
Robust Methods for Anomaly Detection
with Applications to Cyber Data

by

Chong Zhou

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Data Science

April 19, 2019

APPROVED:

Professor Randy C. Paffenroth
Worcester Polytechnic Institute
Advisor

Professor Yanhua Li
Worcester Polytechnic Institute
Committee Member

Professor Elke A. Rundensteiner
Worcester Polytechnic Institute
Program Director

Professor Xiangnan Kong
Worcester Polytechnic Institute
Committee Member

Dr. Partha Pal
Raytheon BBN Technology
External Committee Member

Abstract

In many real-world problems, large outliers and pervasive noise are com-

monplace, and one may not have access to clean training data. Accordingly, anomaly

detection methods are useful to detect and remove anomalies for further anal-

ysis. Robust Principal Component Analysis (Robust PCA) is an example of

such a method that splits data into a sparse anomaly part and the remaining

part which can be projected on a linear low-dimensional manifold.

Our work consists of both methodology development and real-world ap-

plications. We generalize Robust PCA from discovering linear manifolds to

non-linear relationships in the data. In the recent literature, deep autoencoders

and other deep neural networks have demonstrated their effectiveness in ex-

ploring non-linear features across many problem domains. Our extension com-

bines deep autoencoders and Robust PCA, which not only maintain a deep

autoencoders’ ability to discover non-linear features, but can also eliminate

noise. We present generalizations of our results to grouped sparsity norms

which distinguish anomalies from structured corruptions, such as a collection

of instances having more corruptions than their fellows. Leveraging grouped

norms allows our method to detect row-wise outliers. Both denoising and out-

lier detecting increase the robustness of standard deep autoencoders, and we

named our novel method a “Robust Deep Autoencoder (RDA)”. This work

has been published as a full paper on the research track of the KDD’17 con-

ference. Further, we propose a model consisting of a hierarchical collection

of RDAs which maintains the spirit of stacked denoising autoencoders and

hierarchical neural networks. By allowing any advanced autoencoder, such

as a sparse autoencoder or a variational autoencoder, to name but a few, to

replace the standard autoencoders used previously in the RDA framework,

we demonstrate that the RDA framework can be expanded to a wide range

2

of deep models. These models include, but are not limited to, grouped norm

regularized sparse autoencoders and variational generative models.

On the aspect of practical employments, we present real-world applica-

tions of Robust PCA and RDA to the cyber security domain to analyze dimen-

sionality of data and find anomalies. We detect anomalies in data arising from

high fidelity simulation networks and both Robust PCA and RDA provide ef-

fective features capable of identifying different Distributed Denial of Service

(DDoS) attacks. Finally, we provide a procedure for modifying Robust PCA

to adapt to dynamic streaming data. Our contribution has been built into the

Adaptive Resource Management Enabling Deception (ARMED) system which

aims to enable better detection and mitigation of DDoS attacks.

3

Acknowledgments

I sincerely thank my adviser, Prof. Randy C. Paffenroth, for multiple fruitful

and inspiring discussions, his wise comments and advise on numerous prelimi-

nary versions of my publications. I thank him for pushing me and encouraging

me to complete my Ph.D. thesis. He played a very important role in every step of

my Ph.D. studies from my first class at WPI, through every milestone, publication,

etc. He was both supportive and encouraging while supervising my research from

a vague idea to a polished publication in a top-level venue. Without his help, I

would not be where I am now in my professional and personal development.

I would like to thank my committee members, Prof. Xiangnan Kong, Prof.

Yanhua Li, and Dr. Patha Pal, for careful reading of my publications and this

manuscript, and improving them by their numerous suggestions.

I would also like to thank Prof. Elke A. Rundensteiner and Data Science pro-

gram of Worcester Polytechnic Institute, for supporting me as a teaching assistant

during the first two years of my studies and researches. I thank Dr. Partha Pal,

Raytheon Company, and DARPA (contract No. HROOll-16-C-0058), for funding

me as a research assistant in the second two years of my research.

I would like to thank my collaborators, Haitao Liu, Hongzhu Cui, Cassidy

Litch, Cody Doucette, Huimin Ren, Yun Yue, and Xiao Qin, for their brilliant ideas,

critical comments and productive collaborations. They helped me with elaborat-

ing and polishing explanation of my publications. It was a pleasure to work with

them, and I am looking forward to our future joint publications.

I would also like to thank members of our research group, especially Fan Yang,

Wenjing Li, Yingnan Liu, Matthew L. Weiss, Nitish Bahadur, Kelum Gajamannage,

F. Patricia Medina, and Xiaozhou Zou, for listening to my preliminary and final

4

talks and enriching them with bright ideas and critical comments.

I am endlessly grateful to my family and friends, Pu Zhou, Jiangrong Wu, Xi-

anglin Wu, Hanqin Zhou, Yuehua Zhang, Nan Li, Han Jiang, Hongnan Li, Guojun

Wu, Menghai Pan, Hang Cai, and Xinyuan Sun, for their everlasting support dur-

ing my Ph.D.. This dissertation is devoted to them.

Last but not least, I thank the administrative assistant of Data Science Program,

Mary Racicot, for her kind help and administrative work.

5

Publications Contributing to this Dissertation

Paper Published

Chong Zhou and Randy C. Paffenroth. “Anomaly detection with robust deep

autoencoders.” Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2017.

Cui, Hongzhu, Chong Zhou, Xinyu Dai, Yuting Liang, Randy Paffenroth, and

Dmitry Korkin. “Boosting gene expression clustering with system-wide biological

information: a robust autoencoder approach.” International Journal of Computational

Biology and Drug Design.

Paper in Submission

Chong Zhou and Randy C. Paffenroth. “Hierarchical and Robust Autoencoders.”

In submission to IEEE Transactions on Pattern Analysis and Machine Intelligence

(2018).

Chong Zhou, Cassidy Litch, Randy C. Paffenroth, Partha Pal, Nathanial Soule and

Regan Broderick-Sander. “Deep and Shallow Robust Methods for Detecting Dis-

tributed Denial of Service (DDoS) Attacks.” In submission to ACM Digital Threats:

Research and Practice (2019).

Cody Doucette, Regan Broderick-Sander, Benjamin Toll, Aaron Helsinger, Nathaniel

Soule, Partha Pal, Chong Zhou, and Randy Paffenroth. “Anomaly Detection in

ARMED using Robust Principal Component Analysis” (2019).

Huiming Ren, Yue Yun, Chong Zhou, Randy Paffenroth, and Yanhua Li. “Robust

Variational Autoencoders.” In submission to ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining (2019).

6

Liu, Haitao, Randy C. Paffenroth, Jian Zou, and Chong Zhou. “Anomaly Detection

via Graphical Lasso.” In submission to Transactions on Signal Processing (2018).

7

Executive Summary

We foreshadow our work with a high-level summary and key results of this disser-

tation. In this study, we are targeting the case where one wishes to train algorithms

when one only has access to noisy data. In particular, the noise and outliers are

commonplace which significantly reduce the quality of data, while cleaned, noise-

free data are expensive and require extra manual processing. Herein, we address

this problem with a solution which is structured in three parts, a set of novel mod-

els, an applicable training algorithm, and their applications to cyber security. An

outline of my work can be found in Figure 1.

The left side of Figure 1 lists some important works in the literature including

Robust PCA, Deep Autoencoders, Sparse Autoencoders, and Variational Autoen-

coders that inspire us to build our contribution. Some key ideas of these work are

introduced in Section 3.

My first innovative work, shown in the green boxes, starts with a new combi-

nation of Robust PCA and deep autoencoder which results in a novel model that

allows denoising without any noisy-free data, and we name our model a “Robust

Deep Autoencoders(RDA)”. We develop a novel training algorithm that achieves

fast and stable performance. As a consequence of group norms such as the `2,1

norm, we extend RDA to a novel outlier detection method. This work has been

published in KDD’2017 and will be detailed in Section 5 and 11.

Our next stage of work mainly consists of forming a hierarchical model based

on RDA and extending RDA with sparse models. Each layer in such a hierarchical

model continuously improves performances of denoising or outlier detection and

the final output will be as clean as possible. This part of our work will be detailed

in Section 7 and 6 and resulted in a paper which was submitted to IEEE Transaction

8

on Pattern Analysis and Machine Intelligence.

Further work also demonstrates our RDA is extendable to generative models.

Collaborating with Huimin Ren and Yue Yun, we build new contribution that com-

bines RDA and variational autoencoders which allows one to generate new and clean

samples from only noisy inputs. This work formed a paper which was submitted to

KDD’2019 and will be introduced in Section 8.

The blue boxes in Figure 1 show the application aspect of my research in which

we apply RPCA and RDA for analyzing DDoS attacks. In particular, we find that

both dimensionality and anomalies provided by RPCA can be sensitive barome-

ters to cyber attacks. This RPCA-based analysis is a key component of the ARMED

(Adaptive Resource Management Enabling Deception) technology suite developed

under the DARPA XD3 program. ARMED is currently being evaluated for transition

to defend a tactical situational awareness server that is widely used by various civilian and

military agencies.

Collaborating with Cassidy Litch, we showed that features generated from

RDA can significantly reduce false positive rates of predictions on cyber data. The

results are demonstrated in Section 15 and 16. We submitted this work to ACM

Digital Threats: Research and Practice.

The red boxes in Figure 1 shows some additional works that either unpublished

or I am not the primary author. In particular, we modify the RPCA and allow it

detecting anomalies in the streaming environments, which has been finished and

it is in preparation to submission.

9

Figure 1: This figure shows the road map of my research. The left side lists some

important results in the literature including Robust PCA, Deep Autoencoders,

Sparse Autoencoders, and Variational Autoencoders that inspire us to build our

contribution. My first innovative work, shown in green boxes, includes the Robust

Deep Autoencoder (RDA), which is a new combination of Robust PCA and deep

autoencoder, and an efficient training algorithm which was accepted to KDD’2017.

The purple boxes shows that our next stage work consists of forming a hierarchical

model based on RDA and extending RDA with sparse models with has been sub-

mitted to IEEE: Transaction on Pattern Analysis and Machine Intelligence. The or-

ange box show a collaborative work with Huimin Ren and Yun Yue, which demon-

strate a variational autoencoder and has submitted to KDD’2019. The blue boxes

are an application project that we apply Robust PCA and RDA for analyzing DDoS

attacks. The other boxes in red are either unpublished or I am not the primary au-

thor.

10

Dissertation – Chong Zhou 11

Contents

1 Introduction 17

I Robust Deep Neural Network Models 18

2 Overview 19

3 Background 19

3.1 Robust Principal Component Analysis 20

3.2 Deep Autoencoders . 21

3.3 Sparse Autoencoders . 22

3.4 Denoising Autoencoders . 24

3.5 Variational Autoencoders . 25

4 Related Work 26

4.1 Robust Deep Autoencoders . 26

4.2 Hierarchical Robust Deep Autoencoders 26

4.3 Robust Variational Autoencoders . 27

5 Robust Deep Autoencoders 28

5.1 Robust PCA and Deep Autoencoder Combination 28

5.2 Anomalous Feature and Instance Detection 31

5.3 Experimental Evaluation . 33

5.3.1 Denoising RDA with `1 norm 34

5.3.2 Outlier Detection with `2,1 norm 37

5.4 Section Summary . 40

Dissertation – Chong Zhou 12

6 Robust Sparse Autoencoders 41

6.1 Robust Sparse Autoencoders . 41

6.2 Experimental Evaluation . 43

6.3 Section Summary . 44

7 Hierarchical Robust Deep Autoencoders 45

7.1 Hierarchical Robust Deep Autoencoder 45

7.2 Experimental Evaluation . 47

7.2.1 HRDA for Denoising . 47

7.2.2 HRDA for outlier detection . 49

7.3 Section Summary . 51

8 Robust Variational Autoencoders 51

8.1 Robust Variational Autoencoders . 53

8.2 Experimental Evaluation . 54

8.2.1 Benchmark Methods . 55

8.2.2 Evaluation Metrics . 57

8.2.3 MNIST . 58

8.2.4 Fashion MNIST . 61

8.3 Section Summary . 63

II Training Methods 65

9 Overview 65

10 Background 65

10.1 Back-propagation . 65

Dissertation – Chong Zhou 13

10.2 Proximal Gradient . 67

10.3 ADMM . 68

11 Algorithm Training 70

11.1 Alternating Optimization for Robust Deep (Sparse) Autoencoder . . 70

11.2 Proximal Method for `1 and `2,1 Norm 73

11.3 Experimental Evaluation . 75

11.4 Section Summary . 77

III Applications to Cyber Security 79

12 Overview 79

13 High-fidelity Simulated Data 79

14 Related Work 81

14.1 Novel DDoS Attack . 81

14.2 Anomaly Detection with Cyber Data 82

15 Robust PCA for Anomaly Detection in Cyber Data 82

15.1 Application In Cyber Security . 83

15.2 Experimental Evaluation . 87

15.2.1 Dimension and Anomalies . 87

15.2.2 Network Connections under Different Attacks 89

15.2.3 Second Order Analysis . 90

15.3 Section Summary . 91

16 RPCA and RDA for Semi-supervised Learning of Attacks 93

Dissertation – Chong Zhou 14

16.1 Semi-supervised Learning . 93

16.1.1 Semi Robust Principal Component Analysis 94

16.1.2 Semi Robust Deep Autoencoder 97

16.2 Experimental Evaluation . 99

16.2.1 Baseline Methods . 99

16.2.2 Data Labeling . 100

16.2.3 Semi-supervised learning results 101

16.3 Section Summary . 104

17 Streaming Anomaly Detection via Robust PCA 104

17.1 New Challenges for Second Order Analysis 105

17.1.1 Streaming Covariance Computation with Forget Rates 106

17.1.2 Streaming Encoding . 108

17.1.3 Outlier Detection . 110

17.2 Experimental Evaluation . 112

17.3 Section Summary . 112

IV Conclusion and Future Work 114

18 Conclusion 114

19 Future Directions 115

19.1 Adversarial Learning . 116

19.2 Hybrid Attacks . 116

Dissertation – Chong Zhou 15

List of Figures

1 Road map . 10

2 Row anomalies and column anomalies 31

3 Input example . 34

4 RDA and DA comparison . 36

5 `2,1 RDA . 38

6 `2,1 RDA with different λ . 40

7 Isolation forest . 41

8 F1 score changes with λ and β . 44

9 HRDA for denoising . 48

10 HRDA for outlier detection . 50

11 RVAE structure . 53

12 Implementation structure . 55

13 GAN . 56

14 RVAE and VAE comparison . 58

15 RVAE and VAE comparison 2 . 60

16 RVAE compare with all other models 63

17 Tensorflow Training convergence . 76

18 Training convergence . 77

19 Network topology . 85

20 Dimension changes over time . 88

21 S changes over time . 90

22 Normal traffic . 91

23 Slow read traffic . 92

24 SYN-flood traffic . 93

Dissertation – Chong Zhou 16

25 S changes on the second order . 94

26 Raytheon attack data . 101

27 False Pos and False Neg Rates . 103

28 One-Hot encoder for new category . 109

29 Covariance computation with one-Hot encoder 109

30 Project new sample onto known space 111

31 Projection results of normal . 113

32 Projection results of outlier . 113

33 Detect abnormal features . 114

List of Tables

1 RVAE improvement . 62

Dissertation – Chong Zhou 17

1 Introduction

Deep learning is part of a broad family of methods for representation learning [34],

and it has been quite successful in pushing forward the state-of-the-art in multiple

areas [24, 25, 34, 60]. Unfortunately, outliers and noise may reduce the quality

of representations discovered by deep autoencoders [41, 42] and classic denoising

autoencoders require access to anomaly-free data which may not be available for

many anomaly detection problems. Herein, we provide our solution that develops

novel robust models, offers training algorithm, and excises on cyber data.

First, to detect anomalies and provide anomaly-free data for further analyz-

ing, we develop a family of robust models that not only detect anomalies but also

discover high quality non-linear features. Robust Principal Component Analysis

(Robust PCA) is classically used to construct low-dimensional linear features by

filtering out outlying measurements [48]. Robust PCA is a generalization of Prin-

cipal Component Analysis (PCA) that attempts to reduce the sensitivity of PCA to

anomalies [48]. In particular, Robust PCA allows for the careful teasing apart of

sparse anomalies so that the remaining low-dimensional approximation is faith-

ful to the noise-free low-dimensional subspace describing the bulk of the raw data

[48].

Combining Robust PCA and deep autoencoders, we proposed “Robust Deep

Autoencoders” (RDAs) [69] that extend normal autoencoders and filter out anoma-

lies. Such methods isolate noise and outliers in the input, and the autoencoder is

trained iteratively with this isolation. These methods provide a representation at

the hidden layers which is more faithful to the true representation of the noise-free

data [69].

Stacked autoencoders construct representations based on multiple non-linear

Dissertation – Chong Zhou 18

autoencoders [60]. We proposed a hierarchical model which allows the stacking of

RDAs, where each layer of the stacked RDA builds upon the representation from

the previous layer. In effect, each layer is given the cleaned data from the previous

layer, it then attempts to detect any additional anomalies missed by the previous

layer. We demonstrate how this layer-wise isolation of RDAs enhances the overall

effectiveness of the anomaly detection system.

We also proposed a novel sparse autoencoder model which leverages an `2,1

regularization term on the hidden layers and gives rise to more concise and infor-

mative hidden features. In particular, this model provides a sparse autoencoder

which is more faithful to classic dimension reduction in that it identifies a consis-

tent set of important features across all training data. We demonstrate how this `2,1

sparse autoencoder can also be used in the RDA framework discussed above, and

we name this new combination a “Robust Sparse Autoencoder (RSA)”.

However, these robust approaches give rise to new training challenges that iso-

lating anomalies cannot be efficiently computed by back-propagation [56] which

is a common training method for deep models. As a consequence, we derive a

training algorithm for the proposed models by combining ideas from proximal

methods [8], back-propagation [56], and the Alternating Direction of Method of

Multipliers (ADMM) [7].

Finally, we demonstrate how Robust PCA and RDA can be used to analyze the

dimension and detect anomalies in data arising from Raytheon BBN’s high-fidelity

simulation infrastructure and make use of RPCA derived features to identify dif-

ferent DDoS attacks. We also present our modification of RPCA that allows RPCA

to process data in streaming network environments.

Dissertation – Chong Zhou 19

Part I

Robust Deep Neural Network Models

2 Overview

Recent literature suggests that noise and outliers reduce the efficiency of deep neu-

ral networks [69]. Herein, we address this problem in a way which is inspired by

Robust Principal Component Analysis (RPCA). In particular, theX = L+S frame-

work of RPCA, where X is the original data, S is a presentation of the anomalies,

and L is the remaining noise-free part, allows us to extend multiple deep models

with an ability to resist anomalies. In Section 3, we begin with a concise introduc-

tion of Robust Principal Component Analysis which is the “prototype” model of

the X = L + S framework and also include key ideas of some popular deep mod-

els including Denoising Autoencoders [59, 60] , Sparse Autoencoders [46], Stacked

Denoising Autoencoders [60] and Variational Autoencoders [31, 20]. From Section

5 to Section 8, we sequentially present our proposed methodologies that deploy

X = L + S framework onto standard deep models, and argue the performances

about their resistance to anomalies with experimental results.

