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ABSTRACT 
Advances in error correction for next generation sequencing have not matched 

increases in data production and as a result, the quality of the generated nucleotide sequences 

has suffered. The purpose of this project was to develop a processing pipeline which would 

remove errors from intensity data for a faster and more accurate analysis. The method 

employed to achieve these goals was to redesign the algorithm used to correct for bleaching 

and phasing to capture a greater number of misidentified bases. Two pipelines were created, 

pipeline 1 (illumina) and pipeline 2 (Oracle ), it was determined that pipeline 2 out preformed 

pipeline one in terms of accuracy. But pipeline 1 was determined to be faster in processing time 

and thus the main question is asked do you sacrifice time for efficiency?  



CHAPTER 1-INTRODUCTION 
Next generation DNA sequencing technologies allow for a much faster processing of 

genetic information than more traditional methods. These new methods lay heavy emphasis on 

micro-imaging and fast paced data processing. The leader in this new age technology, with their 

Sequencing by Synthesis (SBS) technique, is the California based company Illumina®. Using their 

SBS technology Illumina is capable of analyzing multiple genomes in a week’s time, producing 

many terabytes of data in one sequencing run (illumina). The most commonly established 

method prior to SBS is gel electrophoresis which sequences by separating and categorizing 

fragments of DNA by charge and size, often taking many days to acquire a relatively small 

amount of data (Sinville, 1714). In just 4 years, Illumina has been able to drastically increase the 

throughput of their SBS systems, resulting in a 1000-fold increase in data per sequencing run 

through optimization and refinement alone (illumina). As next-generation sequencing develops, 

it becomes clear that there is a need for faster genomic analysis. In areas like oncology, a fast 

and accurate analysis of gene expression signatures can lead to the most effective therapy 

(illumina clinical). Unfortunately, the error rate of incorrectly identified nucleotides during the 

sequencing process, while low, has remained relatively consistent. As data output increases, a 

consistent error rate results in many more incorrect bases, which can negatively impact the 

results of the sequencing. 

Currently Illumina deals with DNA sequencing by fragmenting the sequence and 

adhering the pieces to a chemically engineered plate known as a flow cell. Each nucleotide in 

the sequence is then phosphorised and imaged in series to produce a collection of maps 



indicating nucleotide location at different levels. These maps are then corrected for multiple 

sources of error (illumina products). 

The team hypothesizes that a large portion of the error is created during two specific 

steps in the sequencing process used to correct for disparities in color intensities. The first step 

accounts for the possibility of fluorescent color mixing and the ultimate misreading of a 

nucleotide. The second step corrects the “phasing” or skipping of base calls in a sequence. 

Through optimization of the image analysis algorithms and statistical analysis of the fluorescent 

nucleotide intensities the team will lower this error rate, resulting in a more precise genome 

sequence. 

The project has two main goals: the experimental goal and the engineering goal. 

Illumina's sequencing algorithm has some flaws with identifying the clusters correctly giving an 

error percentage of .25%. The first part, which is the experimental portion, of the project will 

deal with identifying the source of error. The team will look at the raw DNA sequence data and 

try to pinpoint the cause of bases being misidentified. In the second part, the engineering 

portion of the project, the team is going to produce an image processing algorithm that clearly 

corrects and explains the error. By doing this, the team hopes to improve the performance of 

the state-of-the-art software in aspects including the reduction of processing time, reduced 

error rate, portability and robustness. 

The overall goal of this project is to create a more efficient pipeline for the post 

processing of next generation sequencing machines. This will be accomplished through the use 

of python language to create a modified algorithm. The current pipeline will be investigated 

and duplicated to determine the causes of implementing each process within the pipeline. The 



next generation image processing pipeline has two main processes by which base calling and 

quality score is determined. The first process which will be looked at will be the color matrix, 

which is used to correct for the variance in fluorescents. The other process, which will also be 

the focus of the project, will be the errors in phase change, which help to align the base images. 

A close examination will be done to determine how each color matrix and phase changes are 

determined. These issues will be investigated to illuminate the cause of the .25% error seen in 

the processing. After examining each process, modifications will be made and run through the 

raw data provided by sequencing machine. A closer examination will be done to determine the 

most efficient changes, specifically in the color matrix and the phase parameter estimation, 

which are more clearly explained in later chapters. A newly generated pipeline will be produced 

and compared to the old pipeline. This comparison will result in an increase quality control 

score for the sequences data and more accurate base calls. This accomplishment will result in 

creating a more efficient pipeline for the processing of the next generation machine. 

  



CHAPTER 2-LITERATURE REVIEW 

2.1 Illumina Background  

Since the very beginning of genomic research, capillary based sequencing methods have 

dominated the field. As sequencing progresses and ultimately plays a larger role in disease 

diagnostics it is increasingly imperative that both the cost and run time of sequencing 

technology decreases. Conventional DNA sequencing methods have plateaued in terms of 

throughput, leading to a need for innovative sequencing approaches.  The effort to produce 

novel sequencing techniques has been attempted by many companies. Most of these new 

companies are based on a cyclic-array system utilizing repetitions of image-based data 

collection. Array generation and biochemistry often differ between next generation processes 

but ultimately, the work flow of each company involves DNA fragmentation, duplication and 

imaging (Ji, 2008). While these new methods have numerous advantages, including higher 

parallelism and lower reagent costs, they are also known to have error rates of up to ten fold 

that of traditional Sanger methods. Ewing and Green propose that a large contributor to the 

error of next generation sequencing machines is substitutions in the bases being called (Ewing 

& Green, 1998). These higher error rates necessitate estimation for the likelihood of an 

incorrect base call. In a separate paper, Ewing et all test the use of a modified phred algorithm 

to produce an accurate quality score (Ewing et. all, 1998). This score is intended to calculate the 

reliability of each next generation sequence. Because of the statistical nature of this algorithm, 

it is applicable across several different next generation sequencing methods. 

Illumina, the leader in these next generation sequencing processes, uses parallel 

oligonucleotide adaptation to duplicate DNA fragments and produce cluster maps which can be 



imaged to reveal sequences of nucleotides (Macevicz, 1998).  The work flow for Illumina’s 

processes is revealed through documentation on their website.  

Fragmented DNA is adhered to a flow cell, which is a proprietary surface chemically designed to 

hold the DNA strands upright. The fragments are then amplified into clusters of the same 

strand through a bridging and cloning process.  

 

Figure 1: A graphical representation of Illumina's cluster generation (Goldeberg, 2011) 

This allows for a greater intensity when fluoresced.  To achieve this fluorescence, single 

fluorescein-labeled deoxyribonucleoside triphosphate species are added in cycles to produce 

color specific fluorescence for each nucleotide in a read. Image processing software is then able 

to identify the nucleotide of each cluster in each cycle (Aksyonov, 2005). For every cycle, the 

flow cell is scanned in 6 parts and those 6 parts are divided into 8 tiles. Each tile runs 

procedurally through a series of steps, resulting in millions of computing processes. 

All sequencing begins with the template generation, a process that defines the locations 

of every cluster on a flow cell. Once a template has been generated, processing for all other 

cycles can begin. For each cluster position an intensity value is extracted using image processing 



software. The images are processed on four separate channels, meaning each nucleotide is 

identified by a separate color in its own image file.  The laplacian transform of these scanned 

image files is used to create an array of intensities, indicating an order of bases. These 

intensities are stored in a cluster intensity file. Because a different color is used to identify each 

nucleotide, a method for correcting crosstalk, or the blending of colors is needed to reduce 

error. A color matrix is produced using the color intensity files to correct for these errors. Each 

component of the matrix represents the amount of crosstalk from each nucleotide observed in 

every other nucleotide’s channel, resulting in a four by four matrix. To counteract the error 

produced by substituted, deleted and added bases, Illumina uses a phasing estimation 

technique. The phasing estimation assumes that in each cycle, a certain number of DNA strands 

incorrectly identify one base in the sequence, whether through the addition, substitution or 

deletion of one nucleotide. An equation is calculated to account for these “phased” molecules. 

The phase corrected intensities are then used to call the bases for each DNA fragment. The 

quality score that indicates the probability of an incorrect base call is then calculated. The final 

step in Illumina’s process is the alignment of all the fragmented base reads using a control 

sequence (RTA Theory of Operations, 2011). 

