
KMS	BA22	

	
	

	
Development	of	an	Operational	Process	for	Continuous	

Delivery	
A	Major	Qualifying	Project	Report		

completed	in	partial	fulfillment	of	the	Bachelor	of	Science	degree	at		
Worcester	Polytechnic	Institute,	Worcester,	MA	

	
Submitted	to:	
On-Site	Liaison:	 Mr.	Michael	Irving	
	 	 	 Mr.	James	Berman	
	
Project	Advisors:		 	

Professor	Kevin	Sweeney,	Department	of	Management	
	 Professor	Jon	Abraham,	Department	of	Mathematics	
	 Professor	Michael	Ciaraldi,	Department	of	Computer	Science	

Professor	Xinming	Huang,	Department	of	Electrical	and	Computer	Engineering	
	

In	Cooperation	With:	 	
Barclays	Bank	PLC	

	
Submitted	by:	

Khazhismel	Kumykov	
Computer	Science	and	Mathematical	Sciences	

	
Tian	Luo	

Electrical	and	Computer	Engineering	
	

Alexander	K.	Shoop	
Computer	Science	and	Actuarial	Mathematics	

	
Borong	Zhang	

Mathematical	Sciences	
	

	
	

Date:	January,	2016	

i	
	

Abstract	
	 This	 project,	 sponsored	 by	 Barclays	 Bank	 PLC,	 focused	 on	 improving	 the	 continuous	

deployment	process	and	developing	 the	guideline	 for	onboarding	new	applications	 for	 the	Prime	

Financing	group.	We	identified	that	Jenkins	is	the	better	tool	for	Prime	Financing,	and	explored	and	

created	 a	 few	 plugins,	 which	 could	 enhance	 the	 use	 of	 Jenkins	 and	 provide	 management	

information	 system	 details.	 Our	 recommendations	 aim	 to	 eliminate	 manual	 steps	 within	 the	

continuous	delivery	process	and	save	time	on	adopting	new	applications.	

	 	

ii	
	

Acknowledgement	
	 Our	 group	would	 like	 to	 acknowledge	 everyone	 that	 helped	 to	 provide	 an	 opportunity	 to	

take	part	in	this	project	and	the	great	success	that	resulted	from	it.	

First	 and	 foremost	 we	 would	 like	 to	 thank	Barclays	 and	 specifically	Michael	 Irving	 for	

supporting	us	with	our	project.	

	 We	would	like	to	thank	James	Berman,	Technical	Lead	VP	of	Barclays	Enhanced	Enterprise	

Reporting,	 for	 assisting	 us	 with	 many	 technical	 details	 regarding	 the	 project.	 We	 sincerely	

appreciate	the	time	of	guidance	and	support	he	provided	us	during	our	time	at	Barclays.	

	 We	would	also	like	to	thank	Christopher	Darconte,	Prime	Service	IT,	for	assisting	us	with	

many	technical	requests	and	approvals,	and	thank	Subhash	Reddy	Boreddy	for	assisting	us	with	

everything	related	with	Jenkins.		

We	 also	would	 like	 to	 thank	Louis	 Lu,	 Giridhar	 Manda,	 Ramkumar	 Sakthivel	 and	 Jeff	

Johnston	 who	 volunteered	 their	 applications	 to	 do	 Jenkins	 implementations.	 We	 sincerely	

appreciate	their	time	and	support	during	the	whole	implementation	processes.	

	 Moreover,	we	would	like	to	thank	all	Barclays	employees	we	 interviewed	for	providing	

relevant	information.	Their	knowledge	and	experience	were	greatly	beneficial	to	us	understanding	

CA	Release	Automation	and	Jenkins.	

	 Additionally,	 we	 would	 like	 to	 thank	 our	 project	 advisors,	 Professor	 Kevin	 Sweeney,	

Professor	Jon	Abraham,	Professor	Michael	Ciaraldi,	Professor	Xinming	Huang,	for	their	guidance,	

support,	advice,	and	assistance	throughout	the	project.	

	 Lastly,	 we	 would	 like	 to	 extend	 our	 thanks	 to	 Worcester	 Polytechnic	 Institute	 for	

providing	this	project	opportunity.		 	

iii	
	

Authorship	
Content	 Primary	Author	
Title	Page	 Borong	

Abstract		 Borong	

Acknowledgements	 Borong	

Authorship	 Borong	

Table	of	Content	 Borong	

Table	of	Figures	 Borong	

Executive	Summary	 Borong	

1.0	Introduction	 Borong,	Khazhy	

2.0	Background	 Borong	

2.1	Barclays	 Borong	

2.2	Agile	Software	Development	 Alex,	Tian	

2.3	DevOps	 Borong,	Tian	

2.4	Continuous	Integration	 Tian	

2.5	Continuous	Delivery	 Borong	

2.6	Continuous	Deployment	 Tian	

2.7	CA	Release	Automation	 Alex,	Borong	

2.8	Jenkins	 Khazhy	

3.0	Methodology	 Borong	

3.1	1st	Objective	 Borong	

3.2	2nd	Objective	 Borong	

3.3	3rd	Objective	 Borong	

3.4	Summary	 Borong	

4.0	Results	and	Analysis	 Borong	

4.1	Comparative	Analysis	 Alex	

4.2	Jenkins	Plugins	 Khazhy	

4.3	Reporting	 Alex,	Khazhy	

4.4	Summary	 Borong	

iv	
	

5.0	Conclusions		 Borong	

5.1	Conclusions	 Borong	

5.2	Recommendations	 Tian	

5.3	Impact	of	Our	Project	 Borong	

Appendix	A	 Tian,	Alex	

Appendix	B	 Alex	

Appendix	C	 Alex	

Appendix	D	 Khazhy	

Appendix	E	 Alex	

Appendix	F	 Alex	

Appendix	G	 Alex	

Appendix	H	 Alex	

Appendix	I	 Alex,	Khazhy,	Ben	

	

All	sections	were	edited	as	a	team,	with	equal	contributions	made	by	every	member.	

Appendix	 I	was	written	 and	edited	by	Alex	 Shoop,	Khazhy	Kumykov,	 and	Ben	Sharron	as	

part	of	our	(not	including	Tian	and	Borong)	additional	MQP	work	for	our	Math	major	requirement.	

	 	

v	
	

Table	of	Contents	
Abstract	...	i	
Acknowledgement	...	ii	
Authorship	...	iii	
Table	of	Contents	...	v	
Table	of	Figures	..	vii	
Table	of	Tables	..	viii	
Executive	Summary	..	1	
1.0	Introduction	..	3	
2.0	Background	...	5	
2.1	Barclays	...	5	
2.2	Agile	Software	Development	..	6	
2.2.1	The	Agile	Manifesto	...	7	
2.2.2	Twelve	Principles	of	Agile	Software	...	7	

2.3	DevOps	...	8	
2.3.1	Comparison	of	Traditional	IT	and	DevOps	Oriented	Team	...	10	

2.4	Continuous	Integration	..	11	
2.5	Continuous	Delivery	..	12	
2.6	Automated	Deployment	...	13	
2.7	CA	Release	Automation/Nolio	..	14	
2.8	Jenkins	...	16	
2.8.1	Jenkins	Promoted	Builds	..	17	

3.0	Methodology	..	19	
3.1	Evaluated	advantages	and	disadvantages	of	two	different	continuous	delivery	tools	19	
3.2	Investigated	Workflow	Improvements	...	20	
3.3	Generated	data	reports	about	continuous	delivery	processes	...	20	
3.4	Summary	..	20	

4.0	Results	and	Analysis	..	22	
4.1	Comparing	Tools	...	22	
4.1.1	Investment	Bank	(IB)	Standard	Tool	and	Control	Objective	..	22	
4.1.2	Level	of	Support	...	23	
4.1.3	Onboarding	Intuitiveness	...	24	
4.1.4	Deployment	Process	...	24	
4.1.5	Sample	Implementation	..	25	

vi	
	

4.2	Improving	Workflows	..	25	
4.2.1	Automatic	Deployment	Workflow	..	26	
4.2.1.1	Promoted	Builds	Plugin	..	26	
4.2.1.2	Build	Pipeline	Plugin	..	28	
4.2.1.3	Delivery	Pipeline	Plugin	...	29	

4.2.2	Automating	Jenkins	Configuration	...	30	
4.2.2.1	Using	Job	DSL	to	Script	Job	Creation	...	31	
4.2.2.2	Limitations	of	using	the	Job	DSL	/	Extending	Job	DSL	..	31	
4.2.2.3	Using	Jenkins	API	to	Duplicate	Jobs	..	33	
4.2.2.4	Using	Groovy	to	Fetch	SVN	Branches	...	33	
4.2.2.5	Automate	what	you	can	–	Using	Scripting	to	automate	Job	creation	for	branches.	33	
4.2.2.6	Jenkins	Integration	with	Plugins	..	34	

4.3	Generating	Reports	..	35	
4.3.1	Dashboard	View	Plugin	...	36	
4.3.2	Data	Extraction	Plugin	...	36	
4.3.2.1	Prototype	–	Identifying	Data	Extraction	Method	..	36	
4.3.2.2	Prototype	–	Extracting	Data	to	File	...	38	
4.3.2.3	Java	Extraction	Tool	Plugin	...	38	
4.3.2.4	Outcomes	..	40	

4.3.3	Reporting	with	Excel	Pivot	Table	..	41	
4.4	Summary	..	42	

5.0	Conclusions	and	Recommendations	...	43	
5.1	Conclusions	...	43	
5.2	Recommendations	...	44	
5.3	Impact	of	Our	Project	..	44	

References	..	46	
Appendix	A:	Glossary	of	Technical	Terms	...	49	
Appendix	B:	Installing	Jenkins	Plugins	..	51	
Appendix	C:	Nolio	Installation	Instructions	..	55	
Appendix	D:	job_per_branch.groovy	...	57	
Appendix	E:	Excel	Reporting	using	SQL	database	..	62	
Appendix	F:	Excel	Reports	using	CSV	data	..	71	
Appendix	G:	Features	of	our	pivot	table	configuration	..	72	
Appendix	H:	Dashboard	View	Plugin	...	76	
Appendix	I:	Extension	of	High	Speed	Equities	Trading	Research	Study	..	84	
	 	

vii	
	

Table	of	Figures	
Figure	2.1:	Process	of	Agile	Software	Development	(Mountain_Goat_Software,	2005)	6	
Figure	2.2:	The	Ideology	of	DevOps	...	9	
Figure	2.3:	Hours	spent	each	week	carrying	out	key	activities	(Logan,	2014)	..	10	
Figure	2.4:	Basic	Structure	of	CI	System	(Trimios,	2012)	...	12	
Figure	2.5:	Launch	user	interface	of	CA	Release	Automation	...	14	
Figure	2.6:	Example	dashboard	of	CA	Release	Automation’s	ROC	..	15	
Figure	2.7:	scenario	of	deploying	and	promoting	an	application	(CA_Technologies,	2015a)	15	
Figure	2.8:	Jenkins	Promoted	Builds	Plugin	(Inman,	2012)	..	17	
Figure	4.1:	The	DevOps	process	with	approved	tools	..	23	
Figure	4.2:	(Left)	Drag-and-drop	actions	and	flows	(Right)	Example	shell	script	log	25	
Figure	4.3:	Job	Page	(Left)	and	Build	Page	(Right)	of	Promoted	Builds	Plugin	...	27	
Figure	4.4:	Pipeline	UI	of	Build	Pipeline	Plugin	...	28	
Figure	4.5:	Pipeline	UI	of	Delivery	Pipeline	Plugin	..	29	
Figure	4.6:	Multiple	promotions	on	the	same	build	..	30	
Figure	4.7:	Configuration	Screen	for	a	Sync	Branches	Build	Step	...	35	
Figure	4.8:	Configuration	Screen	with	Advanced	Options	and	Error-Checking	Visible	35	
Figure	4.9:	Global	Configuration	Screen	...	35	
Figure	4.25:	Jenkins	Script	Console	..	37	
Figure	4.26:	Configuration	Screen	...	40	
Figure	4.27:	Error	Checking	validates	credentials	and	URL	..	40	
Figure	4.28:	Data	in	SQL	..	41	
Figure	4.29:	Pivot	Chart	created	from	sample	data.	..	42	
Figure	7.1:	Dashboard	status	window	...	50	
Figure	7.2:	Promoted	Builds	Plugin	description	page.	...	51	
Figure	7.3:	Manage	Jenkins.	..	52	
Figure	7.4:	Manage	Plugins.	..	52	
Figure	7.5:	Installing	an	available	plugin.	...	52	
Figure	7.6:	Plugin	installation	status	screen.	..	53	
Figure	7.7:	Chuck	Norris	Plugin.	...	53	
Figure	7.8:	Uploading	a	custom	plugin.	...	54	
Figure	7.9:	Import	a	SQL	database	data	..	62	
Figure	7.10:	Data	Connection	Wizard	..	62	
Figure	7.11:	Select	the	appropriate	database	...	63	
Figure	7.12:	write	a	name	and	description	for	the	file	...	63	
Figure	7.13:	Import	data	(left)	and	properties	window	(right)	...	64	
Figure	7.14:	Imported	table	...	65	
Figure	7.15:	Format	Cells	..	65	
Figure	7.16:	Summarize	with	PivotTable	...	66	
Figure	7.17:	PivotTable	Field	List	..	67	
Figure	7.18:	Customize	row	labels	..	68	
Figure	7.19:	Group	button	(left)	and	grouping	window	(right)	...	68	
Figure	7.20:	PivotChart	button	(left)	and	Chart	style	selection	(right)	...	69	
Figure	7.21:	Sample	pivot	chart	...	69	
Figure	7.22:	Customize	columns	and	rows	..	70	
Figure	7.23:	Sample	chart	...	70	
Figure	7.24:	raw	.CSV	data	set	in	Excel	..	71	

viii	
	

Figure	7.25:	Insert	PivotTable	button	(left)	and	create	PivotTable	window	(right)	71	
Figure	7.26:	Group	report	filter.	...	72	
Figure	7.27:	Promotion	result	column	label.	..	72	
Figure	7.28:	Promotion	time	row	label.	..	73	
Figure	7.29:	Promotion	name	row	label.	..	74	
Figure	7.30:	Pivot	chart	with	trend	line.	...	75	
Figure	7.31:	Add	a	new	view	when	using	Dashboard	View	Plugin	...	76	
Figure	7.32:	Jenkins	jobs	list	under	dashboard	view	..	77	
Figure	7.33:	Job	statistics	under	dashboard	view	..	77	
Figure	7.34:	Build	statistics	under	Dashboard	View	...	78	
Figure	7.35:	Jobs	grid	under	Dashboard	View	...	78	
Figure	7.36:	Unstable	jobs	under	Dashboard	View	..	78	
Figure	7.37:	Test	statistics	under	Dashboard	View	...	79	
Figure	7.38:	Test	statistics	chart	under	Dashboard	View	...	79	
Figure	7.39:	Test	trend	chart	under	Dashboard	View	..	80	
Figure	7.40:	Dashboard	View	with	default	portlets	...	80	
Figure	7.41:	Number	of	builds	plugin	..	81	
Figure	7.42:	RM	Build	Times	Chart	...	81	
Figure	7.43:	Latest	Builds	with	Badges	...	82	
Figure	7.44:	sample	code	of	MyPortlet.java	(Hayes	&	Ambu,	2015)	..	83	
Figure	7.45:	sample	code	of	portlet.jelly	(Hayes	&	Ambu,	2015)	..	83	

	

Table	of	Tables	
Table	7.1:	Weather	Status	...	50	
Table	7.2:	Process	areas	and	flows	...	55	
Table	7.3:	Porcesses	and	Categories	...	56	
	

	

1	
	

Executive	Summary	
	 The	technologies	and	software	development	strategies	are	vital	for	the	competitive	nature	

of	 most	 industries	 and	 organizations.	 To	 deliver	 new	 features	 and	 get	 feedback	 rapidly	 would	

increase	 the	 reputation	 of	 an	 organization	 and	 furthermore	 lead	 the	 company	 in	 the	 specific	

industry	(Kim,	2014).	In	order	to	do	so,	it	is	essential	to	release	software	more	often	with	low	risk.	

To	fulfill	this	demand,	the	concept	of	Agile	Software	Development	has	been	established.	From	Agile,	

DevOps,	 previously	 known	 as	 “Agile	 Operations”	 was	 born.	 DevOps	 is	 the	 collaboration	 of	

development	and	operation	teams	throughout	all	stages	of	the	development	lifecycle	to	ensure	code	

quality	and	to	release	software	at	any	given	time	(Mueller,	Wickett,	Gaekwad,	&	Karayanev,	2011).	

Continuous	 Integration	 tools	and	Continuous	Delivery	platforms	have	been	created	 to	 implement	

the	DevOps	initiative.		

For	 Barclays	 Prime	 Financing,	 they	 have	 considered	 several	 initiatives	 to	 adopt	 an	 Agile	

Software	 Development	 approach	 which	 would	 be	 widely	 pushed	 within	 the	 organization.	 Even	

though	some	teams	in	Prime	Financing	are	using	some	forms	of	Continuous	Integration	tools	or	a	

Continuous	 Delivery	 platform,	 it	 would	 be	 better	 to	 standardize	 the	 toolset	 in	 order	 to	 manage	

related	applications.	The	strengths	and	weaknesses	of	each	tool	were	not	clear,	so	it	was	hard	for	

Prime	Financing	to	choose	a	tool.	They	were	investigating	a	better	DevOps	tool	that	could	be	used	

as	 a	 standard	 tool	 in	 their	 team,	 and	 also	 standardized	 guideline	 for	 onboarding	 projects	 to	 the	

specific	tool.	

The	goal	of	our	project	was	to	 improve	automated	deployment	 in	 the	continuous	delivery	

process.	Our	 first	 objective	was	 to	 evaluate	 the	 advantages	 and	disadvantages	of	 two	 continuous	

delivery	 tools:	 CA	 Release	 Automation	 and	 Jenkins	 Promoted	 Builds	 Plugin.	 We	 conducted	

background	 research	 to	 understand	 concepts	 within	 DevOps	 and	 their	 importance.	 Through	

2	
	

interviewing	several	experienced	employees,	we	collected	 the	 subjective	 responses	 regarding	 the	

advantages	 and	 disadvantages	 of	 each	 tool.	 We	 also	 identified	 some	 objective	 strength	 and	

weaknesses	via	sample	implementations	for	each	tool.	After	that,	we	did	a	comparative	analysis	to	

reach	 our	 conclusion	 of	 each	 tool	 and	 provide	 recommendations.	 Our	 second	 objective	 was	 to	

implement	three	volunteer	applications	from	Prime	Financing,	which	enabled	us	to	catalog	detailed	

functionalities	 within	 the	 chosen	 tool.	We	 discovered	 the	missing	 functionalities	 of	 the	 tool	 and	

provided	our	suggestions	to	promote	the	use	of	the	tool.	The	research	and	implementations	guided	

us	to	form	a	standardized	guideline	for	the	onboarding	process	for	applications	onto	the	tool.	Our	

final	objective	was	to	generate	data	reports	about	the	chosen	tool’s	continuous	delivery	processes.	

We	retrieved	raw	data	from	Jenkins	and	manipulated	them	in	order	to	show	useful	information.	

We	 concluded	 that	 Jenkins	 satisfied	 Barclays	 Prime	 Financing’s	 requirements,	 but	 the	

automated	deployment	 of	 its	 continuous	delivery	process	 can	be	 improved	 from	 several	 aspects.	

