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Abstract 

Studying the interactions between bacteria and soil colloidal particles in the environment 

is important for bioaugmentation purposes. Different factors affect the transport of the 

bacteria in porous media. For example, the soil type, the ionic strength of the substrate, 

and biological properties, such as the bacterial cell motility. Since organic materials are 

present in almost all subsurface media, the presence of natural organic matter (NOM) is 

considered an important factor influencing bacterial transport in porous media. 

In this work, a model system was developed to examine the interactions between natural 

colloidal particles and environmental bacteria using Atomic Force Microscopy (AFM). 

The natural colloids in the environment were modeled by a surface film of adsorbed 

NOM onto spherical SiO2 particles. Poly(methacrylic acid) (PMA), a simple linear 

polyelectrolyte, was used to mimic NOM since both are dominated by carboxylic acid 

functional groups. 

Soil Humic Acid (SHA) and Suwannee River Humic Acid (SRHA), two acidic 

polyelectrolytes, were used in further experiments to represent more complicated NOM. 

A smooth strain of Pseudomonas aeruginosa (PAO1) that coexpresses A-band and B-

band polysaccharides, and its rough mutant (AK1401) that only expresses the A-band 

polysaccharides, were chosen to represent environmental bacteria. The model system was 

characterized through analysis of the measured forces between the chemically-modified 

colloidal probes and the bacterial cells. Interestingly, we found that PMA was not a good 

model for the more complex NOM substances.  Differences were also observed in how 

each bacterium interacted with the three forms of NOM.  For example, P. aeruginosa 
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PAO1 had the highest adhesion with both complex forms of NOM, while P. aeruginosa 

AK1401 had the lowest adhesion with the complex forms of NOM. Since the 

lipopolysaccharide (LPS) structure is the only difference between the two strains, we 

attribute the different interactions to differences in LPS structure.  The polymer density 

on the bacterial surface was found to be the most important factor in controlling the 

nature of the interaction forces.   
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Introduction: 

Numerous cities around the world rely on groundwater as their major source of 

drinking water. For this reason, the microbial quality of groundwater is very important to 

public health (90).  According to the latest estimates, over 100 million people use 

groundwater as their source of drinking water in the United States. The United States 

Environmental Protection Agency (USEPA) estimates that currently over 200,000 

illnesses and 18 deaths occur each year due to viral and bacterial contamination of public 

ground water systems (3). Groundwater can become contaminated by leaking sewer lines, 

pathogen infiltration from improperly designed septic tank systems, as well as infiltration 

from other sources (71). Therefore, understanding the fate and transport of bacteria in soil 

and groundwater is critical for designing protective zones around water supply wells 

(100). 

Studying bacterial transport through soil aquifers has two main applications. In 

the process of bioaugmentation, bacterial transport is enhanced by injecting certain 

bacterial strains into the aquifer.  These bacteria are selected based on their ability to 

degrade organic pollutants in contaminated soils. Conversely, reduced bacterial transport 

is needed to prevent pathogenic bacteria from migrating long distances from discharge 

points in the ground such as septic tanks. 

Many laboratory and field studies have been conducted to investigate sorption, 

inactivation, and transport of various bacterial strains in porous media (12, 21, 42, 64, 72, 

101). 
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Temperature, soil properties, solution chemistry, the presence of metal oxides, the 

degree of saturation of the solid media, and the presence and composition of natural 

organic matter are the primary factors influencing bacterial transport in subsurface 

environment (41, 100). 

The presence of organic material is an important factor influencing bacterial 

transport in porous media (30). Organic materials are present in almost all subsurface 

media, although their quantities vary. In most natural soils, the organic matter content is 

lower than 50 g/kg (51, 80). In these natural media, organic materials can influence 

transport of contaminants directly (58) as well as indirectly by being adsorbed as a film 

on the surface of solid grains. The latter alters the surface charge and aggregation 

behavior of reactive mineral oxides and layered silicate minerals (49). These reactions 

can greatly affect bacterial interactions at the solid-liquid interface and, thereby, affect 

the mobility of the bacteria. 

Much research has centered on investigating the effect of natural organic matter 

on bacterial transport into porous media by monitoring bacterial retention in quartz sand 

and glass bead columns (25, 45, 76). Bacterial attachment efficiencies are estimated from 

bacterial retention using a steady-state filtration equation (55, 66, 98). Prior studies 

suggested that sediment organic matter (SOM) and dissolved organic matter (DOM) can 

enhance bacterial transport into the porous media by either sorption onto the bacterial cell 

walls, and increasing the negative charge of the bacterial surface, or by the competition 

between DOM and bacteria for sediment sorption sites (44). 

Atomic force microscopy (AFM) has been extensively applied as a spectroscopy 

technique for measuring interfacial forces between bacteria and surfaces (37, 46). In this 
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work, the AFM is used to study the interactions between each of two well-defined 

bacterial strains with NOM-coated surfaces. A model system is being built in order to 

closely represent the properties of colloidal particles present in the environment. In this 

system, the natural colloids were represented by a surface film of adsorbed natural 

organic matter on spherical SiO2 particles. Interaction force-separation curves were 

recorded between the adsorbed NOM-coated surfaces and two well defined strains of 

Pseudomonas aeruginosa. 

1 Literature Review 

1.1 Bacterial Transport in Porous Media 

For more than 100 years, there has been debate among microbiologists and public 

health practitioners concerning monitoring drinking water for either pathogens or 

indicators (50).  

In the time period 1970-1985, it was recognized that bacteria could travel 

considerable distances in aquifers and saturated soils, posing a contamination threat to 

surface and well waters (50). As a result, a large number of outbreaks of water-borne 

diseases have been attributed to contaminated groundwater. A review of pathogen 

transport through aquifers by Gerba et al. (30) considered the distances that bacteria 

traveled in different soil types, or in areas with different underlying geology. In aquifers 

that allow high pump rates, and contain small amounts of clays or dissolved solids, the 

chance is greater to enhance the movement of microorganisms. They observed bacteria to 

travel 0.6 m in fine loamy sand while they have shown bacteria to move for more than 1 

km in sand-gravel aquifers. Field and laboratory studies at the time relevant to microbial 



 

 

 

18

transport in porous media have focused on factors affecting adsorption of microbes to 

solids (29), and on the development of models for microbial transport based on 

adsorption. 

Recently, field and laboratory studies relevant to bacterial transport in porous 

media have focused on the different physical, chemical, and biological factors 

influencing microbial transport (16, 25, 28, 33, 59, 71, 100, 101). These studies 

rigorously employed column experiments, and used the colloid filtration theory as a 

model for one-dimensional bacterial transport in soil.  

The transport of microorganisms in soil aquifers can be both beneficial and 

harmful. It is undesirable, for example, for pathogenic bacteria to migrate long distances 

from discharge points in the ground such as septic tanks.  

Table 1 shows the most important pathogenic bacteria and viruses that may either 

actively or passively transport into the water path. The remediation of soils contaminated 

with organic pollutants can be enhanced via bioaugementation (54). There are also a 

number of engineering applications in which the transport of microorganisms in 

subsurface environments is important, including river bank filtration, reuse of domestic 

wastewater for irrigation and land disposal of treated wastewater effluents. 

In this section, a general review on the main physical, chemical, and biological 

factors influencing transport of microorganisms into groundwater is presented. Table 2 

summarizes the different factors influencing bacterial transport through porous media 

(16, 25, 28, 33, 52, 59, 71, 100, 101).  
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Table 1: Important pathogenic bacteria and viruses that might be transported in 
groundwater (63). 

 
Pathogenic bacteria Pathogenic viruses 

Salmonella sp. 

Shigella sp. 

Yersinia enterocolitica 

Y. pseudotuberculosis 

Leptospira sp. 

Francisella tularensis 

Dyspepsia coli 

Enterotoxigenic E.coli 

(ETEC) 

Pseudomonads 

Vibrio sp. 

Legionella sp. 

Hepatitis virus 

Polio virus 

Coxsackie viruses 

Adenovirus 

Rotavirus 

Norwalk like virus 
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Table 2: Factors influencing bacterial transport through porous media. 
 

Physical properties  

 

Chemical properties Biological properties 

Soil type 

Soil texture 

Depth of bedrock 

Grain size 

Heterogeneity 

 

Ionic strength 

Surface modifying chemicals 

pH value of the groundwater 

Natural organic matter 

 

Surface charge 

Cell size 

Cell motility 

Hydrophobicity 

Nutrient medium 

Growth phase 

Surface Macromolecules 
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1.1.1 Physical Properties Affecting Bacterial Transport in Porous 

Media: 

Many studies have focused on demonstrating the role of the different physical 

properties on enhancing or reducing bacterial transport onto porous media. Physical 

properties that have been examined are: soil type (30), soil texture (25), the depth of soil 

over the bedrock (18), grain size (25) and soil heterogeneity (25).   

Soil type can be an important factor in bacterial transport. Several studies have 

examined the distances that bacteria traveled in different soil types. Gerba et al (30) 

observed that coliform bacteria could travel 0.6 m in fine loamy sand and more than 1 km 

in sand-gravel. 

Other studies showed that depth to bedrock was a factor affecting groundwater 

quality (18). If the depth of soil over the bedrock was shallow, there would be little 

chance for the soil to interact with water and any contaminants percolating within it. 

Therefore, a relatively unrestricted flow of water would take place, allowing 

contaminants to enter groundwater. Bacteria have been shown to move through soil 

columns at pore velocities of 3-30 m/day in laboratory experiments (25, 76, 93) as well as 

in field studies (34, 35). 

The soil provides a natural filtering action and adsorption site for the removal of 

bacteria. The extent of bacterial movement through saturated soil is mainly related to 

water movement, which is affected by soil properties. Smaller pore size, resulting from 

increased bulk density, may yield better filtration, as there is more soil available for 

adsorption along the same length of flow path (18). Van Elsas (39, 86) found a strong 
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influence of soil bulk density on the migration of bacteria. Small increases in bulk density 

resulted in up to 60% decrease in transport of bacteria due to reduction in flow.  

Grain size and soil texture are important factors in measuring the ease and speed 

with which water and contaminants can move through the soil to groundwater. Fontes et 

al. (25) demonstrated that grain size was the most important factor controlling transport 

of bacteria over the range of values tested for all of the factors examined. They 

investigated two particles types with different properties namely clay and coarse sand. 

Clay particles contain 40-70% pore space, while in coarse sand the pore space ranges 

between 25-50%. Clay pores are small and poorly connected, making clay deposits less 

permeable. The pores in sand are large and interconnected, making these types of 

deposits much more permeable, allowing water to move more easily and rapidly through 

this medium (18). Sands and clays also have very different surface areas available for 

nutrient accumulation and microbial adhesion. The surface area ranges from 

approximately 20 cm2/g for coarse sands to more than 20,000 cm2/g for certain clays. 

The clay and sand content markedly affect the structure of soil, its bulk density, 

permeability and its ability to adsorb water and cations from solution.  All of these factors 

influence whether bacteria can transport through or survive in soil (18).  

 Smith et al. (76) showed that surface soil type has a strong impact on the 

bacterial motility by comparing the movement of Escherichia coli through both 

undisturbed and repacked soils of different textures. They found that bacteria moved the 

greatest distance in coarse sand and least in fine sand for a given suspending solution. 
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Fontes et al. (25) found that heterogeneity in the subsurface environment is an 

important factor influencing transport of bacteria and may be responsible for much of the 

long range transport of microbes. 

1.1.2 Chemical Properties Affecting Bacterial Transport in Porous 

Media: 

Chemical properties have been studied extensively in order to enhance bacterial 

transport in the subsurface, either by changes in the solution chemistry or by changes in 

the surface properties of the bacteria or substratum. The effect of ionic strength, surface 

modifying chemicals, pH, and natural organic matter on bacterial transport onto porous 

media is presented here.   

1.1.2.1 Effect of Ionic Strength on Bacterial Transport. 

The effect of ionic strength on bacterial retention in porous media has been 

studied by performing column transport experiments for bacterial suspensions in three 

different buffers (45). The solution buffers were; phosphate, [3-(N- morpholino) 

propanesulfonic acid] (MOPS), and Tris (33). Decreasing the ionic strength has lowered 

the bacterial retention on borosilicate glass beads irrespective of the type of buffer. At the 

lowest ionic strength the attachment efficiency was equal to 0.0016, while at high ionic 

strength, the attachment efficiency approached unity. The surface charge of the bacteria 

and the glass beads under the conditions of these experiments was negative. The 

experiments showed that the bacterial retention and colloid retention increased with ionic 

strength under unfavorable conditions. Particle retention under unfavorable conditions is 

governed by the net result of electrostatic repulsion and van der Waals attraction. The 
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separation distance between the bacteria and the porous media surface at which van der 

Waals attraction dominates electrostatic repulsion is highly sensitive to the ionic strength 

of the solution. High ionic strengths compress the electrostatic repulsive layer, and hence 

increase particle retention. However, since the bacterial surface is characterized by 

differing degrees of hydrophobicity and surface charge, the effects of the different 

treatments investigated for ionic strength changes may vary significantly for different 

bacterial strains (45).   