3 Background

In this section, we introduce various techniques that form the foundation of our

work. In particular, there is a vast literature on RPCA and various kinds of au-

toencoders, and we have been inspired by those methods. In particular, here we

will describe RPCA [48], Deep Autoencoders [25], Sparse Autoencoder [46], and

Dissertation – Chong Zhou 20

Variational Autoencoders [31].

3.1 Robust Principal Component Analysis

Robust Principal Component Analysis (RPCA) [15, 48] is a generalization of Princi-

pal Component Analysis (PCA) [23] that attempts to reduce the sensitivity of PCA

to outliers. Herein, we outline some of the key ideas from RPCA which are clas-

sically used to construct low-dimensional linear features by filtering out outlying

measurements using a convex relaxation of the rank operator [15, 48]. In particular,

RPCA allows for the careful teasing apart of sparse anomalies so that the remain-

ing low-dimensional approximation is faithful to the noise-free low-dimensional

subspace describing normal data [15, 48].

RPCA splits a data matrix X into a low-rank matrix L and a sparse matrix S

such that

X = L+ S. (1)

The matrix L contains a low-dimensional representation of X [15, 48] and the ma-

trix S consists of element-wise anomalies, which cannot be efficiently captured by

the low-dimensional representation L.

Naively, this matrix decomposition can be computed by way of the following

optimization problem [15]

min
L,S

ρ(L) + λ||S||0

s.t. ‖X − L− S‖2F = 0,

(2)

where ρ(L) is the rank of L, ||S||0 is the number of non-zero entries in S, and ‖ · ‖F

Dissertation – Chong Zhou 21

is the Frobenius norm. However, the non-convex optimization (2) is NP-hard [15]

and only computationally tractable for small matrices X . However, there is a large

literature[15, 48] on convex relaxations of this class of problems, such as

min
L,S
‖L‖∗ + λ‖S‖1

s.t. ‖X − L− S‖2F = 0,

(3)

where the ‖·‖∗ is the nuclear norm (i.e., the sum of the singular values of the matrix)

and ‖ · ‖1 is the one norm (i.e., the sum of the absolute values of the entries).

3.2 Deep Autoencoders

Deep models, especially deep autoencoders, have demonstrated their effectiveness

in discovering non-linear features across many problem domains. We begin the

derivation of our methods by providing a brief introduction to non-linear feature

representation by way of deep autoencoders.

A deep autoencoder is a feed-forward multi-layer neural network in which the

desired output is the input itself. Upon first glance, this process may seem trivial

since the identity mapping would also yield exactly the same input data. However,

autoencoders become non-trivial when the identity map is disallowed either by

way of some type of regularization or, more importantly for the current derivation,

by having hidden layers which are low-dimensional, non-linear representations of

the input data.

In particular, autoencoders learn a map from the input to itself through a pair

of encoding and decoding phases

X = D(E(X)), (4)

Dissertation – Chong Zhou 22

where X is the input data, E is an encoding map from the input data to the hidden

layer, D is a decoding map from the hidden layer to the output layer, and X is the

recovered version of the input data. The idea is to train E and D to minimize the

difference between X and X .

In particular, an autoencoder can be viewed as a solution to the following opti-

mization problems:

min
D,E
‖X −D(E(X))‖, (5)

where ‖ · ‖ is commonly chosen to be the `2-norm.

Usually, an autoencoder with more than one hidden layer is called a deep au-

toencoder [34] and each additional hidden layer requires an additional pair of

encoders E(·) and decoders D(·). By allowing many layers of encoders and de-

coders, a deep autoencoder can effectively approximate complicated distributions

over the input X . In the sequel, our focus will be on deep autoencoders with all

autoencoders assumed to be deep.

3.3 Sparse Autoencoders

Sparse autoencoders pursue sparse representations by imposing regularization

terms on hidden layers [38]. A typical sparse autoencoder is defined as

min
D,E
‖X −D(E(X))‖+ βφ(E(X)), (6)

where the notation is the same as defined in equation (5) except φ(E(X)) is a spar-

sity regularization term on the encoded hidden layers and β controls the influence

of such a regularization. It is important to note that there are multiple choices for

Dissertation – Chong Zhou 23

φ(·). For example, we could use the `1 norm [38], the KL-divergence [46], or, as

we proposed the `2,1 norm. β controls the weight of sparsity regularization. Large

values of β will encourage less active values in hidden layers and produce low-

dimensional representations. On the other hand, small values of β will encourage

more active values in hidden layers and allow the mapping to be high-dimensional

[46].

Typical sparse autoencoders use the `1 norm [38] or the KL-divergence [46] as

sparsity regularizations on their hidden layers. These regularizations force each

instance to use a few features on each hidden layer to recover features of the input

layer [46]. We propose that sparse autoencoder with `2,1 regularization will elimi-

nate features which are less informative since the `2,1 norm groups each feature and

introduces sparsity between features. Both `1 and KL-divergence regularized sparse

autoencoders have been successful in discovering informative features in the liter-

ature [38, 46]. However, in outlier detection tasks, we assume the normal instances

are similar, and outliers are strange and share less information with the normal

instances. Thus, the normal instances can be represented by using a small number

of similar features, while outlier cannot.

With the definition of the `2,1 norm (13) in mind, our `2,1 regularized sparse

autoencoders can be defined as

min
D,E
‖X −D(E(X))‖+ β‖E(X)‖2,1, (7)

where the terms are defined in equation (6) except the φ(E(X)) has been specified

as ||E(X)||2,1.

To discover the non-linear and low-dimensional hidden layer, we introduce an

`2,1 norm as a regularization term on hidden layers of sparse autoencoders and

Dissertation – Chong Zhou 24

we name our proposed model “`2,1 Sparse Autoencoder”. The `2,1 norm offers

sparsity of hidden layer features that only allows a small number of features for

every instance to choose from.

3.4 Denoising Autoencoders

Deep Autoencoders are commonly used for non-linear feature selection and ex-

traction. However, when there are more nodes in the hidden layer than there are

inputs, deep autoencoders suffer from the difficulties in learning useful interme-

diate representations by an initial unsupervised learning step [59].

Based on the idea of making the learned representations robust to partial cor-

ruption of the input pattern, Vincent etc. introduced Denoising Autoencoders [59]

min
D,E
‖X −D(E(X̃))‖, (8)

where the terms are defined in equation (5) except the input X has been modified

as its corrupted version X̃ .

The objective of Denoising Autoencoder however is fundamentally different

from that of developing a image denoising algorithm. In particular, Denoising

Autoencoder obtain desired robustness by explicitly introduce corrupting noise

as a novel criterion guiding the learning representations. Thus such a corrup-

tion+denoising procedure is applied not only on the input, but also recursively

to intermediate representations.

Dissertation – Chong Zhou 25

3.5 Variational Autoencoders

Generative models are a broad area of machine learning which deals with generate

new samples from current data [20]. One major challenge of such models is that

the data X is in some potentially high-dimensional space which results in its dis-

tributions, p(X), is intractable to compute with a limited number of observations.

A Variational Autoencoder (VAE) [31, 54] solves this problem by assuming all the

observed instancesX are generated from a tractable latent variable z. In particular,

p(z) is the prior distribution of the latent variable, q(z|x) is the approximate infer-

ence mapping and p(x|z) is the generative mapping. Traditionally, p(z) is often

assumed to be a simple distribution such as the Gaussian distribution that allows

easy resampling. The VAE parameterizes q(z|x) and p(x|z) by neural networks as

q(z|x) = Eθ1(x)

p(x|z) = Dθ2(z),

(9)

where Eθ1 and Dθ2 are two neural networks parameterized with θ1 and θ2 respec-

tively. In analogy to autoencoders, Eθ1 is called the encoder and Dθ2 is called the

decoder. With ideas from [31, 54], the commonly used optimization function for

VAE training is:

min
θ1,θ2
‖X −Dθ2(Eθ1(X))‖+KL(Eθ1(X) | N (0, 1)), (10)

where KL represents Kullback-Liebler divergence (KL divergence) and the first

term, ‖X −Dθ2(Eθ1(X))‖ represents the reconstruction errors.

Dissertation – Chong Zhou 26

4 Related Work

4.1 Robust Deep Autoencoders

In many real-world problems, large outliers and pervasive noise are commonplace

in the data. There is a large extension of literature which attempts to address this

challenge and two promising approaches are denoising autoencoders and maximum

correntropy autoencoders. Denoising autoencoders [24, 44, 55, 62, 68], require access

to a source of clean, noise-free data for training, and such data is not always readily

available in real-world problems [60]. On the other hand, maximum correntropy

autoencoders replace the reconstruction cost with a noise-resistant criteria corren-

tropy [50]. However, such a model still trains the hidden layer of the autoencoder

on corrupted data, and the feature quality of the hidden layer may still be influ-

enced by training data with a large fraction of corruptions.

Our model isolates noise and outliers in the input, and the autoencoder is

trained after this isolation. Thus, our method promises to provide a representa-

tion at the hidden layers which is more faithful to the true representation of the

noise-free data.

4.2 Hierarchical Robust Deep Autoencoders

The HRDA model has been inspired by the idea of a stacked denoising autoen-

coder [60] that builds a hierarchical model based on multiple, similar structured

components, and then proceeds to train them layer-wise. The stacked denoising

autoencoder is a supervised classification algorithm in that it requires noise-free

data during it pre-training phase and then needs to adapt to the ground truth in its

fine-tuning phase. When a stacked denoising autoencoder pre-trains the weights

Dissertation – Chong Zhou 27

of its deep feed-forward neural network, each denoising autoencoder layer takes

the hidden layer from the last layer as the input.

4.3 Robust Variational Autoencoders

A number of advanced applications of generative models have recently been pro-

posed, which include generating plausible images from human-written descrip-

tions [52, 63], recovering photo-realistic textures from heavily down-sampled im-

ages [37], changing one image to be more like the other, as well as, generating

novel imagery from rough user drawings [70]. Building good generative models

of realistic samples has become a fundamental requirement of current AI systems

[19, 20, 52].

There are two primary approaches to generative models, Generative Adversar-

ial Networks (GANs) [26] and Variational Autoencoders (VAEs) [20, 31]. GANs

train a generator that captures the data distribution and a discriminator that esti-

mates the probability that a sample came from the training data, rather than the

generator [26]. A VAE assumes that a collection of latent variables generates all

the observations [20, 31]. Recently, various flavors of GANs and VAEs have been

proposed, which have achieved compelling results in the image generation area.

Danilo J. Rezende et al. [54] combined deep neural networks with approximate

Bayesian inference to derive a directed generative model. Deep Convolutional

GANs [51] first introduced a convolutional architecture in GANs which signifi-

cantly improves the visual quality. More recently, David Berthelot et al. [4] pro-

vided Boundary Equilibrium Generative Adversarial Networks (BEGAN) with a

new approximate convergence measurement, improving the speed and the stabil-

ity of loss training.

Dissertation – Chong Zhou 28

Recent proposed research with generative models either focus on removing

noise from corrupted input only [17, 58, 64] or generating new images from avail-

able cleaned data, which can be obtained from existing off-the-shelf denoising

methods [10, 30].

5 Robust Deep Autoencoders

5.1 Robust PCA and Deep Autoencoder Combination

In [69], we proposed novel extensions to deep autoencoders which not only main-

tain a deep autoencoders’ ability to discover high quality, non-linear features but

can also eliminate outliers and noise without access to any clean training data. As a

combination of deep autoencoders and Robust PCA, we name our model Robust

Deep Autoencoders (RDA). An RDA inherits the non-linear representation capabil-

ities of autoencoders combined with the anomaly detection capabilities of RPCA.

The key insight is that noise and outliers are essentially incompressible and there-

fore cannot effectively be projected to a low-dimensional hidden layer by an au-

toencoder. In particular, if exceptions could be allowed to the autoencoder loss

function, then the low-dimensional hidden layer could provide accurate recon-

struction, with a low-dimensional hidden layer, except for those few exceptions. Just

as in RPCA, when the noise and outliers are isolated, the remaining data can be

accurately reconstructed by an autoencoder with such a low-dimensional hidden

layer.

Inspired by RPCA, we augment autoencoders with a filter layer. The filter layer

culls out the anomalous parts of the data that are difficult to reconstruct, and the

remaining portion of the data can be represented by the low-dimensional hidden

Dissertation – Chong Zhou 29

layer with small reconstruction error. An RDA also splits input data X into two

parts X = LD + S, where LD represents the part of the input data that is well rep-

resented by the hidden layer of the autoencoder, and S contains noise and outliers

which are difficult to reconstruct. By removing the noise and outliers from X , the

autoencoder can more perfectly recover the remaining LD. To achieve this prop-

erty, our loss function for a given input X could be thought of as the `0 norm of

S, which counts the number of non-zero entries in S, balanced against the recon-

struction error of LD, as in the optimization problem

min
θ
‖LD −Dθ(Eθ(LD))‖2 + λ‖S‖0

s.t. X − LD − S = 0,

(11)

whereEθ(·) denotes an encoder,Dθ(·) denotes a decoder, and S captures the anoma-

lous data, LD is a low dimension manifold and λ is a parameter that tunes the level

of sparsity in S. λ plays an essential role in our analysis. In particular, a small λ will

encourage much of the data to be isolated into S as noise or outliers, and therefore

minimize the reconstruction error for the autoencoder. Similarly, a large λ will dis-

courage data from being isolated into S as noise or outliers, and therefore increase

the reconstruction error for the autoencoder.

We make extensive use of the λ parameter in our numerical results. In partic-

ular, one can tune λ depending on the desired use of the robust autoencoder. For

example, λ can be tuned to maximize the performance of the features provided

by the hidden layer in some supervised learning problems or λ can be tuned to

optimize false alarm rates in unsupervised anomaly detection problems.

Unfortunately, the optimization problem in (11) is not computationally tractable.

However, following the RPCA literature [15, 21, 48], one can relax the combinato-

Dissertation – Chong Zhou 30

rial ‖S‖0 term of the optimization (12) by replacing it with a convex relaxation

‖S‖1, giving rise to the optimization

min
θ
‖LD −Dθ(Eθ(LD))‖2 + λ‖S‖1

s.t. X − LD − S = 0.

(12)

In the constraint of (12) we split the input dataX into two parts, LD and S. LD is the

input to an autoencoder Dθ(Eθ(LD)) and we train this autoencoder by minimizing

the reconstruction error ||LD − Dθ(Eθ(LD))||2 through back-propagation. S, on

the other hand, contains noise and outliers which are difficult to represent using

the autoencoder Dθ(Eθ(·)). λ plays an essential role in our analysis. In particular, a

small λ will encourage much of the data to be isolated into S as noise or outliers,

and therefore minimize the reconstruction error for the autoencoder. Similarly,

a large λ will discourage data from being isolated into S as noise or outliers, and

therefore increase the reconstruction error for the autoencoder. The objective ||LD−

Dθ(Eθ(LD))||2 does not specify any particular form for the encoding and decoding

pair E and D, herein we follow the standard practice of having Eθ(x) = EW,b(x) =

logit(W · x+ bE) and Dθ(x) = DW,b(x) = logit(W T · x+ bD) [34].

In the constraint of (12) we split the input data X into two parts, LD and S. LD

is the input to an autoencoder Dθ(Eθ(LD)) and we train this autoencoder by min-

imizing the reconstruction error ‖LD − Dθ(Eθ(LD))‖2 through back-propagation.

S, on the other hand, contains noise and outliers which are difficult to represent

using the autoencoder Dθ(Eθ(·)).

Dissertation – Chong Zhou 31

5.2 Anomalous Feature and Instance Detection

Our basic RDA in (12) assumes that the noise and outliers are unstructured, and

thus we have used a generic `1 penalty on S to introduce element-wise sparsity.

However, in many cases we may have anomalies that are structured.

In particular, we can view our training data as a matrix where each row is a

data instance, such as a picture in an image processing application or a packet in a

network analysis application, while each column is a feature, such as a pixel in an

image or a particular byte in a packet. An example of such a data matrix is shown

in Figure 2.

Figure 2: This figure shows two examples of group anomalies. For example, on

the left, we see a collection of 2s corrupted by a single 7. This corresponds to a row

of X being anomalous. Similarly, on the right, we see a collection of digits where a

particular pixel is always on. This corresponds to a column of X being anomalous.

Our structured `2,1 penalty is intended to address both of these cases.

Accordingly, we treat two different types of group anomalies. First, we have the

case where a particular feature is corrupted across many instances. For example,

perhaps a digital camera has a bad pixel in its image plane. Second, we have

the case where a particular instance is anomalous across many different features.

Dissertation – Chong Zhou 32

For example, one may have a picture of a 7 mixed into a group of pictures all

of which are otherwise pictures of 2s, as in Figure 2. As a consequence, we have

developed additional techniques that group errors across elements in S to enhance

anomaly detection. In particular, both cases can easily be treated by our methods

by generalizing the `1 penalty to a grouped `2,1 norm [6].

In particular, the `2,1 norm can be defined as

||X||2,1 =
n∑
j=1

||xj||2 =
n∑
j=1

(
m∑
i=1

|xij|2)1/2 (13)

and, it can be viewed as inducing a `2 norm regularizer over members of each

group and then a `1 norm regularizer between groups [6]. Similarly, if we want

to group the elements of a row and then look for sparse anomalies among the

collection of rows, we merely need to look at the transpose of X and use ||XT ||2,1.

With definition (13) in mind, we can pose the following optimization problem

min
θ,S
‖LD −Dθ(Eθ(LD))‖2 + λ‖S‖2,1

s.t. X − LD − S = 0,

(14)

where the terms are defined as in (12) except the `1 norm has been replaced by the

grouped norm `2,1.

If we assume the anomaly instance exists in our data , for example in Figure

2, the element-wisely removable of noise may not be sufficient evidence to claim

anomalies, and single element noise does not equal to anomalies. As a conse-

quence, we group errors across rows in S to enhance anomalies detection. If an

error of one group is larger than the threshold, this group is highly likely to be an

anomaly. Such tasks require binding elements through rows to consider row-wise

blocks as an ensemble of anomalies to consider instances as anomalies. We select

Dissertation – Chong Zhou 33

anomalies based these

Similarly, if we are interested in analyzing data with anomalous data instances,

then we merely need to consider the following optimization problem using the

grouped penalty `2,1 on ST :

min
θ,S
‖LD −Dθ(Eθ(LD))‖2 + λ‖ST‖2,1

s.t. X − LD − S = 0.

