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i 

The mission of this project is to develop a new approach to experimental 

optimization by using theoretical equations to reduce the time it takes to find optimized 

parameters in a novel materials process currently in research and development. 

 

Abstract 

 Current experimental optimization methods take extended periods of time and do 

not have a systematic way to get closer to the optimum. As a result, the team set out to 

generate a new, systematic approach to experimental optimization that costs time and 

cost. First, a theoretical goodness equation was used to predict the influential trends of 

parameters in the Laser-Assisted Cold Spray (LACS) process on three material 

properties. This was also used to select the algorithm used, Mine Blast Algorithm. The 

equation and algorithm was then modified for the experimental process which included a 

fourth variable. The team was able to achieve a goodness of 0.66 after only 5 iterations 

of the estimated 25 iterations necessary to achieve optimization (30 samples). 
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Figure 1. Sample from Iteration 1: Goodness = 0.052, 

Thickness = 82.35 µm 

Figure 2. Sample from Iteration 5: Goodness = 0.663, 

Thickness = 1028.6 µm 
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1.0 Introduction 

The purpose of this MQP was to be able to find a more effective methodology to 

find parameter optimums for material properties. The increased efficiency of the current 

methodology would decrease time and money spent during testing for materials 

processes. More specifically with regards to this process, inconel was sprayed onto 

copper cylinders for several iterations at IPG Photonics in a complex process called Laser 

Assisted Cold Spray (LACS). A pseudo-predictive equation was initially created based on 

theoretical information and background research on LACS. This preliminary equation was 

then used to create an experimental equation that would be used throughout the course 

of the project to try and find an optimum sample. Using a selected algorithm, the team 

attempted to optimize several different parameters in the LACS process. The optimum 

would be the best combination of these parameters that would produce the desired 

properties for the inconel-copper coating. While one of the purposes was to physically 

find an optimum for the coating, the primary purpose was the process used in order to 

find an optimum in quicker and with less resources.  

The significance of this project is that it could completely change the way that 

research and development is conducted within the manufacturing and material science 

disciplines, particularly in fields related to materials manufacturing. The approach that 

was utilized in this MQP was to first create a “goodness” equation based on given 

variables - in this case adhesion, porosity, and hardness. The equation was formed based 

on theoretical mathematical equations. Each variable had it’s own equation broken down 

into the seven process parameters. These equations were manipulated so that certain 

variables were isolated, and then the equations were combined in order to create a final 

goodness equation. In essence, with this new optimization system, the presence of a 

materials science expert is only required to make this “goodness” equation based on the 

desires for the material properties. Moving forward in the process, the materials expert 

can utilize his time elsewhere as other engineers or technicians will be able to carry out 

the rest of the process.  

The parameters that were selected for experimental control in the Laser Assisted 

Cold Spray process for this project were gas temperature, raster speed, laser position, 

laser temperature, mass flow rate, number of passes, and index. These parameters were 
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determined based on prior research of past LACS experiments as well as the team’s own 

experimental results and analysis. Once the parameters were found and selected, they 

were put into mathematical equations that were then simplified into only four variables. 

These variables were adhesion, hardness, thickness, and porosity. With only four 

properties being analyzed based on seven parameters, it was possible to find new 

iterations based on desired characteristics through the use of MATLAB. The process was 

planned to be repeated for 25 iterations until an optimum was found, thus fulfilling the two 

main purposes of the project. These purposes being that the optimum process 

parameters were found, and a new process of optimization was a success. 

Another vital part of the process is the use of computer software to be able to 

quickly find the optimum for the given properties. Using the MATLAB code for the selecter 

optimization algorithm, Mine Blast Algorithm, the optimum combination of parameters 

should be able to be found in 150 total samples or less. When compared to the fact that 

most other material property optimization requires more than 400 samples, it is evident 

that the new system utilized in this MQP would greatly increase overall efficiency. With 

less than half the number of samples, companies would save money in a variety of ways.  

There would be less money going into machine operation costs, as well as less of 

a chance of damages due to less time on the machines. Companies could even cut down 

on the total number of workers they have in this area, or at least have them work on other 

tasks. This makes the company as a whole more efficient, and would save them money 

from labor costs.  
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2.0 Background 

In cold spray and laser-assisted cold spray, parameters have varying and non-

linear effects on the final product in different ways. By looking at these effects, the team 

was able to create a pseudo-predictive equation to test many different optimization 

algorithms researched. 

 

2.1 Cold Spray and Laser Assisted Cold Spray 

Cold spray (CS) is a novel coating 

deposition process where coating particles are 

accelerated at high velocities towards a 

substrate. Upon impact, the coating particles 

undergo significant plastic deformation and 

adhere to the substrate. The main advantage of 

CS over other coating processes is that it 

allows for the coating of thermally sensitive 

components. Specifically, CS allows for the 

preservation of the functionally required crystallographic structure of the underlying 

substrate, while transferring the material properties of the coating to the exterior. The 

velocity needed to induce sufficient plastic deformation of the particles can be reduced by 

implementing a laser directed at the point of collision between the particle and substrate. 

This process is known as 

Laser Assisted Cold 

Spray (LACS) and is 

depicted in Figure 3. 

Other advantages of 

Cold Spray are depicted 

in Figure 4.  

 

Figure 3. Depiction of Laser-Assisted Cold Spray [1] 

Figure 4. Advantages of Cold Spray [2] 
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2.1.1 Adhesion Mechanism of LACS 

There are two primary methods in which particles can adhere to the substrate. 

Initial spraying of the substrate results in particles embedding into the substrate, Figure 

5. [2] This is one of the mechanisms for adhesion. With continual passes of the spray gun 

over previously sprayed substrate, the classic adhesion mechanism of CS becomes 

apparent.This is the second mechanism of adhesion. The particles collide with previously 

sprayed particles and undergo significant plastic deformation. The interface between the 

substrate and particle is instantaneously 

converted into a vacuum and they two-

flash weld together. Particles bonding in 

this manner also experience a high flow 

stress due to a recursive softening of the 

particle. Upon impact the plastic 

deformation releases heat and softens 

the colliding particle and allows for even 

further plastic deformation. The resulting 

coating has an extremely high density of 

dislocations and thus results in a hard 

material. This ensures 

that subsequent 

deposition of particles 

onto the incrementally 

growing coating will 

adhere in a similar 

method.  This second 

adhesion mechanic is 

depicted in Figure 6. 

