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Abstract

The goal of Intelligent Tutoring systems (ITSs) is to engage the students in sustained

reasoning activity and to interact with students based on a deep understanding of

student behavior. In order to understand student behavior, ITSs rely on student

modeling methods to observes student actions in the tutor and creates a quantitative

representation of student knowledge, interests, affective states. Good student models

are going to effectively help ITSs customize instructions, engage student’s interest

and then promote learning. Thus, the work of building ITSs and advancing student

modeling should be considered as two interconnected components of one system

rather than two separate topics.

In this work, we utilized the theoretical support of a well-known learning science

theory, the spacing effect, to guide the development of an ITS, called Automatic

Reassessment and Relearning System (ARRS). ARRS not only validated the effec-

tiveness of spacing effect, but it also served as a testing field which allowed us to

find out new approaches to improve student learning by conducting large-scale ran-

domized controlled trials (RCTs). The rich data set we gathered from ARRS has

advanced our understanding of robust learning and helped us build student models

with advanced data mining methods. At the end, we designed a set of API that

supports the development of ARRS in next generation ASSISTments platform and

adopted deep learning algorithms to further improve retention performance predic-

tion. We believe our work is a successful example of combining theory and practice

to advance science and address real-world problems.
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Chapter 1

Introduction

1.1 Intelligent Tutoring System

In the early 1970s, a few researchers defined a new and ambitious goal for computer-

based instruction. They adopted the human tutor as their educational model and

sought to apply artificial intelligence techniques to realize this model in ”intelligent”

computer-based instruction [NMB10]. This is the birth of intelligent tutoring sys-

tems (ITSs). The goal of ITSs is to engaging the students in reasoning activity and

to interact with the student based on a deep understanding of the student’s behav-

ior. ITSs are characterized by giving students and electronic form, natural language

dialogue, simulated instrument panel, or another user interface that allows them to

enter the steps required for solving the problem. The point is ITS gives feedback

and hints on each step to promote student learning. If such systems realize even

half the impact of human tutors, the payoff of society to be substantial [CKA97].

After decades of development, studies have shown that ITSs are performing

as effective as human tutoring when comparing them with the same standard of

learning performance. Inspired by two most plausible factors that help human tutors
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effective at teaching, feedback and scaffolding [Van11], step-based tutoring has been

benefited from creating fine granularity of user interface to utilize interactive between

students and computer tutor. The reasons why feedback and scaffolding help to

tutor are such: the frequent feedback of human tutoring makes it much easier for

students to find flaws in their reasoning and fix their knowledge because human

tutors encourage students to explain their reasoning as they go and usually intervene

as soon as they hear the incorrect reasoning. The other factor, scaffolding is also

common in human tutoring. Experiments manipulating scaffolding’s usage suggest

that is is an effective instructional method. To sum up, the best explanation so far

is that human tutors better at scaffolding students and giving feedback that helps

students to engage in interactive and constructive behaviors as they self-repair and

construct their knowledge [Van11].

On the other hand, a study known as Bloom’s “2 sigma problem” [Blo84] shows

that human tutoring has an effect size (defined as the difference between two means

divided by a standard deviation for the data [Coh88]) of d = 2.0 relative to classroom

teaching without tutoring, which is more than twice over any ITS tutoring. A closer

look at this study suggests that large effect size seems to be due mostly to hold the

students to a higher standard of mastery. The definition of mastery differs from

system to system. In this particular study, the students had to score 80% on a

mastery exam before being allowed to continue to the next unit, and students in the

classroom control took the exams but always went on to the next unit regardless of

their scores. So the Bloom article is, as Bloom intended it to be, a demonstration

of the power of mastery learning rather than a demonstration of the effectiveness of

human tutoring.

Compared to improving human tutoring, studies have shown that there are many

ways of improving the performance of ITS, that is, step-based tutors and substep-
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based tutors. Researchers have found many pedagogical mistakes and missed op-

portunities in existing ITSs’ performance as well [BdCR+09, dB09, MV06]. Merely

finding and fixing these pedagogical mistakes may produce a 2 sigma effect size

[Van11]. Another approach can be even automated. For instance, a study of adap-

tive pedagogical strategy making has shown that a d = 0.84 improvement over

original tutoring system [CVLJ11] by applying a machine learning technique (rein-

forcement learning) to log data from a substep-based tutoring in order to adjust the

parameters that controlled its pedagogical decision.

In short, from the results we see so far we can say that: for ITS, the granularity

of user interface of step-based helps computers work as effective as human tutoring.

Furthermore, it is clear that there are at least two approaches to developing a sys-

tem that can deliver the two times of effectiveness than no tutoring, that is through

promoting a high standard of mastery learning and re-engineering the tutor-student

interactions with adaptive learning environments. These two approaches have been

adopted by my work here and I will describe how I utilize them to develop an adap-

tive learning system which helps improve student’s long-term retention performance

by scheduling retention tests and relearning assignments.

1.2 Adaptive learning system

Feedback and scaffolding are in fact two forms of adaptivity and individualization.

A tutor, either human or computer, needs to decide about what activity to do next

is based on the student’s behavior, so the tutor is adapting its behavior to the

students. To be more specifically, feedback and scaffolding are “micro-adaptive”

methods which allow the tutor decides whether to remind silent, to give feedback,

to give a hint, to do the next step for the student, and so forth [Van11].
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The term adaptive is defined as a capability to change when necessary in order

to deal with different situations. In the context of ITS, Adaptive learning is con-

sidered to be an alternative to the traditional “one size fits all” approach and has

encouraged the development of teaching and learning toward a dynamic learning

process of learning [BA10]. Adaptive learning is about creating a learner experience

that purposely adjusts to various conditions (personal characteristics, pedagogical

knowledge, the learner interactions, and the outcome of actual learning processes)

over a period of time with the intention to increase predefined success criteria. An

adaptive system should be capable of: managing explicitly defined learning routes

adapted to each user, monitoring the activities of users; interpreting these on the

basis of domain-specific models; inferring user requirements and preferences out of

the interpreted activities, appropriately representing them in terms of user models;

and finally acting upon the available knowledge on users and the subject matter at

hand, to dynamically facilitate the learning process. In short, adaptive learning has

the following advantages [SS08]:

“

• optimization of individual learning performance;

• formal representation of the knowledge domain for assembly of knowledge

objects to encourage a particular educational trajectory;

• inclusion of various learning styles and strategies for the inference of learners’

preferences;

• performance evaluation mechanisms for continuous assessment of achievement

of learning goals; and

• a framework to provide intelligent feedback on the learning performance.
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”

Most of researchers have suggested than four main approaches can be identified

to present all adaptive learning system [BA10]:

1. Macro-adaptive approach

The components of macro-adaptive approach that define the general guide-

lines for ITS are mainly based on a student’s profile. These components are

learning goals or levels of detail, delivery systems, intellectual abilities and

prior achievement, cognitive and learning styles, academic motivation, and

personality. Learners differ from each other in learner characteristics such

as intellectual capabilities, learning preferences, cognitive and learning styles,

prior knowledge and experience and self-efficacy. These characteristics affect

ITS in different ways. For example, learners’ preferences are taken into account

in various ways such as adapting language, presentation of learning content

and group models. On the other hand various systems in the scope of adap-

tive hypermedia, as with methods like adaptive navigation support, focus on

learner control.

2. Aptitude-treatment interaction approach

This approach suggests different types of instructions and/or different types of

media for different students, that is, it adapts instructional strategies to stu-

dents’ aptitudes. One of the most important aspects of the aptitude-treatment

interaction approach is the user’s control over the learning process according

to the abilities of the students by giving them full or partial control over the

style of the instruction or the way through the course. There are three levels

of control, complete independence, partial control within a given task sce-

nario, and fixed tasks with control of pace. Several studies also found that
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the success of different levels of learner control is strongly dependent on the

students aptitudes, that is, it is better to limit the control for students with

low-prior knowledge knowledge or to enhance learning for students who have

high performance

3. Micro-adaptive approach

This approach requires monitoring the learning behavior of the student while

running specific tasks and adapting the instructional design afterwards, based

on quantitative information. When compared to the macro-adaptive and

the aptitude-treatment interaction approach, the micro-adaptive approach is

rather based on on-task measurements. The student behavior and performance

are observed by measuring response errors, response latencies and emotional

states. Such measures considered during the course of tutoring can be ap-

plied on the manipulation and optimization of instructional treatments and

sequences on a much more refined scale. Thus, micro-adaptive instructional

models using on-task measures are likely to be more sensitive to the students

needs.

4. Constructivist-collaborative approach

This approach focuses on how the student actually learns while sharing her/his

knowledge and activities with others. An important element which differenti-

ates this approach from the first three is the use of collaborative technologies

which are considered often as main component of online learning. The learner

has an active role in the learning process constructing her/his own knowledge

using her/his experiences in a context in which the target domain is integrated.

Akhras et al. [AS00] argued that constructivistic learning might benefit from

a systems intelligence including mechanisms of knowledge representation, rea-
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soning, and decision-making. Therefore, an adaptive system provides learning

by focusing on the way of gaining knowledge and should take into account the

context, learning activities, cognitive structures of the content, and the time

extension.

The first three approaches are restricted to an old fashioned view on computer-

aided learning and focus on the content and the learning process itself. With

respect to new learning theories and technology, this approach treats topics

like constructivism and adaptive collaboration. However a modern system

based on adaptation should consider all of these approaches to provide a wide

range of possibilities in ITS.

1.3 ASSISTments: An evolving intelligent tutor-

ing system

Most of work described here is conducted in the ASSISTments platform, a web-based

intelligent tutoring system focuses on mathematics tutoring. ASSISTments was first

created in 2004 as a joint research conducted by Worcester Polytechnic Institute and

Carnegie Mellon University [RPA+09]. Its name, came from the idea of combining

assisting the student with automated assessment of the students proficiency at a

fine-grained level [Gon14]. Thousands of middle- and high-school students were

using ASSISTments for their daily learning, homework and preparing the MCAS

tests. Just in the school year of 2014-2015, there were over 50,000 students using

the system as part of their regular math classes across the states.

The ASSISTments is a typical step-based tutoring system. The core component

of ASSISTments is an user interface called “Tutor” that interactives with students.

A screen shot of ASSISTments tutor is shown in Figure 1.1. A student practices
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Figure 1.1: A screen shot of ASSISTments tutor interface. This particular instance
of ASSISTments tutor is a showing an example of scaffolding problems.
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a problem in a linear manner and once the student enters an answer, the tutor is

responsible to give feedback and/or help. Each problem in ASSISTments bundles

together a main question for students to solve and the questions associated tutoring

steps that can used to help students. There are two typical kinds of tutoring steps

associated with the main question, there are:

1. Scaffolding questions: when a student gave a wrong answer on the main ques-

tion, ASSISTments presents a series of scaffolding questions so as to break

the main question down into steps. The student must answer each scaffolding

question correctly in order to proceed to the next scaffolding question.

2. Hints: Hints are messages that provide insights and suggestions for solving

a specific question. Typically, there are 2 to 5 hints associated with each

scaffolding and main questions. After viewing a hint, the student is allowed to

make one or more attempts to answer the question. If the student continues

to have difficulties in solving this question, he/she can ask for more hints until

finally a bottom-out hint is presented which provides the student the correct

answer. The bottom-out hints are necessary to avoid the problem of a student

becoming stuck and unable to proceed within the tutor.

It is also important to note that as a computer-based tutoring system, ASSIST-

ments collects large amount of information from students and how they interact

with the system. Beyond basic information such as the correctness of student re-

sponse and the problem presented, the system log every student action while they

interact with the system, so that the system is able to know more about students.

Usually, students perform multiple actions when solving a question, The system logs

all student actions which include: to give a response to a main question, to request

a hint and to answer a scaffolding question. The system also time-stamped these

9



actions, so that not only what a student did is recorded, when he/she did it and

how long it took is also known.

Using the structure of ASSISTments problems, and the effectiveness of step-

based tutoring system, a key concept called the skill builder problem set was con-

structed to address the need of reaching mastery in learning. A skill builder problem

set usually focuses on one knowledge component or skill and it contains large num-

ber of problems which have similar structure but different correct answers. Defining

mastery may vary between systems. One measure of mastery includes next problem

correctness, another is performance on a transfer questions, and yet another is per-

formance on a delayed retention test. In the default settings of ASSISTments skill

builder problem sets, achieving mastery is defined as answering three consecutive

questions correctly in one skill builder problem set. Study shows that is a simple,

yet effective way to determine mastery within an ITS [KWTH16].

1.4 Issues addressed in the dissertation work

This dissertation focuses on improving student learning and advancing cognitive

science by constructing an adaptive tutor system and applying data mining and

machine learning technologies on educational data sets. The work consists of the

following three parts:

1. In Chapter 2, we describe the work of building an adaptive learning envi-

ronment to improve students’ long-term retention performance. Automatic

Reassessment and Relearning System (ARRS) is a system that utilizes spac-

ing effect theory to assign expanding retrieval assignments to students. Along

with ARRS’ adaptive algorithms, we have tests show that we can improve

students’ retention learning performance significantly.
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2. In Chapter 3, we describe our work on modeling students’ long-term retention

performance. Intelligent tutoring systems, including ARRS, use student mod-

els to understand students’ knowledge levels. Therefore, being able to predict

students’ performance after long delays is very crucial. In this part, we used

innovative data mining methods to produce accurate predictions of student

long-term retention performance. We show that not only can we utilize what

we have learned in student modeling to improve the adaptive algorithms of

ARRS system, we have also created a new performance metric to measure

predictive models’ stability.

3. In the last part of this work, we explain our work of extending our work in

Chapter 2 and 3. Along the development of next generation ASSISTments, we

develop a set of modules that supports building generic assignment workflows

to support several ASSISTments’ adaptive learning system, including ARRS.

Inspired by the recent development of deep learning, we also experiment new

approaches of using deep neural networks to model students’ long-term re-

tention performance. Then we evaluate deep learning models with existing

models in both prediction performance and interpretability.

11



Chapter 2

Automatic Reassessment and

Relearning System (ARRS)

2.1 Introduction

Currently, most ITSs present a sequence of problems and evaluate student perfor-

mance directly after the student finishes solving or attempts to solve these problems

to see if the student mastered the given skill [Min12]. The practices on the given

skills usually stops after a student achieved mastery. The exact definition of mas-

tery varies, it typically involves recent students performance level, and the process

of detecting mastery does not involve the mechanism for the system to review stu-

dents knowledge after a time period; nor does it know about students long-term

performance. However, studies of psychology and EDM [And14, CPV+06, SE94]

suggested that students do not always retain what they have learned. Therefore,

the local measure of student performance is insufficient and dangerous for ITS to

promote a student just on the basis of short-term performance. This applies specif-

ically to a cumulative subject such as mathematics: we are more concerned with

12



students capability to remember the knowledge that they acquired over a long period

of time.

Previous student models focus on estimating student current knowledge, which

is an efficient use of data to test students’ latent knowledge level, but provides

limited guidance for tutorial decision making. Some researchers have carried out

work on long-term performance prediction. Qiu et al. [QQL+11] extended the

Knowledge Tracing (KT) model [CA94], to take into account that students exhibit

the forgetting feature when a day elapses between problems in the tutor system.