(15)

In particular, (15) can be thought of as finding anomalous instances that are

hard for an autoencoder to reconstruct based upon the other instances in the train-

ing data. For example, in an image processing application, one may have many

pictures of cars with a few pictures of dogs interspersed among them.

This optimization problem says we measure the reconstruction error of each

instance. The majority instances are similar, and they contain information redun-

dancy. Such majority instances can be inferred from each other. While the anoma-

lies stand out, they share less information with the majority. As a consequence,

anomalies give higher reconstruction errors than the majority. By alternatively

reconstruct LD and shrink S, we will get high error instances in S and they are

claimed as anomalies.

5.3 Experimental Evaluation

We test our RDA models on the well-known image recognition MNIST data set

[36].The training set consists of 50,000 instances, and each instance is a 28 × 28

pixel image. Figure 3 shows a quick view of uncorrupted data.

Dissertation – Chong Zhou 34

Figure 3: This figure shows an example of uncorrupted MNIST data.

5.3.1 Denoising RDA with `1 norm

In Figure 4, we show the key results of a denoising task for our proposed `1 penal-

ized Robust Deep Autoencoder as compared against a standard autoencoder.

Our experiments consists of taking the digits from the MNIST data set and cor-

rupting them with various levels of noise. In particular, we randomly pick a certain

number of the pixels for each instance, and we set the pixel value to 0 if the origi-

nal pixel value is larger than 0.5, and we set the pixel value to 1 otherwise. These

corrupted images are used to train a normal autoencoder and a RDA each with ex-

actly the same number and breadth of layers. To judge the quality of the features

produced by our hidden layers we use the following procedure. In particular, we

use the values in the hidden layer as features for a supervised classifier. For a fixed

supervised classifier, we presume that higher test error rates are indicative of lower

feature quality.

Results of comparing standard autoencoders are concisely summarized in Fig-

ure 4, where the x-axis shows different corruption levels, and the y-axis shows

different λ values in RDAs. Red area in Figure 4 indicates where the error rates

Dissertation – Chong Zhou 35

of the RDA are superior to those of the normal autoencoder, and blue indicates

where the converse is true. The errors rates are bases upon the prediction of im-

age labels with respect to different degrees of corruption and different values of

λ in the Robust Deep Autoencoders. As can be seen, the images range from very

modest corruptions to those in which the original digits cannot be seen. Most

importantly, the area marked by 2© shows a large region, covering many differ-

ent levels of corruption and values of λ, in which the RDA performs better than

the standard autoencoder on the image classification task. In particular, for some

levels of corruption, and values of λ, the robust autoencoder performs up to 30%

better. On the right, we show several examples of images from the red area.

Dissertation – Chong Zhou 36

Figure 4: This figure shows the difference between error rates for the features con-

structed by a normal autoencoder and an RDA. The two images on the bottom,

indicated with 1© and 3©, show examples of images with the designated amount

of corrupted pixels, where the input images range from very modest corruptions

to those in which the original digits cannot be seen. Most importantly, the area

marked by 2© shows a large region, the robust autoencoder performs up to 30%

better. As can be seen on the right, the original images on top are quite corrupted,

while the images in the middle, produced from the RDA’s output layer, are largely

noise free. However, the standard autoencoder, as it only has noisy imagery on

which to train, faithfully, but inappropriately, reproduces the noise.

Dissertation – Chong Zhou 37

In the Figure 4, from left to right, the input X has a larger and larger fraction of

corrupted pixels. As specified by our noise model, the number of corrupted pixels

ranges from 10 to 350 (out of 784) per image. From bottom to top, the λ value

grows from 0.1 to 100. In particular, we can see the Robust Deep Autoencoders

and normal autoencoders get similar test errors when there are few corruptions,

e.g. 10 to 50 corrupted pixels for each image (as shown in Figure 4 by case 1©).

This fact should not be surprising, since for such images the `1 penalty does not

play a pivotal role.

However, when the noise increases, for example in the cases of area 2© in Figure

4, and one has from 80 to 300 corrupted pixels per image, and the normal autoencoder

has up to 30% higher error rates than the Robust Deep Autoencoders! The red areas in

Figure 4 indicate those experiments where noise has significantly reduced the fea-

ture quality provided by the autoencoder’s hidden layer, while the Robust Deep

Autoencoder’s hidden layer is immune to the noise, due to S and the `1 penalty.

Also, from a more qualitative point of view, one also finds that the reconstructed

images from the Robust Deep Autoencoders are cleaner digits and might be more

desirable for consumption by a human analyst. Finally, when the fraction of cor-

rupted pixels continues to grow, say about above 300 corrupted pixels per image,

in the cases of area 3© in Figure 4, neither model can produce high-quality features

and the testing accuracy of both methods is again the same.

5.3.2 Outlier Detection with `2,1 norm

Our anomaly detection experiments begin by gathering images of the digit “4”

from the MNIST dataset, and these images will comprise our nominal data. This

nominal data is then corrupted by mixing in images which are randomly sampled

Dissertation – Chong Zhou 38

from other digit’s images (e.g. “0”, “7”,“9” etc.). The mixed data contains 4859

nominal instances and 265 anomalies. Accordingly, the ratio of anomalies to total

number of instances in this set is about 5.2%.

Figure 5 shows a set of examples that are intended to provide the reader within

intuition as to how λ influences the predictions and sparsity of S when using the

`2,1 norm.

Figure 5: This figure shows how the sparsity of S changes with different λ values.

A small λ places a small penalty on S, and the RDA emphasizes minimizing the

reconstruction error by marking many images as anomalous and giving rise to

many false-positives. λ then can be increased to trade-off false-positives for false-

negatives. The optimal λ should balance both false-positive and false-negative

rates. Thus, we use the F1-score to select the optimal λ.

Dissertation – Chong Zhou 39

As shown in Figure 5 our experiment proceeds as follows. λ is used to con-

trol the sparsity of S. In particular, a small λ places a small penalty on S, and the

RDA emphasizes minimizing the reconstruction error by marking many images

as anomalous and giving rise to many false-positives. λ then can be increased to

trade-off false-positives for false-negatives. In Figure 5, 1© shows a small λ, namely

λ = 0.00005, which levies a small penalty on S, and the robust autoencoder empha-

sizes minimizing the reconstruction error by marking many images as anomalous.

Accordingly, S is dense and every instance is non-zero. Since non-zero rows in S

are marked as anomalies, the RDA has a high false-positive rate. In the case of 2©,

3©, and 4© the λ value is larger, placing a heavier penalty on S, and forcing S to be

sparser. Many rows are shrunk to zero which reduces the false-positive rate, but

also increases the false-negative rate. For example, 6© indicates an example of a

false-negative; a “1” digit is supposed to be picked out as an outlier, but is marked

as nominal. When the λ value gets even larger, as in 5©, the large penalty on S

causes every row of S to be shrunk to zero. In this cases, S is the zero matrix and

thus no instance will be marked as anomalies. Accordingly, the optimal λ should

balance both false-positive and false-negative rates. Thus, we use the F1-score to

select the optimal λ.

To validate the performance of our outlier and anomaly detection methods, we

compare our model against a state-of-the-art outlier detection method, namely the

Isolation Forest [39]. The key idea of Isolation forests is that anomalies are ’few

and different’, which make them more susceptible to isolation than normal points

[39].

We use the Isolation Forests model as implemented by version 0.18.1 of the

scikit-learn package [49]. The isolation forest model take two variables: the num-

Dissertation – Chong Zhou 40

ber of trees and the fraction of outliers. We fix the number of trees to 100 and

optimize over the outlier fraction from 0.01 to 0.69 (similiar to the optimization of

λ in the RDA). We pick the best fraction number based on the F1-score.

We compare the `2,1 RDA and isolation forest on their best F1-score and on

how they perform across a range of parameters. From Figures 6 and 7, we can see

the RDA gets an F1-score of 0.64 with its optimal λ parameter, while the highest

F1-score achieved by the Isolation Forest is 0.37, which is a 73.0% improvement.

Figure 6: This figure shows the precision, recall and F1-scores with different λ
values for the RDA. In the cases of a small λ, every row is non-zero and all the
rows are marked as anomalies. We get high recall scores but very low precision
and F1-scores. As the λ values increase, the F1-score and score increase reaching a
maximum at λ = 0.00065 with an F1-score of 0.64.

5.4 Section Summary

In this section, we have shown how denoising autoencoders can be generalized to

the case where no clean, noise-free data is available, creating a new family of meth-

ods that we call“Robust Deep Autoencoder”. These methods use an anomaly reg-

ularizing penalty based upon either `1 or `2,1 norms. We also extend the way of de-

noising of RDA using `1 to detect structured anomalies using `2,1 norms, which re-

Dissertation – Chong Zhou 41

Figure 7: This figure shows the precision, recall and F1-score as we vary the frac-
tion ratio for the Isolation Forest algorithm from 0.01 to 0.69. The optimal F1-score
that the Isolation Forest achieves is about 0.37 when the fraction is equal to 0.11.
This F1-score is approximately 73.0% worse than the score achieved by the RDA.

sults a novel outlier detection method. We have shown the superior performances

of our proposed methods comparing to the state-of-the-art existing models.

6 Robust Sparse Autoencoders

6.1 Robust Sparse Autoencoders

In this section, we will detail a novel usage of the X = L + S framework which

leverages an `2,1 regularization term on hidden layers and gives rise to more concise

and informative hidden features. In particular, our proposed model is based on `2,1

sparse autoencoders, and we derive “Robust Sparse Autoencoders (RSA)” from

the RDA by replacing the normal deep autoencoder in equation 12 by a sparse au-

toencoder. RSA demonstrate the flexibility of the basic RDA model that the normal

deep autoencoder part can be replaced by more complicated autoencoders to dis-

cover different types of low-dimensional and non-linear manifolds. The `2,1 norm

regularization in `2,1 sparse autoencoders pursue sparse representation of feature

Dissertation – Chong Zhou 42

on the hidden layers, and thus they give more concise and lower dimensional rep-

resentations.

With the `2,1 sparse autoencoder defined in (7), a robust sparse autoencoder is

therefore defined as:

min
θ,S
‖X −Dθ(Eθ(LD))‖+ β‖Eθ(LD)‖2,1 + λ‖ST‖2,1

s.t. X − LD − S = 0,

(16)

where the various terms are the same as in (7) and (12). Actually, we consider ‖X−

D(E(LD))‖ and β‖E(LD)‖2,1 as a single term, where a sparse autoencoder in which

the reconstruction cost ‖X − D(E(LD))‖ and regularization term β‖Eθ(LD)‖2,1

work together to find a suitable low dimension representation. Minimizing them

encourages data put into S that causes the remaining L to not be low-dimensional.

Minimizing the λ‖ST‖2,1, on the other hand, pushes data away from S and into the

other terms. Alternating minimization results in a local best split ofX = L+S. The

β and λ values control the weights of penalty terms and tuning it will essentially

influence the splits of X = L+S. In particular, β is the weight of regularization on

hidden layers that a large β causes the hidden layers to be low-dimensional, while

a small β allows the hidden layers to be high-dimensional. Such β, acting as a “di-

mension penalty weight”, also decides the split of X . Intuitively, low-dimensional

hidden layers requires that LD represent a small portion ofX and much of the data

is isolated into S. On the other hand, high-dimensional hidden layers will repre-

sent more data from X and leave little data in S. On the other hand, λ controls

the splits of X controversially that a large λ discourages much of the data to be

isolated into S, and therefore LD take much of the data that requires more hidden

features to be represented accurately.

Dissertation – Chong Zhou 43

There are some extreme cases that bear special attention. For example, when

β is zero, a robust sparse autoencoder (16) is equivalent to a robust autoencoder

(12). When λ is zero, a robust sparse autoencoder (16) works identically as a sparse

autoencoder. When both β and λ are zero, a robust sparse autoencoder (16) is as

same as a normal autoencoder. When β goes to infinity, a robust sparse autoen-

coder (16) is not able to reduce the dimension of the data and thus it fails to detect

any anomalies. When λ goes to infinity, a robust sparse autoencoder (16) is a sparse

autoencoder.

6.2 Experimental Evaluation

As an extension model, we test RSAs using the same data as we train the RDA,

detailed description about data can be seen in Section 5.3. Figure 8 presents full

sights of our experiments on RSAs, the sparsity of S is influenced by both β and

λ. Since non-zero rows in S will be marked as “outliers”, sparsity of S results

in different F1-score on the labeled data. When λ increases, the recall decreases

but precision increases. As a consequence, with each fixed β, λ changes along

rows. For each row, the F1-score of RSA increases at the beginning of λ increasing

and falls after turning points. While β impacts RSA in a controversial way that a

large β reduces “tolerance” of the majority and more instances will be suspected

to “outliers”. As a consequence, a large β has a high false-positive rate and a low

false-negative rate. On the contrary, RSA with a small β generates high precision-

scores but low recall-scores. A large β yield low precision-scores but high recall-

scores. The F1-score gets its highest value when precision and recall are balanced.

In Figure 8, we show the F1-score changing with β and λ. The F1-score reaches the

maximum of 0.36 at λ = 6.5 and β = 0.08.

Dissertation – Chong Zhou 44

Figure 8: This figure shows how F1-score changes with different λ and β values

in the robust sparse autoencoder model. In the bottom rows, RSA with small λs

returns us high recall-score but low precision-score. From this picture, one can find

that F1-score increases at the beginning of increasing β because of recall-score in-

creasing dramatically while fall to decrease for precision-score dropping severally.

6.3 Section Summary

RSA is an extension of RDA which demonstrates how RDA can augment and ex-

tend any advanced autoencoder with the ability to detect anomalies. Classic sparse

autoencoders [46] and our proposed `2,1 sparse autoencoders are such examples of

advanced autoencoders which are faithful to classic non-linear dimension reduc-

tion which detect a consistent set of mapped features across all training data. In

particular, this model provides a sparse autoencoder which is more faithful to clas-

Dissertation – Chong Zhou 45

sic dimension reduction in that it identifies a consistent set of important features

across all training data. We demonstrate how this `2,1 sparse autoencoder can also

be used in the RDA framework discussed above. Combining sparse autoencoders

and the idea of robust splitting, RSA offer a method that keep the low-dimensional

non-linear manifolds impregnable to the anomalies. We demonstrate the superior

performances of our proposed methods on a selection of benchmark problems.

7 Hierarchical Robust Deep Autoencoders

7.1 Hierarchical Robust Deep Autoencoder

Inspired by stacked denoising autoencoder [24] that hierarchical structures are able

to enhance single layer’s neural network models, we propose a model consisting

of a hierarchical collection of RDAs. This hierarchy, in which the building blocks

of a deep network are themselves deep neural networks, has inspired us to call

our new model a “Hierarchical Robust Deep Autoencoder (HRDA)”. By using this

hierarchical construction, we demonstrate how the effectiveness of RDAs can be

improved for both anomaly detection and feature representation. In addition, the

framework that we have developed for HDRAs allows several other direct exten-

sions by allowing many generalizations of a standard autoencoder to be used in

the same RDA framework.

Our idea of building an “Hierarchical Robust Deep Autoencoders (HRDA)”

where each layer in the HRDA is an individual RDA, and the connections between

layers are the L part of data which is the output of the last layer. In this section,

the term “a layer” refers to a single RDA which does not imply the autoencoder

part of each RDA being shallow, single layer autoencoder. On the contrary, RDAs

Dissertation – Chong Zhou 46

usually use deep autoencoders. Each layer takes the input and isolates noise and

outliers into S, and the remaining L is the input to the next layer. Multiple layers

of RDAs accumulate the anomaly detecting effects of all layers. The L of the last

part is the cleanest data and the Ss of all layers are detected anomalies.

The HRDA is flexible enough to handle both denoising tasks and detecting out-

lier tasks. If a HRDA consists of basic `1 regularized RDA in equation (12), it is tar-

geted at then denoising tasks. Detecting outliers can be done by just changing its

components to an `2,1 regularized RDA in equation (15). The HRDA is a pipeline

that is trained greedily. Once a layer is trained and produces an L and S, they are

fixed and are not trained by any back-propagated errors of subsequent layers. In-

tuitively, such a process allows multiple RDAs to identify anomalies individually

except each RDA’s attempt is based on the previous RDAs’ outputs.

However, if the layers of an RDA share the same configurations, the second

layer RDA, which takes as an input the L produced by the first layer can, opti-

mally, have an identical output and input. In other words, the L passed to the

RDA can be exactly represented since it was already represented by the previous

RDA. We argue that identically configured RDAs will result in an identical result

even though they may be initialized with different parameters. In HRDA, if the

first optimal RDA isolates anomalies S, the remaining L will be perfectly recon-

structed by the second RDA. To prevent identical input and output, an HRDA re-

quires hyper-parameters to vary between layers. For example, variations can be in

the number of hidden layers, hidden layer sizes, different λs or all of these. These

variations prevent HRDAs from overfitting anomalies and increase the robustness

of the entire HRDA. In our experiments, we observed that the variation of λ values

from layer to layer controls the performances of an HRDA. In denoising experi-

Dissertation – Chong Zhou 47

ments, we use an incremental strategy for λ. A small λ on the early layers allow

much of the entries filtered into S, and larger λ on the later layers allow later layers

to be more strict in their detection of anomalies. In outlier detection experiments,

we use a decremented λ strategy that shallow layers with large λ only pick out ob-

vious outliers to prevent false-positive rates. The L part contains fewer and fewer

outliers with processing going deep. Small λ on deep layers help identify indis-

tinct outliers to reduce false-negative rates but at the cost of higher false-positive

rates.

7.2 Experimental Evaluation

7.2.1 HRDA for Denoising

By using `1 norm on each layer of RDA, an HRDA is allowed to detect noising in

the input data. The setting of our denoising experiment is close to the denoising

experiment of RDAs in Section 5.1 except we use the additive Gaussian noise and

the number of corrupted pixels on each picture is much bigger than previous ex-

periment. In Figure 9, we show the key results for our proposed `1 regularized

HRDA as compared against a single RDA. In particular, the area indicated by the

red rectangle covers a large region, covering many different levels of corruption

and values of λ, in which the second layer of the HRDA performs better than the

single RDA on the image classification task. This red area in Figure 9, demon-

strates that, in the most of cases, the hierarchical structure helps eliminate noise.

Most importantly, the area indicated by the red rectangle covers a large region,

covering many different levels of corruption and values of λ, in which the second

layer of the HRDA performs better than the single RDA on the image classification

task. In particular, for some levels of corruption, and values of λ, HRDA performs

Dissertation – Chong Zhou 48

up to 28% better. However, if the λ is improperly chosen as a very small value, as

indicated by the blue rectangle, both layers isolate informative digits into S and

the remaining L produces worse results than that of the single RDA.