 

 

 

Figure 5. Sprayed Powder Particles Embedded in the 

Substrate [2] 

Figure 6. Adhesion Due to Plastic Deformation [2] 
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2.1.2 Influential Process Parameters in LACS 

The following section introduces the parameters of LACS. Subsequently, a table displays 

the effects these parameters have on the coating.  

 

Figure 7. Depiction of Spot Size and Index Step In LACS 

 

Figure 8. Depiction of Raster Speed and Laser Position in LACS 
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Raster Speed 

The linear velocity at which the substrate work peice moves relative 

to the spray spot. The biggest effect this has is on the amount of time 

the laser remains in one spot. Raster speed also affects the powder 

profile of the coating. In cases where the raster speed is slow the 

deposition of powder will build up and cause the spraying of the next 

raster to be deposited on angle. Faster raster speeds mean more 

evenly deposited powder profiles.  

Index Step 

Index Step is the amount of space between rasters. The higher the 

index step the less time there is for the laser to impart heat onto the 

substrate. A lower index means the laser is spending more time in 

one spot.  

Gas Temperature 

Gas Temperature predominantly affects the particle temperature 

and the particle velocity. Since Cold Spray uses a de Laval nozzle to 

accelerate the particles, the temperature of the gas is directly 

proportional to the velocity of the particles. Furthermore, the 

temperature of the gas also affects the temperature of the substrate 

due to convectional cooling. As the gas hits the substrate the velocity 

of the gas affects how much heat it can carry away from the 

substrate.  

Laser Set Temperature 

Laser Set Temperature is the amount of heat that is being produced 

by the laser and directed at the particle/substrate interface. This has 

a large impact on the critical velocity of the particle.  

Laser Position 

Laser Position is how far from the cold spray nozzle the laser is aimed 

at. If the value is positive then the laser is leading the deposition area 

by the nozzle. If the value is negative then the laser is trailing the 

deposition area. This has a large effect on a delicate balance 

between annealing the deposited particles and softening the 

particles that are impacting the substrate.  
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Spot Size 

Spot Size is the diameter of the laser located on the deposited 

substrate. This has a large effect on the amount of time the 

particles have to cool and the powder profile of the particles being 

deposited on the substrate. This is largely due to the fact that 

particles that hit the substrate outside of the laser will not deposit. 

This contributes to low deposition efficiency. 

Mass Flow Rate 

Mass Flow Rate is the mass flow rate of a metalic powder through 

the LACS nozzle. It is a parameter that affects all of the previously 

stated parameters. A few examples of this is that a higher mass flow 

rate requires a higher gas temperature and laser set temperature to 

allow for deposition of particles. Additionally, a high mass flow rate 

and low raster speed creates a wavy coating as the powder will be 

deposited in shelve like structures. In this way mass flow rate has a 

large impact on all of the parameters in LACS. 

 

2.2 Optimization Algorithms 

Conventionally, optimization algorithms find optimal solutions to a given problem. 

Each algorithm can generate different results depending on its structure. The most 

common types of algorithms are gradient-descent and global optimization algorithms. 

Gradient-descent algorithms are first-order algorithms designed to follow gradients to 

reach either a maximum or minimum. The function 

for these must be continuous and differentiable. 

Since this method follows gradients and only starts 

at one point, the algorithm typically finds a local 

minimum or maximum rather than a global minimum 

or maximum. Examples of these in the team’s 

investigation is “Fmincon” and “Fminimax.” Figure 9 

also shows an example of a path that a gradient-

descent algorithm would follow [4]. The other types 

of algorithms examined were global optimization 

algorithms. Examples of these include genetic 

Figure 9. Example of a Path a Gradient-Descent 

Optimization Algorithm Could Follow [3] 
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algorithms, simulated annealing, pattern 

search, particle swarm, and mine-blast 

algorithm. These algorithms use different 

methods which are designed to find global 

maximums and minimums, rather than a 

local maximum or minimum. Most of these 

algorithms are more versatile as they do not 

require the function to be continuous or 

differentiable, however they are not 

guaranteed to find the global maximum or 

minimum. Finally, these can be either 

population based or non-population based 

in a single iteration. Figure 10 shows an 

example of a global optimization algorithm. 

 

2.2.1 Fmincon and Fminimax 

Fmincon and Fminimax are nonlinear, gradient-descent problem solvers which are 

designed to find a minimum of a differentiable and continuous function [6,7]. Each 

iteration has only one function evaluation in it. The algorithms start at a user specified 

point and the next iteration is randomly generated with a specified step size. The algorithm 

produces an iteration which moves in the direction towards a minimum. If the function 

evaluation is not getting smaller, the iteration will randomly generate a new sample until 

it does. The algorithms will continue this process until the evaluated function has 

exhausted the directions it can travel as the difference between the last moved point and 

the current point is less than a defined tolerance. The only difference between the two 

algorithms is Fminimax can solve problems that are not smooth while Fmincon requires 

a smooth function [6,7].  

While this algorithm is fairly straight forward, it has many limitations to it. The 

biggest limitation is the types of functions it requires. The objective function must be both 

continuous and differentiable. As equations become more complex, and not continuous 

or differentiable, there is a much higher chance of the algorithm not producing the correct 

Figure 10. Example of a Global Search Algorithm to 

Finding a Global Optimum Over a Local Optimum [5] 
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results or a local minimum when a global minimum is required. Another limitation is its 

time to convergence. As it gets closer to the minimum, it may take many iterations to get 

the right direction to advance. Finally, the algorithm may not be ideal as only one function 

evaluation (sample) may be made at a time before advancing.  

 

2.2.2 Simulated Annealing 

Simulated annealing is algorithm that mimics the process of annealing in which a 

material is heated up to reform its crystal structure by removing dislocations and slowly 

cooled to produce a refined microstructure. This global optimization algorithm generates 

a new point in each iteration starting from a single, user-input point. It uses a probability 

distribution that is proportional to a temperature scale, like in annealing [5]. With the goal 

of minimizing the function, points that lower the function value are accepted and are used 

in the next iteration. The algorithm will also accept points, with a low probability, that are 

worse to expand the search space. The algorithm continues this process and reanneals 

(raises the temperature back up to begin the lowering process again) until the function 

evaluation no longer improves [8,9]. 