2.2 Information on the freeIbis  

 The most recent improvement to the illumina’s next generation pipelines is a base 

calling software named FreeIbis.  This new software has been shown to “out preform the 

previous version of software in terms of sequence accuracy”. (Renaud, Kircher, Stenzel, & Kelso, 

2013 ) The accuracy of the base calling is determined based on the ability of the correct base 

calls to accurately correspond to its respective genome.  This was then compared to speed of 



the run and the percentage of mapped sequences. The table below shows that freeIbis not only 

out preforms other software in terms of run time, but also in percent accuracy of correctly 

matching a sequence to the genome. The table below shows 0.16% increase in accuracy over 

Ibis and a 1.55% increase in improvement over illumina’s sequencing pipeline.  

Table 1: Accuracy of each bascaller on an Illumina GAIIx dataset (Renaud et al., 2013) 

 

 Illumina’s pipeline currently produces a way of determining the accuracy of the base 

calling called the quality score of the run. This demonstrates how accurate the pipeline 

produced the right base calls, a higher quality score means that the bases are more accurately 

matched. The freeIbis was run through the quality score and a predicted line was determined 

for all 4 types of bases. This was done by producing a root mean square. As can be seen in 

figure 1 a side by side plot shows the higher accuracy of freeIbis as compared to bustard, which 

is named for illumina’s pipeline process. The graphs show the significant improvement in calling 

of each base and the uniformity of all of the bases. (Renaud, Kircher, Stenzel, & Kelso, 2013 ) 



 

Figure 2: Bustard vs. Freelbis RMS line (Renaud et al., 2013) 

2.3 Real World Application  

 Illumina’s next generation sequencing is utilized in many fields as a form of research and 

diagnostics.  These machines are used in such field like genetic diseases research, forensics, and 

microbiology and cancer research. Through the use of these machines different strains of 

infections can be differentiated based on the genetic variations. In the case of tracking 

influenza H7N9 in china researchers used Illumina next generation machines to identify patients 

with this infection and show variation in strains. The machines allowed researchers in Jiangsu 

Provincial Center for disease control and prevention to positively identify H7N9 in humans and 

animal, specifically chickens, to confirm a strong probability that the pathogen was spread from 

chickens to humans. (Illumina) Using the same machines researchers were able to identify 

patients which were infected with multiple influenza strains, which allowed for a good 

understand as to “the mechanisms of viral assortment from which new strains emerge” 

(Illumina, 2013 ). These machines have become crucial in understanding and preventing the 

spread of pathogens within our environment.  These machines have made it possible to obtain 

more accurate and faster sequencing of DNA, which in terms of identifying pathogens means 

containing the virus quickly and identifying the root of the virus to help in obtaining the proper 

treatment. This means that viruses will not be allowed to spread through to the masses and 



become pandemics or epidemics causing mass infections and deaths. Thus it is crucial that the 

Illumina Next Generation Machines become as accurate as possible.  

 Currently these machines have been accurate in terms of the chemistry component and 

thus it would be highly beneficial to look at the digital aspect which has yet to be perfected and 

optimized to its full capacity. Small variations in genetic testing could mean a wrong diagnosis 

and in terms of genetics this could be a life or death test. More and more diagnosticians have 

made genetic testing a commonality. It has been shown that genetic testing can determine the 

likely hood of obtaining a disease later on in life. Due to the dramatically lower cost of 

illumina’s machines and the rapid turnaround time it has made it possible for patients with rare 

disease to obtain genetic testing which will help not only the patients, but also the families 

obtain answers as to what may be causing strange symptoms. In the case of the Sukins family 

who had a child which was showing abnormal signs of a disorder, it wasn’t till testing was done 

that they were able to find that their son had a rare genetic disorder called Angelman 

syndrome, with this they can help find ways of treating the symptoms of the disorder. (Kolata) 

These revolutionary diagnosis help in predicting patients with the likely hood to obtain a 

disease in the future, which has made it possible to come up with treatment plans and help 

patients live longer.  Illumina’s Next Generation Machines are crucial in medicine today helping 

to increase the life span of many patients.  

2.4 Problems and issues 

In principle bases can be called straight from intensity files but there are several 

complicating factors that must be dealt with, cross-talk, phasing and dimming being of 

particular importance.  



Cross-talk is the recording of light from a single fluorophore in multiple channels. This 

occurs because, although they are chosen to be distinguishable, the fluorophores’ emission 

spectra overlap. There is not a one-to-one correspondence between channels and FLNs and the 

relationship between the emission of each fluorophore and the intensity observed in each 

channel needs to be ascertained and corrected for.  

Phasing refers to the deterioration in relationship between sequencing cycle and 

sequence position as the cluster loses coherence: on a given cycle, FLNs may be attaching to 

different positions on different molecules within the cluster. There are many possible 

explanations for phasing: for example, a FLN might have a defective reversible terminator 

element leading to the attachment of two FLNs to a molecule on a single cycle, allowing the 

molecule to get ahead in the sequencing process (’pre-phased’), or the cleaving of the 

reversible terminator might fail for a cycle so the molecule lags behind when the element is 

finally removed (’post-phased’). A further possible cause of post-phased molecules is the 

chemistry not running to completion, resulting in either no FLN being attached that cycle or 

cleaving failure as previously mentioned. Finally, molecules within a cluster gradually stop 

contributing to the total signal, possible causes being laser damage to the individual molecules 

or problems reversing the terminator element, and this leads to a decrease (dimming) in the 

overall emission observed from each cluster in later cycles of sequencing.  

Bleaching is the final factor that influences the error of the data. Bleaching occurs when 

the fluorescent dye, which is used to stain the bases, degrades over the time. This error occurs 

in later cycles because they are the last to be scanned. The result of this degradation is a lower 



numerical result for all bases in that cycle. This can cause a misread in bases and result in higher 

error towards the end of readings.   

The cross-talk is a consequence of the physics of fluorophore excitation and methods for 

estimating it have already been developed for dye-terminated capillary electrophoresis 

sequencing platforms. Phasing and dimming are more specific to NGS methods, the Illumina 

platform in particular, and have been approached in a variety of ways. The Illumina base calling 

software (Bustard) (Kao, Stevens, Song,2009)  assumes a constant rate of post-phasing and pre-

phasing for all cycles that allows the phasing at each position of the sequence to depend on 

several of the neighboring bases . 

  



CHAPTER 3-PROJECT STRATEGY 
When initially presented with the problem, the team was unaware of certain project 

constraints and produced an open ended client statement. The initial client statement was 

“Identify and correct the underlying cause of sequencing error of cluster mapping methods of 

current benchtop sequencing devices. This correction will be achieved through the engineering 

of a software pipeline which will show improvement over the current methods.” 

The team’s main objectives were created from the initial client statement. These 

objectives created the framework for the design and the constraints of the project. First the 

team needs to test the hypothesis that the major cause of the error in the current software 

pipeline is due to image processing once the hypothesis has been verified the team aims to 

design a new software pipeline that has a lower error rate than the current system that is faster 

and more robust in its design. The team also has a stretch goal of creating the pipeline to have a 

portable version that will operate on a standard consumer laptop. 

The objectives were then compared using a pairwise comparison chart as shown below 

in table 2. The chart shows which of the objectives are most crucial to the project and as can be 

seen the objective to create a pipeline which resulted in a lower error rate for the base pairs 

came out on top. Using the objectives an objective tree, as seen in figure 3, was also created to 

see how these objectives can be properly implemented into the project and help to determine 

which objective would require the most amount of work.  

 



Table 2: Objectives Pairwise Comparison Chart 

 Lower 
error rate 

Software 
robustness 

Faster 
processing time 

Software 
portability 

Total 
score 

1.Lower error 
rate 

X 1 1 1 3 

2.Software 
robustness 

0 X 1 1 2 

3.Faster 
processing time 

0 0 X 1 1 

4.Software 
portability 

0 0 0 X 0 

 

 

      Figure 3: Objective Tree 

 



The team has many constraints that were considered while designing the pipeline. The 

first is system performance as the team aims to be faster than the current process. Currently 

it requires 40 hours of processing to handle a 2 lane sequencing run of the illumina HiSeq 

scanner. The second is the need to conserve disk space. The goal is to have no more than 1.5X 

overage in data processing. This is to prevent the system from producing data faster than it is 

being processed. The largest constraint the team followed is the need reduce the error rate 

from .25% to .025% 

After meeting with the client again and considering the constraints the team revised the 

client statement. The revised client statement is “Develop an image processing software 

pipeline that is more accurate than the current pipeline from Illumina. The software should be 

at least as fast as the current state-of-the art. The improved pipeline should lead to a more 

complete and thorough understanding of the error that occurs in the image data and solutions 

to decrease the impact to those sources of error by at least 10x on the variant calling algorithm. 

