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Abstract 
 

Matrix metalloproteinases (MMPs) are a group of complex enzymes 

known for their role in ECM turnover and homeostasis. These proteinases 

additionally participate in many other biological processes, but when deregulated 

contribute to different pathological processes and diseases such as multiple 

sclerosis and rheumatoid arthritis. Therefore MMPs require tight regulation of 

their activity. The focus of this project was to gain an understanding of MMPs and 

to synthesize different novel inhibitors aimed at MMPs and other biological 

targets. 
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Chapter 1: Introduction 
 Homeostasis is necessary for ideal physiology in any cell. It is not only limited to 

the intracellular environment of cells, but also applies to a cell’s extracellular 

environment. The extracellular environment, known as the extracellular matrix (ECM), is 

assembled when surrounding cells secrete various proteins and polysaccharides 

(Stamenkovic, 2003). The result is an organized meshwork of molecules that provides 

both structural and chemical support to cells. Among the molecules that compose and 

moderate the ECM are ECM proteinases (Sternlicht & Werb, 2001). These molecules 

are responsible for degrading extracellular proteins, thereby contributing to cell-matrix 

interaction, physiological and pathological processes, and matrix homeostasis 

(Stamenkovic, 2003). One such group of proteinases is matrix metalloproteinases 

(MMPs). Their name matrix metalloproteinase stems from their ability to degrade 

proteins of the ECM and their dependency on metal ions for catalytic activity (Nagase & 

Woessner, 1999). All MMPs are synthesized and secreted in their latent proenzyme 

form and require activation in order to be catalytically active. Once active, MMPs have 

many beneficial functions including, but not limited to, embryonic development, organ 

morphogenesis, nerve growth, wound healing, angiogenesis, and apoptosis (Supuran & 

Winum, 2009). Due to the diverse roles of MMPs, regulation of their activity and 

expression is essential in order to to maintain homeostasis. When not controlled, MMPs 

contribute to the pathogenesis of various diseases, such as cancer, arthritis, and 

multiple sclerosis (Nagase & Woessner, 1999). Therefore, their activity is closely 

regulated, both transcriptionally and post- transcriptionally, with regulation starting at 

gene expression and extending to their protein level inhibition (Martel-Pelletier et al., 

2001).  

 The involvement of MMPs in pathological processes justifies the impetus for 

finding viable inhibitors that can specifically target individual or multiple MMPs, in hopes 
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of mitigating the effects of MMPs in disease pathogenesis (Rodríguez et al., 2010). A 

focus on MMP inhibition not only, helps in defining how MMPs can be controlled, but the 

elucidation of their inhibition helps in understanding their roles in various diseases. 

Consequently, it is of particular value to obtain this information because it details the 

different features of MMP activity. The goal of this project was to synthesize small 

inhibitors to test against MMPs and different biological targets. The following chapters 

detail the background research, experimental procedures, and results during the course 

of the project.  

 

2.1 Overview of Proteinases 
 Proteinases are highly characterized enzymes that are classified based on 

different parameters such as their structure, function, etc. (Blobel & Overall, 2007). 

These enzymes are first classified based on their position of proteolytic cleavage, with 

endopeptidases targeting nonterminal peptide bonds and exopeptidases targeting N-

terminal or C-terminal peptide bonds (Lopez-Otín & Bond, 2008). In regards to their 

catalytic mechanism, mammalian endopeptidases are next separated into five classes 

of aspartic, cysteine, serine, threonine, and metalloproteinases (Cawston & Wilson, 

2006). However, despite the contribution of all five classes of proteases to the 

degradation of the ECM, it is believed that most of the proteolytic activity can be 

attributed to metalloproteinases (Wojtowicz-Praga et al., 1997). The metalloproteinase 

class, also known as the metzincin superfamily, is further split into five distinct families 

(e.g. adamlysins, astacins, matrix metalloproteinases, serralysins, and pappalysins) 

based on their amino acid sequence (Cawston & Wilson, 2006) (Refer to Figure 1). 

Furthermore, within the metzincin superfamily, MMPs are of particular interest in drug 

design due to their dual involvement in both normal and diseased states (Supuran & 

Winum, 2009).  
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To fully comprehend MMPs involvement in various diseases, the normal behavior 

of MMPs must first be understood. The following sections present background 

information on the characteristics essential to the understanding of MMPs. We will first 

broadly view MMPs before the focus shifts to the effect their structure and function have 

on physiological activity. Next, their regulation will be discussed, followed by a look at 

their roles in specific diseases. 