We	suggested	adopting	Jenkins	Promoted	Builds	based	on	our	comparative	analysis	of	Jenkins	and	

CA	Release	 Automation.	We	 developed	 an	 easily	 extensible	 Jenkins	 Plugin	 for	 automatic	 Jenkins’	

configuration	with	regards	to	job	creation	and	cleanup	from	SVN	branching.	Moreover,	we	created	a	

management	 information	 system	plugin	 that	 can	 extract	 build	 and	 promotion	 information	 into	 a	

SQL	 database	 and	 CSV	 files,	 and	 then	 import	 into	 a	 reusable	 Excel	 template	we	 created	 to	 show	

reports.	Our	recommendations	can	help	to	improve	automated	deployment	of	continuous	delivery	

process	within	Prime	Financing	group	and	to	generate	reports	of	continuous	delivery	process.	

	

	 	

3	
	

1.0	Introduction	
	 The	 technologies	 and	 software	 development	 strategies	 play	 essential	 roles	 in	 many	

industries	and	organizations.	In	order	to	achieve	higher	performance	in	technology,	it	is	necessary	

to	release	software	more	often.	To	deliver	new	features	and	get	feedback	faster	would	increase	the	

competitive	nature	of	an	organization	and	 furthermore	 lead	 the	company	 in	 the	specific	 industry	

(Kim,	2014).	The	concept	of	Agile	Software	Development	has	been	established	to	fulfill	this	demand,	

and	DevOps	developed	naturally	from	the	concepts	of	Agile	Software	Development.	DevOps	is	the	

collaboration	 of	 development	 and	 operation	 teams	 throughout	 all	 stages	 of	 the	 development	

lifecycle	 to	ensure	code	quality	and	 to	 release	software	at	any	given	 time	 Important	concepts	 for	

Agile	 and	 DevOps	 are	 Continuous	 Integration	 (CI)	 –	 the	 process	 of	 continuously	 merging	 and	

“integration”	 the	 code	 base	 of	 different	 developers	 so	 as	 to	 avoid	 pain	when	 having	 to	manually	

combine	widely	diverging	code	bases,	and	the	bugs	associated	with	combining	changes	that	haven’t	

been	tested	with	each	other	–	and	Continuous	Delivery/Continuous	Deployment	(CD)	–	the	process	

of	continuously	deploying	the	product	to	test	and	“production	like”	environments	(and	eventually	

production	environments)	and	running	appropriate	tests	for	all	builds.	In	Continuous	Deployment	

every	build	that	passes	tests	will	be	deployed	to	production,	whereas	in	Continuous	Delivery,	every	

build	 has	 the	 potential	 to	 be	 deployed	 to	 production,	 but	may	 only	 particular	 chosen	 builds	 are	

actually	deployed.	

	 Barclays	 IB	 is	 currently	 adopting	 Agile,	 and	 as	 part	 of	 that	 initiative	 teams	 are	 adopting	

CI/CD	 practices	 and	 automation	 tools.	 Already	most	 teams	 are	 using	 CI	 practices	 and	 tools,	 and	

have	 processes	 to	 deploy	 to	 and	 test	 in	 Quality	 Assurance	 (QA)	 testing	 environments	 and	

“production	like”	User	Acceptance	Testing	(UAT)	environments.	However,	most	teams	do	not	have	

automated	 deployment	 to	 Production	 environments,	 and	 often	 the	 actual	 deployment	 process	

4	
	

differs	 between	 testing	 and	 production	 environments	 which	 risks	 unknown	 factors	 impacting	

deployment	to	Production.			

	 For	the	automated	deployment	process	there	are	many	different	products	that	may	be	used.	

Within	 Barclays	 Prime	 Financing	 two	 specific	 tools	 were	 identified	 for	 evaluation	 –	 CA	 Release	

Automation	(formerly	known	as	Nolio),	an	automated	deployment	 tool	 identified	by	 the	wider	 IB	

organization	 as	 recommended,	 and	 Jenkins,	 a	 primarily	 continuous	 integration	 tool	 that	 has	

extensions	that	enable	automated	deployment	and	managing	of	a	continuous	delivery	process.		The	

strengths	and	weaknesses	of	each	tool	were	not	made	clear,	so	it	was	hard	for	Prime	Financing	to	

choose	a	tool.	Barclays	Prime	Financing	was	investigating	a	better	DevOps	tool	that	could	be	used	

as	a	standard	tool	in	their	team,	and	also	desired	to	have	a	standardized	guideline	when	onboarding	

projects	to	the	specific	tool.		

The	 goal	 of	 our	 project	 was	 to	 standardize	 the	 guideline	 to	 adopt	 the	 selected	 tool	 on	

applications.	 By	 conducting	 research,	 interviews	 with	 experienced	 employees	 and	 comparative	

analysis,	we	concluded	that	adopting	the	Jenkins	Promoted	Builds	Plugin	is	the	better	option	for	the	

team,	which	also	takes	away	many	manual	steps.	Based	on	our	implementations	of	three	volunteer	

applications,	we	identified	possible	improvements	to	the	workflow	currently	being	used.	Moreover,	

we	generated	data	reports	on	Jenkins	Promoted	Builds	Plugin’s	continuous	deployment	processes	

and	 managed	 them	 to	 show	 useful	 information.	 Our	 recommendations	 can	 help	 to	 improve	 the	

automated	deployment	process	of	the	Jenkins	within	Prime	Financing	and	to	develop	the	guideline	

for	the	group	to	integrate	more	candidate	applications.	

	 	

5	
	

2.0	Background	
	 Nowadays,	many	more	industries	rely	significantly	on	technologies	and	software.	For	high	

performing	 technological	 organizations,	 it	 is	 vital	 to	 release	 their	 software	 more	 frequently	 to	

upgrade	new	features	and	receive	feedback	faster	to	plan	for	the	next	deployment	(Kim,	2014).	In	

order	to	reduce	errors	and	speed	up	deployments,	the	concepts	of	Agile	Software	Development	and	

DevOps	aim	to	fulfill	the	technology	demands.	The	major	areas	to	implement	in	regards	to	DevOps	

are	Continuous	Integration	and	Continuous	Delivery,	which	allow	developers	to	ensure	code	quality	

throughout	 the	 software	 life	 cycle	 and	 release	 software	 at	 anytime.	 Jenkins	 is	 the	 Continuous	

Integration	tool	being	used	by	many	IT	teams,	and	CA	Release	Automation	is	the	Barclays	standard	

Continuous	Delivery	tool.		

2.1	Barclays	

Barclays	 Bank	 PLC,	 founded	 in	 1690,	 is	 one	 of	 the	 largest	 multinational	 banking	 and	

financial	 services	 companies	 in	 the	 United	 Kingdom,	 and	 its	 headquarter	 is	 in	 London.	 Barclays	

provides	different	financial	services	in	retail,	wholesale,	 investment	banking,	wealth	management,	

mortgage	 lending	 and	 credit	 cards,	 which	 all	 operate	 in	 multiple	 countries	 across	 Europe,	 the	

Americas,	Asia,	and	Africa.	There	are	four	core	business	sectors	of	Barclays:	Personal	&	Corporate	

(Personal	 Banking,	 Corporate	 Banking,	 Wealth	 &	 Investment	 Management),	 Barclaycard,	

Investment	Banking	and	Africa.	Barclays	has	a	primary	listing	on	the	London	Stock	Exchange	and	a	

secondary	 listing	on	 the	New	York	Stock	Exchange.	At	 the	end	of	2011,	Barclays’	 assets	achieved	

US$2.42	trillion,	and	it	ranked	the	seventh-largest	bank	worldwide.	

Their	 purpose	 is	 “helping	 people	 achieve	 their	 ambitions	 –	 in	 the	 right	 way”,	 and	 their	

values	are	“respect,	integrity,	service,	excellence	and	stewardship”	(Barclays,	2015).	Their	purpose	

and	values	guide	them	on	how	to	measure	and	reward	people,	“not	just	on	commercial	results,	but	

on	how	they	live	our	Values	and	bring	them	to	life	every	day.”	

6	
	

As	 for	 Barclays	 in	 New	 York,	 during	 the	 2008	 financial	 crisis,	 Barclays	 announced	 its	

agreement	 to	purchase	 the	 investment	banking	 and	 trading	divisions	of	 Lehman	Brothers.	 In	 the	

end,	Barclays	PLC	paid	US$1.35	billion	to	acquire	the	core	business	of	Lehman	Brothers,	including	

Lehman’s	 US$960	million	midtown	Manhattan	 office	 skyscraper	 and	 the	 responsibility	 for	 9,000	

former	employees.	

2.2	Agile	Software	Development	

	 Agile	 software	development	 is	 a	 set	 of	 software	development	methods	based	on	 iterative	

and	 incremental	 development,	 through	 software	 developer	 self-organizing,	 cross-functional	 team	

communication	and	collaboration	to	complete	the	development	work	(Highsmith,	2002).	

	

Figure	2.1:	Process	of	Agile	Software	Development	(Mountain_Goat_Software,	2005)	
	

Software	development	teams	normally	set	two	to	four	weeks	per	iteration,	as	seen	in	Figure	

2.1(Mountain_Goat_Software,	2015).	They	usually	have	daily	 scrum	meetings,	which	are	basically	

standup	meetings,	to	ensure	they	are	on	the	same	page	in	order	to	continuously	make	progress.		

Agile	methods	sometimes	are	misunderstood	as	unplanned	and	undisciplined	approaches.	

As	 a	 matter	 of	 fact,	 agile	 methods	 emphasize	 adaptability	 rather	 than	 predictability	 (Cohen,	

Lindvall,	&	Costa,	2003).	An	adaptive	approach	 focuses	on	quickly	 adapting	 to	 changing	 realities.	

When	the	requirements	of	a	project	change,	the	adaptive	team	should	change	as	well.	However,	 it	

might	be	difficult	for	the	team	to	predict	what	would	happen	in	the	future.	

7	
	

Agile	development,	a	new	development	model	to	avoid	the	shortcomings	of	the	traditional	

waterfall	 model,	 emphasizes	 on	 delivering	 features	 as	 soon	 as	 possible	 and	 doing	 continuous	

improvements	and	enhancements	throughout	the	project	cycle,	which	helps	the	team	continuously	

adapt	its	plans	so	as	to	maximize	the	value	it	delivers	(Highsmith	&	Cockburn,	2002).	

Compared	 to	 iterative	 and	 incremental	 development	 methods,	 agile	 methods	 put	 more	

emphasis	on	high	collaboration	of	the	team,	which	in	turn	can	create	a	shorter	development	cycle.	

Both	software	development	methods	emphasize	shipping	software	in	a	relatively	short	cycle.	

2.2.1	The	Agile	Manifesto	

We	are	uncovering	better	ways	of	developing	software	by	doing	it	and	helping	others	do	it.	

Through	this	work	we	have	come	to	value	(Beck	et	al.,	2001)1:	

Individuals	and	interactions	over	Processes	and	tools	

Working	software	over	Comprehensive	documentation	

Customer	collaboration	over	Contract	negotiation	

Responding	to	change	over	following	a	plan	

That	is,	while	there	is	value	in	the	items	on	the	right,	we	value	the	items	on	the	left	more.	

2.2.2	Twelve	Principles	of	Agile	Software	

	 The	following	are	principles	behind	the	Agile	Manifesto	(Beck	et	al.,	2001):	

Our	highest	priority	is	to	satisfy	the	customer	through	early	and	continuous	delivery	of	

valuable	software.	

Welcome	changing	requirements,	even	late	in development.	Agile	processes	harness	change	

for the	customer's	competitive	advantage.	

																																								 																					
1 Kent	Beck,	James	Grenning,	Robert	C.	Martin,	Mike	Beedle,	Jim	Highsmith,	Steve	Mellor,	Arie	van	Bennekum,	Andrew	Hunt	 ,	Ken	
Schwaber,	Alistair	Cockburn,	Ron	Jeffries,	Jeff	Sutherland,	Ward	Cunningham,	Jon	Kern,	Dave	Thomas,	Martin	Fowler,	Brian	Marick	
©	2001,	the	above	authors.	This	declaration	may	be	freely	copied	in	any	form,	but	only	in	its	entirety	through	this	notice.	

8	
	

Deliver	working	software	frequently,	from	a couple	of	weeks	to	a	couple	of	months,	with	a

preference	to	the	shorter	timescale.	

Business	people	and	developers	must	work together	daily	throughout	the	project.	

Build	projects	around	motivated	individuals.	Give	them	the	environment	and	support	they	

need, and	trust	them	to	get	the	job	done.	

The	most	efficient	and	effective	method	of conveying	information	to	and	within	a	

development team	is	face-to-face	conversation.	

Working	software	is	the	primary	measure	of	progress.	

Agile	processes	promote	sustainable	development. The	sponsors,	developers,	and	users	

should	be	able to	maintain	a	constant	pace	indefinitely.	

Continuous	attention	to	technical	excellence and	good	design	enhances	agility.	

Simplicity--the	art	of	maximizing	the	amount of	work	not	done--is	essential.	

The	best	architectures,	requirements,	and	designs emerge	from	self-organizing	teams.	

At	regular	intervals,	the	team	reflects	on	how to	become	more	effective,	then	tunes	and	

adjusts its	behavior	accordingly.	

2.3	DevOps	

DevOps	is	a	software	development	ideology	concentrated	on	communication,	collaboration	

and	 integration	 among	 software	 development,	 technology	 operations	 and	 quality	 assurance	

(Mueller	 et	 al.,	 2011).	 Since	 the	 software	 industry	 has	 recognized	 the	 necessity	 to	 integrate	

9	
	

developers	and	operations	engineers	 in	 the	entire	service	 life	cycle,	 from	design	 to	production	as	

seen	in	figure	2.2,	DevOps	is	aimed	at	helping	organizations	rapidly	enhance	software	products	and	

services.	

	

Figure	2.2:	The	Ideology	of	DevOps		
Generally,	 releasing	 an	 application	 is	 risky	 and	 relates	 to	 multiple	 development	 teams.	

However,	 in	 an	 organization	 that	 uses	 DevOps	 tools,	 the	 risk	 of	 application	 release	 decreases	

significantly	for	the	following	reasons	(InfoQ,	2014):	

1. Reducing	the	scope	of	change	

Compared	 to	 the	 traditional	 waterfall	 development	 model,	 using	 agile	 or	 iterative	

development	 means	 more	 frequent	 releases	 and	 each	 release	 contains	 fewer	 changes.	

Thanks	to	the	high	frequency	of	deployment,	each	single	deployment	would	not	have	a	huge	

impact	on	the	production	system.	As	a	result,	the	application	will	grow	smoothly.	

2. Strengthen	the	coordination	of	release	

It	 is	good	to	have	a	strong	coordination	to	bridge	skills	and	communication	gaps	between	

development	and	operation	teams;	one	must	ensure	all	responsible	personnel	understand	

the	 content	 changes	 and	 cooperate	well	 through	 electronic	 data	 sheets,	 teleconferencing,	

instant	messaging,	enterprise	portals	(wiki,	SharePoint)	and	other	collaboration	tools	

3. Automation	

10	
	

Powerful	 automated	 deployment	 tools	 ensure	 the	 repeatability	 of	 task	 and	 reduce	 the	

possibility	of	deployment	errors.	This	process	 takes	away	the	 tremendous	 time	and	effort	

required	for	manual	deployment.	

2.3.1	Comparison	of	Traditional	IT	and	DevOps	Oriented	Team	

To	understand	the	differences	between	traditional	 IT	and	DevOps	oriented	team,	 it	would	

be	essential	to	instill	a	DevOps	oriented	culture	within	an	organization	(Logan,	2014).	The	author	of	

the	Article	“Fresh	Stats	Comparing	Traditional	IT	and	DevOps	Oriented	Productivity”	surveyed	620	

engineers	 to	 accomplish	 this	 comparison.	 The	 survey	 asked	 the	 time	 spent	 on	 improving	

infrastructure,	setting	up	automation	for	repeatable	tasks,	fighting	fires,	communication	and	so	on,	

the	results	of	which	are	shown	in	figure	2.3.	

	

Figure	2.3:	Hours	spent	each	week	carrying	out	key	activities	(Logan,	2014)	
This	resulted	in	several	conclusions	as	follows	(Logan,	2014):	

• DevOps	oriented	teams	spend	slightly	more	time	automating	tasks	

• Both	traditional	IT	and	DevOps	oriented	teams	communicate	actively	

11	
	

• DevOps	oriented	teams	fight	fires	less	frequently	

• DevOps	oriented	team	spend	less	time	on	administrative	support	

• DevOps	oriented	teams	work	fewer	days	after-hours	

2.4	Continuous	Integration	

Continuous	 Integration	 (CI)	 is	 a	 software	 engineering	 practice,	 used	 by	 many	 software	

development	 teams,	 to	 ensure	 code	quality	 throughout	 the	 software	build	 life	 cycle.	The	practice	

was	first	named	and	proposed	in	1991	by	Grady	Booch	and	was	adopted	by	Extreme	Programming	

(XP),	 a	 type	 of	 Agile	 Software	 Development	 (Wikipedia,	 2015b).	 The	 practice	 was	 suggested	 to	

avoid	large	integration	issues	that	arise	when	integrating	large	sets	of	changes	with	each	other.	In	

XP	as	well	CI	was	intended	to	be	used	along	with	automated	unit	tests,	which	should	be	designed	to	

ensure	 functionality.	The	major	 role	of	CI	 is	 to	 control	and	react	 to	problems	 immediately.	 It	 is	a	

practice	designed	to	ease	and	stabilize	software	development	processes.		

CI	would	bring	the	following	benefits	(Martin,	2006):	

1. Software	Build	Automation:	Once	 a	 configuration	 is	 completed,	 a	 CI	 system	 can	 build	 the	

target	software	in	accordance	with	a	pre-established	schedule.	

2. Sustainable	Automated	Inspection:	A	CI	system	can	continuously	obtain	added	or	modified	

source	 code.	When	 the	 software	 development	 teams	 need	 to	 periodically	 check	 added	 or	

modified	code,	the	CI	system	can	check	whether	the	added	code	could	destroy	the	original	

software	build.	

3. Sustainable	Automated	Testing:	Once	the	code	is	built,	pre-established	tests	would	run,	and	

the	CI	system	would	automatically	 trigger	real	 time	notifications	via	RSS,	Email	or	 Instant	

Messaging	to	appropriate	developers.	

4. Automated	Follow-up	Processes:	After	the	automated	inspection	and	tests	complete,	there	

may	 be	 some	 additional	 required	 tasks	 in	 the	 software	 build	 cycle,	 including	 generated	

12	
	

documents,	packaged	software,	and	deployed	components,	in	order	to	improve	the	speed	of	

release	for	project.	

	

Figure	2.4:	Basic	Structure	of	CI	System	(Trimios,	2012)	
The	figure	2.4	shows	the	workflow	of	a	CI	system,	which	would	react	and	reflect	the	

build	 problem	 or	 integration	 problem.	 The	 main	 role	 of	 the	 CI	 system	 in	 the	 whole	

development	process	is	control:	when	the	system	detects	a	change	in	the	code	repository,	it	

will	 entrust	 the	 task	 of	 running	 build	 to	 the	 build	 process	 itself.	 If	 the	 build	 fails,	 the	 CI	

system	will	notify	the	relevant	personnel,	then	continue	to	monitor	the	repository.	While	it	

seems	passive,	the	CI	system	does	reveal	problems	immediately.	

2.5	Continuous	Delivery	 	

	 Continuous	Delivery	(MacDonald,	2005)	is	a	software	engineering	approach	for	automating	

software	release	at	any	time.	CD	 is	an	extension	of	CI;	 it	uses	 the	concepts	and	 frameworks	of	CI,	

unit	 testing,	 and	 acceptance	 testing	 to	 streamline	 software	delivery	 (Wikipedia,	 2015a).	 CD	 is	 an	

important	part	of	the	DevOps	ideology.	In	CD	code	is	compiled	and	tested	every	time	it	is	changed,	

and	 is	 frequently	 deployed	 to	 test	 environments	 and	 run	 through	 automated	 acceptance	 tests.	

