placed in 

the metal molds with the bamboo and 

used to form the bicycle frame. 

There are many companies and other projects that have been successful in designing and 

constructing bamboo bicycles such as Erba Cycles, Panda Bicycles, and Calfee Design.  Some of 

the various methods used for joint making include natural fibers (Calfee, 2014), composite 

materials (Building a Bamboo Bike, 2014), or metal joints (Bamboo Bicycle Club, 2014).   

1.3.3. Materials 

Natural fibers that are often used are hemp, carbon or flax fibers, which are typically 

treated with an epoxy resin. The metal joints, which are typically made from steel or aluminum, 

are then crimped around the bamboo.  

Companies that produce bamboo bicycles usually use bamboo tubes with a diameter of 

1 inch. Unlike manufactured materials like aluminum and steel, however, bamboo rods are not 

of equal diameters. This makes it difficult to acquire the appropriate diameter to fit the 

conventional steel joints. It is time consuming and unproductive to require workers to screen 

Figure 3: 2012 Bamboo Bicycle Frame 
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through bundles of bamboo for just the right sizes. A more forgiving joint system that would allow 

for the flexibility of various bamboo diameters would be ideal. 

 

 

1.4. Approach 

 1.4.1. Axiomatic Design 

 This bamboo joining design method is different from the common methods of other 

bamboo bicycles. Previous bamboo MQP teams used axiomatic design (AD) in order to help 

achieve their objective. This year’s bamboo team also followed AD. Using AD, the team started 

with a list of customer needs to help create functional requirements (FRs) for each joint. (Suh, 

2001). Design parameters (DPs) were then developed from these functional requirements which 

led to the new joint system and manufacturing process. 

 The team’s approach to reach the final product was to develop new DPs until one has 

satisfied the corresponding FRs without affecting any other functional requirement. This is 

important in order to have an uncoupled design, which results in an acceptable design. Also, 

throughout the project the team had to keep in mind that if there are multiple designs, the one 

with the least amount of information (i.e., greatest probability of success) is better. 

 1.4.2. State-of-the-Art Difference 

 The design will advanced state-of-the-art by a new way of joining the bamboo while 

maintaining its diamond shaped structure. The new joint design differs from the designs 

mentioned in the state-of-the-art due to its hose clamps which connect the bamboo to the gusset 

metal joints. The new design is intended to allow for easier and quicker assembly. 
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 1.4.3. Project Management 

 There were a total of eight people working on the project. Project management became 

an important part in the project due to the large number of people. In the beginning of the year, 

the team was unorganized, which resulted in less work done overall. The main reason why the 

team was unorganized was because there were no positions assigned.  Without positions, it 

became difficult to meet deadlines. 

 Rather than assigning positions to people, the team had a project manager. The project 

manager’s duties were to keep track of each team members work progress and to assign tasks 

for each team member. The team received a list of tasks or assignments from the advisor during 

the advisor meeting each week. The tasks were then divided up and assigned to each person 

during the team meetings from the project manager. The manager also divided the group into 

sub-groups when needed. These sub-groups would be working on the same task together. 

Following this process along with the updated Gantt chart, helped the team become more 

organized throughout the project. 

 Having an outline organized the structure of the report. With this outline, the project 

manager assigned each team member a section of the paper to write about and assigned a 

deadline. Once the individual parts of the report were sent, the team-organizer compiled them 

into one word file. The team-organizer created a word file before the individual parts were sent 

to make it easy for organization when compiling. 

2. Design Decompositions and Constraints 
The overall decomposition for the bicycle was split into four parts, one for each joint.  The 

overarching functional requirement (FR0) for each of these decompositions was to transfer the 
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loads at the joint.  The corresponding design parameter (DP0) was a structure to transfer these 

loads.   

There were several constraints in place for the design of the bicycle, however one of the 

most critical parts of the design process is ensuring the end product is safe to use.  The Consumer 

Product Safety Commission (CPSC) has a Bicycle Compliance Test Manual that details every test 

a bicycle must pass in order to be deemed safe to ride, however only the frame test is applicable 

to this project and thus passing it was one of the constraints (Bicycle Compliance Test Manuel). 

A full list of the constraints can be seen in Table 1 below. 

Table 1: Table of Constraints 

Table of Constraints: 

1. Withstand normal loads experienced during bicycle riding 

2. Inexpensive (i.e. less than $200) 

3. Take under 1 hour to be manufactured by the consumer 

4. Require little to no training to assemble 

5. Pass CPSA frame test 

6. Aesthetically appealing 

  

2.1. Level 1 Functional Requirements  
 The level one FRs in each decomposition involved transferring the moments at each joint 

connection.  For example, in the head tube joint decomposition shown below in Figure 4, the two 

connections are the top tube-head tube connection, and the down tube-head tube connection.   
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Figure 4: Head Tube Joint Decomposition 

These FRs are collectively exhaustive (CE) as they account for all the loads applied to the joint, as 

dictated by FR0, and are mutually exclusive (ME) because they each account for a different set of 

loads. The corresponding DPs at level one are to transfer the moments at each joint. 