2.2 Matrix Metalloproteinases 
Human matrix metalloproteinases comprise a family of 27 zinc endopeptidases 

(Supuran & Winum, 2009). MMPs, or matrixins, are commonly categorized according to 

three criteria: substrate specificity, domain, and sequence (Sternlicht & Werb, 2001). 

Figure 1: Overview of matrix metalloproteinase family. Acquired 

from Vandenbroucke & Libert, 2014. 
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Thus, MMPs can be subdivided into five smaller groups based on the aforementioned 

criteria (Cawston & Wilson, 2006). However, before a protease can be considered an 

MMP, it must first meet specific features common to MMPs. Classified MMPs all share 

features such as structural domains, synthesis methods, activation mechanisms, 

specific inhibitors, and the requirement of zinc for catalytic activity (Parks, 1999). The 

following sections detail each of the common features and subsequent categorization of 

MMPs. 

2.2.1 Structure and Function 
 

MMPs have well-defined structures that distinguish them from other protease 

classes and one another as well (Martel-Pelletier et al., 2001). The modular structure of 

an MMP is comprised of several distinct domains that influence the enzymes complexity 

(Overall, 2002). Accordingly, classified MMPs are often divided into 8 distinct structural 

groups based on their modular composition (Sternlicht & Werb, 2001) (See Figure 2). 

The MMP family contains three principal domains, the pre-peptide domain, propeptide 

domain, and zinc dependent catalytic domain, which all remain invariable among the 

family members. In addition to their principal domains, MMPs may include ancillary 

domains, such as a hemopexin or a transmembrane domain that further enhance their 

structure. (Nagase et al., 2006) 

Similar to other proteins involved in the secretory pathway, MMPs contain an N-

terminal signal or pre-peptide that directs the enzyme out of the cell—the sequence is 

excised before secretion. The propeptide domain following the signal sequence is the 

region of the protein responsible for the latency of the enzyme. This ≈ 80-residue 

domain exhibits a cysteine residue that chelates the zinc ion in the catalytic domain 

creating a “cysteine switch”. (Sternlicht & Werb, 2001) 
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At the other end of the cysteine-zinc complex lies the zinc dependent catalytic 

domain (Nagase & Woessner, 1999). This zinc-binding region, singlehandedly, guides 

substrate specificities and interactions, contains auxiliary metal ions (e.g. calcium) to 

facilitate stability, and maintains a methionine residue unique to the whole metzincin 

family (Sternlicht & Werb, 2001). In the majority of MMPs, with the exception of MMP7 

Figure 2: Structure and Composition of MMPs. Acquired from 
Sternl icht & Werb, 2001. 
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and MMP26, the catalytic domain is also attached to the C-terminal domain through a 

variable hinge region that lends flexibility and specificity to the protein (Sternlicht & 

Werb, 2001). The C-terminal domain is mainly just the hemopexin domain, but some 

MMPs have additional domains attached as well. The ≈ 210-residue hemopexin 

domain, composed of four repeat units, is largely recognized for substrate binding, but 

also contributes to activation among other roles. (Martel-Pelletier et al., 2001) 

The variability between MMPs first becomes noticeable in the catalytic domain 

beginning with a furin-susceptible site (Cawston & Wilson, 2006). MMP 11 and MMP 17 

both contain the furin site and as a result are capable of intracellular activation along 

with all the other MMPs with this site (Pei & Weiss, 1995). Other N-terminal auxiliary 

domains include the vitronectin-like domain found in MMP21 and the fibronectin-like 

domain unique to MMP2 and MMP9 for binding collagen, elastin, and gelatin (Klein & 

Bischoff, 2011; Sternlicht & Werb, 2001). As previously mentioned, some MMPs 

additionally have other C-terminal domains alongside the hemopexin domain (Nagase 

et al., 2006). Additional C-terminal domains include a transmembrane domain, GPI 

domain, and an immunoglobulin like domain (Sternlicht & Werb, 2001).  

Each domain found in an MMP contributes to the overall structure and function of 

the protein. Together the linked domains create a structural and functional synergy. For 

example, all MMPs require zinc and have optimal activity at a neutral pH (Cawston & 

Wilson, 2006). Hence, the specialized domains of MMPs notably support substrate 

specificity, localization, and other properties necessary to their normal function.  

2.3 Regulation of MMPs 
While MMPs play a major role in the regulation of cellular behavior, these 

multifaceted enzymes need to be closely regulated as well. Controlling MMP activity is 

crucial to their normal functioning because without proper regulation pathological 

behavior arises (Mott & Werb, 2004). Therefore, MMPs are regulated at many levels, 



 
 

 

7 
 

beginning with their transcriptional expression and extending to their post-transcriptional 

proteolytic activity (Stamenkovic, 2003).  