“In the revised statement, detailed requirements for the software relative to the current state-

of-the-art were stated. The notion of image processing was introduced as well since the team 

will be solving the problem mainly through image processing. Also, an important constraint was 

added in the form of 10x improvement in the software accuracy. 

The team had numerous financial concerns when developing the new pipeline. The first 

was a storage media. The Illumina HiSeq machine develops close to 4Tb of data on any run. This 

storage media was purchased from an online distributor. The second was the HiSeq run itself. A 

lab donated this so the team incurred no cost on this portion. The third is the use of a research 

cluster to perform the processing. The team had access to a machine at no cost. The fourth the 

 



team investigated the ability to use the Amazon Web Service EC2 Cloud computing solution. 

The development on the cloud would allow startup labs using this software to run sequences 

without having to purchase a research cluster to do it.  

The team applied numerous analytical tools to the research and development of the 

new pipeline. One major method used was the ceiling method. This process looks at the 

problem as a whole and breaks it down into pieces. These pieces are then examined one by one 

to determine which part has the greatest effect on the error of the code. The team took each 

piece and improved the accuracy and speed and then retested the over all error rate of the 

pipeline. This process allows the problem to be broken down and managed by the team. This is 

shown in the Work Breakdown Structure below. The team will also use best practices, including 

memory management and Big O efficiencies when developing the new code. This allowed the 

team to create a design evaluation matrix, shown below, to evaluate the different designs.  

The design evaluation matrix below depicts the process that was taken in order to 

determine which method would be most efficient for the project. The first method that was 

chosen to be analyzed is the ceiling method which was described below. This method was 

compared in its ability to input the correct file, which in this case would be the .cif files and its 

ability to output high quality scores, which means that the number of accurate base calls is at a 

much higher percentage. The other method that was used for comparison was the guess and 

check method, which takes different statistical function and implements it into the code to see 

if it would give a higher quality score. The error robustness sees what errors occur within the 

current code and finds a method to correct for those which would give a higher quality score. 

Then the last method would be complete overhaul, this would involve completely eliminating 



the code that was most recently found and create a new code which would have the same 

input and output, but a high quality score would be produced. Looking at table 3 it was 

determined that the best course of action for this project would be to implement the ceiling 

method in analyzing the code obtained for the Illumina next generation machine.    

Table 3: Design Evaluation Matrix 

 Input Cif Files Output Fastq 
Files 

High Quality 
Scores  

Totals 

Ceiling Method 4 5 5 14 

Guess and Check 4 3 4 11 

Error Robustness 4 3 4 11 

Complete 
Overhaul 

2 1 2 5 

 

 The Gantt chart below shows the timeline with which we hope to complete this project. 

The chart shows a general approach of gathering background research within the first week of 

the project. This included researching articles and the most up to date codes which have dealt 

with problems in illumina’s next generation machines. The next 7 weeks of the project will be 

composed of placing a ceiling method of analysis to the current code that illumina’s machines 

implement. By focusing in on the color matrix and the phase shift of the code meticulous 

analysis will be done to determine flaws within the current method. The next quarter of the 

project will deal with determining C functions which will perform similar tasks as the current 

method but with more accuracy.  The most effective change made will be determined by 

placing a quality score on the changed code. The last part of the project will be finishing all of 

the writing aspects and determine the validation of our changed code and preparing for our 

final presentation.  



 

Figure 4: Gantt Chart 

 In the work Breakdown Structure seen below, the basic layout of the DNA Image 

Processing MQP project. This project will be separated into two parts, one in which currently 

implemented code is analyzed and another part which involves creating a new more efficient 

code. When analyzing the recent code, a ceiling method, which was described in a previous 

part, will be implemented. This will involve a specific focus in two main parts the color matrix 

and the phase shift. Both of these will be run through quality scores to see which parts have the 

most effect on the accuracy of the base calls. This will help the group to focus on which part of 

the code needs changes. This leads to the next part of the code, which involves creating a new 

more efficient code. This will involve coming up with ideally three changes to the code which 

will also be run through quality scores to determine which changed code preforms the best. 

This will lead to a complete project goal of gaining a 10X improved base calling algorithm 

compared to that of the most current algorithm. 



 

Figure 5: Work Breakdown Structure  



 

CHAPTER 4-ALTERNATIVE DESIGNS  

4.1 Needs Analysis 

 After discussing normal DNA analysis practices, the team came to an understanding 

about specific requirements needed in order to make a feasible improvement to Illumina’s first 

generation sequencing pipeline. The first requirement is the pipeline must be able to be 

processed using the normal speed and memory of an average laptop. These specifications 

include a 64GHz core 2 due processor and a 256 GB RAM memory. This makes it easily 

transferable and able to be processed in in any laptop device.  

 Ideally the pipeline would be 1.5 times faster, meaning it would take less than 40 hours 

for 4TB of data to run. Even with no improvement to the error rate of the pipeline gaining a 

faster run time would make it more efficient and thus make it a better analysis tool for the 

instrument. Another ideal for this project would be creating a pipeline which is 10 times more 

effective in reading bases then the current pipeline. Although the main goal of the project is 

just to make a more affective pipeline, it would be ideal to make a high performance more 

effective pipeline which runs on laptop.  

4.2 Functions 

The following functions were developed by the team. 

 Read and input .cif  information  

The pipeline should be able to analysis and convert .cif files from the Illumina machine 

to numerical values to be analyzed and modified, then converted back into .cif files to 

accurately call bases.  



 Output .fastq files  

Fastq files are the standard text-based format for storing biological sequences and their 

corresponding quality scores, thus the pipeline must be able to output this type of file 

for better comparisons.   

 Higher percentage of accurate base calls 

The pipeline must be able to call a higher number of accurate bases then that compared 

to the Illumina pipeline.  

 Create a simulation algorithm to output .cif files 

By creating simulation data which duplicates the output of the Illumina machine a set of 

control data can be created for analysis of the pipeline and can also be used to model 

different types of sequences. 

4.3 Conceptual Designs  

4.3.1 Chastity determiner 

  One alternative method for obtaining a phase and prophase ratio to correct for color 

phasing is to utilize the chastity equation as seen below. The chastity is originally used as a way 

of filtering data which falls below a threshold.  

         
                    

        
 

Equation 1: Chastity 

 Using this method the chastity of each cluster for each cycle based on the set of bases. 

Each base would be compared to the other bases for that cluster at that cycle. If the chastity 

value passes a set threshold for that base then a count increases by one. A count is established 



for each base through all clusters for that cycle. The count is then set over the total runs of 

chastity to get a ratio for each cycle. Cycles (1:end-1) will then be averaged out to create a 

phase ratio. Cycles (2:end) will again be averaged to obtain a prophase ratio. These ratios will 

then be put through the rest of the pipeline and analyzed to determine if a higher number of 

basses were called.  

 This method has fall backs associated in terms of setting a threshold for the chastity and 

since it is a value based on purity of the data, this threshold would have to be at a range which 

filters all impure and phased data, but keeps clean data with other forms of noise. Although this 

may result in a pipeline which does not improve the system, it would show improvement in the 

speed of the run and thus would be a viable choice for creating pipeline 2.  

4.3.2 Autoregressive function 

Although the reverse engineering of Illumina’s sequencing method and the team’s oracle 

method were fully functional, the pipelines had some room to improve in terms of base call 

accuracy. The team came up with an alternative method of finding the phasing and prephasing 

parameters by trying to fit the data in an autoregressive model and estimating the values. 

Autoregressive model seemed to have similar characteristics with phasing since there is linear 

association between lagged observations. 

Matlab has a built-in function,namely “EstMdl”, that can use maximum likelihood to estimate 

the parameters of an ARIMA(p,D,q) model where 

 p=Positive integer indicating the degree of the nonseasonal autoregressive polynomial. 