Figure 9: This figure shows the percentage of error rate improving for the features

constructed by a RDA and the second layer of a HRDA. Red indicates where the

error rates of the HRDA are superior to those of the single RDA, and blue indicates

where the converse is true. The errors rates are based upon the prediction of image

labels with respect to different degrees of corruption and different values of λ in the

RDAs. The x-axis shows different corruption levels, and the y-axis shows different

λ values. On the right, we show several examples of images from the red area. As

can be seen, the original images on top are quite corrupted. Both the first and the

second layers of the HRDA isolate certain amounts of noise, and the output L of

the second layer is largely noise free.

Dissertation – Chong Zhou 49

7.2.2 HRDA for outlier detection

HRDA is allowed to detect outliers when `2,1 RDAs form each layer. For the con-

sistent convention, outlier detection experiments share the same settings with the

outlier detection in the Section 5.2. As shown in Figure 10 our experiment proceeds

as follows.

λ is used to control the sparsity of S. A small λ places a small penalty on S, and

the RDA emphasizes minimizing the reconstruction error by marking many im-

ages as anomalous and giving rise to many false-positives. λ then can be increased

to trade-off false-positives for false-negatives. Accordingly, the optimal λ should

balance both false-positive and false-negative rates. Thus, we use the F1-score to

select the optimal λ.

We choose a family of λ by decreasing each member with a factor of 0.65, since

images are less corrupted and contain less outliers through each layers. Smaller λs

allow subsequent more sensitive to abnormal patterns and isolate more instances

into S. In Figure 10, the blue line is the first layer in the HRDA which is exactly as

same as a single RDA. The green line indicate the F1-scores of the second layer. Af-

ter the first layer filtering, the λ need to be small at second layer to detect outliers.

With λ continually decreasing, the third layer indicated by the red line gets bet-

ter result than the second layer. However, the fourth layer gets too small λ which

results in it isolate everything into S and have high false-positive rate.

Dissertation – Chong Zhou 50

Figure 10: This figure shows the F1-scores with different λ values for each layer of

the HRDA and union results of the first four layers. The F1-score of the first layer

RDA reaches a maximum at λ = 0.00065 with an F1-score of 0.62. The black lines

align S of each layer with its corresponding F1-score. Combing the first four layers,

the united prediction result is indicated by yellow line, which reach the F1-score

0.65 when the starting λ is 0.0007.

We compare the `2,1 RDA and Isolation Forest on their best F1-score and on

how they perform across a range of parameters. From Figure 10, we can see that

the single RDA gets F1-score of 0.62 with its optimal λ = 0.0065, and the HRDA

with the union prediction gets the best F1-score with λ = 0.007. While the highest

F1-score achieved by the Isolation Forest is 0.38. RDA has a 63.2% and HRDA has

a 71.1% improvement.

Dissertation – Chong Zhou 51

7.3 Section Summary

In this work, we have shown how stacked denoising autoencoders can be gen-

eralized to detecting anomalies when there is no clean, noise-free data available,

creating a new family of methods that we call “Hierarchical Robust Deep Autoen-

coders (HRDA)”. We provide an extension of Robust Deep Autoencoders (RDA)

to hierarchical cases where an RDA forms each layer and it is trained in a greedy

layer-wise fashion. Our HRDA models get improved results on both denoising

and outlier detection tasks on MNIST dataset.

8 Robust Variational Autoencoders

This work is done by collaborating Yunmin Ren and Yun Yue and the material in

this section is also described in [53].

Generative models, including Variational Autoencoders, aim to find mappings

from easily sampled latent spaces to intractable observed spaces. Such mappings

allow one to generate new instances by mapping samples in the latent space to

points in the high dimensional observed space.

However, in many real-world problems, pervasive noise is commonplace and

these corrupted measurements in the observed spaces can lead to substantial cor-

ruptions in the latent space. Herein, we demonstrate a novel extension to Varia-

tional Autoencoders, which can generate new samples without access to any clean

noise-free training data and pre-denoising stages.

In this section, we provide details of another extension model, Robust Vari-

ational Autoencoders (RVAE), which build an anomaly filter onto normal varia-

tional autoencoders.

Dissertation – Chong Zhou 52

This work arises from Robust Principal Component Analysis (3) and Robust

Deep Autoencoders (12), and we split the input data into two parts, X = L + S,

where S contains the noise and L is the noise-free data which can be accurately

mapped from the latent space to the observed space. Since our model enhances

the robustness of Variational Autoencoders to noise, we name our model Robust

Variational Autoencoder(RVAE). We demonstrate the effectiveness of our model

by comparing it against standard Variational Autoencoders, Generative Adversar-

ial Neural Networks, and other pre-trained denoising models.

The central idea of RVAE is that noise and clean data are essentially spawned

from different distributions, and therefore generation of both noise and clean data

from the same latent variables is highly unlikely. In particular, variational autoen-

coders assume all instances are generated from simple, low-dimensional distribu-

tions, but noise and anomalies share little information with clean data. This results

in large errors if one tries to infer noise from generative mappings which are opti-

mal on clean data.

We depict a brief structure of RVAE in Figure 11, where the noisy input is split

into two pieces, L and S. L represents desired noise-free data, and it fits into a stan-

dard variational autoencoder that includes latent variables z, generative mapping

q(x|z) and inference mapping p(z|x). While S is a filter that contains exceptions

from the variational autoencoders of L and penalized by the `1 norm. We also pro-

vide a training algorithm for the splitting of L and S which is a non-differentiable

and non-convex problem.

Dissertation – Chong Zhou 53

Figure 11: This figure shows the structure of RVAE. The noisy input is split into
two pieces, L and S. L represents the clean data, and it is an input of a variational
autoencoder, while S consists of noise and constrained by `1 norm.

8.1 Robust Variational Autoencoders

Since noise and normal data are essentially spawned from different distributions,

the distributions of the normal data and the distribution of the noise in the latent

space are also different. This key difference allows us to isolate noise from the nor-

mal data by way of augmenting the variational autoencoders with a filter layer.

Such a filter removes the anomalous portion of the data which will mislead the

latent variable distribution, and the remaining parts are faithful to the noise-free

data. Similar to the RDA in (12), a Robust Variational Autoencoder splits the in-

put data X into two parts X = L + S, where L represents the part of normal data

that is well represented by a Gaussian distribution in the latent space, and S con-

tains noise and outliers. To achieve this property, we pose the following RVAE

optimization problem:

min
θ1,θ2,L,S

‖L−Dθ2(Eθ1(L))‖2 +KL(Eθ1(L)|N (0, 1)) + λ‖S‖1

s.t. X − L− S = 0,

(17)

Dissertation – Chong Zhou 54

where Eθ1 and Dθ2 represent inference mapping q(z|x) and generative mapping

p(x|z) respectively, ‖L−Dθ2(Eθ1(L))‖2 represents a reconstruction error of the vari-

ational autoencoder part, and KL(Eθ1(L)|N (0, 1)) represents the Kullback-Liebler

divergence (KL-divergence) [32], which measures differences between the distri-

bution of the latent variables and a Gaussian distribution. The ‖S‖1 represents the

`1 norm of S and λ is the key hyper-parameter. It controls the level of penalization

on S and thus tunes the amount of data to be isolated as noise. A small λ encour-

ages more of data to be isolated as noise. On the other hand, a large λ discourages

data to be filtered into S. When λ is arbitrarily large then an RVAE is exactly the

same as a VAE.

8.2 Experimental Evaluation

In this section, we demonstrate the effectiveness of our proposed RVAE by utiliz-

ing a standard benchmark data set, MNIST [35], and a direct drop-in replacement

data set, Fashion MNIST [61]. Both data sets consist of 70 000 instances with 784

features each. Each instance of MNIST is labeled with an integer value between

0 and 9, while every instance of Fashion MNIST is comprised of 10-class fashion

products. Rather than focusing on generating any specific classes’ images, which

is not the emphasis of this paper, we instead utilize all training samples without

label information. As we will demonstrate in the next part, RVAE shows signifi-

cantly superior performance when the model is trained on noisy, corrupted data.

We corrupt original images with salt-and-pepper noise which, occurring as white

and black pixels, is caused by sharp and sudden disturbances [57]. We also justify

the robustness of model by testing Gaussian noise.

The salt-and-pepper noise corruption works by changing some randomly picked

Dissertation – Chong Zhou 55

Figure 12: This figure shows the structure of VAE and the implementation details.
RVAE, VAE, RPCA+VAE and LPF+VAE share the same structure.

pixels to 0 if the original values are larger than 0.5, and 1 if their values are smaller

than 0.5. As for Gaussian noise, we add a value drawn from a Gaussian distribu-

tion with a scaling factor to every pixel. Then we clip each pixel between 0 and 1,

i.e., we set the pixel value to 1 if the corrupted value is larger than 1 and 0 if it is

smaller than 0. The first column of Table 16 shows instances of MNIST with 5% and

29% of the pixels corrupted by salt-and-pepper noise (first two rows), and Fashion

MNIST with 9% and 41% of the pixels corrupted by salt-and-pepper corruption

(last two rows). In the following section, we use slightly different percentages of

corrupted images to train RVAE and other benchmark models.

8.2.1 Benchmark Methods

To evaluate denoising and generation abilities, we compare our model with two

well-known generative models, traditional VAE [31] and GAN [26]. All the gener-

ative models share the same number of parameters such as the number of layers,

Dissertation – Chong Zhou 56

Figure 13: This figure shows the structure of GAN and its implementation de-
tails. GAN uses the same structure but different activation functions and different
hyper-parameters.

dimensions of each layer, etc. Figure 12 and Figure 13 depict the basic structures of

these two models. Other key hyper-parameters for reproducing results are listed

below. The activation function used is sigmoid while leaky ReLU and TanH are

used in the GAN. For other hyperparameters, all the models share the same learn-

ing rate with 1e − 3 while GAN uses 2e − 4. The batch size is chosen as 200 in

each model. We train the VAE inside the RVAE for 20 epochs, with 30 iterations

per epoch, to alternate projecting onto LD and S, thus the number of iterations is

600. To keep the total number of iterations consistent with RVAE, the benchmark

methods are also trained using 600 iterations.

Lastly, we also include a two-stages pipeline where we apply some well-known

denoising model to remove the noise first, then use a standard VAE to generate im-

ages from the pre-processed images. Since VAE has shown the ability to generate

well-quality images from clean images, the denoising method plays an important

role that influences the final generating results. In particular, we pick two repre-

Dissertation – Chong Zhou 57

sentative denoising approaches: a Low-Pass Filter (LPF), which is a standard de-

noising method [10, 30], and RPCA, which is one of the inspirations of our RVAE

model. As we introduced in Section 3.1, RPCA decomposes the input matrix X

into a low-rank matrix L and a sparse matrix S. The low-rank matrix L is used as

the cleaned images to generate new images. Our experiments show that although

RPCA has the similar framework X = L + S with our model, the linear, low-

rank RPCA is not able to capture the complex structures of image data. It returns

blurred filtered results from which generated images are less clear when compared

with RVAE.

8.2.2 Evaluation Metrics

To judge the quality of images generated by the model, we use the ”Fréchet Incep-

tion Distance” (FID) score, which is computed by considering the similarity of two

distributions X1 and X2 [27]. FID score has been proven as an effective measure,

which is consistent with human’s visual inspection, to judge the quality of gener-

ated images [27]. It can also detect in-class data dropping, i.e. identical images

will give bad FID score [40]. Mathematically, FID assumes that instances follow a

continuous multivariate Gaussian, and its formula is:

‖µ1 − µ2‖2 + Tr(σ1 + σ2 − 2
√
σ1 ∗ σ2),

where (µ1, σ1) and (µ2, σ2) are the sample mean and covariance of X1 and X2. FID

ranges from 0 to∞ that a small FID score indicates a high similarity between X1

and X2 [27].

In our experiment, we calculate FID scores based on generated images and orig-

inal noise-free images to measure the closeness between clean images and gener-

Dissertation – Chong Zhou 58

ated images where small FID scores indicate successful generations. Note, the FID

score is only used for the final evaluation, and we never tune models according

to the FID. These generative models are still unsupervised as they appear in the

standard literature.

8.2.3 MNIST

Figure 14: This figure illustrates the quantitative comparison of generation ability
between VAE and RVAE when the same level of salt-and-pepper noisy images
are used as input. The x-axis shows different corruption levels, while the y-axis
represents different λ values. The blue area indicates the FID scores of RVAE are
smaller than VAE’s, meaning that the generation from RVAE is better than VAE,
while the red area shows the opposite.

Figure 14 shows the quantitative comparison of generation ability between the

VAE and the RVAE of which the input contains the same level of salt-and-pepper

noise. Although both models are only trained with noisy images, the generated

images from the RVAE have higher fidelity. In Figure 14, from bottom to top, the

parameter λ from RVAE increases from 1 to 250. A small λ indicates a large number

of pixels are isolated as noise, while a large λ means only a small part of data

Dissertation – Chong Zhou 59

belongs to S. From left to right, the ratio of corrupted pixels to the whole pixels in

input images grows gradually from 1% to 51%. Each cell of the heatmap represents

the difference of FID score between VAE and RVAE. Since the FID score has a

negative correlation with visual quality check for the generated images [27], a large

difference between VAE and RVAE indicates that the generation of RVAE is better

than VAE. In particular, RVAE does not perform very well when λ is small, i.e. the

value of λ is smaller than 10, since too much data is regarded as noise including

the useful information. As λ increases, the penalty plays a more important role

and less data are treated as noise in our model. When the value of λ is arbitrarily

large then the RVAE is the same as the VAE. As can been seen from Figure 14, the

difference between VAE and RVAE is small when the fraction of corrupted pixels

is too small or too large. This is because both RVAE and VAE can generate good

images when the input images are not corrupted too much while neither of them

can produce high-quality images when the input data has too much noise. The

blue areas show that RVAE is immune to the noise and can generate higher quality

images than VAE due to the `1 norm of S. On average, our model shows 42.47%

improved image generation when the corruption ratio ranges from 3% to 27% and

λ value varies from 10 to 100. The best result of our model shows 74.11% improved

image generation when the 33% pixels are corrupted (as shown in the darkest blue

cell in Figure 14).

The generative examples of all the models we mentioned in Section 8.2.1 are

appear in Table 16. In the first two rows, we provide images of 16 generated digits

for each model when 5% and 29% pixels of the raw images are corrupted. These

pictures show that RVAE has a strong capability to generate high visual quality

digits, while the other models are unable to isolate noise or lose some information

Dissertation – Chong Zhou 60

Figure 15: This figure shows the comparison of FID scores between VAE and
RVAE. A small score indicates a high quality of generation. As one can see, RVAE
works better than VAE when noise is not too large. Two examples of image in-
stances are provided to show the generation abilities of VAE and RVAE. In partic-
ular, RVAE still can generate realistic images when the input images are corrupted
with 60% Gaussian noise, while the generated images from VAE are unable to be
identified when the input images are corrupted with the same level of noise.

when denoising and thus fail to generate clean and realistic images. In particular,

we can see some noise is generated along with the new digits from VAE, while

no meaningful images are generated by GAN. Although the two-stage models,

RPCA+VAE and LPF+VAE, are capable of denoising and generating new images,

the edge of each digit is less sharp when compared with RVAE. Some of the fake

images generated by two-stage models are too dark and too blurry to be recog-

nized, while the generation from RVAE is realistic and easy to identify.

To evaluate the robustness of our model, we also corrupt the images with Gaus-

sian noise. As can be seen from Figure 15, RVAE gets a smaller FID score than VAE

Dissertation – Chong Zhou 61

when noise is not too large and there is a large difference between VAE and RVAE

with 60% corruption. Two examples are provided to show the clear and blurry

generation of RVAE and VAE respectively. As the noise increases to 70% and more,

both RVAE and VAE cannot generate high quality images since too much corrup-

tion makes the input images unable to be recognized. Thus the generation of both

models are hard to identify.

8.2.4 Fashion MNIST

To test the generative capability of RVAE, we implement our model with a more

complicated data set, Fashion MNIST [61]. Table 1 illustrates the FID scores of

Fashion MNIST with different levels of salt-and-pepper noise among different

models. The smallest FID score at each noise level is marked in red color, indi-

cating the best generation among our approach and all benchmark models. RVAE

outperforms the other models in all cases except for 1% corruption case. It is be-

cause when the ratio of corruption is too small, RVAE may remove too much in-

formation and reduce the quality of generation. It is apparent from the table that

RVAE can generate higher quality images than other benchmark models regardless

of whether the noise level is small or large.

Dissertation – Chong Zhou 62

Noise RVAE VAE GAN RPCA+VAE LPF+VAE

1% 113.39 93.80 612.09 174.84 172.16

5% 59.25 108.09 600.03 137.97 132.41

9% 68.70 122.55 708.67 137.48 146.17

13% 73.25 131.78 556.20 140.84 154.78

17% 82.43 144.22 732.73 144.75 164.76

21% 88.85 150.74 647.05 146.49 174.79

25% 93.62 159.41 596.36 151.92 182.61

29% 96.26 163.63 453.03 200.58 189.48

33% 102.42 170.86 463.21 161.19 193.26

37% 107.34 180.76 507.32 210.95 202.87

41% 111.24 189.72 563.85 165.00 208.20

45% 168.76 197.44 641.26 215.14 260.36

49% 120.78 213.99 652.82 172.54 216.86

Table 1: This table shows FID scores for Fashion MNIST with different levels of

salt-and-pepper noise. The red entries indicate the best generation among our

approach and all benchmark models.

More detailed examples are shown in the last two rows of Figure 16. When

comparing with generative models, VAE can generate new image along with some

noise, while GAN cannot generate anything meaningful. The quality of generation

from RVAE is also better than the two-stage models, i.e. the edge of each fashion

product is much sharper and clearer in RVAE’s generation while the generated

images from RPCA+VAE and LPF+VAE are blurry and unrealistic.

Dissertation – Chong Zhou 63

Figure 16: This table shows the generated examples from RVAE and other bench-
mark methods at different corruption levels and different data sets. The first col-
umn shows the input images with 5% and 29% corruption for MNIST and 9% and
41% corruption for Fashion MNIST.

8.3 Section Summary

In this work, Robust Variational Autoencoder reaches the gap between denoising

and generation and shows that generate high quality images in the case where

no clean, noise-free data is available. Same as previous sections, the framework

X = L+ S plays a pivotal role to split noise and normal data, where L is the input

to a standard variational autoencoder and S is regularized by `1 norm. We evaluate

the effectiveness of our model with different data sets. The experiments show that

Dissertation – Chong Zhou 64

RVAE is faithful to its name, “robust”, which, with a wide range of λ selection,

generates reasonable images from different levels and types of noise of corrupted

data. Also, we show that our integrated denoising-generative model has superior

performance over separated denoisng and generation models.

Dissertation – Chong Zhou 65

Part II

Training Methods

9 Overview

In previous sections we have introduced a number of new methods. However, the

standard training algorithm, back-propagation, is not efficient to solve theX = L+

S framework. In this part, we first present some ideas of background algorithms

that our novel training algorithm is inspired by, including the Back-propagation,

the Alternating Direction Method of Multipliers [7], and the Proximal Gradient [5].