1.1.2.2 Effect of Surface Modifying Chemicals on Bacterial Transport. 

The use of experimental mini-columns provides an efficient means of determining 

bacterial attachment efficiencies in a system approximating the transport conditions in an 

aquifer. A variety of chemical additives have been shown to modify bacterial retention in 

porous media mini-columns (45). Among these chemicals, seven had the greatest effect 

on bacterial retention in the mini-columns. These seven chemicals are: (two surfactants, 

Tween-20 (a nonionic surfactant that affects hydrophobic interactions) and sodium 

dodecyl sulfate (an anionic surfactant) (SDS), EDTA (a cell membrane permeabilizer that 

removes outer membrane lipopolysaccharides), sodium periodate (an oxidizer that 

cleaves surface polysaccharides), sodium pyrophosphate (a surface charge modifier), 

proteinase-K (a nonspecific protease that cleaves peptide bonds), and lysozyme (an 

enzyme that cleaves cell wall components)) (33). Chemical additions to the bacterial 

suspension can be used to modify either the bacterial or sediment grain surfaces, or both 

(30). Of the chemical treatments used, surfactant addition resulted in the largest decreases 

in bacterial retention, and hence was the most effective in facilitating bacterial transport.   
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Tween-20 reduced the bacterial attachment efficiency from 0.38 in the absence of 

Tween-20, to 0.0016 in the presence of 0.1 vol. % Tween-20. SDS lowered the bacterial 

attachment efficiency from 0.064 in the absence of SDS to 0.0067 in the presence of 10 

mg/L SDS. Three of the treatments increased bacterial retention. Lysozyme, sodium 

periodate, and EDTA resulted in increasing the attachment efficiencies depending on the 

buffer used (45). 

The effect of surface modifying chemicals on the cell morphology of Bacillus 

cereus was studied by Xiaopeng et al. using the atomic force microscope (AFM). They 

studied the changes in the cell surface structures including the size, shape and properties 

of the bacteria under different media conditions, they found that bacteria without any 

treatment usually have a smooth surface and after treatment with 0.1 mol/L HNO3 or 

EDTA overnight they became rougher. However, they were able to preserve their overall 

cell structure, such as the shape and size, implying that treatment with 0.1 mol/L HNO3 

or EDTA does not cause any major change in the cell structure (95). 

1.1.2.3 Effect of pH Values for Groundwater. 

Scandura et al. studied the effect of the pH value of the groundwater on viral and 

bacterial contamination of groundwater (71). They found that detection of viruses was 

greater in the groundwater of typically acidic soils which have a low pH value. This is 

due to the fact that low pH value of the groundwater allows rapid movement of bacteria 

and other contaminants, especially under saturated flow conditions. Thus, such 

groundwater may experience extensive viral and bacterial contamination by specific 

effluent. 
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1.1.2.4 Effect of Natural Organic Matter on Bacterial Transport. 

The presence of organic material (NOM) is an important factor influencing 

bacterial transport in porous media (30), since organic materials are present in almost all 

subsurface media. Studies have shown that there is an adsorbed film composed mainly of 

organic matter formed on the surface of most of the solid particles in soil and sea water 

(53). Neihof and Loeb studied the properties of the adsorbed film using micro- 

electrophoresis, ellipsometry, and contact angle measurements. Their results showed that 

a film forms very rapidly during the first few minutes, continues to grow at an 

appreciable rate for a period of hours, and continues to build even after 20 hrs. They 

found that there are many possible humic substances which may lead to electronegative 

films on adsorption (53). 

Humic substances are derived from soil and are also produced within natural 

water and sediments by chemical and biological processes such as the decomposition of 

organisms after death. These decomposition products are then acted on by 

microorganisms, affected by environmental factors, and transformed into the humic and 

fulvic acids (65). 

Humic substances are anionic polyelectrolytes of low to moderate molecular 

weight; their charge is primarily caused by carboxyl and phenolic groups. Humic 

substances are refractive, have both aromatic and aliphatic components, can persist for 

centuries or longer and can be surface active. Humic substances are defined operationally 

by the methods used to extract them from water or soil (65). Typically humic substances 

are divided into fulvic acids (FAs) and humic acids (HAs). Fulvic acids are humic 
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substances soluble in both acidic and basic solutions. While humic acids (HAs) are not 

soluble in acidic conditions and only soluble at high pHs (73). 

Many studies done using mini-column experiments have shown that bacterial 

transport may be facilitated by aqueous phase dissolved organic matter (DOM) and 

sediment organic matter (SOM) (29, 44). DOM has been shown to facilitate bacterial 

transport through aquifer sediment by sorbing onto bacterial cell walls and increasing the 

negative charge of the bacterial surface (30, 44, 64). 

Other studies on the effect of NOM in facilitating the transport of contaminants in 

aquifer sediments have shown that the transport of hydrophobic contaminants in the 

presence of humic substances at environmentally feasible concentrations should be 

facilitated relative to transport of such contaminants alone in both batch and column 

transport experiments (43). The association of hydrophobic contaminants with humic 

substances holds promise for the use of humic substances as a solubilizing agent for the 

removal of hydrophobic contaminants from the sediment (43).  

Two humic substances were mainly used in most of the studies; Suwannee River 

humic acid (SRHA), and soil humic acid (SHA). Ultrafiltration measurements were 

performed on the two NOM sources to separate them into three fractions (bulk, < 10000 

Da, < 1000 Da) (43). These fractions were then measured for dissolved organic carbon 

(DOC) in order to obtain a relative measure of molecular mass. The results indicated that 

over 80% of SHA is of molecular mass greater than 10000 Da whereas less than 50% of 

SRHA exceeds 10000 Da, indicating that SHA has a higher average molecular weight 

than SRHA.  
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1.1.3 Biological Properties Affecting Bacterial Transport in Porous 

Media: 

The following biological properties  are  the major biological properties that affect 

bacterial transport through porous media: bacterial surface charge (33, 89), 

hydrophobicity (89), cell size (25, 28), cell motility (48, 59), nutrient medium (45), cell 

growth phase (87), and surface polymers. Bacterial surface charge is typically measured 

by electrophoresis (85). The electrostatic interaction predicts that a negative cell surface 

charge promotes bacterial attachment to positively charged Fe and Al oxide surfaces but 

inhibits attachment to negatively charged quartz surfaces (33, 89). In reality, this simple 

relationship is complicated by the presence of organic matter, which can alter the surface 

charges of both bacteria and sediment. van Loosdrecht et al. determined the effect of both 

cell surface electrokinetic potential and hydrophobicity and found that both parameters 

have an influence on bacterial adhesion (87). They observed that the influence of 

electrokinetic potential became obvious when combined with the hydrophobicity results. 

At high contact angle for water, hydrophobicity was the dominant characteristic 

irrespective of mobility. However, electrokinetic potential became more influential at 

more hydrophilic cell surfaces (87). They reasoned their results as a cause of the classical 

Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory of electrostatic-double layer 

interactions. Rijnaarts et al. demonstrated that the isoelectric point (IEP) of the bacterium 

is a more appropriate parameter than the electrophoretic mobility for predicting cell 

adhesion, and that steric interactions rather than DLVO-type interactions control cell 

adhesion at high ionic strength (68). They studied nine strains of Gram-negative bacteria 

including Pseudomonas. They found a specific relation between hydrophobicity and IEP 



 

 

 

29

but no correlation between IEP and electrophoretic mobility. Their results showed low 

adhesion on glass when the IEP was ≤ 3.0 and on Teflon when the IEP was ≤ 2.8. An IEP 

below these values suggests the presence of cell surface polymers that inhibits adhesion 

by steric interactions (68). 

Cell hydrophobicity has been investigated in relation to bacterial transport by 

different groups (28, 61). Forexample, Gannon et al. (28) studied the retention of 19 

strains including Pseudomonas by soil particles and  found no correlation between 

bacterial transport and cell hydrophobicity. Retention was statistically related to cell size, 

with bacteria shorter than 1.0 μm usually showing higher percentages of cells being 

transported through the soil.  

Experiments on the effects of cell motility on bacterial transport have also 

resulted in different outcomes. In some cases, motile cells have been shown to be 

transported further (59), and in other cases, motile cells have been shown to attach to 

mineral grain surfaces more than nonmotile cells (48). The discrepancy may be related to 

substrate surface characteristics. Camesano and Logan (16) observed that motile cells 

were retained less in sediments due to the ability of the bacteria to swim and avoid 

collisions with grain surfaces. McClaine and Ford studied the effect of fluid velocity on 

the attachment and detachment of motile and non-motile bacteria to glass surfaces using a 

parallel-plate flow chamber they also examined the possible role of flagella on bacterial 

adhesion (56). They found that transport of motile bacteria to surfaces is dominated by 

diffusion. Whereas transport of non-motile bacteria is dominated by settling at low 

velocities, and by Brownian diffusion at high velocities. Their results showed that the 

attachment rate of motile cells is five times higher than the attachment rate of non-motile 
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cells at the highest fluid velocity. They found also that the presence of flagella has no 

effect on the initial attachment rate of non-motile bacteria. However, the movement of 

the flagella helped the attached motile bacteria to detach at low flow rates, and 

strengthened their adhesion at high flow rates (56).   

The effect of cell size on bacterial transport in porous media has been studied 

(28), and it is generally recognized that smaller cells are transported more readily than 

larger cells. On the basis of a regression analysis of the relationship between the 

percentages of cells transported and cell surface properties, Gannon et al. (28) concluded 

that cell size was the only statistically significant parameter responsible for the observed 

differences in transport of 19 strains through soil columns. Fontes et al. (25) performed 

bacterial transport experiments by injecting two strains that had the same hydrophobicity 

but were different sizes into a number of columns of clean quartz sand in which the grain 

sizes were different and the ionic strengths of the pore water were different. They 

concluded that cell size and ionic strength were of equal importance but were less 

important than grain size.  

Nutrient medium is another factor that affects the transport of bacteria in porous 

media. Enriched bacteria have a larger size, a more hydrophobic surface, and hence a 

much stronger tendency for attachment to sediment, than do microbes which have been 

starved prior to introduction to sediment. Although starved bacteria are more easily 

transported, nutrient-enriched bacteria may have greater ability to degrade contaminants 

if they have been acclimated to these contaminants prior to introduction to the subsurface 

(45). van Loosdrecht et al. found that most lacustrine and near-shore microorganisms 
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tend to adhere under optimal growth conditions, while some open-ocean microorganisms 

adhere during starvation (87). 

Cell growth phase affects bacterial adhesion through changes in cell 

hydrophobicity. van Loosdrecht et al. observed that bacteria becomes more hydrophobic 

during the exponential growth phase and during continuous cultivation at high dilution 

rates many bacteria tend to form flocks or adhere to surfaces present in the culture flask 

(87). The significant impact of cell growth phase on adhesion characteristics was also 

studied by Smets and his group (32). They studied the changes in both the hydrophobic 

and the electrostatic character of the cell surface with altering growth phases. They found 

that Pseudomonas aeruginosa Olin exhibited increased ζ-potential in the stationary phase 

as compared with logarithmic growth and decay phases. They showed also that cells in 

the logarithmic growth and decay phases exhibited increased hydrophilic repulsion, while 

cells in the stationary phase exhibited less hydrophilic repulsion (32).  

Bacterial surface polymers are of importance in the field of bacterial adhesion 

(68).Their ability to inhibit or to promote adhesion is determined by their affinities for the 

substratum. Rijnaarts et al. demonstrated that in addition to hydrophobicity the isoelectric 

point (IEP) of the bacterium is a more appropriate parameter than the electrophoretic 

mobility for predicting the steric properties of cell surface polymers and their 

consequences for cell adhesion. They found that IEP ≤ 2.8 indicates the presence of 

significant amounts of cell surface polymers which inhibit adhesion onto both 

hydrophilic (Glass) and hydrophobic (Teflon) surfaces (68).     

Proteins are among the surface polymers which have been studied extensively by 

AFM (19, 74). In one study AFM has been used to determine the forces that control 
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protein-ligand and protein-protein interactions. The study considered measurements of 

the specific and the nonspecific forces that jointly control protein interactions and 

reviewed some of the recent studies in determining the unbinding forces and mechanical 

properties of proteins (74). In another study, AFM was used to provide insights into the 

structure, function, and assembly of water-soluble and membrane proteins. The signal-to-

noise ratio of the AFM was used to image the individual proteins under physiological 

relevant conditions at a lateral resolution of 0.5-1 nm and a vertical resolution of 0.1-0.2 

nm (19).  