2.2. Level 2 Functional Requirements 
 The level two FR in each decomposition involved transferring the moments about each 

axis (i.e. x-axis, y-axis, z-axis).  These FRs are CEME by definition: the moment about each axis is 

independent of the other two, and together they account for all the moments experienced at the 

corresponding joint, as dictated by the level one FRs.  Through several iterations, the final DPs 

were determined, and can be seen in Figure 4 above, as well as in Appendix A. Table 2 below 

details alternative DPs, and which constraints they violated.  

Table 2: Constraint Violations of Alternative DPs 

Alternative DP Violations 

Thermoplastic shell (Instamorph)  

molded around each joint to transfer loads 
 Possible melting/softening issues in higher 

temperatures could weaken joints 

 Joints may not be strong enough to 

withstand normal loads experienced 

during riding 

Fiber-epoxy matrix (e.g. carbon-fiber) 

wrapped around each joint to transfer 

loads 

 Requires training to assemble 

 Takes far longer than 1 hour to 

manufacture (see section 1.2 Rationale) 
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The final design involves a metal brace and gusset system held together by a series of 

hose clamps.  A prototype (see Figure 10) was constructed as a proof of concept, and while it 

violated some of the constraints—namely cost (2) and aesthetics (6) — the manufacturing 

process, once optimized and streamlined, has the potential to produce bicycles that meet every 

constraint (see Table 1). 

 

3. Physical Integration  

3.1. Functional Requirements 

 3.1.1. Level 1 Functional Requirements 

 The 1st level Functional requirements require a system to transfer the loads at each joint. 

The design parameters call for a structure to transfer the expected loads. The system designed 

was a metal gusset and brace system secured with hose clamps.  

 

Figure 5: Bottom Bracket SolidWorks Model with DPs 

 The system for transferring the moments at the bottom bracket can be seen in Figure 5. 

To transfer the loads, from the crank to the frame, a bottom bracket shell was welded to the rear 

half of the bottom bracket. This allowed the two halves of the bottom bracket to be pulled 
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towards and tighten one another around the seat tube. The chain stays gusset was t-shaped to 

allow clearance between the chain stays and the rear wheel. The system to transfer the loads at 

the seat joint can be seen in Figure 6. An issue faced by previous MQPs was attaching a seat post 

to the frame. This had previously remained coupled to the rest of the system and became a weak 

link in their design. The current design decouples the seat post from the seat tube; this provides 

a simple solution for mounting the seat, as seen in Figure 6. A spacer was placed between the 

seat tube and the seat post to allow a hose clamp to pass between the two.  

 

Figure 6: Seat Joint SolidWorks Model with DPs 

 The system to transfer the moments at the rear dropouts can be seen in Figure 7. A 

functional requirement of the rear dropout was to transfer the loads from the rear wheel to the 

frame. Current bike designs attach the wheel to the frame through the rear dropouts. Instead of 

attaching a dropout to the joint that connects the seat and chain stays, the dropout and gusset 

were combined. This allowed a simpler DP to satisfy the original FR.  
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Figure 7: Rear Dropout SolidWorks Model 

 The system designed to transfer the moments at the head tube joint can be seen in Figure 

8. A standard head tube was used to allow standard front forks to be used. This head tube was 

welded to the gusset to transfer the loads between the head tube, down tube and top tube. 

 

Figure 8: Head Tube SolidWorks Model with DPs 

 3.1.2. Level 2 Functional Requirements 

 The 2nd level functional requirements were to transfer the decomposed moments at each 

tube. Each tube used the same idea to transfer the moments in the x, y, and z-axis. The functional 

requirements for transferring the moments about the x-axis were satisfied by the friction 
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between a rubber lining (not shown) placed between the bamboo tubes and the metal braces. A 

metal brace (not shown) was placed between the bamboo tube and the hose clamps, opposite 

the metal braces in the joints. This was done to reduce the stress concentration on the bamboo 

tubes caused by the narrow surface area of the hose clamps. The functional requirements for 

transferring the moments about the y-axis were satisfied by the edges of the metal brace. The 

metal braces were cut from low carbon steel tubing, allowing the bamboo tubes to fit 

concentrically in the metal braces. The majority of the moments seen in the bike frame are about 

the z-axis. This functional requirement was satisfied with the use of metal gussets and hose 

clamps. The metal gussets prevent rotation in one direction about the z-axis while the hose 

clamps prevent rotation in the opposite direction. 

3.2. Finite Element Analysis 

 The SolidWorks Model was run through an FEA program to analyze the design. The 

purpose of the FEA was to test the joints not the bamboo. To achieve this, bamboo tubes were 

replaced with steel tubes in the FEA that are stiffer and transmit more of the load to the joints. 