Pavlik and Anderson [PA05] studied alternative models of practice and forgetting

what had been learned; this confirmed most importantly the standard spacing effect

in various conditions and showed that wide spacing of practice provides increasing

benefits as practice accumulates. This leads to students forgetting less afterwards as

well. Furthermore in Wang and Becks work [WB12], the notion of mastery learning

was expanded to take into account the long-term effect of learning and this identified

several features; which are relevant to students long-term knowledge. In addition,

they proposed an enhanced system of an ITS mastery cycle that can be used to

discover new problems in the EDM field which can then lead to a higher mastery

learning level. Figure 2.1 shows the structure of this system.

Our following work focuses on the diamond of the left side, the problem of

designing a system that helps students better retain the skills they have learned and

thus improve students long-term performance. As a matter of fact, the ability of

retain a skill in long-term is one of the three indicators of robust learning [BGCO12].

Luckily, there is a well-established theory that can guide us to design such a system,

these theory are known as the spacing effect, which means repeatedly reviewing

learned information spaced out over time makes these items easier to remember

[CVR+08]. Based studies of spacing effect, expanding retrieval practice [RB11] is

13



Figure 2.1: The enhanced ITS mastery cycle. This workflow aims to help students
to achieve higher mastery learning level. Our work focuses on the diamond of the
left side, the problem of designing a system that student better retain the skills they
have learned.
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often regarded as a superior technique for promoting long-term retention relative to

equally spaced retrieval practice. Expanding retrieval practice works by, after the

student learns a skill, having the student perform the skill at gradually increasing

spacing intervals between successful retrieval attempts. Research has shown that

spacing practice has a cumulative effect so that each time an item is practiced it

receives an increment of strength [PA05].

2.2 Automatic Reassessment and Relearning Sys-

tem (ARRS)

Inspired by the need of improving students’ long-term retention performance in AS-

SISTments and the design of the enhanced ITS mastery cycle [WB12], we developed

an extension called the Automatic Reassessment and Relearning System (ARRS) in

the ASSISTments platform. Before we discuss ARRS, it is important to notice that

the operation of ARRS is depend on another important compound of ASSISTments,

the skill builder problem sets. Each skill builder problem set consist of hundreds

of problems, and these problems are based on a specific skill. If a student uses the

tutoring while working on skill builder problem sets, e.g: hint or break this problem

into steps, the problem will be marked as incorrect. What makes the skill builder

problem sets different from other regular problem sets is they adopt a simple notion

of mastery, 3 consecutive correct responses (3-CCR), which means students must

answer three questions correct in a row to complete a skill builder then the workflow

of ARRS begins. Note that three problems for a skill represent the lower boundary

for the amount of practice students require. However, if students make mistakes,

they are required to obtain three correct answers in a row to additional problems.

In fact, some students require over 20 practice attempts to reach mastery. ASSIST-
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ments limits the daily practice number for a skill at 10 attempts, so these students

need multiple days to master a skill.

The default workflow of ARRS is relatively simple, see Figure 2.2: after class-

room teaching of a certain skill, teachers use ASSISTments to assign a problem

set of that skill to students and students should first master that assigned problem

set then ARRS assign 4 levels of reassessment tests to students: ARRS will then

automatically reassess a student on the same skill 7 days later with the first level of

reassessment test built from the same set of problems the student already mastered

(i.e, for the same skill). If students answer the reassessment tests correctly, we treat

them as they are still retaining this skill and promote him to the second level of

reassessment test, and ARRS will continue to test two weeks later, a month later,

and then finally two months after previous test. If a student fail a reassessment test,

he will be given an opportunity to relearn the topic with relearning problems and

be re-tested again after the same amount of delays (in number of days) in between

tests.

Note that different from the above default behavior of ARRS, teachers have the

option to make the system assign tests to students even if they have not yet started

acquiring a skill or have not achieved skill mastery.

In the summer of 2012, we adapted the idea of enhanced ITS mastery cycle and

implemented ARRS workflow into ASSISTments. ARRS was formally utilized by

ASSISTments in September of 2012. Four years after the deployment of ARRS in

ASSISTments, over 35,000 students have already used the ARRS system.
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Figure 2.2: Workflow design of Automatic Reassessment and Relearning System
(ARRS). ARRS automatically reassesses a skill that a student mastered 7 days ago.
If the student fail a reassessment test, he/she will be given a opportunity to relearn
the topic.
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2.3 The effectiveness of ARRS

The first question we are interested in is whether ARRS can help improve students’

long-term retention performance and we conducted a randomized controlled trial to

find out the answer of it . On February 2014, 111 freshman Algebra students in a

middle school of New Jersey were given a pretest using ASSISTments to assess their

prior knowledge in each type of assignment that would be administered during the

six week study. Students had approximately 40 minutes to complete this pretest

and all students received the same test on ASSISTments. After the test, students

from various Algebra classes were assigned 3 sets of skill builder problem sets per

week during the six week. Each set of 3 skill builders was released every Friday

from February 28th through April 11th with one skill builder due on Monday night,

Wednesday night, and Friday night, respectively. In the meantime, we randomly

allocated students into two conditions: 55 students were assigned to the control

group which can’t access ARRS practices on a set of 5 skill builder problem sets,

and 56 students were assigned to the experimental group who can access ARRS

practices on every skill builder problem sets. The default setting of ARRS extends

the length of skill long-term learning process to at least 108 days, although these

long delays of ARRS practices were aiming to improve student long-term retention,

but some reassessments and relearning assignments wont be finished within the

time frame of one semester. To insure every student has the chance to receive a

reasonable number of ARRS practices, we built a customized ARRS schedule for

this study. This study made sure that when the students complete a skill builder

assignment, they would be assigned a reassessment of that particular skill 3 days

later. If successfully completed, a second reassessment would be administered to the

student 4 days after the first reassessment was completed. If the first reassessment

18



were not successful, the students would have to relearn the original skill before

assigning the two reassessments. It is important to notice that the neither skill

builder nor ARRS assignments are not mandatory, even for students in the ARRS

condition, which means that some students may not complete these assignments as

our required.

2.3.1 Measuring effectiveness by effect size of learning gain

In this study, we asked whether ARRS would affect students long-term performance

on a set of 5 skill builder problem sets. In order to determine the answer of our

questions, we examined students pre- and post-test performance in the two groups

of students, ARRS and control. In order to represent the effect of ARRS and

access it’s practical significance, we choose the standardized mean difference effect

size statistic, commonly referred as the effect size or Cohen’s d. This effect size is

defined as the difference between the mean of the intervention group and the mean

of the control group on a given outcome measure divided by the pooled standard

deviations for these two groups, as follows:

ES =
XT −XC

sp
(2.1)

Where XT is the mean of the intervention sample on an outcome variable, XC

is the mean of the control sample on that variable, and sp is the pooled standard

deviation. The pooled standard deviation is obtained as the square root the weighted

mean of the two variances, defined as:

sp =

√
(nT − 1)s2T + (nC − 1)s2C

nT − nC − 2
(2.2)

where nT and nC are the number of respondents in the intervention and control
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groups, and sT and sC are the respective standard deviations on the outcome variable

for the intervention and control groups.

The effect size is typically reported to two decimal places and, by convention, has

a positive value when the intervention group does better on the outcome measure

than the control group and a negative sign when it does worse. Note that this may

not be the same sign that results from subtraction of the control mean from the

intervention mean. For example, if low scores represent better performance, e.g., as

with a measure of the number of errors made, then subtraction will yield a negative

value when the intervention group performs better than the control, but the effect

size typically would be given a positive sign to indicate the better performance of

the intervention group [LPY+12].

In our study of understanding ARRS’s effectiveness, we used each students’

learning gain, computed by using post-test performance subtracting the pre-test

score, as the outcome measure. Using learning gain instead of only the post-test

performance is because learning gain is assessed relative to normal student academic

growth, and learning gain can provide a better representation of how much our

ARRS intervention would accelerate the academic growth [LPY+12].

2.3.2 ARRS improves student’s long-term retention perfor-

mance

There were 8 students, who were absent for pre-test or post-test, we excluded from

the following analysis (n = 103). The pre-test percentage correctness of control and

experimental groups were very close (29.4% vs 28.8%).

As we expected, students in ARRS condition had higher post-test performance

than students in control group, but the improvement on post-test scores is not

particularly large (34.3% vs 41.6%). However, the more important result to notice
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here is the advantage of ARRS on learning gain, students in ARRS condition had

much larger learning gain (12.8%) compared to students in control condition (4.9%).

and we see that combining homework and ARRS is 2.5 times effective than just using

homework in terms of effect size (0.11 vs 0.27). Table 2.1 and Figure 2.5 show the

ARRS experiment results for all the students who took the post-test.

Table 2.1: Performance comparison of all students (maximizes external validity).
This table contains all 103 student participated in our experiment. Learning gain
is computed by using post-test performance minus pre-test performance.

Control ARRS

Pre-test 29.4% 28.8%
Post-test 34.3% 41.6%
Learning gain 4.9% 12.8%
Effect size 0.11 0.27

However, as we mentioned in the experiment design, it is not uncommon for

students to not always complete assignments and if they didnt finish homework skill

builders, no ARRS assignments will be assigned to them. In other words, some

students in ARRS condition in fact worked as in the No-ARRS condition. Including

such data in the study makes it difficult to determine the true effects of ARRS

on certain students. To account for students who did not finishing the homework

skill builders, we also looked how students performed if they finished these five skill

builders. Apparently that each skill builders has different number of students who

finished it, so we constructed Table A.1 to show experiment results of these skill

builders separately. We have observed the students in ARRS condition not only

always have higher post-test performance bu also achieve higher learning gain effect

size expect the last skill builder PSABHZN (1.11 vs 0.99, p = 0.85). These results

demonstrate again how ARRS and spaced practices can help students to improve

their long-term performance.
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Figure 2.3: Pre-post test performance comparison of homework only vs homework +
ARRS. Students in homework + ARRS condition have higher post test performance.

For those whom have been accounted in Table A.1, there is a subset of stu-

dents who finished all five homework skill builders, we believe that the post-test

performance on these students should reflect the desired condition specified by the

study. That is, all students finished their homework skill builders, but only some

they can access the ARRS practice. We found out that there were 10 students from

ARRS condition and 19 students from control condition who met this requirement.

Although this approach maximizes internal validity, it also introduces a selection

bias. Students who finished all their skill builders are not a random sample of the

population, but rather are those who watch their homework more closely and paid

more attention on their study. These non-random select effects make these students

not perfectly representative of population as a whole. The tension between internal

and external validity is common in field research and we also presented this part of

data in Table 2.2: students in ARRS group has much higher post-test performance

(68% vs 46.3%) and learning gain (34% vs 9.5%) when comparing to students in

control group, as a results, we see a almost 4 time higher effect size close to on the
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post-test performance (0.72 vs 0.19), Although, the difference on post-test is still

not reliable (p = 0.23), but considering the small sample size and large effect size, it

should be safe to say that using ARRS has improved students long term retention

performance remarkably.

Table 2.2: Performance Comparison of students who completed all 5 skill builders.
The table only contains students who finished all 5 homework skill builder assign-
ments. In control condition, there are 19 students, and in the ARRS condition there
are 10 students.

Control ARRS

Pre-test 36.8% 34.0%
Post-test 46.3% 68.0%
Learning gain 9.5% 34.0%
Effect size 0.19 0.72

Despite this experiment suffering from the issue of relatively small sample size,

it still shows us that spaced repetitions via reassessment and relearning are effective

in supporting learning by improving students’ post-test performance. Another in-

teresting student performance data is how students performed on their reassessment

tests, more precisely, how students performed the first time they encounter a skill

after mastering that skill, we called it the retention performance. In the students for

completed all 5 skill builders, the overall retention performance is 66%. Note that

this value only coves the 10 ARRS condition students, but since we have already

estimated that student performance was balanced between the control condition

and the ARRS condition, it is sensible to apply this retention performance on the

control condition and see how forgetting affect students’ performance, which is a

20% performance decrease after skill mastery.
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2.4 Mastery speed and retention performance

ARRS has a one-size-fits-all design that always assigns the first reassessment tests

to a students seven days after skill mastery and fourteen days after passing the

first reassessment, then it’s two weeks and one month and at last, two months later

after the previous level. Students’ retention performance is a valuable measurement

of skill mastery and degree of robust learning [BGCO12], thus understanding how

students’ perform on the first level reassessment tests (seven days after skill mastery)

has been become the next topic of our research.

During our analysis our retention performance, we discovered a new feature,

mastery speed, has strong power to predict students’ retention performance. Mastery

speed is the number of problems required to achieve mastery (3-CCR). We believe

it represents a combination of how well a student know this skill originally, and how

quickly he can learn the skill. We first noticed students have quite different values of

mastery speed. High-knowledge students can easily answer 3 consecutive problems

correctly while some low-knowledge students need more than ten opportunities to

achieve mastery. In order to better comprehend mastery speed and to avoid over-

fitting, we categorized possible mastery speed value into interpretable bins:

• High mastery level (3-4 problems): students answered 3 problems correctly in

a row or answered the first problem incorrectly but three consequent problems

correctly after that.

• Medium mastery level (5-7 problems): students used some opportunities to

practices and they had approximately equal numbers of correct and incorrect

attempts.

• Low mastery level (more than 7 problems): low-knowledge student struggled
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and endured very long sequences of problems, but eventually achieved three

correct responses in a row.

We also observed that, in general, the slower the mastery speed, the lower the

probability that a student can answer reassessment tests correctly. Table 2.3 shows

the relationship between student mastery speed and retention test performance.

Table 2.3: Relationship between mastery speed and retention test performance. We
see that slower mastery speed indicates lower probability of answering reassessment
tests correctly.

Mastery speed Retention test performance

3-4 problems 82%
5-7 problems 70%
>7 problems 62%

This clear correlation between mastery speed and retention intrigued us to look

deeper on how mastery speed interacts with delayed tests and spacing effect and

it also suggests that students probably need personalized reassessment schedules fit

their different learning patterns. So we decided to start the exploring the optimal

retrieval schedules for different levels of students based on their mastery speed. We

first conducted an experiment to investigate how different retention intervals affect

students’ retention performance. There were several objectives for this experiment.

A central goal was to investigate knowledge-related differences in terms of spac-

ing and retention interval. As we mentioned before, students who receive retention

tests have demonstrated mastery in the initial problem set, which we refer to as

the mastery learning problem set. We already observed these students have signif-

icantly differences in the fixed-schedule retention tests. Thus, it is worth to find

out how mastery speed affects the retention performance given different intervals.

This experiment tested students with different retention intervals to explore this

question.
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In this study, we have 672 middle and high school students from 34 classes

as our experiment participants [XB14]. Teachers of these classes enabled ARRS in

ASSISTments voluntarily, and they assigned mathematics mastery learning problem

sets according to whatever instructional content they would normally cover in class.

Teachers also required their students to use ASSISTments to finish their homework

on a daily basis. Students were randomly allocated to one of four conditions which

applied with different retention intervals: 174 students were assigned to the 1-day

condition, 170 students were assigned to 4- day retention test condition, 162 students

and 166 students were assigned to 7-day and 14-day condition. Students worked

on their assignments in various environments include school computer labs, home

computers and mobile devices. Prior to this experiment, students and teachers

already had experiences of using ASSISTments and working with ARRS.