1.2 Colloid Filtration Theory: 

Filtration theory (15, 55, 66, 98) has been widely used to model the transport of 

bacteria in porous media, and used to make engineering calculations on aquasol removal 

in filters. The one dimensional steady-state clean-bed filtration model describes the 

fraction of bacteria retained in a column of length L as 
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Where FR is the fraction of bacteria retained in the column, C and C0 are the 

effluent and influent bacterial concentrations, θ is the porosity of the media, dc is the 

collector diameter, α is the collision efficiency, and η is the collector efficiency (15). 

This model was developed by Yao et al. (98) (1971) for flow in packed bed, assuming 

that the bed consists of spherical collectors, and conducting a mass balance over a control 

volume around a spherical collector. 
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  The collision efficiency term in equation (1) is the fraction of colliding 

particles that attach to the soil, and represents the affinity of the particle for the collector. 

The magnitude of the collision efficiency depends on the forces between the particle, the 

fluid, and the collector as the separation distance between the surfaces decreases. 

 The collision efficiency is often calculated using the steady state breakthrough 

concentrations, C/C0, over a whole column of length L (11, 15, 52, 59). 

The collector efficiency (η) is a parameter dependent on diffusion, interception, 

and gravitational settling, which are the mechanisms that cause collisions. It indicates the 

fraction of particles flowing toward a grain of media, or collector that actually collides 

with the collector. 

Rajagopalan and Tien (RT) (66) developed a semiempirical filtration equation, 

which has been preferred by scientists for predicting particle transport in soil columns 

and groundwater aquifers, since it provides the best agreement with the experimental 

data. 

All filtration mechanisms in the RT model are based on the Happel model (1958) 

(15, 55). In which the flow was assumed to be completely within a concentric spherical 

space surrounding the collectors, and that dispersion was negligible in comparison to 

advection. Rajagopalan and Tien modeled particle removal by interception and 

gravitational sedimentation, and assumed that the Happel cell solution for diffusion 

which accounts for the fact that the collectors are not isolated spheres could be added on 

their final expression for the collector efficiency. Their model also includes attractive 

effects due to London-van der Waals forces.  



 

 

 

34

According to Rajagopalan and Tien, the collector efficiency (15, 66) has been 

modeled as 
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The dimensionless numbers As, Npe, NL0, NR, and NG account for the effects of 

neighboring particles, diffusion, London-van der Waals forces, interception, and 

sedimentation on particle collisions. These parameters are calculated as follows: 

As is a porosity-dependent term of the Happel model, defined as: 
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Where dp is the suspended particle diameter, μ is the dynamic fluid viscosity (8.94 

x 10-4 N.s/m2), U is the superficial fluid velocity, k is Boltzmann constant (1.38 x 10-23 

kg.m2/s2.K), and T is the fluid temperature (298 K). 

NL0 is a dimensionless number that accounts for London-van der Waals attractive 

forces, and is defined as 
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Where H is the Hamaker constant, assumed to be 10-20 J, based on interactions 

between water, quartz, and air (40). 

NR is the ratio of the bacterial cell diameter to the sand diameter, 
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NG is the dimensionless ratio of the bacteria’s Stokes settling velocity to the 

stream fluid approach velocity
U

u
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G = ; where the settling velocity is given by: 
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Where ρp is the suspended particle density, ρf is the fluid density, and g is the 

gravitational constant. 

Tufenkji and Elimelech (TE) (2004) (82) have proposed a different model to 

calculate the collector efficiency based on a numerical solution of the convective- 

dispersion equation. In this model the effect of the hydrodynamics interactions and the 

effect of the London-Van der Waals forces was included as part of all of the particle 

deposition terms (diffusion, interception, and settling terms).  

 One advantage of this model over the RT model is to overcome the limitations of 

the later which excluded the effect of hydrodynamic interactions and van der Waals 

forces on the deposition of particles that are dominated by Brownian diffusion. It also 

showed a remarkable agreement with exact theoretical values based on numerical 

solution of the convective-diffusion equation as well as a closer agreement with the 

experimental data compared to other available models.  

In the TE model (TE), the collector efficiency is calculated as  
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Where NG = up,s,  NvdW   the van der Waals number defined as
kT
HNvdW = , and NA, 

the attraction number, which combine the influence of van der Waals attraction and fluid 

velocity in particle collisions due to interception, and is defined as  
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d
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2

, and all other parameters are the same as were defined for the 

RT model. 

1.3 Pseudomonas aeruginosa 

Pseudomonas aeruginosa is a Gram-negative, aerobic, rod, belonging to the 

bacterial family pseudomonadaceae (81). P. aeruginosa is an opportunistic pathogen that 

causes urinary tract infections, soft tissue infections, respiratory system infections, 

bacteremia, and a variety of systemic infections, particularly in patients with severe 

burns, and in cancer and AIDS patients who are immunosuppressed (81). It is well known 

for it is resistance to antibiotics and, therefore, it is a particularly dangerous and dreaded 

pathogen (81). These bacteria are common inhabitants of soil and water, and are motile 

by means of a single polar flagellum. P. aeruginosa can live in a biofilm form, or it can 

live in a planktonic form, as a free-swimming cell (81). Minimum organic growth factors 

are required for Pseudomonas aeruginosa, and it can use more than thirty organic 

compounds for growth (81). Its optimum temperature for growth is 37°C, and it is able to 

grow at temperature as high as 42°C. P. aeruginosa does grow in moist environments, a 

reflection of its natural existence in soil and water (81). 

Pseudomonas aeruginosa has been mainly isolated from natural environments, 

such as soil or water, or from clinical settings.  The environmental isolates typically 
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produce a small rough colony (81). There are two main phenotypes of P. aeruginosa 

clinical samples: a nonmucoid, lipopolysaccharide (LPS)-smooth phenotype mostly 

isolated from patients with nosocomial and community-acquired infections, and a 

muciod, LPS-rough phenotype mostly isolated from cystic fibrosis (CS) patients with 

chronic respiratory infections (36, 81). 

 Lipopolysaccharides are cell-surface molecules common to all Gram-negative 

bacteria. They consist of three regions; a lipid A portion, a core oligosaccharide, which 

can be subdivided into inner, and outer core units, and a high molecular weight side chain 

polysaccharide. The carbohydrate (core oligosaccharide) portion is linked to the lipid A 

by a very acid labile linkage involving 2-Keto-3-deoxyoctulosonic acid (KDO). The side 

chain structure is called O-antigen. This side chain consist of repeating units composed of 

2-5 monosaccharides, and commonly contain uronic acids, amino sugars, and some 

unusual sugars (10). 

Smooth LPS strains refers to strains possessing O-side chain, while rough LPS 

strains do not express the O-chain side (36).   

The mucoid LPS (rough) strains produce alginate slime, or capsule, or muciod 

exopolysaccharide (MEP). Alginate slime is a repeating polymer of mannuronic and 

glucuronic acid which forms the matrix of the pseudomonas biofilm that anchors the cells 

to their environment (36). On the other hand, alginate genes are not expressed or required 

during the formation of the exopolysaccharide for the nonmucoid, LPS-smooth type (94). 

Pseudomonas aeruginosa strains can co-express two chemically and antigenically 

distinct forms of the O-side chains; a serotype-specific O-antigen containing B-band LPS, 

and a common antigen referred to as A-band LPS. The high molecular mass B-band 
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polysaccharide determines the antigenic specificity of the bacterium since it is an 

electronegative component, whereas the antigenically conserved A-band LPS consists of 

α-D-rhamnose containing trisaccharide repeating units. Typically smooth Pseudomonas 

aeruginosa strains express long chain molecules, containing up to 50 repeating units (69).  

Two strains of Pseudomonas aeruginosa have been chosen in this work as model 

organisms. These two strains are; PAO1 a smooth strain of Pseudomonas aeruginosa and 

AK1401 which is a semi-rough mutant of PAO1 Pseudomonas aeruginosa. Both strains 

have well-defined LPS surface characteristics. Composition analysis of the LPS from 

both strains indicated that the complete core oligosaccharide was composed of D-glucose, 

L-rhamnose, 2-amino-2-deoxy-D-galactose, L-glycero-D-manno-heptose, 3-deoxy-D-

manno-octulosonic acid, L-alanine, and phosphate (70). Structural studies done on the 

polysaccharide portion of AK1401 strain have shown that the A-band LPS from AK1401 

consists of D-rhamnose, with smaller amounts of 3-O-methylrhamnose, ribose, mannose, 

glucose, and a 3-O-methylhexose (10).  

 The PAO1 strain expresses the O-antigen side chain, and coexpresses both the A-

band and the B-band polysaccharides (10). While AK1401 is a semi-rough mutant that 

does express only one repeating unit of the O-antigen side and does express the A-band 

polysaccharides (10).  

The complete sequence of the genome of Pseudomonas aeruginosa PAO1 has 

been reported (79). Analysis of its genome sequence has identified genes involved in 

attachment, transport and utilization of nutrients, antibiotic efflux, and systems involved 

in sensing and responding to environmental changes (79).  
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1.4 Atomic Force Microscopy (AFM) 

The use of atomic force microscopy (AFM) in environmental science and 

engineering applications has increased rapidly in the last few years. Besides the main use 

of AFM in high resolution imaging of different material surfaces including metals, 

polymers, biomolecules or cells, AFM made significant contributions to various research 

areas dealing with the structure, properties and dynamic processes of material surfaces 

and interfaces (46). Using traditional imaging and spectroscopy techniques requires 

sophisticated sample preparation methods, such as etching techniques or metal 

evaporation onto the samples, which can cause changes in the sample structure and 

properties. AFM does not require such preparations, hence leaving the sample and its 

properties in its native state. Another advantage of the AFM is its ability to work under a 

variety of environmental conditions and in a real time with the use of its fluid cell (46). 

AFM can operate in a number of different modes (contact mode, tapping mode and non-

contact mode) making it possible to image a variety of samples with different degrees of 

softness and with the use of different kinds of tips (46, 99). In contact mode the tip is in 

permanent physical contact with the surface. Therefore, contact mode can be used to 

image hard samples which are not affected by the frictional force components the tip 

applies to the sample. Tapping mode uses an oscillating tip which moves toward the 

surface and starts to tap the surface. In tapping mode the cantilever’s oscillation 

amplitude is used as a feedback signal to measure topographic variations of the surface. 

Tapping mode in liquid environments is the most suitable mode to study soft and viable 

cells such as bacteria (46). In non-contact mode, the tip is placed at the attractive force 

region, and force gradients are detected. The force gradients can be detected from shifts 
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in the resonance frequency of the cantilever (57). This mode has a high sensitivity of 

gradient measurements and offers the lowest possible interaction between sample and tip 

which make it suitable for work on soft surfaces, but it is more complicated than the 

tapping mode and has a much smaller operation range of cantilever amplitude (46). 

1.4.1 AFM operating Principles 

An AFM consists of a tip attached to a flexible cantilever of a known spring 

constant. The cantilever deflects in the z-direction due to the surface topography during 

tip scanning over the sample surface. This deflection movement of the cantilever is 

recorded to produce the image of the sample. A photodiode of four segments detects the 

deflection of the cantilever through a laser beam focused on and reflected from the back 

of the cantilever. This special photodiode gives the information about cantilever position 

to compiler which generates the image of the surface of the sample (46). The tip that 

moves across the sample plays an important role in depicting the right picture, since the 

resolution of an image captured by AFM depends on the radius of the tip. The radius of 

the tip should be smaller than the features on the sample to get a well resolved image. 

Depending on the kind of surface under observation, tips with different spring constant 

are chosen. AFM in air can be used to get very clear images, but it is not possible to get 

good force measurements in air due to high capillary forces caused by thin water films 

present on the tip and on the sample surface. These capillary forces are so large that they 

can hide the actual force of interaction between the tip and the sample. Using AFM under 

liquid makes it possible to capture realistic force measurements of the sample surface. 

Taking force curves for bacterial cells in water using AFM is more relevant since 
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bacterial adhesion usually takes place in liquid systems in nature. Therefore, AFM gives 

a closer picture of the actual interaction forces that a bacterium experiences during the 

attachment process.  

1.4.2 AFM Applications 

Since it is invention, AFM has proven that it is a valuable technique for obtaining 

precise images as well as measuring surface forces of biological systems (46). AFM  does 

not affect the morphology of biological samples and can operate in a variety of 

environments especially under liquids, which represents the most relevant environmental 

conditions (46). 