Since this algorithm uses probability, it is still possible that it will not reach a global 

maximum depending on the starting point, but it is much more likely to reach the global 

optimum [9]. This process is also timely as the function may be evaluated several times 

before it can move to the next iteration if the acceptance criteria are not met.  

 

2.2.3 Pattern Search 

Pattern search optimization is a global optimization algorithm that does not require 

the function to have a gradient, be continuous, or be differentiable [10]. It uses meshes 

to find an optimum. A mesh consists of points which expand from a starting point of the 

iteration. The algorithm starts at one specified point and a mesh is generated. This mesh 

starts large and gets smaller with time. Each mesh contains points that explore the 

solution space at a specified distance in each direction. When one of the mesh points are 

less than the starting point of the iteration, the algorithm adopts it as the next starting 

point. If none of the points improve from the starting point, the mesh size is reduced and 
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a new set of points is generated [10]. This process continues until an optimum is found.  

One of the limitations of this algorithm is possibly finding a local optimum. It is 

possible that the meshes do not expand enough out and miss the area of the solution 

space that contains the global optimum. Another limitation is if the solution space is large, 

it may take an enormous amount of time to reach the optimum as it will need to cover a 

large area [10].  

 

2.2.4 Genetic Algorithm 

Genetic algorithm is one of the most popular global optimization algorithms. This 

algorithm begins with a randomly generated population. Each point in the population is 

evaluated and a fitness value is given to it. A few points from each population get selected 

and are identified as “parents” for the next iteration based on their desired fitness values. 

New points are generated based on the “parent” points through random changes 

(mutation) or combining parents (crossover). This process continues until the optimum is 

found [8].  

One of the limitations to this algorithm is the population size. A large population is 

able to cover a large section of the solution space, but it may take longer to converge to 

the optimum. Another limitation is that there is no guarantee to find a global optimum. The 

initial population may not be near the global optimum, so it will converge to a local 

optimum if it does not expand from the initial area [11]. 

 

2.2.5 Particle Swarm 

Particle swarm optimization is a population-based optimization algorithm which 

mimics the behavior of animals that travel in swarms or flocks (eg. birds) [8]. The algorithm 

starts by randomly generating a population of points that cover a large portion of the 

search space and gives each point a position and velocity. In each iteration, these points 

are evaluated and the best function value (the lowest value when trying to minimize) and 

the best neighbors are determined. Based on each point’s position and velocity, a new 

population is generated which moves towards each of these best points [8]. As the 

iterations advance, the velocities become smaller and the population begins to converge 



11 

towards the optimum. 

As a population based algorithm, its time to convergence and ability to find the 

global optimum is dependent on the population size. A large population will cover the 

solution space more completely and will be able to find the global optimum better and 

faster. As the population size is reduced, it has a chance of not covering the entire search 

space and miss an area that has the global optimum and converge to a local optimum 

[12]. As a global optimization algorithm, the algorithm is able to solve functions which are 

discontinuous and nondifferentiable.  

 

2.2.6 Mine Blast Algorithm 

Mine blast algorithm is a new population based global optimization algorithm. It is 

designed to mimic explosions of land mines with shrapnel being the different points being 

evaluated [13]. This algorithm has two phases to it: exploration and exploitation. The 

algorithm starts with the “first shot” which can be randomly generated or user selected. 

From here, the exploration phase begins with randomly generated points based around 

the “first shot.” Each point from the “first shot” are at random distances from it, but are 

equally spaced in outward directions. The exploration phase has much larger distances 

to explore the solution space and it does not directly focus on the best point. However, 

after the exploration phase, the points begin to converge towards the optimum in the 

exploitation phase. The distance of the points begin to decrease until it reaches 

essentially zero [13]. When this distance reaches zero, it has converged to the optimum.  

This algorithm, just like the other population based algorithms, is dependent on the 

population size. When the population size is larger, the solution space is more thoroughly 

explored and there is a greater possibility of finding the global optimum. However, it is not 

guaranteed to find the global optimum if it does not explore enough, or the population size 

is too small [13]. Another limitation is that it is so new. Due to its young age, all of its 

possibilities and limitations have not been explored. However, the basis of this algorithm 

allows for a wide range of functions to be used.  
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3.0 Approach 

The overall approach this project was run can be broken down into six different 

steps, as seen in Figure 11. First, an overarching theoretical goodness equation was 

created based on background research. Next, optimization algorithms were tested and 

one was selected that would be able to locate a maximum for the observed parameters 

in a short number of samples and iterations. Once these two were selected based on 

analyses, they were adjusted so that they could be used for the purpose of the 

experiment. Next, samples were characterized and measured to calculate the goodness. 

The fifth step was to input the calculated goodness values into the MATLAB program, 

and then have the program generate new samples. These fourth and fifth steps were 

repeated for 5 iterations. Finally, the results were recorded and analyzed. 

 

Figure 11. Flow Chart of the Project Approach 

 

3.1 Development of Pseudo-Predictive Equation/Parameter Influences 

The theoretical equation uses both experimentally and theoretically driven 

relationships between seven parameters of cold spray to predict a goodness value of an 

LACS coating. This goodness value lies between zero and one, and is a consolidation of 

3 different factors which were deemed to be the most influential through the help of Aaron 

Birt, an expert in the technology of LACS. The three influential factors are influence of 

adhesion (Iadhesion), influence of porosity (Iporosity), and influence of hardness (Ihardness). This 

section subsequently lays out the relationships which comprise each of these influences 

and addresses the methods in which they were developed. The overall equation is 

presented first for reference and reiterated after each section for clarity.  

  



13 

Equation 1. Overall Goodness Equation 

𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 =

=     

{
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[1 − (

Pe

P
)

γ−1

γ

]

}

∗

{
 
 

 
 

1 −

√TR
M

2γ

γ − 1
[1 − (

Pe
P
)

γ−1

γ
] − 2(Vcrit)

2(Vcrit)

}
 
 

 
 

∗ {1 −
𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝐻𝑇

𝐻𝑇
} 

 

3.1.1 Influence of Adhesion on Goodness Equation 

The goodness of a coating is dependent on the ability of the cold spray particles 

to properly remain adhered to the surface of the substrate. The adhesion of particles was 

reflected in the equation by attributing a binary value to (Iadhesion). This value was equal to 

one for coatings which remained adhered to drive the goodness value to unity. 