Moreover,	 code	 may	 pass	 through	 manual	 acceptance	 tests	 as	 well.	 Only	 code	 that	 passes	 all	

13	
	

automated	 and	manual	 tests/approvals	 is	marked	 as	 “releasable,”	 ensuring	 that	 even	 though	 the	

system	automates	much	of	the	process,	code	is	only	“released”	once	it	is	ensured	to	be	valid.	

	 Continuous	 Delivery	 allows	 anyone	 to	 receive	 fast,	 automated	 feedback	 regarding	 any	

changes	made	to	their	code,	and	furthermore	people	can	perform	push-button	deployments	of	any	

version	to	any	environment	(Farcic,	2014).		

2.6	Automated	Deployment		

Automated	deployment	means	automatically	deploying	every	change	to	production,	and	the	

main	 concept	 of	 automated	 deployment	 is	 deployment	 automation	 (Smith,	 2015).	 Deployment	

automation	is	a	solution	to	deliver	applications	faster	and	more	efficiently	(XebiaLabs,	2015).	Even	

though	there	are	some	difficulties	 in	 implementing	the	 fully	automated	deployment	process,	such	

as	 the	 overhead	 of	 creating,	 setting	 up,	 configuring	 and	 maintaining	 an	 automated	 deployment	

mechanism,	 the	 benefits	 of	 using	 automated	 deployment	 are	 significant	 in	 comparison	 to	 the	

difficulties.	

Automated	 deployments	 make	 the	 application	 deployment	 processes	 become	 much	 less	

error-prone	 and	 much	 more	 repeatable,	 which	 eliminates	 manual	 steps	 and	 avoids	 delivering	

incorrect	versions	(XebiaLabs,	2015).	Once	the	automated	deployment	process	is	set,	if	it	works	the	

first	time,	it	will	work	many	more	times	afterwards.	The	knowledge	of	the	automated	deployment	

process	is	captured	in	the	system,	independent	from	an	individual,	and	thus	anyone	in	the	team	can	

deploy	 software.	 Furthermore,	 rather	 than	 spending	 time	 on	 performing	 and	 validating	 manual	

deployments,	the	software	development	teams	can	spend	their	time	on	developing	the	next	set	of	

quality	features	and	enhancements	to	the	software.	The	target	environments	and	machines	can	be	

changed	easily,	which	simply	requires	configuring	the	existing	setup	and	then	relying	on	the	new	

release	automation.	The	system	allows	frequent	releases	in	order	to	ship	valuable	features	to	users	

more	often	and	to	get	continuous	feedback	to	enhance	the	software.	

14	
	

2.7	CA	Release	Automation/Nolio	

	 CA	 Release	 Automation,	 formerly	 known	 as	 Nolio,	 is	 an	 enterprise-class,	 multi-release,	

continuous	 delivery	 solution	 which	 automates	 complex	 release	 deployments	 (CA_Technologies,	

2015b).	This	software	is	aimed	to	ease	and	streamline	the	deployment	process.	

	 CA	 Release	 Automation	 enables	 to	 design,	 manage,	 and	 automate	 application-centric	

operations	 across	 physical,	 virtual,	 and	 cloud	 environments.	 It	 can	 speed	 up	 application	 release	

cycles,	 reduce	 errors,	 and	 achieve	 higher	 quality	 releases.	 The	 software	 also	 can	 create	 more	

frequent	releases,	reduce	costs	and	promote	collaboration	and	alignment	between	developers	and	

operation	engineers.	

	

Figure	2.5:	Launch	user	interface	of	CA	Release	Automation	
In	 regards	 to	 the	 User	 Interface	 for	 every	 CA	 Release	 Automation	 system,	 there	 are	 two	

parts	 in	 the	 launch	 interface	 as	 shown	 in	 figure	 2.5:	 Release	 Operations	 Center	 (ROC)	 and	

Automation	 Studios.	 ROC	 is	 a	 web	 application	 for	 creating	 release	 flows	 and	 managing	 their	

execution	in	terms	of	the	operational	functionality,	which	is	organized	into	tabs	in	the	dashboard,	

as	 seen	 in	 figure	 2.6.	 Automation	 Studio	 is	 a	 legacy	 client	 that	 provides	 some	 administrative	

features,	 such	 as	 administrative	 tasks,	 export	 and	 import	 functions,	 and	 process	 scheduling	 and	

notification	settings.	ROC	is	the	main	area	for	most	development	and	operation	teams.	

15	
	

	

Figure	2.6:	Example	dashboard	of	CA	Release	Automation’s	ROC	
	

	 The	 typical	 and	 simplified	 scenario	 of	 deploying	 an	 application	 and	 promoting	 that	

application	from	integration	testing	through	to	production	is	in	figure	2.7.	

	

Figure	2.7:	scenario	of	deploying	and	promoting	an	application	(CA_Technologies,	2015a)	
	

1. Create	the	release	using	the	ROC.	

2. Retrieve	the	specific	artifacts	(application	files	and	content)	from	the	repositories.	

16	
	

3. Next,	stage	the	artifacts.	

4. The	next	step	runs	the	deployment,	which	could	have	a	variety	of	steps.	Here	it	does	a	

pre-deployment	 verification	 and	 configures	 a	 load	 balancer.	 It	 then	 deploys	 the	

application	and	database	and	then	does	some	post-deployment	verification.	

5. If	 everything	 was	 successful,	 the	 same	 deployment	 can	 be	 used	 (with	 different	

environment	and	release	data)	to	promote	the	application	to	the	next	stage.	

6. Prior	 to	 the	 deployment	 to	 production,	 the	 deployment	 can	 go	 through	 an	 approval	

process	with	integration	to	a	service	desk.	

7. If	the	approval	process	passes,	the	deployment	is	then	promoted	to	production.	

Throughout	the	process	above,	it	shows	how	to	link	a	repeatable	continuous	delivery	process.	

In	 general,	 CA	 Release	 Automation	 enables	 IT	 operations	 to	 centrally	manage,	 automate	 and	

control	application	service	operations	over	a	data	center,	as	well	as	standardize	application	service	

operation	 and	 application	 workflows.	 More	 terminologies	 about	 CA	 Release	 Automation	 are	 in	

Appendix	A.	

2.8	Jenkins		

Jenkins	is	an	open	source	continuous	integration	tool	with	an	active	community	and	a	rich	

ecosystem	of	extensions	(Kawaguchi	&	Hayes,	2015).	Jenkins	is	written	in	Java	and	works	on	most	

operating	systems.	It	is	also	the	world’s	most	popular	open	source	continuous	integration	software,	

which	is	being	use	in	more	than	65,000	sites	worldwide.		

Two	 critical	 features	 of	 Jenkins	 are	 monitoring	 the	 software	 development	 process	 and	

building	 and	 testing	 software	projects	 continuously,	which	help	users	 to	 obtain	 the	newest	 build	

and	code	quality	(Kawaguchi,	2015).	

Jenkins	 provides	 functionality	 to	 run	 jobs	 -	 predefined	 tasks	 -	 on	 certain	 circumstances,	

such	as	an	update	to	a	source	control	repository,	running	a	task	in	a	set	interval	of	time,	or	after	a	

17	
	

manual	request	to	run	a	job	(Kawaguchi,	2015).	Jobs	are	versatile	as	they	can	be	custom	defined	to	

do	anything	-	build	code,	run	unit	 tests,	check	code	quality,	deploy	code	to	a	server	environment,	

ping	 a	 web	 server,	 etc.	 Jenkins	 provides	 functionality	 through	 its	 core	 product	 and	 plugin	

extensions	 for	 running	 unit	 tests	 on	 a	 source	 control	 repository	 following	 the	 practices	 of	 CI.	 It	

could	 test	 integration	 of	 development	 and	mainline	 branches	 before	 they	 are	merged	 in.	 During	

testing,	 it	 can	 identify	 issues	ahead	of	 time,	automatically	run	quality	assurance,	deploy	software,	

create	 processes	 to	 require	 manual	 approval,	 and	 test	 to	 proceed	 in	 a	 step	 in	 the	 deployment	

pipeline.	More	Jenkins	terminologies	are	in	Appendix	A,	and	the	instruction	on	how	to	use	Jenkins	

Plugin	is	in	Appendix	B.	

2.8.1	Jenkins	Promoted	Builds	

Jenkins	Promoted	Builds	Plugin,	as	shown	in	figure	2.8,	provides	a	framework	for	manual	

approval	within	the	CD	pipeline.	

	
Figure	2.8:	Jenkins	Promoted	Builds	Plugin	(Inman,	2012)	

The	plugin	creates	a	User	Interface	(UI)	where	automated	processes	can	be	run	depending	

on	 certain	 circumstances.	 For	 example,	 a	 build	 could	be	 automatically	deployed	 to	 an	 automated	

acceptance-testing	environment,	or	it	could	wait	for	manual	approval	to	be	deployed	to	a	QA	testing	

environment.	A	final	step	could	also	be	added	to	automate	deployment	to	production	systems	once	

18	
	

all	 other	 steps	 have	 been	 completed.	 Jenkins	 with	 this	 Promoted	 Builds	 Plugins	 is	 another	

continuous	deployment	option	besides	CA	Release	Automation.	

	 	

19	
	

3.0	Methodology	
	 The	 goal	 of	 this	 project	 is	 to	 improve	 automated	 deployment	 in	 the	 continuous	 delivery	

process.	Our	measurable	objectives	were:	

1. Evaluated	 advantages	 and	 disadvantages	 of	 the	 firm	 standard	 tool	 (CA	 Release	

Automation)	and	the	tool	used	in	Prime	Financing	(Jenkins)	

2. Investigated	workflow	improvements	of	the	chosen	tool	

3. Generated	data	reports	about	continuous	deployment	processes	of	the	chosen	tool		

We	used	online	research,	case	studies,	 interviews,	and	sample	implementations	to	achieve	

our	objectives,	which	we	discuss	in	detail	in	this	chapter.	

3.1	Evaluated	advantages	and	disadvantages	of	two	different	continuous	

delivery	tools	

	 The	first	phase	of	our	project	was	to	compare	the	two	tools	to	decide	the	proper	one	to	use	

when	implementing	applications.	We	did	research	online	to	study	the	related	terminologies,	such	as	

Agile	 Software	 Development,	 DevOps,	 Continuous	 Integration,	 and	 Continuous	 Delivery.	We	 also	

did	research	of	each	tool	and	cataloged	features	of	both	tools,	Jenkins	and	CA	Release	Automation.	

Moreover,	to	understand	detailed	information	concerning	implementation,	we	did	case	studies	via	

implementing	test	applications	into	the	two	tools.	In	order	to	better	understand	the	two	tools,	we	

interviewed	several	experienced	employees	in	both	Jenkins	and	CA	Release	Automation.	The	team	

determined	 the	 advantages	 and	 disadvantages	 of	 each	 tool	 and	 compared	 feature	 by	 feature	 to	

reach	a	conclusion.	

20	
	

3.2	Investigated	Workflow	Improvements	

	 Once	we	had	decided	to	recommend	Jenkins	with	the	Promoted	Builds	Plugin	for	the	Prime	

Financing	 group	 we	 investigated	 possible	 workflow	 improvements.	 We	 investigated	 plugins	

recommended	 for	 usage	 in	 a	 continuous	 delivery	with	 automated	 deployment	 environment,	 and	

compared	 the	 different	 recommended	 plugins	 in	 both	 their	 feature	 set	 and	 compatability	 with	

Prime	 Financing’s	 workflow.	 As	 well,	 we	 investigated	 the	 possibilities	 for	 automating	 Jenkins	

configuration,	 and	 created	 a	 proof	 of	 concept	 for	 managing	 configuration	 through	 Job	 DSL,	 and	

through	Jenkins’	scripting,	and	finally	created	a	Jenkins	plugin	to	automate	the	process	of	creating	

and	 pruning	 per-release	 branch	 jobs.	 We	 also	 explored	 functionalities	 of	 three	 volunteer	

applications	to	identify	core	strategies	of	onboarding	the	applications	to	the	tool.	

3.3	Generated	data	reports	about	continuous	delivery	processes	

	 In	 order	 to	 provide	 a	 better	 way	 to	 evaluate	 continuous	 deployment	 processes,	 we	

developed	a	process	to	extract	raw	data	from	Jenkins.	This	raw	data,	which	includes	useful	statistics	

such	 as	number	of	 successful/failed	builds	 and	promotions,	 can	be	 saved	 into	 a	 SQL	database	or	

CSV	 file	 and	 then	managed	 in	 Excel.	We	 used	 the	 pivot	 table	 functionality	 in	 Excel	 to	 filter	 and	

manage	data,	and	created	a	reusable	template.	To	develop	the	process	for	extracting	data	we	first	

created	 a	 rapid	 proof-of-concept	 using	 Jenkins’	 groovy	 scripting	 capabilities	 and	 by	 reading	 the	

relevant	documentation	for	identifying	the	location	of	the	data.	By	doing	so	we	were	able	to	rapidly	

identify	and	test	a	process	for	extracting	data,	and	to	agree	upon	a	common	data	format	such	that	

the	 finalized	 extraction	 plugin	 and	 the	 reporting	 excel	 template	 could	 be	 developed	 in	 parallel.	

Produced	were	a	Jenkins	plugin	and	an	Excel	reporting	template.	

3.4	Summary	

	 The	 methods	 described	 above	 were	 to	 fulfill	 our	 project	 goal:	 to	 improve	 automated	

deployment	in	the	continuous	delivery	process.	The	background	research	helped	us	to	understand	

21	
	

the	overall	concepts	within	DevOps	and	their	importance.	The	experienced	employees’	 interviews	

provided	us	subjective	responses	on	the	advantages	and	disadvantages	of	each	tool.	We	identified	

some	objective	strength	and	weaknesses	via	sample	implementations	for	each	tool,	and	compared	

with	 the	 information	 provided	 by	 experienced	 people.	 The	 investigations	 on	 workflow	 of	

automated	deployment	improves	the	continuous	delivery	process	our	sponsor,	Prime	Financing,	to	

adopt	 the	 chosen	 tool	 on	 their	 existing	 application.	 In	 order	 to	 generate	 data	 reports	 about	 the	

continuous	deployment	processes,	we	extracted	and	managed	useful	 statistics	 to	evaluate	overall	

processes.	

	 	

22	
	

4.0	Results	and	Analysis	
In	 this	 chapter,	we	discuss	our	 results	 and	analysis	on	background	research,	 comparative	

analysis,	and	implementations.	We	evaluated	the	advantages	and	disadvantages	of	both	CA	Release	

Automation,	 also	 known	 as	 Nolio,	 and	 Jenkins	 Plugin,	 determined	 the	 better	 tools	 for	 Prime	

Financing	 group,	 and	 improved	 workflows	 of	 automated	 deployment	 within	 Prime	 Financing’s	

Jenkins.	 Based	 on	 our	 research	 and	 practices,	 we	 successfully	 achieved	 our	 goal	 to	 improve	

automated	deployment	in	the	continuous	delivery	process	for	our	sponsor,	Barclays.	

4.1	Comparing	Tools	

To	 compare	 Nolio	 and	 the	 Jenkins	 plugin,	 we	 studied	 extensive	 online	 research,	 both	

through	 publicly	 available	 resources	 and	 Barclays’	 internal	 resources,	 and	 interviewed	 several	

experienced	employees	regarding	each	tool.	

4.1.1	Investment	Bank	(IB)	Standard	Tool	and	Control	Objective	

	 In	 order	 to	 better	 adopt	 the	 DevOps	 initiative	 in	 Barclays,	 there	 is	 a	 list	 of	 IB	 standard	

development	 tools	 for	 each	 DevOps	 category,	 such	 as	 Continuous	 Integration	 and	 Continuous	

Deployment.	Each	approved	tool	has	a	different	 level	of	Barclays’s	 internal	support.	 In	regards	 to	

the	standard	tool	for	Continuous	Deployment,	Nolio	is	the	only	listed	approved	tool.	The	figure	4.1	

shows	other	approved	tools	for	the	DevOps	initiative	within	IB.		

23	
	

	

Figure	4.1:	The	DevOps	process	with	approved	tools	
Barclays	has	 set	up	what	 are	 called	 “control	 objectives”	which	are	mandatory	or	optional	

criteria	 during	 an	 application’s	 development	 cycle.	 One	 specific	 mandatory	 control	 objective	

pertaining	 to	 Continuous	 Deployment	 states	 that	 “no	 change	 can	 be	 made	 to	 any	 technology	

configuration	 item	 without	 appropriate	 authorization.”	 Fortunately,	 both	 Nolio	 and	 the	 Jenkins	

plugin	satisfy	this	control	objective.	

4.1.2	Level	of	Support	

	 For	Nolio,	there	is	a	comprehensive	amount	of	support	available	within	Barclays.	There	is	a	

designated	 Nolio	 support	 team	 in	 Barclays	 providing	 approximately	 400	 pages	 of	 support	

documentation	as	well	as	email,	chat	client,	and	telephone	support.	The	most	useful	document,	“my	

first	Nolio	application,”	provides	a	tutorial	on	how	to	implement	a	“hello	world”-esque	application	

into	Nolio.		

In	 regards	 to	 Jenkins,	 since	 Jenkins	 and	 the	 various	 plugins	 are	 open-source,	 it	 is	 easy	 to	

retrieve	many	available	resources	online	to	get	help.	While	there	is	no	internal	Barclays	support	for	

Jenkins,	many	employees	have	basic	understandings	of	the	tool.	

24	
	

4.1.3	Onboarding	Intuitiveness	

	 The	 Barclays-supported	 Nolio	 requires	 an	 extensive	 onboarding	 process	 which	 involves	

submitting	a	support	ticket	onboarding	request,	requesting	to	create	the	Nolio	project	groups	and	

then	 following	 a	 long	 detailed	 process	 to	 onboard	 an	 application.	 Through	 interviews,	 especially	

with	 employees	 of	 the	 support	 team,	 we	 received	 information	 that	 the	 approximate	 time	 to	

onboard	a	new	application	is	a	week	or	two.	The	major	reason	for	the	lengthy	onboarding	time	is	

because	of	waiting	for	approvals	or	assistance	from	Barclays’	Nolio	support	team.	

	 One	example	team	that	we	interviewed	said	that	they	started	to	onboard	their	applications	

in	May	2015	and	even	 today	are	still	working	on	 the	Nolio	 implementation.	The	 team	mentioned	

that	 the	 complexity	 and	 heavyweight	 nature	 of	 Nolio	 is	 part	 of	 the	 reason	 for	 the	 long	

implementation	time.	On	the	other	hand,	 there	 is	a	separate	team	who	praised	the	support	of	 the	

Barclays’s	Nolio	support	team	when	onboarding	their	specific	applications.	

As	for	onboarding	Jenkins,	it	is	easier.	If	a	project	team	wishes	to	onboard	with	the	Jenkins	

Promoted	Builds	Plugin	managed	by	the	Prime	Financing	team,	the	project	team	simply	has	to	fill	

out	a	detailed	questionnaire,	written	up	by	Prime	Financing,	which	asks	for	most	of	the	necessary	

configuration	 information.	 Then	 the	 project	 team	would	 have	 to	 supply	 appropriate	 deployment	

scripts	 so	 that	 the	 deployments	 can	 actually	 run.	 In	 general,	 the	 time	 spent	 in	 the	 onboarding	

process	for	Jenkins	and	the	plugin	is	about	only	a	few	hours.	