 D=Nonnegative integer indicating the degree of nonseasonal integration in the linear 

time series 

 q=Positive integer indicating the degree of the nonseasonal moving average polynomial 

The team used the ARIMA(1,0,0) model assuming the degree of AR polynomial to be 1, the 

degree of integration to be 0, and the degree of MA polynomial to be 0, for each data set of 

cycles for a single cluster. 

Phasing parameter was calculated by dividing the data into arrays (each array consisting of data 

from all cycles for a single cluster), fitting the arrays into the ARIMA(1,0,0) model and 

estimating the parameter. The same process is done to calculate the prephasing parameters 

with the arrays in the opposite direction. 

It was found that the ARIMA model estimates the phasing/prephasing values more accurately 

than the team’s previous methods. However, the estimation script is run in MATLB , and takes a 

large runtime. At this moment, the team only reached to the point of getting the 

phase/prephase parameters, but not to the point of data correction with those values and base 

calling. 

4.4 Decision   

 The final design was determined using the design matrix seen in the figure below. As 

seen, the winning design was established to be the autoregressive due to the high 

mathematical property that is involved. The Autoregressive method would involve no 

estimation or preexisting knowledge of the data being implemented into the pipeline. Thus 

based on a range of 0-5 the autoregressive function received a 5 for obtaining a lower error 



percentage. Being that a lower error rate is the top objective for the project, it was chosen as 

the implemented design.  

Design Matrix  

  oracle phase and pre-phase  Autoregressive  Chastity Determiner   

Lower Error (O) 3 5 1 

Software robustness(O) 2 1 1 

faster processing (O) 2 1 2 

Software portability (O) 5 5 5 

Data Storage ( C )  4 5 5 

Total  16 17 14 

Figure 6: Design Matrix for Alternative Designs 

 The oracle phase and pre-phase method would involve previous knowledge of phase 

and prophase ratio for the data which would not normally be known in a biological lab, making 

it a less useful method then the other two methods being considered. Although it ranked high 

on the design matrix, this method is not realistic in a real world application.  

 The chastity determiner method was ranked lowest on the design matrix and this is 

primarily due to the fact that a set threshold has to be determined. This would mean that if the 

threshold is not set to an optimal configuration then the error could potentially be higher than 



that seen in Illumina’s data. Due to an unknown threshold, this method ranked lowest in 

possibility of providing a lower error rating.   

 After many discussions and using the design matrix the final choice was to choose the 

autoregressive design as pipeline 2. This decision was made mainly due to the fact that using 

the autoregressive method, the probability of the pipeline being more effective and resulting in 

a lower error rating was the highest. Being that the main goal of this project is to create a 

functioning pipeline which out preforms Illumina’s, it was decided that the autoregressive 

method would be most efficient in meeting this goal.   

4.5 Preliminary Tests  

 A preliminary code was developed to determine the accuracy of the Autoregressive 

function created in Matlab. This function would input simulated clean data and simulated data 

which includes a phasing component of about 0.10. If the code functioned optimally then the 

phase values would match those created in the simulation data. This function would then 

separate the data by bases, then by clusters and run through the autoregressive forward 

through all cycles.  

 



Figure 7: output Autoregressive Model for clean data 

 The image above shows the results from an input clean data set which showed no signs 

of phasing or pre-phasing. As can be seen the AR(1) value which corresponds to the phasing 

that is occurring in that base for that cluster of data. Since this result shows a value relatively 

close to 0, it can be assumed that the code created would not modify the data when no phasing 

has occurred. This same test was run for a simulated data set which showed a phase and pre-

phase value of 0.1.  

 

Figure 8: output Autoregressive Model for phase 0.1 and pre-phase 0.1 

 The figure above shows that the autoregressive function accounts for both the phasing 

and pre-phasing values seen in the data. Thus due to the fact that both phasing and pre-phasing 

values were 0.1, the resultant would be assumed to be 0.2. In the figure above the value of 

AR(1) very closely matches the expected value of 0.2. This preliminary test reveals the feasibility 

of using the autoregressive method in order to determine the occurrence of both phasing and 

pre-phasing from the sequencing data. From this point the data can then be corrected for 

phasing and pre-phasing resulting in a high percent accuracy for the base caller.   



CHAPTER 5-DESIGN VERIFICATION  
There methods were tested to determine efficiency of each method on the simulated 

data which was created. The first method was based on Illumina’s technical document, which 

gave a step by step approach on recreating the Illumina pipeline. The second approach was to 

use an oracle approach that took into account the known phasing variable created using the 

simulator. The last method uses an autoregressive method in order to make future predictions 

based on current values. Tests for Error percentage and run times were created for both 

method 1 and method 2, named pipeline 1 and pipeline 2 accordingly. Method 3 was run for 

initial phasing and pre-phasing results, since a pattern was seen in the data and based on run 

time of the method no further tests need to be done.  

5.1 Percent Error Results  

 The first test was to determine the percent error that occurred after running each 

pipeline. This was done by having a data set with known sequences and applying different 

phasing and pre-phasing components to that data. The simulation data would then be placed 

through the pipeline and a base caller would call each maximum value and compare the called 

sequence to the original clean sequence. Table 4 and Table 5 show the Percent error resulting 

from pipeline 1 and pipeline 2. Looking at the percent error results from pipeline 1, no trend or 

correlation can be seen by changing phasing and pre-phasing value of the data. Only phasing 

and pre-phasing for a small amount of simulation data was run because no initial tend was seen 

meaning that the phasing and pre-phasing components of the data had no effect on this 

pipeline. This pipeline seems to result in randomized data which demonstrates that this method 

was very unreliable and ineffective in terms of producing a low percent error in the data. 



Simulation Table for Pipeline 1: Percent Error  
 Run 1 (%) Run 2 (%)  Run 3 (%) Run 4 (%) Run 5 (%) 
 cycles 

3_12  
cycles 
1_20 

cycles 
20_50 

cycles 
3_33 

cycles 
50_70 

clean  clean  clean      
decay 
rate 
0.02 

phase 
rate 
0.05 

pre-phase rate 
0.05 

53.905 12.081 73.396 53.905 81.959 

  pre-phase rate 
0.1 

56.456 3.278 86.09 56.456 89.803 

  pre-phase rate 
0.15 

75.121 30.866 42.047 75.121 86.623 

  pre-phase rate 
0.20 

93.305 46.269 80.663 93.305 93.34 

  pre-phase rate 
0.25 

55.936 69.394 84.217 55.936 94.766 

  pre-phase rate 
0.30 

55.936 69.394 84.217 55.936 94.766 

  pre-phase rate 
0.35 

73.119 73.409 77.658 73.119 88.485 

  pre-phase rate 
0.40 

31.75 74.103 24.942 31.75 74.069 

 phase 
rate 0.1 

pre-phase rate 
0.05 

40.806 98.365 14.073 40.806 79.757 

  pre-phase rate 
0.1 

25.671 82.887 30.868 25.671 87.319 

  pre-phase rate 
0.15 

82.67 35.58 86.203 82.67 95.189 

  pre-phase rate 
0.20 

75.366 98.436 7.265 75.366 98.104 

  pre-phase rate 
0.25 

89.153 45.738 15.359 89.153 66.766 

  pre-phase rate 
0.30 

89.153 45.738 15.359 89.153 66.766 

  pre-phase rate 
0.35 

13.762 90.095 79.044 13.762 86.836 

  pre-phase rate 
0.40 

16.434 40.017 59.578 16.434 83.904 

 phase 
rate 
0.15 

pre-phase rate 
0.05 

73.11 82.964 65.123 73.11 98.398 

  pre-phase rate 
0.1 

13.891 95.423 87.886 13.891 88.034 

  pre-phase rate 
0.15 

70.46 70.656 78.43 70.46 93.539 

  pre-phase rate 
0.20 

90.171 83.583 90.774 90.171 73.4 

  pre-phase rate 
0.25 

57.629 71.751 74.784 57.629 89.06 

  pre-phase rate 
0.30 

57.629 71.751 74.784 57.629 89.06 

  pre-phase rate 
0.35 

68.109 68.716 82.543 68.109 79.769 



  pre-phase rate 
0.40 

76.199 39.28 76.815 76.199 81.292 

 phase 
rate 
0.20 

pre-phase rate 
0.05 

86.349 43.696 67.775 86.349 90.94 

  pre-phase rate 
0.1 

91.382 67.764 74.476 91.382 90.531 

  pre-phase rate 
0.15 

70.748 75.658 87.054 70.748 90.802 

  pre-phase rate 
0.20 

91.493 78.845 85.715 91.493 91.74 

  pre-phase rate 
0.25 

42.48 51.01 90.156 42.48 91.266 

  pre-phase rate 
0.30 

42.48 51.01 90.156 42.48 91.266 

  pre-phase rate 
0.35 

48.581 80.151 81.25 48.581 73.138 

  pre-phase rate 
0.40 

77.328 79.456 63.278 77.328 83.978 

Table 4: Pipeline 1 Percent Error Rate 

 Pipeline 2 was also run for percent error. As can be seen in table 2 below the method of 