AFM has been widely applied in the field of bacterial adhesion. Studying the 

surface polysaccharides of the bacteria is one of the AFM applications. For example, 

Escherichia coli JM109 were used to understand the role of  surface lipopolysaccharides 

in the adhesion of bacteria to silicon nitride tip (8). Characterizing the surface 

polysaccharides was done using appropriate polymer stretching models. From application 

of those models as the wormlike chain model, physicochemical properties of the 

polysaccharides such as the contour length, persistence length, and segment elasticity or 

spring constant was calculated (6).  

Another  AFM application is to study the relation ship between microscopic and 

macroscopic cell surface properties (84). Vadillo-Rodriguez et al. studied the interaction 

forces between a silicon nitride AFM tip and the surface of nine different oral bacterial 

strains. They compared the microscopic features of the force-distance curves to some 

macroscopic cell surface properties such as hydrophobicity, and cell surface charge (84).    
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AFM was also applied in studying the adhesion forces between colloids and 

biopolymer surfaces. Abu-Lail and Camesano characterized the physicochemical 

properties of biopolymers with AFM high-resolution images (5). Images of single 

molecules of DNA, proteins, and polysaccharides were studied to provide quantitative 

information on molecular properties of these surfaces. Among the more interesting 

examples of probing biopolymers with AFM are DNA sequencing, protein folding and 

unfolding, and identifying polysaccharide components from mixtures (5). Xu et al. used 

the AFM to study the effect of residence time, loading force, pH, and ionic strength on 

adhesion forces between two proteins and a polysaccharide (Bovine serum albumin 

(BSA), lysozyme, or dextran) and colloids (96).  

Modification of the surface properties of the AFM tip with specific functionalities 

became a desirable way to obtain data from AFM measurements (83). One of the 

common ways of modifying the probe surface is by binding alkanethiols to a gold-coated 

probe surface (27). The main advantage of thiol functionalization is that such tips are 

ready to have a wide range of functional groups that can be used (e.g. –CH3, –OH and –

COOH) at their free end. Another way to functionalize tips is using polymer coatings. 

These coatings are chemically and structurally heterogeneous. Polymer-coated tips can be 

prepared by chemisorption (77), physisorption or plasma vapor deposition (47). 

1.4.3 AFM to measure Steric Interactions 

Steric interactions occur when two polymer-covered surfaces approach each other 

and their outer segments start to overlap. These interactions usually lead to a repulsive 

force due to the unfavorable entropy associated with compressing the chains between the 
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surfaces (40). The steric forces depend on the coverage of polymer on each surface, on 

whether the polymer is adsorbed in a reversible process or irreversibly grafted onto the 

surfaces, and on the quality of the solvent. For interactions in poor and theta solvents, the 

theories are well developed (40). A theta or ideal solvent is a solvent in which the 

polymer experiences no interactions with itself, either attractive or repulsive, and no 

excluded volume between the polymer segments. It is called the theta solvent because it 

happens at a critical temperature known as the theta temperature. In a poor solvent, 

polymer segments attract one another.  A poor solvent can be converted to a theta solvent  

by adding certain solutes or by changing the temperature above or below the theta 

temperature (40).     

Steric interactions played an important role to explain the interactions between 

polymer brushes on the bacterial surface and the AFM tip in many AFM studies (67, 91). 

For example, in one study the force images were taken between a bare silicon nitride tip 

and three different Escherichia coli K12 strains, each having a different length of LPS on 

their surface. The results showed that the force curves obtained on the top of the bacterial 

cell were identical for the three different strains indicating that there is a lack of steric 

contribution of LPS to the force curves (91). While in another study the short-range 

repulsive interactions between E. coli D21 bacteria and hydrophilic glass or hydrophobic 

N-octadecyltrichlorosilane (OTS)-treated glass substrates coated with the block 

copolymers, poly (ethylene glycol) (PEG)-lysine dendron or Pluronic F127 surfactant, 

showed that the polymer brushes appear not to only block the long-range attractive forces 

of interaction between bacteria and substrates but also to introduce repulsive steric effects 

(67).  
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The steric interactions between the AFM tip and cell surface polymers can be 

fitted by a model developed by Alexander (9) and de Gennes (20) for grafted or adsorbed 

polymers at relatively high surface coverage. The model describes the force per unit area 

between two parallel equal surfaces with adsorbed or grafted polymer using scaling 

analysis. The force per unit area expression is a function of the brush thickness, grafting 

density of the biopolymer, and the temperature. 
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Where; 

ƒ = Steric force per unit area between the two surfaces  

kB = Boltzmann constant 

T = Absolute temperature (298°K) 

Γ = Grafting density (m-2) 

D = Distance between the two surfaces (nm) 

L0 = Polymer brush length (nm)  

 

For 02LD in the range 0.2 to 0.9 the above expression is roughly exponential and 

it was approximated by Israelachvili (40) to the following expression: 

023100 LD
B eTkf Π−Γ≈     (10) 

 When only one surface is covered with polymer, the term 02LD in equation (9) 

will be replaced by 0LD to account for the reduced total layer thickness and in this case 

equation (10) for 0LD  in the range 0.2 to 0.9 becomes:  



 

 

 

45

022350 LD
B eTkf Π−Γ≈     (11) 

The Alexander-de Gennes equation was modified by Butt et al. (14) to describe 

the forces between the AFM-tip spherical surface and a flat surface.   

1.5 van der Waals and Electrostatic Forces (The DLVO theory)  

The DLVO theory of colloidal stability after Derjaguin, Landau, Verwey and 

Overbeek can be defined as the combined action of both van der Waals forces and the 

electrostatic forces to explain the total interaction that can occur between two surfaces or 

colloidal particles in a solution.  

van der Waals forces, which are always present  between any two interacting 

surfaces, are mainly attractive and are insensitive to variations in electrolyte 

concentration and pH. Electrostatic interactions, which are based on electric double layer 

interactions, are highly depending on the electrolyte concentration and surface charge 

density (40).  

The DLVO theory has been typically used to describe microbial-surface 

interactions and often showed a qualitative agreement with bacterial-surface interactions 

(6). But in many cases the DLVO theory failed to predict the attachment of colloids to 

surfaces. For example, Elimelech and O’Melia found that the DLVO theory under low 

ionic strength conditions underpredicts the attachment of colloids to surfaces (23) and 

other researchers found that the DLVO theory was unable to predict the bacterial-surface 

interactions especially when microbial polymers play a significant role in the  bacterial 

adhesion (7, 62, 75, 88). The failure in the DLVO theory can be due to the important role 

of the non-DLVO forces (40) as well as to some interactions which are not considered in 
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the van der Waals and the electrostatic forces under unfavorable deposition conditions 

(15, 23, 40). Possible explanations for the failure of the DLVO theory under unfavorable 

deposition conditions include; hydrodynamic interactions between the two surfaces, 

dynamic interactions between the double layers, distribution in the surface potential, 

occurring of reversible deposition instead of the irreversible one, and surface 

heterogeneity (15, 23). The non-DLVO forces can be monotonically attractive, 

monotonically repulsive, and they can be much stronger than the DLVO forces at small 

separations. These additional forces are steric interactions, specific ion effects, non-

charge transfer Lewis acid base interactions, hydration forces, hydration pressure, born 

repulsion, polymer bridging, hydrogen bonding, and hydrophobic effects (6, 26, 37, 40, 

68). To compensate for the inability of DLVO theory to explain the interactions between 

microbes and various surfaces, researchers applied a model which takes into account the 

sum of DLVO and short-range acid-base interactions (the extended-DLVO), and steric 

interactions to determine what types of forces influence the initial attachment of microbes 

to surfaces (6). This model could well-describe the interactions between lawns of E. coli 

D21f2 and mica, glass, teflon, or polystyrene surfaces (6, 62). However, the extended-

DLVO model could not explain the interaction when the cell surface had a more complex 

structure because of the possible involvement of bridging effects and steric interactions 

caused by the LPS.  
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2 Materials & Methods 

2.1 Microbial Growth 

The experiments were performed on two strains of Pseudomonas aeruginosa.  

These two strains are; PAO1 a smooth strain of Pseudomonas aeruginosa and AK1401 

which is a rough mutant of Pseudomonas aeruginosa PAO1. Original plates for both 

strains were provided by Professor Gerald Pier (Channing Laboratory, Department of 

Medicine, Brigham and Women’s Hospital/ Harvard Medical School). Both strains were 

maintained at 4°C on Tryptic Soy Agar (TSA) (Sigma) plates. Each culture was replated 

every two weeks.  The growth media used for both strains was Tryptic Soy Broth (TSB) 

(Sigma), prepared by dissolving 30g of TSB powder in 1 liter of ultrapure water (Milli-

Q). The solution was sterilized by autoclaving at 121°C for 20 minutes before it was 

used. The two strains of Pseudomonas aeruginosa were grown in 5 ml TSB in 25 ml 

culture flasks (VWR). Cells were left overnight at 25°C on a radially oriented tube-

spinner at 60 RPM. Cells were then transferred to 50 ml of the growth media (TSB) and 

grown in an orbital shaker bath at 37°C and 160 RPM until they reached an absorbance 

of 0.9 at 600 nm. Harvested cells were prepared for attachments on the clean glass slides 

or the Isophthalic Acid (IPA) gold slides for AFM experiments. 

2.2 Cell Attachment 

2.2.1 Glass Slide Cleaning 

Glass slides (VWR) were cut into equal squares of 1” x 1” and rinsed with 

ultrapure water. They were sonicated in ultrasonic cleaner 2510 (Branson) for 30 
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minutes. Slides were washed in a 3:1 mixture of HCL and HNO3 (Fisher) for 25 minutes, 

followed by elution. Slides were rinsed again in ultrapure water and washed with 4:1 

mixture of H2SO4 and H2O2 (Fisher) for 25 minutes. Slides were rinsed again with 

ultrapure water and stored under fresh ultrapure water (31). 

2.2.2 AK1401 Attachment to Clean Glass Slides 

The clean glass slides were treated with 100 % ethanol (Fisher) for 5 minutes 

followed by 100 % methanol (Fisher) treatment for 5 minutes. Methanol was replaced 

with 10 ml of aminosilane solution. The aminosilane solution was prepared by adding 1 

ml of 3-aminopropyl dimethoxysilane (Aldrich) to 9 ml of methanol. The slides were 

allowed to stay in the aminosilane solution for 15 minutes. The aminosilane solution was 

replaced with methanol. Then slides were rinsed with at least 50 ml of methanol followed 

by 25 ml ultrapure water. Finally, the slides were kept in methanol until the bacterial 

solution was ready to be poured on the slides (31). 

18 ml of the AK1401 cell suspension was centrifuged at 1000 x g for 15 minutes. 

The supernatant was eluted and replaced with equivalent amount of ultrapure water. The 

resuspended cells were treated with 300 μL of 100 mM 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide.HCL (EDC) (Pierce), pH = 5.5, and left to 

equilibrate for 3 minutes. EDC solution was freshly prepared before each experiment by 

adding 0.192 g of EDC powder to 10 ml of ultrapure water. The resulting 100 mM 

solution was adjusted to pH = 5.5. The treatment with EDC was followed by addition of 

300 μL of 40 mM N-Hydroxysulfosuccinimide (NHS) (Pierce), pH = 7.5. NHS solution 

was prepared by adding 0.0879 g of NHS powder to 10 ml of ultrapure water. The 
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resulting 40 mM solution was then adjusted to pH = 7.5. The bacterial solution with 

EDC/NHS was left to equilibrate for 10 minutes and then poured over the aminosilane 

treated glass slides. Samples were agitated for 10 hours on a shaker table, at 70 RPM, at 

room temperature, to allow the attachment process between the cells and the glass slides 

to take place.  

Figure 1 shows the reaction that takes place upon the addition of both EDC and 

NHS to the bacterial cells.  

2.2.3 PAO1 Attachment to IPA-Gold Slides  

Isophthalic Acid (IPA) gold slides were kindly provided by Professor W.G. 

McMimpsey from Worcester Polytechnic Institute. The IPA-gold slide were treated with 

a mixture of 1 ml of 100 mM EDC solution, pH = 5.5 and 1 ml of 40 mM NHS solution 

pH = 7.5, slides were left to equilibrate for two hours at least. 