Students were randomly assigned to one of four retention interval conditions:

1-day, 4-day, 7-day, or 14-day. The differences among these conditions were the in-

terval between achieving mastery and receiving the reassessment test. For example,

Students in the 1-day condition received the corresponding retention tests the day

after they finished the mastery learning problem sets; while students in 14-day con-

ditions received reassessment test 14 days after they finished the mastery learning

problem sets. It is important to notice that all reassessment tests were released

only on weekdays; this particular behavior of ARRS was designed to cooperate with

teachers, and it delayed the assigning of the retention tests which were scheduled to

be released on Saturdays and Sundays.

This experiment began on September 15, 2013 and ended on December 15, 2013.

During these three months, students constantly received mastery learning problem

sets as homework assignments from their teachers. Once a student answered three

consecutive questions correctly in a mastery learning problem set, a retention test

26



was scheduled based on which condition the student was in and ready to be assigned

(e.g., 1, 4, 7, or 14 days after mastery). For mastery learning problems sets, to finish

on time, students were required to complete it within one day of when the teacher

assigned it. Similarly, for ARRS tests, which were generated by ASSISTments

according to the appropriate schedule interval, students had one day to complete

these tests. However, it was not uncommon for students to not always complete

assignments on time. In fact, we see that students only completed about 40% of

ARRS assignments on time.

Table 2.4: Retention performance by mastery speed bins and test delays. Students
were randomly put into different test delays. This table demonstrated a main ef-
fect of mastery speed: students with slower mastery speed had significantly lower
performance than students with a faster mastery speed.

All retention tests Retention tests completed on time

Retention test delay # test Performance # test Performance

Mastery speed 3-4 problems
1-day 1186 84.4% 462 85.1%
4-day 1169 82.2% 389 84.6%
7-day 1171 81.7% 409 84.1%
14-day 1233 81.2% 419 83.8%

Mastery speed 5-7 problems
1-day 467 77.9% 184 75.5%
4-day 432 76.2% 149 73.2%
7-day 362 77.1% 147 72.9%
14-day 420 73.1% 150 72.7%

Mastery speed >7 problems
1-day 280 67.5% 110 70.0%
4-day 320 62.8% 111 65.8%
7-day 267 59.6% 105 68.6%
14-day 243 54.8% 85 60.0%

In this study, we asked whether a different retention interval would affect stu-

dents retention performance. We were particularly interested in whether or not

longer spacing would impede students retention. In order to determine if different
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retention interval affected students performance, we examined students retention

test performance in different conditions.

As we expected, students in longer retention interval had lower retention per-

formance than students in shorter retention interval, but none of the differences are

particularly large, even the average 1-day performance (80.4%) and average 14-day

performance (76.0%) only differed by 4.4%. We also noticed that students in the

4 days and 7 days conditions had very close retention performance, namely 77.6%

and 77.5%, and this can be explained by the some portion of 4 days retention tests

had been delayed one or two days to skip weekends.

When considering whether there were changes in retention performance of stu-

dents with different mastery speed, we grouped the data by three identified mastery

speed bins, then we also examined students retention test performance. Table 2.4

shows the retention performance by mastery speed bins and test delays.

The left part of Table 2.4 shows how students performed on retention tests,

and includes data from all students. Including data from all students results in

high external validity as it ensures that our results generalize to other, similar,

populations of learners. However, we have seen some tests were completed more

than one week later after they were due. Including such data in the study makes it

difficult to determine which experimental condition the student was in. How should

we analyze students who were in the 7-day condition but completed their retention

test 14 days later? To account for students not being conscientious in completing

retention tests on time, we have selected tests which were finished on time (finished

no more than one day after released and made available to students). As a result,

performance on these tests reflects retention performance on the intervals specified

by the study. That is, a student in the 7-day condition was answering his retention

test after a delay of between 7 and 8 days, but 14 days would not be possible.
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Although this approach maximizes internal validity, it also introduces a selection

bias. Students who finish their assignments on time are not a random sample of

the population, but rather are those who watch their assignment schedules more

closely, and those who cared more about finishing assignments on time. These

non-random selection effects make these students not perfectly representative of

the population as a whole. This tension between internal and external validity

is common in field research, and we present both sets of data. We also noticed

consistent decrease in retention performance with longer retention intervals across

every groups of students, whether they were high mastery level, medium mastery

level or low mastery level students. The results from Table 2.4 also demonstrated a

main effect of mastery speed on retention performance: students with slower mastery

speed had significantly lower performance than students with a faster mastery speed

(p <0.01); this statement is true even when we comparing 1-day performance of

students with slow mastery speed versus 14-day performance of students with fast

mastery speed (67.5% for mastery speed >7 problems versus 81.2% for mastery

speed on 3 or 4 problems). Another interesting effect is that students with slower

mastery speed had larger decrease in retention performance as retention intervals

got longer. For example, high mastery level student had a decrease of 3.2% between

1 day tests and 14 days tests but retention performance of low mastery level students

dropped 12.7%. The horizontal comparisons on Table 2.4 also suggest that students

who finished test on scheduled intervals were more likely to retain skills, confirming

our suspicion above about these students not being a representative sample.

With this experiment, we believe we have revealed the relationships between

master speed and retention performance in different test delays, and most impor-

tantly, these relationships can be used to help us determine what kinds of learning

techniques and reassessment schedules are most suitable for enhancing learning and
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retrieving. More importantly, we formed a hypothesis that reassessment test delays

probably should vary, rather than be fixed, based on the students’ knowledge of

mastery speed.

2.5 Personalized Adaptive Scheduling System (PASS)

Although ARRS helps students review knowledge after a time period and shows

effect on improving students’ long-term performance, it neither knows a students

knowledge level, nor does it has any mechanism to change the retention schedule

based on a particular students performance. Here we formed a hypothesis that

we can improve students long-term retention levels by adaptively assigning students

with gradually expanding and spacing intervals over time and we proposed to design

and develop such a system, called Personalized Adaptive Scheduling System (PASS),

as shown in Figure 2.4. PASS enables ARRS to schedule retention tests for students

based on their knowledge levels. In the spring of 2014, we enhanced the traditional

ARRS with the PASS and deployed it in ASSISTments.

The current workflow of PASS aims to future improve students long-term reten-

tion performance by setting up personalized retention test schedules based on their

knowledge levels. Here we rely on the mastery speed of a skill as an estimate of a

students knowledge level and, consequently, predictor of retention performance. We

retained the ARRS’ design of 4 expanding intervals of retention tests for each skill;

however, PASS alters how the first interval behaves. When a student initially mas-

ters a skill, we use his mastery speed to decide when to assign his first reassessment

test. The mapping between mastery speed and retention delay intervals of the level

1 test is shown in Table 2.5. When a student passes the first test, PASS will sched-

ule another test with a delay of 1 day longer. Once the student passes the 7-day
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Figure 2.4: Workflow of Personalized Adaptive Scheduling System (PASS). We rely
on mastery speed to decide when to assign a student’s first reassessment test. When
a student passes the first test, PASS will schedule another test with a delay of 1 day
longer
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delay test, he is promoted to level 2 with a delay of 14 days. From that point on

the intervals are the same as in the ARRS system. Note that mastery speed can be

extracted from both students initial learning and relearning processes. Therefore,

when a student fails a retention test, a relearning assignment will be assigned to

the student immediately. How quickly the student relearns this assignment will be

used to set the interval for his next test. The mechanism of level 2 to level 4 tests is

simpler. When a student fails a retention test, the retention delay will be reduced

to the previous level (e.g., from 56 days to 28 days). It will be increased to the next

level if the student passes the delayed retention test.

Table 2.5: Mapping between mastery speed and level 1 retention delays. We use
mastery speed of a skill as an estimate of a student’s knowledge level. Slower mastery
speed means assigning reassessment tests with shorter delays

Mastery speed Reassessment test delay

3 problems 7 days
4 problems 6 days
5 problems 5 days
6 problems 3 days
7 problems 2 days
>7 problems 1 day

Here is an example of a student working with PASS in ASSISTments. Lets

assume he needed 4 attempts to achieve three correct responses in a row in an

initial learning assignment, so his mastery speed on this skill was 4. PASS then

scheduled the first level 1 retention test for him to complete 6 days after the initial

mastery. 6 days later, the student passed the retention test and PASS scheduled a

7-day retention test. Then a week later, the student passed the 7-day retention test

and moved to the level 2 retention tests.
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2.5.1 The impact of PASS

After the deployment of PASS in ASSISTments, several key issues need to be an-

swered in order to realize the potential benefits of personalized expanding retention

intervals and scheduling for students. We first conducted a study in ASSISTments

to compare the new PASS with the traditional ARRS without PASS. In addition,

this study explored the influence of personalized scheduling on students long-term

performance, student learning patterns and how they interact with our tutoring

system.

The objectives of this study are the following: A central goal was to investigate

the long-term retention performance impact of personalized spacing schedules. We

enabled PASS for all classes that were using ARRS on May 15, 2014; we expected

students in these classes might be assigned homework during the next few months

and thereby become the participants in the study. We ended this study on Septem-

ber 1, 2014 and found that 2,052 students from 40 classes were using PASS in the

summer of 2014 [XWB15]. Teachers of these classes assigned 93 different home-

work assignments to their students. Since traditional ARRS had been deployed

in ASSISTments for over two years and a lot of data have been accumulated in

the system, we extracted previous summers ARRS-enabled classes that used the

same assignments as the historical control group. 2,541 students from 57 classes in

the summer of 2013 were qualified to act as historical control group. During these

two summer periods, students consistently received mathematics problem sets as

homework assignments from their teachers. Once they answered three consecutive

questions correctly in a problem set, students in the PASS condition would be given

reassessment tests based on their mastery speed. If a student answered a reassess-

ment test correctly, he was then given another reassessment test with a longer delay

until he passed the level 1 test with a 7-day delay. On the other hand, students
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in traditional ARRS condition got 7-day delay reassessment tests after the mastery

and went on with the 14-day tests if they answered the 7-day tests correctly. In this

study, we defined how students performed on the 14-day retention tests (14 days

after passing the level 1 test and at least 21 days after the initial mastery learn-

ing) as the metric of long-term performance. It is important to note that students

usually receive several homework assignments and they may perform differently in

these assignments, which means a student would have multiple tests that should

be accounted for in the long-term performance. However, it is also possible that

students do not complete assignments. Specifically, if a student has not finished

the outcome retention test of a homework assignment by the end of this study, we

cannot take this record into account.

Reassessment test completion rate was calculated based on the number of home-

work assignments that had outcome tests answered divided by the total number of

homework assignments. Days spent is the time interval between the start time of

level 1 reassessment tests and the start time of outcome tests. Test count accounts

for how many level 1 retention tests a student has to answer before this student can

proceed to outcome tests. Long-term retention performance was calculated as the

ratio of number of questions answered correctly in outcome tests to number of all

questions answered in outcome tests.

At the end of this study, the first result we noticed was that a lot of homework

assignments in both groups did not have the records for associated outcome tests. In

other words, a lot of students did not reach the 14-day retention tests. In the tradi-

tional ARRS condition, a total of 8404 homework assignments had been assigned to

students but only 1,558 (18.5%) of these assignments had 14-days retention tests an-

swered. When looking at the PASS condition, the retention test completion rate was

even lower, only 1,029 (13.6%) of total 7,589 homework assignments had outcome
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tests answered. In one sense these low completion rates could result from the fact

these homework and retention tests were assigned to students during the summer

vacation so that perhaps many students did not treat these assignments seriously.

The data also indicated the difference in the completion rates of the two conditions

were statistically significant (p <0.001). We hypothesized that this was due to the

fact that students in the PASS condition took more tests in order to pass the 7-day

delay tests. Remember, some medium- and low-knowledge students had to pass a

number of shorter-delay tests to even reach the 7-day and then 14-day reassessment

tests. To address this hypothesis, we investigated how many days were needed to

reach the 14-day test from the beginning of level 1 retention tests. The data was

grouped by the three identified mastery speed bins to represent high-, medium- and

low mastery level students on their homework assignments.

Table 2.6: Average days spent between level 1 and level 2 reassessment tests. The
minimum possible days between level 1 and level 2 tests is 14 days, achievable by
ARRS students who answered the 7-day test correct, and then take level 2 tests
immediately when available. Other students take more tests thus spend more days.

Initial mastery speed ARRS PASS

3 - 4 problems 16.8 19.0
5 - 7 problems 17.7 33.2
>7 problem 17.3 32.3

Table 2.6 describes the differences in average days spent between ARRS and

PASS conditions. The minimum possible delay is 14 days, achievable for ARRS

students who answer the 7-day test correctly, and then take their ARRS tests when

it is immediately available. Students who fail the first ARRS tests would have to

take one or more additional 7-day tests until they respond correctly and could be

promoted to the 14-day test. For the PASS condition, 14 days is a lower bound only

for those students with an initial mastery speed of 3, as slower mastery speeds would
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require multiple first-level tests before being promoted to the 14-day interval. As

expected, students in the PASS condition spent more time in the practices of level 1

retention tests; especially for medium- and low-knowledge students who spent nearly

two more weeks in the process of passing the 7-day delay tests relative to ARRS

students. Table 2.7 demonstrates that students in the PASS condition had more

tests to answer by showing the average test count of the two conditions therefore it

took them more days to reach 14-day tests.

Table 2.7: Average test counts between level 1 and level 2 reassessment tests. The
table shows student in PASS condition had more tests to answer.

Initial mastery speed ARRS PASS

3 - 4 problems 1.3 1.2
5 - 7 problems 1.4 3.3
>7 problem 1.6 3.7

After found out that PASS made students take more practices in the retention

tests, we became more curious about the impact of PASS on long-term retention

performance. It is important to emphasize that students were balanced with respect

to proficiency in the ARRS and PASS conditions given their close homework perfor-

mance level: 71.0% correct versus 71.2%. An initial analysis on long-term retention

performance across all students showed the PASS condition (83.4%) outperformed

the ARRS condition (77.2%) with a reliable but small improvement (p <0.01, effect

size = 0.15). When considering the performance changes in different knowledge level

of students, we again grouped the data by three identified mastery speed bins; then

we examined students long-term retention performance with p-values and effect sizes

in Table 2.8.

The comparison of long-term retention performance shows that all three groups

of students in the PASS condition outperformed those in the ARRS condition, al-

though the improvements were not all statistically significant; only students with
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medium mastery level performed reliably better with an effect size of 0.27. For

students with high mastery level, the benefit of using PASS was limited; this sug-

gests that solely relying on 7-day delay tests is sufficient for this population. Our

previous study in 2.3 also suggested that high-knowledge students have high resis-

tance against forgetting. On the other hand, providing low mastery level students

with more spaced retention tests and relearning assignments did not stop the decay

of knowledge even after these students had approximately 3 additional relearning

assignments on the same skill, and we only noticed a small effect size (0.12) im-

provement on the retention performance. Because PASS employs a higher stand

of mastery and retention, thus few low knowledge students reached outcome tests;

we in fact noticed that only 51 tests had been completed, so this also prevented us

from achieving a higher effect size in PASS condition. Another notable result was

when we compared Table 2.8 vertically: we could see that PASS helped to close the

performance gap between different groups of students. In fact, in the PASS condi-

tion, the long-term performance of medium-knowledge students even outperformed

the high-knowledge students. Of course, the small sample size suggests us we need

more data to validate this result.

Table 2.8: Long-term retention performance comparison and sample size (in paren-
thesis). PASS improved retention performance across all groups of students. How-
ever, only students with medium mastery level had reliable improvement with an
effect size of 0.27 in PASS condition.