We demonstrate how one can address such a problem by combining standard off-

the-shelf solvers for optimizing the X = L + S framework. However, since our

full objective is not convex, the convergence of the method to a global minimum

is non-trivial to guarantee. In particular, even the minimization of just the L part,

cannot, in full generality, be guaranteed to and a global minimizer [8]. However,

as we will demonstrate in Section 11, we have substantial empirical evidence that

the optimization algorithm we present below provides high-quality solutions.

10 Background

10.1 Back-propagation

Back-propagation is a method used in most artificial neural networks to calculate

partial derivatives that are needed in the computation of gradients to be used in

training the network [25]. Back-propagation shows both the efficiency and general-

Dissertation – Chong Zhou 66

ization properties in training a neural network and has become a standard method

in deep learning area [25]. Back-propagation computes an error at the output and

propagates those errors back through the network’s layers [25, 47, 56].

Back-propagation is a generalization of the delta rule to multi-layered feed-

forward networks [47, 56], made possible by using the chain rule to iteratively

compute gradients for each layer.

A typical back-propagation has two phases: 1. Forward propagation to com-

pute the output of neural network and 2. Back propagation of errors to update the

weights of the neural network. For example, a single layer in a neural network

is often parameterized with the weights W ∈ Rm×n and bias term b ∈ Rn, and a

activating function α(·) Rn ⇒ Rn. The forward propagation phase to compute the

reconstruction cost [56]:

o = α(W ·X + b)

Then, the second phase is to backward propagation of the cost to update the weight

W and bias term b [56]:

1. Compute the gradient using the chain rule of calculus

∆W =
∂ o

∂ α

∂ α

∂ W

∆b =
∂ o

∂ α

∂ α

∂ W

2. Update the weights by the gradient

W l+1 = W l − λ ·∆W

Dissertation – Chong Zhou 67

bl+1 = bl − λ ·∆b

It was noted that back-propagation is not guaranteed to find the global min-

imum of the error function, but only a local minimum [47, 56]. However, in the

range of this dissertation, it yields reasonable results supported by experiments.

10.2 Proximal Gradient

Proximal gradient methods are a generalized form of projection used to solve non-

differentiable convex optimization problems. In particular, many interesting prob-

lems can be formulated as convex optimization problems of form

min
x∈RN

n∑
i=1

fi(x), (18)

where fi are convex functions defined from f : RN → R. Some of the functions f

are non-differentiable, this rules out our conventional gradient-based optimization

techniques like back-propagation in Section 10.1.

Proximal gradient methods proceed splitting, in that the functions f1, ..., fn are

used individually so as to yield an easily implementable algorithm [3, 9]. Iterative

Shrinkage thresholding algorithm [3, 18] is one of proximal gradient method that

is used to train the ‖ · ‖1 and ‖ · ‖2,1 norms in our model. The proximity operator of

a convex function f at x is defined as

proxf (x) = argminu (f(u) + ‖x− u‖22). (19)

To solve `1 and `2,1 norm optimization in our model, the f is set as ‖u‖1 and

Dissertation – Chong Zhou 68

‖u‖2,1. Since both of them are convex and closed, there exist and is unique so-

lution proxf (x), denoted as p, for all x. From optimally conditions of minimization

[18], we get

p = proxf (x)→ x− p ∈ ∂f(p), (20)

where ∀(x, p) ∈ RN × RN . (20) is a generalization form that allows existing more

than one gradient for non-differentiable functions f [18]. If f is differentiable then

(20) reduces to:

p = proxf (x)→ x− p = ∂f(p), (21)

More specifically, `1 and `2,1 norms have differential form as

d(‖x‖1)
d(x)

=

−1, x < 0;

1, x > 0;

0, x = 0.

(22)

(22) allows us to derive an algorithm that trains the S part in RDA model which

we will detail in the next section.

10.3 ADMM

The alternating direction method of multipliers (ADMM) is a variant of the aug-

mented Lagrangian scheme that uses partial updates for the dual variables [8, 9].

This method is often applied to solve problems such as [8]

min
x
f(x) + g(x).

Dissertation – Chong Zhou 69

This is equivalent to the constrained problem

min
x,y

f(x) + g(y),

s.t. x = y.

Though this change may seem trivial, the problem can now be attacked using

methods of constrained optimization (in particular, the augmented Lagrangian

method), and the objective function is separable in x and y [8]. The dual update

requires solving a proximity function in x and y at the same time; the ADMM tech-

nique allows this problem to be solved approximately by first solving for x with y

fixed, and then solving for y with x fixed. Rather than iterate until convergence,

the algorithm proceeds directly to updating the dual variable and then repeating

the process. This is not equivalent to the exact minimization, but surprisingly, it

can still be shown that this method converges to the global minimum. Because of

this approximation, the algorithm is distinct from the pure augmented Lagrangian

method [8, 9].

Such methods are commonly used in convex optimization problems [7, 8, 9]

and in such cases there is a body of theory that proves convergence and conver-

gence rates of such methods [7, 9]. However, here we take a broader view and

apply such methods in a non-convex context. The classic theorems do not apply

in this case, however, we have substantial empirical evidence that our modified

ADMM and the optimization algorithm we will detail below provide high-quality

solutions.

Dissertation – Chong Zhou 70

11 Algorithm Training

In this section, we provide our idea and details to train for solving problems such

as “Robust Deep Autoencoders” (12), (15) and “Robust Sparse Autoencoder”(16).

In particular, we are inspired by ideas such as the Alternating Direction Method

of Multipiers [8] and R. L. Dykstra’s alternating projection method [9]1. We itera-

tively optimize each of the terms in (12), (15) and (16) separately, interspersed with

projections onto the constraint manifold. Since our full objective is not convex,

the convergence of the method to a global minimum is non-trivial to guarantee. In

particular, even the minimization of just the autoencoder ||LD−Dθ(Eθ(LD))||2 can-

not, in full generality, be guaranteed to find a global minimizer [60]. However we

have substantial empirical evidences that the optimization algorithm we present

below provides high-quality solutions.

11.1 Alternating Optimization for Robust Deep (Sparse) Autoen-

coder

The key insight of Alternating Direction Method of Multipliers (ADMM) [8] is to

divide the objective we wish to minimize into two (or more) pieces. One then

optimizes with respect to one of the pieces while keeping the other pieces fixed.

Accordingly, as inspired by the RPCA literature [15, 48] we split the objective in

(12), (15), (7) and (16) into a first piece which depends on LD and is independent

of S and a second piece which depends on S and is independent of LD. In effect,

we use a back-propagation method to train a (sparse) autoencoder to minimize

‖LD − D(E(LD))‖2(+β‖E(X)‖2,1) with S fixed, a proximal gradient to minimize

1Not to be confused with E. W. Dijkstra’s algorithm for shortest paths in graphs

Dissertation – Chong Zhou 71

the penalty term ||S||1 or ||S||2,1 with LD fixed, and after each minimization we use

element-wise projections S = X − LD and LD = X − S to enforce the constraints.

The following is our proposed optimizing method:

Input: X ∈ RN×n, λ ∈ R and β ∈ R is optional for `2,1 sparse autoencoder.

Initialize LD ∈ RN×n, S ∈ RN×n to be zero matrices, LS = X , and a (sparse)

autoencoder D(E(·)) with randomly initialized parameters.

while(True):

1. Remove S from X , using the remainder to train the autoencoder. (In the first

iteration, since S is the zero matrix, the autoencoder D(E(·)) is given the input X):

LD = X − S

2. Minimize the (sparse) autoencoder using back-propagation.

3. Set LD to be the reconstruction from the trained (sparse) autoencoder:

LD = D(E(LD))

4. Set S to be the difference between X and LD:

S = X − LD

5. Optimize S using a proximal operator:

S = proxλ,l2,1(S)

or:

S = proxλ,l1(S)

6.1 Check the convergence condition that LD and S are close to the input X

thereby satisfying the constraint:

c1 = ||X − LD − S||2 / ||X||2

6.2 Check the convergence condition that LD and S have converged to a fixed

point:

Dissertation – Chong Zhou 72

c2 = ||LS − LD − S||2 / ||X||2

if c1 < ε or c2 < ε :

break

7. Update LS for convergence checking in the next iteration:

LS = LD + S

Return LD and S

Optimizing a (sparse) autoencoder using back-propagation is an off-the-shelf

technique and well described in the literature [24, 25, 34]. In our experiment, we

implement the (sparse) autoencoder part using Tensorflow [1] which tackles error

back-propagation automatically. In particular, we describe the details of the “ini-

tialize a (sparse) autoencoder D(E(·)) with randomly initialized parameters” step

in the previous algorithm as follows:

Input: X ∈ RN×n, hList is a list which contains hidden layer sizes and β ∈ R is

optional for sparse autoencoder.

1.Initialize parameters for autoencoder Wlist and blist:

for i in range(len(hList)):

Initialize W ∈ RhList[i]×hList[i+1], b ∈ RhList[i+1]

Add W , b into Wlist, benlist

Initialize bdelist with reversed order of benlist

2.Initialize a placeholder for Input X :

input x with shape (batch size, n)

3.Build computation graph:

last layer = input x

Dissertation – Chong Zhou 73

3.1 Encoding graph:

for W , b in (Wlist, benlist):

hidden = sigmoid(last layer ·W + bias)

last layer = hidden

hidden layer = hidden

3.2 Decoding graph:

for W , b in reversed(Wlist), bdelist:

hidden = sigmoid(last layer · Transpose(W) + bias)

last layer = hidden

recon = last layer

4.Build the cost function:

if β is given (sparse autoencoder):

cost = ‖input x− recon‖2 + β‖hidden layer‖2,1

else (normal autoencoder):

cost = ‖input x− recon‖2

Step 2 in our optimizing method, “Minimize the (sparse) autoencoder using

back-propagation”, is tackled by Tensorflow automatically. After training, recon-

struction can be computed through the Tensorflow “recon” function.

11.2 Proximal Method for `1 and `2,1 Norm

The `1 norm can be optimized efficiently through the use of a proximal method

[7, 8] such as

Dissertation – Chong Zhou 74

proxλ,l1(xi) =

xi − λ, xi > λ

xi + λ, xi < −λ

0, xi ∈ [−λ, λ].

(23)

Such a function is known as a shrinkage operator and is quite common in `1 op-

timization problems. For additional details see [8]. The following pseudo-code

provides an implementation of proximal operator proxλ,l1(S):

Input: S ∈ Rm×n, λ

For i in 1 to m× n:

if S[i] > λ :

S[i] = S[i] − λ

if S[i] < −λ :

S[i] = S[i] + λ

if −λ <= S[i] <= λ :

S[i] = 0

Return S

Similar to (23) the `2,1 norm minimization problem can also be phrased as a

proximal problem, but in a slightly more complicated form. In particular, the prox-

imal operator for the `2,1 norm is a block-wise soft-thresholding function [7, 6, 45]

(proxλ,l2,1(x))j =

xjg − λ

xjg
||xg||2

, ||xg||2 > λ

0, ||xg||2 <= λ,

(24)

where the g is a group index and j is a within-group index. This optimization

Dissertation – Chong Zhou 75

combines elements xj into blocks and thus the element-wise sparsity from (23)

becomes block-wise sparsity. For additional details see [8]. The following pseudo-

code provides an implementation of proximal operator proxλ,l2,1(S):

Input: S ∈ Rm×n, λ

For j in 1 to n:

ej = (
m∑
i=1

|S[i, j]|2)1/2

if ej > λ :

For i in 1 to m:

S[i, j] = S[i, j] − λ
S[i, j]

ej
if ej <= λ :

For i in 1 to m:

S[i, j] = 0

Return S

11.3 Experimental Evaluation

Since the objective function of both RDA (12) and RSA (16) are not convex, the

convergence of our model to a global minimum is non-trivial to guarantee. How-

ever, in our experiments, we have empirically observed the convergence rates of

our algorithm, and in this section, we provide some of our observations.

Back-propagation is the commonest training algorithm for deep learning and

many packages, e.g. Tensorflow [1], implement automatic back-propagation of

errors. However, such a method is not ideal for the optimization problem we are

interests in. Figure 17 shows convergence records for selected values of λ. As one

can see, training algorithm inside the Tensorflow cannot achieve quick and flat

Dissertation – Chong Zhou 76

converging plots for RDAs.

Figure 17: This figure shows a comparison of the convergence of RDAs directly

trained by Tensorflow with our proposed training algorithm. The Tensoflow train-

ing are indicated by the solid lines and one can find that the objective descends

quickly in the first iteration, but keeps bouncing even after 400 iterations with dif-

ferent λ. Convergence is hard to achieve for RDAs. However, for our training al-

gorithm which is indicated by dashed lines, convergences seems slower but there

is no bouncing trends in any of dashed lines. By comparing these two, we claim

our proposed training algorithm is more stable.

Our proposed training algorithm, following the idea of an ADMM, minimizes

one part of the objective with the other parts fixed. In particular, with S fixed,

we use 30 instances as a training batch and 5 epochs to train the autoencoder part

|LD − Dθ(Eθ(LD))‖2. With L fixed, solving the proximal problem for S is deter-

ministic and only takes one step. Accordingly, in Figure 18, one can see a “stair

case” pattern where 5 epochs of minimization for the autoencoder is followed by

Dissertation – Chong Zhou 77

a single solve of the proximal problem for S. As one can see, the largest decrease

in objective function is achieved by each proximal solve. λ is also essential to the

convergence of the problem. Accordingly, Figure 18 shows convergence histories

for several values of λ. As one can see, our proposed ADMM algorithm converges

quickly in many cases of interest.

Figure 18: This figure shows the convergence of our optimization algorithm for

a RDA. The objective descends quickly in the first 50 iterations and archives con-

vergences after 200 iterations when λ is small. Convergence is slower for large λ

values but still reasonable for our problems of interest.

11.4 Section Summary

We proposed a training algorithm for the optimization of RDA and RSA which is

similar to traditional Robust PCA but with more complicated objective functions

that is not convex and not differentiable. This proposed algorithm combines ideas

from proximal methods [8], backpropagation [56], and the Alternating Direction of

Dissertation – Chong Zhou 78

Method of Multipliers (ADMM) [7]. We demonstrated experimental effectiveness

and convergence of our algorithm. The theoretical proof of convergence is one part

of our future work.

Dissertation – Chong Zhou 79

Part III

Applications to Cyber Security

12 Overview

Distributed Denial of Service (DDoS) attacks are a constant danger to today’s In-

ternet [2, 12, 13, 14], and not all such attacks can be detected using signature based

approaches [14]. Accordingly, anomaly-based machine learning and data mining

methods are appealing to the defenders of networks because of their ability to de-

tect zero-day attacks where no templates are available. As described in Part I, our

development of RPCA and RDA allows detecting anomalies without noise-free

data as references. Herein, we detail our work that applies RPCA and RDA on

cyber data and demonstrate their superior accuracy when compared to baseline

methods. Beyond that, we modify the standard RPCA to analyze attacks in a vast

and variety streaming environments. Our experiments qualitatively and quantita-

tively demonstrate the performance of our proposed algorithms using a collection

of data arising from Raytheon BBN’s high-fidelity simulated network test-bed on

a variety of real world DDoS attack vectors.

13 High-fidelity Simulated Data

Sand-box data is commonly used in cyber attack analysis [11, 14]. As a conse-

quence, the quality of simulated data plays an important role to the success of

analysis. This section provides a short overview of the data generation work and

also this section is a special thanks to the data provider, Raytheon BBN Technology.

Dissertation – Chong Zhou 80

The techniques is evaluated using data collected from the ARMED project.

ARMED is a DARPA funded project that is developing technologies to defend

network enclaves hosting services provided to clients outside the enclave against

sophisticated distributed denial of service attacks. ARMED uses instrumented net-

work stacks, called ARMED Network Actors or ANAs for short, placed in the net-

work enclave that form an overlay that all traffic to the defended services must

flow through. The ANAs act as transparent relays for the clients– i.e., from their

perspective they still interact with the intended endpoint, whereas protocol spe-

cific instrumentation at the ANAs may terminate TCP or HTTP connections, collect

data that is subjected to analysis such as RPCA, and may inject responses without

having to connect to the intended endpoint. The presence of ANAs incur over-

head, and depend on how many protocol-specific instrumentation points the traf-

fic has to cross before hitting the intended service endpoint, in our evaluation so

far, we have observed the overhead to up to 30% (which corresponds to a net in-

crease in RTT of 75ms in the test-bed).

The test-bed, emulating a small services enclave containing a DNS and an

HTTP-based web service, is defended by a 2-tier configuration of ARMED ANAs:

the first tier is responsible for handling the TCP protocol, and the second tier is

responsible for handling the HTTP protocol.

To increase the realism of our evaluation, a sophisticated mechanism, called

Yoshka [43], is applied for background traffic generation. Yoshka makes use of be-

havior trees for traffic generation. The behavior trees model user workflows/activities

(e.g. downloading a file, sending an email). Thus, the execution of an activity de-

pends on the success or failure or previous activities. The list of tasks per user is

executed on a loop following a non-deterministic approach using a uniform distri-

Dissertation – Chong Zhou 81

bution with a random interval between 1 and 10 seconds. Yoshka supports a set of

protocols such as HTTP, FTP, GIT, IMAP, SMTP, and SQL. In the current ARMED

test-bed, Yoshka typically emulates 140 users . In the results presented in this pa-

per, the user model used for background traffic contained only FTP and HTTP

interactions.

14 Related Work

14.1 Novel DDoS Attack

There exists a large extension literature which keeps eyes on the increasing threaten

on the cyber world. Over the last decades, Internet has increasingly become the

critical communication medium of the world. Enrico Cambiaso etc. [12] present a

novel threat, SlowDroid, on Android system. SlowDroid implements a Denial of

Service attack and it is particularly suitable to a mobile execution since it makes

use of low amounts of computational and bandwidth resources. Similarly, another

novel threat called SlowComm shows its success on leading a DoS on a targeted

system using a small amount of attack bandwidth [13]. These attacks share the

same mechanism with the Slow Read attacks that we are working on.

Beyond direct attacks, malicious users neutralize security restriction through

protocol encapsulation, tunneling peer-to-peer, chat, or HTTP packets into allowed

protocols such as DNS or HTTP [2]. An innovative profiling system is proposed in

[2] for DNS tunnels which is based on Principal Component Analysis and Mutual

Information. These techniques share the similar idea with Robust Principal Com-

ponent Analysis that Slow-communication attack, including Slowread, SlowLoris,

SlowDroid, and SlowComm, significantly increase similarity between data which

Dissertation – Chong Zhou 82

is a key feature to protect cyber systems.