12 ml of the PAO1 cells was centrifuged at 1000 x g for 15 minutes. The 

supernatant was eluted and replaced with equivalent amount of ultrapure water. The 

resusbended cells were poured over the EDC/NHS treated IPA-gold slides. The samples 

were agitated for 10 hours on a shaker table, at 90 RPM, at room temperature, to allow 

the attachment process between the cells and the IPA-gold slides to take place. 
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Figure 1. The reaction that takes place upon the attachment process of bacterial 
cells to glass slides. In this reaction the EDC reacts with a carboxyl group from molecule 1, 
forming an amine-reactive intermediate. This intermediate is unstable and short-lived in 
aqueous solution, and the addition of Sulfo-NHS stabilizes it by converting it to an amine-
reactive Sulfo-NHS ester. The later reacts with an amine from molecule 2, yielding a 
conjugate of the two molecules joined by a stable amide bond (2).  
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2.3 Tip Modification 

2.3.1 Cantilever Preparation 

Silicon nitride cantilevers with silica sphere tips (1.0 μm) (Novascan) were 

cleaned immediately prior to each experiment by exposure to UV irradiation for 40 

minutes. Each cantilever was then soaked in a 0.01 M NaOH solution (pH ~ 12) (Sigma) 

for 2-3 minutes and flushed with 5 ml of water. 

2.3.2 Iron Oxide Coating 

Iron oxide is a common constituent of natural waters colloids. Therefore, the 

oxide coated SiO2 surface can be considered representative of the underlying mineral 

surface. The coating was performed by raising the pH of a 10-5 M FeCl3 solution (Sigma) 

from 3.5 to 7.0 using small additions of NaOH solution over a period of 30 minutes. 

When the pH of the solution reached 7.0 the cantilever was soaked in the 10-5 M FeCl3 

solution for 15 hours to allow equilibration. 

2.3.3 Adsorption of Poly (methacrylic) Acid (PMA) onto Fe2O3-Coated 

Silica Spheres 

100 mg·L-1 of PMA solution (Polymer Source) was freshly prepared before each 

experiment. About 20 ml of the solution was added to the Fe2O3-coated cantilever in a 

small gel box. The cantilever was soaked in the solution for at least 16 hour to allow the 
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PMA to adsorb on and equilibrate with the iron oxide. After 16 hour the cantilever was 

allowed to dry and use in the AFM experiments. 

2.3.4  Adsorption of Soil Humic Acid (SHA) onto Fe2O3-Coated Silica 

Spheres 

100 mg·L-1 of SHA solution (International Humic Substances Society) was 

freshly prepared before each experiment. The solution was filtered using Acrodisc 25 mm 

syringe filter with 0.45 μm pore size (PALL Life Sciences). About 20 ml of the solution 

was added to the Fe2O3-coated cantilever in a small gel box. The cantilever was soaked in 

the solution for at least 16 hours to allow the NOM to adsorb on and equilibrate with the 

iron oxide. After 16 hours, the cantilever was allowed to dry and used in the AFM 

experiments. 

2.3.5 Adsorption of Suwannee River Humic Acid (SRHA) onto Fe2O3-

Coated Silica Spheres 

100 mg·L-1 of SRHA solution (International Humic Substances Society) was 

freshly prepared before each experiment. The solution was filtered using Acrodisc 25 mm 

Syringe Filter with 0.45 μm pore size (PALL Life Sciences). About 20 ml of the solution 

was added to the Fe2O3-coated cantilever in a small gel box. The cantilever was soaked in 

the solution for at least 16 hours to allow the NOM to adsorb on and equilibrate with the 

iron oxide. After 16 hours, the cantilever was allowed to dry and used in the AFM 

experiments. 
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2.4 Optical Microscopy Experiments 

2.4.1 Bacterial Imaging 

The two strains of Pseudomonas aeruginosa were imaged using an optical 

microscope (Eclipse E400, Nikon) under FITC wavelengths (Objective Magnification = 

100X). Bacterial cells which grown until they reached 0.9 absorbance were centrifuged at 

1000 x g for 15 minutes. The supernatant was eluted and replaced with equivalent 

amount of ultrapure water. 2 ml of the resusbended cells were stained with 400 μl of 0.1 

% acridine orange stain. After using the vortexer (Mini Vortexer) (Fisher Scientific) for 

10 minutes the solution was poured onto a 0.2 μm filter (MFTM-Membrane Filters) 

(Millipore). The solution was vacuum filtered (Welch Dry Vacuum Pump, Thomas 

Industries Inc.). Finally the filter was affixed to a clean glass slide and imaged using the 

optical microscope. Microscopy images were used to estimate the bacterial sizes. 

SigmaScanTM version 5.0 was used to measure bacterial length. The average of 80 

readings was calculated to determine the diameter of PAO1 bacteria and the average of 

190 readings was calculated to determine the diameter of AK1401 bacteria.  

2.4.2 Cell Counting  

A Spermometer (Zander Spermometer™; Zander Medical Supplies) was used to 

obtain a calibration curve of number of bacterial cells per ml versus absorbance values in 

TSB for each strain of bacteria. The counting chamber dimensions are 1mm square with 

0.01mm depth. The counting chamber is divided into ten strips vertical and ten strips 

horizontal, resulting in 100 squares of 0.1mm x 0.1mm each. Bacterial solution for this 
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experiment was prepared by growing the cells at 37°C until they reached the selected 

absorbance. Harvested cells were centrifuged at 1360 xg for 10 minutes then washed 

once in 0.1 M 2-[N-Morpholino]-ethanesulfonic acid (MES) buffer (Sigma). Bacterial 

solution was then sonicated for 5 minutes, this step was important to get individual cells 

of bacteria. Finally, around 200 μm from the bacterial solution was put into the chamber 

and imaged using an optical microscope under FITC wavelengths (Objective 

Magnification = 60X). For each absorbance 20 images were captured and the Adobe 

Photoshop Program 6.0 was used in counting the cells in each image.  

2.4.3 Gram Staining 

A 4-step staining test procedure was used to check whether the bacteria became 

contaminated and to verify that the bacteria are Gram-negative. Bacteria were applied to 

a clean glass slide in a manner yielded a thin, uniform smear. The smear was affixed to 

the slide using heat, by passing the slide through a low flame 2-3 times and leaving the 

slide to cool to room temperature before staining. Four materials were needed to carry out 

the test procedure. These materials are; Gram Crystal Violet, Gram Iodine or Stabilized 

Gram Iodine, Gram Decolorizer and Gram Safranin or Gram Basic Fuchsin. First the 

fixed smear was flooded with primary stain (Gram Crystal Violet) and stained for 1 

minute. The primary stain was then removed by gentle washing with cold tap water. The 

slide was then flooded with mordant (Gram Iodine or Stabilized Gram Iodine) which 

retained on the slide for 1 minute. The mordant stain was then removed by gentle 

washing with cold tap water. Gram Decolorizer was then used to decolorize the slide 

until solvent running from the slide was colorless (30-60 seconds). The slide was gently 
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washed with cold tap water. The slide was then flooded with counterstain (either the 

Gram Safranin or Gram Basic Fuchsin) and stained for 30-60 seconds then the slide was 

gently washed with cold tap water. Finally, the slide was allowed to air dry and the smear 

was examined under an oil immersion lens using an optical microscope under FITC 

wavelengths (Objective Magnification = 100X).  

2.5 Atomic Force Microscopy (AFM) Experiments 

Experiments were carried out using a Dimension 3100 (AFM) with Nanoscope 

IIIa controller (Digital Instruments, Santa Barbara, CA). 

2.5.1 Spring Constant Measurements 

Spring constant measurements of silicon nitride cantilevers with 1 μm silica 

spheres (PT.GS.SN-type, Novascan Company) were carried out based on the work of 

Burnham et al. and Emerson and Camesano (13, 24). 

2.5.2 Surface Morphology Experiments 

Cell cultures were examined to establish cell morphology and interaction forces 

with the silicon tips.  Glass slides, containing immobilized bacteria, were affixed to the 

AFM stage using a small piece of double-sided carbon tape. Images were captured for 

each cell found, and five force curves per each cell were recorded. All experiments were 

done under ultrapure water.  

Three kinds of organic materials were used in the AFM experiments; poly 

(methylacrylic) acid (PMA) which is a simple polymer used to represent the NOM and 
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two complex natural organic materials; Soil Humic Acid (SHA) and Suwannee River 

Humic Acid (SRHA). A schematic of the PMA structure is shown in Figure 2. 

The three types of NOM were examined using the AFM tapping mode in air with 

bare silicon probes, in order to understand the differences in their surface characteristics. 

In all cases, glass slide coated with the NOM, was affixed to the AFM stage and the bare 

silicon probe was allowed to scan different areas on the slide. AFM images of the three 

types of NOM were captured with 512 x 512 pixel resolutions.  

2.5.3 Interactions Force Measurements  

2.5.3.1 Probe Modification with Iron Oxide and NOM 

Control experiments were done to study interaction forces between clean glass 

slides and modified silicon tips, with a manufacturer-reported spring constant of 0.12 

N/m. Cleaned glass slides were placed on the AFM stage using a small piece of double-

sided carbon tape. The unit was configured for tapping mode in liquid. Force curves were 

recorded with drive amplitude set to zero (approximating contact mode) for analysis. 

Experiments were done under 1mM NaCl solution (pH ~6.3) or water.   

2.5.3.2 Adhesion Properties of Simple and Complex NOM 

Control experiments to study the adhesion properties of simple NOM represented 

by PMA and complex NOM represented by SHA and SRHA were carried out using AFM 

tapping mode under ultrapure water. In each experiment the silicon probe was coated 

with one type of NOM, and the force interactions between the NOM-modified probe and 

clean glass slide were studied. 
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2.5.3.3 Interactions between Both Strains of Pseudomonas aeruginosa and NOM 

Interaction forces between both strains and natural organic matter (NOM) coated 

silicon tips were examined. Glass slides, containing immobilized bacteria, were affixed to 

the AFM stage using a small piece of double-sided carbon tape and the NOM-coated tip 

was allowed to scan the bacterial surface. Images were captured for each cell found, and 

five force curves per each cell were recorded. All experiments were done under water.  

The deflection voltage-separation distance curves obtained from the AFM were 

converted into force versus separation curves using the method of Ducker and Senden 

(22). In this method zero points of both cantilever deflection and scanner position were 

defined such as constant compliance region is aligned with the vertical axes and zero 

interaction regions at large distances is aligned with the horizontal axes. Deflection row 

data were converted to force data using Hooke’s Law, which describes a linear 

relationship between force and deflection. 

kxF =        (11) 

Where F is the interaction force  

k the spring constant of the cantilever 

and x is the deflection of the cantilever  

Figure 3 shows a typical force curve of AFM tip interaction with polymer brush 

after determining both the point of zero distance and the range of zero force. 
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Figure 2. A schematic of the PMA structure showing the carboxylic group, which is 
the main functional group in humic substances. 
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Figure 3. A schematic force curve showing both approach and retraction curves 
after zeroing. 
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3 Results 

3.1 Microbial growth curve 

Figure 4 shows typical growth curves for Pseudomonas aeruginosa PAO1 and 

AK1401. Both strains of P.  aeruginosa were grown in TSB media at 37°C. Absorbance 

values were recorded with time. After examining the growth curves an absorbance value 

of 0.9 was selected as a reference point for all experiments, since it is in the early-mid 

exponential phase. The doubling time was calculated from the plot of the natural log of 

absorbance versus time and found to be around 60 minutes for both strains. 

3.2 Optical Microscopy Results 

3.2.1 Microscopy Images 

Figure 5 shows an epifluorescent microscopy image of Pseudomonas aeruginosa 

PAO1 stained with 0.1% acridine orange under FITC wavelengths (Magnification = 

100X). 

Figure 6 shows an epifluorescent microscopy image of Pseudomonas aeruginosa 

AK1401 stained with 0.1% acridine orange under FITC wavelengths (Magnification = 

100X). Microscopy images were used to estimate the size of both strains; for PAO1, the 

length of 80 bacteria was measured and the average value was 0.95 ± 0.192 μm while for 

AK1401, the length of 190 bacteria was measured and the average value was 1.12 ± 

0.184 μm.  
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Figure 4. The growth curves of Pseudomonas aeruginosa strains, cells were grown in TSB 
media at 37°C and absorbance values were measured in TSB at 600 nm. 
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Figure 5. An epifluorescent microscopy image of Pseudomonas aeruginosa PAO1 
under FITC wavelengths (Magnification = 100X). 

 

 

Figure 6. An epifluorescent microscopy image of Pseudomonas aeruginosa AK1401 
under FITC wavelengths (Magnification = 100X).  



 

 

 

62

 

3.2.2 Cell Counting  

A counting chamber was used to find the number of bacterial cells per ml at 

different selected absorbance values for both strains of bacteria. Twenty images were 

captured at each absorbance and the Adobe Photoshop 6.0 program was used to count 

cells in each image. In order to have confidence in the values, at least 200 cells were 

counted at each absorbance value. The total number of counted cells was then divided by 

the number of squares used in counting them in order to find the number of cells per 

square. Finally, the number of cells per square was divided by the volume of one square 

to find the number of bacterial cells per ml. The data was used to calibrate the number of 

cells per ml at particular absorbance values in TSB media. Figure 7 shows a plot of the 

number of cells per ml for PAO1 strain versus absorbance values in TSB. The number of 

cells per ml at absorbance 0.9 was found to be 6.91 x 109 cells/ml. 