4.1.4	Deployment	Process	

	 Nolio	and	Jenkins	plugin	are	two	almost	entirely	different	ecosystems.	The	main	purpose	of	

Nolio	is	to	do	deployments	via	drag-and-drop	actions	and	flows	on	its	web	dashboard,	which	is	on	

the	 left	of	 figure	4.2.	This	offers	 flexibility	and	robustness	 for	different	 types	of	projects,	whereas	

the	 Jenkins	 Promoted	 Builds	 Plugin	 handles	 deployments	 through	 approval	 gates	 and	 the	

deployment	 scripts	 written	 by	 the	 application	 team.	 As	 the	 right	 of	 figure	 4.2	 shows,	 the	 main	

25	
	

deployment	procedure	in	the	Jenkins	plugin	is	shell	scripting,	and	the	complexity	level	depends	on	

the	user’s	need.		

	 	

Figure	4.2:	(Left)	Drag-and-drop	actions	and	flows	(Right)	Example	shell	script	log		
	

4.1.5	Sample	Implementation	

	 On	 the	Nolio	 front,	we	 followed	 the	 tutorial	 supplied	by	Barclays’s	Nolio	 support	 team	 to	

have	a	better	understanding	of	the	Nolio	architecture.	However,	it	was	a	long	and	arduous	process.	

Appendix	C	shows	a	summarized	step-by-step	procedure	of	what	the	tutorial	was	asking	and	how	

to	accomplish	a	deployment.	As	for	Jenkins,	the	sample	implementation	is	intuitive.	The	majority	of	

investigation	and	results	are	on	the	plugins,	as	seen	in	section	4.2.	

4.2	Improving	Workflows	

	 Besides	 basic	 functionalities	 of	 Jenkins	 itself,	 there	 are	 various	 plugins	 that	 are	 able	 to	

enhance	 the	 use	 of	 Jenkins.	 According	 to	 the	 requirements	 of	 Prime	 Financing	 group,	 our	 team	

explored	some	useful	plugins	within	Jenkins	in	order	to	fulfill	their	demands.	The	major	part	was	to	

enhance	automated	onboarding	and	deployment	process.	

26	
	

4.2.1	Automatic	Deployment	Workflow	

Jenkins	can	be	used	to	build	a	continuous	delivery	or	deployment	pipeline	out-of-the-box.	

There	 are	 numerous	 plugins	 that	 add	 additional	 features	 such	 as	 manual	 approval	 gates,	 visual	

overviews,	 and	 custom	 permissions,	 to	 allow	 users	 to	 better	 fine	 tune	 and	 fit	 the	 automated	

deployment	 set	 up	 to	 their	 needs.	 The	 plugins	 evaluated	 were	 Promoted	 Builds	 Plugin,	 Build	

Pipeline	Plugin	and	Delivery	Pipeline	Plugin.		

Promoted	Builds	Plugin	 introduces	 the	concept	of	“promotions”,	which	have	prerequisites	

and	 resulting	 actions	 to	 allow	 fine	 tuned	 control	 over	 triggering	 actions	 related	 to	 an	 individual	

build	 in	 Jenkins.	 Build	 Pipeline	 Plugin	 is	 an	 overview	 of	 the	 promotions,	 which	 provides	 an	

overview	based	on	built	 in	 job	relations,	as	well	as	providing	a	new	type	of	relation	–	a	“manual”	

build	 step.	 Delivery	 Pipeline	 Plugin	 also	 provides	 an	 overview	based	 on	 built-in	 job	 relations,	 as	

well	 as	 supporting	 the	 manual	 steps	 of	 the	 Build	 Pipeline	 Plugin	 and	 the	 promotions	 of	 the	

Promoted	Builds	Plugin.		

We	evaluated	the	provided	functionality	of	the	plugin,	including	support	for	“fan-out-fan-in,”	

manual	 approvals,	 and	 allowing	 for	 specifying	 build	 parameters;	 the	 look	 and	 usability	 of	 the	

overview;	and	the	complexity	of	setup.	

4.2.1.1	Promoted	Builds	Plugin	

The	 Promoted	 Builds	 Plugin	 provides	 the	 ability	 to	 mark	 certain	 builds	 of	 a	 job	 as	

“promoted”	 if	 the	 build	 has	 fulfilled	 a	 certain	 criteria,	 as	 well	 as	 to	 trigger	 certain	 actions	 upon	

promotion	 (Kawaguchi	&	Hayes,	 2015).	 This	 plugin	 extends	 the	 functionality	 of	 Jenkins	 to	 allow	

triggering	of	downstream	jobs	on	more	criteria	than	just	if	the	build	passed	or	failed.	It	also	allows	

requiring	 multiple	 previous	 or	 triggered	 jobs	 to	 complete	 successfully,	 manual	 approval	 from	 a	

specific	set	of	approvers,	and	other	promotions	for	the	job	that	have	already	occurred,	in	order	to	

allow	 one	 to	 enforce	 an	 order	 of	 promotion.	 Moreover,	 the	 plugin	 allows	 for	 specifying	 build	

27	
	

parameters	 for	 triggered	 jobs	 and	 allowing	 a	 manual	 approver	 to	 provide	 needed	 details	 for	 a	

deployment,	such	as	a	service	desk	ticket	number	or	deployment	credentials.	

The	plugin	displays	the	promotion	status	of	every	build	directly	on	the	job	and	build	pages,	

as	shown	in	figure	4.3.	

	

Figure	4.3:	Job	Page	(Left)	and	Build	Page	(Right)	of	Promoted	Builds	Plugin	
	

Setting	up	 these	promotions	 is	quick,	as	 simple	as	 setting	up	automatic	 triggers	built	 into	

Jenkins.	However,	the	plugin	does	not	show	the	upstream/downstream	relationships	between	jobs,	

so	it	can	be	difficult	to	see	what	jobs	exactly	are	triggered	and	in	what	order	of	jobs	are	related	to	a	

promotion.	 Ordinarily	 one	 would	 have	 to	 click	 through	 many	 pages	 concerning	 builds	 and	

promotions	 to	 understand	 the	 upstream	 and	 downstream	 relationships.	 Additionally,	 while	 the	

plugin	can	require	one	promotion	be	completed	successfully	before	another	one,	one	can	“approve”	

a	promotion	at	any	time	accidentally.	However,	 it	cannot	disapprove	a	promotion	even	if	 it	hasn’t	

occurred	yet,	which	may	result	 in	two	sequential	manual	promotions	occurring	immediately	after	

one	 another	 because	 of	 the	 second	 out-of-order	 accidental	 approval.	 If,	 for	 example,	 the	 first	

promotion	was	to	deploy	to	a	manual	QA	environment	and	the	second	a	deployment	to	a	beta/UAT	

environment,	this	would	not	be	ideal.	

28	
	

4.2.1.2	Build	Pipeline	Plugin	

The	 build	 pipeline	 plugin	 provides	 an	 overview	 of	 a	 continuous	 deployment	 “pipeline”	

based	on	an	initial	“seed”	build.	The	pipeline	displays	all	related	downstream	jobs	trigged	by	it	and	

their	status.	The	plugin	also	provides	a	new	type	of	trigger/relationship	to	allow	manual	approving	

for	triggering	a	downstream	job,	similar	to	the	Promoted	Builds	Plugin.	However	it	does	not	allow	

for	more	 sophisticated	 approval	 requirements,	 such	 as	 restricting	who	 can	 approve	 the	 build,	 or	

requiring	 that	 multiple	 upstream	 jobs	 have	 completed	 successfully	 before	 a	 job	 is	 triggered.	

Furthermore,	one	cannot	supply	manual	parameters	for	a	manual	build;	such	parameters	must	be	

provided	 at	 the	 start	 of	 the	 build	 cycle,	 which	 is	 not	 feasible	 in	 many	 cases	 when	 builds	 are	

deployed	several	days	or	weeks	later.	

The	 pipeline	 UI,	 in	 figure	 4.4,	 itself	 is	 rather	 difficult	 to	 use	 and	 look	 at,	 and	 does	 not	

integrate	well	with	the	Jenkins	UI.	

	

Figure	4.4:	Pipeline	UI	of	Build	Pipeline	Plugin	

29	
	

4.2.1.3	Delivery	Pipeline	Plugin	

Delivery	Pipeline	Plugin	fulfills	a	similar	purpose	to	Build	Pipeline	Plugin,	however	with	a	

better	 UI	 execution,	 as	 in	 figure	 4.5.	 Similarly	 to	 the	 Build	 Pipeline	 Plugin,	 the	 Delivery	 Pipeline	

Plugin	shows	an	overview	based	on	job	upstream/downstream	relationships.	Additionally,	it	allows	

for	 grouping	 of	 related	 processes	 in	 “stages.”	 It	 can	 use	 the	 Build	 Pipeline	 Plugin	 manual	 build	

relationship	 to	 allow	 for	 manual	 builds.	 Like	 the	 Build	 Pipeline	 Plugin,	 you	 cannot	 specify	

parameters	for	a	manually	approved	build.		

	

Figure	4.5:	Pipeline	UI	of	Delivery	Pipeline	Plugin	
	

It	 is	 also	 compatible	with	 the	 Promoted	Builds	 Plugin;	 however	 support	 seems	 to	 not	 be	

perfect,	 as	 multiple	 promotions	 on	 the	 same	 build	 will	 show	 as	 parallel	 processes,	 even	 if	 the	

promotions	 are	 sequential	 as	 seen	 in	 figure	 4.6.	 Also,	 while	 promotions	 can	 be	 shown	 on	 the	

pipeline	page,	you	cannot	promote	a	build	directly	from	the	page.	

30	
	

	

Figure	4.6:	Multiple	promotions	on	the	same	build	
	

The	Delivery	Pipeline	Plugin	shows	promise	for	showing	a	comprehensive	overhead	view	of	

the	jobs	related	to	an	initial	seed	build,	and	when	used	with	the	Promoted	Builds	Plugin	can	satisfy	

the	 requirements	of	 allowing	 restricted	manual	deployment	with	 specified	parameters.	However,	

its	 integration	 with	 the	 Promoted	 Builds	 Plugins	 is	 lacking.	 The	 community	 in	 Jenkins	 and	 the	

Delivery	 Pipeline	 Plugin	 has	 expressed	 interest	 in	 proper	 integration	 with	 the	 Promoted	 Builds	

Plugin,	and	it	is	possible	that	in	the	soon	future	there	will	be	full	integration.	Even	without	perfect	

integration	 the	 Delivery	 Pipeline	 Plugin	 provides	 a	 useful	 overview	 to	 see	 the	 status	 of	 builds,	

especially	 as	 velocity	 increases	 or	 as	 more	 automated	 test	 steps	 are	 added,	 such	 as	 automated	

integration	 tests	 in	 QA,	 or	 automated	 assurances	 in	 Production.	 The	 Promoted	 Builds	 Plugin	

provides	all	the	necessary	manual	approval	requirements	and	parameters,	and	the	per-promotion	

overview	on	the	builds	page	provides	sufficient	overview	for	many	cases.	

4.2.2	Automating	Jenkins	Configuration	

Groovy	 is	 a	 scripting	 language	 based	 on	 top	 of	 Java	 that	 runs	 in	 the	 Java	 JVM,	 and	 it	 can	

leverage	and	extend	existing	Java	APIs	in	a	loosely	typed,	dynamic	language.	Jenkins	is	largely	based	

31	
	

on	 groovy	 and	 allows	 for	 extensions	 based	 in	 this	 scripting	 language.	 Moreover,	 Jenkins	 has	

multiple	 plugins	 that	 allow	 for	 executing	 scripts	 that	 can	 interact	 with	 Jenkins’	 internal	 APIs	 to	

manage	job	creation	and	Jenkins	management.	Additionally,	there	is	a	plugin	that	defines	a	Domain	

Specific	Language	(DSL)	for	managing	job	creation	and	management	within	Jenkins	called	the	“Job	

DSL”	Plugin,	which	simplifies	the	process	of	programmatically	creating	Jenkins	Jobs.	Through	using	

Jenkins’	 internal	APIs,	one	can	automate	various	aspects	of	management	of	 Jenkins’	configuration	

for	certain	applications.	

4.2.2.1	Using	Job	DSL	to	Script	Job	Creation	

Operations	 that	 frequently	 create	 a	 large	 number	 of	 jobs	 and	 require	 keeping	 the	

configuration	of	many	jobs	up-to-date	may	benefit	from	using	the	Job	DSL.		

Using	Job	DSL	to	create	a	simple	Job:	

mavenJob("my_job")	{	
	 	 description("""My	great	job""")	
	 	 logRotator	{	
	 	 	 daysToKeep(7)	

							}	
	 	 keepDependencies(false)	
	 	 scm	{	
	 	 	 svn	{	
	 	 	 	 location(“https://svn/project/branch”)	{	
	 	 	 	 	 credentials(SVN_CREDENTIALS_ID)	
	 	 	 	 }	
	 	 	 	 checkoutStrategy(SvnCheckoutStrategy.UPDATE_WITH_CLEAN)	
	 	 	 }	
	 	 }	
	 	 triggers	{	
	 	 	 scm('H/10	*	*	*	*')	{	
	 	 	 	 ignorePostCommitHooks(false)	
	 	 	 }	
	 	 }	
	 }	

4.2.2.2	Limitations	of	using	the	Job	DSL	/	Extending	Job	DSL	

There	 are	 several	 significant	 issues,	 however,	 with	 using	 the	 Job	 DSL.	 The	 first,	 most	

obvious	 issue	 is	the	 learning	required	to	be	able	to	use	the	Job	DSL	effectively.	While	the	Job	DSL	

aims	and	succeeds	at	making	 jobs	easier	to	maintain	than	by	directly	using	Jenkins	APIs,	 it	 is	still	

32	
	

much	 less	 intuitive	 than	 using	 the	 GUI	 interface,	 and	 some	 more	 obscure	 features	 may	 not	 be	

supported	 at	 all,	 requiring	 extending	 the	 Job	 DSL.	 Furthermore,	 any	 updates	 to	 Jenkins	 may	 be	

potentially	 breaking,	 as	 was	 experienced	 during	 evaluation.	 During	 evaluation,	 a	 Jenkins	 update	

changed	the	XML	format	for	a	“logRotator”	plugin,	causing	the	Job	DSL	implementation	to	be	broken.	

One	can	use	groovy	to	extend	the	Job	DSL	classes	to	either	fix	or	extend	the	Job	DSL.	Groovy	

provides	“mixin”	 functionality	 that	allows	adding	methods	 to	existing	classes.	Due	to	how	the	 Job	

DSL	is	 implemented,	one	can	just	add	methods	to	the	DSL	classes	and	they	are	available	to	use	in	

the	DSL.	 This	 functionality	 can	 be	 used	 to	 add	 implementation	 specific	 shorthand	 or	 to	 add	new	

features	without	having	to	wait	for	acceptance	by	the	open	source	project.	However,	one	must	look	

at	an	existing,	 functional	XML	configuration	 to	 identify	 the	 required	structure,	which	can	 then	be	

automated.	

Using	Groovy	Mixins	to	extend	the	DSL	to	support	an	additional	feature	(“keep	builds	forever”):	

class	PromotionActions	{	
	 static	def	bind()	{	
	 	 javaposse.jobdsl.dsl.helpers.step.StepContext.mixin	PromotionActions	
	 }	
	
	 /**	
	 	*	Promoted	builds	flag	to	keep	build	forever	
	 	*/	
	 void	keepBuildForever()	{	
	 	 stepNodes	<<	new	
Node(null,'hudson.plugins.promoted__builds.KeepBuildForeverAction')	
	 }	 	
}	
Using	Groovy	Mixins	to	extend	the	DSL	to	repair	an	existing	 feature	that	was	broken	due	to	a	

Jenkins	update:	

class	Job	{	
	 static	def	bind()	{	
	 	 javaposse.jobdsl.dsl.Job.mixin	Job	
	 }	
	
	 /**	New	version	of	jenkins	moved	the	location	of	this	configuration	node	
	 	
	 Old	version	used	for	inspiration:	

33	
	

	 https://github.com/jenkinsci/job-dsl-plugin/blob/master/job-dsl-
core/src/main/groovy/javaposse/jobdsl/dsl/Job.groovy#L203-L216	
	 */	
	 void	logRotator(@DslContext(LogRotatorContext)	Closure	closure)	{	
								LogRotatorContext	context	=	new	LogRotatorContext()	
								ContextHelper.executeInContext(closure,	context)	
	
	 	 configure	{	project	->		
	 	 	 project	/	'properties'	/	'jenkins.model.BuildDiscarderProperty'	/	
	 	 	 'strategy'(class:'hudson.tasks.LogRotator')	{	
																daysToKeep(context.daysToKeep)	
																numToKeep(context.numToKeep)	
																artifactDaysToKeep(context.artifactDaysToKeep)	
																artifactNumToKeep(context.artifactNumToKeep)	
	 	 	 }	
	 	 }	
	 }	
}	

4.2.2.3	Using	Jenkins	API	to	Duplicate	Jobs	

Another	option	 for	 the	 creation	of	new	 jobs	 is	 to	 just	 look	at	 existing	 jobs	and	 copy	 their	

configuration.	 Since	we	aren’t	 concerned	with	 the	 internals	of	 the	 job	 structure,	 the	API	 calls	 are	

very	 simple.	 This	 method	 was	 used	 by	 Prime	 Financing	 in	 a	 manual	 process,	 where	 a	 job	 is	

structured	so	that	any	job-specific	configuration	is	reliant	on	the	Job	Title	(in	this	case,	the	job	title	

matches	 the	SVN	branch	 title),	and	 jobs	are	duplicated	as	needed.	Automation	of	creating	release	

branch	jobs	was	straight	forward.	

4.2.2.4	Using	Groovy	to	Fetch	SVN	Branches	

Jenkins	comes	with	the	“SVNKIT”	library	built	in	for	its	base	functionality,	so	we	were	able	

to	 leverage	this	 library	to	fetch	a	 list	of	branches.	 It	 is	also	possible	to	use	the	command	line	SVN	

client	and	parse	the	output	it	gives,	which	was	the	original	implementation,	however	using	SVNKIT	

means	we	are	using	a	 library	that	 is	always	 installed	with	 Jenkins.	 (The	SVN	command	 line	client	

may	or	may	not	be	installed	on	the	Linux	server	client).	

4.2.2.5	Automate	what	you	can	–	Using	Scripting	to	automate	Job	creation	for	branches.	

We	ended	up	creating	a	 script,	as	 shown	 in	Appendix	D,	 that	polls	an	SVN	repository	and	

ensures	 that	 the	 Jenkins	 configuration	 matches	 what	 is	 expected.	 The	 script	 uses	 the	 newest	

34	
	

matching	branch	 job	as	a	 template	 for	creating	new	branch	 jobs.	 It	can	delete	or	disable	old	 jobs,	

and	create	new	jobs	automatically,	removing	a	manual	process	that	required	distracting	a	Jenkins	

administrator	 away	 from	 their	 other	 responsibilities.	 The	 frequency	 of	 the	 polling	 process	 is	

configurable,	but	generally	it	would	be	set	to	check	on	a	regular	schedule.	

Using	 the	 Job	 DSL	 was	 not	 ideal	 because	 the	 configurations	 were	 complicated	 and	 used	

plugins	not	 supported	by	 Job	DSL.	The	 jobs	were	not	 created	with	 such	 frequency	 that	using	 Job	

DSL	would	 speed	 things	 up,	 and	 the	 learning	 of	 Job	DSL	 and	 requirements	 of	 extending	 Job	DSL	

would	be	 as	 error	prone	 if	 not	more	 error	prone	 than	building/modifying	 Jenkins	 jobs	manually	

through	 GUI.	 The	 other	 benefit	 of	 Job	 DSL	 over	 “copy	 paste”	 is	 to	 keep	 all	 jobs	 with	 the	 same	

configuration.	 Since	 branches	 are	 generally	 for	 release,	 old	 branches	 are	 just	 kept	 for	 historical	

purposes	 and	 do	 not	 need	 to	 be	 kept	 up	 to	 date.	 Copying	 the	 last	 used	 branch	 provides	 the	

configuration	needed.	