To test the joints a 1000-lbf load was placed on the crank assembly, a 100-lbf was applied to the 

top of the seat post, and a 10-lbf was applied to the top of the head tube. The loads applied were 
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normal to the applied surfaces. The distributions of this FEA can be seen in Figures 8 and 9. With 

the initially applied loads a safety factor of 2.4 was given by the software and a maximum 

displacement seen was 0.1505 mm.  We were unable to determine loads seen while a bike was 

in operation so loads were applied to locations on the frame that would have loads during 

operation. Figures 9 and 10 were loaded ten times the initial amount to show the stress 

distributions and deflections. The initial stress distribution plot would have shown an entirely 

blue frame with two small red dots because the maximum stress area was 5 times greater than 

the next largest stress area. Figure 9 shows values ranging from 10%-100% of the maximum stress 

value. This was done to better show the stress distribution in the image. 

 

 

  

Figure 9: Deformation Plot of the bicycle frame. 
Red are the highest deformations and blue are 

the lowest. 

 

Figure 10: Stress Plot of the bicycle frame. Red is the 
highest stress while blue is the lowest. 
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4. Prototype Production 

4.1. Computer Aided Design 
 To begin the prototyping and manufacturing process, a CAD model in SolidWorks was 

utilized to design the various joint models discussed earlier in the axiomatic design 

decompositions, as well as the bike frame. There were two assumptions considered as a way to 

simplify the modeling process. The first assumption was bamboo could be used as a substitute 

for other bike materials. The second assumption was current bicycle frames on the market have 

the optimal geometry for withstanding loads during cycling. Therefore, a common bicycle frame 

will be replicated for this design. These statements can be proven by the success of several 

bamboo bike industries. 

 4.1.1. Modeling the Bike Frame 

 The geometry of the bike frame model was acquired from the measurements of an 

existing road bike on the market. These frame measurements can be seen in Figure 11. This 

drawing dictated the sizes of the individual joints, thus leading to the development of the CAD 

models of the joints.   

 

Figure 11: SolidWorks Diagram of Frame Geometry 
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 4.1.2. Modeling the Joints 

 Four CAD models were made in SolidWorks relative to the four types of joints on a bike. 

There are four critical components of a bike: seat tube joint, head tube joint, bottom bracket 

joint, and drop out joint. These joints are positioned at the four corners of the diamond frame. 

The head tube joint is critical for steering the system, the seat tube joint is critical for the bike 

seat, the bottom bracket joint is critical for the crank system, which includes the petals and chain, 

and the drop out joint is critical for the real wheel. Metal braces were designed to fit around the 

frame tubes at each joint. The frame measurements in Figure 11 dictated the specific angles for 

the position of the braces.  

 Triangular gussets were added to the joint assembly filling in the space that was left 

between two metal braces. The gussets provide support and mechanical stability during cycling. 

In SolidWorks, top down assemblies were used as a way to easily update any changes to the 

joints; therefore, allowing the joints to be adjustable for varying bike frames. The individual joint 

systems can be seen in the previous figures. 

 4.1.3. Assembling the CAD Bike Model 

Once the model of the bike frame geometry and four joints were created In SolidWorks, 

all parts were ready to be assembled. The final CAD assembly is shown below In Figure 12. 
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Figure 12: SolidWorks Frame Assembly 

4.2. Manufacturing the Prototype  

 4.2.1. Manufacturing the Metal Braces 

 To start the manufacturing process the metal braces were cut from 1018 carbon steel 

tubes to the appropriate dimensions described in Table 3. One low carbon steel tube had an 

outer diameter of 1.50 inches and the other 1018 carbon steel tube had an outer diameter of 

2.50 inches. The seat stay and chain stay tubes were cut from the 1.50 inch diameter steel tube. 

 The remaining joint tubes were cut from the 2.50 inch diameter steel tube.  

Each were cut to the labeled lengths using a horizontal band saw. The tolerances for the tube 

lengths are shown to be plus/minus 0.15 inches. These tolerances account for possible error 

when using the band saw to cut the lengths as well as using the bench grinder. 
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Table 3: Measurements of Metal Braces 

Joint Type of Tube  Outer Diameter (in) Length (in) Quantity  

Seat  Seat Stay 1.50 4.50 ± 0.25 2 
Seat  Top Tube 2.50 5.65 ± 0.25 1 
Seat  Seat Tube  2.50 6.00 ± 0.25 2 

Head Tube  Top Tube 2.50 4.00 ± 0.25 1 
Head Tube  Down Tube 2.50 5.00 ± 0.25 1 

Bottom Bracket  Down Tube 2.50 4.00 ± 0.25 1 
Bottom Bracket  Seat Tube  2.50 4.00 ± 0.25 2 
Bottom Bracket  Chain Stay 1.50 2.85 ± 0.25 2 

Drop out  Chain Stay 1.50 3.00 ± 0.25 2 
Drop out  Seat Stay 1.50 3.70 ± 0.25 2 

 

Once all joint tubes were cut to the correct length, they were cut into semi-circular tubes 

(at the radius) using an angle grinder, thus forming the metal braces.  With the metal braces 

completely formed, a bench grinder was used to remove the rough surfaces, chamfer the edges, 

and round the corners. This process can be seen in Figure 13. 