Initial mastery speed ARRS PASS p-value Effect size

3-4 problems 81.8% (978) 84.0% (889) 0.2266 0.06
5-7 problems 73.1% (327) 84.5% (97) 0.0209 0.27
>7 problems 64.8% (253) 70.6% (51) 0.4301 0.12

The work of PASS makes three contributions. First, the work behind this project

helped to design and deploy a personalized expanding interval scheduling system

that utilizes spacing effect in the field. Through the participation of thousands
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Figure 2.5: Post test performance comparison of ARRS vs PASS. All groups of
students in PASS condition have high test performance. Students in medium level
performance have the largest learning gain (d = 0.27).

of students, we carried out a study to test the idea of assigning students with

different delays of retention tests to help them better retain skills. As the first

study on this system, PASS system explores the path of improving ITSs to help

students achieve robust learning via personalized expanding retrieval practices. The

second contribution of PASS is a validation of the hypothesis that students long-

term performance can be improved by giving them tests that are well spaced out

and scheduled appropriately, before gradually expanding the spacing between these

tests. Most importantly, our study demonstrates the importance of individualization

in scheduling retention tests, as it shows that students with medium mastery level

can match up their long-term performance with high mastery level students by using

PASS. The third contribution of PASS is the confirmation of concept of finding the

optimal retention interval by using mastery speed as a measurement of students

knowledge level. By using mastery speed to group students, we can distinguish

different learning and retention patterns among students with different knowledge
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levels. In the process of work, we have noticed that there has been other work

on retention, such as the personalized spaced review system [LSPM14]; however,

this work focuses on fact retrieval and is able to make far stronger assumptions of

when students are exposed to content. Our work examines a procedural skill, in a

classroom context where we cannot be sure what material teachers cover in class

and we are not aware of all homework assignments, thus we cannot be sure when

students last saw a skill.

PASS project have been introduced to the field for just a few months, so we are

still at the initial phase of study. Our goal is to find the optimal spacing schedules

for students and the best way to boost their performance in long-term mathematics

learning. There are many further problems that we are interested in: What should

we do to help low mastery level students, considering the improvement we saw in

the study was inconclusive, particularly given the increased amount of practices

they received? From the data we collected, it was obvious that there were some

areas that can be improved. For example, we simulated a scenario to improve the

retention performance of low mastery level students to match up to the performance

level of high-knowledge students (84.0%) and also improve completion rates to the

level of ARRS condition so we could collect 228 data points. Given these optimistic

assumptions, there intervention would have an effect size of 0.45.
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2.6 ASSISTments Workflow: building assistment

relationships for the next generation ASSIST-

ments

2.6.1 Introduction

The current generate ASSISTments platform has been developed for the past ten

years 1. As a web-based application, the core component of ASSISTments platform

is a web server written in Ruby on Rails, a web framework uses the modelviewcon-

troller (MVC) pattern to organize sub-applications. Although ASSISTments plat-

form has been actively updated and maintained to extend functionalities and fix

program errors, however, some issues of it have become huge obstacles, preventing

ASSISTments adopting new technologies, more importantly, making ASSISTments

can no longer work with users as well as developers effectively. The most concerning

issue of them all is the fact that the software infrastructure of ASSISTments is widely

out of date. For example, ASSISTments is still using Ruby 1.86, which was released

in 2007, and along with other a decade-ago software packages. Another growing

pain of current ASSISTments is a phenomenon known as the ”software rot”. Due

to lack of effective supervising and auditing mechanisms in ASSISTments’ software

development life cycle, a huge part of ASSISTments code base has become obscure,

redundant, faulty. Because of software rot, making any change to current system is

extremely time consuming and error-prone.

Fortunately, developers of ASSISTments team are fully aware of these issues,

and are making effort to ensure we can learn from these problems. In fact, the de-

velopment of the next generation of ASSISTments (TNG) has already being carried

1First code commit was at Wed Nov 1 20:19:03 2006 UTC
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Figure 2.6: Next generation ASSISTments’ model structure. This design separates
different responsibilities into separate layers of modules so that each layer encapsu-
lates a single part of the functionality provided by the whole system.

out. TNG is powered by Java and Spring Framework, and uses completely different

development paradigm from current Ruby platform. It separates different responsi-

bilities into separate layers of modules so that each layer encapsulates a single part

of the functionality provided by the whole system. The design details of TNG is

beyond the scope of this work, but a simple illustration of ASSISTments TNG’s

model structure is shown is the following diagram 2.

As an important part of ASSISTments, it is crucial to include Automatic Re-

assessment and Relearning System (ARRS) in the TNG development. During the

discussions of developing ARRS for TNG, we believe it is possible to develop a set

of API not only meets the requirements of ARRS but also can be generalized to

serve as the backbone of some other components of ASSISTments, components that

involves the idea of guiding students through a set of assignments to achieve cer-

2Created by David Magid, software architect of ASSISTments project
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tain learning goals. Some of these components cover two important development

directions of ASSISTments, which are building an adaptive learning environment for

teachers and students and constructing ASSISTments as a test bed for education

research.

2.6.2 ASSISTments as an authoring tool to support adap-

tive learning and education research

Beside ARRS, ASSISTments has other sub-systems that provide adaptive learning

experience to teachers and students, and PLACEments is one of these examples.

PLACEments, a mathematics adaptive testing system, is another feature of AS-

SISTments. When assigning a PLACEments test, an initial set of skills are selected

for the test. Students are tested on the initial set of skills and depending on their

performance, the system traverses a skill graph to present problems from the prereq-

uisite skills of the initial set of skills. The test adapts to the students performance

as well as the underlying prerequisite skill graph. If a student performs poorly on an

item in the test, they are presented with items from the prerequisite skills required

to solve the original problem. PLACEments has an additional feature that assigns

remediation assignments to students who perform poorly on a test. These remedia-

tion assignments are intended to build the students understanding of the skills they

performed poorly on, during the test. The remediation assignments are released in

the order of the arrangement of skills in the prerequisite skill structure. Students

are assigned lower grade level prerequisite skills first, and until they complete those

remediation assignments, post-requisite skills-related remediation assignments are

not released. This ensures that the students gradually build on their knowledge of

skills until they eventually reach a desired level of mastery of the skills in the given

domain. In short, PLACEments creates a set of pretest, then based on how student
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performed on this test, creates a series of ordered assignments from skill hierar-

chies [ABH16]. The workflow of PLACEments test and remediation assignments

are hard-coded with ASSISTments’ back-end authoring functions.

Other than providing an tutoring environment to teachers and students, ASSIST-

ments is also a unique online learning platform that was designed with educational

research as one of its primary goals [HH14]. The platform has grown into a shared

scientific instrument that allows researchers to conduct Randomized controlled trials

(RCTs) within authentic learning environments. The process typically involves a re-

searcher modifying pre-existing certified content to include treatment interventions

and student-level random assignments. This particular feature makes the ASSIST-

ments system unique and robust for conducting research; rather than all students

within a single class experiencing the same condition, each student may receive

slightly different content or feedback within the same assignment. The library of

certified ASSISTments content consists primarily of middle and high school mathe-

matics skills, with content organized and tagged by Common Core State Standard

[I+11]. However, this library has grown to include content in physics, chemistry, and

electronics, and researchers are able to develop their own content for experimenta-

tion in other domains.

Figure 2.7 depicts a simple study design implemented within ASSISTments. This

universal design could be applied to any assignment within the platform. The design

depicts the paths a student might take based on their ability to access video content.

When a student begins the assignment, he must first answer a ”Video Check”, or

a standard problem that essentially serves as password protection to study partic-

ipation. If the student can access video, he enters the password provided, and his

response serves as the ”Then” in an ”If-Then” routing structure. If the student

enters anything other than password, he is provided a default assignment without
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Figure 2.7: An example of simple study within an assignment. The design depicts
the paths a student might take based on their ability to access video content. If the
student can access video, his response serves as the ”Then” in an ”If-Then” routing
structure.
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video content and is removed from analysis of the intervention under examination.

Upon being routed into the study depicted in Figure 2.7, students are randomly

assigned into one of two assignments using a ”Choose Condition” routing structure.

Note that two conditions are presented here for simplicity although the system is

able to compare any number of conditions.

It is easy to see that building ARRS, PLACEments and experimental contents

all have a lot in common in terms of constructing assignment workflows. They all

need to built a series of assignments, like reassessment tests and remediation assign-

ments, and have students finish these assignments in certain orders. With object

oriented thinking, we can generalize common behaviors of ARRS and PLACEments

by creating a set of generic API to serve their needs. This new API can be also used

by ASSISTments’ Builder.

Early prototype of ASSISTments Builder required programmers to build content,

but soon this was untenable, so a graphical user interface (GUI) based authoring

toll was developed to enable other people, such a s teachers and other researchers,

to create content in quantity. Somewhere around 2011, the total amount of created

by non-WPI personnel began to outnumber that created by WPI stuff [SGHB15].

This is possible because Builder was being designed as an authoring tool that

is easy to build, test, and deploy items, as well as teachers to get reports. Content

authors can use ”Quick Builder” to just type in a set of questions and associated

answers. In that sense, they have created a simple quiz where the one hint given

would just tell students the answer. For these who want to add more hints to the

questions, that step is easy and is part of the Quick Builder. An more advanced

feature of ASSISTments Builder is the previously mentioned ”If-Then” problem

set. ”If-Then” structure is used to support student level personalization in assign-

ments. For example, a researcher or a teacher can assign different content based
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on how well a student did on certain problems, or allow students to make choose

on different tutoring strategies during their assignments. Without a doubt that ”If-

Then” structure in problem sets is the key to conduct randomized experiments in

ASSISTments.

With the current design of ASSISTments Builder and Tutor, teachers and re-

searchers are only allowed to design studies or adaptive problem sets at the level of

problem sets. This is to say, using the ”If-Then” structure is the only way to design

RCTs in the ASSISTments right now without large scale system wide changes.

However, it is easy to image that much more complicated experiments can be

constructed if given users the ability that similar to ”If-Then” control at the level of

assignments. For example, see Figure 2.8, an experiment design which has a pretest,

and a random choose condition to assign students to either control group or exper-

imental group, then all students receive a post-test at the end of the experiment.

Being able to construct experiments like this one will greatly enhance researchers’

abilities to create randomized controlled experiments that are unobtrusive to student

learning.

Additional, teachers also feels the drawback of lacking more control among as-

signments. Unlike MOOC courses, which allows students to control the pace of

study, when the core users of ASSISTments, middle and high school teachers, build

study plans around ASSISTments problem sets, they need control when to assign

or release a particular assignment to their students. In other words, teachers need

to specifically point out when an assignment can be accessed by students. In the

current design of ASSISTments, this task of assignment controlling is done by ask-

ing teachers to set release dates, and associated due dates, for each assignment.

This trivial task sometime becomes a burden when teachers have a large amount of

assignments in their teaching plan and have to at least check the calendar each time
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Figure 2.8: An example of multiple-assignment experiment workflow. An experi-
ment design which has a pretest, and a random choose condition to assign students
to either control group or experimental group, then all students receive a post-test
at the end of the experiment
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to make sure each post-requisite assignment is set to release after the pre-requisite

assignment. We can see that this task and similar use cases can be automated by

allowing ASSISTments system to access the study order of assignments and the time

interval between each assignments.

2.6.3 ASSISTments Workflow

To address these needs of our two major users groups, researchers and teachers, We

propose to design a new set of interfaces, called the ASSISTments Workflow, which

allows users to design the workflow and relationships of a set of assignments and

access the control at how students receive learning content over time.

The proposed ASSISTments Workflow interface will be implemented under the

code base of ASSISTments TNG. As we have mentioned, different from the current

generation of ASSISTments platform, TNG encapsulates low-level components and

only exposes a set of per-defined operations and interfaces via RESTful API [RR08].

The ASSISTments Workflow will be placed in the Service interface layer as other

management components of ASSISTments, see Figure 2.9. Workflow interface will

unitize domain objects such as Assignment, Problem set, Problem and Users to

construct two types of assignment workflows:

• Static workflow: This is the type of workflow that have all internal sections

and assignments defined before assigning to students. This also means that

students will work on fixed order to finish these assignment sets. For example,

linear curriculum should belong to this type of assignment sets.

• Dynamic workflow: Dynamic workflows still need pre-defined logics and rules,

but this type of workflow can generate new content based on certain infor-

mation that they can access, most likely be to performance data of prior
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Figure 2.9: ASSISTments SDK API Block Diagram. The Assignment set API
will be placed in the Service interface layer as other management components of
ASSISTments, and it will unitize domain objects such as Assignment, Problem set,
Problem and Users.

assignments. ARRS and PLACEments are both dynamic workflow.

2.6.3.1 System Design

Based on the user stories we have collected from ARRS and PLACEments, we

can layout the following basic objects in form of Unified Modeling Language (UML)

diagrams. The interfaces we are going to create can be categorized into three groups.

The first group contains is a single class that manages assignment workflows for

student.

1. Workflow manager: This is the control center of ASSISTments Workflow. It

in charges of creating, running, and removing Workflows. Creating a workflow
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involves two steps, the first one creating a workflow node as a starting point

of the workflow, then attaching this workflow node to an existing assignment.

The Workflow manager runs on a on-demand basis for each student. When it

runs, activated Workflow nodes will be evaluated to decide if the associated

Workflow proceed conditions can be satisfied. Code 1 shows the design of

Workflow manager interface.

Listing 2.1: WorkflowManger interface

package org.assistments.workflow.service.manager;

import org.assistments.workflow.service.domain.WorkflowNode;

import org.assistments.domain.core.XInfo;

import org.assistments.domain.core.Assignment;

public interface WorkflowManager {

public void runNodes(XInfo studentXInfo);

public void attachNode(Assignment assignment, WorkflowNode node);

public void removeNode(Assignment assignment);

}

The second part is the core entities that define Workflow. Conceptually, an

assignment set object works like a tree structure that one single root node (or a

head node) can be connected with children assignment nodes, and each child node

can also grow and branch out to more assignment nodes. To implement this design,

we need the following classes, see Figure ??
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1. Workflow node: A workflow node is a link to an assignment and a container of

Workflow proceed conditions. A workflow node has to be attached, or linked

to an assignment in order to work. The Workflow manager checks activated

Workflow nodes to see if any Workflow proceed condition can be executed.

Code 1 has the design of Workflow node interface.

Listing 2.2: WorkflowNode interface

package org.assistments.workflow.service.domain;

import org.assistments.domain.core.Assignment;

public interface WorkflowNode {

public void runConditions();

public Assignment getMyAssignment();

public void setMyAssignment(Assignment assignment);

public Boolean isActivated();

public void deactivate();

}

2. Workflow proceed condition: A workflow node can contain one or more Work-

flow proceed conditions. Each condition can be viewed as the if-then and

if-then-else statements in programing languages. It execute a certain action, a

Workflow proceed action, only if a particular test evaluates to true, it can also

provides a secondary path of execution when an ”if” clause evaluates to false.
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See the following code for the design of Workflow proceed condition interface.

Listing 2.3: WorkflowProceedCondition interface

package org.assistments.workflow.service.domain;

public interface WorkflowProceedCondition {

public Boolean evaluatesToTrue(WorkflowNode node);

public void deactivate();

public Boolean isActivated();

}

3. Workflow proceed action: A Workflow proceed action defines what happens

next if a particular Workflow proceed condition evaluates to true. For example,

Workflow proceed actions can create and assignment new assignments, send

messages to users, or any other actions that can be derived from presented

context. The following code is the design of Workflow proceed action.