14.2 Anomaly Detection with Cyber Data

There is a large amount of research works trying to apply machine learning and

data mining techniques on analyzing cyber security data. Most of them falls into

two main types of cyber analytics in support of analyzing: signature-based and

anomaly-based [11]. Here, we mention two example of research works in the liter-

ature: Hu et al. [28] used the robust support vector machine (RSVM), a variation of

the SVM where the discriminating hyperplane is averaged to be smoother and the

regularization parameter is automatically determined, as the anomaly classifier in

their study. The application of Random Forests to anomaly detection is described

by Zhang et al. [67], where an anomaly (outlier) detector was employed to feed a

second threat classifier.

However, these methods are supervised methods which require an access to

the pre-defined label for the training process which have difficulties on detecting

new attacks, which is well-known as zero-day attacks [11]. Anomaly-based tech-

niques model the normal network and system behavior, and identify anomalies as

deviations from normal behavior. Our models falls into this category which are

appealing to us because of their ability to detect zero-day attacks [11].

15 Robust PCA for Anomaly Detection in Cyber Data

As we introduce in Section 3.1, RPCA is classically used to construct low dimen-

sional linear features by filtering out outlying measurements [48]. In this section,

we demonstrate how this technique can be used to analyze the dimension and

Dissertation – Chong Zhou 83

detect anomalies in data arising from Raytheon BBN’s high fidelity simulation in-

frastructure and make use of RPCA derived features to identify different DDoS

attacks. From our results, which are also our main contribution in this work, we

find that DDoS attacks has closely correlated to the dimension changing and the

sparse, high-dimensional values’ variation when networks are actually under the

DDoS attack.

In general, as we introduce in Section 3, Robust PCA allows splitting X into

two parts, namely L and S. In this section, we detect cyber attacks through two

important features that are generated by such a splitting of Robust PCA. In partic-

ular, we compute the dimension of L to measure the similarities between instances

and features and use the summation of columns in S to measure the importance of

anomalous features.

Robust PCA provides the careful teasing apart of sparse anomalies so that

the remaining low dimensional approximation is faithful to the noise-free low-

dimensional subspace describing the bulk of the raw data [48]. In our analysis,

our input data is X , and we describe the features derived from Raytheon BBN’s

high performance simulator in Section 15.1.

15.1 Application In Cyber Security

Our data is generated from a simulated network which topology is shown in Fig-

ure 19. Normal users and potential attackers connect to an HTTP server and a

DNS server through a sensor network. ARMED Network Actors (ANA) sensors

record the network activities and each ANA sensor monitors different subnets. As

an example, one of our data has over 1,500,000 instances and each instance has 13

raw features. The other files provided to WPI by Raytheon BBN following a sim-

Dissertation – Chong Zhou 84

ilar convention. These raw features include timestamp, window, offset, destination

port, source port, destination address, source address, sequence number, RST flag, FIN

flag, ACK flag, SYN flag, and state. These raw features are recorded according to

monitoring data transferred by Transmission Control Protocol (TCP). Herein, we

list feature meaning in detail [16]:

• Timestamp indicates the time of data being recorded.

• Window specifies the size of receive window.

• Offset specifies the size of the TCP header in 32-bit words.

• Destination port identifies the receiving port.

• Source port identifies the sending port.

• Destination address identifies the receiving IP address.

• Source address identifies the sending IP address.

• Sequence number If the SYN flag is set, then this is the initial sequence number.

If the SYN flag is clear, then this is the accumulated sequence number of the

first data byte of this segment for the current session.

• RST flag presents the willing of resetting the connection.

• FIN flag indicates the last packet from sender.

• ACK flag indicates that the Acknowledgment field is significant. All packets

after the initial SYN packet sent by the client will have this flag set.

• SYN flag is used to synchronize sequence numbers with server. Only the first

packet sent from each end will have this flag set.

Dissertation – Chong Zhou 85

• State indicates the states of current connection.

Figure 19: This figure shows the basic setup of the network that generates our
data. There are normal clients, potential attackers, and DNS and HTTP servers
in the network. The network is monitored by ANA sensors. Each ANA sensor
works individually and monitors different subnets and protocols at different net-
work layers.

Denial-of-service (DoS) attacks are characterized by an explicit attempt by at-

tackers to prevent legitimate use of a service. There are two general forms of DoS

attacks: those that crash services and those that flood services [66]. The most seri-

ous attacks are distributed.

There are two types of distributed attacks in our data: “slow read” attack and

“SYN-flood”. A slow read attack sends legitimate application layer requests, but

reads responses very slowly, thus trying to exhaust the server’s connection pool.

A SYN flood occurs when a host sends a flood of TCP/SYN packets. Each of these

packets are handled like a connection request, causing the server to spawn a half-

open connection and waiting for a packet in response from the sender address.

We clean the raw data to satisfy the assumptions of our Robust PCA model.

Data cleaning consists of three steps:

Dissertation – Chong Zhou 86

1. Feature Selection: We only use the timestamp feature to slice the data into

windows. We drop this feature since it is useless for Robust PCA analysis

since it merely indexes the other features. We also delete the window and se-

quence number features since they start with random numbers and are useless

for measuring distances and similarities (though they are quite useful for

eventual integration of the Robust PCA detected anomalies into the larger

ARMED systems).

2. Encoding IP and Port Number: Our network is based on IPv4 protocol. Both

source and destination are IPv4 addresses which consists of 4 bytes. How-

ever, IPv4 addresses contain more information than just merely distinguish-

ing unique addresses. The IPv4 address includes hierarchical information in

its format: the leftmost bytes designate which top-level domain a particular

address belongs to, and the rightmost bytes designate subnets within that

top-level domain. The precise number of bytes which are used for the top-

level domain and the subnets a function of the “class” of the network. To

preserve this hierarchical information, we divide the IP feature into four fea-

tures according to its byte and treat each byte as a categorical feature. The

first three features categorize its hierarchical subnet and the last feature dis-

tinguishes different terminals in the subnet.

The port number feature is categorical and it ranges from 0 to 65535. Some

ports are monopolized by widely used protocols like 80 for HTTP and 443

for DNS while some ports are dynamic and randomly picked when needed.

Giving each port number a single feature encoding is verbose and unnec-

essary. We want to distinguish port numbers according to their frequency.

Thus, we encode the port number into 3 categories: “common”, “registered”,

Dissertation – Chong Zhou 87

and “dynamic”.

3. OneHot Encoding and Z-scoring Data: Our features are categorical repre-

sented as integers but ordered integer numbers are misleading when consid-

ering distances between categories, since a naive encoding would force the

distances between any two different categories to be equal. We use One-Hot

encoding which transfers a single categorical feature to a group of features

among its legal values. There is only those with a single “1” in the group

which represent current choice and all the others are “0”. The main advan-

tage of One-Hot encoded data is that it gives comparable distances across

different categories.

15.2 Experimental Evaluation

After cleaning, we divide instances into windows according to their timestamp.

Each window contains 8000 instances. We apply Robust PCA to each window

separately and demonstrate the dimension and the anomalies for each window

and check how they vary along with time. Both dimension of L and anomalies in S

can help us identify certain types of attacks and we give details in Figures 20 and 21. To

help intuitively explain how the dimension and anomalies of data associate with

attack traffic we provide more detailed visualizations on some time windows.

15.2.1 Dimension and Anomalies

The dimension of the traffic data is an important indicator of the data’s structure

and it measures similarity of network traffic. Network traffic of normal users are

expected to be at a relatively stable level since normal users are neither extremely

akin or extremely alien. Dramatic increments and decrements of dimensions indi-

Dissertation – Chong Zhou 88

cates abnormal network traffic. In particular, significant low-dimensional mea-

surements indicate broad swaths of network traffic are identical and therefore

probably generated by bots. On the other hand, a sharp increment in the anomaly

part indicates some unexpected and unseen traffic which also could be an attack.

Figure 20 shows the dimension of L changing with the time windows. We can tell

that during the “slow read” attack, the dimension of network traffic data drops

which demonstrates that the “slow read” attack makes the network traffic more

similar with each other (and likely artificially generated).

Figure 20: This figure shows the dimensions of data changing across time win-
dows. The solid red line indicates the time of a “slow read” attack starting and the
dashed red line indicates the time where it stops. The solid yellow line indicates
the time of a “SYN-flood” attack starting and the dashed yellow line indicates the
time where it stops. One can find that during the “slow read” attack, the dimen-
sion of the data is lower than when no attack occurs. Data measured during the
“slow read” attack is much lower dimensional than others time windows which
indicates such measurements are not likely generated by normal users. Such low
dimensional behavior of a “slow read” attack is a primary result of our work.

Figure 21 shows the sum of absolute values of anomalies for each column in

Dissertation – Chong Zhou 89

S changing with the time window. In Robust PCA, the S part is considered as

anomalous. We propose to use the absolute value of sums of columns of S to

measure an abnormality level. Also, instead of treating S as one piece, we provide

a detailed visualization of the abnormality level for different groups of features

(such as port numbers). In Figure 21, the distance between lines demonstrates

the abnormality of features. One can tell that abnormality changes with the time

window and gets a sharp upper increment at the time of the yellow line indicating

a “syn-flood” attack happening. The sharp increment in S implies there are huge

number of unexpected source IP, port numbers and flags transferring through the

network at the time of the “syn-flood” attack.

15.2.2 Network Connections under Different Attacks

To understand the network traffic in different environments, we visualize different

examples of network features in which each node is an individual host and each

edge is a connection between hosts. Every black box on the edges is the direction

of an arrow for each connection that starts from its source host to its destination.

Figure 22 shows an example of the normal traffic on time window 4.

Figure 22 shows an example of traffic under “slow read” attack in time win-

dow 33. Compared with the normal traffic in Figure 22, the “slow read” traffic

is more similar which match our previous analysis that “slow read” reduces the

dimensionality of the measured data.

Figure 24 shows an example of traffic under “syn-flood” attack in time window

61. One can find that there are many unexpected hosts connecting the server on

the “syn-flood” attacks which increase the number of anomalies in the data. This

phenomenon also matches our previous analysis in Figure 21.

Dissertation – Chong Zhou 90

Figure 21: This figure shows the anomaly part S changing with the time win-
dow. In particular, each line shows a collection of related feature values in S
changing with the time window. Like Figure 20, red and yellow lines mark the
starting and ending times of two attacks. One can find that there is a spike dur-
ing the “syn-flood” attack. This spike indicates that the “syn-flood” attack con-
sists of large number of connections with unexpected IP, strange port number, and
unanticipated state flags to the server. These unpredictable connections are high-
dimensional and thus distinguished as anomalies by Robust PCA. Such a surge
of anomalies under the “SYN-flood” attack is another primary discovery of our
work.

15.2.3 Second Order Analysis

After the first order analysis of raw data, we begin a second order analysis where

we compute the linear correlations between features for each time window and

apply Robust PCA on correlation matrices. Correlations represent the linear pre-

dictability between features and the analysis of correlation matrices allows one to

distinguish when the predictability between features changes.

As described in Section 15.1, we have 86 features, and the correlation matrix is

86×86 at each time window. The entry at i-th row and j-th column in a correlation

matrix indicates the linear predictability between the i-th feature and j-th feature

Dissertation – Chong Zhou 91

Figure 22: This figure shows an example of the network connections in the normal
traffic on time window 4. One can find that the normal traffic are different but
roughly contains two types of business traffic. There are many nodes connecting
to the 10.2.2.10 and the 192.168.2.4 which are the two HTTP servers.

in the original data. Robust PCA splits correlation matrices into L and S, and S

therefore contains anomalous correlations between features.

Comparing Figure 21 and Figure 25, we find a surprising but reasonable phe-

nomenon that the “slow read” attack does not match any pattern in S in the original

data, shown in Figure 21, but it does match a significant increment in S of correlation

matrix, shown in Figure 25.

15.3 Section Summary

In this work, we contribute our major discovery that Both the dimension and the

anomaly level of data are important features for us to identify DDoS attacks, since normal

users are neither extremely akin or extremely alien. In our Robust PCA analysis,

we propose to use the dimension of L as an indicator of the major part of data

and the absolute value of sum of S to measure the anomaly level of data. We also

provide intuitive topology plots of networks which match the results of both the

dimension and anomaly analysis. Last, we use second order analysis of Robust

Dissertation – Chong Zhou 92

Figure 23: This figure shows an example of the network topology under “slow
read” attack on time window 33. There are only two hosts connecting with an
HTTP server 10.2.2.10. Both of them hold a large amount of connections with the
server. These connections are similar, and thus data are low dimensional. We can
find their low dimensional behavior in Figure 20.

PCA which enhances our conclusion that some types of DDoS attacks increase the

correlation between features.

The RPCA-based analysis of network data described in this thesis is a key com-

ponent of the ARMED technology suite developed under the DARPA XD3 pro-

gram. ARMED (Adaptive Resource Management Enabling Deception) technology

adds an in-network maneuvering capability to service enclaves– network enclaves

hosting services that are consumed by clients that reside outside of the service en-

clave. The primary goal of the ARMED maneuvers is to defended the services

hosted in the service enclave from sophisticated denial of service attacks from out-

side clients. ARMED technology, including the RPCA analysis component has

been demonstrated and evaluated against a number of real and synthetic attacks

including the segmentsmash attack and the SRI DDoS Laboratory tool. ARMED is

currently being evaluated for transition to defend a tactical situational awareness

server that is widely used by various civilian and military agencies.

Dissertation – Chong Zhou 93

Figure 24: This figure shows an example of the network topology under “syn-
flood” attack on time window 61. One can find that many nodes connect to the
server 192.168.2.4. However, many of them are unexpected and differ with the
topology of normal traffic. As a consequence, Robust PCA filters out many of
values into S part. Figure 21 shows that there is a spike at this time window.

16 RPCA and RDA for Semi-supervised Learning of

Attacks

16.1 Semi-supervised Learning

We introduce algorithms of applying semi-supervised learning on cyber data. These

algorithms first implement a dimension reduction technique: RPCA or RDA, then

train a Random Forest on the lower dimensional data and predict whether or not

an entry is an attack.

We begin with the setup of our data. Our data is in a matrix X ∈ RN×m, where

N is the number of entries and m is the number of features from a buildt-in sensor

that monitors a certain aspect of the network. This large matrix is then split up

into new matrices, or slices, by every 8 000 rows. Thus we have a new matrix

Y ∈ Ra×b×m, where a is the number of slices, b is the number of entries in each slice

(8 000), and m is still the number of features. In our data set, we know that attacks

Dissertation – Chong Zhou 94

Figure 25: This figure shows a summation of the anomalous part of S in correlation
matrices changing with the time window. Like Figure 20, red and yellow lines
mark starting and stopping time of two attacks. The solid red line indicates the
time of a “slow read” attack starting. One can find that there is a sharp increment
when the “slow read” attack starts at time 19. This increment indicates that the
“slow read” attack significantly increases the correlation between features.

only occur on slices 24-40 and therefore we will focus on those. Slices 0-23 do not

contain any attacks. This can be seen in Figure 26.

16.1.1 Semi Robust Principal Component Analysis

For this method, we combine Algorithm 1 and 2. The first algorithm takes in Y

and Lam, where Y ∈ Ra×b×m as stated in Section 16.1 and Lam is an array of the

possible λ values for RPCA. As mentioned in Section 3.1, λ is the coupling constant

which tunes how sparse the S matrix is. Therefore, by training a variety of possible

values for λ, and cross-validating the results, the most accurate value of λ can be

selected for the final model.

First, in our experiments, the attacks only happened in slices 23-40 in our dataset

where we build a list that contains the labels, as shown in Algorithm 1. Then the

algorithm iterates through each possible λ value. The very first slice of clean data

Dissertation – Chong Zhou 95

is used to fit RPCA to, and is thus decomposed into a low rank L and a sparse S

matrix. Then, for each slice that contains attacks, the slice is projected down onto

the same lower dimensional plane as the initial slice of clean data. This produces

the low rank L matrix for each slice and S is obtained by subtracting L from the

slice. Each sparse matrix of outliers S is saved for later analysis.

Once each S matrix is obtained for each slice and each possible λ, the next

step is training the classification algorithm. Algorithm 2 shows the training of the

classification algorithm. This algorithm takes in comb and S. In this case, comb is

an array of the different λ values and S ∈ Rc×a×b×d, where c is the number of λ

values, a is the number of slices, b is the size of each slice, and d is the dimension

that RPCA projected the data down to (i.e., S is the results saved from Algorithm 1.

Arrays for False Positive Rate (FPR) and False Negative Rate (FNR) are initialized

as empty arrays. Then for every λ a Random Forest Classifier (clf) is fit to the

first slice of attack data for which that attack was occurring the entire time (this is

the second slice of attack data) for that given λ. Then for each of the remaining

slices related to that λ, the clf predicts which entries are attacks. The FPR and FNR

arrays are filled with the False Positive Rates and False Negative Rates respectively

for each slice and λ combination.

Algorithm 1 Semi-Supervised RPCA

Input: Y ∈ Ra×b×m, Label is a boolean array indicates whether a slice

contains attacks, and Lam is an array.

mixture slices = Y[Label==’att’]

normal slices = Y[Label==’normal only’]

for all lam ∈ Lam:

Dissertation – Chong Zhou 96

L, S = rpca(normal slices, lam)

for slice ∈mixture slices:

projectedSlice = project(slice, L)

S = slice − projectedSlice

save S

Algorithm 2 Random Forest Classification

Input: S ∈ Rc×a×b×m, Label is a boolean array indicates whether a

slice contains attacks, Lam is an array contains of different λ, FPR and FNR

are function calls that compute false positive rates and false negative rates

respectively.

mixture slices = Y[Label==’att’]

for slice ∈mixture slices:

Initialize: FPR list and FNR list

for lam ∈ Lam:

classifier = RandomForest.fit(slice[lam,1])

prediction = classifier.predict(slice)

FPR list.append(FPR(prediction))

FNR list.append(FNR(prediction))

for lam ∈ Lam:

res = FPR list[lam] * FNR list[lam]

bestLam = argmin(res)

Plot FPR list[lam] and FNR list[lam]

Dissertation – Chong Zhou 97

Next, we needed to select the best combination of parameters that are being

trained (λ for RPCA). For each λ value, the False Positive Rate for Slice 2 (third

slice containing attacks) was multiplied with the False Negative Rate for Slice 2

(third slice containing attacks). The λ value with the lowest result from this mul-

tiplication will be selected as the combination. This allows the result to depend

more on the value which varies the most. For instance, in our dataset, the FPR

are all very similar between different combinations while the FNR can very rather

significantly, with our proposed approach having the best performance in all cases.

16.1.2 Semi Robust Deep Autoencoder

For this method, we combined Algorithm 2 and 3. This method takes in four pa-

rameters: Y, Lam, Label and Inner. Y and Lam are the same as explained in Section

16.1.1 and Inner is an array of possible inner layer dimensions. As mentioned

in Section 5.1, the Robust Deep Autoencoder contains a low-dimensional hidden

layer, and Inner contains possible dimensions of this hidden layer.