2.3.1 Transcriptional 
At any level, the regulation of MMPs can best be described as a balance 

between stimulation and suppression. The first step of MMP regulation is control of 

gene expression (Chakraborti et al., 2003). MMPs are normally present in basal 

amounts in cells, however many different factors and signaling pathways aid in the 

production of additional MMPs for cell function (Nagase & Woessner, 1999). Inducers 

such as cytokines, growth factors, chemical agents, cellular stress, etc., can all be 

stimulators that are capable of interacting, either directly or indirectly, with activators 

within MMP gene promoter regions. For instance, most MMPs, with the exception of 

MMP 2 and MMP11, contain an activator protein-1 (AP-1) binding site that primarily 

interacts with different inducers leading to gene expression (Martel-Pelletier et al., 

2001).  

Although the aforementioned effectors act as stimulators, it is still possible for 

these factors and others to act as suppressors as well (Sternlicht & Werb, 2001). Thus, 

specific signaling pathways or factors may vary in the affect they have on certain MMP 

genes. One example is transforming growth factor beta (TGF beta), which induces 

MMP13 transcription, but inhibits the expression of both MMP1 and MMP3 (Sternlicht & 

Werb, 2001). Another example can be seen with UV-B, where UV-B radiation 

specifically stimulates MMP 1, MMP 3, and MMP 9 in human dermal fibroblasts (Martel-

Pelletier et al., 2001).  

Regulation of MMP gene expression is closely controlled due to its variability and 

complexity (Nagase & Woessner, 1999). Gene expression, for example, can be 

influenced by soluble regulatory factors or cell-cell and cell-matrix interactions can 

induce expression (Nagase & Woessner, 1999). MMPs may also be chiefly localized to 
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a specific area of the cell or it is also possible for an MMP to only be expressed in one 

cell type. As a result of the variable and complex nature of MMP regulation, each 

protease is unique and there is no single regulatory pathway that can be applied to 

every MMP alike. Accordingly, tight regulation helps account for the varying features 

between different MMPs. (Sternlicht & Werb, 2001) 

2.3.2 Post-transcriptional  
Following transcription, MMPs are further closely regulated in order to maintain 

homeostasis. MMP post-transcriptional regulation focuses on MMPs proteolytic 

behavior, which involves their secretion and activation, localization, inhibition, and other 

proteolytic processes (Cawston & Wilson, 2006). The subsequent sections address and 

describe the different ways MMPs are controlled at the protein level.  

Secretion and Activation 
Once MMPs are translated, they are secreted and require activation before they 

are capable of degradation (Stamenkovic, 2003). MMPs are first synthesized, within the 

cell, as inactive zymogens before their signal sequences relay for the enzymes to be 

secreted from the cell. MMP secretion can be either constitutive or in some cases 

regulated, which involves other factors for secretory control. An example of an MMP 

whose secretion is regulated is MMP12, with both plasmin and thrombin prompting 

secretion. (Sternlicht & Werb, 2001) 

 After secretion, the endopeptidases are localized within the extracellular space 

as latent zymogens (Martel-Pelletier et al., 2001). As stated earlier, a “cysteine switch”, 

within the N-terminal domain, is responsible for conserving the latency of MMPs. In the 

propeptide domain, a cysteine residue interacts with the zinc ion in the catalytic domain 

by chelating it and restricting the enzyme to its latent form (Sternlicht & Werb, 2001). 

When secreted from the cell, MMPs undergo a two-step activation where the cysteine 

switch is disturbed and successively the propeptide sequence is cleaved thereby 
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transitioning an MMP from latent to active form. Mechanistically, the thiol group is 

dispelled and replaced by water allowing the uninhibited zinc ion and water molecule to 

sequester various substrates. (Van Wart & Birkedal-Hansen, 1990) 

While most MMPs are activated outside the cell by other MMPs or proteases 

(Figure number), some MMPs have ancillary sites that allow intracellular activation. For 

example, MMP28 contains a furin-susceptible cleavage site and is activated before 

secretion. (Visse & Nagase, 2003) 

Inhibit ion 
At the protein level, control of MMPs is essential in order to limit their expression 

and their irreversible degradation. Furthermore, both specific inhibitors and nonspecific 

inhibitors are responsible for suppressing active MMPs. (Loffek et al., 2011) 

A family of four homologous inhibitors, tissue inhibitor of metalloproteinases 

(TIMPs 1-4), is known as the major specific, endogenous inhibitor of MMPs (Supuran & 