iterating through the data and using a known phasing and pre-phasing variable produced a 

percent error which shows a positive correlation between phasing and percent error. With 

higher phasing and pre-phasing variables the percent error seems to increase proportionally to 

the increase in phasing and pre-phasing variables. One example can be seen when phasing was 

set to 0.05 and pre-phasing was set to 0.05 the resultant was about 0.001 percent. Now when 

we compare that value to the one seen in the simulation data using phasing set at 0.1 and pre-

phasing set at 0.029 this means that there is about a 30X increase in error with ever 2X increase 

in phasing. The data shows a linear trend displaying a higher percentage of errors with higher 

phasing and pre-phasing values. The cycle values did not have any effect on this method due to 

the fact that this method accounts for all cycles, thus an average is taken and would not affect 

the resultant error. These results make sense with the simulation data input into the pipeline 

and have shown relatively good results.   



Simulation Table for Pipeline 2: Percent Error  
   Run 1 (%) Run 2 (%)  Run 3 (%) Run 4 (%) Run 5 (%) 
   cycles 

3_12  
cycles 
1_20 

cycles 
20_50 

cycles 
3_33 

cycles 
50_70 

clean  clean  clean 0 0 0 0 0 
decay rate 
0.02 

phase rate 
0.05 

pre-phase 
rate 0.05 

0.001 0.001 0.001 0.001 0.001 

  pre-phase 
rate 0.1 

0.02 0.02 0.02 0.02 0.02 

  pre-phase 
rate 0.15 

0.382 0.382 0.382 0.382 0.382 

  pre-phase 
rate 0.20 

1.545 1.545 1.545 1.545 1.545 

  pre-phase 
rate 0.25 

3.399 3.399 3.399 3.399 3.399 

  pre-phase 
rate 0.30 

3.399 3.399 3.399 3.399 3.399 

  pre-phase 
rate 0.35 

8.267 8.267 8.267 8.267 8.267 

  pre-phase 
rate 0.40 

10.701 10.701 10.701 10.701 10.701 

 phase rate 
0.1 

pre-phase 
rate 0.05 

0.029 0.029 0.029 0.029 0.029 

  pre-phase 
rate 0.1 

0.108 0.108 0.108 0.108 0.108 

  pre-phase 
rate 0.15 

0.653 0.653 0.653 0.653 0.653 

  pre-phase 
rate 0.20 

1.867 1.867 1.867 1.867 1.867 

  pre-phase 
rate 0.25 

3.859 3.859 3.859 3.859 3.859 

  pre-phase 
rate 0.30 

3.859 3.859 3.859 3.859 3.859 

  pre-phase 
rate 0.35 

8.686 8.686 8.686 8.686 8.686 

  pre-phase 
rate 0.40 

11.687 11.687 11.687 11.687 11.687 

 phase rate 
0.15 

pre-phase 
rate 0.05 

0.373 0.373 0.373 0.373 0.373 

  pre-phase 
rate 0.1 

0.606 0.606 0.606 0.606 0.606 

  pre-phase 
rate 0.15 

1.27 1.27 1.27 1.27 1.27 

  pre-phase 
rate 0.20 

2.7 2.7 2.7 2.7 2.7 

  pre-phase 
rate 0.25 

4.875 4.875 4.875 4.875 4.875 

  pre-phase 
rate 0.30 

4.875 4.875 4.875 4.875 4.875 

  pre-phase 
rate 0.35 

9.973 9.973 9.973 9.973 9.973 

  pre-phase 
rate 0.40 

13.072 13.072 13.072 13.072 13.072 



 phase rate 
0.20 

pre-phase 
rate 0.05 

1.514 1.514 1.514 1.514 1.514 

  pre-phase 
rate 0.1 

1.767 1.767 1.767 1.767 1.767 

  pre-phase 
rate 0.15 

2.692 2.692 2.692 2.692 2.692 

  pre-phase 
rate 0.20 

4.131 4.131 4.131 4.131 4.131 

  pre-phase 
rate 0.25 

6.41 6.41 6.41 6.41 6.41 

  pre-phase 
rate 0.30 

6.41 6.41 6.41 6.41 6.41 

  pre-phase 
rate 0.35 

12.156 12.156 12.156 12.156 12.156 

  pre-phase 
rate 0.40 

15.24 15.24 15.24 15.24 15.24 

Table 5: Pipeline 2 Percent Error Results 

 In order to get a full idea of the trend seen in each pipeline a graphical representation 

was created for each pipeline based on cycles 3 through 12. Figure 9 below shows the results of 

the data seen in tables 4 and 5. When looking at the results from pipeline 1, the randomization 

is very apparent, no trend is visible or apparent and the scale of the graph is shown from 10 to 

100, displaying the wide variation in the data. The disarray of the data is apparent when you 

compare it to the graphical representation of pipeline 2, which shows a linear, even a slight 

exponential trend in data. The scale for this graph is seen between 0 to 15 percent revealing a 

lot less error in terms of the general numbers and in terms of the difference in ranges.  This 

comparison shows the higher efficiency of pipeline 1 as compared to pipeline 2.  

 



 

Figure 9: Comparison of Phasing for Pipeline 1 and 2  

5.2 Run Time Results  

 Along with the percent error, a run time was also measured as a means of finding the 

most efficient method. The data from the run times of pipeline 1 and pipeline 2 can be seen 

below in table 6 and table 7.  Table 6 shows the run time results from pipeline 1, although the 

run times have some variation, it is very miniscule. This means even with higher error in the 

data the amount of processing time will be relatively the same. Thus this allows for researchers 

to know the exact time the data will need to process which allows for turnover time of data to 

be more efficient.  

 

Simulation Table for Pipeline 1: Run Times   
 Run 1 (sec) Run 2 (sec)  Run 3 (sec) Run 4 (sec) Run 5 (sec) 
 cycles 