This algorithm begins with utilizing the labels that discovered as in Section

16.1.1 to select slices that contain attacks. Then the algorithm iterates through ev-

ery combination of λ and hidden layer values. Then a RDA is trained with the λ

and hidden layer dimensions combination. The RDA is then fit to the first slice of

data provided, which does not contain any attacks. Once the S and L matrices are

obtained, each slice of attacks is iterated through. Three matrices are obtained for

each slice. First, the fully reconstructed L matrix is the Dθ(Eθ(LD)) value in equa-

tion 12. The S matrix is directly from equation 12, and the hidden layer L matrix

is Eθ(LD). Finally, we save the S matrix by itself, and the S matrix appended with

the reconstructed L matrix such that the returned matrix is of size b × 2m, and S

Dissertation – Chong Zhou 98

matrix appended with the hidden layer L matrix such that the returned matrix is

of size b × (m + hidden). Therefore for each of the possible λ and hidden layer

combinations, we have 3 returned matrices for each slice.

Algorithm 3 Semi-Supervised Robust Auto-encoder

Input: Y , Lam is an array contains of different λ, Label is a boolean array

indicates whether a slice contains attacks, and Inner is an array of possible

inner layer dimensions.

mixture slices = Y[Label==’att’]

normal slices = Y[Label==’normal only’]

for lam ∈ Lam:

for hid ∈ Inner:

rae = RDA.init(lam,hid)

L,S = rae.fit(normal slices)

for slice ∈mixture slices:

reconL = Dθ(Eθ(slice))

S = slice - reconL

hiddenL = Eθ(slice)

save S+reconL, S+hiddenL, S

Each of these matrices forms a separate testing algorithm, thus Algorithm 2

is run 3 separate times for each output of Algorithm 3. The parameter comb now

represents each λ and hidden layer dimension combination for which the data was

found. We can now define three methods:

• S RAE: where the Random forest is trained on S,

Dissertation – Chong Zhou 99

• SL RAE: where the Random forest is trained on S and the reconstructed L,

and

• SL hid RAE: where the Random forest is trained on S and the hidden layer

that gives rise to the reconstructed L.

For each combination of λ and hidden layer dimension, the Random Forest is

trained on slice 1 (the second slice with attacks in the dataset), and then predicts

on all the remaining slices. The best combination of λ hidden layer dimension is

selected from slice 2, as explained in section 16.1.1.

16.2 Experimental Evaluation

To determine the accuracy of each of our models at determining if an entry is an

attack, we compared FPR and FNR. The FPR is the total number of false positives

(falsely labeled attacks) predicted out of all positives (attacks) predicted. The FNR

is the number of false negatives (falsely labeled non-attack data) out of all nega-

tives (non-attacks) predicted. Each method produces a predicting label for each

data entry and from this information, we compare the FPR and FNR of each of our

methods. Thus, the lower the FPR and FNR of a method, the more accurate the

method is at predicting attacks in our data. Additionally, we compare some base-

line methods to the more complex methods developed in this paper to determine

the improvement from industry standard methods.

16.2.1 Baseline Methods

We develop two baseline methods: Random Forest and Principal Component Anal-

ysis (PCA).

Dissertation – Chong Zhou 100

Random Forest (RF) performs no dimension reduction on the data and simply

fits a Random Forest Classifier to the first slice of attack data and then uses that

classifier to predict on all the other slices of attack data.

Principal Component Analysis (PCA), performs the basic form of linear dimen-

sion reduction before classifying the data. This method fits a PCA model to a slice

of data without any attacks to find the lower dimension of that data set. More in

depth information on PCA can be found in [29]. From there, each slice of data with

attacks is then projected onto that same lower dimensional subspace. Once each

of these lower dimensional subspaces of the original data are formed, a Random

Forest Classifier is trained on an attack slice of data and then the classifier is used

to predict the labelling of the rest of the attack slices.

16.2.2 Data Labeling

For the semi-supervised portion of our results, we needed to determine labels for

each entry in the dataset. Throughout the given data, a type of denial of service

attack occurs called slow-loris. For more information on slow-loris attacks refer-

ence [14]. This attack, in our data, is known to be initialized by one specific source

IP address (’10.25.0.10’) and is sent to another destination IP address (’10.2.2.10’)

through a given destination port (80). Additionally, we know the range of time

during which the attack occurred. Therefore we can use these pieces of informa-

tion and label attacks based on the entries source IP, destination IP, destination

Port, and time. The overall dataset with attacks labeled in red can be seen in Fig-

ure 26.

To organize our data, we will divide our dataset up into slices. Every 8,000

entries are a slice. There are 17 slices which contain attacks within them. These

Dissertation – Chong Zhou 101

Figure 26: This figure shows the entries in the dataset which are labeled as attack
entries. The first half of the dataset contains no attacks, while the second half is
under attack. Thus, we hope to predict the attack entries in the second half of our
dataset.

slices will be focused on in our later results.

Additionally, for our semi-supervised results, we needed to remove the fea-

tures used in manually labeling attacks. Therefore, we removed all features which

were created from IP addresses for this portion of our results. This resulted in re-

ducing the 86 features down to only 33 different features. After deleting IP and

port numbers, our algorithms only rely on the rest of features rather than the IP

and port numbers which are used to create labels.

16.2.3 Semi-supervised learning results

For this section, we trained and tested six different models on 17 slices of data

which included slow-loris attacks. The first model (RF) trained a Random Forest

on the cleaned data set. The second model trained PCA on the dataset and trained

a Random Forest on the linear projection of slice 1 onto a lower dimensional sub-

space. The third model (RPCA) was described in section 16.1.1, and the last three

models: S RAE, SL RAE, and SL hid RAE are explained in 16.1.2. For the unique

models to this paper, RPCA, S RAE, SL RAE, and SL hid RAE, we trained the di-

Dissertation – Chong Zhou 102

mension reduction model on the first clean slice of data in the dataset, trained the

classification model on slice 1 of the data with attacks, and cross-validated the re-

sults on slice 2 of the data with attacks to determine the best values for λsl rae or

λ and hidden layer dimension. We trained on slice 1 instead of slice 0 of the at-

tack since the attack did not start until half way through slice 0. The results were

more accurate with slice 1 since that slice was more similar to the others with at-

tacks. Next, we aimed to make these methods plausible for real time analysis, so

we cross-validated the results on slice 2 to select the optimal λ or λ/hidden layer

dimension combination. Thus, once the first 2 slices are complete, the most accu-

rate algorithm would have been selected and could be run on new data as it came

into the network. In Figure 27 these methods were trained and cross-validated on

Slices 1 and 2, and only the accuracy on the “testing” Slices 3 can be thought of as

being representative of the true accuracy of the algorithms.

In addition in Figure 27, the FPR of methods are compared over different slices.

Each method has a very similar and low FPR throughout each of the slices, except

for the last slice. The last slice causes a variation of the FPRs, which could be

due to the fact that the attack ends half way through the slice and therefore there

are significantly less attacks in that slice. If the algorithm predicts about the same

number of attacks as the other slices, then there would be more entries predicted

as attacks than are truly attacks. Therefore, there would be more false positives,

which is what is occurring in this slice.

Finally, in Figure 27, the different methods proposed in this paper show im-

provement from the baseline methods. The baseline methods continually have the

highest false negative rates, reaching as high as .7 in slice 12. This shows that the

methods are unable to mark the majority of true attacks as attacks. Since the objec-

Dissertation – Chong Zhou 103

Figure 27: On the top, we show False Positive Rates for each of our semi-
supervised methods. For the methods proposed in this paper, the λ and hidden
layer dimension selected for the optimal model are stated. Each method contains
very close results to one another and the FPR is fairly low for each slice except the
last. On the bottom, we show False Negative Rates for each of our semi-supervised
methods. Each of these methods were trained on beginning slices and then used
to predict attacks on later slices. For the methods proposed in this paper, the λ and
hidden layer dimension selected for the optimal model are stated. S and L Robust
Auto-encoder methods clearly outperforms the other methods in every slice. These
False Negative Rates are much lower for our proposed methods than for the comparison
methods.

Dissertation – Chong Zhou 104

tive of anomaly detection is to not miss any attacks on the network, this accuracy

is very poor. The method SL RAE, in which is S concatenated with the fully re-

constructed L, has a lower FNR for each slice than any other method, reducing the

false positive rate to 0.2 from 0.7!

16.3 Section Summary

In this section, we show how the unsupervised methods of RPCA and RDA, a

method which combines the nonlinear dimension reduction of autoencoders with

the anomaly detection characteristics of RPCA, can be combined with the super-

vised method of Random Forests to create a semi-supervised method for detecting

anomalies. We compare these different methods against baseline methods as well

as each other to demonstrate a significant improvement in the accuracy of pre-

dicting attacks. We determine that our RDA methods obtain significantly higher

accuracies, when predicting what traffic is attacks, than the other methods.

17 Streaming Anomaly Detection via Robust PCA

Streaming anomaly detection is the ability to identify abnormal instances while

additional data is generated over time. Our focuses in this section adapts out static

anomaly detecting technique, Robust PCA, to streaming environments. We view

such streamed Robust PCA process as performing actions of Robust PCA on data

incrementally as it arrives rather than collecting windows of data for batch pro-

cessing. Our initial problem comes from our data which is X ∈ N × k, where N is

the number of instances and k is the number of sensors. It is very common in real-

world cyber security problems that N >> k, since k is fixed after sensor networks

Dissertation – Chong Zhou 105

built up, while N can be arbitrary large for it continuously increases with new in-

stances generated. In particular, we are considering problems with a tremendously

large N that fitting data into main memory is impossible. Such a memory limita-

tion obliges us to drop long history of data and only maintain pivotal information

in the main memory, and keep update it upon new data coming.

17.1 New Challenges for Second Order Analysis

The second order analysis is promising to relieve memory usage in two ways. First,

it is able to reach required accuracy of analysis that second order analysis captures

both types of attacks. Also, second order analysis reduces the size of data from a

shape of N × k to a size of k × k, where N >> k. It is therefore feasible to solve

the Robust PCA optimization on second order, covariance matrices with the size

of k×k than the first order, raw matrices with the sizes of N ×k. Even through de-

veloping fast and stable second order analysis techniques can be considerably ad-

vantageous in the cyber defense context, it still imposes several challenges which

I summarize into three aspects as the following:

First, even though there are off-the-shelf techniques, such as “incremental cal-

culation of weighted mean and variance” [22], in the literature which satisfy mem-

ory and computation requirements, we need more sophisticated models to decay

long-term dependencies and allow covariance matrices to be more related to recent

time windows since we detect anomalies based on changes in network topogra-

phies as we have shown in Section 15.

Second, we can only perform Robust PCA on instances with numerically mean-

ingful distance due to its optimization and matrix decomposition, and we have de-

scribed how to support such a requirement by One-Hot encoding in Section 15. In

Dissertation – Chong Zhou 106

a streaming environment, One-Hot encoding should also be revised to the stream-

ing fashion which is able to support dynamical modification on the encoding of

novel measurements and changes on the dimension of covariance matrices.

Last but not least, it is also our goal to distinguish whether a new instance is a

normal instance or an anomaly.

Herein, we propose a novel solution that tackles streaming anomaly detection

problem by measuring the local correlation of data features in a streaming fashion

instead of treating time windows as being independent. We also provide a reli-

able encoding algorithm that transforms categorical data to numerical as well as

automatically enlarge covariance matrices when novel data arriving. Last, we de-

scribe an efficient strategy that projects new instances onto the space discovered

by Robust PCA. It allows us to calculate anomaly scores for each new instance and

reports abnormal measurements in real time.

17.1.1 Streaming Covariance Computation with Forget Rates

Due to the volume of cyber network data, our goal is to build memory-friendly

algorithm. By developing a streaming anomaly detection algorithm based on comput-

ing sensor correlations in a streaming fashion and relaxing memory usage across

time windows. In particular, our algorithm start with “incremental calculation of

weighted mean and variance” [22] which only keeps mean value xn−1 ∈ Rk and

covariance Cn−1 ∈ Rk×k in the main memory, where k denotes the dimension of

encoded data and n− 1 represents the updated state after of the (n− 1)th instance.

The updating process consists of two steps. First we update the mean value with

the new instance xn:

xn = xn−1 +
xn − xn−1

n

Dissertation – Chong Zhou 107

Next, we update the covariance C with result xn of the first step:

Cn = Cn−1 + (xn − xn)(xn − xn−1).

However, such an algorithm will eventually converge to the global correlation

of features instead of local correlation. Our next step is to enhance the method with

a forgetting mechanism. We are inspired by some key ideas of Kalman filter [65]

on our covariance computation which accepts weighted temporal relation between

measurements. In particular, the diagonal elements ei,i in covariance matrices in-

dicate variance of ith features which usually are standardized to 1. Off-diagonal

elements ei,j represent linear correlation between features [23]. An identity covari-

ance matrix I represents linearly independent relationship between features. A

summation of a non-identity correlation matrix and an identity correlation matrix

emphasizes on independence between features and, simultaneously, reduces the

correlations between them. Formally,

C ′ = C + λI,

where C denotes a correlation matrix, I denotes an identity matrix, and C ′ denotes

a correlation matrix that the off-diagonal elements depreciated. Therefore, the mu-

tual influences between features in C ′ are weakened given a correlation matrix C

and the feature correlation represented in C are forgotten in C ′. We merge the

“incremental calculation of weighted mean and variance” algorithm with this for-

getting mechanism as follows:

Dissertation – Chong Zhou 108

Input: a list of instances x1, x2, ..., xn, ... xn ∈ Rk and λ.

Initialize C ∈ Rk×k, xn−1 ∈ Rk, xn ∈ Rk to be zero matrices, and i = 1.

While(True):

1. Update mean value:

xn = xn−1 +
xi − xn−1

i

2. Update covariance matrix C:

C = C + (xi − xn) · (xi − xn−1)

3. Storage covariance matrix C:

yield C

4. Update covariance matrix C with forgetting:

C = C + λI

5. Move to next instance:

i = i+ 1

xn−1 = xn

17.1.2 Streaming Encoding

As described in Section 15, we apply One-Hot encoding to transform the cate-

gorical network data to numerical since Robust PCA can only work on numerical

data [48]. In statistics, One-Hot encoding is often used for representing categorical

data to dummy variables [23]. One-Hot encoding requires knowing the number

of categories in advance, but it is not the case in streaming computation that new

instances may bring novel categories which will cause failure of One-Hot encod-

ing algorithm. In Figure 28, the original feature is shown on the left, where the

instance marked “44330” is a new category. The One-Hot encoder needs to enlarge

Dissertation – Chong Zhou 109

the dimension of encoded data from 3 columns to 4.

Figure 28: This figure shows the streaming One-Hot encoding must support dy-
namically changes on encoded features. The row of original feature “44330” is a
novel category for encoder, and the encoder must support enlarge dimension of
encoded data from 3 to 4.

Figure 29: This figure shows how we extend the dimension of a covariance ma-
trix when one new feature is novel. The new feature is linearly independent with
existing features so off-diagonal elements are 0s and its variance is set to 1.

This method allows One-Hot encoding without the number of categories in

advance which exactly matches the streaming process requirements. It also leaves

the possibility to standardize data which will release covariance from influence of

units and scales of variables, but it requires calculating the mean and variance of

variables on the real-time.

Dissertation – Chong Zhou 110

17.1.3 Outlier Detection

Network traffic data is a typical example that anomalies are commonplace in the

real-world. When we apply RPCA on normal traffic data, RPCA allows for the

careful teasing apart of sparse anomalies so that the remaining low-dimensional

approximation is faithful to the noise-free low-dimensional subspace describing

normal traffic [48]. However, in PCA, this would cause the low-dimensional sub-

space to be as large as the anomalies. Unlike PCA, RPCA expose the faithful lower-

dimensional subspace by removing outliers to the S matrix.

The property of discovering faithful low-dimensional subspace allow us to ex-

amining anomalies in the new data. The basic idea is when new instances X come,

we project them onto the known space L which is discovered by our second order

streaming analysis of RPCA. We compute a anomaly score by computing the dif-

ference ∆ between any instance X and its projection Xp. We visualize this process

in Figure 30. If a new sample if far away from the known L, then we can conclude

that the new sample X is an outlier.

Further, we can also distinguish which features cause ∆ being large by measur-

ing the distance of a single feature to its projection. In particular, our method is

detailed as follows:

Input: Cor = XTX ∈ Rk×k and Xnew ∈ R1×k

1. Apply RPCA on the covariance matrix.

V,Σ, V T , S = RPCA(Cor)

2. Compute the dimension of Cor by counting the number of non-zero diagonal

elements of Σ.

dim = Count non zero(Σ)

Dissertation – Chong Zhou 111

Figure 30: This figure shows our idea of projection. L represent the known space
which we get from applying RPCA on known normal traffic. X is a new sample.
We project X onto L and compute the difference between X and its projection.

3. Compute the projection matrix Vp.

Vp = V [0 : dim]

4. Project the new instance Xnew onto the L.

Xproj = Xnew · Vp · V T
p

5. Compute the difference.

∆ = Xnew −Xproj

Dissertation – Chong Zhou 112

17.2 Experimental Evaluation

To test our projection method, we describe the dataset and parameter settings for

our experiments. In particular, we conduct experiments on both synthetic and real-

world datasets. The synthetic data are generated by selecting a low-dimensional

space which support sample normal data on. We set up a 20 low-dimensional

subspace where we randomly generate 8000 instances with 100 features, but their

true dimension is 20. We use the first 7999 samples as our training data while

leave one out as the test. The training data is the input to RPCA to discover low-

dimensional space.

In Figure 31, the main boxplot is computed by the difference between X and its

projection, where we use the summation of absolute values of difference of each

sample. The y-axis shows that overall scale of difference is at 1e−11 the projection

difference of normal points is fairly small. In Figure 31, we use the same normal

data and its projection in the previous experiment but one random generated test

sample. The red point shows the test sample have significant difference with nor-

mal which is the evidence that we mark it as an outlier. In Figure 33, we examine

which features cause such big difference.

17.3 Section Summary

In this work, we develop a novel way to compute streaming covariance matrices

that allows to decay long-term dependencies and result in covariance matrices be-

ing more related to recent time windows. Also, we revise One-Hot encoding to the

streaming fashion which is able to support dynamical modification on the encod-

ing of novel measurements and changes on the dimension of covariance matrices.

Beyond the contributions above, we use the projection method to detect anomalies

Dissertation – Chong Zhou 113

Figure 31: This figure shows the difference between X and its own projection. Each
point is the summation of absolute values of difference of each sample. One can
see that overall scale is at 1e−11 the projection difference of normal points is fairly
small.

Figure 32: This figure shows the difference between X and an outlier. As the sum-
mation of absolute values of difference of each sample, the boxplot shows normal
samples in X have small difference with its projection. However, the red point
shows outlier will have significant difference with normal.

in new coming data.