Winum, 2009). All active MMPs are inhibited reversibly by TIMPs in a 1:1 ratio 

(Sternlicht & Werb, 2001). TIMPs are 184-194 residue proteins from different genes that 

share greater than 35% of sequence homology (Nagase et al., 2006; Martel- Pelletier et 

al, 2001). Structurally, TIMPs have similar features; all four require their N-terminal 

domain for MMP inhibition and contain 12 conserved cysteine residues (Supuran & 

Winum, 2009). According to Murphy and Willenbrock (1994) shortened TIMPs are 

capable of maintaining inhibitory activity as long as their N-terminal domain is 

preserved. TIMPs also share the same inhibitory mechanism. The N-terminal amino 

group and carbonyl group from the first cysteine residue bidenately chelate the zinc ion 

of an MMP when the ion is wedged within the active site (Nagase et al., 2006). 

However, despite their structural and functional similarities, TIMPs inhibitory capacities 

differ among MMPs. For example, TIMP3 inhibits MMP9 better than the remaining 

TIMPs while TIMP2 and TIMP3 can inhibit MT-MMPs, unlike TIMP1 (Sternlicht & Werb, 
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2001). Like MMPs, TIMPs are multifaceted and additionally contribute to other biological 

processes such as angiogenesis, cell division, etc. (Nagase & Woessner, 1999). 

 TIMPs are not the only endogenous inhibitors, but are joined by a non-specific 

inhibitor α2-macroglobulin (Chakraborti et al., 2003). Not only does α2-macroglobulin 

inhibit MMPs, but is able to inhibit all proteases. The large ≈ 720 kDa protein irreversibly 

inhibits MMPs by ensnaring the enzyme, however the effectiveness of the inhibitor is 

questioned due to its size and inability to penetrate through tissue (Nagase et al., 2006).  

Other nonspecific inhibitors of MMPs, such as synthetic inhibitors, are also common. 

Work with these synthesized suppressors tends to focus on designing inhibitors aimed 

at specific diseases and targeting MMPs allosterically (Fisher & Mobashery, 2006). 

 Despite their differences, the goal of all MMP inhibitors is to control the 

overexpression of MMPs and maintain a balanced level of matrix turnover (Wojtowicz-

Praga et al., 1997). For, only when there is an imbalance and little or no control over the 

activity of MMPs do malignancies arise.  

Other Post-transcriptional Regulation  
MMP post-transcriptional regulation is not only limited to secretion, activation, 

and inhibition, but MMPs also have additional proteolytic processes that are controlled 

(Cawston & Wilson, 2006). Localization is one way that the enzymes are further 

modulated. Secreted MMPs are directed to certain areas of the cell, such as 

membranes, receptors or the ECM (Figure 3), allowing for improved activation and 

closer proximity to substrates (Sternlicht & Werb, 2001). Enzyme clearance also serves 

as another way MMPs are moderated. An example of this can be seen when the 

previously mentioned nonspecific inhibitor, α2-macroglobulin complexes with an MMP. 

The enzyme-inhibitor complex undergoes a conformational change and the two are 

effectively released from the cell. (Nagase et al., 2006).  
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2.4 MMPs in Disease 
MMPs participate in many biological processes, but when deregulated these 

enzymes are also involved in a variety of diseases such as osteoarthritis, rheumatoid 

arthritis, and multiple sclerosis (Klein & Bischoff, 2011). Due to the variability of 

diseases MMPs are associated with, in the upcoming sections MMPs will be classified 

based on their roles in several non-malignant and malignant diseases.  

Figure 3: Regulat ion of MMP activity. Acquired from Cawston & 
Wilson, 2006. MMPs are closely regulated at many different stages to either 
stimulate or suppress their expression. (1) Signal proteins, i.e. cytokines and other 
factors, contribute to signaling of MMPS leading to (2) integrated intracellular 
signaling pathways. (3) Intracellular MMP transcription activation or repression is 
followed by (4) post-transcriptional processing. (5) MMPs can be activated 
intracellularly or (6) extracellurlarly. (7) Following intracellular activation, some 
MMPs remain in the cell, stored in granules, until they are secreted from the cell. (8) 
MMPs are localized and expressed differently, e.g. on the surface of the cell, (9) 
bound to a receptor, or (10) within the ECM. (11) MMP inhibition. 
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2.4.1 MMPs roles in non-malignant diseases 
Non-malignant diseases may be considered non-invasive compared to other 

metastatic diseases; however, they may still be chronic or equally debilitating to ones 

health. Rheumatoid arthritis (RA) is a chronic autoimmune disease that involves the 

overexpression of MMP2 and MMP9 in synovial fluid (Cawston & Wilson, 2006). Marked 

by cartilage breakdown and joint inflammation, RA is seen in 1% of the global 

population with greater incidence in women (Andrews et al., 2012). MMP3 and MMP10, 

also known as stromelysins, are seen in articular cartilage and soft tissue of RA patients 

as well. The role of these several MMPs in RA is seen with the increase in matrix 

degradation (Zhang et al., 2004). The MMPs proliferate within the synovial joints and 

synovial tissue performing catabolic activity and progressively destroying both cartilage 

and bone (Cawston & Wilson, 2006). It is also possible for RA to be malignant, but this 

form of the disease is rare and is characterized by accelerated joint and articular 

damage.  