 

Figure 13: Bench Grinder for Final Touches 

 For joint assembly purposes, quarter metal braces were also created. The same process 

was followed to cut the quarter metal braces; however, instead of ½ diameter braces, they are ¼ 
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diameter braces. These are placed around the bamboo on the opposite side of the ½ diameter 

metal braces to secure the bamboo in place. This process is discussed later. 

 4.2.2. Manufacturing the Gussets  

The gusset manufacturing process began by using a laser cutter to cut out acrylic 

templates. 

 

Figure 14: Templates for Gussets 

The templates were traced onto a 1018 carbon steel plate (0.125 inches by 6.0 inches). A 

plasma cutter was first used to cut out the general shape of the individual gussets. A band saw 

was used to finalize the shape of each gusset, including the rectangular notches. Several notches 

were cut out of each gusset, creating a space for the hose clamps to fit. Files were used to smooth 

the surfaces and expand the notches to fit the hose clamps. A bench grinder was used to chamfer 

the edges and round the corners to finalize each gusset.  

 4.2.3. Welding the Joints 

To help weld the joints together, two jigs were manufactured. The purpose of the jigs 

were to hold the metal braces and gussets in place to assist alignment for MIG welding. One jig 

was created for the 1.50 inch diameter metal braces and the other jig was created for the 2.50 
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inch diameter metal braces. One jig is shown below in Figure 15. The 1.50 inch diameter jig was 

made of acrylic and the 2.50 inch diameter jig was made of medium-density fiberboard. Each 

component of the jigs were cut using a laser cutter and then assembled.  

 

 

Figure 15: Jig for Welding Joints 

To weld the braces and gussets together, the metal brace is inserted through the semi-

circle arches at the bottom of the jig. The gussets are inserted in-between the two triangular 

pieces that run the entire length of the jig.  Once aligned correctly, spot welding is completed to 

join the metal braces and gussets at various spots along the interface. The assembly is removed 

from the jig and then completely welded together along the entire interface. This process and an 

example of a welded joint are shown in Figure 16. 
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Figure 16: Welding of Seat Stays-Seat Tube Joint 

 

4.2.4. Cutting the Bamboo Tubes 

Once all the joints were assembled and welded, the bamboo was cut to the correct length 

using a hand saw. The dimensions of each bamboo tube are shown in Table 4. The lengths have 

a tolerance of plus/minus 0.20 inches due to possible hand saw error.     

Table 4: Dimensions of Bamboo 

Bamboo Tube Outer Diameter (in) Length (in) Quantity  

Top Tube 2.00 ± 0.20 22.2 ± 0.50 1 

Down Tube 2.00 ± 0.20 23.98 ± 0.50 1 

Seat Tube 2.00 ± 0.20 19.37 ± 0.50 1 

Seat Stay 1.00 ± 0.20 19.49 ± 0.50 2 

Chain Stay 1.00 ± 0.20 17.01 ± 0.50 2 

 

The bamboo tubes create the diamond bike frame as illustrated in Figure 12. They are 

placed into the metal joints and secured. This process is outlined in the next section.  
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4.3. Assembling the Bike 

 To finish the joint assembly, a rubber inlay was inserted into all metal braces. The bamboo 

tubes were then placed into the metal braces on top of the rubber inlay. Quarter diameter metal 

braces were then placed on the bamboo opposite from the ½ diameter metal braces. Two or 

three hose clamps, depending on the joint, were wrapped around the metal braces, rubber, and 

bamboo. This created a secure joint. Once all joints were assembled, the entire bike frame could 

be assembled (see Figure17).  

To completely assemble all parts of the bike frame together, these steps were followed: 

1. Fasten seat stay tubes to the dropout joints using hose clamps 
2. Fasten chain stay tubes to the dropout joints using hose clamps  
3. Fasten back half of seat tube joint to both seat stay tubes using hose clamps  
4. Fasten back half of bottom bracket joint to both chain stay tubes using hose clamps  
5. Fasten top tube to head tube joint using hose clamps  
6. Fasten down tube to head tube joint using hose clamps  
7. Fasten top tube to front half of seat tube joint using hose clamps  
8. Fasten down tube to front half of bottom bracket joint using hose clamps  
9. Insert seat tube into metal braces 
10. Fasten both halves of the seat tube joint and bottom bracket joint together using hose 

clamps 
 

 

Figure 17: Full Bicycle Assembly 
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5. Testing  

5.1. Bamboo and Metal Tube Testing 

 5.1.1. Overview 

 For our testing procedures we performed several tests to evaluate the strength of 

different components of our bicycle. These tests allowed us not only to choose materials that 

would perform successfully, but it also helped us understand how certain components of the 

bicycle may react when subject to the expected stresses. In order to find the ideal bamboo for 

our bicycle frame, we tested different types of bamboo in various ways. We also wanted to see 

how bamboo performed in comparison to steel tubes from a current road bicycle to get an idea 

of how strong the bamboo must be to withstand the standard forces that a bike frame may be 

subject to. 