Figure 8 shows a plot of number of cells per ml for AK1401 strain versus 

absorbance values in TSB. The number of cells per ml at absorbance 0.9 was found to be 

8.34 x 109 cells/ml. 
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Figure 7. A calibration curve for Pseudomonas aeruginosa PAO1 showing the 
number of cells per ml versus absorbance values at 600 nm in TSB.  
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Figure 8. A calibration curve for Pseudomonas aeruginosa AK1401 showing the 
number of cells per ml versus absorbance values at 600 nm in TSB.  
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3.2.3 Gram Staining 

A 4-step staining procedure was used to verify that bacteria were not 

contaminated and that they were Gram-negative. Slides were imaged using the optical 

microscope under FITC wavelengths (Magnification = 100X). Images for both strains 

were clear without any contamination and the color of the bacterial cells was red which 

confirms that the bacteria are Gram-negative. Figure 9 shows a microscopy image of 

Pseudomonas aeruginosa PAO1 Gram-stained under FITC wavelengths (Magnification 

= 100X). 

Figure 10 shows a microscopy image of Pseudomonas aeruginosa AK1401 

Gram-stained under FITC wavelengths (Magnification = 100X). 
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Figure 9.  A microscopy image of Pseudomonas aeruginosa PAO1 Gram-stained 
under FITC wavelengths (Magnification = 100X). 

 

 

Figure 10.  A microscopy image of Pseudomonas aeruginosa AK1401 Gram-stained 
under FITC wavelengths (Magnification = 100X). 
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3.3  Atomic Force Microscopy Results 

3.3.1 Spring constant measurements  

Spring constant measurements were carried out using four new silicon nitride 

cantilevers with 1 μm silica spheres attached. The manufacturer reported spring constant 

was 0.12 N/m.  

Table 3 summarizes the average spring constant value of each experiment. The 

average spring constant for all measurements was 0.1175 ± 0.049 N/m, which was used 

in all AFM calculations. 

3.3.2 Surface Morphology Results 

Both strains of P.  aeruginosa were imaged in water using tapping mode AFM 

with unmodified spherical silicon tips. A glass slide, containing immobilized bacteria, 

was affixed to the AFM stage and the unmodified silicon tip was allowed to scan 

different areas on the slide. Figure 11 and Figure 12 show AFM images of both strains of 

Pseudomonas aeruginosa captured under ultrapure water with 512 x 512 pixel resolution. 

Three types of NOM (PMA, SRHA, and SHA) were imaged in air using tapping 

mode with bare silicon probes. In all cases, the glass slide coated with NOM was affixed 

to the AFM stage and the bare silicon probe was allowed to scan different areas on the 

slide. Figure 13, Figure 14, and Figure 15 show AFM images of the three types of NOM, 

respectively. The images were captured with 512 x 512 pixel resolution.  
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Table 3: Spring constant measurements of silicon nitride cantilevers with 1 μm silica 
spheres.   

 

 Number of 

readings 

Average Value of 

Spring Constant N/m 

Standard Deviation 

Value  

Cantilever # 1 

Cantilever # 2 

Cantilever # 3 

Cantilever # 4 

Average value of all 

readings 

5 

6 

10 

9 

0.19 

0.085 

0.104 

0.091 

0.1175 

0.021 

0.0094 

0.011 

0.006 

0.049 
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Figure 11. Tapping mode AFM image of Pseudomonas aeruginosa PAO1 under 
ultrapure water with 512 x 512 pixel resolution. x-y scale is in microns. 
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Figure 12. Tapping mode AFM image of Pseudomonas aeruginosa Ak1401 under 
ultrapure water with 512 x 512 pixel resolution. x-y scale is in microns.  

 



 

 

 

70

 

 

 

 

Figure 13. Tapping mode AFM image of PMA in air with 512 x 512 pixel resolution. 
x-y scale is in microns.   
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Figure 14. Tapping mode AFM image of SRHA in air with 512 x 512 pixel 
resolution. x-y scale is in microns. 
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Figure 15. Tapping mode AFM image of SHA in air with 512 x 512 pixel resolution. 
x-y scale is in microns.   
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3.3.3 Interaction Force Measurements 

3.3.3.1 Probe Modification with Iron Oxide and NOM 

Control experiments to verify the successful modification of the silicon probes 

with iron oxide and natural organic matter were done in three parts using AFM tapping 

mode under 1 mM NaCl solution, pH = 6.3. In the first part, the interactions between a 

bare silicon probe and a clean glass slide were studied and the approach force-distance 

curves were analyzed using MATLAB 7.0.1 (1) . The approach curves of the force cycle 

illustrate the cantilevers interactions with the surface of the sample, from no interactions 

at large distances to maximum interaction at probe-surface contact. A positive value of 

the force indicates a repulsive interaction and a negative value of the force indicates an 

attractive interaction. Figure 16 shows the approach interaction curves between a bare 

silicon probe and clean glass slide. The interactions are purely repulsive; they start at 80 

nm from the glass surface and reach a maximum repulsive force of 5.84 ± 0.18 nN at zero 

separation distance. 

As the next step, the silicon probe was coated with a layer of iron oxide and the 

interactions between the iron oxide coated probe and clean glass slide were studied. 

Figure 17 shows the approach interaction curves of the iron oxide coated probe and clean 

glass slide. The interactions are purely repulsive; they start at 80 nm from the glass slide 

surface and reach a maximum repulsive force of 1.75 ± 0.05 nN at zero separation 

distance.  
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Figure 16. Approach curves for measurements between bare silicon probe and clean 
glass slide under 1mM NaCl solution, pH = 6.3. Each set of three curves was recorded from 
a single area of a cleaned glass slide, with five areas examined on each of three slides. The 
interactions begin at 80 nm and they reach a repulsive force of 5.84 ± 0.18 nN at zero 
separation distance. 
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Figure 17. Approach interactions curves between iron oxide coated probe and clean 
glass slide under 1mM NaCl solution, pH = 6.3. Each set of three curves was recorded from 
a single area of a cleaned glass slide, with five areas examined on each of three slides.  The 
interactions begin at 80 nm and they reach a repulsive force of 1.75 ± 0.05 nN at zero 
separation distance.  
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In the third step, the same probe which was previously modified with iron oxide 

was further modified with PMA. The interactions between the PMA-coated probe and 

clean glass slide were studied and the results of the approach curves of these interactions 

are shown in Figure 18. The interactions are purely repulsive; they start at 80 nm from 

the glass surface and reach a maximum repulsive force of 2.66 ± 0.20 nN at zero 

separation distance.  

3.3.3.2 Adhesion Properties of Simple and Complex NOM 

Control experiments to study the adhesion properties of simple NOM represented 

by PMA and complex NOM represented by SHA and SRHA were carried out using AFM 

tapping mode under ultrapure water. In each experiment the silicon probe was coated 

with one type of NOM, and the force interactions between the NOM-modified probe and 

the clean glass slide were studied. Retraction curves of the force cycle were analyzed and 

the resulting adhesion peaks were summed and plotted in histograms. The retraction 

curves of the force cycle represent the forces as the cantilever is being pulled away from 

the cell surface. The distance and force at which the pull-off event occurs are defined as 

the pull-off distance and the pull-off force. The pull-off distances and forces of the 

retraction peaks were collected and represented in histograms. The histograms are based 

on the normalized number of instances which occur in a certain force range and the 

normalized number of instances which occur in a certain distance range.   For the three 

types of NOM the pull-off event took place at zero separation or at very short separation 

distances and so no pull-off distance histogram can be prepared. Figure 19 shows a 
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typical retraction curve of NOM-modified probe interacting with clean a glass slide. The 

histogram showing the results of the interactions between the three types of NOM and 

clean glass slide under ultrapure water is shown in Figure 20. 
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Figure 18. Approach curves showing interactions between PMA-coated probe and 
clean glass slide under 1mM NaCl solution, pH = 6.3. Each set of three curves was recorded 
from a single area of a cleaned glass slide, with five areas examined on each of three slides. 
The interactions begin at 80 nm and they reach a repulsive force of 2.66 ± 0.20 nN at zero 
separation distance.  
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Figure 19. Typical retraction curve of SRHA-modified probe interacting with a 
clean glass slide under ultrapure water. In the curve there is only one peak which occurs at 
zero separation.  
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Figure 20. Normalized number of events occurring in a certain force range. The 
force ranges represent the ranges of adhesive pull-off forces exerted by three NOM-
modified probes on clean glass slide surface. Each color in the graph refers to certain probe 
modification. 
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3.3.3.3 Pseudomonas aeruginosa PAO1  

Measurements of the forces between Pseudomonas aeruginosa PAO1 and both 

unmodified and NOM-modified silicon probes were made in ultrapure water. Three types 

of natural organic compounds were used; PMA to represent a simple NOM with a known 

molecular weight and both SHA and SRHA to represent more complex NOM with 

unknown and distributed molecular weights. Fifty force curves on five individual cells of 

Pseudomonas aeruginosa PAO1 were captured in each experiment, analyzed using 

MATLAB® 7.0.1, and plotted using Microsoft Excel 2003.  

3.3.3.3.1 Approach Curves 

All the experiments with Pseudomonas aeruginosa PAO1 showed repulsive 

forces during the approach of the probe to the cell surface. Since force curves were 

captured at different ramp sizes, it was not possible to average them together.  Instead, 

they were considered individually. However, it was possible to put individual force 

curves from five different cells on one graph showing the similarity among data sets. 

Figure 21 shows an example of the reproducibility of the approach curves for 

Pseudomonas aeruginosa PAO1 interacting with SHA-modified silicon probe under 

ultrapure water.  

In order to compare the results of Pseudomonas aeruginosa PAO1 interacting 

with different modified probes, an average value of the force at zero distance and an 

average value of the decay distance at zero force were calculated from fifty individual 

force curves. A summary of the average decay length values and the average values of 
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the force at zero distance for all Pseudomonas aeruginosa PAO1 experiments is shown in 

Table 4. 

3.3.3.3.2 Retraction Curves  

During the pull-off process it is possible that some polymers from the bacterium 

attach to the probe through physical bonds, and their detachment from the probe 

eventually occurs as the tip is further retracted. Also, bacterial polymers can interact with 

the NOM molecules when modified tips were used. Each pull-off event will cause a 

single peak or multiple peaks in the retraction curve, depending on whether the studied 

surface has one polymer or multiple polymers, and on the number of contact points 

between the polymer and the probe.  Figure 22 shows a representative retraction curve of 

Pseudomonas aeruginosa PAO1 interacting with the NOM-modified probe.  

Figure 23 and Figure 24 show summaries of the distributions of force and 

distance, for Pseudomonas aeruginosa PAO1 interacting with different probes under 

ultrapure water. 
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Figure 21. Representative example of 15 approach curves of Pseudomonas 
aeruginosa PAO1 interacting with SHA-modified probe under ultrapure water. The dotted 
curves represent the experimental data and the black solid line represents the average steric 
interactions fit. Five different bacterial cells were examined; with a set of three curves 
recorded from each individual bacterial cell. The interactions begin at 90 nm and they 
reach an approximate repulsive force of 1.2 nN at zero separation distance.  
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Table 4: A summary of decay length values and force at zero distance values for 
Pseudomonas aeruginosa PAO1 interacting with different modified probes under ultrapure 
water.  

 

Probe Modification Average Decay Length 

(nm) (n = 50) 

Average Force at Zero 

Distance (nN) (n = 50) 

Unmodified 286 2.27 

PMA-modified 159 2.44 

SRHA-modified 124 1.43 

SHA-modified 84 1.21 
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Figure 22. Typical retraction curve for interactions of Pseudomonas aeruginosa 
PAO1 with NOM-modified probe. The curve has multiple peaks, with the length of the blue 
line representing the magnitude of the first adhesive force, and the length of the red line 
representing the distance at which the first adhesive event occurs.  
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Figure 23. Normalized number of events occurring in a certain distance range. The 
distance ranges represent the ranges of break-off distances between Pseudomonas 
aeruginosa PAO1 and four different modified probes. Each color in the graph refers to 
certain probe modification. 
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Figure 24. Normalized number of events occurring in a certain force range. The force ranges 
represent the ranges of adhesive pull-off forces exerted by four different modified probes on 
Pseudomonas aeruginosa PAO1 surface. Each color in the graph refers to certain probe modification. 
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3.3.3.3.3 Modeling of Steric Interactions 

The model describing steric interactions was developed by Alexander (9) and de 

Gennes (20) for the interactions between two equal parallel surfaces with grafted or 

adsorbed polymers at relatively high surface coverage. The model was modified by Butt 

et al. (14) for the interactions between a spherical surface and a flat surface. We fit the 

experimental data for the approach of various probes to Pseudomonas aeruginosa PAO1 

with the steric model. For the unmodified probe, we used the steric model corresponding 

to the case where only one surface is coated with a polymer brush.   