Listing 2.4: WorkflowProceedAction interface

package org.assistments.workflow.service.domain;

public interface WorkflowProceedAction {

public Boolean run(WorkflowNode node);
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Figure 2.10: Conceptual class diagram of Workflow API

}

The third part of classes are concrete implementations of Data Access objects

(DAO) that specific data operations without exposing details of the database. DAO

separates what data access the application needs, in terms of domain-specific ob-

jects and data types, from how these needs can be satisfied with a specific DBMS,

database schema, etc. The part of objects uses JDBC (Java Database Connectiv-

ity) to implement typical CRUD (Create, read, update and delete) operations, so

we decide to omit detailed discussion of them in this work.

Our current technology stack uses a relational database management system

(RDMS) called the PostgreSQL to store data and information. In order to keep
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Figure 2.11: Workflow ER digram

persistent records of Workflows, we are going to build two tables to track the in-

teractions between Workflow nodes, Workflow conditions and students. The table

schema is shown in Figure 2.11.

Table workflow node records stores the connections between assignments and

Workflow nodes. Due to the one-to-many relationship between assignments and

students, it is also important to have user id presented in this table. Each Workflow

node also has a boolean field called activated to bookkeep running Workflow nodes.

Table workflow proceed condition records tracks the relationships between Work-

flow nodes and Workflow proceed conditions. Each proceed condition also knows

the Workflow node that it generated by recording the new Workflow node id.

2.6.3.2 Case study: Implementing ARRS with Workflow

As we have just discussed, the propose of ASSISTments Workflow is to provide a

generic set of interfaces that supports the common needs of building connections

among assignments. In this section, we are going to take building ARRS as an ex-

ample to demonstrate the necessary procedures of implementing Workflow interface

in ASSISTments TNG.

The most important functionality of ARRS is the ability of assigning two types
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of assignments, reassessment tests and relearning assignments. Reassessment tests

happen after skill builder assignments or correctly answered reassessment tests; re-

learning assignments happen after incorrectly answered reassessment test. Following

these two sets of rules of ARRS specified assignments, we can use Workflow node,

Workflow proceed condition and proceed action interfaces to implement the mech-

anism of assigning reassessment tests and relearning assignments.

When we look closer at the design of ARRS, we realize that we need three

types Workflow nodes, there are the reassessment node, the relearning node and

the mastery learning node. A mastery learning node will be attached to a skill

builder assignment, as the beginning of ARRS workflow. The mastery learning

node has only one proceed condition, the AssignmentF inishCondition, and the

proceed action is AssignReassessmentAction.

Listing 2.5: MasteryLearningNode implementation

package org.assistments.workflow.service.demo.arrs;

import org.assistments.domain.core.Assignment;

import org.assistments.workflow.service.domain.WorkflowNode;

public class MasteryLearningNode implements WorkflowNode {

int assignnmentId;

int userId;

AssignmentFinishCondition condition = new AssignmentFinishCondition();

AssignReassessmentAction action = new AssignReassessmentAction();
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public ArrsMasteryLearningNode(int assignnmentId, int userId) {

this.assignnmentId = assignnmentId;

this.userId = userId;

}

public void runConditions() {

if (condition.isActivated()) {

if (condition.evaluatesToTrue(this))

action.run();

this.deactivate();

}

}

}

The reassessment node also has only one Workflow proceed condition, AssignmentF inish.

However, it has a different action, that is an action calledAssignArrsOnCorrectnessAction.

This action checks every response in an assignment, if a item is answered correct it

assign a reassessment test, otherwise it assigns a relearning assignment.

Listing 2.6: AssignArrsOnCorrectnessAction implementation

package org.assistments.workflow.service.demo.arrs;

import java.util.Hashtable;

import java.util.Iterator;

import java.util.Map;

import org.assistments.domain.content.tutor.Problem;

import org.assistments.workflow.service.domain.WorkflowNode;
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import org.assistments.workflow.service.domain.WorkflwoProceedAction;

public class AssignArrsOnCorrectnessAction implements

WorkflwoProceedAction {

public Boolean run(WorkflowNode node) {

Hashtable<Problem, Boolean> correctnessMap =

node.getMyAssignment().getItemCorrectnessMap();

Iterator it = correctnessMap.entrySet().iterator();

while (it.hasNext()) {

Map.Entry pair = (Map.Entry)it.next();

Problem problem = (Problem) pair.getKey();

Boolean correct = (Boolean) pair.getValue();

if (correct == true)

{

assignmentReassessment(problem);

}

else

{

assignmentRelearning(problem);

}

}

}

}

The relearning node is actually very similar to the mastery learning node. It has

an AssignmentF inishCondition and an AssignReassessmentAction.
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As we have seen here, all three node types all dependent on theAssignmentF inishCondition

condition to trigger proceed conditions. Our job has been made easy because the im-

plementation of domain object, Assignment, already built the function of checking

assignment completion status. So all we need to do in theAssignmentF inishCondition

is to use Assingment’s method to inspect if the associated assignment has been fin-

ished.

Listing 2.7: AssignmentFinishCondition implementation

package org.assistments.workflow.service.demo.arrs;

import org.assistments.workflow.service.domain.WorkflowNode;

import org.assistments.workflow.service.domain.WorkflowProceedCondition;

public class AssignmentFinishCondition implements

WorkflowProceedCondition {

public Boolean evaluatesToTrue(WorkflowNode node) {

if (node.getMyAssignment().isfinished()) {

return true;

} else

return false;

}

}

Similarly, these two types of proceed actions, AssignReassessment andAssignRelearning,

can also use existing methods from Assignment object to create and assign new as-

signments to students. However, we do need to supply the IDs of relearning problem

sets and reassessment problem, in order to use Assignment’s constructors to build
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new assignments.

We should also note that in order to have ARRS fully operational in TNG, there

is other information and functionalities need to be constructed outside of Workflow.

Just like current working version of ARRS, we need the reassessment delay settings

from each class to know when to assign reassessment tests. Workflow process actions

are going to use additional objects and methods to retrieve such information. The

implementation details of external objects are beyond the scale of our work here.

At this point, we believe we have made our case that the Workflow API can

support the development of ARRS, and other sub-systems that require building

connections among assignments. We would like to also conclude the discussions

regarding building systems to improve students’ retention performance. Our RCTs

have showed that the ARRS system can improve students retention learning perfor-

mance significantly, we also demonstrated the work of supporting ARRS develop-

ment in the next generation ASSISTments.
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Chapter 3

Modeling Retention Performance

3.1 Introduction

In the last chapter, we have witnessed the development of ARRS, an adaptive tutor-

ing system that helps student to improve their long-term retention performance level

by scheduling personalized tests and assignments. In this part of work, we focus on

the challenge of modeling student retention performance through methods of data

mining and machine learning. We believe that studying the problem of predicting

students’ long-term retention performance can not only provide understanding on

learning and memory but also help us to enhance our ARRS system.

In this chapter, we first study the related work to modeling student performance

in the area of educational data mining, specifically how to model memory and for-

getting in long-term learning and retention. Then we study relevant machine learn-

ing modelings and determine which are the candidates for addressing our modeling

problems. The primary goal of this chapter is to design, evaluate and analyze the

models suitable for predicting students’ retention performance while accounting for

key aspects of our adaptive tutoring system. The findings should provide insights
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into how modeling the effect among learning, memory, and forgetting and help us to

design software components which can improving long-term retention performance.

3.2 Student Modeling

Understanding the process of learning is very helpful when we need to represent

student knowledge and adapt our tutoring systems to the needs and knowledge of

individual students practicing a particular domain. The construction of a quantita-

tive representation, called a student model, is know as student modeling [SS98].

After decades of developments, there are two student modeling methods are

commonly being used by researchers. The first one is the Bayesian Knowledge

Tracing model.

The Bayesian Knowledge Tracing (BKT) model [CA94] is a 2-state dynamic

Bayesian network where student performance is the observed variable and student

knowledge is the latent data. The model takes student performances and uses them

to estimate the student level of knowledge on a given skill. The standard BKT

model is defined by four parameters for each skills: initial knowledge and learning

rate (learning parameters) and slip and guess (mediating parameters). The two

learning parameters can be considered as the likelihood the student knows the skill

before he even starts on an assignment (initial knowledge, K0 ) and the probability

a student will acquire a skill as a result of an opportunity to practice it (learning

rate). The guess parameter represents the fact that a student may sometimes gen-

erate a correct response in spite of not knowing the correct skill. The slip parameter

acknowledges that even students who understand a skill can make an occasional

mistake. Guess and slip can be considered analogous to false positive and false

negative. BKT typically uses the Expectation Maximization algorithm to estimate
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these four parameters from training data. Based on the estimated knowledge, stu-

dent performance at a particular practice opportunity can be calculated. Skills vary

in difficulties and amount of practices needed to master, so values for the four BKT

parameters are skill dependent. This leads to one major weakness of the standard

BKT [GBH10]: it lacks the ability to handle multiple-skill questions since it works

by looking at the historical observation of a skill and cannot accommodate all skills

simultaneously. One simple workaround is treating the multiple skill combination as

a new joint skill and estimate a set of parameters for this new skill. Another com-

mon solution to this issue is to associate the performance on multiple skill questions

with all required skills, by listing the performance sequence repeatedly. This makes

the model see this piece of evidence multiple times for each one of required skills.

As a result, a multiple skill question is represented as multiple single skill questions

[GBH10].

Another popular student modeling approach is the Performance Factors Analy-

sis Model (PFA) [PJCK09]. PFA is a variant of learning decomposition, based on a

reconfiguration of Learning Factor Analysis (LFA) [CKJ06]. Unlike BKT, it has the

ability to handle multiple skill questions. Briefly speaking, it uses the form of the

standard logistic regression model with the student performance as the dependent

variable. It reconfigures LFA on its independent variables, by dropping the student

variable and replaces the skill variable with question identity. This model estimates

parameters for each items difficulty and also two parameters for each skill reflecting

the effects of the prior correct and incorrect responses achieved for that skill. Pre-

vious work that compares KT and PFA have shown that PFA to be the superior

one [GBH10]. One reason is the richer feature set that PFA can utilize and the fact

that learning decomposition models are ensured to reach global maximum while the

typical fitting approach of BKT is no guarantee of finding a global, rather than a
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local maximum. The Standard PFA model’s main disadvantage is the inability to

consider the order of answers. A variation of PFA model introduces a decay factor

ξ that penalizing the order answers [GBH11]. Another problem with the standard

PFA model is that is does not take into account the probability of guessing [PPS14].

3.3 Modeling retention performance

Using methods like BKT and PFA to predict student behavior on immediate next

action has been investigated by researchers for many years. For a long time, few have

questioned whether next question correctness prediction is worth all the attention

is has received, However, in recent years, a voice starts to be heard which debates

whether the unremitting research thread of modeling student performance is healthy

for the EDM community, as a result, some student modeling researcher has paid

increasing attention to modeling problems like the robustness of student learning.

Retention is one of the three components in the robust learning framework. It

also often referred to as delayed performance or long-term performance reflecting

knowledge retrained over time. Qiu et al. looked at BKT’s predictions on student

responses where a day or more had elapsed since the previous response and found

that BKT consistently over predicted these data points, and also proposed a BKT-

Forget model which showed a significant improvement [QQL+11]. Wang and Beck

investigated predicting student delayed-performance after 5 to 10 days to determine

whether and when the student will retain the studied material. While applying

feature engineering, they found some of the traditionally-believed useful features

for predicting short-term performance have little predictive power for predicting

retention, such as number of correct and incorrect responses. They then built a

student model in the form of logistic regression on the basis of the performance
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factors analysis model to predict the correctness of student response after a delayed

period [WB12].

However, none of this prior work has been used data gather from systems that

are specifically designed to work with student’s retention performance. A lot of these

data were collected from students who take random breaks between practices. The

modeling experiments we are about to describe were performed using data gathered

from the ARRS system, which was built around the concepts of spacing effect and

delayed tests. Since most of the data were gathered during the first 7-day retention

tests, we conducted our analysis and study only on these pieces of data. We defined

a student as retaining a skill if he or she was able to respond correctly after a long

delay. In our model, the dependent variable is whether a student responded correctly

on a 7-day delayed retention problem, treating incorrect responses as a 0 and correct

responses as a 1. Note that in the mastery cycle of ARRS, students who failed on

the retention tests received repeat delayed tests, but for this study, we were only

predicting the performance of the first retention tests.

Since the data was gathered from ARRS, and ASSISTments, a platform which

contains complicated information regarding teachers, students and the tutoring envi-

ronment itself, it is possible to extract many predictive features to help on modeling

students’ model performance. To make best use of these features, We decided to

build an extended version of Pavlik’s Performance Factors Analysis [PJCK09] model

that predicts students performance on the delayed retention tests for these two dif-

ferent delay periods. Although we are not explicitly modeling students retention

and forgetting process, our data-driven approach captures aspects of performance

that relate to students long-term retention of the material. PFA models track the

number of correct and incorrect responses the student has made on this skill.
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3.3.1 Data set and Features

3.3.1.1 Data set

The analyses were conducted using data generated from ASSISTments’ ARRS sys-

tem, we also included data from PASS system to test the robustness of our modeling

methods. Note here in this work we only focused on predicting the performance of

the very first reassessment tests after skill builder completion. We collected a data

set that was recorded between September, 2014 and September 2016. The data set

contains 20,361 reassessment tests. This data set contains 2,515 students, and the

overall reassessment test correctness of this data set is 71.8%, slightly higher than

the average correctness of all responses recorded in ASSISTments database.

Feature engineering is crucial in many machine learning and data mining prob-

lems, including student modeling. Since learning and problem solving are complex

cognitive and affective processes, many student models succeed due to using ex-

tracted features. However, improving models with feature engineering does not

mean that we want to build extremely flexible models which contain with all pos-

sible ”information” about students and questions, because these complex models

can lead to a phenomenon known as overfitting the data, which essentially means

they follow the errors, or noise, too closely. Over-fitting is an undesirable situation

because the fit obtained will not yield accurate estimates of the response on new

observations that were not part of the original training data set. With this con-

sideration in mind, we intentionally selected features that can be easily extracted

from new students and new classes, in other words, we avoided to use identification

information like student id as independent variables of our models. In this work, we

selected features from three aspects: student and item features, class level features

and prerequisite skill features. We believe these features are generally available in
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most tutoring systems.

3.3.1.2 Student and item level features

Student level features reflect the general knowledge level of a student relative to an

retention test that he or she was working on, and item level features capture the

overall characteristics of the retention tests. Intuitively, whether a student is able

to retain a skill has much to do with how well the student understands the skill.

Therefore, features like mastery speed is an important aspect to count a student

proficiency on a skill, it establishes direct connections between student knowledge

and skill difficulty [XLB13]. and besides it, we also used the following features:

1. mastery speed binned: Mastery speed counts the number of opportunities

needed to achieve 3 consecutive correct responses (3-CCR) in skill builder

assignments. In this data set it can ranges from 3 to 79. In order to avoid

over-fitting and including these who haven’t finished skill builder assignments

when taking reassessment tests, we grouped mastery speed performance to 4

groups: High performance (mastery speed = 3-4), medium performance (mas-

tery speed = 5-7), low performance (mastery speed >7), and skill builder

uncompleted. For the first three groups, the average mastery speed in this

data is 4.75.