Dissertation – Chong Zhou 114

Figure 33: This figure show the difference of the outlier detected in Figure 32 at the
feature level. The x-axis is the feature index while the y-axis is the difference level.
It is clear to see that one feature (the 10th feature) has apparently higher difference
than other which we believe result in this sample being marked as an outlier.

Part IV

Conclusion and Future Work

18 Conclusion

The work to date in this Ph.D. began by building on the foundations of Robust PCA

and from this starting place we derived a family of robust methods that project

the nominal data onto a low-dimensional manifold and filter out the exceptions

as anomalies. We review state-of-the-art deep models and focus on deep autoen-

coders and sparse autoencoders which construct low-dimensional representations

based on non-linear combinations of input features. We propose `2,1 regularized

sparse autoencoders which are more faithful to the idea of dimension reduction

and such model is further used as a component in a robust sparse autoencoder

model.

Inspired by denoising autoencoders, we create a new “Robust Deep Autoen-

Dissertation – Chong Zhou 115

coders” model that the case where no clean, noise-free data is available, These meth-

ods use an anomaly regularizing penalty based upon either `1 or `2,1 norms. We

also demonstrate how to use `2,1 sparse autoencoders in the robust model frame-

work and give rise to a new “Robust Sparse Autoencoders”. We show how stacked

denoising autoencoders can be generalized to detecting anomalies when there is

no clean, noise-free data available, creating a new family of methods that we call

“Hierarchical Robust Deep Autoencoders (HRDA)”.

In addition, we developed a training algorithm for the optimization problems

of RDA and RSA of which we observe experimental convergence.

In the application aspect, we apply Robust PCA models on cyber security anal-

ysis where data is generated from Raytheon BBN’s high fidelity data. We add

an semi-supervised learning in which both Robust Principal Component Analy-

sis (RPCA) and Robust Deep Autoencoder (RDA) on defenses of DDoS to provide

unique features that reflect both overwhelming and rare traits of different DDoS

attacks. From our experimental results, we conclude that both low-dimensional

and anomaly features can identify certain kind of DDoS attacks.

Finally, we adapts out static anomaly detecting technique, Robust PCA, to stream-

ing environments which is the able to identify abnormal instances while additional

data is generated over time.

19 Future Directions

In addition, there are also some directions that are worthy to mention:

Dissertation – Chong Zhou 116

19.1 Adversarial Learning

Research is constantly pushing machine learning models to be faster, more accu-

rate, and more efficient. However, an often overlooked aspect of designing and

training models is security and robustness, especially in the face of an adversary

who wishes to fool the model [33]. Recent literature is aware the security vulner-

abilities of machine learning models. In fact, some researchers find that adding

imperceptible perturbations to an image can cause drastically different model per-

formance [33]. It is interesting that how well the RPCA framework, X = L+S, can

individually resist such an adversarial attack and help existing vulnerable machine

models.

19.2 Hybrid Attacks

Our applications on detecting DDoS attacks consider SYN-flood and Slowread

attacks individually. Though typical, there exist close cousins to these two at-

tacks, like SlowLoris, SlowReq, Slowdroid, and SlowComm to name but a few

[2, 12, 13, 33]. A more detailed evaluation on these attacks have entered our con-

sideration, especially we are look forward the performances on defending hybrid

cyber attacks.

Dissertation – Chong Zhou 117

References

[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN, J., DEVIN,
M., GHEMAWAT, S., IRVING, G., ISARD, M., ET AL. Tensorflow: a system for
large-scale machine learning. In OSDI (2016), vol. 16, pp. 265–283.

[2] AIELLO, M., MONGELLI, M., CAMBIASO, E., AND PAPALEO, G. Profiling dns
tunneling attacks with pca and mutual information. Logic Journal of the IGPL
24, 6 (2016), 957–970.

[3] BAUSCHKE, H. H., AND BORWEIN, J. M. On projection algorithms for solving
convex feasibility problems. SIAM review 38, 3 (1996), 367–426.

[4] BERTHELOT, D., SCHUMM, T., AND METZ, L. Began: boundary equilibrium
generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017).

[5] BERTSEKAS, D. P. Convex optimization theory. Athena Scientific Belmont, 2009.

[6] BISHOP, C. M. Pattern recognition and machine learning. springer, 2006.

[7] BOYD, S., PARIKH, N., CHU, E., PELEATO, B., AND ECKSTEIN, J. Distributed
optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends R© in Machine Learning 3, 1 (2011), 1–122.

[8] BOYD, S., AND VANDENBERGHE, L. Convex optimization. Cambridge univer-
sity press, 2004.

[9] BOYLE, J. P., AND DYKSTRA, R. L. A method for finding projections onto
the intersection of convex sets in hilbert spaces. In Advances in order restricted
statistical inference. Springer, 1986, pp. 28–47.

[10] BUADES, A., COLL, B., AND MOREL, J.-M. A review of image denoising
algorithms, with a new one. Multiscale Modeling & Simulation 4, 2 (2005), 490–
530.

[11] BUCZAK, A. L., AND GUVEN, E. A survey of data mining and machine learn-
ing methods for cyber security intrusion detection. IEEE Communications Sur-
veys & Tutorials 18, 2 (2016), 1153–1176.

[12] CAMBIASO, E., PAPALEO, G., AND AIELLO, M. Slowdroid: Turning a smart-
phone into a mobile attack vector. In 2014 International Conference on Future
Internet of Things and Cloud (2014), IEEE, pp. 405–410.

[13] CAMBIASO, E., PAPALEO, G., AND AIELLO, M. Slowcomm: Design, devel-
opment and performance evaluation of a new slow dos attack. Journal of In-
formation Security and Applications 35 (2017), 23–31.

Dissertation – Chong Zhou 118

[14] CAMBIASO, E., PAPALEO, G., CHIOLA, G., AND AIELLO, M. Slow dos at-
tacks: definition and categorisation. International Journal of Trust Management
in Computing and Communications 1, 3-4 (2013), 300–319.

[15] CANDÈS, E. J., LI, X., MA, Y., AND WRIGHT, J. Robust principal component
analysis? Journal of the ACM (JACM) 58, 3 (2011), 11.

[16] CERF, V., AND KAHN, R. A protocol for packet network intercommunication.
IEEE Transactions on communications 22, 5 (1974), 637–648.

[17] CHEN, J., CHEN, J., CHAO, H., AND YANG, M. Image blind denoising with
generative adversarial network based noise modeling. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 3155–
3164.

[18] COMBETTES, P. L., AND PESQUET, J.-C. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science and engineer-
ing. Springer, 2011, pp. 185–212.

[19] DENTON, E. L., CHINTALA, S., FERGUS, R., ET AL. Deep generative image
models using a? laplacian pyramid of adversarial networks. In Advances in
neural information processing systems (2015), pp. 1486–1494.

[20] DOERSCH, C. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908 (2016).

[21] DONOHO, D. L. For most large underdetermined systems of linear equations
the minimal 1-norm solution is also the sparsest solution. Communications on
pure and applied mathematics 59, 6 (2006), 797–829.

[22] FINCH, T. Incremental calculation of weighted mean and variance. University
of Cambridge 4 (2009), 11–5.

[23] FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. The elements of statistical
learning, vol. 1. Springer series in statistics New York, NY, USA:, 2001.

[24] GEHRING, J., MIAO, Y., METZE, F., AND WAIBEL, A. Extracting deep bottle-
neck features using stacked auto-encoders. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Conference on (2013), IEEE, pp. 3377–
3381.

[25] GOODFELLOW, I., BENGIO, Y., AND COURVILLE, A. Deep learning. MIT press,
2016.

[26] GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY,
D., OZAIR, S., COURVILLE, A., AND BENGIO, Y. Generative adversarial nets.
In Advances in neural information processing systems (2014), pp. 2672–2680.

Dissertation – Chong Zhou 119

[27] HEUSEL, M., RAMSAUER, H., UNTERTHINER, T., NESSLER, B., AND
HOCHREITER, S. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. In Advances in Neural Information Processing Systems
(2017), pp. 6626–6637.

[28] HU, W., LIAO, Y., AND VEMURI, V. R. Robust support vector machines for
anomaly detection in computer security. In ICMLA (2003), pp. 168–174.

[29] JAMES, G., WITTEN, D., HASTIE, T., AND TIBSHIRANI, R. An Introduction to
Statistical Learning, vol. 6. Springer, 2013.

[30] KAUR, S., AND SINGH, N. Image denoising techniques: A review. Interna-
tional Journal of Innovative Research in Computer and Communication Engineering
2, 6 (2014).

[31] KINGMA, D. P., AND WELLING, M. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

[32] KULLBACK, S., AND LEIBLER, R. A. On information and sufficiency. The
annals of mathematical statistics 22, 1 (1951), 79–86.

[33] KURAKIN, A., GOODFELLOW, I., BENGIO, S., DONG, Y., LIAO, F., LIANG,
M., PANG, T., ZHU, J., HU, X., XIE, C., ET AL. Adversarial attacks and
defences competition. 195–231.

[34] LECUN, Y., BENGIO, Y., AND HINTON, G. Deep learning. Nature 521, 7553
(2015), 436–444.

[35] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based
learning applied to document recognition. Proceedings of the IEEE 86, 11 (1998),
2278–2324.

[36] LECUN, Y., CORTES, C., AND BURGES, C. J. The mnist database of handwrit-
ten digits. http://yann.lecun.com/exdb/mnist/, 1998.

[37] LEDIG, C., THEIS, L., HUSZÁR, F., CABALLERO, J., CUNNINGHAM, A.,
ACOSTA, A., AITKEN, A., TEJANI, A., TOTZ, J., WANG, Z., ET AL. Photo-
realistic single image super-resolution using a generative adversarial net-
work. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017), IEEE, pp. 105–114.

[38] LEE, H., BATTLE, A., RAINA, R., AND NG, A. Y. Efficient sparse coding
algorithms. In Advances in neural information processing systems (2007), pp. 801–
808.

http://yann.lecun.com/exdb/mnist/

Dissertation – Chong Zhou 120

[39] LIU, F. T., TING, K. M., AND ZHOU, Z.-H. Isolation forest. In Data Mining,
2008. ICDM’08. Eighth IEEE International Conference on (2008), IEEE, pp. 413–
422.

[40] LUCIC, M., KURACH, K., MICHALSKI, M., GELLY, S., AND BOUSQUET, O.
Are gans created equal? a large-scale study. In Advances in neural information
processing systems (2018), pp. 698–707.

[41] LYUDCHIK, O. Outlier detection using autoencoders. Tech. rep., 2016.

[42] MA, Y., ZHANG, P., CAO, Y., AND GUO, L. Parallel auto-encoder for efficient
outlier detection. In Big Data, 2013 IEEE International Conference on (2013),
IEEE, pp. 15–17.

[43] MAMMADOV, S., MEHTA, D., STONER, E., AND CARVALHO, M. M. High fi-
delity adaptive cyber emulation. 2017 IEEE Symposium Series on Computational
Intelligence (SSCI) (2017), 1–8.

[44] MENG, L., DING, S., AND XUE, Y. Research on denoising sparse autoencoder.
International Journal of Machine Learning and Cybernetics 8, 5 (2017), 1719–1729.

[45] MOSCI, S., ROSASCO, L., SANTORO, M., VERRI, A., AND VILLA, S. Solving
structured sparsity regularization with proximal methods. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (2010),
Springer, pp. 418–433.

[46] NG, A. Sparse autoencoder. CS294A Lecture notes 72, 2011 (2011), 1–19.

[47] NIELSEN, M. A. Neural networks and deep learning, vol. 25. Determination
press USA, 2015.

[48] PAFFENROTH, R., DU TOIT, P., NONG, R., SCHARF, L., JAYASUMANA, A. P.,
AND BANDARA, V. Space-time signal processing for distributed pattern de-
tection in sensor networks. IEEE Journal of Selected Topics in Signal Processing
7, 1 (2013), 38–49.

[49] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V., THIRION,
B., GRISEL, O., BLONDEL, M., PRETTENHOFER, P., WEISS, R., DUBOURG, V.,
ET AL. Scikit-learn: Machine learning in python. Journal of Machine Learning
Research 12, Oct (2011), 2825–2830.

[50] QI, Y., WANG, Y., ZHENG, X., AND WU, Z. Robust feature learning by
stacked autoencoder with maximum correntropy criterion. In Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
(2014), IEEE, pp. 6716–6720.

Dissertation – Chong Zhou 121

[51] RADFORD, A., METZ, L., AND CHINTALA, S. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[52] REED, S., AKATA, Z., YAN, X., LOGESWARAN, L., SCHIELE, B., AND LEE, H.
Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396
(2016).

[53] REN, H., YUE, Y., ZHOU, C., PAFFENROTH, R. C., AND LI, Y. Robust varia-
tional autoencoders.

[54] REZENDE, D. J., MOHAMED, S., AND WIERSTRA, D. Stochastic backpropa-
gation and approximate inference in deep generative models. arXiv preprint
arXiv:1401.4082 (2014).

[55] RIFAI, S., VINCENT, P., MULLER, X., GLOROT, X., AND BENGIO, Y. Con-
tractive auto-encoders: Explicit invariance during feature extraction. In Pro-
ceedings of the 28th international conference on machine learning (ICML-11) (2011),
pp. 833–840.

[56] RUMELHART, D. E., HINTON, G. E., WILLIAMS, R. J., ET AL. Learning rep-
resentations by back-propagating errors. Cognitive modeling 5, 3 (1988), 1.

[57] SANGWINE, S. J., AND HORNE, R. E. The colour image processing handbook.
Springer Science & Business Media, 2012.

[58] TRIPATHI, S., LIPTON, Z. C., AND NGUYEN, T. Q. Correction by projec-
tion: Denoising images with generative adversarial networks. arXiv preprint
arXiv:1803.04477 (2018).

[59] VINCENT, P., LAROCHELLE, H., BENGIO, Y., AND MANZAGOL, P.-A. Ex-
tracting and composing robust features with denoising autoencoders. In Pro-
ceedings of the 25th international conference on Machine learning (2008), ACM,
pp. 1096–1103.

[60] VINCENT, P., LAROCHELLE, H., LAJOIE, I., BENGIO, Y., AND MANZAGOL,
P.-A. Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of Machine Learning
Research 11, Dec (2010), 3371–3408.

[61] XIAO, H., RASUL, K., AND VOLLGRAF, R. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[62] XIE, J., XU, L., AND CHEN, E. Image denoising and inpainting with deep
neural networks. In Advances in Neural Information Processing Systems (2012),
pp. 341–349.

Dissertation – Chong Zhou 122

[63] YAN, X., YANG, J., SOHN, K., AND LEE, H. Attribute2image: Conditional
image generation from visual attributes. In European Conference on Computer
Vision (2016), Springer, pp. 776–791.

[64] YANG, Q., YAN, P., ZHANG, Y., YU, H., SHI, Y., MOU, X., KALRA, M. K.,
ZHANG, Y., SUN, L., AND WANG, G. Low dose ct image denoising using
a generative adversarial network with wasserstein distance and perceptual
loss. IEEE transactions on medical imaging (2018).

[65] ZARCHAN, P., AND MUSOFF, H. Fundamentals of Kalman filtering: a practical
approach. American Institute of Aeronautics and Astronautics, Inc., 2013.

[66] ZARGAR, S. T., JOSHI, J., AND TIPPER, D. A survey of defense mechanisms
against distributed denial of service (ddos) flooding attacks. IEEE communi-
cations surveys & tutorials 15, 4 (2013), 2046–2069.

[67] ZHANG, J., ZULKERNINE, M., AND HAQUE, A. Random-forests-based net-
work intrusion detection systems. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C (Applications and Reviews) 38, 5 (2008), 649–659.

[68] ZHAO, D., GUO, B., WU, J., NING, W., AND YAN, Y. Robust feature learning
by improved auto-encoder from non-gaussian noised images. In Imaging Sys-
tems and Techniques (IST), 2015 IEEE International Conference on (2015), IEEE,
pp. 1–5.

[69] ZHOU, C., AND PAFFENROTH, R. C. Anomaly detection with robust deep
autoencoders. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2017), ACM, pp. 665–674.

[70] ZHU, J.-Y., KRÄHENBÜHL, P., SHECHTMAN, E., AND EFROS, A. A. Genera-
tive visual manipulation on the natural image manifold. In European Confer-
ence on Computer Vision (2016), Springer, pp. 597–613.

	Introduction
	I Robust Deep Neural Network Models
	Overview
	Background
	Robust Principal Component Analysis
	Deep Autoencoders
	Sparse Autoencoders
	Denoising Autoencoders
	Variational Autoencoders

	Related Work
	Robust Deep Autoencoders
	Hierarchical Robust Deep Autoencoders
	Robust Variational Autoencoders

	Robust Deep Autoencoders
	Robust PCA and Deep Autoencoder Combination
	Anomalous Feature and Instance Detection
	Experimental Evaluation
	Denoising RDA with 1 norm
	Outlier Detection with 2,1 norm

	Section Summary

	Robust Sparse Autoencoders
	Robust Sparse Autoencoders
	Experimental Evaluation
	Section Summary

	Hierarchical Robust Deep Autoencoders
	Hierarchical Robust Deep Autoencoder
	Experimental Evaluation
	HRDA for Denoising
	HRDA for outlier detection

	Section Summary

	Robust Variational Autoencoders
	Robust Variational Autoencoders
	Experimental Evaluation
	Benchmark Methods
	Evaluation Metrics
	MNIST
	Fashion MNIST

	Section Summary

	II Training Methods
	Overview
	Background
	Back-propagation
	Proximal Gradient
	ADMM

	Algorithm Training
	Alternating Optimization for Robust Deep (Sparse) Autoencoder
	Proximal Method for 1 and 2,1 Norm
	Experimental Evaluation
	Section Summary

	III Applications to Cyber Security
	Overview
	High-fidelity Simulated Data
	Related Work
	Novel DDoS Attack
	Anomaly Detection with Cyber Data

	Robust PCA for Anomaly Detection in Cyber Data
	Application In Cyber Security
	Experimental Evaluation
	Dimension and Anomalies
	Network Connections under Different Attacks
	Second Order Analysis

	Section Summary

	RPCA and RDA for Semi-supervised Learning of Attacks
	Semi-supervised Learning
	Semi Robust Principal Component Analysis
	Semi Robust Deep Autoencoder

	Experimental Evaluation
	Baseline Methods
	Data Labeling
	Semi-supervised learning results

	Section Summary

	Streaming Anomaly Detection via Robust PCA
	New Challenges for Second Order Analysis
	Streaming Covariance Computation with Forget Rates
	Streaming Encoding
	Outlier Detection

	Experimental Evaluation
	Section Summary

	IV Conclusion and Future Work
	Conclusion
	Future Directions
	Adversarial Learning
	Hybrid Attacks