4.2.2.6	Jenkins	Integration	with	Plugins	

After	developing	a	rapid	prototype	using	Groovy	script,	the	desire	for	Jenkins	configuration	

integration	arose,	and	a	plugin	was	developed.	Jenkins’	plugin	framework	allows	for	quick	creation	

of	 configuration	 menus	 with	 error	 checking,	 and	 the	 similarity	 of	 Groovy	 to	 Java	 (the	 language	

Jenkins	plugins	are	by	in	large	written	in)	allowed	for	a	very	quick	development	cycle	(the	majority	

of	 the	 time	 taken	 implementing	 new	 error	 checking	 features).	 Moreover,	 the	 integration	 with	

Jenkins	allowed	streamlining	some	of	the	process	–	instead	of	depending	on	the	Groovy	plugin,	the	

EnvInject	 Plugin,	 and	 proper	 configuration	 of	 both,	 one	 just	 installs	 and	 configures	 the	 Sync	

Branches	plugin	we	developed.	The	plugin	is	used	as	a	build	step	and	the	configuration	and	error	

checking	can	be	seen	 in	 figures	4.7	and	 figure	4.8.	A	global	configuration	area	was	also	added	for	

common	configuration,	as	seen	in	figure	4.9.	

35	
	

	

Figure	4.7:	Configuration	Screen	for	a	Sync	Branches	Build	Step	

	

Figure	4.8:	Configuration	Screen	with	Advanced	Options	and	Error-Checking	Visible	

	

Figure	4.9:	Global	Configuration	Screen	
	
4.3	Generating	Reports	

Metrics	 and	measurements	 of	 projects	 are	 important	 to	 understand	whether	 projects	 are	

improving.	 We	 investigated	 available	 Jenkins	 reporting	 plugins,	 however	 they	 did	 not	 meet	 our	

expectations.	 We	 decided	 to	 look	 at	 the	 source;	 Jenkins	 itself	 keeps	 all	 metrics	 and	 statistical	

information,	 such	 as	 number	 of	 successful/failed	 builds	 and	 number	 of	 successful/failed	

promotions.	 Therefore	 we	 investigated	 ways	 of	 extracting	 information	 from	 Jenkins	 into	 a	

consumable	format	that	can	be	used	in	reporting	software	to	generate	reports.	

36	
	

4.3.1	Dashboard	View	Plugin	

	 We	explored	certain	Jenkins	plugins	that	might	provide	functionality	to	show	Management	

Information	System	details.	The	Dashboard	View	Plugin	 is	one	such	plugin	which	can	show	some	

straight	forward	information	about	jobs	and	builds.		

Dashboard	View	adds	 “a	new	view	 implementation	 that	provides	a	dashboard/portal-like	

view	for	Jenkins”(Hayes	&	Ambu,	2015).	The	plugin	allows	users	to	create	one	or	more	new	“views,”	

labeled	as	Dashboard,	which	is	customizable	and	contains	various	portlets	with	information	about	

the	selected	 job(s).	Portlets	are	widgets	containing	useful	charts	or	statistics.	Further	explanation	

on	this	terminology	can	found	in	Appendix	A.	More	information	about	Dashboard	View	Plugin	can	

be	found	in	Appendix	H.	

	 Even	though	Dashboard	View	provides	capabilities	to	visualize	some	information	about	jobs	

and	 builds	 within	 the	 Jenkins	 web	 instance,	 it	 doesn’t	 provide	 any	 information	 regarding	

promotions.	To	overcome	this	limitation	we	decided	to	custom	implement	the	ability	to	access	this	

information.	When	deciding	how	to	display	the	information,	we	chose	to	extract	the	data	to	be	used	

in	external	reporting	software	as	that	would	provide	more	flexibility	than	what	was	shown	in	the	

Jenkins	dashboard	for	far	less	work.	

4.3.2	Data	Extraction	Plugin	

	 As	part	of	 the	project	objective	 to	provide	MIS	reports	 for	 Jenkins	usage,	 it	was	 identified	

that	a	 tool	needed	 to	be	created	 to	extract	 Job	and	Promotion	data	 from	a	 Jenkins	 server	 into	an	

easily	consumable	format	that	could	be	then	analyzed	and	transformed	into	a	report.		

4.3.2.1	Prototype	–	Identifying	Data	Extraction	Method	

During	the	initial	research	phase,	we	used	groovy	scripting	in	the	Jenkins	console,	as	seen	in	

figure	 4.25,	 along	 with	 documentation	 to	 identify	 where	 the	 data	 we	 desired	 resided.	 The	 data	

37	
	

identified	was	the	build	status	and	time	for	every	build	and	promotion	information	within	Jenkins.	

Jenkins	 exposes	 this	 data	 through	 a	 stable	 and	well	 defined,	 albeit	 internal,	 API.	 This	method	 of	

extracting	data	is	quick	and	simple,	and	leverages	the	usability	of	the	Jenkins	code	base.	

	

Figure	4.25:	Jenkins	Script	Console	

Alternatives	

Also	evaluated	was	the	possibility	of	using	the	Jenkins	REST	API	–	an	HTTP	API	provided	by	

Jenkins	 and	 its	 plugins.	 However,	 in	 our	 research	 we	 discovered	 that	 the	 API	 does	 not	 have	 an	

endpoint	for	mass	data	extraction	of	this	type,	but	rather	allows	for	investigation	and	modification	

of	individual	Jobs.	It	does	provide	a	way	to	enumerate	jobs	and	builds,	however	using	that	endpoint	

would	still	require	a	new	HTTP	REST	API	call	for	every	single	job.	As	well,	there	is	no	API	endpoint	

to	enumerate	Promotions	for	a	given	build.	Given	these	limitations,	and	given	how	simple	using	a	

programmatic	method	is,	we	chose	the	latter.	

Another	 possibility	 is	 to	 do	 manual	 parsing	 of	 the	 XML	 files	 in	 which	 the	 Jenkins	

configuration	 is	 stored,	 an	 idea	 that	 was	 brought	 up	 by	 the	 sponsor.	 However,	 this	 idea	 was	

38	
	

dropped	for	a	number	of	reasons:	the	XML	files	may	be	out	of	sync	with	the	Jenkins	instance,	and	

may	change	while	reading.	As	well,	the	overhead	of	writing	the	code	to	parse	the	XML	makes	little	

sense	when	Jenkins	itself	already	has	done	the	trouble	of	that	for	us.	

4.3.2.2	Prototype	–	Extracting	Data	to	File	

Initially,	our	prototype	groovy	script	was	made	to	extract	the	desired	data	to	a	CSV	File.	The	

next	step	was	to	extract	into	a	SQL	database.	There	were	three	ideas	posed:	extract	the	data	within	

the	groovy	script	to	SQL,	extract	the	data	with	groovy	to	CSV	and	then	create	a	second	application	in	

Java	to	read	the	CSV	and	export	to	SQL,	or	create	a	single	Jenkins	plugin	in	Java	to	extract	to	SQL.		

Hypothetically,	one	can	use	a	feature	of	the	Groovy	Jenkins	Plugin	to	add	additional	jar	files	

to	the	classpath	of	 the	script	VM,	allowing	for	using	external	 jars	such	as	would	be	required	for	a	

database	connector.	However,	this	option	was	dropped	for	2	reasons:	1)	due	to	a	bug	in	the	plugin,	

it	didn’t	work,	and	2)	having	 to	maintain	dependencies	using	complex	classpath	configurations	 is	

error	prone	and	not	intuitive	to	set	up.	

Having	 two	 separate	 tools	 to	 maintain	 was	 not	 ideal.	 Creating	 a	 Jenkins	 plugin	 has	

additional	benefits,	so	this	path	was	chosen.	

4.3.2.3	Java	Extraction	Tool	Plugin	

Jenkins	plugins	are	all	written	using	the	Java	programming	language.	Using	Java	has	a	few	

key	benefits:	we	can	structure	the	project	as	an	actual	project	rather	than	a	script	file	and	loosely	

gather	 dependencies;	 a	 more	 strongly	 typed	 and	 strict	 language	 allows	 for	 creation	 of	 a	 more	

robust	 tool;	 and	 dependencies	 can	 be	managed	 as	 part	 of	 the	 project	 and	 packaged	 together	 for	

deployment.	Furthermore,	creating	a	Jenkins	plugin	allows	for	integration	with	the	Jenkins	web	GUI.	

39	
	

Creating	a	Plugin	

Jenkins	 has	 a	 wide-ranging	 plugin	 extension	 system	 that	 we	 used	 to	 develop	 our	 plugin.	

Jenkins	provides	a	template	for	creating	the	base	of	a	plugin	that	can	be	customized	to	one’s	needs.	

The	plugin	was	 implemented	as	 a	 Jenkins	Build	 Step,	which	 can	be	 added	 to	 and	 configured	 in	 a	

Jenkins	Job.	The	plugin	was	made	in	Java	using	Maven	for	dependencies,	which	allows	for	bundling	

the	required	dependencies	such	as	database	drivers	and	helper	libraries	in	the	tool	distributable	in	

the	plugin	file.		

Configuration	Considerations	

Parameters	 are	 configurable	 as	 a	 part	 of	 the	 standard	 Jenkins	 configuration	 console.	 The	

target	 database	 and	 credentials	 are	 configurable	 in	 Jenkins	 in	 the	 build	 job.	 Credentials	 are	

encrypted	using	Jenkins	standard	methods.	

Data	Type	Considerations	

In	 designing	 the	 tool	 some	 special	 considerations	 were	 made	 towards	 data	 types	 for	

interoperability.	Java	dates	operate	using	milliseconds	since	the	Unix	Epoch.	Microsoft	SQL	Server,	

as	 a	 .NET	 product,	 operates	 on	 100	 nanosecond	 “ticks”	 since	 the	 year	 1	 started.	While	 the	 .NET	

DateTime	 is	 10000	 times	more	 precise	 than	 Java’s	milliseconds,	 in	 the	 conversion	 between	 .NET	

and	Java	we	saw	errors	where	the	time	recorded	was	1	millisecond	off	from	the	actual	time	desired	

to	 be	 recorded.	 To	 prevent	 such	 conversion	 errors,	 time	 was	 stored	 as	 a	 raw	 long	 integer	

representing	 the	 Java	 Date,	 in	 such	 a	 way	 that	 conversion	 between	 different	 Date	 styles	 is	 not	

needed.	However,	MS	Excel	does	not	have	an	easy	way	to	convert	Milliseconds	to	a	local	time,	so	the	

data	was	denormalized	and	an	additional	 local	date	column	was	added	that	 is	precise	enough	 for	

reporting	needs,	and	in	a	format	that	Excel	understands.	

40	
	

4.3.2.4	Outcomes	

A	 Jenkins	 Plugin	was	 created	 and	 implemented	 on	 Prime	 Financing’s	 Jenkins	 server.	 The	

configuration	 screen	 is	 shown	 in	 figure	 4.26,	 and	 it	 has	 error	 checking	 validates	 credentials	 and	

URL,	as	seen	in	figure	4.27.	The	plugin	will	extract	new	job	metadata	to	the	specified	SQL	server,	as	

seen	in	figure	4.28,	or	to	a	specified	CSV	file.	The	plugin	is	designed	such	that	it	can	be	run	at	any	

interval,	and	will	only	append	new	data.	

Figure	4.26:	Configuration	Screen	

	
Figure	4.27:	Error	Checking	validates	credentials	and	URL	

	

41	
	

	

Figure	4.28:	Data	in	SQL	
	

4.3.3	Reporting	with	Excel	Pivot	Table	

	 The	Job	and	Promotion	information	from	the	SQL	server	was	then	imported	into	Excel.	We	

decided	 to	 use	 pivot	 tables	 to	 filter	 and	 group	 the	 very	 large	 data	 set.	 A	 pivot	 table	 is	 a	 data	

summarization	tool	that	can	automatically	sort,	count,	give	average,	and	do	other	functions	on	data	

stored	 in	 a	 spreadsheet	 or	 table.	 The	 actions	 and	 filtering	 are	 independent	 of	 the	 original	 data	

(MacDonald,	2005).	 Instructions	on	how	to	create	a	pivot	table	using	a	SQL	database	and	CSV	file	

source	can	be	found	in	Appendix	E	and	Appendix	F	respectively.	The	version	of	Excel	we	worked	on	

was	Microsoft	 Excel	 2007,	 but	 the	 pivot	 table	 functionality	 is	 available	 in	 every	 version	 of	 Excel.	

Information	about	the	features	of	our	pivot	table	configuration	can	be	found	in	Appendix	G.	The	end	

result	can	be	as	seen	in	figure	4.29	below.	The	pivot	chart	is	nice	in	that	it	shows	an	understandable	

visual	representation	of	the	number	of	successful/failed	promotions	across	time.	

42	
	

	 	

Figure	4.29:	Pivot	Chart	created	from	sample	data.	
4.4	Summary	

	 By	 analyzing	 the	 strength	 and	weakness	 of	 both	 CA	Release	Automation	 and	 Jenkins	 and	

sample	 implementations,	 we	 determined	 Jenkins	 is	 a	 better	 to	 be	widely	 implemented	 in	 Prime	

Financing.	We	explored	and	tested	several	Jenkins	plugins,	which	could	be	helpful,	such	as	pipeline	

view,	 Job	DSL,	Groovy	scripting,	and	Dashboard	View,	and	we	evaluated	feasibility	of	each	plugin.	

We	also	demonstrated	how	to	create	Management	Information	System	data	reports	with	Jenkins.	In	

the	 next	 chapter,	 we	 will	 conclude	 our	 findings	 and	 provide	 our	 recommendations	 in	 order	 to	

enhance	 the	 continuous	 delivery	 process	 of	 the	 chosen	 tool,	 Jenkins,	 and	 the	 process	 to	 adopt	

candidate	applications	into	Jenkins.	

	 	

43	
	

5.0	Conclusions	and	
Recommendations	
	 In	this	chapter,	we	provide	our	conclusions	and	recommendations	to	choose	the	better	tool	

and	 to	 develop	 strategies	 to	 onboard	 applications	 on	 the	 chosen	 tool.	 We	 recommend	 Prime	

Financing	uses	 Jenkins	based	on	our	comparative	analysis	of	 Jenkins	and	CA	Release	Automation.	

We	 determined	 several	 strategies	 to	 enhance	 the	 continuous	 delivery	 process	 on	 Jenkins	 via	

investigating	 and	developing	 some	plugins.	We	 also	 provided	 recommendations	 on	how	 to	 show	

and	use	management	information	system	details.	

5.1	Conclusions	

	 Based	 on	 our	 comparative	 analysis,	 both	 CA	 Release	 Automation	 and	 Jenkins	 have	 their	

respective	advantages.	CA	Release	Automation	provides	robust	and	sharable	deployment	strategies,	

and	 allows	 users	 to	 configure	 environments.	Moreover,	 there	 is	 less	 administrative	 overhead	 for	

frequently	changing	deployment	processes	and	complicated	deployment	to	many	different	targets.	

As	 for	 Jenkins,	 it	 follows	 build-your-own	 deployment	 strategies,	 which	 provides	 convenient	

integration	with	 current	 application	 configurations.	 Furthermore,	 the	 set-up	 process	 is	 quick	 for	

teams	with	existing	deployment	scripts	or	simple	deployments.		

	 We	explored	several	plugins	that	could	enhance	the	automated	deployment	process.	Jenkins	

has	 several	 available	 pipeline	 view	 plugins,	 which	 could	 show	 upstream	 and	 downstream	

relationships.	These	plugins	are	useful,	but	don't	integrate	well	with	the	Promoted	Builds	Plugin	or	

with	Prime	Financing’s	configuration.	As	for	Job	DSL	Plugin,	while	it	is	a	powerful	tool,	it	has	a	high	

learning	curve	and	 is	heavyweight	 in	general.	 For	Groovy	scripting,	 it	 can	accomplish	 simple	and	

useful	 actions,	 however	 it	 has	 a	 high	 learning	 curve	 for	 complicated	 jobs.	 In	 the	 end,	 however,	

Jenkins	 plugins	 written	 in	 Java	 that	 leverage	 Jenkins’	 API	 and	 tools	 proved	 the	most	 useful	 and	

44	
	

stable	 for	 reliably	 automating	 these	 tasks,	 while	 Groovy	 scripting	 proved	 to	 be	 a	 useful	 tool	 for	

quickly	testing	and	scripting	small	things.	

	 As	 for	Management	 Information	 System	 reporting,	we	 discovered	 that	 any	 specified	 data	

could	 be	 extracted	 from	 Jenkins,	 such	 as	 build	 and	promotion	 information.	We	 created	 a	 Jenkins	

Plugin	 to	 extract	 data	 either	 into	 a	 SQL	 database	 or	 CSV	 files.	 Furthermore,	 the	 extracted	

information	 can	 be	 imported	 into	 data	 reporting	 software,	 such	 as	 Excel,	 to	 create	 reports;	 we	

created	a	reusable	Excel	template	that	creates	reports	from	Prime	Financing’s	Jenkins	instance.	

5.2	Recommendations	

	 Based	on	our	research	and	implementations,	we	recommend	using	Jenkins	over	CA	Release	

Automation	 because	 of	 minor	 overhead	 and	 quicker	 set-up.	 In	 order	 to	 eliminate	 some	 manual	

steps,	 we	 recommend	 using	 our	 Jenkins	 Plugin	 ‘Sync	 Branches’	 to	 accomplish	 automatic	 job	

creation	and	cleanup	from	SVN	branching	instead	of	manually	copying	 jobs.	Moreover,	 to	provide	

management	 information	 details.	 We	 recommend	 using	 our	 Jenkins	 plugin	 to	 extract	 data	 into	

either	a	SQL	database	or	CSV	files.	SQL	database	is	the	preferred	destination	rather	than	CSV	files	

because	 SQL	 databases	 are	 easier	 to	 manage	 data	 and	 has	 better	 compatibility	 with	 different	

reporting	software.	Additionally,	we	also	developed	an	Excel	template	to	visually	show	data	reports.	

We	highly	recommend	using	Excel	with	our	 template,	 since	Excel	 is	widely	used	and	 intuitive	 for	

reporting.	

5.3	Impact	of	Our	Project	

	 Our	project	results	and	recommendations	can	help	our	sponsor,	Barclays	Prime	Financing,	

to	 improve	automated	deployment	 in	 the	continuous	delivery	process,	and	to	generate	reports	 to	

understand	 the	 continuous	 delivery	 process.	 Implementing	 strategies	 we	 developed	 could	

eliminate	a	few	manual	steps	within	their	continuous	delivery	process.	By	using	our	strategies,	we	

45	
	

hope	 the	 continuous	delivery	process	 could	be	more	 efficient	 and	 easy,	 thus	helping	 address	 the	

challenges	of	automated	deployment.	

	 	

46	
	

References	
Ambu,	 M.	 (2015).	 Project	 Statistics	 Plugin.	 	 	 Retrieved	 from	 https://wiki.jenkins-

ci.org/display/JENKINS/Project+Statistics+Plugin	

Barclays.	 (2015).	 Purpose	 and	 Values.	 	 	 Retrieved	 from	 https://www.home.barclays/about-

barclays/barclays-values.html	

Beck,	 K.,	 Beedle,	 M.,	 Bennekum,	 A.	 v.,	 Cockburn,	 A.,	 Cunningham,	W.,	 Fowler,	 M.,	 .	 .	 .	 Thomas,	 D.	

(2001).	Agile	manifesto.			Retrieved	from	http://agilemanifesto.org/principles.html	

CA_Technologies.	 (2015a).	 CA	 Release	 Automation.	 	 	 Retrieved	 from	

http://www.ca.com/us/devcenter/ca-release-automation.aspx	

CA_Technologies.	(2015b).	CA	Release	Automation	5.5.x:	Overview	100.	