 Osteoarthritis (OA) is another disease that involves the proliferation of MMPs and 

is marked by destruction of cartilage and increased inflammation (Wang et al., 2011). 

Cawston (2006) claims that a major difference between RA and OA is that OA is 

collectively marked by matrix degradation and matrix synthesis where RA is only 

affected by matrix degradation. MMPs known to affect OA are the abovementioned 

stromelysins and MMP13 (Klein & Bischoff, 2011).  

Gastrointestinal diseases, like Crohn’s disease and celiac disease, have even 

been seen to show signs of uncontrolled MMPs. Each of these two respective diseases 

is characterized by intestinal discomfort and inflammation and research has shown that 

MMP1, MMP3, MMP12, and MMP13 are all involved in these diseases (Schuppan et 

al., 2009). Periodontal diseases are another area that shows the appearance of poorly 

controlled MMPs with MMP 1, MMP8, MMP9, MMP13, and MMP14 all linked to oral 

conditions (Sorsa et al., 2004).    
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2.4.2 MMPs roles in malignant diseases 
With so many levels to cancer research, it comes as no surprise that MMPs play 

a role in different forms of cancer as well. To date most MMPs contribute to cancer in 

some way, whether an MMP is responsible for tumor growth or like MMP 7, made by 

cancerous cells (Klein & Bischoff, 2011). Various MMPs have been specifically 

associated to one or multiple types, for example, MMP13 is linked to tumor progression 

in breast cancer, the gelatinases, MMP 2 and MMP9, are seen in a range of cancers 

including skin and gastric cancer (Klein & Bischoff, 2011), and MMP2 is also present in 

prostate cancer (Kleiner & Stetler-Stevenson, 1999).  

Neuroinflammation is another area where MMPs have been noted as important 

(Rosenberg, 2002a). It is understood that MMPs help disrupt the blood brain barrier by 

heightening the rate and manifestation of inflammation (Rosenberg, 2002b). Again, 

similar to MMPs roles in other diseases, it is the increased levels of MMPs that affect 

different neurodegenerative diseases. With the demyelinating disease multiple sclerosis 

(MS), MMPs are specifically secreted from leukocytes to spread into the CNS and target 

the myelin sheath (Rosenberg, 2002b). It was even discovered that the raised levels of 

primarily MMP9, though MMP2 as well, are directly correlated to the appearance of MS 

(Rosenberg, 2002b). 

Chapter Summary 
MMPs are complex and tightly modulated enzymes that are considered major 

contributors to the turnover and composition of the ECM (Stamenkovic, 2003). 

Understanding the physiological and pathological affects MMPs have on the ECM is not 

only important, but helps with the design of possible potent inhibitors (Supuran & 

Winum, 2009). The focus and objective of this project was peptide synthesis of small 

inhibitors that would be used to test against MMPs and different biological targets to 

measure biological activity, potency, etc. The research conducted above aided in the 
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comprehensive analysis by elucidating how MMPs function, the effect of inhibitors on 

MMPs, and the dynamic of the enzyme-inhibitor complex. 



 
 

 

15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

16 
 

Chapter 3: Experimental 
The following methods were all general procedures adapted from Goodman et al. 

and modified for the purpose of the syntheses shown. All UHPLC-MS were obtained 

using an Ultimate 3000. All 1H and 13C NMR spectra were measured with a Bruker 

AVANCE III HD 500 MHz system. Chemical shifts are presented in ppm relative to the 

internal standard tetramethylsilane found at 0.00 ppm. Flash chromatography was run 

with a silica gel column and observed on a Teledyne Isco CombiFlash Rf+.  
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Compound 2: 3-amino-3-phenylpropanoic acid or Beta-phenylalanine 
 

 
 

 
 
 

 

 

In a 250 mL round bottom flask equipped with a condenser, compound 1(9.70 mL, 9.6 

mmol) was dissolved in ethanol (125 mL) followed by the addition of malonic acid (9.98 

g, 9.6 mmol) and ammonium acetate (14.85 g, 9.6 mmol). The mixture was stirred and 

allowed to reflux for 24 hr. The mixture was cooled, vacuum filtrated and washed with 