3_12  
cycles 
1_20 

cycles 
20_50 

cycles 
3_33 

cycles 
50_70 

clean  clean  clean 3.36 3.12 3.15 3.12 3.18 
decay 
rate 
0.02 

phase 
rate 
0.05 

pre-phase 
rate 0.05 

3.36 3.12 3.15 3.12 3.18 
  pre-phase 

rate 0.1 3.33 3.37 3.26 3.38 3.18 
  pre-phase 

rate 0.15 3.25 3.32 3.13 3.24 3.22 
  pre-phase 

rate 0.20 3.14 3.18 3.14 3.13 3.22 



  pre-phase 
rate 0.25 3.1 3.08 3.11 3.13 3.11 

  pre-phase 
rate 0.30 3.13 3.13 3.15 3.15 3.12 

  pre-phase 
rate 0.35 3.13 3.14 3.1 3.13 3.16 

  pre-phase 
rate 0.40 3.15 3.11 3.12 3.17 3.05 

 phase 
rate 0.1 

pre-phase 
rate 0.05 3.12 3.11 3.08 3.09 3.07 

  pre-phase 
rate 0.1 3.07 3.1 3.11 3.11 3.15 

  pre-phase 
rate 0.15 3.17 3.07 3.11 3.1 3.1 

  pre-phase 
rate 0.20 3.14 3.11 3.11 3.11 3.08 

  pre-phase 
rate 0.25 3.11 3.11 3.11 3.15 3.11 

  pre-phase 
rate 0.30 3.14 3.09 3.09 3.09 3.09 

  pre-phase 
rate 0.35 3.1 3.09 3.15 3.2 3.11 

  pre-phase 
rate 0.40 3.07 3.1 3.12 3.07 3.11 

 phase 
rate 
0.15 

pre-phase 
rate 0.05 

3.13 3.11 3.08 3.15 3.12 
  pre-phase 

rate 0.1 3.11 3.12 3.11 3.15 3.11 
  pre-phase 

rate 0.15 3.14 3.11 3.12 3.12 3.08 
  pre-phase 

rate 0.20 3.1 3.08 3.09 3.1 3.13 
  pre-phase 

rate 0.25 3.11 3.12 3.12 3.15 3.12 
  pre-phase 

rate 0.30 3.1 3.1 3.12 3.16 3.15 
  pre-phase 

rate 0.35 3.08 3.09 3.15 3.09 3.12 
  pre-phase 

rate 0.40 3.1 3.12 3.13 3.14 3.12 
 phase 

rate 
0.20 

pre-phase 
rate 0.05 

3.08 3.1 3.1 3.11 3.12 
  pre-phase 

rate 0.1 3.1 3.09 3.14 3.11 3.13 
  pre-phase 

rate 0.15 3.11 3.08 3.17 3.09 3.18 
  pre-phase 

rate 0.20 3.11 3.12 3.11 3.14 3.13 
  pre-phase 

rate 0.25 3.15 3.12 3.14 3.1 3.11 
  pre-phase 

rate 0.30 3.18 3.14 3.28 3.21 3.21 



  pre-phase 
rate 0.35 3.25 3.22 3.24 3.24 3.21 

  pre-phase 
rate 0.40 3.23 3.23 3.23 3.52 3.43 

Table 6: Pipeline 1 Run Times 

 Table 7 shows the results obtained from the run times from pipeline 2. As can be seen in 

the table the run times are fairly consistent through cycles, but show some variation through 

different values of phasing and pre-phasing. The run times show no real correlation and not 

much variations ranging from 42.06 to 44.46, meaning that the run time is not dependent on 

the error seen in the data.  

 

Simulation Table for Pipeline 2: Run Times  
   Run 1 

(sec) 
Run 2 
(sec)  

Run 3 
(sec) 

Run 4 
(sec) 

Run 5 
(sec) 

   cycles 
3_12  

cycles 
1_20 

cycles 
20_50 

cycles 
3_33 

cycles 
50_70 

clean  clean  clean 43.04 44.36 43.96 44.12 43.44 
decay rate 
0.02 

phase rate 
0.05 

pre-phase 
rate 0.05 43.04 44.36 43.96 44.12 43.44 

  pre-phase 
rate 0.1 44.15 43.9 43.53 43.49 43.51 

  pre-phase 
rate 0.15 43.34 43.91 43.41 43.47 43.65 

  pre-phase 
rate 0.20 43.67 43.35 43.27 43.43 43.17 

  pre-phase 
rate 0.25 43.4 43.44 43.28 43.31 43.13 

  pre-phase 
rate 0.30 43.81 43.26 43.31 43.41 43.2 

  pre-phase 
rate 0.35 43.25 43.54 43.35 43.28 43.2 

  pre-phase 
rate 0.40 43.2 43.25 43.27 43.24 43.34 

 phase rate 
0.1 

pre-phase 
rate 0.05 43.06 43.19 43.2 43.34 43.32 

  pre-phase 
rate 0.1 43.32 43.47 43.38 43.58 43.48 

  pre-phase 
rate 0.15 44.41 43.3 43.45 43.33 43.46 

  pre-phase 
rate 0.20 43.23 43.49 43.42 43.44 43.19 

  pre-phase 
rate 0.25 43.27 44.09 43.46 43.47 43.36 



  pre-phase 
rate 0.30 43.17 43.28 43.29 43.25 43.45 

  pre-phase 
rate 0.35 43.36 43.42 43.12 43.57 43.4 

  pre-phase 
rate 0.40 43.4 43.38 43.4 43.28 43.33 

 phase rate 
0.15 

pre-phase 
rate 0.05 43.63 43.31 43.44 43.57 43.37 

  pre-phase 
rate 0.1 43.28 43.69 43.47 43.47 43.34 

  pre-phase 
rate 0.15 43.15 43.29 43.24 43.4 43.05 

  pre-phase 
rate 0.20 42.97 43.05 43.42 43.59 43.57 

  pre-phase 
rate 0.25 43.57 43.7 43.37 43.28 43.41 

  pre-phase 
rate 0.30 43.3 43.53 43.47 43.53 43.47 

  pre-phase 
rate 0.35 43.25 43.24 43.37 43.4 43.48 

  pre-phase 
rate 0.40 43.56 43.47 43.62 43.43 43.42 

 phase rate 
0.20 

pre-phase 
rate 0.05 43.37 43.42 43.45 43.21 43.42 

  pre-phase 
rate 0.1 43.35 43.39 43.22 43.58 43.45 

  pre-phase 
rate 0.15 43.38 43.12 43.26 43.24 43.32 

  pre-phase 
rate 0.20 43.33 43.32 43.24 43.42 43.49 

  pre-phase 
rate 0.25 43.44 43.2 43.29 43.61 43.24 

  pre-phase 
rate 0.30 43.21 43.52 43.64 43.27 43.53 

  pre-phase 
rate 0.35 43.25 43.29 43.39 43.25 43.38 

  pre-phase 
rate 0.40 43.93 43.91 43.54 43.88 43.84 

Table 7: Pipeline 2 Run Times  

 

 After obtaining run times for both pipeline 1 and 2 a graphical representation of the 

results were created, as seen in figure 10. As can be seen no clear pattern in either graph can 

be discerned. Both seem to have values which are relatively consistent with one another as 

phasing and pre-phasing increases. Although the distribution of each graph is fairly constant, 

the average of each pipeline is quite different. As can be seen in the graphs below, pipeline 1 



has run times ranging from 3.05 seconds to 3.46 seconds. This is relatively fast when compared 

to the run time for pipeline 2 which shows ranges from 42.8 seconds to 44.6 seconds. This is 

about 10x more than pipeline one. Thus from the data pipeline 2 seems to have a much slower 

run time then pipeline 1.  

 

 

Figure 10: Comparison of Timing for the Pipeline 1 and 2 

5.3 Autoregressive phasing results  
 

 The last was created using an Autoregressive function to generate phasing and pre-

phasing values. Table 8 below shows the result of this method, the phasing values simulated 

into the data are seen in column 1 and the Pre-phasing simulated vales are seen in row 1. These 

results show that the autoregressive method is able to incorporate both the phasing and pre-

phasing values. This means that this method will show similar results to that seen in pipeline 2, 

but at a much slower rate taking about 1 hour to acquire each value seen in the table below.  

 



 

Autoregressive Resultants  

  Pre-phasing Values  

P
h

a
si

n
g

 V
a

lu
es

 

0 0.05 0.15 0.25 0.35 0.1 0.2 0.3 0.4 

0.05 0.09359 0.226005 0.368907 0.489537 0.155924 0.297441 0.431909 0.529938 

0.15 0.225987 0.383319 0.536544 0.636073 0.301808 0.461786 0.596169 0.646961 

0.25 0.369643 0.537284 0.670418 0.701535 0.45274 0.611401 0.701503 0.66094 

0.35 0.492034 0.635109 0.698417 0.624131 0.567568 0.681698 0.679815 0.534985 

0.1 0.089827 0.221997 0.36494 0.485611 0.151798 0.293363 0.427396 0.52411 

0.2 0.221439 0.378778 0.531639 0.631077 0.29724 0.457095 0.591183 0.64165 

0.3 0.364757 0.532045 0.665773 0.697202 0.447455 0.606448 0.696882 0.656921 

0.4 0.487375 0.630702 0.694419 0.621753 0.562661 0.677186 0.676743 0.533009 

Table 8: Autoregressive Resultants  



CHAPTER 6-DISCUSSION  

6.1 Data Simulation 

6.1.1 Sequence simulation 

One of the most important parts of this DNA sequencing project was data simulation. There are 

readily available sequence intensity data files online but the original sequence is not available. 