2. adaptive model: In this work, we have collected data from both ARRS and

PASS systems. The PASS is responsible for 53% of data rows.

3. scheduled delay: The system scheduled delays between finishing a skill builder

assignment and taking a reassessment test. In the ARRS system, this delay

is always 7 days, while in the PASS model the delay is affected by how well
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a student performed in the skill builder assignment, and ranges from 1 to 7

days. The average delay is 6.07 days.

4. completion delay: The delay between the system scheduled reassessment test

date and actual reassessment test completion date. Students not always finish

their assignments on time, so this features counts how many days it took them

to finish a test after that test has been assigned to them. The mean value of

the feature is 16.6 days.

5. skill id: Each skill builder problem set has been associated with one skill

from the Common Core State Standards for mathematics [I+11]. By modeling

skill id as a categorical variable, we are estimating the overall effect of each

skill. Each skill id is taken in the model and a parameter is estimated, which

could conceptually be interpreted a how difficult the skill is. The data set

contains 32 unique skills.

6. grade diff binned: Grade level of a skill relative to a student. We computed

the difference of the students current grade minus skill grade. We then grouped

these values into five different bins, which are above grade, on grade, one year

below, and more than a year below.

7. item easiness: Item easiness has been widely used in student modeling since

the PFA model [PJCK09] was proposed, as well being integrated into Knowl-

edge Tracing in order to better predict student performance [PH11]. Item

easiness is computed by using the percentage of correctness for this question

item across all answers and all students. The higher this value is, the more

likely the problem can be answered correctly. The average item easiness is

0.71.
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3.3.1.3 Class level features

For decades, researchers in EDM and ITS (Intelligent Tutoring System) have been

developing various methods of modeling students, and as we have discussed, two

of the most popular approaches are BKT and PFA. Both techniques have a simi-

lar underlying assumption that two things are needed to model the students: one

component concerns the domain, such as skill information in KT and PFA, or item

information in the PFA model, the other component is the student’s problem solving

performance on the skill.

However, there are other sources of knowledge not utilized, such as the perfor-

mance of other students in the same class [XBL13]. Instead, only this student’s

previous performance is taken into account. Imagine the case that in this class of

students, 19 get the reassessment test wrong, and we want to predict the perfor-

mance of the 20th student’s performance. Intuitively, predicting that this student

would also respond incorrectly seems like a safe bet. However, current student mod-

els such as KT and PFA will not be affected by these 19 incorrect responses, as they

were all made by other students. What would the effect on predictive accuracy be if

which class a student is currently in was factored into student models? Our hypoth-

esis is that class perhaps contains important information such as the student’s prior

knowledge about a skill so that class overall performance and student individual

performance are not independent and can be used to enhance our models. Since

all students in a class share a common teacher, curriculum, and assigned homework

problems, we should expect similarities in performance. Our goal is to capitalize on

this dependency to improve student modeling.

To test our hypothesis of class-level features, we selected the following three

features to capture different class information.
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1. class id: classes were created by teachers who are using ASSISTments, and

represent each distinct class a teacher has. By modeling class id as a factor,

we are estimating an overall effect of the classroom;

2. class skill reassessment performance: measures the class performance on re-

assessment tests on same skill. For each reassessment test, the performance

is represented by using the percentage of correctness of tests that have been

answered in the same class, on the same skill, and have been answered before

the student attempts this retention item;

3. class other skill reassessment performance: measures the class performance on

all reassessment tests on all other skills.

3.3.1.4 Prerequisite Skill Features

Cognitive domains usually have a model that represents the relationship between

knowledge components. Each of these knowledge components is a major skill in

the domain that students are expected to have. The relationship between these

knowledge components or skills is either prerequisite or postrequisite. A prerequisite

skill of a skill A is a skill that students are expected to have to be able to succeed

in assessments of requiring skill A. Without knowledge of the prerequisite skill(s)

of a given skill, a student is not expected to respond correctly to questions from

that given skill. The directed graph in Figure 3.1 is representation of a subset of

the prerequisite skill model used by a number of features in ASSISTments. The

ovals represent the skills and the arrows linking the ovals show the prerequisite

and postrequisite relationships between the skills. The codes are the Massachusetts

Common Core State standards for the Math skills. ASSISTments started adopting

the Common Core standards since fall 2013.
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Figure 3.1: A subset of the Common Core skill map. An arrow that connects two
skill nodes indicates the prerequisite relationship between these skills.

70



Cognitive models, together with their skills maps, have been used to determine a

student’s knowledge levels in a given domain. For example, when a student answers

a problem from a given skill incorrectly, problems are presented from the prerequisite

skill to determine how well they know the prerequisite skills.

Now consider a situation where a student has very high performance in general

but performed poorly in prerequisite skills to a particular skill. When this student

attempts to learn the post-requisite skill, we would not expect him to achieve robust

mastery; therefore, his performance on retention tests to that post-requisite skill

could be poor [XAH14]. Hence we formed a hypothesis that the prerequisite skill

performance can be independent from student local performance and can be used

to enhance our models of predicting retention performance. These features relate

to item and skill information, including: (1) problem easiness and (2) skill id. Note

that because we are not using the identifier of students in the modeling work, thus

our models should be able to generalize to new students. To test our hypothesis,

the next step was to gather a set of prerequisite skill features and identify which

features can be used as predictors. Towards this end, we selected the following three

features to capture different prerequisite skill information:

1. prerequisite skill id: the unique identifier of each prerequisite skill. By mod-

eling skill ID as a factor, we are estimating an overall effect of these skills.

There are 33 unique prerequisite skills;

2. prerequisite skill performance: this is a measure of a students performance on

a direct prerequisite skill of the retention test skill. This number is presented

by the percentage of correctness of all the problems that are answered by the

students for this prerequisite skill. The average performance is 0.80;

3. prerequisite skill easiness: the percentage of correctness for a prerequisite skill
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across all answers and all students. The average easiness is 0.71.

3.3.2 Evaluation and Analysis

In real-word concept learning problems, interpretability of machine learning models

is as important as their prediction accuracy. In this second part, we report on

evaluation of models accuracy and feature importance.

3.3.2.1 Feature ranking

There exist two main goals for the application of machine learning: either the gen-

eration of a model that predicts a variable of interest given a number of predictive

features, or the generation of insight into how the predictive feature impact on

the variable of interest (given that the prediction model performs reasonably well).

This latter task of feature discovery or feature ranking has many potential benefits

and it is the essence of utilizing machine learning models to solve real-word prob-

lems, in our case, how to improve student learning. For example, feature selection

can help on facilitating data visualization and understanding, reducing the mea-

surement and storage requirements, reducing training and utilization time, defying

the curse of dimensionality to improve prediction performance. Some methods put

more emphasis on one aspect than another, and unfortunately, some machine learn-

ing methods which usually generate good predictive models, can not be used for

identifying interesting features because their underlying methods are too complex

to analyze contributions of single covariates to the overall results. This problem ap-

plies, for instance to artificial neural networks and support vector machines (SVMs)

with non-trivial kernels.

In the case of EDM and ITS research, the needs of interpretability not only

apply to building predicative models but also apply to the software development
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cycle of tutoring systems. For example, in order to schedule reassessment tests for

each individual students, which feature should we use as the indicator of students’

level of mastery on a skill builder? The problem is we need a feature with good

predictive power, high computational scalability and high interpretability, so we

can utilize it on a large-scale web application, i.e the ASSISTments, and we can

explain it to teachers and students. With these considerations in mind, we decided

to use two simple, effective and highly interpretable methods, correlation criteria and

single variable classifiers, to rank our predictive features in the problem of retention

performance modeling.

3.3.2.1.1 Correlation Criteria Let us consider first the prediction of a con-

tinuous outcome y. from a feature x. The Person correlation coefficient is defined

as:

r =

∑
x− x∑

y − y√∑
(x− x)2

√∑
(y − x)2

(3.1)

In linear regression, the coefficient of determination, which is square of r, repre-

sents the fractions of the total variance around the mean value y that is explained

by the linear relation between x and y. Therefore, using r2 as a variable ranking

criterion enforces a ranking according to goodness of linear fit of individual variables

[GE03].

Correlation criteria such can only detect linear dependencies between features.

A simple way of lifting this restriction is to make a non-linear fit of the target with

single variables and rank according to the goodness of fit, which leads to our next

feature ranking method [GE03].
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3.3.2.1.2 Single Variable Classifiers As just mentioned, using r2 as a rank-

ing criterion for regression enforces a ranking according to goodness of linear fit of

individual variables. One can extend to the classification case the idea of selecting

variables according to their individual predictive power, using as criterion the per-

formance of a classifier built with a single variable. For example, the value of the

variable itself can be used as discriminant function. Normally, a classifier is obtained

by setting a threshold θ on the value of the variable.

The predictive power of the variable can be measure in terms of error rate. But,

various other metrics can be defined that involve false positive classification rate

fpr and false negative classification rate fnr. The trade off between fpr and fnr is

monitored by varying the threshold θ. ROC curves that plot ”hit” rate (1-fpr) as a

function of ”false alarm” rate fnr are instrumental in defining criteria such as: The

”Break Even Point” (the hit rate for a threshold value corresponding to fpr=fnr)

and the ”Area Under Curve” (the area under the ROC curve) [GE03]. An AUC of

0.50 always represents the scored achievable by random chance. A higher AUC score

represents higher accuracy. One characteristic of the AUC is that its performance

is not affected by unbalanced data sets, i.e. the reassessment performance data has

over 70% of correct responses.

3.3.2.1.3 Feature ranking We used correlation criteria and single variable clas-

sifiers to rank the 14 independent variables. We applied logistic regression models

to the single variable classifier, and the binary dependent variable represents the

correctness on the reassessment test. Note that categorical features like class id and

skill id don’t have r values available due to the natural of r calculation. The Feature

ranking, ordered descendingly by single variable classifiers’ AUC values, is showing

in Table 3.1.
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Five-fold cross-validation was used to train and test the single variable classifiers.

We perform cross-validation be first randomly dividing data set into five groups,

or folds, at the student level. Next, there are five rounds of training and testing

where at each round a different group served as the test set, and the data from the

remaining four groups served as the training set. This process results five estimates

of the test error, then averaging these values can generates a single value of model

performance. The cross-validation approach has more reliable statistical properties

than simply separating the data in to a single training and testing set and should

provide added confidence in the results since it is unlikely that the findings are a

result of a lucky testing and training split [PH11].

Table 3.1: Feature rankings. All 14 features are listed in this table, and they are
ranked by AUC performance of single variable classifiers.

Rank Feature AUC r2

1 class skill reassessment performance 0.725 0.136
2 item easiness 0.712 0.118
3 class id 0.633 0.040
4 mastery speed binned 0.596 0.032
5 prerequisite skill id 0.585 0.019
6 skill id 0.583 0.019
7 class other skill reassessment performance 0.579 0.023
8 scheduled delay 0.570 0.015
9 prerequisite skill performance 0.554 0.007
10 class grade 0.549 0.007
11 adaptive mode 0.524 0.001
12 completion delay 0.519 0.003
13 prerequisite skill easiness 0.514 0.000
14 grade diff binned 0.508 0.001

Among all 14 features, class skill reassessment performance is recognized by

both ranking methods as the most import feature. The highest r2 indicates that

how well a student retains a skill is highly correlated with his/her classmates’ perfor-

mance. Along with class id, which has been ranked the 3rd most important feature,
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we see that class level effects are very powerful in predicting students’ reassess-

ment test performance. Also note that employing class id is a generic approach for

intuitively ”clustering” students, and this approach of clustering requires little ad-

ditional information, no complex processing, and it is easy to interpret the clusters

and the semantics behind them. It is worth to note how teachers group students

into ASSISTments’ classes be might different from how classes were built at their

local schools, for example, a teacher can create an ASSISTments classes just for

a few students, either weaker or AP students, and design a special curriculum for

them. Thus more investigations are still needed to answer whether class id and class

performance features can be generalize to other models and applications.

item easiness has been ranked second with AUC at 0.712 and r2 at 0.118. It

shows the substantial predictive power of item easiness and demonstrates the im-

portance of modeling item difficulty in student modeling problems. Previous study

[PH11] has shown that when enough data points can be provided, item difficulty

information can produce significantly improvement over models lack such informa-

tion. In the case of our dataset, each problem has average 97 responses to help

estimate an accurate difficultly value.

The mastery speed binned feature is shown in the 4th row of the feature rank-

ing table with a AUC value of 0.596. Although the importance of this feature in

prediction is lower than what we expected, but it is the only feature that we can

extract from a student himself rather than relay on other categories of data, such

as content information or class rosters, thus we still see it as a valuable factor to

consider when modeling retention performance.

Other less important features have ACU values range from 0.585 to 0.508. Much

to our surprise, these two features, scheduled delay and completion delay, regarding

delays between skill builder completion and taking reassessment test ranked only on
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8th and 12th places among all 14 features, especially the actual delays, indicated by

feature completion delay, carries less predictive power than scheduled delays. We

believe this pattern reflexes the fact that in PASS system, feature scheduled delay,

which is computed from mastery speed, is already an indicator of how students

performed in skill builder assignments, thus resulting mastery speed and sched-

uled delay become collinear. In fact, the correlation coefficient between these two

variables is -0.59. The presence of collinearity can pose problems in the regression

context, since it can be difficult to separate out the individual effects of collinear

variable on the response.

3.3.2.2 Model performance

To evaluate our retention performance model, we use the standard PFA model. So

the baseline model is a model that contains a skill identity variable, a parameter

for each item representing the item’s difficulty, and also two parameters for each

skill reflecting the effects of the prior successes and prior failures achieved for that

skill. Again, five-fold student level cross-validation was used to train and test our

models. To distinguish from PFA, we named our model the ASSISTments Retention

Prediction model, or ARP.

Model predictions made by each model were tabulated and the performance were

evaluated in terms of AUC, and the coefficient of determination, r2. AUC and r2 are

robust metrics for evaluation predictions where the value being predicted is either

a 0 or 1, and they also represent different information on modeling performance.

r2 is normalized relative to the variance in the data set and it does not directly

measure how good the modeled predictions are, but rather a way of measuring

the proportion of variance we can explain using one or more variables. r2 is more

interpretable compare to other metrics, such as the widely used RMSE (Root Mean
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Squared Error). For example, it is unclear whether an RMSE of 0.3 is good or bad

without knowing more on the data set, however, an r2 of 0.8 indicated the model is

accounting for most of variability in the data set. Neither AUC nor r2 is a perfect

evaluation metric, but when combined, they account for different aspects of model

performance and provide a basis for model evaluation.

Table 3.2: Model performance of PFA and ARP models. This table compares the
performance of PFA and ARP on predicting retention correctness. Both training
and testing performance are averaged across 5-fold cross-validations.

Training Testing
PFA ARP PFA ARP

AUC 0.741 0.780 0.727 0.760
r2 0.156 0.210 0.137 0.177

The cross-validated model prediction results are shown in Table 3.2. It is clear

that the ARP model performs better than PFA model, with evident improvements

in both measurements, and the improvement over PFA is statistically significant

(p <0.01). As AUC measures the models’ classification ability and r2 measure the

models’ ability to produce predictions close to the target’s true values in magnitude,

the result that ARP model has superior performances in both aspects, confirms the

importance of the selected features.

Note that the measurements in r2 appear to be less satisfying at the first glance.