An example of fitting the steric interaction model for a brush on one surface is 

shown with a typical approach curve of Pseudomonas aeruginosa PAO1. The polymer 

grafting density and equilibrium polymer length are the fitting parameters, as shown in 

Figure 25.  

For the case of P. aeruginosa interacting with NOM-modified probes, we used a 

form of the steric model that was developed for two surfaces coated with (equal) polymer 

brushes. Figure 26 shows an example of this fitting for a typical approach curve of 

Pseudomonas aeruginosa PAO1, with the polymer grafting density and equilibrium 

polymer length as fitting parameters. The fitting parameters calculated from applying the 

steric model to the individual force curves in each experiment were averaged and used to 

generate the average theoretical steric interaction curve as shown in Figure 21. Thirty 

force curves captured on five different cells were used to calculate the fitting parameters 

in each experiment. Figure 27 shows four individual approach force-separation curves to 

represent Pseudomonas aeruginosa PAO1 interacting with different modified probes and 
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their theoretical steric interaction model fits. The fitted parameters values and the values 

of the force at zero separation are summarized in Table 5.  

Figure 28 and Figure 29 show a comparison between the steric model parameters 

and the experimental values for Pseudomonas aeruginosa PAO1 interacting with 

different modified probes.   
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Figure 25. Using the steric interactions model for one surface bearing polymer brushes to fit one 
approach curve from the experimental data of Pseudomonas aeruginosa PAO1 interactions with 
unmodified probe under ultrapure water. The solid line represents the theoretical steric interactions 
fit and the dotted line represents the experimental curve.  
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Figure 26. Using the steric interactions model for two surfaces bearing polymer brushes to fit one 
approach curve from the experimental data of Pseudomonas aeruginosa PAO1 interactions with 
NOM-modified probe under ultrapure water. The solid line represents the theoretical steric 
interactions fit and the dotted line represents the experimental curve. 
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Figure 27. The theoretical steric interaction model fits and the experimental data of 
Pseudomonas aeruginosa PAO1 interacting with different modified probes. The dotted 
curves represent the experimental data. Each curve in the graph represents the fitting of 
one force curve captured on one Pseudomonas aeruginosa PAO1 cell. The dashed curve was 
generated using the steric interaction model for one surface coated with polymer brushes 
and the solid curves were generated using the steric interaction model for two surfaces 
coated with polymer brushes.  
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Table 5:  A summary of equilibrium polymer length values, polymer grafted density 
values, and values of the force at zero separation from the theoretical steric interactions fits 
of Pseudomonas aeruginosa PAO1 interactions with different modified probes under 
ultrapure  water. 

 

Probe 

Modification 

Average Equilibrium 

Polymer Length (L0) 

(nm) (n = 30) 

Average Polymer 

Grafting Density 

(γ) (m-2) (n = 30) 

Average Force at 

Zero Distance (nN) 

(n = 30) 

Unmodified 358 1.61 x 1015 2.38 

PMA-modified 164 1.10 x 1015 2.50 

SRHA-modified 124 9.36 x 1014 1.46  

SHA-modified 88 1.10 x 1015 1.32 
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Figure 28. A comparison between average values of decay lengths and average 
values of equilibrium polymer brush lengths from all experiments of Pseudomonas 
aeruginosa PAO1 interacting with various probes.  
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Figure 29. A comparison between average values of forces at zero distance from the 
experimental force curves and the steric interactions fits of Pseudomonas aeruginosa PAO1 
interacting with various probes.  
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3.3.3.4 Pseudomonas aeruginosa AK1401  

The adhesion interactions between Pseudomonas aeruginosa AK1401 and 

modified probes were studied with AFM under ultrapure water. Four experiments were 

done using Pseudomonas aeruginosa AK1401. In each experiment, fifty force curves 

were captured and analyzed, corresponding to five different cells of Pseudomonas 

aeruginosa AK1401. 

3.3.3.4.1 Approach Curves 

All the experiments done on Pseudomonas aeruginosa AK1401 showed repulsive 

forces during the approach of the probe to the cell surface. Force curves for each 

experiment were considered individually and in order to show their reproducibility they 

were put together on one plot. Figure 30 shows an example of the reproducibility of the 

approach curve for Pseudomonas aeruginosa AK1401 interacting with the SHA-

modified silicon probe under ultrapure water. Averaging the individual force curves was 

not possible because they were captured at different ramp sizes. Instead an average value 

of the force at zero distance and an average value of the decay distance at zero force were 

each calculated from fifty individual force curves. Table 6 shows a summary of the 

average decay length values and the average values of the force at zero separation for all 

Pseudomonas aeruginosa AK1401 experiments with different modified probes. 
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Figure 30. Representative example of 15 approach curves of Pseudomonas 
aeruginosa AK1401 interacting with SHA-modified probe under ultrapure water. The 
dotted curves represent the experimental data and the black solid line represents the 
average steric interactions fit.  Five different bacterial cells were examined; with a set of 
three curves recorded from each individual bacterial cell. The interactions begin at 60 nm 
and they reach an approximate repulsive force of 0.6 nN at zero separation distance.  
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Table 6. A summary of decay length values and force at zero distance values from 
Pseudomonas aeruginosa AK1401 interacting with different modified probes under 
ultrapure water. 

 

Probe Modification Average Decay 

Length (nm) (n = 

50) 

Average Force at 

Zero Distance (nN) 

(n = 50) 

Unmodified 156 0.89 

PMA-modified 149 1.98 

SRHA-modified 62 0.71 

SHA-modified 56 0.57 
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3.3.3.4.2 Retraction Curves  

The retraction curves of Pseudomonas aeruginosa AK1401 were analyzed using 

MATLAB 7.0.1, and presented in histograms based on the separation and force values of 

the retraction peaks. Figure 31 shows a typical retraction curve for Pseudomonas 

aeruginosa AK1401 interacting with NOM-modified probe. The results from the 

retraction curves for Pseudomonas aeruginosa AK1401 interacting with four different 

modified probes are summarized in Figure 32 and Figure 33.  

3.3.3.4.3 Modeling of Steric Interactions  

The modified steric interactions model for the interactions between a spherical 

surface and a flat surface with grafted or adsorbed polymers at relatively high surface 

coverage was used to fit the experimental approach curves of Pseudomonas aeruginosa 

AK1401interactions with different modified probes. The steric interactions equation with 

one surface only being coated with polymer brushes was used to fit the interactions 

between Pseudomonas aeruginosa AK1401 and unmodified probe. An example of fitting 

the steric interactions equation with one polymer surface to a single approach curve of 

Pseudomonas aeruginosa AK1401 with the polymer grafting density and equilibrium 

polymer length being the fitting parameters is shown in Figure 34. While the steric 

interactions equation for two equal polymer brushes coated-surfaces was used to fit 

Pseudomonas aeruginosa AK1401 interactions with NOM-modified probes. Figure 35 

shows an example of fitting the steric interactions equation for two equal polymer 

brushes-coated surfaces to a single approach curve of Pseudomonas aeruginosa AK1401 

with the polymer grafting density and equilibrium polymer length being the fitting 
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parameters. The fitting parameters values collected from fitting the steric interactions 

equation to the individual force curves in each experiment were averaged and used to 

generate an average theoretical steric interactions curve as shown in Figure 30. Fifty 

force curves captured on five different cells were analyzed in each experiment. Four 

approach force-separation curves of Pseudomonas aeruginosa AK1401 interacting with 

different modified probes and their theoretical steric interactions model fits are shown in 

Figure 36. The fitting parameters values with values of the force at zero separation from 

the theoretical fits of Pseudomonas aeruginosa AK1401 interacting with different 

modified probes are summarized in Table 7.  

Figure 37 and Figure 38 show a comparison between the average values of the 

equilibrium polymer brush lengths and forces at zero distance calculated from the steric 

interactions fits and the average values of decay lengths and forces at zero distance from 

the experimental force curves of Pseudomonas aeruginosa AK1401 interacting with 

different modified probes. 
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Figure 31. Typical retraction curve of Pseudomonas aeruginosa AK1401 interacting 
with an unmodified probe. The curve has multiple peaks, with the length of the blue line 
representing the magnitude of the third adhesive force, and the length of the red line 
representing the distance at which the third adhesive event occurs.  
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Figure 32. Normalized number of events occurring in a certain distance range. The 
distance ranges represent ranges of the pull-off distances between Pseudomonas aeruginosa 
AK1401 and four different modified probes.  
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Figure 33. Normalized number of events occurring in a certain force range. The force ranges 
represent the ranges of adhesive pull-off forces exerted by four different modified probes on 
Pseudomonas aeruginosa AK1401 surface.  
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Figure 34. Using the steric interactions model for one surface bearing polymer brushes to fit 
one approach curve from the experimental data of Pseudomonas aeruginosa AK1401 interactions 
with unmodified probe under ultrapure water. The solid line represents the theoretical steric 
interactions fit and the dotted line represents the experimental curve.    
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Figure 35. Using the steric interactions model for two surfaces bearing polymer brushes to 
fit one approach curve from the experimental data of Pseudomonas aeruginosa AK1401 interactions 
with PMA-modified probe under ultrapure water. The solid line represents the theoretical steric 
interactions fit and the dotted line represents the experimental curve.  
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Figure 36. The theoretical steric interactions model fits and the experimental data of 
Pseudomonas aeruginosa AK1401 interacting with different modified probes. The dotted 
curves represent the experimental data. Each curve in the graph represents the fitting of 
one force curve captured on one Pseudomonas aeruginosa AK1401 cell by the steric 
interactions model. The dashed curve was generated using the steric interactions model for 
one surface coated with polymer brushes and the solid curves were generated using the 
steric interactions model for two surfaces coated with polymer brushes.  
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Table 7: A summary of equilibrium polymer length values, polymer grafted density 
values, and values of the force at zero separation from the theoretical steric interactions fits 
of Pseudomonas aeruginosa AK1401 interacting with different modified probes under 
ultrapure water. 

 

Probe 

Modification 

Average 

Equilibrium 

Polymer Length 

(L0) (nm) (n = 30) 

Average Polymer 

Grafting Density 

(γ) (m-2) 

(n = 30) 

Average Force at 

Zero Distance (nN) 

(n = 30) 

Unmodified 168 1.38 x 1015 0.90 

PMA-modified 147 1.03 x 1015 2.00 

SRHA-

modified 

64 9.10 x 1014 0.72 

SHA-modified 52 9.30 x 1014 0.61 
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Figure 37. A comparison between average values of decay lengths and average 
values of equilibrium polymer brush lengths from all experiments of Pseudomonas 
aeruginosa AK1401 interacting with various probes.  
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Figure 38. A comparison between average values of forces at zero distance from the 
experimental force curves and the steric interactions fits of Pseudomonas aeruginosa 
AK1401 interacting with various probes.  
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3.3.3.5 Comparison between Both Pseudomonas aeruginosa Strains 

3.3.3.5.1 Approach Curves 

In all experiments, both strains of Pseudomonas aeruginosa showed repulsive 

forces during the approach of the probe to the cell surface. However, in all cases 

Pseudomonas aeruginosa PAO1 has stronger repulsive forces and longer decaying 

distances than Pseudomonas aeruginosa AK1401 (Figure 39 and Figure 40).  

3.3.3.5.2 Retraction Curves 

Figure 41 show a comparison between the adhesive forces of both strains 

interacting with unmodified probes, simple NOM-modified probes, and complex NOM-

modified probes. PAo1 has the lowest interactions with the unmodified probe among all 

interactions and the highest interactions with both the complex NOM. While AK1401 has 

the highest interactions with the unmodified probe among all interactions and the lowest 

interactions with both the complex NOM.    

3.3.3.5.3 Modeling of Steric Interactions 

 The experimental data for the approach of various probes to both strains of 

Pseudomonas aeruginosa were fitted with the steric model. The fitting parameters values 

with values of the force at zero separation from the theoretical steric interactions fits of 

both P. aeruginosa strains interacting with different probes are summarized in Table 8.   
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Figure 39. A comparison between average decay lengths values from both strains of 
Pseudomonas aeruginosa interacting with various probes. Each decay length value shown in 
the figure is the average of fifty decay length values from fifty approach curves captured on 
five different cells. 
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Figure 40. A comparison between average values of forces at zero distance from 
both strains of Pseudomonas aeruginosa interacting with various probes. Each value of 
force at zero distance shown in the figure is the average of  fifty force values from fifty 
approach curves captured on five different cells. 
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Figure 41. A comparison between average adhesive forces from both strains of 
Pseudomonas aeruginosa interacting with various probes. Each  adhesive force shown in the 
figure is the average of all adhesive forces from fifty retraction curves captured on five 
different cells. 
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Table 8: A summary of equilibrium polymer length values, values of polymer 
grafted density, and values of the force at zero separation from the theoretical steric 
interactions fits of both Pseudomonas aeruginosa strains interacting with various probes 
under ultrapure water.   