Therefore, the team developed a sequence simulator from which the intensity data files will be 

further simulated. The first attempt to simulate a DNA sequence was by using excel’s random 

function. In each cell, a random function was placed on A,G,C,T while the number of cells are 

equal to the length of the sequence, the output csv/xlsx file being a sheet of cells containing 

nucleotides. This attempt seemed to work at first but it was found that whenever the excel file 

is opened, the cells get randomized again. Also, the team’s data comparator(base call vs real 

sequence) had issues interpreting the csv/xlsx files. The team found another solution which was 

to simulate a txt file directly from python. Same approach was used to randomize  the 

nucleotides across the sequence and the final output file is stored as a txt file. The nucleotides 

simulated in the txt files do not change anymore as the txt files are permanently simulated 

from python. The data comparator was also able to directly read the data from txt files. 

6.1.2 .Cif simulation(clean) 

After having successfully simulated dna sequence .txt files, .cif files were simulated from the 

.txt files. Illumina stores intensity data in files with .cif extension, where the intensities of 

clusters are stored in bytes as little endian 2 byte integers. The team followed the same data 

storage format and simulated similar .cif files. The team simulated clean data without any 

phasing or noise first by setting the highest base callable intensity significantly higher than the 

other three intensities for a single cluster. The team set the intensity ranges in a manner that 



the overall chastity for the intensities of each cluster is 0.7 so that those intensities pass 

Illumina’s chastity filter at 0.6. The team ran the clean .cif files through the base caller and 

afterwards, through the comparator to compare with the original sequence .txt files. It was 

found that there were zero missed base calls which confirmed that the data was clean. 

6.1.3 Cif simulation(decay) 

The team assumed that there would be source(s) of noise interfering with the cluster intensities 

other than phasing. One possible source of noise, decay, was assumed since the fluorescent 

dyes attached to the nucleotides can decay with time with exponential differentiation y = a(1-

b)x   where y is the intensity at x cycle, a is the intensity of the first cycle, b is the decay rate and 

x is the number of current cycle. 

Different color dyes are used for different nucleotides and thus, there were assumed to be four 

different decay rates.  Even though this decay nature changes the intensities of the clusters, all 

four intensities in a cluster are reduced so there are no obviously notable interference with the 

base calls. Intensity data with different decay rates were tested, base-called and compared with 

the original sequence simulated. The large decay rates introduced a small error rate, and the 

small decay rates did not have an effect on the final base call. However, combined with phasing 

noise, the decay noise had a much more notable interference with the base calls. 

6.1.4 Cif simulation(phase) 

The main reason why base call results are inaccurate these days is the noise that comes from 

phasing.  



Phasing is the lagging of a fixed fraction of molecules in each cluster at each cycle, in the sense 

that those molecules fall one base behind in sequencing. Pre phasing is essentially the same 

process, the only difference being that the molecules fall one base ahead. 

In simulating the phased .cif files, the team incorporated the phase equation provided by 

Illumina, 

, to the intensities (n is the number of current cycle, k is the number of phased 

cycles,p is the phased fraction). Similar equation was incorporated for prephasing in an 

opposite direction to the intensities as well.  

The change in values of the phase fraction and prephase fraction were discovered to have a 

huge impact on the accuracy of the intensities. The larger the phase fraction/prephase fraction, 

the more errors were introduced in the base calls. 

6.1.5 Direct hdf5 simulation 

The team’s Matlab script that converts .cif to hdf5 format, was found to be overly time 

consuming in verifying with more than a thousand sets of data. Therefore, the quicker direct 

hdf5 simulation with desired characteristics was introduced. Python has a package, h5py, that 

can store simulated data in h5 format. Thus, the team used the package to simulate all the 

clean and noise data again that was previously simulated as .cif. Those h5 files were base-called 

directly and compared with base-called results of hdf5 simulated from cif, and it was confirmed 

that they both contained the same intensities. 



6.2 Alternative Data Sources 

Beyond simulated data, data was also acquired from two alternate sources.  One data set was 

attained directly from an Illumina sequencing run, while another set containing a phi X 174 

control was downloaded from an online server. Ultimately, the post-conceptual revisions of 

each pipeline were tested and evaluated using the simulated data. Some problems were 

encountered that made attempting to analyze the sequencer data difficult. The tags used to 

identify the known phi x control contained within the sequence were not available and time 

was not allocated to search for the sequence.  The server data was not used for pipeline testing 

purposes because it was found to be of very poor quality. Early on, the data was called and 

aligned to the known phi x sequence and very few segments had a good alignment ratio. This 

indicates that the error rates are large. Unfortunately, the source of this error is unknown and 

could impact the validity of the pipeline. It was then decided that developing a simulation script 

to produce controllable data sets with known error rates would be the most effective way of 

testing and validating the pipeline. 

6.3 .Cif Conversion to HDF5 

 

 In order to use the data that was simulated or received from Stanford, the team needed 

to create a converter so that the data would be in the proper format. This was done using 

matlab and then python. .Cif are stored in binary format so the converter changed those into 

integer values and then converted them to HDF5. HDF5 is a file format that is used to store very 

large amounts of data in different “files” inside one shell file. This was very useful as the 

illumina machines output numerous .cif files per read.  



6.4 Phasing and Pre-Phasing  

 The phasing and pre-phasing process of the pipeline was modified three different times. 

The first pipeline created uses the tech documents provided from the Illumina website. This 

document had lots of unknowns including the noise error and phase error calculations. Then 

pipeline 2 was created using known phasing and pre-phasing values from the simulation data. 

Then for pipeline 3 an autoregressive model was created and run through. The results of these 

changes will be discussed below.  

6.4.1 Results from Pipeline 1 

  For pipeline 1 the illumine tech document was replicated. Two main components of the 

pipeline were not specifically discussed. The first being the noise error variable, this variable 

takes into account the fading that occurs towards the last cycles of the run, also known as 

bleaching. This component was determined to be modeled on an exponential decay curve. The 

next unknown variable from the tech document was the error due to phasing. Neither the tech 

document nor the Illumina web page provided any information on how the phasing error 

variable was calculated. This lack of information meant that the phasing variable had to be 

estimated using a random variable.  

 Since the Illumina pipeline is based on cascading variables from one function to another, 

the results from pipeline 1 resulted in a random number generator. Thus the percentage of 

error was randomly high in one set of data and then low in another set of data, this is seen in 

figure 9. The graph shows no discernible pattern when comparing the lowest phasing and pre-

phasing values as opposed to the highest phasing and pre-phasing values. Thus this data was 

labeled as randomized and not analyzed further for higher or lower percentage errors were 

done.  



The run time for pipeline 1 did show fast run time values, as seen in figure 10. The run 

time on average is about 3 seconds for all ranges of phase and pre-phasing values.   This is a 

positive to this type of analysis meaning that it will provide rapid results and will be able to 

handle data with higher errors just as efficiently as data with minimal error. Thus with pipeline 

1 although it does produce high percentage errors, the processing time is relatively quick.  

6.4.2 Results from Pipeline 2  

 For pipeline 2 the phasing and pre-phasing ratio of the data was taken from the 

simulated data and imported into a polynomial summation process. This process involved 

imputing known quantities of phasing and pre-phasing variables and then placing these values 

into a coefficient for a polynomial expression based on the cycle being observed. This process 

involved iterating through the data both forward for phasing and backwards for pre-phasing.  

The results of this pipeline was is seen in figure 9 As can be seen this pipeline shows a 

relatively linear pattern being that the higher phasing and pre-phasing values result in the 

higher percent error results and the lowest resulting in the lowest percent error. This creates a 

positive relationship between the phasing and pre-phasing values and the percent error values. 

This data correlates with the idea that higher simulated error will result in higher percentage 

error meaning in comparison to pipeline 1 this result is much more realistic and a lot more 

efficient in terms of percent error. The highest value for pipeline 2 being 15% isn’t even the 

lowest possible value for pipeline 1. When comparing pipeline 1 and pipeline 2 percent error 

results the clearly more efficient method is seen in pipeline 2.  

In terms of run time the results can be seen in Figure 10. As can be seen the pipeline 

shows an average run time of about 45 seconds. This is approximately about 10X slower than 



that of pipeline `1. Although this is a slower pipeline as compared to pipeline 2, it is a lot more 

effective in terms of percent error. It was determined that pipeline 2 was the optimal pipeline 

because of the high performance of the percent error. In terms of the data provided it is a lot 

more helpful for a pipeline to produce better data then to run at a quicker speed and thus 

pipeline 2 was determined to be the better method.  