Cohen,	 D.,	 Lindvall,	 M.,	 &	 Costa,	 P.	 (2003).	 Agile	 Software	 Development.	 Retrieved	 from	

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2704&rep=rep1&type=pdf	

Farcic,	 V.	 (2014).	 Continuous	 Delivery:	 Introduction	 to	 concepts	 and	 tools.	 	 	 Retrieved	 from	

http://technologyconversations.com/2014/04/29/continuous-delivery-introduction-to-

concepts-and-tools/	

Hayes,	 P.,	 &	 Ambu,	 M.	 (2015).	 Dashboard	 View.	 	 	 Retrieved	 from	 https://wiki.jenkins-

ci.org/display/JENKINS/Dashboard+View	

Highsmith,	 J.	 (2002).	 What	 is	 Agile	 Software	 Development?	 The	 Journal	 of	 Defense	 Software	

Engineering,	6.		

Highsmith,	J.,	&	Cockburn,	A.	(2002).	Agile	software	development:	the	business	of	innovation.	IEEE	

Computer	Society,	34(9),	8.		

InfoQ.	 (2014).	 Introducting	 DevOps	 to	 the	 Traditional	 Enterprise.	 	 	 Retrieved	 from	

http://www.neucloud.cn/wp-content/uploads/2015/02/Introducing-DevOps-to-the-

Traditional-Enterprise-final.pdf	

47	
	

Inman,	H.	 (2012).	Continuous	 Integration	 for	Mobile	Apps	with	 Jenkins:	Promoted	Builds,	 the	QA	

Process	 and	 Beta	 Distribution.	 	 	 Retrieved	 from	

https://www.cloudbees.com/blog/continuous-integration-mobile-apps-jenkins-promoted-

builds-qa-process-and-beta-distribution	

Kawaguchi,	 K.	 (2015).	 Meet	 Jenkins.	 	 	 Retrieved	 from	 https://wiki.jenkins-

ci.org/display/JENKINS/Meet+Jenkins	

Kawaguchi,	K.,	&	Hayes,	P.	 (2015).	Promoted	Builds	Plugin.	 	 	Retrieved	from	https://wiki.jenkins-

ci.org/display/JENKINS/Promoted+Builds+Plugin	

Kim,	 G.	 (2014).	 My	 fifteen	 year	 journey	 studying	 high	 performing	 IT	 organizations.	 YouTube:	

Docker.	

Logan,	 M.	 J.	 (2014).	 Fresh	 Stats	 Comparing	 Traditional	 IT	 and	 DevOps	 Oriented	 Productivity.			

Retrieved	 from	 http://devops.com/2014/01/23/fresh-stats-comparing-traditional-it-and-

devops-oriented-productivity/	

MacDonald,	 M.	 (2005).	 What	 is	 a	 Pivot	 Table?	 	 	 Retrieved	 from	

http://archive.oreilly.com/pub/a/windows/archive/whatisapivottable.html	

Martin,	 F.	 (2006).	 Continuous	 Integration.	 	 	 Retrieved	 from	

http://www.martinfowler.com/articles/continuousIntegration.html	

Mountain_Goat_Software.	 (2005).	 Process	 of	 Agile	 Software	 Development.	 	 	 Retrieved	 from	

https://www.mountaingoatsoftware.com/agile/scrum/images	

Mountain_Goat_Software.	 (2015).	 Scrum	 Overview	 for	 Agile	 Software	 Development.	 	 	 Retrieved	

from	https://www.mountaingoatsoftware.com/agile/scrum/overview	

Mueller,	 E.,	 Wickett,	 J.,	 Gaekwad,	 K.,	 &	 Karayanev,	 P.	 (2011).	What	 is	 DevOps?	 	 	 Retrieved	 from	

http://theagileadmin.com/what-is-devops/	

Ramfelt,	 E.	 (2015).	 Terminology.	 	 	 Retrieved	 from	 https://wiki.jenkins-

ci.org/display/JENKINS/Terminology	

48	
	

Rhine,	 N.	 (2014).	 Project	 Build	 Times.	 	 	 Retrieved	 from	 https://wiki.jenkins-

ci.org/display/JENKINS/Project+Build+Times	

Smith,	C.	(2015).	The	5	Big	Benefits	of	Automated	Deployment.			Retrieved	from	https://www.red-

gate.com/blog/5-big-benefits-automated-deployment	

Trimios.	(2012).	Basic	structure	of	CI	system.			Retrieved	from	https://trimios.com/ci_services.html	

Wikipedia.	(2015a).	Continuous	Delivery.				

Wikipedia.	(2015b).	Continuous	Integration.				

XebiaLabs.	 (2015).	 Depolyment	 Automation.	 	 	 Retrieved	 from	

https://xebialabs.com/solutions/deployment-automation/	

	

	

	 	

49	
	

Appendix	 A:	 Glossary	 of	 Technical	
Terms	
General	
Application:	A	piece	of	software	that	is	developed	and	built	by	a	Barclays	development	team.	

Application	and	project	may	be	used	synonymously	within	this	paper.		
	
Onboard:	This	is	the	configuration	procedure	necessary	for	applications	to	do	when	being	set	up	to	

a	continuous	deployment	environment,	whether	that	is	Nolio	or	Jenkins.	For	the	case	of	
Jenkins,	the	application	development	team	is	responsible	for	filling	out	the	Prime	Financing-
supplied	questionnaire,	setting	up	the	deployment	scripts	which	detail	out	the	build	
sequence,	build	dependency,	and	build	frequency	as	well	as	notification	method.		

	
Jenkins	(Ramfelt,	2015)	
Job/Project:	Jenkins	seems	to	use	these	terms	interchangeably.	They	all	refer	to	runnable	tasks	

that	are	controlled	and/or	monitored	by	Jenkins.	
	
Build:	The	result	of	one	run	of	a	project.	
	
Plugin:	Third-party	plugins	can	extend	Jenkins	by	adding	features	not	present	in	the	core.	This	

allows	users	to	satisfy	any	need,	no	matter	how	niche	it	is	without	affecting	the	core.	
	
Node/Slave:	Slaves	are	computers	that	are	set	up	to	build	projects	for	a	master.	Jenkins	runs	a	

separate	program	called	"slave	agent"	on	slaves.	When	slaves	are	registered	to	a	master,	a	
master	starts	distributing	loads	to	slaves.	The	term	Node	is	used	to	refer	to	all	machines	
that	are	part	of	Jenkins	grid,	slaves,	and	master.	

	
Promotion:	This	term	pertains	to	the	Promoted	Builds	Plugin.	A	build	that	passed	any	additional	

criteria	would	be	marked	by	promotion	icons.	This	kind	of	promotion	allows	triggering	of	
downstream	jobs	on	more	criteria	than	just	if	the	build	passed	or	failed.	Users	can	
distinguish	good	builds	from	builds	that	had	runtime	problems	through	checking	
promotions.	

	
Groovy:	Groovy	is	a	script	programming	language	based	on	Java.	It	is	a	lightweight	language	that	

can	run	on	a	Java	server.	Since	Jenkins	runs	on	Java,	a	Groovy	script	is	directly	compliable	
and	compatible	with	Jenkins.	

	
Jelly:	Jelly	is	a	customizable	Java	and	XML	based	scripting	and	processing	engine.	It	turns	XML	

script	into	executable	code.	Jelly	is	a	component	of	Apache	Commons.	
	
Portlet:	This	term	pertains	to	the	Dashboard	View	Plugin.	Generally	speaking,	a	portlet	is	a	Java-

based	web	component	that	processes	requests	and	generates	dynamic	content.	They	are	
deployed	in	a	container,	Dashboard	View	Plugin	for	the	case	of	our	project.	

	

50	
	

View	(dashboard	status	window):	In	the	screenshot	shown	below,	there	are	two	icons	that	describe	
the	status	of	the	current	build.	The	“S”	column	represents	the	“status	of	the	last	build".	The	
“W”	column	represents	the	“weather	report	showing	aggregated	status	of	recent	builds.”	
Jenkins	use	these	two	concepts	to	introduce	the	general	situation	of	a	build.	

	
Figure	7.1:	Dashboard	status	window	

	
Status:	There	are	four	kinds	of	status	of	a	build.	

Successful:	 	Build	is	completed	and	considered	stable.	

Unstable:	 Build	is	completed,	but	is	considered	unstable.		

Broken:	 Build	is	failed	during	building.	

Disabled:	 Build	is	disabled.	
	
Weather:	Jenkins	will	release	a	robust	value	(from	0-100)	for	build	based	on	some	processor	tasks,	

which	be	implemented	through	plugins.	Those	tasks	may	include	unit	test	(JUnit),	coverage	
(Cobertura)	and	static	code	analysis	(FindBugs).	Higher	score	indicates	the	build	is	more	
stable.	Build	stability	score	less	than	80	points	is	considered	as	unstable.	

Table	7.1:	Weather	Status	
80+	 60-79	 40-59	 20-39	 0-19	

	 	 	 	 	

	
CA	Release	Automation	(CA_Technologies,	2015b)	
Artifacts:	the	objects	that	make	up	the	software	application	being	deployed.		
Components:	a	collection	of	the	objects	to	build	a	process	
Actions:	an	individual	operation	in	the	target	deployment	environment	
Flow:	a	group	of	actions	with	a	defined	sequence	
Process:	a	set	of	actions	executed	in	a	logical	order	
Environment:	a	group	of	computers	to	which	deployments	are	deployed	simultaneously	
Release	Template:	each	template	is	contained	within	Category	and	provides	the	processes	that	

need	to	be	executed	for	release	along	with	the	order	they	should	be	executed	
Pipeline:	a	way	to	express	a	sequence	of	operations	over	DevOps	
	 	

51	
	

Appendix	B:	Installing	Jenkins	Plugins	
Jenkins	 is	an	open-source	and	extensible	continuous	 integration	software.	There	are	more	

than	1,000	publicly	available	plugins	that	are	ready	to	use	in	any	instance	of	 Jenkins.	 Information	
and	explanation	on	Jenkins	plugins	are	on	the	Jenkins	wiki	website	(Kawaguchi,	2015).	The	actual	
plugins,	as	well	as	 their	 source	code,	are	primarily	on	 Jenkins	community	repositories	on	Github.	
Through	 this	 manner,	 it	 allows	 easier	 contributions	 from	 any	 community	 developer.	 So	 in	 the	
circumstance	 that	 an	original	plugin	developer	 leaves	behind	his/her	plugin,	plugin	development	
can	still	continue	thanks	to	the	community.	After	meeting	prerequisites	and	created	a	plugin	Github	
repository,	a	plugin	developer	can	message	the	core	Jenkins	team	to	have	a	dedicated	page	on	the	
Jenkins	wiki.	

On	 a	plugin	page	on	 the	 Jenkins	wiki,	 for	 example	 in	 the	below	 figure	7.2	 that	 shows	 the	
Promoted	 Builds	 Plugin,	 one	 can	 see	many	 details	 about	 a	 plugin:	 plugin	 name,	 release	 version,	
release	date,	 required	 Jenkins	 core	 version,	 dependencies,	 graph	of	monthly	 installations,	 change	
log,	source	code,	issue	tracking,	pull	requests,	authors,	and	number	of	installations	by	month.	

	

Figure	7.2:	Promoted	Builds	Plugin	description	page.	
This	appendix	assumes	you	have	properly	installed	and	have	done	the	basic	configurations	for	

Jenkins.	 The	 following	 are	 instructions	 show	how	 to	 find	 and	 install	 plugins	 through	 the	 Jenkins	
web	dashboard:	

1. On	the	homepage	of	Jenkins,	click	“Manage	Jenkins”,	as	seen	in	figure	7.3:	

52	
	

	

Figure	7.3:	Manage	Jenkins.		
		

2. From	the	list	of	configuration	options,	click	“Manage	Plugins”,	as	seen	in	figure	7.4:		

	

Figure	7.4:	Manage	Plugins.	
	

3. You	should	see	tabs	labeled	“Updates,”	“Available,”	“Installed,”	and	“Advanced”.	To	find	and	
install	a	new	plugin,	click	the	“Available”	tab,	as	seen	in	figure	7.5.	Select	the	desired	plugin	
and	then	click	“Install	without	restart”	(you	can	also	click	the	plugin	name	to	be	taken	to	the	
plugin	description	page	on	the	Jenkins	wiki):		

	

Figure	7.5:	Installing	an	available	plugin.	
	

4. The	plugin	installation	screen	should	look	like	figure	7.6.	Once	complete,	you	can	use	the	
newly	installed	plugin	wherever	the	plugin	can	be	used,	as	seen	in	figure	7.7.		

53	
	

	

Figure	7.6:	Plugin	installation	status	screen.	
	

	

Figure	7.7:	Chuck	Norris	Plugin.	
	

If	you	happen	to	have	a	custom-made	Jenkins	plugin,	which	should	be	a	 .hpi	 file,	 then	you	
can	import	it	into	Jenkins	in	the	“Advanced”	tab	of	Manage	Plugins	and	then	importing	said	file,	as	
seen	in	figure	7.8.	

54	
	

	

Figure	7.8:	Uploading	a	custom	plugin.	
	

	 	

55	
	

Appendix	 C:	 Nolio	 Installation	
Instructions	

1. Request	 two	 functional	 groups	 to	 be	 created,	 one	 labeled	 Dev	 and	 one	 labeled	 Ops.	
Functional	groups	are	Barclays	system	groups	for	developers	to	coordinate	with	each	other.	

2. Request	 that	 the	 two	groups	be	added	 to	 the	 “sandpit”	Nolio	 instance.	An	 instance	can	be	
considered	 a	 Nolio	website	 dashboard.	 Barclays	 has	 two	 different	 instances:	 sandpit	 (for	
learning	and	familiarization	purposes	only)	and	production	(for	actual	development	of	flow	
and	deployments).	

3. Download	 a	 zip	 file	 that	 contains	 Barclays’s	 Nolio	 extended	 version	 template	 from	 the	
tutorial	page.		

4. Go	to	the	Nolio	sandpit	website	dashboard	and	enter	the	ROC.	
5. Import	the	zip	file	making	sure	to	import	all	components.	
6. Set	your	application	as	Barclays’s	Nolio	extended	version	platform	test	application.	
7. Navigate	to	Designer	->	Process	Design	->	Components.	
8. Assign	 shared	 components	 from	 the	 imported	 components.	 For	 the	 tutorial,	 it	 stated	 to	

assign	 deploy	 copy	 &	 uncompress,	 windows	 service	 start	 &	 stop,	 and	 email	 utility	
components.	

9. Map	a	server	type,	the	tutorial	stated	App_Name1,	for	each	shared	component.	
10. Navigate	to	Designer	->	Process	Design	->	Processes.	
11. In	the	process	Deployment,	select	Notify_Deploy_Begin	and	click	“Add	Action/Flow”	for	the	

email	utility	component.	
12. Select	the	f_send_release_begin_email	flow	from	the	dropdown	list.	Save	and	publish.	Make	

sure	to	assign	the	process	to	the	UAT	environment.	
13. Repeat	steps	11	and	12	for	the	following	as	table	7.2.	

Table	7.2:	Process	areas	and	flows		
Process	Area	 Flow	
Post-Deployment	->	Notify_Deploy_End	 f_send_release_end_email	 (from	 email	 utility	

shared	component	
Deployment	->	Stop_System	 f_stop_component	 (from	 windows	 service	 start	

&	stop	shared	component)	
Deployment	->	Start_System	 f_start_component		(from	windows	service	start	

&	stop	shared	component)	
Deployment	->	Deploy_Binaries	 f_deploy_component	 (from	 deploy	 copy	 &	

uncompress	shared	component)	
14. Navigate	to	Environment	->	Agent	Assignment.	
15. Make	sure	that	your	Nolio	agent	is	installed	and	running	properly.	For	our	team’s	case,	we	

installed	 the	agent,	which	 is	 a	windows	service	 running	 in	 the	background,	on	one	of	our	
local	work	computers.	

16. Select	the	appropriate	server	name	(for	our	case	it	was	the	local	computer	hostname)	and	
assign	it	to	the	server	type	App_Name1.	Also	set	the	environment	as	UAT.	

17. Repeat	step	16	for	the	server	type	util.Email.	
18. Navigate	to	Artifact	->	Artifact	Management.	
19. Select	the	artifact	SC.Compressed	and	select	Add	Artifact	Definition.	

56	
	

20. Be	 sure	 to	 set	 the	 file	 type	 of	 the	 definition	 as	 zip	 and	 ensure	 that	 the	 server	 type	
App_Name1	is	selected	for	the	definition.	

21. Select	the	newly	created	Artifact	Definition	and	then	click	Add	Version.	
22. Version	 can	be	 any	version.	The	 artifact	 source	 should	be	 the	 full	 path	where	 the	 artifact	

source	file	should	be	(steps	18-20	did	not	work	for	our	case,	so	we	skipped	these	steps).	
23. Navigate	to	Releases	->	Template	Categories.	Click	“New”.	
24. Create	a	new	template	category	with	any	name.	
25. Within	the	new	template	category,	click	“New”	and	create	a	new	deployment	template.	
26. Within	the	new	deployment	template,	click	“Add	Step”.	Add	the	steps	as	shown	below:	

Table	7.3:	Porcesses	and	Categories	

27. Drag	 and	drop	 all	 deployment	 steps	 to	 the	 center	 tab	 called	 “Deployment	 Steps”	 or	 “Post	
Deployment”.	This	is	when	you	can	also	set	dependencies.	

28. Navigate	to	Environments	->	Parameter	Configuration	->	Parameters	tab.	
29. Select	the	UAT	environment.	You	will	see	a	list	of	the	shared	components	we	selected.	It	is	

here	 that	 a	 user	 can	 set	 up	 the	 email	 addresses	 for	 emails	 to	 be	 sent	 to,	 the	 specified	
windows	services	to	stop	and	start,	and	the	artifact	definition	path.	

30. Navigate	to	Releases	->	Deployment	Plans.	Click	“New”.	
31. In	the	newly	created	deployment	project,	click	“New	Deployment	Plan”.	
32. Within	the	settings	for	a	new	deployment	plan,	you	must	supply	a	build	number	and	have	

the	plan	use	the	template	that	we	created.	
33. Click	 on	 the	 newly	 created	 deployment	 plan	 to	 view	 details.	 There	 should	 be	 a	 “Deploy”	

button,	which	is	the	final	step.	
34. Click	“Deploy”	and	you	must	supply	some	settings,	for	the	tutorial’s	case	you	must	select	the	

UAT	environment.	
35. All	done!		

	 	

Process	 Category	
Notify_Deploy_Begin	 Deployment	
Stop_System	 Deployment	
Deploy_Binaries	 Deployment	
Start_System	 Deployment	
Notify_Deploy_End	 Post	Deployment	

57	
	

Appendix	D:	job_per_branch.groovy	
/*
 WPI DevOps MQP
 Khazhismel Kumykov <kkumykov@wpi.edu>
<khazhismelkumykov.kumykov@barclayscapital.com>
 job_per_branch.groovy

 Overview:
 This script gets a list of branches from the given SVN repository, sorted
by
 the date of the newest commit in the branch. The script then searches for
jobs
 existing in Jenkins with the *exact same* name as the branch.
 The script will the matching job for the newest branch as a template for
creating
 new jobs.

 The script will create new jobs for up to `BRANCHES_TO_KEEP` branches.
 The script will disable jobs after `BRANCHES_TO_KEEP` branches.
 The script will *delete* jobs after `BRANCHES_DELETE_AFTER` branches.

 Branch names *must be* unique between projects.