Conversely, the value was zero to ensure that coatings which did not adhere to the 

substrate were unable to contribute anything but zero during the calculation of the 

goodness value.  

The binary value was predicted by comparing the expected velocities of the cold 

spray particles to the critical velocity found in literature which facilitated coatings.  Tobias 

Schmidt et al [14] developed the following equation to determine the aforementioned 

critical velocity with the respective parameters found in the table immediately after. 

Equation 2. Critical Velocity in Cold Spray Particles 

𝑉𝑐𝑟𝑖𝑡 = 667 − .014𝜌 + .08(𝑇𝑚 − 𝑇𝑅) + 10
−7𝜎𝑢 − 0.4(𝑇𝑖 − 𝑇𝑅) 

Where:  

𝜌 = Density of Material 

𝑇𝑚 = Melting Temperature of Material 

𝑇𝑅 = Reference Temperature (During Project the temperature used was room 
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temperature) 

𝜎𝑢 = Yield Stress of Material 

𝑇𝑖 = Impact Temperature of Particle 

 

The material properties for both inconel 625 and copper were input into Schmidt’s 

equation [14] to predict the critical velocity necessary for a coating to adhere. The 

rationale behind predicting the critical velocities for both materials is that there were two 

foreseeable scenarios in which the particles would adhere to the copper. In the first 

scenario inconel particles would embed themselves into the copper substrate. The copper 

substrate would deform plastically and allow the inconel particles to imbed themselves. 

In this case the material properties of copper were used in the critical velocity calculation. 

Since the equation for critical velocity is based on particles traveling and deforming there 

is some error in assuming that the effects would be the same when the copper is in bulk 

material form. In bulk material form it is more difficult to deform the copper. Thes effects 

were considered negligable. 

In the second scenario, the more conventional plastic deformation of the 

accelerated LACS particle would cause for the coating adherence. As such, the critical 

velocity prediction was performed using inconel 625 as a material property.  

To predict the 

velocity the LACS 

nozzle would propel 

the inconel particles, 

the equation for a de 

Laval nozzle was 

used. It is derived 

from the Bernoulli 

formula. An example 

of the nozzle is 

depicted in Figure 

12. [15]  

 

Figure 12. Cold Spray Nozzle [15] 
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This equation and its associated parameters are listed below.  

Equation 3. Velocity of Particles Upon Impact 

𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 = .8 ∗ √
𝑇𝑅

𝑀

2𝛾

𝛾 − 1
[1 − (

𝑃𝑒

𝑃
)
𝛾−1
𝛾  

Where: 

𝑇 = Absolute Temperature of Inlet Gas 

𝑅 = Universal Gas Law Constant 

𝑀 = Molecular Weight of Gas 

𝛾 = Isentropic Expansion Factor for Gas  

𝑃𝑒 = Absolute Pressure of Exit Gas 

𝑃 = Absolute Pressure of Inlet Gas 

 

The properties of nitrogen gas were used during the calculation of the velocity of 

the particles. For simplification, the particles were assumed to move at 80% the velocity 

of the nitrogen gas.  

The final step in predicting the binary output for (Iadhesion) is comparing the critical 

velocity of both copper and inconel to the predicted ballistic velocity of the inconel 

particles. A step function would produce a value of one for (Iadhesion) if the expected velocity 

of the inconel particles was greater or equal to the critical velocity of copper, the critical 

velocity of inconel 625, or the average of the critical velocities for copper and inconel 625. 

Similarly, the complementary half of the step function would produce a zero in all other 

cases. 

Equation 4. Goodness Equation with Impact of Adhesion 

 𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠1 =

=

{
 
 

 
 
1, 667 − .014ρ + .08(Tm − TR) + 10

−7σu − 0.4(Ti − TR) ≥ .8 ∗√
TR

M

2γ

γ − 1
[1 − (

Pe

P
)

γ−1

γ

]

0,   667 − .014ρ + .08(Tm − TR) + 10
−7σu − 0.4(Ti − TR) < .8 ∗√

TR

M

2γ

γ − 1
[1 − (

Pe

P
)

γ−1

γ

]

} 
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3.1.2 Influence of Porosity on Goodness Equation 

The goodness of a coating is 

also highly dependent on its 

porosity. Coatings with high 

porosity are brittle and are not 

useful in a multitude of applications. 

To calculate (Iporosity) research from 

Schmidt et al. [14] showed that 

deposition efficiency was maximum 

at twice the critical velocity. The 

graph below displays a parabolic 

curve at which the vertex coincides 

with twice the critical velocity.  

The team chose to assume 

that deposition efficiency could be used to predict porosity, because any particle that was 

accelerated to the substrate would either have to bond and form a coating or would fly off 

and be wasted (Figure 13). When the deposition efficiency was maximum this meant the 

highest amount of material was colliding with the either the substrate or already adhered 

inconel particles. In these cases, the particles would experience maximum plastic 

deformation and subsequently experience the greatest amount of flow stress. As such, 

this high deposition efficiency and its associated high flow stress would result in a very a 

low porosity. Thus, the value for (Iporosity) could be represented in a mathematical relation 

showing relative distance from twice the critical velocity of inconel particles. This formula 

is seen below and uses the same equations to calculate the velocity and critical velocity 

of the inconel particles.  

Equation 5. Equation for Impact of Porosity 

 

𝐼𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =

{
 
 

 
 

1 −

. 8 ∗ √
𝑇𝑅
𝑀

2𝛾
𝛾 − 1

[1 − (
𝑃𝑒
𝑃
)

𝛾−1
𝛾
] − 2(667 − .014𝜌 + .08(𝑇𝑚 − 𝑇𝑅) + 10

−7𝜎𝑢 − 0.4(𝑇𝑖 − 𝑇𝑅))

2(667 − .014𝜌 + .08(𝑇𝑚 − 𝑇𝑅) + 10
−7𝜎𝑢 − 0.4(𝑇𝑖 − 𝑇𝑅))

}
 
 

 
 

 

 

Figure 13. Deposition Efficiency Relating to Porosity [14] 
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Equation 6. Goodness Equation due to Impact of Adhesion and Impact of Porosity 

𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠2 = 𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠1

∗

{
 
 

 
 

1 −

. 8 ∗ √
𝑇𝑅
𝑀

2𝛾
𝛾 − 1

[1 − (
𝑃𝑒
𝑃
)

𝛾−1
𝛾
] − 2(667 − .014𝜌 + .08(𝑇𝑚 − 𝑇𝑅) + 10

−7𝜎𝑢 − 0.4(𝑇𝑖 − 𝑇𝑅))

2(667 − .014𝜌 + .08(𝑇𝑚 − 𝑇𝑅) + 10
−7𝜎𝑢 − 0.4(𝑇𝑖 − 𝑇𝑅))

}
 
 

 
 

 

 

3.1.3 Influence of Hardness on Goodness Equation 

3.1.3.1 Choosing a target Hardness 

Optimal hardness in material coatings 

is a frequently desired material property. 