 Testing occurred once the measurements and weights of each piece were recorded. We 

cut each piece of bamboo and metal, for the compression test, to a length of 4 inches (0.1016 m) 

and each piece of bamboo and metal, for the 3-point bending test, to 15 inches (0.381 m) with 

the 2 outer points of contact set 12 inches (0.3048 m) apart. The measurements recorded 

included length, outer diameter of each end of the bamboo pieces, wall thickness, and weight. 

For a full list of each piece and its measurements, see Table 4 and Table 5 in Appendix B. 

 5.1.2. Compression Tests 

 Our initial tests were performed using the static loading compression machine in the Civil 

Engineering lab. The test was set up by placing the piece to be tested vertically on a platform 

(with the diameter of the cylinder face up). Above the platform was a press with a flat surface 

that pushed downward and provided the force. The load was gradually increased to the point of 

fracture. We tested 5 different types of bamboo as well as steel tubes from an old bicycle that 
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we cut up. The different types of bamboo that we tested were non-treated and heat treated 

bamboo from Long Island, purchased heat treated bamboo, and bamboo of different diameter 

taken from the 2013 Bamboo Bike MQP. This test was performed on each material numerous 

times. Figure 18 shows the setup and machined used in the CE lab for the compression tests and 

Figure 19 shows the different components that were tested. 

 

Figure 18: Compression Tests 

 

 

Figure 19: Bamboo from 2013 MQP Main Tube, 2013 MQP Stays, Purchased, Non-Treated, 

Heat Treated, and Metal Tubing (In Order) 
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 5.1.3. 3 Point Bending Tests 

The next test was a 3-point bending test, which we also performed using the static loading 

compression machine in the Civil Engineering lab. The test was set up by placing two half cylinder 

metal bars 12 inches (0.3048 m) apart to act as the two outer points in the 3-point test. The piece 

that was to be tested was then laid across both of the bars horizontally. A third metal bar was 

then placed on top of the piece to be tested and below the press at the center of the bamboo. 

This bar allowed us to create the third point at the center of the bamboo. The press then provided 

the gradually increasing downward force. The load was gradually increased to the point of 

fracture. We tested the same materials that we tested in the compression test and numerous 

tests were performed on each material. A picture of the test performed is shown in Figure 20, as 

well as each material taken before the tests were performed, shown in Figure 21. 

 

Figure 20: 3 Point Bending Tests 
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Figure 21: Heat Treated, Non-Treated, Purchased, 2013 MQP Stays,  

2013 MQP Main Tube, Metal Tubing (In Order) 

5.2. Hose Clamp Testing 

 We had constructed a test to determine the strength of the hose clamps that were used 

for our bamboo bicycle. The primary force that the hose clamp will experience is a tensile force. 

In order to test for this, the test joint needed to be fixed to the platform of the static loading 

compression machine. Our initial idea as to how to fixture the test joint this was similar to the 

fixture upon which we decided. The primary difference in how we would hold the test joint in 

place was that our initial idea was for the test joint to be held in place using a vice grip that 

clamped onto the gusset of the test joint. Unfortunately, this process was not possible because 

the platform of the machine that we used was not large enough to fit the vice grip.  

 Instead we screwed two holes in the gusset and attached the gusset to a square metal 

bar with two holes drilled in it. The metal bar was then secured to the testing platform using a c-

clamp. We used nuts and bolts through the two holes to join the metal bar and test joint. We 

then placed a metal rod in the half cylinder brace of the test joint and secured it in place with 

two hose clamps. The metal rod extended out from the test joint approximately 10 inches (0.254 
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m) and created a lever arm, on which a downward force was applied, creating a moment. You 

can see how the hose clamp test was setup in Figure 22.  