However, we argue that the models performance on this metric is acceptable. This

metric focuses on magnitude differences between the predicted values and the actual

values. The dependent variable, response correctness, has a binary value. We used

1 to represent correct responses and 0 to represent incorrect response. Suppose

we have two predictions for one retention performance data point: 0.95 and 0.75.

Both predictions could correctly classify the data point to wheel-spinning, but the

former produces higher r2 than the latter. From this perspective, we can see that
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for a classification model, getting a high r2 is very challenging. Moreover, student

behavioral models generally have poor performance in this metric [Gon14].

A good fit on training data indicates that the extracted features are very helpful

to model retention performance, however, it is relatively easy to create a model

having a good fit on the training data. It is also required that the model must

accurately classify record it has never seen before. So a good classification model

must have good training performance as well as low testing error, in other words,

to avoid over-fitting on training data.

So it is important to see ARP model performs at a level which close to 0.8

AUC and 0.2 r2. These results suggest much higher model accuracy in classifica-

tion compare to prior work on retention performance prediction [QQL+11, WB12].

Traditional classification tasks in data mining are targeted to unknown instances,

which are not seen by the model in the training process. Since we conducted our

fitting on student level cross-validation, we differ from that that a way that not

only the instances in test set are not seen by the model before, so are the students

who generated those instances thus our ARP model also well accommodated to un-

known students. In both metrics, the measurements on the test data is just slightly

lower than the ones on the training data. The good performance of the ARP model

on the test data suggests that the model is not overly complicated favoring little

training error. Rather, it does not over-fitting in 5-fold cross-validation and has gen-

eralization ability to be used on unknown students when providing enough training

data.

3.3.2.3 Bias and variance trade off

After validating our new ARP model can achieve smaller prediction error with cross-

validation, typical modeling analysis would stop and claim the new model is a su-

79



perior method. However, we believe there are more properties to be explored before

we can fairly judge the overall performance of a model.

The results of our new APR model, although have been 5-fold cross-validated,

mainly measure one part of reducible prediction error, the error due to bias as

ARP has more features than PFA and it has better accuracy. However, there is

another part of reducible error that caused by model’s variance, and there is trade

off between a model’s ability to minimize bias and variance. Understanding these

two types of errors can help us better diagnose model results and avoid the mistake

of over- or under-fitting.

If we denote a data point in our data points is x, the expected squared prediction

error may the be decomposed the following components [JWHT13]:

Err(X) = bias2 + V ariance+ IrreducibleError (3.2)

That third term, irreducible error, is that noise term in the true relationship that

cannot fundamentally be reduced by any model. Given the true model and infinite

data to calibrate it, we should be able reduce both the bias and variance terms to

0. However, in a world with imperfect models and finite data, there is a trade off

between minimizing the bias and minimizing the variance.

Conceptually speaking, the error due to bias is the amount by which the expected

model prediction differs from the true value or target, over the training data. The

error due to variance is the amount by which the prediction, over one training

set, differs from the expected predicted value, over all the training sets. A model

with low bias must be complex or flexible so that is can fit the data well. But if the

model is too flexible, it will fit each training data set differently, and hence have high

variance. So at its root, dealing with bias and variance is really about dealing with

over- and under-fitting. Bias is reduced and variance is increased in relation to model
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complexity. As more and more parameters are added to a model, the complexity

of the model rises and variance become our primary concern while bias steadily

fails. For example, as more polynomial terms are added to a linear regression, the

greater the resulting model’s complexity will be. In other words, bias has a negative

first-order derivative in response to model complexity while variance has a positive

slope.

Another way to look at a model’s variance performance is the stability of a

model. We expect a robust model to handle new cases better than one that is tuned

to catch details of population, in other words, a robust model should be less likely

to over-fit. But until this moment, it is unclear that how our new model works

against over-fitting. Now considering over-fitting usually occurs when a model is

excessively complex, such as having too many parameters relative to the number

of observations, then it is possible for us to intentionally create scenarios that are

likely to cause over-fitting, and use these scenarios to ”pressure test” our models.

To be more specific, we are going to create a serious of training/testing splits on

our data set, each with same amount of total data points but different testing data

sizes range from 10% of all data to 90%, and run our models a numerous times with

these data splits. We called this procedure the stability test against over-fitting,

see Algorithm 3.3.2.3. By doing this test on ARP and PFA models, we can observe

when ARP and PFA start to over-fit and how large the errors are, as representations

of the variance of our models.

Figure 3.2 shows a plot of stability tests on PFA and APR model. At each

data split, we run both models n = 100 times with randomly selected testing and

training data, and then measured the average AUC of these 100 runs. As we can

see here, both ARP and PFA models share very similar ”horn” sharp patterns

that constructed by changes of testing and training performance using different
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Algorithm 1 Stability test against over-fitting (m, d, n). Given a predictive model
and a data set, this algorithm generates an array values represents averaged training
and testing performance values from different test data sizes.

Require: a classification model m, a data set d, n
result← []
for test size← 10% to 90% do

for i← 0 to n do
test data← randomly select test size of d
train data← d \ test data
train m on train data then test m on test data
record training and testing performance in AUC

end for
result[test size]← average training and testing performance of test size

end for
return result

data splits. ARP and PFA both show training performance better than testing

performance across all data split settings. When testing data uses 10% of all data

points, training models outperform testing models with small margins. As the size of

testing data increases, training performance also increases while testing performance

decreases.

From the results of stability test, we can define the following terms to help

quantify the stability test:

1. δ is the difference in AUC between training and testing at a given test size

2. δ1 and δ2 are values of performance gap at test size of 10% and 90%, respec-

tively.

3. ε is the difference between δ2 and δ1

Take APR model for example, the AUC differences between training perfor-

mance and testing performance start at δ1 = 0.018 then gradually increase to δ2 =

0.100. At that point, the training model has achieved an AUC of 0.829, but test-

ing performance has decreased to 0.725 due to massive over-fitting. The absolute
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Figure 3.2: Stability test of PFA and ARP models. Both ARP and PFA models
share very similar ”horn” sharp patterns that constructed by changes of testing and
training performance using different data splits. As the size of testing data increases,
training performance also increases while testing performance decreases.

difference between two pairs of training and testing models at the beginning and

the end of over-fitting test is ε = 0.082. We believe that using δ1 and ε is a reason-

able measurement to quantify a model’s degree of over-fitting, and can be used as a

signal of stability. To our best knowledge, no prior work has formally utilized this

information before, so we like to call this function as the O-value, and notated it

as O(δ, ε), so ARP model has a O-value at O(0.018, 0.082). Respectively, PFA has

a smaller O-value, which is O(0.011, 0.064). Although ARP can be viewed better

than PFA model when compared in the settings of 5-fold cross validation, however,

when we conducting more closer investigation on model’s variance, we see that two

models perform neck and neck in general, and ARP model has ever slightly large

variance in the measurement of O-value.
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3.3.2.4 Reducing variance

By conducting the stability test on PFA and ARP models, we estimated the level

of variance of PFA and ARP models. We believe the results suggest that these two

models are both have high variance due to high level complexities, in other words,

both models contain too many parameters thus make them tend to fit to noise.

We believe we can find more simpler models to overcome the drawback on PFA

and ARP models by building models with fewer features from current ARP model

feature set. Naturally, how to select a subset of features is the next problem we need

to address. Well-known feature selection methods such as greedy search strategies

seem to be particularly computationally advantageous and robust against overfit-

ting. They come in two flavors: forward selection and backward elimination. In

forward selection, features are progressively incorporated into larger and larger sub-

sets, whereas in backward elimination one starts with the set of all variables and

progressively eliminates the least promising ones [GE03]. However, we believe we

can use a more direct approach to construct models with arbitrary number of fea-

tures. The method we are going to describe relies on randomness and cross-validated

model performance to rank different combinations of feature subsets, and we named

it the random subset feature selection method.

The detailed procedure to of this method is shown as follows:

First, this feature selection algorithm sets how many features it should to return

(k) and how many random selections it need to run (m). In current implementa-

tion, we use m equals the number of possible combinations that can be obtained by

taking a sub-set of k items from n features divided by k. For each run in m, it ran-

domly select a subset of k features from all features and records the cross-validated

prediction performance (e.g AUC) for that subset. As a result, the algorithm can

find out the top k feature sets by their performance. In the end, it returns k most
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Algorithm 2 Random subset feature selection (n, k). This algorithm selects k
features out of n by randomly generating feature combinations and picking the
most common features
Require: n(≥ 1) features, k ≥ 1
i← 0
s← []
p← []
m← C(n, k)/k
top sets← []
best features← []
while i < m do
s[i]← randomly select a subset of k features from n features
p[i]← cross-validated prediction performance of si
i← i + 1

end while
top sets← select the top k feature sets from s by prediction performance recorded
in p
best features← select k most common features from top sets
return best features

common features from the top k feature sets.

We are aware of that Algorithm 2 is similar to a feature selection method called

best subset selection, However, the differences between them lay in computation cost

and which features they select. In best subset selection, only features from a subset

that generates the best performance can be selected; in our algorithm, features from

several top performed subset are all possible to be selected. We believe our random

subset selection method offers lower variance than the best subset selection method.

Now it is time to apply Algorithm 2 to the features of Table 3.1. We de-

cided to pick k = 5 features, and randomly collected 60% of all data rows for

the feature selection procedure. The selection results is a set of features contains

class skill reassessment performance, item easiness, prerequisite skill performance,

mastery speed bin, and completion delay. A prediction model can be constructed

from these features, and we called it the ARP 5-feature model. 5-fold cross validated

on the rest of 40% data shows testing performance of ARP 5-feature model has an
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AUC at 0.763 and an r2 at 0.180, which shows it performs even better than ARP

model in terms of AUC, however, the improvement is not statistically significant (p

= 0.073). The comparison of testing performance of PFA, ARP and ARP 5-feature

can be found in Table 3.3.

Table 3.3: Testing performance of PFA, ARP and ARP 5-feature models. In this
comparison, we only used 40% of all data points. The other 60% of all data points
was used in the feature selection procedure of ARP 5-feature model

PFA ARP ARP 5-feature

AUC 0.723 0.758 0.763
r2 0.132 0.173 0.180

What interests us more is how ARP 5-feature reacts to the over-fitting test and

what kind of O-value (see 3.3.2.3 for details) will it generate, in other words, how

the performance of ARP 5-feature model will change on different testing data sizes,

from 10% of all data points to 90%. It turns out the result is surprisingly good, as

shown in Figure 3.3. The blue and green lines between ”horn” are ARP 5-feature

model.

As we can see here, ARP 5-feature model produces very stable performance

across all testing data sizes, thanks to much simpler feature sets. In fact, it is at the

very end of the stability test, where 80%-90% of data points are testing data, we can

see training performance and testing performance start to diverge from each other.

As a result, the O-value of ARP 5-feature model is O(0.001, 0.004), This is strong

evidence that ARP 5-feature model has extremely low variance and very stable on

unseen population. Along with the cross-validated results, we can conclude that

ARP 5-feature model is not only offers better performance at predicting retention

performance but also very robust against over-fitting, and it is computationally

efficient.
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Figure 3.3: Stability test of ARP and ARP 5-feature models. The blue and green
lines between ”horn” are ARP 5-feature model. ARP 5-feature model produces very
stable performance across all testing data sizes.

3.4 Modeling retention performance with deep learn-

ing

In the last section, we have discussed our approaches of improving the predictive

model’s interpretability and variance level, by reducing the complexity of model’s

feature set, and the results showed that our effort of building a much simpler models

has paid off. On the other hand, another question also comes to our minds: what

happens if we put an extreme flexible model on the task of predicting retention

performance?

In many research areas, including data mining, machine learning as well as cog-

nitive science, there always exist tensions between between highly structured models

whose parameters have a direct interpretation and highly complex, general-purpose

models whose parameters and representations are difficult to interpret. The former
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typically provide more insight into cognition but the latter often perform better.

This tension has recently surfaced in the realm of educational data mining, where

a deep learning approach to estimating student proficiency, termed deep knowl-

edge tracing or DKT, has demonstrated a stunning performance advantage over the

mainstay of the field, Bayesian knowledge tracing or BKT.

BKT is a highly constrained, structured model. It assumes that the students

knowledge state is binary, that predicting performance on an exercise requiring a

given skill depends only on the students binary knowledge state, and that the skill

associated with each exercise is known in advance. If correct, these assumptions

allow the model to make strong inferences. If incorrect, they limit the models

performance. The only way to determine if model assumptions are correct is to

construct an alternative model that makes different assumptions and to determine

whether the alternative outperforms BKT.

Deep Knowledge Tracing (DKT) [PBH+15] is exactly such an alternative model.

Rather than separating the skills, DKT models all skills jointly. The input to the

model is the complete sequence of exercise-performance pairs, (Xs1, Ys1)... (Xst,

Yst)... (XsT , YsT ), presented one trial at a time. As depicted in Figure 1, DKT is

a recurrent neural net which takes (Xst, Yst) as input and predicts Xs,t+1 for each

possible exercise label. The model is trained and evaluated based on the match

between the actual and predicted Xs,t+1 for the tested exercise (Ys,t+1). In addition

to the input and output layers representing the current trial and the next trial, re-

spectively, the network has a hidden layer with fully recurrent connections (i.e., each

hidden unit connects back to all other hidden units). The hidden layer thus serves

to retain relevant aspects of the input history as they are useful for predicting future

performance. The hidden state of the network can be conceived of as embodying the

students knowledge state. Piech et al. [PBH+15] used a particular type of recurrent
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neural network (RNN) hidden unit, called an LSTM (Long Short-Term Memory)

[HS97], which is interesting because these hidden units behave very much like the

BKT latent knowledge state, Ksi. To briefly explain LSTM, each hidden unit acts

like a memory element that can hold a bit of information. The unit is triggered to

turn on or off by events in the input or the state of other hidden units, but when

there is no specific trigger, the unit preserves its state, very similar to the way that

the latent state in BKT is sticky, once a skill is learned it stays learned. With 200

LSTM hidden units, the number used in simulations reported in and 50 skills, DKT

has roughly 250,000 free parameters (connection strengths). Contrast this number

with the 200 free parameters required for embodying 50 different skills in BKT.

With its thousand-fold increase in flexibility, DKT is a very general architecture.

One can implement BKT-like dynamics in DKT with a particular, restricted set of

connection strengths. However, DKT clearly has the capacity to encode learning

dynamics that are outside the scope of BKT. This capacity is what allows DKT to

discover structure in the data that BKT misses.

DKT achieves substantial improvements in prediction performance over BKT on

two real-world data sets (from ASSISTments, and Khan Academy) and one synthetic

data set which was generated under assumptions that are not tailored to either DKT

or BKT. DKT achieves a reported 25% gain in AUC, over the best previous result

on the ASSISTments benchmark. DKT, which appeared at NIPS in 2015, made

a splash in the popular press, including an article in New Scientist entitled, ”Hate

exams? Now a computer can grade you by watching you learn”, and descriptions

of the work in the blogosphere [Rut15]. DKT also shook up the educational data

mining community, which is entrenched in traditional probabilistic and statistical

models, some of which, like BKT, date back over twenty years.