50/50 ethanol and diethyl ether. The final white solid obtained was used without further 

purification to yield 2 (6.08 g, 74%). 1H NMR (D2O, 500 MHz) δ 2.79 (2 x dd RE, J = 

16.2, 16.2, 8.1, 6.5 Hz, 2H), 4.58 (dd, J = 8.0, 6.7 Hz, 1H), 7.40 (m, 5H). 
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Compound 3: 3-amino-3-phenylpropanoic acid methyl ester or Beta-
phenylalanine methyl ester 
 

 
 

In a 250 mL three-neck round bottom flask outfitted with a condenser and gas 

chamber, solid 2 (5.00 g, 1.0 eq.) was suspended in methanol (200 mL). The 

suspension was cooled to -5 °C with an ice bath followed by the addition of thionyl 

chloride (5.4 mL, 2.5 eq.) dropwise over a period of 10 minutes. The reaction mixture 

was stirred and allowed to reflux for 4 hours. The reaction was monitored by UHPLC-

MS before quenching with water. The solvent was removed under vacuum. The white 

slurry was refrigerated overnight at -20 °C. The crystallized product was resuspended in 

ethyl acetate, vacuum filtrated, and dried by high vacuum to produce 3 (5.31 g, 99%) as 

a crystal white solid. 1H NMR (D2O, 500 MHz) δ 3.11 (2 x dd RE, J = 16.9, 16.9, 7.5, 

7.0 Hz, 2H), 3.60 (s, 3H), 4.74 (t, J = 7.3 Hz, 1H), 7.40 (m, 5H). 
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Compound 4: methyl 3-[3-(benzyloxy)-2-[(tertbutoxycarbonyl) 
amino]propanamido]-3-phenylpropanoate 
 

 
 

 
 

 

 

 

 

 

To a 100 mL round bottom flask, compound 3 (0.54 g, 1.0 eq.) and Boc-Ser(Bzl)-

OH (0.89 g, 1.0 eq.) were dissolved in DMF (42 mL). The solution was cooled to -10 °C 

in an ice bath before solid hydroxybenzotriazole (HOBt) (0.46 g, 1.0 eq.) was first 

introduced followed by the addition of solid tetramethyluronium tetrafluoroborate (TBTU) 

(1.93 g, 2.0 eq.). The reaction mixture was allowed to stir and neutralized with 4-

methylmorpholine (1.3 mL, 4.0 eq.). The solution was left overnight at room temperature 

with constant stirring. The solvent was removed under vacuum and the orange-red 

colored crude oil was partitioned between ethyl acetate and 5% citric acid. The aqueous 

phase was further washed with ethyl acetate and the organic phases were collected and 

washed with 5% sodium bicarbonate and saturated NaCl. The washed organic layer 

was dried over Na2SO4 and solvent was removed under vacuum. The resulting viscous 

yellow oil obtained was purified by normal phase chromatography on silica gel (0-100% 

ethyl acetate in cyclohexane) to yield 4 (0.78 g, 57%) as a white solid. 1H NMR (CDCl3, 

500 MHz) δ 1.40 (s, 9H), 1.50 (s, 3H), 2.80 (2 x dd RE, 2H), 7.30 (m, 10H). Not all 

signals were seen with 1H NMR, however the mass was seen with UHPLC-MS.  
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Compound 5: methyl 3-[2-amino-3-(benzyloxy)propanamido]-3-
phenylpropanoate 
 
 

 
 

 
 
 

 

 

 

A 3M HCl-dioxane solution (22 mL) was prepared and added to a 50 mL round 

bottom flask with 4 (1.0 g, 2.2 mmol). The solution was stirred at room temperature and 

monitored with TLC (1:1 ethyl acetate/cyclohexane). After 3 hours, more dioxane 

solution (10 mL) was added. The reaction was stopped after 5 hours and poured into 

cooled saturated sodium carbonate solution (40 mL) and left overnight with constant 

stirring. Solvent was removed and the white slurry was extracted with dichloromethane. 