Basic material science dictates that a metal 

will become more brittle as the hardness 

increases due to the higher density of 

dislocations. Since the principle behind this 

project was to show the optimization strength 

of computer algorithms as opposed to 

optimizing for a specific application the group 

selected an optimal hardness based on intrinsic material properties of inconel 625. The 

optimal hardness in this project was selected using the hardness value associated with 

the highest toughness value for inconel 625. This value was derived by integrating the 

area under a stress-strain curve for the material as seen in the diagram, Figure 14. 

 

The toughness for inconel was estimated by finding toughness values for both the 

data gathered from materials testing of the yield strength and ultimate tensile strength  of 

inconel. This data is presented in Table 1. 209 was chosen as the optimal hardness.  

 

 

 

 

 

 

Figure 14. Method of Finding Toughness 
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Table 1. Cold Work Relating to Hardness [15] 

 

To estimate the toughness of inconel from these two tests the graph of the stress-

strain curve was assumed to take the form presented in figure. The values for the .2% 

strain offset and cold reduction 

percent were used as the values for 

yield stress and tensile stress 

respectivley, Figure 15.  

  

The area under these graphs 

was then calculated using symple 

geometric formulas for a triangle and 

trapezoid. After calculating the toughness of inconel the hardness was correlated to the 

tests, by again, using Figure 16. Toughness was then plotted against hardness and it was 

found that the maximum 

toughness coressponded to a 

value of 15 on the Rockwell B 

hardness scale. This is the 

value that was used for the 

desired hardness.  

 

Analogous to section 

3.1.2, the value for (Ihardness), in 

the overall goodness 

equation, was calculated by 

Figure 15. Toughness 

Figure 16. Hardness vs. Toughness 
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creating a relationship describing the relative difference between the desired hardness 

and expected hardness. This relationship is given below with HT being the optimal target 

hardness of 15.  

Equation 7. Simplified Impact of Hardness 

𝐼ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 = 1 −
𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝐻𝑇

𝐻𝑇
 

 

3.1.3.2 Predicted Expected Hardness Using Experimental Data 

Due to the novelty of LACS it was difficult to predict the expected hardness 

theoretically as a function of 

parameters. The prediction 

was instead formulated 

empirically through the 

analysis of a set of samples 

created using an orthogonal 

variation of LACS parameters 

in an attempt to determine the 

effect each individual 

parameter had on the 

hardness. After initial 

screening for potential relationships between hardness and each individual parameter 

clear relationships could not be determined. The team reanalyzed the samples and 

attempted to find correlations between cold work percent and parameters based on the 

intuition that a relationship between cold work percent and hardness could be developed 

based on classic material science principles. In order to measure the cold work percent 

of the samples an optical micrsocope at 100x magnification was used to randomly select 

discernable particles from a coating. Two diameters of this particle were selected, as 

shown in Figure 17, and the area of the elipse was calulcated using the formula 𝐴 = 𝜋 ∗

𝐷1𝐷2.  This area was compared to the known average area of the particles prior to 

depostion. The relative change between these two values was found and used as the 

percent cold work using the equation:  

 

Figure 17. Measured Diameter of Cold Spray Particle 
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Equation 8. Calculation of Percent Cold Work 

% 𝐶𝑜𝑙𝑑 𝑊𝑜𝑟𝑘 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑟𝑒𝑎−𝐴𝑟𝑒𝑎 𝑜𝑓 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐴𝑟𝑒𝑎
  

Cold work was then plotted against hardness to identify relationships between the 

two values. As seen in Figure 18, there were two identifiable trends that the samples 

followed. The difference between these two trends was the rate of variation of hardness 

with percent cold work (slope of the projected lines).  

 

 

The samples were thus split into two groups. Group A being the blue line and 

Group B being the orange line. Laser Position was investigated as the primary reason for 

the two trends in the lines. The immediate correlation was found for both lines with laser 

position as seen in Figure 19. Samples from both group A and B with a trailing Laser had 

a trend line that was lower in cold work than samples with a leading laser. No other 

correlations could be found between other parameters and cold work in samples with a 

trailing laser. 
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Figure 18. Identifiable Trends in Cold Spray Parameters 
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Figure 19. Differences Between Trailing and Leading Laser 

The relationship is most likely a result of the laser energy annealing the coating 

when trailing the spray and softening the particles when leading the spray allowing for 

more plastic deformation and consequently percent cold work. This was integrated into 

the predictive equation by using a piecewise function to create two different predictive 

equation for if the laser was trailing or leading. This essentially allowed for predicting the 

reason that two trend lines were seen in the percent cold work versus hardness graph. 

The individual effects of the parameters in a leading laser were further analyzed by 

plotting the value for the parameters with a leading laser against cold work and giving 

these graphs trendlines (Figure 20). There were two trend lines in these samples. One 

trendline had a lower percent cold work than the other and is designated Line 1. These 

samples are the same as those seen in Figure 19 on the lower right side. The line directly 

above it is Line 2. 
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The final step was to multiply all of these equations together to get the 

experimentally  predicted effect of parameters on percent cold work in group B. The last 

step was to find the relationship between percent cold work and hardness to tie the 

parameters in with hardness. This can be seen in Figure 21. 

 

By relating the effects of the cold spray parameters to the expected hardness the 

impact of hardness was able to be calculated. The equation is lengthy to be fit and has 

been attatched in Appendix A for reference. The final equation shown below is only 

representative of the principle that the goodness of a coating is calculated. The addition 

of the hardness component to the equation is meant to show the indicative relationship 

that the computer algorithm uses; not the exact calculations the algorithm performs.  