 Using:
 - Must create and configure a base branch job for one of the branches in
SVN.
 - The job must be configured such that copying and renaming the job are
the
 only required configuration changes to allow the job to work for a new
branch.
 (i.e., use $JOB_NAME for SVN branch selector, etc.)
 - Must create a new Job for each SVN repository you wish to be managed.
 - Add a required Credentials Parameter named "SVN_CREDS" with the default
set to the
 'username with password' credentials for your SVN repository.
 - Check "Prepare environment for the run"
 - Check "Keep Jenkins Environment Variables"
 - Check "Keep Jenkins Build Variables"
 - Add Parameters as needed to "Properties Content" (Do not
surround in quotes) e.g.:
 BRANCHES_REGEX=^WPI_Copy_.*
 SVN_REPO=http://svn/repos/WPI/
 - Set the Job to build periodically as appropriate.
 - Add a "Execute system Groovy script" build step, select "Groovy script
file" and provide
 the path to this groovy script.
 - Optionally, you may configure global properties in the global
configuration.
 - "Manage Jenkins" > "Configure System" > "Global Properties"
 - Check "Environment variables" and add key-value pairs as desired

58	
	

 Required Plugins
 - Subversion Plugin (Comes with Jenkins)
 - Groovy Plugin (http://wiki.jenkins-
ci.org/display/JENKINS/Groovy+plugin)
 - EnvInject Plugin (https://wiki.jenkins-
ci.org/display/JENKINS/EnvInject+Plugin)
 - Credentials Plugin (https://wiki.jenkins-
ci.org/display/JENKINS/Credentials+Plugin)

 Params:
 BRANCHES_TO_KEEP - How many branches to keep active projects for.
 BRANCHES_DELETE_AFTER - How many branches to keep in Jenkins.
 If there are more jobs than this limit, extra jobs will be
deleted.
 BRANCHES_REGEX - Regex for branches to look at.
 E.g. "^WPI_Copy_.*" - All branches starting with 'WPI_Copy_'
 E.g. "^[^_].* - All branches not starting with '_'
 SVN_REPO - The __root__ of the repository.
 E.g. "http://svn/repos/WPI/"
 SVN_CREDS - Must be a username-password credentials ID for accessing the
SVN Repo
*/
import hudson.model.*

import com.cloudbees.plugins.credentials.CredentialsProvider
import com.cloudbees.plugins.credentials.common.StandardUsernameCredentials

import org.tmatesoft.svn.core.io.SVNRepositoryFactory
import org.tmatesoft.svn.core.SVNURL
import org.tmatesoft.svn.core.auth.BasicAuthenticationManager

def log(l) {
 println ("[SVN Branch Sync] $l")
}

def resolve(name) {
 bv = build.buildVariableResolver.resolve(name)
 if (bv != null) {
 return bv
 } else {
 return build.getEnvironment(listener).get(name)
 }
}

SVN_REPO=resolve("SVN_REPO")
SVN_CREDS=resolve("SVN_CREDS")
BRANCHES_REGEX=resolve("BRANCHES_REGEX")
BRANCHES_TO_KEEP=resolve("BRANCHES_TO_KEEP")
BRANCHES_DELETE_AFTER=resolve("BRANCHES_DELETE_AFTER")

log "Beginning SVN Branch Sync"

59	
	

log "SVN_REPO: $SVN_REPO"
log "SVN_CREDS: $SVN_CREDS"
log "BRANCHES_REGEX: $BRANCHES_REGEX"
log "BRANCHES_TO_KEEP: $BRANCHES_TO_KEEP"
log "BRANCHES_DELETE_AFTER: $BRANCHES_DELETE_AFTER"
log ""

// Lookup the credentials by ID
cred = CredentialsProvider.lookupCredentials(StandardUsernameCredentials.class,
Hudson.instance).findResult({it.id == SVN_CREDS ? it : null})

if (cred == null) {
 throw new hudson.AbortException("Could not find credentials with ID:
$SVN_CREDS")
}

// Depending on how they are specified, they may be Ints or Strings.
// Will throw if unable to parse.
if (!(BRANCHES_TO_KEEP instanceof Integer)) {
 BRANCHES_TO_KEEP = Integer.parseInt(BRANCHES_TO_KEEP)
}
if (!(BRANCHES_DELETE_AFTER instanceof Integer)) {
 BRANCHES_DELETE_AFTER = Integer.parseInt(BRANCHES_DELETE_AFTER)
}

// Throw if this is invalid
if (BRANCHES_DELETE_AFTER < BRANCHES_TO_KEEP) {
 throw new hudson.AbortException("BRANCHES_DELETE_AFTER should be greater than
or equal to BRANCHES_TO_KEEP")
}

if (BRANCHES_TO_KEEP <= 0) {
 throw new hudson.AbortException("BRANCHES_TO_KEEP must be greater than 0")
}

items = Hudson.instance.items.groupBy{ it.name }

def repo = SVNRepositoryFactory.create(SVNURL.parseURIDecoded(SVN_REPO))

repo.setAuthenticationManager(new BasicAuthenticationManager(cred.username,
cred.password.getPlainText()))

def branches = new ArrayList()

repo.getDir("branches", repo.getLatestRevision(), true, branches)

branches.sort{a,b -> b.date <=> a.date}

branches = branches.findAll {
 log "Found Branch: $it.name - rev. $it.revision ($it.author) - $it.date"
 should_manage = (it.name =~ BRANCHES_REGEX).matches()
 if (!should_manage) {
 log "Ignoring Branch: $it.name"

60	
	

 }
 return should_manage
}

log ""

// Find newest branch that exists
newestBranchWithJob = ""

for (branch in branches) {
 if (items.containsKey(branch.getName())) {
 newestBranchWithJob = branch
 log "Using ${branch.getName()} as template job."
 break;
 }
}

log ""

// Throw if we can't find a template job.
if (newestBranchWithJob == "") {
 throw new hudson.AbortException("Could not find branch job to copy!")
}

templateJob = items[newestBranchWithJob.name][0]

// Iterate over every branch that we aren't ignoring
branches.eachWithIndex({branch, idx ->
 jobExists = items.containsKey(branch.name)
 job = null
 if (jobExists) {
 job = items[branch.name][0]
 }

 if (idx >= BRANCHES_TO_KEEP) {
 // If job exists, we want to disable or delete it
 if (jobExists) {
 if (idx >= BRANCHES_DELETE_AFTER) {
 log "${branch.name} - Deleting job ${job.name}"
 job.delete()
 } else {
 if (job.disabled) {
 log "${branch.name} - Doing nothing for job
${job.name} - it's disabled as it should be. It will be deleted soon."
 } else {
 log "${branch.name} - Disabling job ${job.name} - it
will be deleted soon"
 job.disabled = true
 job.save()
 }
 }
 } else {
 log "${branch.name} - Doing nothing - it should be deleted, and

61	
	

is."
 }
 } else {
 // If job doesn't exist, we want to create it.
 if (jobExists) {
 if (job.disabled) {
 log "${branch.name} - Enabling job ${job.name}"
 job.disabled = false
 job.save()
 } else {
 log "${branch.name} - Doing nothing for job ${job.name} -
it exists as it should"
 }
 } else {
 log "${branch.name} - Creating new job ${branch.name} by copying
${templateJob.name}"
 newJob = Hudson.instance.copy(templateJob, branch.name)

 // This seems to be required to enable building
 newJob.disabled = false
 newJob.save()

 // Run a new build right after making the job.
 newJob.scheduleBuild(0, new Cause.UpstreamCause(build))
 }
 }
})

// build.result = Result.UNSTABLE

log ""
log "SVN Branch Sync Complete"
	
	 	

62	
	

Appendix	E:	Excel	Reporting	using	SQL	
database	
1) Within	 Excel,	 click	 the	 Data	 tab	 and	 then	 click	 “From	 Other	 Sources”	 ->	 “From	 SQL	

Server”,	as	seen	in	figure	7.9.	

	

Figure	7.9:	Import	a	SQL	database	data	
2) In	 the	Data	Connection	Wizard,	 fill	out	 the	SQL	server	name	as	well	as	username	and	

password	log	on	credentials,	as	seen	in	figure	7.10.	

	

Figure	7.10:	Data	Connection	Wizard	
	

63	
	

3) Next	you	need	to	select	the	appropriate	database	that	our	plugin	extracted	the	data	to.	
You	also	need	to	select	the	appropriate	table	from	the	list:	

	

Figure	7.11:	Select	the	appropriate	database	
4) At	 the	 next	 window,	 you’re	 prompted	 to	 write	 a	 name	 and	 description	 for	 the	 Data	

Connection	file	that	has	this	connection.	When	finished,	click	“Finish”:	

	

Figure	7.12:	write	a	name	and	description	for	the	file	

*	 database	 name	

64	
	

5) The	next	window	will	prompt	you	on	how	you	want	to	view	the	data.	Make	sure	“Table”	
is	 selected	 and	 then	 click	 “Properties”,	 as	 seen	 in	 the	 left	 of	 figure	 7.13.	 In	 the	
Connection	Properties	window,	as	seen	in	right	of	 figure7.13,	you	can	edit	the	refresh	
settings	 in	 the	 “Usage”	 tab.	 Click	 the	 “Definition”	 tab;	 the	 important	 areas	 here	 are	
“Command	Type”	and	“Command	Text”.	Make	sure	Command	Type	is	set	to	“SQL”.	

	

Figure	7.13:	Import	data	(left)	and	properties	window	(right)	
6) Paste	 in	 the	 following	SQL	command	 into	 the	Command	Text,	 as	 seen	below	 ,	 (please	

note	the	*YOUR_DATABASE_NAME*	parts	of	the	command	should	be	replaced	with	the	
database	name	you	selected	from	Step	3).	Once	complete,	click	OK	and	then	OK	in	the	
“Import	Data”	window.	

	

	

	

SELECT
 [jobName],
 [groupName],
 [number],
 [result],
 cast([time] as datetime) as [time],
 cast([finishTime] as datetime) as [finishTime],
 [promotionName],
 [promotionBuildNumber],
 [promotionBuildResult],
 cast([promotionBuildTime] as datetime) as [promotionBuildTime],
 cast([promotionFinishTime] as datetime) as [promotionFinishTime]
 FROM [*YOUR_DATABASE_NAME*].[dbo].[jenkins_mis_extract_promotions] as prom
 JOIN [*YOUR_DATABASE_NAME*].[dbo].[jenkins_mis_extract_builds] as build
 ON (build.id = prom.buildId)
	

65	
	

7) A	“SQL	Server	Login”	window	should	pop	up	prompting	you	for	the	log	on	username	
and	password.	The	table	should	look	like	our	example	shown	in	figure	7.14:	

	

Figure	7.14:	Imported	table	
8) It	is	best	to	have	all	time	related	columns	displayed	as	a	date.	Click	any	“time”	column	

and	then	right-click	and	select	“Format	Cells,”	as	seen	in	figure	7.15.	Select	the	
appropriate	date:		

																									 	

Figure	7.15:	Format	Cells	
	

66	
	

9) Next	comes	the	pivot	table	creation	process.	Select	a	part	of	the	table.	In	the	“Table	
Tools,	Design”	tab,	click	“Summarize	with	PivotTable,”	as	seen	in	figure	7.16.	Make	sure	
the	entire	Table	is	selected,	then	click	OK:		

	

Figure	7.16:	Summarize	with	PivotTable	
	 	

67	
	

10) You	should	now	be	on	a	new	worksheet,	with	the	following	PivotTable	Field	List	located	
on	the	right	sidebar,	like	figure	7.17	shown:	

	

Figure	7.17:	PivotTable	Field	List	
	 	

68	
	

11) Drag-and-drop	 the	 fields	 into	 the	 areas	 as	 shown	 below	 (dragging	
promotionBuildResult	to	Values	should	automatically	set	it	as	“Count”:		

		
Figure	7.18:	Customize	row	labels	

12) Right-click	any	of	the	dates	within	the	pivot	table	and	click	“Group”,	as	seen	in	the	left	of	
figure	7.19.	Here	you	can	select	the	start	date	and	end	date,	as	seen	in	the	right	of	figure	
7.19,	as	well	as	if	you	wish	to	view	it	by	years,	quarters,	months,	days,	etc.	For	this	
tutorial,	we	will	use	months:		

	 	

Figure	7.19:	Group	button	(left)	and	grouping	window	(right)	
	 	

69	
	

	
13) Click	anywhere	in	the	pivot	table.	From	the	tabs	at	the	very	top,	click	“Options”	under	

“PivotTable	Tools.”	Then	click	“PivotChart”,	as	seen	in	the	left	of	figure	7.20.	You	can	
select	any	appropriate	chart,	as	seen	in	the	right	of	figure	7.20,	but	one	suggestion	is	a	
“stacked	column”	chart.	Now	you	have	a	pivot	table	and	associated	pivot	chart!	You	can	
make	any	adjustments	thanks	to	the	versatility	of	pivot	tables.	

	

Figure	7.20:	PivotChart	button	(left)	and	Chart	style	selection	(right)	
	
14) Figure	7.21	is	the	pivot	chart	for	our	example	data	set:	

	

Figure	7.21:	Sample	pivot	chart	
If	 you	 would	 like	 to	 have	 only	 environments	 on	 the	 X-axis	 and	 the	 column	 bars	 being	
project	names,	then	follow	these	steps:	

70	
	

15) Make	sure	the	drag-and-drop	fields	are	set	up	as	shown	in	figure	7.22:		

	

Figure	7.22:	Customize	columns	and	rows	
	

16) Create	a	pivot	chart	from	the	new	pivot	table.	Once	again	we	recommend	“stacked	
columns.”	Now	you	have	a	pivot	chart	showing	all	environments	for	each	month	that	
has	columns	filled	with	total	promotions	per	project.	You	can	adjust	the	design	as	you	
see	fit.	Our	example	chart	is	shown	in	figure	7.23:	

	

Figure	7.23:	Sample	chart	
	

	 	

71	
	

Appendix	 F:	 Excel	 Reports	 using	 CSV	
data	

1) As	seen	in	figure	7.24,	from	the	first	cell,	in	the	above	case	it’s	G1,	highlight	all	data	
until	the	last	cell	(you	can	accomplish	this	quickly	by	doing	ctrl+shift+right	arrow	
key,	and	then	ctrl+shift+down	arrow	key).	

	

Figure	7.24:	raw	.CSV	data	set	in	Excel	
2) In	the	left	of	figure	7.25,	in	the	Insert	tab,	click	PivotTable.	Use	the	default	selected	

table	or	range.	In	the	right	of	figure	7.25,	you	may	choose	where	you	would	like	the	
PivotTable	report	to	be	placed;	it	will	be	placed	in	a	new	worksheet	by	default.	

		 	

Figure	7.25:	Insert	PivotTable	button	(left)	and	create	PivotTable	window	(right)	
	

3) The	following	steps	are	similar	to	the	instruction	of	reporting	using	SQL	database.		

	 	

72	
	

Appendix	 G:	 Features	 of	 our	 pivot	
table	configuration	
Group	report	filter	

	 By	 default,	 all	 applications	 and	 their	 respective	 information	 from	 the	 original	 data	 are	
displayed.	 Using	 group	 report	 filtering,	 you	 can	 specify	 either	 one	 or	 more	 applications	 to	 be	
viewable.	Clicking	the	dropdown	arrow	next	to	(All)	shows	the	other	applications.	See	figure	7.26:	

	

Figure	7.26:	Group	report	filter.	

Promotion	result	column	label	

	 Each	value	column	represents	a	promotion	result:	SUCCESS,	FAILURE,	and	UNSTABLE.	You	
can	change	the	ordering	via	sorting,	or	filter	out	to	see	only	desired	promotion	results.	Clicking	the	
dropdown	arrow	next	to	Column	Labels	shows	all	promotion	results.	See	figure	7.27:	

	

Figure	7.27:	Promotion	result	column	label.	

73	
	

Promotion	time	row	label	

	 Our	pivot	 table	 configuration	has	 it	 set	up	on	a	monthly	basis.	 It’s	 possible	 to	 change	 the	
promotion	time	grouping	to	daily,	quarterly,	annually,	or	a	“X	number	of	days”	variation.	You	can	
also	specify	the	end	and	start	date	range.	Right	click	a	month,	select	“Group”	and	change	the	date	
settings.	See	figure	7.28:	

	

Figure	7.28:	Promotion	time	row	label.	

Promotion	name	row	label	

	 By	default,	applications	on	Prime	Financing’s	 Jenkins	have	QA,	UAT,	and	PROD	promotion	
environments.	 It’s	 possible	 to	 set	 up	 a	 custom	 promotion	 environment,	 such	 as	 DEV,	 in	 the	
onboarding	process.	One	can	set	only	certain	promotion	environments	to	be	viewable	in	the	pivot	
table.	 Click	 a	 promotion	 name	 and	 then	 click	 the	 dropdown	 arrow	next	 to	Row	Labels	 to	 see	 all	
promotion	environments.	See	figure	7.29:	

74	
	

	

Figure	7.29:	Promotion	name	row	label.	
	 The	final	pivot	table/pivot	chart	as	well	as	the	SQL	Database	connection	configuration	can	
serve	as	a	 template	 for	new	reports	 for	Prime	Financing	 to	create	 in	 the	 future.	For	example,	 say	
you’re	a	manager	for	a	group	of	application	teams	and	you	currently	have	promotion	data	for	every	
month	 except	December	 this	 year.	 Towards	 the	 end	of	December,	 if	 you	manually	 tell	 Jenkins	 to	
extract	the	new	data	into	the	ongoing	SQL	database	(or	set	Jenkins	up	to	extract	on	a	regular	basis),	
then	when	you	refresh	the	pivot	table	it	will	have	the	new	December	promotion	information.	One	
can	adjust	 the	refresh	settings	 for	 the	database	 table	retrieval	as	well	as	pivot	chart	refresh.	This	
helps	 in	 further	 removing	 manual	 steps	 for	 reporting.	 Additionally,	 when	 considering	 the	
promotion	trend	or	even	a	forecast	of	the	promotion	count,	one	can	easily	use	a	trendline	on	top	of	
the	 pivot	 chart,	 as	 seen	 in	 figure	 7.30.	 The	 figure	 has	 a	 linear	 trendline	 that	 also	 forecasts	 two	
periods	 ahead.	 For	 our	 pivot	 chart	 configuration,	 the	 trendline	 can	 only	 be	 viewed	 for	 a	 specific	
promotion	result.	

75	
	

	

Figure	7.30:	Pivot	chart	with	trend	line.	
	 	

76	
	

Appendix	H:	Dashboard	View	Plugin	
Here	are	instructions	on	how	to	use	the	Dashboard	View	Plugin	(Hayes	&	Ambu,	2015):	

• On	the	Jenkins	main	page,	click	the	“+”	tab	to	start	a	new	view	wizard.		

• Give	it	a	name,	and	be	sure	to	select	“Dashboard”	from	the	list	of	possible	views	as	shown	in	

figure	7.31	

	

Figure	7.31:	Add	a	new	view	when	using	Dashboard	View	Plugin	
• For	 the	 new	 view	 configuration,	 besides	 selecting	 the	 appropriate	 jobs,	 the	main	 area	 to	

focus	on	 is	 the	“Dashboard	Portlets”	area.	You	can	add	a	dashboard	portlet	 to	the	top,	 left	

column,	right	column,	and	bottom	of	the	view.	The	view	layout	is	as	follows:	

Top	portlet	1	…………………………………………………………………….	
Left	portlet	1	 Right	portlet	1	
Left	portlet	2	 Right	portlet	2	
Bottom	portlet	1	………………………………………………………………..	

Default	Available	Portlets	

There	 are	 several	 default	 available	 portlets	 within	 this	 plugin,	 and	 we	 introduce	 these	

portlets	in	this	section.	