The organic layer was washed with 5% sodium bicarbonate and saturated NaCl and 

dried over Na2SO4. Solvent was removed under vacuum yielding 5 (0.72 g, 92%). The 

crude yellow oil was used without additional purification. 1H NMR (CDCl3, 500 MHz) 

2.80 (2 x dd RE, 2H), 7.30 (m, 10H), 8.30 (dd, 1 H). C-DEPT was used to help clarify 

the results of 1H NMR. 
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Compound 6: methyl 3-[3-(benzyloxy)-2-(5-phenylpentanamido) 
propanamido]-3-phenylpropanoate 
 
 

 

 

 

 

 

To a 25 mL three-neck round bottom flask, 5 (100 mg, 0.3 mmol, 1.0 eq.) and 5-

phenylvaleric acid (71 mg, 0.4 mmol, 1.3 eq.) were added and dissolved in DMF (18 

mL). The mixture was cooled to -10°C with an ice bath when HOBt (50 mg, 0.3 mmol, 

1.0 eq.) followed by TBTU (190 mg, 0.6 mmol, 2.0 eq.) were each added as solid. The 

reaction mixture was allowed to stir and neutralized with 4-methylmorpholine (0.13 mL, 

1.2 mmol, 4.0 eq.). The reaction continued to stir at room temperature and was 

monitored by TLC (1:1 ethyl acetate/ cyclohexane) and left overnight. UHPLC-MS was 

used to determine the end of the reaction and the solvent was removed under vacuum. 

The product was extracted with ethyl acetate and 5% citric acid. The aqueous phase 

was further washed with ethyl acetate and the organic phases were collected and 

washed with 5% sodium bicarbonate and saturated NaCl. The washed organic layer 

was dried over Na2SO4 and solvent was removed under vacuum. The resulting white 

residue obtained was purified by normal phase chromatography on silica gel (0-100% 

ethyl acetate in cyclohexane) to produce 6 (100 mg, 69%) as a white solid. 1H NMR 

(CDCl3, 500 MHz) was measured, however it was difficult to specifically elucidate which 

signal belonged to each H atom. 
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Compound 7: 3-[3-(benzyloxy)-2-(5-phenylpentanamido) 
propanamido]-3-phenylpropanoic acid 
 
 
 
 
 
 

Compound 6 (70 mg, 0.14 mmol) was dissolved in dioxane (13.5 mL) and 

allowed to stir at room temperature. The solution received the addition of NaOH (0.2 

mL) and the reaction was monitored by UHPLC-MS. After 3 hours, the solution was 

heated to 60°C and 10% KOH (4 mL) was introduced. The solution was left overnight at 

room temperature. KOH (2 mL) was added to the solution before solvent was removed 

by vacuum. The obtained product was purified by chromatography on silica gel (0-80% 

methanol in dichloromethane). Results of 1H-NMR concluded that no purified 7 was 

yielded.  
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Chapter 4: Results and Discussion 
The intermediates and products of the reaction scheme described above can be found 
in the figure below.  
 
 

 

 
 

 

 

 

The beta-amino acid was prepared by treating benzaldehyde with malonic acid 

and ammonium acetate to produce Compound 1 as a pure white solid with a final yield 

of 74%. The results of 1H NMR for beta phenylalanine (TAI-01-8/13) were as expected 

and showed the appearance of three signals used to identify the compound. The 

spectrum displayed a 5H aromatic multiplet at 7.40 ppm and a 1H doublet of doublets at 

4.58 ppm. A signal accounting for the two distinct protons on C2 was found with a roof 

effect at 2.79 ppm to give a 1H doublet of doublets at 2.83 ppm (J=16.2, 8.1) and 

another at 2.75 ppm (J= 16.2, 6.5). The two protons were found to be diastereotopic to 

one another making it hard to elucidate which proton belonged to each signal. However, 

all protons within the compound were accounted for with the exception of three protic 

protons, two from the amino group and one from the hydroxyl group, which were 

invisible due to their exchange with deuterium. 

The product was used without further purification and the conversion of 1 to an 

ester was conducted using methanol and thionyl chloride. The formation of 2 was 

monitored by UHPLC-MS, which indicated the desired mass after 3 hours. In the 1H 
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Figure 4: Reaction scheme for synthesis of inhibitors. Adapted 
from Goodman et al. 
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NMR spectrum of 2 (TAI-01-16/11), the appearance of a new singlet with an intensity of 

3 at 3.60 ppm was indicative of the formation of the ester in excellent yield (99%). The 

appearance of the other signals was consistent with 1, with two doublet of doublets for 

the two C2 protons at 3.11 ppm and a 5H multiplet at 7.40 ppm. Another notable 

change to the spectrum was the loss of the 1H doublet of doublets substituted for a 1H 

triplet at 4.74 ppm (J=7.3 Hz). 

The first coupling could be achieved with Compound 2 by using TBTU along with 

HOBt to suppress racemization. The UHPLC-MS analysis for compound 3 displayed 

the desired mass, but initially 3 contained impurities. Following flash chromatography, 3 

remained in good yield (57%) and a diastereomeric mixture was observed. The 1H NMR 

spectrum (TAI-01-15P/14) was difficult to interpret, as not all signals were observable. 