 

Figure 22: Setup for Hose Clamp Test 

5.3. Final Bicycle Frame Testing 

 In order to test the final bicycle frame we first looked into ASTM standard tests, as well 

as CPSC compliance tests, which are required to approve a bicycle for safety regulations. There 

are several tests that must be performed before a bike is approved. Due to time constraints and 

complexity of set up for many of the tests, we decided to do the simplest test. This test was also 

the most relevant and highest priority test. The test we chose to perform was a compression test 

in which the bike frame was oriented horizontally. The bicycle frame was placed in a large vice 

clamp system in which the dropout joints were fixed in place up against a scale that was oriented 

vertically. The fork at the front of the bicycle was placed at the front of the vice grip. As the vice 

was screwed the force placed on the bike increased and the bike was compressed. In order for 

the bicycle to meet the CPSC regulations it must be gradually loaded to a minimum of 200 lb-f 

(890 N) or until 350 in-lb (39.5 N-m) of energy is absorbed by the frame, whichever results in a 

greater force. If any noticeable deformation or fracture occurs, or if ability to steer the bicycle is 

affected after the load is released, the bike has failed to meet standards. Therefore, the bicycle 
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must be able to withstand a minimum load of 200 lb-f (890 N), while deflecting a minimum of 

1.75 inches (0.04445 m), and must then return to its original form when the force is released. 

The setup for the CPSC frame test can be seen in Figure 23 below. 

 

Figure 23: CPSC Frame Test 
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6. Data Analysis 

6.1. Metal vs. Bamboo Test Results 
 After completing the compression and 3-point tests on the various types of bamboo and 

the steel tubes, several observations were made. Obviously, one observation was that the 

strength of the metal was significantly higher than the strength of the bamboo in both tests. The 

steel experienced a peak load of 919 lb-f in the 3-point test and 9,791 lb-f in the compression 

test. The strongest bamboo, which was the bamboo from the 2013 Bamboo Bike MQP, 

experienced a peak load of 467 lb-f in the 3-point test and 6,588 lb-f in the compression test 

shown in Figure 24 and Figure 25. The peak loads of the heat treated bamboo tubes were similar 

to those experienced by the strongest bamboo. As for the rest of the bamboo tubes with a 

smaller outer diameter (non-heat treated, purchased bamboo, and the bamboo stays from the 

2013 Bamboo Bike MQP) they all experienced similar peak loads to each other, aside from the 

non-heat treated bamboo. The strongest bamboo tube that had smaller outer diameter was from 

the 2013 Bamboo Bike MQP. This bamboo experienced a peak load of 333 lb-f in the 3-point test 

and 4,290 lb-f in the compression test. 

 

Figure 24: Results from Compression Tests 
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Figure 25: Results From 3 Point Loading tests 

Naturally we expected the metal to be stronger, however we did not expect the difference to be 

so significant. Based on the fact, however, that the bamboo used for last year’s Bamboo Bicycle 

MQP proved to be strong enough to withstand large forces without failure we felt that the metal 

bicycle was likely over-qualified and could withstand forces far larger than it would likely 

experience. Examples of components after testing occurred are shown in Figure 27 and Figure 

26, where the rest of the components, after testing, can be found in Appendix C. 

 

Figure 26: Heat Treated Bamboo #3 After Compression 
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Figure 27: Heat Treated Bamboo #1 After 3 Point Loading 

 Another observation was that all of the different types of bamboo aside from the non-

heat treated bamboo, varied slightly in strength for both tests, aside from a few outliers. The 

outliers of the tests may have occurred for several reasons. One reason is that a few of the pieces 

of bamboo from last year’s bicycle were compromised because some of the epoxy that was used 

for their joints leaked into the bamboo and may have weakened it as a result. Some of the pieces 

were also compromised due to cracks that resulted from trying to remove the epoxy that had 

leaked into the tubes. Aside from these few outliers, the strength of the different types of 

bamboo were much the same. The primary reason there was variance in the strength of the 

different types of bamboo was due to their different diameters. Through these observations we 

concluded that any of these types of bamboo, aside from the non-heat treated bamboo, would 

be sufficient to use for a bicycle frame. As long as we purchased a bamboo of similar quality that 

is heat treated and has a large enough outer diameter, we felt that it would be sufficient and 

could withstand the loads that the bicycle would experience. 

6.2. Hose Clamp Test Results 

 Initial tests of the hose clamps proved that our fixture that held the test joint in place was 

inefficient. After completing the test we realized that it was neither the test joint nor the hose 

clamp that experienced the failure. The parts of the test that had failed were the two bolts that 

held the test joint in place. After unscrewing the test joint from the fixture, we realized that the 

bolts had been deformed. We tested the mechanism twice and neither time were the test joint 
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or the hose clamps compromised. The peak load between the two tests was 447 lb-f initially. Due 

to the failure of the bolts used to hold the test joint in place the test was invalid and we had to 

retest with more durable screws. In order to achieve this we had to use larger bolts to withstand 

the stresses. 

 After the modifications of the fixture were made, we successfully tested the hose clamp. 

Our results were that the hose clamps experienced a peak load of 775 lb-f before failure, shown 

in Figure 28. We were surprised to find, however, that the failure had occurred with the hose 

clamp strap (see Figure 29), rather than with the hose clamp screw as we had predicted. We 

applied 200 lb-f per minute and the lever arm extended approximately 9 inches from the end of 

the half cylinder. 