Equation 9. Simplified Overall Goodness Equation 

Goodness=𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠1 ∗ 𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠2 ∗ {1 −
𝐻𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑−𝐻𝑇

𝐻𝑇
} 
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Figure 20. Trends Between Mass Flow, Raster Speed, and Percent Cold Work 

Figure 21. Equations Relating Hardness and Percent Cold Work For Trailing and Leading Laser 
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3.2 Optimization Algorithm Evaluation and Selection 

After creating the pseudo-predictive equation, the testing of different optimization 

algorithms began. The equation was made into a MATLAB function script to be easily 

applied to the seven different algorithms. To determine which algorithm would be the best, 

three different measures were examined. The first was the algorithm’s ability to find the 

global optimum rather than 

a local optimum. Each 

algorithm went through five 

trials of different starting 

points. If the algorithm’s 

optimum goodness value 

significantly changed over 

these trials, that was an 

indication of the algorithm’s 

inability to find the global 

optimum. Figure 22 shows 

the trials of each algorithm. Since Fmincon, Fminimax, Genetic Algorithm, and Simulated 

Annealing had changing goodness values, these algorithms were ruled out of the 

selection process as they will not always converge to a global optimum.  

The next measure was the number of function evaluations it took for the algorithm 

to converge. Since current experimental optimization practices take approximately 400 

samples to find the optimum, an algorithm required under 400 function evaluations to be 

considered. This rules 

out pattern search and 

simulated annealing from 

the final selection, as 

seen in Figure 23. Going 

hand-in-hand with 

function evaluations is 

iteration size. Since some 

algorithms are not 

Figure 22. Results of Five Trials to Determine if Algorithms Converge to a 

Global or Local Optimum 

Figure 23. Comparing the Average Number of Function Evaluations to Find the 

Optimum for Each Algorithm 
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population based, it would require significant time to prepare one sample, characterize it, 

and then generate the next sample. Due to the timeliness of that process, algorithms 

should have larger population sizes.  

After each of these were examined (Table 2), the final optimization algorithm 

selected for this process was the Mine Blast Algorithm (MBA). This algorithm seems to 

typically converge to a global optimum and it required only 25 six-sample iterations 

totaling 150 samples. This algorithm will spend four iterations in the exploration phase, 

as aforementioned, and the remainder will exploit the optimum. 

Table 2. Comparing the Seven Algorithms Goodness, Iteration Size, and Function Evaluations 

 

 

3.3 Equation and Algorithm Adjustments  

The main focus of the pseudo-predictive equation was to determine which 

algorithm would optimize the parameters of LACS most efficienctly to create a coating 

with the desired material properties. To extend the functionality of this optimization 

process the equation was adjusted to also drive the coatings towards the desired 

dimensional and economical properties. This was reflected in the algorithm through the 

use of expected and desired thickness values. 

 

𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 =  𝐼𝑎𝑑ℎ𝑒𝑠𝑖𝑜𝑛 ∗ 𝐼𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 ∗ 𝐼ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 ∗ 𝐼𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ∗ 𝐼𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠  

 

For each iteration the thickness of the coating was characterized through optimcal 

imaging and compared to the predicted thickness of the coating and the desired thickness 

of the coating. By comparing the predicted thickness of the coating to the actual thickness 

the deposition efficiency of the parameters were determined. Similar to Iporosity and Ihardness 

the impact of deposition efficiency was characterized through the equation:  
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𝐼𝐷𝑒𝑝𝑜𝑠𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
|𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 

 

The expected thickness was predicted through the use of the following equation. 

Essentially this equation determines the volume of material deposited on the sample and 

then devides by the surface area of the sample to produce and expected thickness.  

  

𝐸𝑥𝑝𝑒𝑐ted Thickness =  
ṁ ∗ Spot Size2

SA ∗ ρ∗Raster ∗ Index
 

Where: 

ṁ = Mass Flow Rate 

Spot Size = Size of Nozzle Spray 

SA = Surface Area of the Sample Being Sprayed 

ρ = Density of Powder Material 

Raster = Raster Speed 

Index = Index Step Size of Sample 

 

Through the use of these two equations a value between .9 and 1 was assigned 

to Iexpected thicknes and subsequently used to drive the parameters towards coatings that 

yielded less wasted product and were economically preferable. The purpose behind 

setting a lower cap of .9 was to ensure that at least some influence made the coatings 

more economic with each iteration, however, did not interfere with a coating that was 

exceptional in other regards.  

A similar value was also assigned to Idesired thickness. This value, however, was 

between 0 and 1 similar to the other impact equations. It was used to drive the coatings 

towards the disired value of 1mm thick in order to demonstrate that the process could 

simultaneoulsy allow for geometric restriction of the coating when optimizing for the other 

material and economic properties with the computer algorithm.  

After adjusting the equation, the MBA also had to be adjusted to allow for user 

input and the new equation. The need for goodness calculations in the algorithm were 

replaced with the ability to input the goodness value for a certain sample. Figure 24 shows 

what this process looks like to the user. After the user enters all the goodness values for 
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the completed iterations, the algorithm generates the next iteration of sample parameters. 

These parameters then move into production and characterization. 

 

Figure 24. MATLAB Displaying the First Iteration Parameters and Requesting the First Sample's Measured Goodness 

Value 

 

3.4 Sample Production and Characterization 

The fourth step of the overall process for this MQP was the characterization of the 

samples. This was the step that required physical lab work to be completed by the group 

so that the adhesion, porosity, hardness, and coating thickness could be found. Aaron 

Birt would spray inconel onto a copper cylinder based on the parameters given for a 

certain iteration at IPG Photonics. Each iteration would have six different samples that 

underwent Laser-Assisted Cold Spray with varying parameters. These parameters would 

be selected based on the MATLAB optimization algorithm that took the previous 

iteration’s goodness results into account. After spraying the samples, they would be 

brought to WPI for characterization. 

Once the iteration was obtained, the procedures for actually characterizing the 

different samples would begin. First, the cylinder would be cut into six small segments by 

using a circular abrasive saw to cut out a thin sliver. Once this thin piece was cut out of 

the cylinder, it was then cut horizontally into six pieces that would then be utilized for 

characterization. These six pieces would be set in an epoxy solution that would harden 

and hold the samples in place so that they would be easier to handle moving forward with 

the characterization process. 