Standard	Jenkins	jobs	list	

In	Figure	7.32,	this	is	the	default	Jenkins	job	list	as	seen	in	a	normal	Jenkins	view.	

77	
	

	

Figure	7.32:	Jenkins	jobs	list	under	dashboard	view	

Job	statistics	

In	figure	7.33,	this	portlet	shows	statistics	based	on	jobs’	health.	

	
Figure	7.33:	Job	statistics	under	dashboard	view	

	 	

78	
	

	

Build	statistics	

In	figure	7.34,	this	shows	statistics	based	on	build	status.	

	

Figure	7.34:	Build	statistics	under	Dashboard	View	

Jobs	grid	

In	figure	7.35,	this	jobs	grid	portlet	displays	a	multi-column	table	a	job’s	with	current	status,	

weather,	clickable	link	to	the	job,	and	build	button.	

	

Figure	7.35:	Jobs	grid	under	Dashboard	View	

Unstable	jobs	

In	figure	7.36,	this	shows	the	status,	health,	and	a	clickable	link	to	an	unstable	job.	

Figure	7.36:	Unstable	jobs	under	Dashboard	View	
	 	

79	
	

	

Test	statistics	grid	

Figure	7.37	shows	detailed	test	data	for	the	configured	jobs.		

	
Figure	7.37:	Test	statistics	under	Dashboard	View	

Test	statistics	chart	

Figure	7.38	shows	a	pie	chart	of	the	configured	jobs,	including	passing,	failing,	and	skipped	

jobs,	with	total	number	and	percentages.		

	
Figure	7.38:	Test	statistics	chart	under	Dashboard	View		

	

Test	trend	chart	

This	 is	 a	 chart,	 as	 seen	 in	 figure	 7.39,	 which	 shows	 all	 tests	 over	 time	 in	 aggregate.	 For	

everyday,	 since	 the	 first	 job	 was	 built	 in	 the	 Dashboard	 View,	 the	 trend	 chart	 shows	 the	 total	

80	
	

number	of	passing,	skipped,	and	failing	tests	in	aggregate	across	the	build.	It	assumes	that	if	a	build	

did	not	occur	on	a	given	day,	the	previous	version	of	build	results	will	be	used.		

	
Figure	7.39:	Test	trend	chart	under	Dashboard	View		

The	plugin	also	has	an	Iframe	Portlet,	Image	Portlet,	and	Slaves	Statistics	portlet	available.	

Below,	figure	7.40,	is	an	example	of	a	full	Dashboard	view	with	default	portlets:	

	
Figure	7.40:	Dashboard	View	with	default	portlets	

81	
	

Additional	Extend	Portlets		

Besides	these	default	available	portlets	within	the	Dashboard	View	Plugin,	new	portlets	can	

be	contributed	via	other	publicly	available	plugins	or	your	own	custom	plugin.	

Project	Statistics	plugin		

In	 figure	 7.41,	 this	 portlet	 is	 called	 “Number	 of	 builds”	 that	 shows	 each	 job’s	 successful,	

unstable,	or	failed	builds	(Ambu,	2015).		

	

Figure	7.41:	Number	of	builds	plugin	

Project	Build	Times	

The	portlet,	shown	in	figure	7.42,	is	called	“RM	Build	Times	Chart”	which	shows	cumulative	

and	separate	build	times	(Rhine,	2014).	

	

Figure	7.42:	RM	Build	Times	Chart	

Latest	Builds	with	Badges	

As	figure	7.43	shown,	it	is	a	new	supportive	plugin	of	Dashboard	View	called	Latest	Builds	

with	Badges,	which	was	created	by	our	 team.	This	plugin	serves	 the	same	purpose	as	 the	default	

Latest	Builds	portlet,	but	with	an	additional	column	that	shows	the	available	badges	associated	with	

a	job’s	build,	such	as	promotions,	configuration	changes	and	so	on.	

82	
	

	

Figure	7.43:	Latest	Builds	with	Badges	

Extensible	nature	of	Dashboard	View	plugin	

The	Dashboard	View	plugin’s	architecture	allows	for	extensions/custom	portlets	from	any	

additional	plugin.	As	retrieved	from	the	plugin’s	wiki	page,	these	general	steps	should	be	followed:	

• Extend	 the	 DashboardPortlet	 class	 and	 provide	 a	 descriptor	 that	 extends	 the	

Descriptor<DashboardPortlet>.	

• Create	a	jelly	view	called	portlet.jelly.	

For	portlets	that	wish	to	use	custom	parameters	such	as	a	default	number	of	builds	to	show,	

one	can	do	that	as	follows:	

• Create	a	jelly	file	called	config.jelly	to	be	used	when	the	portlet	is	configured.	

• Modify	constructor	(with	@DataBoundConstructor)	to	receive	the	new	parameters.	

Trial	and	error	can	help	with	the	creation	process,	as	well	as	simply	 looking	at	the	source	

code	 for	 Dashboard	 View	 or	 any	 extension	 plugins	 such	 as	 the	 previously	 mentioned	 ones.	

Examples	of	sample	code	for	an	extension	plugin	are	shown	in	figure	7.44	and	figure	7.45.	

83	
	

	

Figure	7.44:	sample	code	of	MyPortlet.java	(Hayes	&	Ambu,	2015)	

	

Figure	7.45:	sample	code	of	portlet.jelly	(Hayes	&	Ambu,	2015)	
	

	 	

84	
	

Appendix	 I:	 Extension	 of	 High	 Speed	
Equities	Trading	Research	Study	
1.	Introduction	

	 In	January	2015,	Hans	R.	Stoll	published	a	study	in	the	Asia-Pacific	Journal	of	Financial	

Studies	examining	High	Speed	Equities	Trading,	A.K.A.	High	Frequency	Trading	(HFT),	and	its	effect	

on	the	general	market	during	the	years	1993	to	2012	(Stoll,	2015).	This	appendix	seeks	to	examine	

Stoll’s	study	and	attempt	to	replicate	and	extend	a	number	of	his	findings	using	publicly	and	freely	

available	data.	In	particular	we	aim	to	expand	his	observations	through	the	most	recent	few	years	

to	determine	if	the	conclusions	that	he	had	drawn	remain	relevant	and	accurate	in	the	context	of	

this	new	information.	While	Stoll	used	data	from	both	the	New	York	Stock	Exchange	(NYSE)	and	

Nasdaq/OMX	to	support	his	claims	of	the	effect	that	HFT	has	on	the	market,	our	team	focuses	only	

on	collecting	and	analyzing	data	from	the	NYSE	which	would	both	limit	the	scope	of	our	research	

and	allow	more	focus	on	extending	the	existing	conclusions	to	the	current	day.	Our	conclusions	are	

drawn	from	this	research	and	seek	to	bolster	the	conclusions	Stoll	formed	as	well	as	introduce	our	

own	analysis	of	the	data	to	determine	the	implications	of	HFT	on	the	greater	market.	

2.	Background	

	 With	the	rise	of	computing	technology,	and	the	introduction	of	this	technology	into	the	

financial	sector,	a	family	of	algorithmic	trading	strategies	known	broadly	as	High-Frequency	

Trading	(HFT)	emerged.	This	set	of	strategies	takes	advantage	of	electronic	trading	tools	that	have	

replaced	human	brokers,	as	well	as	low-latency	technology	and	high-speed	connections	to	perform	

trades	precisely	and	efficiently.	These	tools	allow	traders	to	implement	new	techniques	such	as	

algorithmically	trading	short-term	positions	quickly	and	in	high	volumes	to	make	a	profit	on	the	

minute	margins	of	change	in	equity	prices.	They	also,	however,	allow	techniques	such	as	“quote	

85	
	

stuffing”	which	attempts	to	deny	information	to	other	traders	by	overwhelming	the	trade	queue	

with	quotes	that	are	then	rescinded	at	the	last	minute.	These	strategies,	and	other	derived	

strategies,	however,	have	been	criticized	as	contributing	factors	to	so-called	“flash	crashes”	that	

have	cost	investors	trillions	of	dollars.	

	 One	of	the	more	well	known	flash	crashes	was	the	crash	of	May	6,	2010.	In	less	than	an	hour,	

securities	such	as	the	Dow	Jones,	Nasdaq	Composite,	and	S&P	500	all	collapsed	and	rebounded	very	

quickly;	the	Dow	Jones	in	particular	dropped	more	than	600	points	before	rebounding.	Nobody	

expected	or	could	predict	the	2010	flash	crash.	One	of	the	most	discussed	potential	reasons	for	the	

flash	crash	is	HFT,	since	one	can	execute	a	technique	in	HFT	where	the	computer	program	would	

set	up	a	large	trade	to	be	placed,	but	then	cancel	it	at	the	very	last	second.	This	technique	known	as	

quote	stuffing,	as	previously	defined,	allows	traders	to	artificially	manipulate	the	market.	It	can	also	

disrupt	the	market	and	cause	extreme	anomalies	as	seen	in	the	2010	flash	crash.	

3.	Data	

	 To	investigate	the	effect	of	HFT	on	the	market,	and	to	replicate	as	well	as	extend	Stoll’s	

research	paper,	our	team	analyzed	data	from	the	New	York	Stock	Exchange	(NYSE),	both	for	the	full	

exchange	and	individual	equities.	Due	to	time	constraints	as	well	as	the	resources	available	to	us,	

we	chose	to	only	extend	the	study’s	analysis	for	the	NYSE	rather	than	also	including	analysis	on	the	

Nasdaq	as	seen	in	Stoll’s	paper.	In	order	to	reproduce	the	results	from	the	study,	the	team	examined	

300	total	NYSE	stocks	with	data	available	from	1993	until	present;	we	grouped	100	stocks	from	

each	of	three	market	capitalization	groups:	large,	mid,	and	small	cap.	Market	capitalization	is	

calculated	by	multiplying	a	company’s	shares	outstanding	by	the	current	market	price	of	one	share	

(Market	Cap,	2016).	This	data	was	pulled	and	analyzed	from	Yahoo	Finance	using	python	scripts	to	

access	their	API.	We	then	used	the	available	data	for	these	stocks	to	calculate	several	relevant	

measures	to	determine	the	potential	impact	of	HFT	on	the	NYSE	during	this	time.	The	result	of	the	

team’s	investigation	follows.	

86	
	

4.	Trade	size	and	trade	frequency	

	 The	first	measurement	the	team	attempted	to	replicate	from	the	study	was	the	change	in	

average	trade	size	of	transactions	on	the	NYSE	during	the	period	in	question.	Since	the	requisite	

data	to	calculate	this	measure	for	individual	stocks	was	not	freely	available,	the	team	compromised	

to	compare	Stoll’s	study’s	findings	to	our	examination	of	trade	size	changes	across	the	entire	

exchange	of	the	NYSE.	We	used	the	data	available	on	the	NYSE’s	website	(NYSE,	2016)	to	find	the	

daily	values	for	the	amount	of	available	shares	in	the	exchange	and	the	amount	of	trades	on	the	

given	day.	We	had	to	concatenate	the	1993-2000	data	with	the	recent	2000-present	data	in	order	to	

consider	all	values.	The	average	trade	size	on	a	given	day	was	calculated	by	taking	of	the	total	

amount	of	shares	available	and	dividing	by	the	amount	of	trades	done.	The	average	trade	size	in	

shares	is	plotted	for	comparison	and	analysis	in	Figure	1.		

	 	
Figure	1:	Average	trade	size	across	the	NYSE	for	years	1993-2015	

	

87	
	

It’s	worth	noting	the	spike	anomaly	in	our	graph	at	around	the	beginning	of	2004.	This	is	

due	to	an	inconsistency	in	the	data	that	is	provided	by	the	NYSE	through	the	Consolidated	Tape	

Association	(CTA)	which	provides	“supplemental”	trade	data	for	trades	prior	to	January	2004,	but	

not	for	trade	data	after	this	date.	This	inconsistency	manifests	itself	as	a	sharp	jump	in	the	

calculated	Average	Trade	Size	at	that	time	due	to	a	decrease	in	the	reported	number	of	trades	

performed.	

When	looking	at	the	overall	trend	of	the	NYSE’s	average	trade	size	across	time,	Stoll’s	

research	paper	found	a	steady	decrease	in	recent	years	in	average	trade	size.	This	correlates	with	

an	increase	in	the	use	of	algorithms	to	perform	trades	quickly	as	well	as	a	decline	in	the	auxiliary	

costs	in	performing	trades	that	would	allow	for	traders	to	perform	a	higher	number	of	smaller	

volume	trades.	Fortunately,	ignoring	the	spike	in	the	beginning	of	2004,	our	data	fits	this	trend	as	

well,	demonstrating	that	the	effect	is	consistent	even	across	the	exchange	as	a	whole	and	in	the	

recent	years	of	2012-2015.	

5.	Effect	of	high	frequency	trading	on	market	quality	

5.1	Bid-Ask	spread	

One	of	the	suggested	effects	of	the	introduction	of	high	speed	trading	was	a	decrease	in	the	

bid-ask	spread	on	average.	The	Stoll	paper	suggests	a	trend	downwards	with	a	sharp	decline	in	

2001	that	they	attribute	to	a	switch	from	fractional	to	decimal	stocks,	and	a	general	downward	

trend	thereafter.	

In	order	to	calculate	bid-ask	spread	we	used	an	estimator	as	described	in	Corwin	and	

Shultz’s	research	paper	using	daily	high	and	low	prices	(Corwin	et	al.,	2012).	As	seen	in	Figure	2,	we	

do	not	see	a	similar	dramatic	drop	in	2001	that	was	attributed	to	a	change	from	fractional	to	

decimal	pricing,	which	may	be	a	result	of	the	estimator	assuming	that	bid-ask	spread	is	continuous	

rather	than	discrete.	We	do	however	see,	from	2003	to	2007	bid-ask	spread	is	mostly	constant,	and	

after	2010	it	is	as	well,	which	suggests	that	even	with	the	introduction	and	adoption	of	high	speed	

88	
	

trading,	we	do	not	see	a	significant	drop	in	the	average	bid-ask	spread	in	the	market.	This	matches	

Stoll’s	observation	that	“there	is	no	indication	that	spreads	increased	after	2005	as	HF	trading	

became	more	common,”	(Stoll,	2015,	p.777).	We	do	see	a	slight	downward	trend	for	bid-ask	spread	

for	the	high-cap	group	continuing	after	2013,	which	may	suggest	an	effect,	however	note	that	the	

decrease	is	seen	after	average	trade	size	has	stabilized.	

	
Figure	2:	Percentage	spread	of	Corwin-Schultz	bid-ask	estimator.	

5.2	Volatility	

In	a	similar	vein	to	Stoll’s	paper,	we	wanted	to	see	if	the	effect	of	HFT	has	any	effect	on	

volatility	in	the	market,	especially	when	looking	at	recent	years.	Generally	speaking,	one	would	

guess	an	increase	in	volatility	because	of	the	large	and	rapid	amount	of	trades	occurring	during	HFT.	

One	of	the	methods	of	calculating	volatility	that	Stoll	used	was	to	compute	the	intra-day	variance	of	

trade-to-trade	prices	and	then	average	them	for	the	designated	month.	Unfortunately	our	team	did	

not	have	access	to	intra-day	data	for	our	chosen	stocks.	We	decided	to	use	the	second	method	from	

Stoll’s	paper	which	involves	calculating	variance	of	daily	stock	returns.	

89	
	

For	each	of	the	market	cap	stock	groups,	we	retrieved	the	daily	close	prices	and	calculated	

the	average	of	all	the	stocks	for	a	designated	day.	We	then	calculated	the	365-day	variance	of	our	

average	daily	close	prices	and	plotted	our	results	across	time	as	seen	in	Figure	3.	

	
Figure	3:	Variance	of	daily	NYSE	stock	returns.	

When	comparing	our	figure	to	Stoll’s	daily	variance	volatility	graph,	our	figure	follows	the	

same	general	trend.	From	just	looking	at	the	high	cap	stocks,	the	dot-com	bubble	and	the	2007-

2008	financial	crisis	are	very	pronounced.	The	stock	volatility	generally	hovers	around	the	average	

close	price	variance	of	10,	with	the	exception	of	anomalies.	Our	volatility	analysis	suggests	that	HFT	

can	be	correlated	with	the	gradual	increase	in	volatility	over	the	recent	years.	

6.	Conclusion	and	comments	

	 Although	the	introduction	of	electronic	trading	began	around	1999	after	electronic	

exchanges	were	authorized	by	the	Securities	and	Exchanges	Commission	in	1998	(SEC),	it	is	

important	to	remember	that	the	introduction	and	usage	of	HFT	started	becoming	more	prevalent	

around	2005.	Taking	this	into	consideration	and	when	looking	at	the	average	trade	size	trend,	the	

average	trade	size	has	decreased	as	expected.	This	downward	trend	coincides	with	the	introduction	

90	
	

and	continued	adoption	of	HFT.	We	also	can	observe	that	the	average	trade	size	reaches	a	level	of	

saturation	after	the	2007-2008	financial	crisis.	One	might	infer	that	for	the	average	trade	size	to	

reach	this	steady	level,	the	proportion	of	traders	who	use	HFT	has	plateaued,	leading	to	a	stability	

in	this	measure.	

When	looking	at	our	results	for	bid-ask	spread,	although	our	analysis	used	a	bid-ask	

estimation	formula,	it	is	clear	that	bid-ask	spread	has	stayed	steady	since	the	introduction	of	HFT	

around	2005	-	ignoring	the	2007-2008	crisis	anomaly.	Even	in	the	years	of	increased	HFT	adoption	

in	the	later	years,	bid-ask	spread	does	not	seem	to	correspond	with	the	adoption	of	HFT.		

In	regards	to	HFT’s	effect	on	volatility	on	the	NYSE,	it	can	be	inferred	from	our	volatility	

analysis	that	HFT	could	be	a	factor	in	the	gradual	increase	in	volatility	on	the	overall	market.	After	

2005,	even	when	ignoring	the	spike	of	the	financial	crisis,	volatility	has	steadily	increased	across	

the	recent	years.	This	can	be	correlated	with	the	increase	in	trade	activity	thanks	to	the	rapid	

nature	of	HFT.	

	 We	can	therefore	conclude	that	there	is	no	evidence	that	the	introduction	of	HFT	has	a	

meaningful,	negative	impact	on	the	market,	at	least	in	the	case	of	the	NYSE	and	based	on	the	

measurements	we	have	examined.	Our	result	is	consistent	with	the	result	of	Stoll’s	paper	where	he	

also	concludes	that	HFT	failed	to	have	a	negative	effect	on	the	market.	

	

	
	 	

91	
	

References:	
	
Corwin,	Shane	A.,	and	Paul	Schultz,	2012,	“A	simple	way	to	estimate	bid-ask	spreads	from	
daily	high	and	low	prices”,	Journal	of	Finance,	67,	pp.	719–759.	
	
Market	Capitalization	Definition.	Website.	Retrieved	from:	
http://www.investopedia.com/terms/m/marketcapitalization.asp	
	
Quote	Stuffing	Definition.	Website.	Retrieved	from:		
http://www.investopedia.com/terms/q/quote-stuffing.asp	
	
NYSE	Data	Library.	Website.	Retrieved	from:	https://www.nyse.com/data/transactions-
statistics-data-library	
	
(SEC)	SECURITIES	AND	EXCHANGE	COMMISSION,	“Regulation	of	Exchanges	and	Alternative	
Trading	Systems”,	17	CFR	Parts	202,	240,	242	and	249,	Release	No.	34-40760;	File	No.	S7-12-98;	
RIN	3235-AH41.	Retrieved	from:	https://www.sec.gov/rules/final/34-40760.txt		
	
Stoll,	H.,	2015,	“High	Speed	Equities	Trading:	1993–2012”,	Asia-Pacific	Journal	of	Financial	
Studies,	43,	pp.	767-797.	
	
	
	
	