 

Figure 28: Results from Hose Clamp Test 
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Figure 29: Failure of Hose Clamp after Testing 

 

6.3. Bicycle Frame Test Results 
 The bicycle broke at the head tube weld (see Figure 30) with an applied load of 

approximately 150 lbf and a displacement of 1.5 in. The failure of this weld was sudden and the 

fork was launched away from the frame. The bicycle absorbed approximately 225 in-lb of energy 

at failure. The bicycle failed this test. 

 

Figure 30: Failed Head Tube Weld from Frame Test 
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6.4. Testing Videos 

 Videos were taken of all the aforementioned tests and were posted to Youtube for easy 

sharing. Just search “Bamboo Bike MQP” or go to 

https://www.youtube.com/results?search_query=bamboo+bike+mqp 

  

https://www.youtube.com/results?search_query=bamboo+bike+mqp
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7. Discussion 
7.1 Accomplishments  

 This design process provides the best solution for manufacturing bamboo bicycle frames. 

The assembly process is simple enough that most could interpret it from looking at the 

components. Training to learn the complex fiber wrapping methods and nature of resin systems 

are traded for a simple screwdriver and a diagram of which joints connect to which bamboo 

tubes. This also trades the tricky and permanent nature of resins for a forgiving and adjustable 

joint assembly. 

The most time consuming and labor intensive part of the assembly process, fabricating 

the joints, is prefabricated and streamlines the overall process. Shortening that step allows this 

design to be assembled in 31 minutes. There are no time-sensitive steps in this process; the 

wrapping method requires the mixing and application of resins within a specific timeframe along 

with an additional timeframe for curing.  

7.2 Design Method  

 Axiomatic design was a powerful tool used in the design process of this project. Early on, 

the team did not fully understand axiomatic design and refused to follow it. As the project 

progressed, the advisor explained the importance of axiomatic design and why the project must 

follow this design method. Once our team implemented AD a near complete design was created 

in two days. At this point we understood the significance of AD that our advisor was trying to 

communicate to us. Although our prototype failed to reach the cost aspect of our objective, our 

implementation of AD allowed our design to have a faster and simpler assembly process than 

current processes.  



34 
 

7.3 Constraints  

 Many of the original constraints were not met with the final design. Normal loads 

experienced during bicycle riding were not determined and therefore were not able to be tested. 

The prototype bicycle assembly cost more than the constraint set for $200. Time and training 

required to assemble the prototype were both met; the prototype was assembled in 31 minutes 

with a screwdriver and no instructions. This prototype failed the CPSC frame test and the 

aesthetics of the bike are still up for debate. 

7.4 Impact   
As stated in section 1.2 Rationale, providing third world countries with bamboo bicycles 

can have a large impact on local economies, as it greatly reduces the time for goods to be 

transported between villages.  These benefits can already be observed in some countries like 

Uganda and Burkina Faso, which have begun to use intermediate modes of transportation like 

bamboo bicycles more prevalently.  With an assembly time four to six times faster than the most 

common fiber-wrapping method, our design has the potential to greatly increase the availability 

of bamboo bicycles. The increased availability of cheap transportation could help rapidly progress 

the economies and societies of third world countries. 

7.5 Improvements to Prior Art  
This design improves upon the time and effort required to manufacture bamboo bicycle 

frames used in current fiber wrapping methods. The joints can be removed to allow damaged 

frame tubes to be replaced without replacing the entire frame.  Full disassembly of the frame 

allows it to take up less space than a fully assembled frame; it can be packed in a bag or several 

can be shipped in a box that would hold a full frame.    
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7.6 Potential Commercial Use   

This design process is versatile and can be applied to several bicycle applications. It serves 

to satisfy the role of a bamboo bicycle, but could also minimize the travel and shipping size of 

conventional bicycles. This modular-style bicycle design might also extend the life of the common 

bicycle, allowing worn or broken components to be replaced rather than the entire frame. Most 

parts on a bicycle are interchangeable already; the frame can be as well.  
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8. Concluding Remarks   

8.1 Major Design Accomplishments 
 This design satisfies the two axioms.  

 This design process has a simple assembly method.  

 A prototype of this design was assembled in 31 minutes; the common fiber wrapping method 

takes 2.5-4 hours.  

 The assembled prototype was able to hold the static load of the heaviest team member sitting on 

the seat without failure.  

8.2 Including Issues Remaining 
 Critical alignments are yet to be determined.  

 Tolerances are yet to be determined.  

 Full bicycle assembly has not been completed.  