The six samples would remain in the epoxy for several hours until the solution was 

completely solid. From there, the samples would be polished to remove any possible 

scratches. There were four different pads used in the polishing process, each one getting 

progressively thinner than the one used before it. After this process was finished, the 
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samples were observed under a 

microscope to ensure that the scratches 

had been removed. After the samples 

were deemed satisfactorily polished, 

they could then be taken to be imaged. 

The samples were taken under a 

microscope, and snapshots were taken 

of the inconel coating. The snapshots 

were taken horizontally from left to right 

so that there would be overlap between 

each image. If the coating was so wide so that the entirety of it could not be captured from 

one horizontal strip, then the images would start from the bottom of the coating left to 

right, then move up at the end of the row, and come back right to left on the new, higher 

row. These snapshots were uploaded to a computer so that they could be analyzed. 

From these images, the thickness could be measured from the computer program 

that the images were taken on. Five random points on the coating were measured, and 

then averaged for an overall thickness. For adhesion, the images were looked at to see 

if there truly was a coating along the edge of the sample, Figure 25. If not, then the 

adhesion was given a 0. If so, the adhesion was given a 1. Next the images were stitched 

together using a macro. The macro 

would stitch them together, then 

straighten out the images so that a long 

line that roughly reflected the entire 

length of the sample was created. Using 

this fused image, the porosity macro 

was run and gave a result between 1 

and 0, with 0 representing no holes in 

the coating, and 1 meaning only holes in 

the coating. After all these were 

completed, the samples could then be tested for hardness by using a Vickers Hardness 

test which indents the coating as seen in Figure 26. In the same manner that coating 

Figure 25. Image of Adhered Coating Under Microscope 

Figure 26. Image of Indentation from Vickers Test 
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thickness was found, the hardness was found by performing the Vickers test on five 

random locations in the coating, and the average of those five results was used as the 

overall hardness. Once these four properties were measured, the Goodness could be 

calculated for each of the six samples. 

After carrying out several iterations, a random group of five samples that had 

already been tested were reevaluated in the same procedure. This was done to try and 

prove that the properties found for each sample were inherently true for that specific 

sample, and not just a coincidence based on the polishing and imaging done initially. 

From the beginning of the project, it had been assumed that each of the properties 

obtained from the tested samples was truly representative of the sample, and the 

sensitivity testing was done to verify or refute this assumption. 

To test for this, one random sample was taken from each of the first five iterations. 

Two trials were conducted: one by polishing the original mounted sample again, and 

another by cutting and mounting the sample again. After this, the aforementioned 

procedures were conducted to find the new hardness, porosity, thickness, adhesion, and 

goodness values.  

 

3.5 Report Findings 

The final step of the process was to simply communicate the findings for each 

iteration with IPG Photonics so that another algorithmically dictated iteration of six 

samples could be produced. Steps 4-6 were repeated several times as the Mine Blast 

Algorithm predicted 150 total samples (25 iterations), to find an optimum. Based on the 

results found from each iteration, general feedback on certain aspects of the samples 

were provided. For example, if any one or more of the samples were impossible to spray 

due to the shear amount of time or spray that would have to be used, he would make that 

clear to the group. Communication between the advisor and group members was 

essential during the course of this project, and was necessary to be able to get iterations 

done as efficiently as possible. 
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4.0 Results 

The immediate visible trend in the data is that the average goodness value of each 

iteration increases. This can be seen in Figure 27 and Figure 28. 

 

 

Figure 27. Goodness as a Function of Iteration 

 

Figure 28. Goodness of All Function Evaluations or Samples 

The parameters of the best sample in each iteration has been taken and graphed 

in a radial plot to visualize the way in which the algorithm changes the parameters. 

Besides each of these radial plots the goodness for the associated sample has been 
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the parameters to be on a scale of 100 with the lower and upper constraints for the 

parameters equivalent to 0 and 100 respectively. Goodness was already normalized to 

have a scale of 0 to 1. This scale is still used with a 1 being the maximum target goodness. 

 

Figure 29. Visualization of Sample 19.26 Parameter Values and Goodness 

 

Figure 30. Visualization of Sample 19.32 Parameter Values and Goodness 
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Figure 31. Visualization of Sample 19.42 Parameter Values and Goodness 

 

Figure 32. Visualization of Sample 19.47 Parameter Values and Goodness 
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Figure 33. Visualization of Sample 19.53 Parameter Values and Goodnes 
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4.1 Sensitivity Analysis 

It was important to verify whether or not the measurements taken were 

representative of the enter coating. When the five samples were repolished, there was an 

average difference between the original 

and new sample of 0.055. However, one 

sample was an extreme outlier in which 

its goodness value more doubled, so 

when ignoring the outliar, the average is 

only 0.0115. This indicates that while 

there is a difference after grinding off a 

thin layer it is not very significant. To look 

more in depth as to why it may have 

changed, we look at the other variables 

of the goodness equation. 

Since only a thin layer was 

grinded off, the thickness of the samples 

did not change. However, when looking 

at hardness, there was an average 

difference of 130.66 Vickers. This was 

much more significant of a change. 

However, the thickness of a couple 

coatings were very thin, under 100 µm, 

so the hardness test may have bled into 

the epoxy or substrate and may not be 

representative of the whole sample. 

Additionally, porosity may have had a 

significant effect on hardness. For 

example, Sample 19.47 had an original 

porosity of 0.135 and a hardness of 

601.2 Vickers. After being repolished, the porosity dropped to 0.013 and the hardness 

became 417 Vickers. A significant decrease in hardness was experienced potentially due 
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to the coating being less porous. Finally, porosity had an average change of 0.097. This 

is less significant of a change, but this could be due to user error. The team experienced 

difficulties with polishing for the first couple iterations. After experience, the polishing 

improved and may have improved the porosity images which would decrease the porosity 

reading. The individual results of the sensitivity test can be seen in Figure 34. 

Furthermore, the team tested the sensitivity by cutting a new sample and taking 

measurements. Two of the samples were retested after the first sensitivity test, and two 

are new samples. In terms of goodness, there was not a significant change. The average 

change in goodness was 0.015 which is fairly insignificant. However, the change was 

larger when comparing hardness. The average change in hardness was 66.21 Vickers. 