The original version of DKT was implemented in Lua scripting language using
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Torch framework and its source code has been released to the public. In order to

have a comprehensive understanding of the DKT model, we decided to replicate

and implement DKT model in Python and utilize Googles TensorFlow [AAB+16]

API to help us with building neural networks. TensorFlow is Google Brains second

generation machine learning interface; it is flexible and can be used to express a wide

variety of algorithms. In our implementation of DKT model, we adapted the loss

function of the original DKT algorithm. It has 200 fully-connected hidden nodes in

the hidden layer, just like DKT model. To speed up the training process, we used

mini-batch stochastic gradient descent to minimize the loss function. The batch

size for our implementation is 100. For one batch, we randomly select data from

100 students in our training data. After the batch finishes training, 100 students in

the batch are removed from the training data. We continue to train the model on

next batch until all batches are done. Just as in the original Lua implementation,

Dropout [SHK+14] was also applied to the hidden layer to avoid over-fitting.

3.4.1 Issues of deep knowledge tracing model

As we have explained, a separate instantiation of BKT is made for each skill, whereas

DKT models all skills simultaneously. This difference leads to several subtle issues

with any analysis that compares the models. As it turns out, these issues, when not

properly addressed, yield results favoring DKT model.

During our investigation on the DKT model, we first re-examined one of the

key data sets used to compare BKT and DKT, called ASSISTments 2009-2010.

We noted there are three issues have been mis-handled by the DKT model, thus

unintentionally inflate the performance of DKT.

To our surprise and dismay, the first issue we found is the ASSISTments 2009-

2010 [ASS10] data set has a serious issue of quality: large chunks of records are
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duplications that should not be there for any reason. These duplicated rows have

the same information but only differ on the ’opportunity’ and ’opportunity original’;

these two features record the number of opportunities a student has practiced on

a skill and the number of practices on main problems of a skill respectively. It is

impossible to have more than one ’opportunity’ count for a single order id. This

is definitely an error in the data set and these duplicated records should not be

used in any analysis or modeling studies. We counted there are 123,778 rows of

duplications out of 525,535 in the data set (23.6%). The existence of duplicated

data is an avoidable oversight and ASSISTments team has acknowledged this error

on their website. All new experiments in this work and following discussions exclude

data of these duplications.

The second issue comes from the fact that DKT failed to filter out scaffolding

problems. As we have mentioned in Section 1.3, scaffolding problems were designed

to help students acquire an integrated set of skills through processes of observations

and guided practice; they are usually tagged with different skills and have different

designs from the main problems. Because of the difference in usage, scaffolding

questions should not be treated as the same as main problems. Student modeling

methods such as BKT and PFA exclude scaffolding features. There are 13% of data

are scaffolding problems.

The last issue is DKT mishandled exercises tagged with multiple skills. In the

ASSISTments data set, some exercises were tagged with multiple skill labels. Mul-

tiple skills were handled by replicating a record in the data base. For BKT, the data

were partitioned by skill so the replicated records ended up in distinct data sets.

However, for DKT and any model that processes all skills simultaneously, the model

will see the same student interaction several times in a row, essentially providing

the model access to ground truth when making a prediction. These duplicated rows
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account for approximately 10% of the data set.

We created a new version of the data set in which multi-skill exercises were

assigned a single skill label that denotes the combination of skills. DKT still sig-

nificantly outperforms BKT with the corrected data set, but the magnitude of the

difference shrinks, as shown in Table 3.4.

Table 3.4: Replicate DKT experiments with corrected ASSISTments 2009-2010 data
set. DKT still significantly outperforms BKT with the corrected data set, but the
magnitude of the difference shrinks

DKT PFA BKT

AUC 0.749 0.732 0.633
r2 0.180 0.142 0.070

3.4.2 Modeling retention performance with deep learning

Besides our experiment results on DKT, two other papers [KLM16, WKHE16] also

examined DKT and its relationship to traditional probabilistic and statistical mod-

els. These papers all argue that while DKT is a powerful, useful, general-purpose

framework for modeling student learning, its gains do not come from the discovery

of novel representations the fundamental advantage of deep learning.

For estimation of student proficiency, deep learning does not appear to be the

panacea, particularly when an explicit underlying theory, explanatory power, and

interpretability matter. Nonetheless, we still anticipate that deep learning has a

promising future in educational data mining, but that future depends on data sets

that have a much richer encoding of the exercises and learning context, thus, as a

practice of employing more features into the DKT model, we decided to build a deep

learning model to predict retention performance by utilizing the RNN architecture

of DKT model and incorporating additional features. We call this RNN model and
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corresponding features as Deep Retention Prediction model (DRP).

Unlike the DKT mode, which works on NPC prediction, the model of reten-

tion prediction only needs to generate the correctness of the retention test per-

formance, which are assigned after students achieved mastery in skill builder as-

signments. The impact of this difference is that the RNN model can generate

predictions for delayed retention tests at each opportunity of skill practice. We

can also re-use features from Section 3.3.2.4 except mastery speed bin. The rea-

son of excluding mastery speed bin is because we can only access that feature

when students achieved mastery, so it is not suitable to be used in a sequen-

tial model like DRP. Considering the skill practice can last more than one day

and our prior experience in retention performance modeling, it is sensible to use

retention delay, a feature similar to completion delay to track the time intervals

between skill practice opportunities and retention tests. The other three features,

class skill reassessment performance, item easiness, and prerequisite skill performance

are included in our DRP model. As a comparison, we will also cite the ARP 5-feature

from Section 3.3.2.4 as a base line.

The data set we used in this experiment is same as the one we used in Session

3.3.1. It has 32 skills and 2,515 students. Using the same procedure to encode the

correctness of responses as one-hot encoding vectors, we have 64 inputs for a single

response. Adding the 4 numerical features into the feature set not only increases

the input dimensions but adds additional complexity in model development, as now

the RNN needs to handle both categorical features (skill and response encoding)

and continue variables, i.e. the retention delay and item difficulty. In order to cope

the this challenge, we decided to adopt the idea of autoencoder for the purpose of

dimensionality reduction, before using Long-Short Term Memory to model retention

performance.
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3.4.2.1 Network structure

Architecturally, the simplest form of an autoencoder is a feedforward, non-recurrent

neural network very similar to the multilayer perceptron (MLP) having an input

layer (encoder), an output layer (decoder) and one or more hidden layers connect-

ing them , but with the output layer having the same number of nodes as the input

layer, and with the purpose of reconstructing its own inputs. In an autoencoder,

each hidden layer is trained individually to reduced representation of the previous

layer, ideally without a large loss of information. In this experiment, we only used

an autoencoder with one hidden layer, thus the hidden layer becomes a dense feature

vector representative of the input layer, and this hidden layer reduces the dimen-

sionality to 1/4 the size of the input vector, thus we compress the input features to

17, a magnitude that can be compared with regression models.

The output of autoencoder is feed to a RNN. Our RNN also uses LSTM nodes

to model temporal properties of the data. The use LSTM nodes is aiming to fix the

problem of vanishing / exploding gradients. When building a deep neural network,

the cumulative backpropagation error commonly either shrinks rapidly (vanishes)

or grows out of bounds (explodes). The LSTM node solve this problem by utilizing

three ”gates”: forget, input, and output, to control the flow of information into

or out of their memory. These gates are implemented using the logistic function

to compute a value between 0 and 1. Multiplication is applied with this value to

partially allow or deny information to flow into or out of the memory. For example,

an ”input gate” controls the extent to which a new value flows into the memory.

A ”forget gate” controls the extent to which a value remains in memory. And, an

”output gate” controls the extent to which the value in memory is used to compute

the output activation of the block. The network learns when to active these gates

within every node in the recurrent hidden layer of the network. Just like DKT
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model, we start our experiments with 200 LSTM nodes in our network.

In order to prevent overfitting and improve generalization, a dropout layer is

applied at the end of LSTM layer. It works by randomly turning nodes off, and this

enhances deep natural networks to better generalize to future test cases, because

the network is more resilient to changes in the data as it is harder to overfit when

some nodes are randomly turned off during training. Like more networks, we use

50% dropout rate as initial configuration.

3.4.2.2 Results

This first question we like to answer is the performance of deep learning in modeling

retention performance. with 5-fold cross validation, we measured AUC and r2 for

both DRP and logistic regression model. The overall results showed DRP model

reliably outperformed regression model. See Table 3.5 for detailed results.

Table 3.5: Prediction performance comparison of DRP model and ARP 5-feature
model

DRP ARP 5-feature

AUC 0.783 0.758
r2 0.202 0.173

The main purpose of student modeling, either using deep neural networks or

any other methods, is to estimate student proficiency, in our particular scenario of

retention performance modeling, our goal is to estimate proficiency in terms of de-

layed test performance. Besides having performance predictions after mastery, the

nature of recurrent neural network modeling allows us to test a limitation in our

previous work, that is all data were gartered from students who achieved mastery

and all previous models take mastery speed as a feature. DRP model’s feature set

does not assuming mastery and mainly relay on temporal properties in response
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Figure 3.4: DRP model performance at different opportunities. There are three
lines, represent three groups of students in different performance levels. All three
lines are monotonic but at different slopes.

sequence data, DRP model is able to generate retention performance prediction af-

ter every opportunity, this is especially useful when we want to implement “early

stopping” interventions to improve retention performance before students wasting

time in “wheel-spinning” [BG13]. Thus, we need to understand how accurate DRP

model is, before students achieving mastery. In order to answer this question, we

generated the following plot, see Figure 3.4, to show how DPP performs at different

opportunities before and after mastery. The x-axis represents number of opportuni-

ties before achieving mastery, i.e. Mastery− 1 means one problem before achieving

mastery. It is easy to see that mastery−n stands for different opportunity counts if

mastery speed is different, for example, if a student has mastery speed of 3 in a skill

builder, Mastery − 2 should be the very first question he answered; while another

student with mastery speed of 5, Mastery − 2 is the third opportunity. The y-axis

is DPP’s prediction AUC after mastery − n(n >= 0).

The first observation, and certainly within anyone’s anticipation, is all three

performance lines are all monotonic, and it support the idea of more data helps
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to make better predictions. Next we see that predictions for very high performing

students improves very quickly, and become quite accurate after Mastery, but for

other students, especially students need 5 or more opportunities to achieve mas-

tery, the improvement on prediction accuracy from more data is less dramatic, and

the model struggles to make accurate predictions for these students. Students with

higher mastery performance make up most of our data sets (average mastery speed

is 4.3), and their retention performance pattern is much simpler and easier to pre-

dict. so reply on the accurate predictions of majority data, our model is able to

achieve higher performance on average, but if a data set has a lot of weaker stu-

dents, the prediction performance is likely to decrease due to the changes retention

performance distribution. This observation not only points out that model perfor-

mance depends on the statistic information of data sets, also shows us one direction

of future research; weaker students are the ones who need more of our attention but

we still lack good models to understand their behaviors, so it would be more useful

if we can have models specifically designed for weaker students.

Take one step back, it appears that DRP model did benefit from huge number

of parameters, in other words, DRP performs better because it is a more flexible

model. However, the added flexibility comes at a price: interpretability. Just like

DKT, DRP is massive neural network model with tens of thousands of parameters

which are individually impossible to interpret. On the other hand, the probabilis-

tic foundation of regression model allows it has parameters and inferred states are

psychologically meaningful. In fact, we are still lacking clear answers to some fun-

damental questions in the structure of our recurrent neural network. For example,

why use 200 LSTM nodes, why accept 50% dropout rate and what happens if we

have more than one hidden recurrent layer? Yes, we have cited these numbers from

previous work, but at the early staging applying deep learning in educational data
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sets, we think it is worth to gather some empirical results to support or adjust our

network structures. And these questions can be answered by running more experi-

ments with different parameter combinations. To be more specific, We are going to

run DRP model’s hyperparameter optimization on different LSTM node numbers

(from 50 to 300, increment = 50) and different dropout rates (from 10% to 90%,

increment = 20%), and find out the best settings for our modeling problem. Since

this is a limited search space, we believe using grid search is good enough to answer

the questions we need. Figure 3.5 show the results of this series of experiments, all

performance results were 5-fold cross-validated.

It turns out using only 100 nodes is good enough (more nodes is not helping),

and randomly turning off 50% of hidden nodes is the best setting for our modeling

problem. We like to interpret this result as 100 nodes is flexible enough to handle

the information of our data, and 50% dropout results in the best amount of regular-

ization to balance overfitting and underfitting. Also we see that dropping too many

nodes dramatically decreases model performance, on the other hand, using dropout

rates that are lower than 50% have higher degree of overfitting, thus limited the

performance of DRP model in test runs, see Figure 3.6.

At the this point, we like to close our discussion on modeling student retention

performance. What we have seen in this chapter is the development of a series

of experiments, which were design to address the problem of predicting long-term

retention performance, one the of three criteria of robust learning. We thoroughly

covered every aspect of our work, from data gathering, feature engineering, hypothe-

sis testing and model evolution. We started our work from innovative ideas of feature

engineering, to a non-linear regression model, then we worked out algorithms to sim-

plify the regression model in feature complexity without losing performance, in th

end, we adopted the latest technology of deep neural networks to further improve
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Figure 3.5: DRP model performance at different dropout rates and LSTM numbers.
Dropping too many nodes dramatically decreases model performance
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Figure 3.6: DRP model performance with different hyperparameters. DRP works
best at 100 hidden nodes and 50% dropout rate.
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the prediction performance of our model. Although most part of this work has not

being used in any practical ways in helping students, but it has strengthened the

empirical foundation of student modeling, and allows more work to extend and use

student models to address real-world problems in intelligent tutoring and education

systems.
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Chapter 4

Conclusion

Theory and Practice, is the motto of Worcester Polytechnic Institute, and the idea

of combining theory and practice has been the principle that guided our work in

the past six years. In this work, we developed a tutoring system, the Automatic

Reassessment and Relearning System (ARRS), that impacts thousands of students

and conducted 3 RCTs to understand the effectiveness of the system. The results of

RCTs showed that ARRS is a practical way to improve students’ long-term reten-

tion performance reliability. Using the data we gathered from ARRS, we extracted

important features, e.g.: mastery speed, and we built machine learning models to

predict students’ long-term performance. Our models not only has great predictive

power, they also provide actionable insights to refine the theory of how to further

improve learning performance in ARRS.

In the later part of our work, we pushed the performance of our predictive model

to an even higher level by utilizing deep learning, the most advanced machine learn-

ing method at this time, as a conclusion of our modeling work. We also built a

set of API to support the development of data-driven assignment workflows, such

as ARRS, in the next generation tutoring system. Future research may focus on
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combining deep learning with adaptive tutoring strategies where more complex in-

terventions might be more apparent.
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Appendix A

Tables

Table A.1: Pre- and post-test performance Comparison on homework completed
students across 5 skill builders. We see that students in ARRS condition not only
always have higher post-test performance bu also achieve higher learning gain effect
size expect the last skill builder.

Control/ARRS
PSABK2K
(n=39/37)

PSAPNT
(n=44/42)

PSAJGW
(n=31/32)

PSAZV4
(n=30/15)

PSABHZN
(n=29/26)

Pre-test 33.3%/24.3% 93.2%/95.2% 29.0%/15.6% 10.0%6.7% 6.9%/11.5%
Post-test 7.7%/29.7% 77.2%/83.3% 61.3%/65.6% 16.7%/46.7% 51.7%/53.8%
Learning gain -25.6%/5.4% -16.0%/-11.1% 32.3%/50.0% 6.7%/40% 44.8%/42.3%
Effect size -0.26/0.06 -0.45/-0.38 0.67/1.16 0.22/0.98 1.11/0.99
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