 The prototype frame failed the CPSC 5.15 regulation fork and frame test. 
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11. Appendices 

11.1. Appendix A: Decompositions  

 

Figure 31: Head Tube Decomp 

 

Figure 32: Bottom Bracket Decomp 
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Figure 33: Seat Post Decomp 

 

Figure 34: Drop-Out (Chain Stay-Seat Stay Joint) Decomp 
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Figure 35: Manufacturing Decomp 
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11.2. Appendix B: Tables of Testing Components Dimensions  
Table 5: Dimensions of Compression Test Components 

Compression Tests 

Component Length (in) Diameter Side 1 
(in) 

Diameter Side 2 
(in) 

Thickness (in) Weight (g) 

Heat Treated 
Bamboo #1 (with 

node) 

4 1.15 1.23 0.130 27.8 

Heat treated 
Bamboo #2 (without 

node) 

4 1.23 1.23 0.119 19.8 

Heat Treated 
Bamboo #3 (without 

node) 

4 1.20 1.22 0.112 19.8 

Non-Treated 
Bamboo #1 (without 

node) 

4 1.02 1.08 0.099 14.2 

Non-Treated 
Bamboo #2 (with 

node) 

4 0.85 0.85 0.107 18.4 

Non-Treated 
Bamboo #3 (without 

node) 

4 0.91 0.92 0.111 16.6 

Bamboo Purchased 
Online #1 

(with node) 

4 0.82 0.81 0.139 17.8 

Bamboo Purchased 
Online #2 

(without node) 

4 0.79 0.81 0.115 14.9 

Bamboo Purchased 
Online #3 

(without node) 

4 0.81 0.79 0.105 13.5 

Bamboo from 2013 
MQP #1 (seat/chain 

stays) 

4 0.85 0.85 0.162 13.0 

Bamboo from 2013 
MQP #2 (seat/chain 

stays) 

4 0.84 0.86 0.169 13.8 

Bamboo from 2013 
MQP #1 (head 

tube/seat tube/ top 
tube) 

4 1.63 1.63 0.147 26.3 

Bamboo from 2013 
MQP #2 (head 

tube/seat tube/ top 
tube) 

4 1.62 1.64 0.141 25.1 

Bamboo from 2013 
MQP #3 (head 

tube/seat tube/ top 
tube) 

4 1.61 1.63 0.175 24.2 

Metal Tubing from 
Road Bike 

4 1.01 1.01 0.050 72.1 
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Table 6: Dimensions of 3 Point Loading Test Components 

3 Point Loading Tests 
Component Length (in) Diameter Side 

1 (in) 
Diameter Side 

2 (in) 
Thickness (in) Weight (g) 

Heat Treated 
Bamboo #1  

15 1.0 1.16 0.134 76.5 

Heat treated 
Bamboo #2  

15 1.18 1.15 0.115 84.3 

Non-Treated 
Bamboo #1  

15 1.21 1.15 0.117 80.8 

Non-Treated 
Bamboo #2  

15 0.93 0.97 0.111 56.1 

Bamboo 
Purchased 
Online #1 

15 0.79 0.77 0.112 57.0 

Bamboo 
Purchased 
Online #2 

15 0.78 0.80 0.122 58.0 

Bamboo from 
2013 MQP #1 
(seat/chain 

stays) 

15 0.84 0.84 0.096 33.2 

Bamboo from 
2013 MQP #2 
(seat/chain 

stays) 

15 0.77 0.82 0.088 61.8 

Bamboo from 
2013 MQP #1 

(head tube/seat 
tube/ top tube) 

15 1.67 1.71 0.368 95.4 

Bamboo from 
2013 MQP #2 

(head tube/seat 
tube/ top tube) 

15 1.75 1.72 0.365 97.5 

Metal Tubing 
from Road Bike 

15 1.125 1.125 0.056 322.3 
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11.3. Appendix B: Components after Testing 
 

 

Figure 36: Non-Treat Bamboo #1 after Compression 

 

Figure 37: Purchased Bamboo #1 after Compression 
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Figure 38: Bamboo Stays #1 from 2013 MQP after Compression 

 

Figure 39: Bamboo Main #3 from 2013 MQP after Compression 
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Figure 40: Steel Tubing #1 after Compression 

 

Figure 41: Heat Treated Bamboo #1 after 3 Point Loading 
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Figure 42: Non-Treated Bamboo #1 after 3 Point Loading 

 

 

Figure 43: Purchased Bamboo #2 after 3 Point Loading 
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Figure 44: Bamboo Stays #2 from 2013 MQP after 3 Point Loading 

 

Figure 45: Bamboo Main #2 from 2013 MQP after 3 Point Loading 
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Figure 46: Steel Tubing #1 after 3 Point Loading 
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11.4 Gusset Dimensions 
 

 

Figure 47: Chain Stay Plate 

 

 

Figure 48: Chain Stay Gusset 
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Figure 49: Down Tube Seat Tube Gusset 

 

 

Figure 50: Head Tube Gusset 
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Figure 51: Rear Dropout 

 

 

Figure 52: Seat Stay Plate 
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Figure 53: Seat Stay Gusset 

 

 

Figure 54: Seat Tube Spacer 
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Figure 55: Top Tube Seat Tube Gusset 