However, Sample 19.33 had a significant change in hardness, likely due to its thin coating, 

which is not seen as much in the other samples. Next, the changes in porosity were fairly 

significant. Three of the four samples had a significant difference in the porosity readings. 

These could be 

due to imaging 

or polishing 

errors. Finally, 

the thicknesses 

changed unlike 

when the 

samples were 

just repolished. 

The average 

change in 

thickness was 

26.54 µm. Figure 

35 shows the details of the second sensitivity test.  

 

All in all, the samples seem to have relatively close goodness values, which is the 

target, as seen in Figure 36. The few exceptions could be due to a number of errors in 

the experimental process, such as a user learning curve in polishing and imaging, or 

Figure 35. Sensitivity Test by Recutting Results 
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limitations in the size of the coatings. In conclusion, the samples seem to not vary enough 

which indicates the measurements are not very sensitive to measurement location. 

 

Figure 36. Comparing Goodness for All Samples 
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5.0 Conclusion and Future Work 

The experiment conducted in this MQP was done primarily to attempt to create a 

new process in which to optimize material samples that undergo Laser Assisted Cold 

Spray. To try and accomplish this end state, a pseudo-predictive equation was prepared, 

followed by an experimental equation that was created based on theoretical knowledge 

and research. These equations found a goodness value for the individual samples, and 

an optimization algorithm was selected to try and get each iteration to have a higher 

goodness than the iteration preceding it. 

The goal at the beginning of this project was to have a total of 25 iterations with 6 

samples in each iteration. Due to constraints, only 6 iterations were able to be completed. 

Despite not reaching our initial goal as far as number of samples, we saw that the 

goodness value of each progressive iteration got higher. As a whole, the Inconel-copper 

coatings continued to adhere, became thicker, less porous, and had surfaces with a 

hardness near the desired hardness, which were the four variables of interest in the 

project. The graphs of goodness versus iteration showed a positive correlation, which we 

had hypothesized would be the case. It was concluded that this process can be utilized 

to improve iterations over time, but due to the number of iterations completed the optimum 

sample was not attained. After creating the first four iterations, the group wanted 

validation that the properties collected for each sample were truly representative and not 

just by chance based on the preparation procedures. So, two variation iterations were 

completed; one iteration was re-polishing 4 previously made samples, and the other was 

completely recutting 4 samples from previously made coatings from IPG Photonics. The 

conclusions for both of these iterations were the same, that the properties collected were 

representative. When the Goodness values were compared with the values from the initial 

samples’ experimenting, it was evident that the values were comparable enough to 

validate that there was not variation. Aside from a couple of the samples having a much 

lower porosity than what was originally found, the other properties were very similar. 

For future work, this group would like to see more iterations be carried out so that 

a more accurate pattern of the iterations’ improvement can be analyzed. The groundwork 

has already been done, but at this point more samples would have to be created and then 

characterized to see if the optimum was reached in the initially hypothesized 150 samples 
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(25 iterations). Another future work possibility would be to try this process out again but 

with different parameters in the goodness equations, or a different coating combination 

than Inconel-copper. Since a brand new optimization process is trying to be created, it is 

important to get a wide sampling of different combinations to prove or disprove that the 

process truly finds an optimum efficiently. 
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Appendix A  - Full Theoretical Goodness Equation 

Goodness= 

{
 
 

 
 
1, 667 − .014ρ + .08(Tm − TR) + 10−7σu − 0.4(Ti − TR) ≥ .8 ∗√

TR

M

2γ

γ − 1
[1 − (

Pe

P
)

γ−1

γ

]

0,   667 − .014ρ + .08(Tm − TR) + 10
−7σu − 0.4(Ti − TR) < .8 ∗√

TR

M

2γ

γ − 1
[1 − (

Pe

P
)

γ−1

γ

]

}

{
 
 

 
 

1

−

. 8 ∗ √
𝑇𝑅
𝑀

2𝛾
𝛾 − 1 [1 − (

𝑃𝑒
𝑃)

𝛾−1
𝛾
] − 2(667 − .014𝜌 + .08(𝑇𝑚 − 𝑇𝑅) + 10

−7𝜎𝑢 − 0.4(𝑇𝑖 − 𝑇𝑅))

2(667 − .014𝜌 + .08(𝑇𝑚 − 𝑇𝑅) + 10−7𝜎𝑢 − 0.4(𝑇𝑖 − 𝑇𝑅))

}
 
 

 
 

∗

{
 

 
294 − (642.05 − 176.67 ∗ (1 − 2.484 ∗ 105)

∗

(𝐺𝑎𝑠 𝑡𝑒𝑚𝑝 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑠)2 
𝐺𝑎𝑠 𝑡𝑒𝑚𝑝2 ∗ 𝑅𝑎𝑠𝑡𝑒𝑟 𝑆𝑝𝑒𝑒𝑑 ∗ 𝐼𝑛𝑑𝑒𝑥

∗ 𝑒
−98

8.314∗𝐺𝑎𝑠 𝑡𝑒𝑚𝑝∗𝑙𝑎𝑠𝑒𝑟 𝑡𝑒𝑚𝑝

3.13159 ∗ 302
∗ (.7056

+
(−.0012 ∗ 𝐺𝑎𝑠 𝑡𝑒𝑚𝑝 ∗ ṁ − 5.7142 ∗ 10−4 ∗ Gas temp ∗ Raster Speed

2

, 𝑙𝑎𝑠𝑒𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ≥ 0
 

 
 
 

294 − (532.77 − 337.99 ∗ (1 − 2.484 ∗ 105) ∗

(𝐺𝑎𝑠 𝑡𝑒𝑚𝑝∗𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑠)2 

𝐺𝑎𝑠 𝑡𝑒𝑚𝑝2∗𝑅𝑎𝑠𝑡𝑒𝑟 𝑆𝑝𝑒𝑒𝑑∗𝐼𝑛𝑑𝑒𝑥
∗𝑒

−98
8.314∗𝐺𝑎𝑠 𝑡𝑒𝑚𝑝∗𝑙𝑎𝑠𝑒𝑟 𝑡𝑒𝑚𝑝

3.13159∗302
∗ (.55 +

(.002∗𝐺𝑎𝑠 𝑡𝑒𝑚𝑝∗ṁ−2.791∗10−4∗Gas temp∗Raster Speed

2
 , laser position < 0 

 
 