6.4.3 Results from Pipeline 3  

 The final method which was implemented was the Autoregressive method. This 

involved importing individual clusters and individual channels through all cycles into an 

autoregressive function. The average coefficient value for the autoregressive output was 

calculated for each data set. This resulted in a value corresponding to the sum of the phasing 

and pre-phasing values input into the simulated data.  

 The result of this pipeline can be seen in table 8.  The phase values can be seen in the 

first column and the pre-phase values can be seen in the first row of the chart. These values 

correspond to the amount of phasing and pre-phasing generated by the simulated data. As can 

be seen the autoregressive method is fairly accurate. The sum of the input phasing and pre-

phasing values correspond fairly closely with the calculated autoregressive output coefficient.  

This means that the results of this method will show a similar trend to that seen in pipeline 2.   

6.5 Basecalling 

One of the team’s initial goals was to develop a method for quickly and efficiently producing 

the nucleotide sequence of a given intensity set. This was considered a vital component of the 

final pipeline because validation of the pipeline’s effect on intensity data was to be based off 

the direct decrease in erroneously called bases in the resulting sequence. The initial basecalling 



script was designed to take a .CIF file as an input. A .CIF file is a proprietary file produced by 

Illumina Sequencers, which stores the intensity values for particular channels in a binary 

format. The prototype basecaller converted these .CIFs from binary and output a .txt file 

containing each cluster on its own line. When the scope of the project shifted to focus on 

generated data, the basecalling script was rewritten to use a three dimensional array of 

intensities as the input. By using a standardized 3D array, the team could format both raw 

generated data and corrected data to be compatible with the basecaller. 

6.5.1 Functional Techniques Utilized 

The most crucial component when producing a sequence from intensity values is the structure 

that the data is stored in. The team determined that the most efficient method for storing the 

massive amounts of data produced by the sequencers would be in three dimensional arrays. 

Once the data was formatted in three dimensions, separate functions in the pipeline would be 

able to analyze sections, or “slices” of the array.  Using this slicing method, the basecaller is able 

to read in all four channels of a cluster at a particular cycle. The maximum of these four 

intensities is the most prevalent nucleotide for that cluster at that cycle. The index of each 

channel correlates to the channel’s nucleotide (A, C, G, T). The index of the maximum is 

appended to a text file and once all the channels in a cluster have been analyzed, a newline is 

created within the text file. 

6.5.2 Output Files 

While the original intent of producing an accurate basecalling mechanism was achieved, there 

is still more that can be done in terms of data readability. Presently, the data is stored in a text 

file, which is acceptable for the team’s purposes, but if the sequence analysis is to be taken 



further then a more universal format would need to be used.  The team investigated the 

implementation of a FASTA format to increase the cross-program utility of the output files, but 

never proceeded to implement the format into the pipeline.  The information included in the 

FASTA format is not necessarily information that is useful when doing pure error analysis of the 

sequence clusters. FASTA format is able to indicate uncertainty when representing nucleotides 

in sequence.  For example, a specific character can indicate positions which only have potential 

to contain a base with amino groups (A & C) while another character indicates a base that only 

has the potential to be a ketone (G & T).  The team’s pipeline does not implement any 

technique for limiting possible bases in any given position so it was determined that there 

would be very little present advantage to applying the FASTA format. In the future it may be 

worth investigating the implementation of this or other formats to allow the output file to be 

run through other analysis or alignment programs. 

6.6 Data Confirmation 

It was determined that the most effective metric for determining the efficacy of the 

pipeline would be the reduction in error rate. To measure the error rate of a sequence, the data 

confirmation program was developed. This program derives a percentage from the amount of 

errors seen over the total number of nucleotides in a sequence. Each sequence was compared 

to the origin sequence, which can be assumed to have zero errors.  The simulated sequence will 

produce a specific amount of error, while the post-pipeline sequence should have a lower error 

rate.  The data confirmation program is also capable of providing the index of the errors to help 

identify trends in the data. 



CHAPTER 7- FINAL DESIGN AND VALIDATION 

7.1 Final Design 

This project resulted in three pipelines, which each dealt with sequence errors produced 

by phasing in next generation sequencers. All three pipelines were based around the same 

sequence of operations with a varying phase correction component.  The first module of each 

pipeline was the simulator, used to simulate data sets with varying degrees of error. The next 

process was the respective phase correction method. The final two steps were the base calling 

program and the data confirmation program, which provides an error rate for the sequence.  

7.2 Validation of Phase Correction  

In order to validate each method of phase correction implemented in the pipelines, a 

metric to appraise the reduction in error was necessary. It was determined that the most 

effective process for rating the error reduction in the analyzed sequence would be a direct 

comparison with the initial, uncorrected sequence. A script was developed to compare the 

sequence txt. file, containing either the simulated or post-pipeline sequence, with the sequence 

txt. file used to simulate the intensity data. Equations for calculating the error rates are found 

below.  



The simulated error rate is calculated by dividing the number of differences between the 

simulated sequence and the origin sequence by the total number of nucleotides in the 

sequence. This value describes the error content of the simulated data set, which can be 

controlled by variables within the simulator program. The pipeline error rate is calculated by 

dividing the number of differences between the post-pipeline sequence and the origin 

sequence by the total number of nucleotides in the sequence. This value describes the error 

content of the sequence after it has been adjusted by the pipeline. In theory, if the pipeline is 

valid this value will be less than the simulation error rate. The difference between the 

simulated error rate and the pipeline error rate is the reduction in error rate, resulting from the 

pipeline. 

7.3 Validating the integrity of simulated data 

As mentioned above in Chapter 4, the team simulated direct hdf5 files instead of .cif 

files as the conversion process takes a huge amount of time. The hdf5 files generated were run 

through the base caller and sequence comparator to check whether the sequence data 

completely matches the data contained in the .cif files they were generated from.  The 

simulated data was validated as the h5 files and .cif files were found to contain the exact same 

data. 

𝑀𝑖𝑠𝑐𝑎𝑙𝑙𝑠 𝑖𝑛 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑠𝑒𝑠 𝑖𝑛 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
∗ 100  𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒  

𝑀𝑖𝑠𝑐𝑎𝑙𝑙𝑠 𝑖𝑛 𝑃𝑜𝑠𝑡−𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑠𝑒𝑠 𝑖𝑛 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
∗ 100  𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒  

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒  𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒  𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒊𝒏 𝑬𝒓𝒓𝒐𝒓 𝑹𝒂𝒕𝒆 



Also, the team validated the error simulation by basecalling the h5 files containing 

phase/prephase errors, and decay errors. It was confirmed that the clean data also got zero 

error percentage in base calling. It was discovered that the data with decay error alone did not 

have a high error percentage. Only large decay rates induced a small error percentage in the 

data. This validates the simulated data as the decay nature alone is not supposed to affect the 

overall intensity of a cluster as all four channel intensities of that cluster will be reduced 

without making a notable difference between each of the individual channel intensities. 

However, the data with phase/prephase error alone seemed to have a bigger impact on the 

base call accuracy giving larger error percentages as the phase/prephase parameter values get 

larger. This also validates the simulation of data with phase/prephase error since the phasing 

/prephasing nature, where the intensity changes between all four channels at one cycle are 

dependent on the intensities of previous/next cycles, is likely to affect the data accuracy more 

than decay, where the intensities are changing at a uniform rate. For the data with both decay 

and phase/prephase error combined, the error percentages were slightly larger, which also 

apparently validates the simulation as the combination of the two noises should give a larger 

noise. 

 

 

 

 



CHAPTER 8 – CCONCLUSIONS AND RECOMMENDATIONS 
 

Pipeline 2 depicted the best results in terms of accuracy. Although pipeline 1 shows a 

faster run time, the high percent error makes it a very ineffective pipeline and would not be 

recommended for any type of sequencing data. Pipeline 2 on the other hand may take longer to 

run but It will supply the lab technician with a more accurate called sample. In terms a test for a 

genetic mutation, the curtail component is going to be acquiring accurate data. A physician and 

patient would sacrifice time for more accurate results especially if that mutation could result in 

a life or death diagnosis. Thus pipeline 2 is the most optimal pipeline. Pipeline 3 does show 

promise in possibly supplying quality data which is comparable to pipeline 2, but future testing 

will need to be done in order to verify this prediction.   

 It is this team recommendation that future work be completed on the autoregressive 

function as well as the functional runtime of the pipeline. This process shows great promise but 

requires more work.  
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