The elucidation of 3 was not only based on 1H NMR, but UHPLC-MS analysis was also 

used to verify the formation of 3 since a peak was seen corresponding to the expected 

mass.  

The diastereomeric nature of the compound made the elucidation of the structure 

more challenging, although some signals were found. The two doublet of doublets 

appeared with a roof effect at 2.80 ppm revealing that the beta-amino ester remained. A 

singlet, intensified with solvent, could also be viewed at 1.40 ppm and a 10H multiplet 

appeared at 7.30 ppm representing the presence of a tertiary butyl group and two 

aromatic groups, respectively.  

Removal of the Boc group from 3 led to deprotected 4. The formation of 4 was 

justified by the disappearance of a singlet at ≈1.40 ppm. The disappearance of the said 

signal is indicative of the loss of the tertiary butyl group. The 1H NMR spectrum for 4 

(TAI-01-21/11) was more challenging to elucidate, compared to 3, and as a result 13C 

NMR, C-DEPT NMR, and UHPLC-MS were used to facilitate with the determination of 

the structure.  
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In the carbon NMR spectrum, many signals were found that were missing from 

the 1H NMR spectrum; however, a challenge still remained with distinguishing which 

carbons belonged to each signal. The 13C-NMR results seemed to be very consistent 

with the expected spectrum, however some signals remained undetectable which could 

be due to signal broadening or other factors.  

Product 4 was synthesized as a diastereomeric mixture in high yield (92%) and 

used without any purification. A second coupling reaction could be conducted with 4 

and 5-phenylvaleric acid, following the same conditions as the previous coupling with 2, 

to create 5 (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

The results of the NMR measurements (TAI-01-24/10) were unclear and 

therefore, UHPLC-MS analysis had to be used to confirm the synthesis of 5. An attempt 

directed at synthesizing another compound in the reaction scheme was conducted, 

however the final NMR data showed neither the disappearance of starting material 5 or 

new product. 
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Figure 5: Structure of  3-[3-(benzyloxy)-2-(5-phenylpentanamido) 
propanamido]-3-phenylpropanoic acid 
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Chapter 5: Conclusion 
MMPs are complex, multifunctional enzymes, e.g. their roles in ECM turnover 

and other cellular processes, their various substrates, their predominantly conserved 

specificities, their extensive expression, etc., making the criteria and design of inhibitors 

extremely challenging (Loffek et al., 2011). At the present time, a vast amount of 

research is available for MMPs and more elucidations continue to be made. With 

respect to MMP inhibition, previous studies have used different approaches. Some 

groups have focused on exosites along with allosterically targeting the various 

enzymes, some groups work aims to enhance current MMP inhibitory mechanisms (i.e. 

TIMPs), while other groups look into the effects of signaling pathways and transcription 

factors (Wojtowicz-Praga,1997; Murphy & Nagase, 2008). Another important aspect of 

inhibitor design, that researchers also have to consider, is whether or not inhibitors 

should be synthesized to be enzyme and disease specific or common to multiple, if not 

all, MMPs (Nagase et al., 2006).  

Researchers also face the challenge of controlling the negative effects inhibition 

can have on physiological MMP activity and other proteases, however so far the effects 

of inhibitors have been reversible. Although valid inhibitors have been synthesized and 

tested, imperfections with these inhibitors still pose as a setback for their effectiveness, 

commercial uses, etc. (Wojtowicz-Praga, 1997) 

This study proved that not only the design, but also the synthesis of inhibitors is 

challenging. The work with these small, novel molecules is still not complete. More 

compounds need to be synthesized and altogether measures, such as differential MMP 

binding affinities and kinetics, need to be gathered for each compound. From the results 

of the overall synthesis, the final compound 7 was not obtained due to time 

constraints—however, various measures, such as running additional trials, changing the 

amount of solvent, or trying different solvents, are all techniques that could be used to 

improve the yield. 
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Many questions still remain unanswered related to inhibitor design, for example 

should all levels of regulation be considered as targets or should MMP inhibitors be 

paired with other treatments for disease (Chakraborti et al., 2003; Wojtowicz-Praga, 

1997). At this point and time these inquiries and others continue to be studied, but at the 

rate that MMP research continues to advance, should be elucidated in no time. With the 

many physiological and pathological processes MMPs participate in, future hopes for 

MMP research will remain to be how each inhibitor can effectually regulate MMP 

behavior. 
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Appendices 

Appendix A: NMR Data 
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