 

 Average Equilibrium 

Polymer Length (L0) (nm) 

(n = 30) 

Average Polymer Grafting 

Density (γ) (m-2) (n = 30) 

Average Force at Zero 

Distance (nN) (n = 30) 

 PAO1 AK1401 PAO1 AK1401 PAO1 AK1401 

Unmodified 358 168 1.61 x 1015 1.38 x 1015 2.38 0.9 

PMA-

modified 

164 147 1.10 x 1015 1.03 x 1015 2.5 2.00 

SRHA-

modified 

124 64 9.36 x 1014 9.1 x 1014 1.46 0.72 

SHA-

modified 

88 52 1.10 x 1015 9.3 x 1014 1.32 0.61 
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4 Discussion 

4.1 Microbial Growth Curves 

Harvesting the bacterial cells at a specific cell concentration is important for the 

valid comparison between different bacterial strains. An absorbance value of 0.9 at 600 

nm was selected as a reference point in all experiments since it is in the early-mid 

exponential growth phase. As shown in Figure 4, the two strains of Pseudomonas 

aeruginosa have very similar growth behavior; both strains reach the selected absorbance 

value in about three and a half hours. This behavior is expected since the strains are 

genetically very similar. 

4.2 Optical Microscopy Experiments 

The optical microscope under FITC wavelengths was used to image both strains 

of Pseudomonas aeruginosa. The optical microscopy images are useful to estimate the 

size of each strain. The results of measuring the length of 80 bacteria for PAO1 and 190 

bacteria for AK1401 showed that the sizes for both strains are within the typical size of 

bacteria (1-3 μm). For PAO1 strain the average length was 0.95 ± 0.192 μm while for 

AK1401 strain the average length was 1.12 ± 0.184 μm.  

Optical microscopy also allowed us to confirm that the bacteria were Gram-

negative and that the cultures were not contaminated.  

In particular, optical microscopy was used to count the number of bacterial cells 

per ml and to calculate the cell number with the absorbance reading at 600 nm.  
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4.3 Atomic Force Microscopy (AFM) 

4.3.1 Spring Constant Measurements  

The calculation of precise and accurate value of the spring constant is of great 

importance, since the spring constant is the parameter which relates the cantilever 

deflection to the force of interaction. 

There are different methods to calculate the cantilever spring constant. Some of 

these methods depend on the physical properties of the cantilever such as the geometry 

and density of the cantilever (17). Other methods depend on the thermal properties of the 

cantilever, and they require capturing the thermal distribution spectrum of the cantilever. 

Thermal techniques are in general more accurate than geometric techniques, since they 

are independent of the cantilever material or geometry, and they are based on standard 

physical theories (38). 

In this work the method of Emerson and Camesano (24) was used for measuring 

and calculating the cantilever spring constant. This method is a thermal technique which 

only requires obtaining the thermal noise spectrum of the cantilever and its resonant 

frequency, and it was chosen because it is simple, accurate, and easy to apply. 

Four new silicon nitride cantilevers with 1 μm silica spheres were used in 

measuring the cantilever spring constant. For each cantilever at least five readings were 

recorded and used in calculating an average value of the spring constant. The average 

value of the spring constant calculated from the four cantilevers was equal to 0.1175 N/m 

and it was applied in Hooke’s Law in all the AFM experiments. 
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4.3.2 Surface Morphology Experiments 

Capturing AFM images for both Pseudomonas aeruginosa strains in liquid was an 

important step in each experiment, since we had to ensure that the force curves were 

captured on the center of each bacterial cell. The clear AFM images of both bacterial 

strains in liquid shown in Figure 11 and Figure 12 are an indication of the strong 

attachment between the bacteria and the glass slide. The ellipsoidal shape and the 

dimensions of the bacteria verify that the bacterial surface was not affected or altered by 

the chemical binding materials which were used in immobilizing the bacteria. Specific 

chemical bonds were used in binding both strains to the glass slide. For PAO1, the IPA 

gold-coated glass slide interacted with the EDC\ NHS solution, and the EDC\ NHS 

molecules interacted with the amine groups on the bacterial surface, and the result of the 

reaction was forming a strong amide bond between the bacteria and the glass slide. While 

for AK1401, the aminosilane-coated glass slide interacted with the NHS\ EDC solution, 

and the NHS\ EDC molecules interacted with the carboxylic groups on the bacterial 

surface, and the result of the reaction was forming a stable amide bond between the 

bacteria and the glass slide.     

The tapping mode AFM images for the three types of NOM in air showed that the 

adsorption of the NOM onto the glass slide was not in a monolayer. However, the PMA 

adsorption on the glass slide was more homogenous and more evenly distributed than the 

adsorption of both SRHA and SHA molecules. The uneven distribution of both SRHA 

and SHA molecules on the glass slide could be due to the fact that natural humic acids 

are mixtures of different substances with a wide molecular weight distribution (92).  
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The similarity between both natural humic acids AFM images is an indication of 

similar features and surface active groups comprising both materials. 

4.3.3 Interaction Force Measurements 

4.3.3.1 Probe Modification with Iron Oxide and NOM 

The complete system of organo-mineral compounds was represented in this work 

by an adsorbed NOM into a surface film of iron oxide precipitated on spherical silica 

probes. 

Silica spheres were chosen for the AFM experiments, because they are flat, easy 

to clean and mostly because they mimic the real soil colloidal particles (60). However, 

soil colloidal particles are not present alone in nature, or side by side with inorganic and 

organic particles, but often coated as organo-mineral compounds (92).  Iron oxide was 

used in this work to model the mineral surface, since it is a common constituent of 

natural soil colloids (60).  An iron oxide surface was generated by exposing the silica 

spheres to FeCl3.  

The results shown in Figure 16, Figure 17, and Figure 18 are approach force 

curves of interactions between different modified probes and clean glass slides under 1 

mM NaCl solution, pH = 6.3.  In each experiment, three clean glass slides were used, 

with five different areas examined on each of them. The reproducibility of the results it is 

a strong verification on the successful coating protocol followed in preparation of the iron 

oxide modified probes and the NOM-modified probes. Both the iron oxide coating and 

the adsorption of NOM into the iron oxide coated surface were done following the 

coating procedure of Mosley et al (60). For the NOM adsorption into iron oxide surface 
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they simply exposed the iron oxide colloidal particle to the natural or synthetic organic 

compounds. They showed that this technique was established in previous extensive work 

involved using the microelectrophoresis technique to examine the NOM-coated particles. 

The microelectrophoresis studies (53, 60) have established that after the simple exposure 

of iron oxide surfaces to NOM, such surfaces will be rapidly coated with strongly 

adhering NOM. 

Vermohlen group (92) in their work of studying the influence of ionic strength, 

molar mass, and Ca2+ ions on the adsorption of polyelectrolytes onto different oxides, 

showed that the adsorption of polyelectrolytes onto aluminum oxide cannot only be 

described as a charge effect mechanism but that specific interactions must also be 

present.      

The interactions between different modified probes and clean glass slides under 1 

mM NaCl solution, pH = 6.3. are purely repulsive, with the highest repulsive forces 

measured for the bare silica probe-clean glass slide combination. This strong repulsion is 

presumably because both surfaces carry a large negative charge at pH values greater than 

ca. 4-5 (60), and these results are in agreement with previous research (60). The forces 

acting on the colloidal probes were lower after the formation of the iron oxide coating as 

shown in Figure 17. Under the same solution conditions, the smaller repulsive forces 

between the iron oxide-coated surface and clean glass slide compared to the forces 

between bare silica probe and clean glass slide could be due to the adsorption of 

positively charged Fe particles being electrostatically favorable (60). The measured 

repulsive forces in the presence of PMA are higher than the repulsive forces between the 

iron oxide-coated surface and clean glass slide, but still smaller than the repulsive forces 
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between bare silica probe and clean glass slide. This repulsive forces increase is due to 

the large negative charges carried on both the PMA surface and the glass slide surface, 

these results are in agreement with the work of Mosley et al (60).  

4.3.3.2 Adhesion Properties of Simple and Complex NOM 

The results of the retraction part of the force cycle were analyzed and represented 

in histograms in Figure 20. More than 75% of the adhesive forces of PMA are less than 3 

nN. In contrast, the adhesive forces of both SRHA and SHA are distributed over a large 

force range with the majority of adhesion events between 6-9 nN. The large force 

distribution range for both the natural humic acids could be due to the polydispersity of 

their surfaces which are comprised of a mixture of different substances with wide 

molecular weight distributions (92). The Mann Whitney Rank Sum Test was used to see 

whether the adhesive forces for the three types of NOM are statistically different. The 

results showed that both SRHA and SHA are not significantly different with (p = 0.684), 

but both are significantly different from PMA (p ≤ 0.001). These results suggest that the 

surface polymers of both natural humic acids are very similar and different from the 

surface polymers of PMA. The higher adhesive forces of SHA compared to SRHA could 

be a result of the higher maximum adsorption of SHA compared to SRHA because of it is 

higher molecular weight (44). Our results are in agreement with previous work of 

Johnson et al. on bacterial transport into porous media (44). They showed that SHA 

sorbed more strongly than SRHA to Fe-coated soil particles, and they explained that the 

stronger sorption of SHA relative to SRHA could be a result of the higher molecular 

weight of SHA.  
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4.3.3.3 Pseudomonas aeruginosa PAO1  

4.3.3.3.1 Approach Curves 

All the experiments with Pseudomonas aeruginosa PAO1 showed repulsive 

forces during the approach of the probe to the cell surface. In general, the repulsive forces 

are governed by the steric interactions experienced between the bacterial polymer brush 

and the silica probe or between two opposing polymer chains. In addition to the entropic 

and elastic interactions originated from the steric interactions, the surface polymer chains 

are influenced by the long-range electrostatic interactions. Our findings are in agreement 

with previous work of Abraham et al. (4) on interactions between strongly charged 

polyelectrolyte brushes. They suggested that the repulsive forces of higher magnitude are 

not of electrostatic nature but probably due to steric interactions or the physical contact of 

highly stretched polyelectrolyte brush surfaces. Also our results are in agreement with the 

work of Yamamoto et al. (97) on studying surface interaction forces between high density 

polymer brushes using the AFM. They observed repulsive forces at the brush surfaces, 

which originate from the steric interaction between the solvent-swollen PMMA brush and 

the probe sphere, and they suggested the strong dependency of the force curve on the 

graft density. 

It can be noticed from Table 4 that PMA-modified probe has higher repulsive 

forces while interacting with PAO1 compared to both SRHA and SHA modified probes 

interacting with PAO1 which is expected, since the PMA surface has a higher charge 

density than both SRHA and SHA surfaces (92). 
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 The Mann-Whitney Rank sum Test was used to check whether the repulsive 

forces at zero separation for both SRHA and SHA interacting with PAO1 are 

significantly different. The results of the test showed that there was a statistically 

significant difference between the values of repulsive forces at zero separation for both 

the SRHA-modified probe and the SHA-modified probe interacting with PAO1 strain 

with (P ≤ 0.001), but it is still clear that the magnitudes of the forces at zero distance for 

both SRHA and SHA interacting with PAO1 are more alike than the forces at zero 

distance of PMA interacting with PAO1. This observation suggests that there are more 

common characteristics between the surfaces properties of both the natural humic acids if 

compared to the surface properties of PMA.  

It can be noticed from the decay lengths values shown in Table 4 that the largest 

decay length is for the interactions between the unmodified probe and PAO1. Since the 

bacteria is interacting with polymer free surface there is a higher possibility for its surface 

polymer brushes to extend for a longer range of repulsion. While in the other cases the 

surface polymers of the bacteria are interacting with other polyelectrolytes. These 

polyelectrolytes with their own specific surface conformation may have more 

complicated interactions with the bacterial surface.     

The results of using the Mann-Whitney Rank Sum Test for the decay length 

values of both SRHA and SHA interacting with PAO1 showed that, there was not a 

statistically significant difference between the decay lengths values for both the SRHA 

and the SHA modified probes interacting with PAO1 with (P = 0.892). This result 

supports the previous suggestion that both the natural humic acids might have similar 

surfaces.   
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4.3.3.3.2 Retraction Curves 

The pull-off distances and the pull-off forces of the adhesion events were 

collected and presented respectively in Figure 23 and Figure 24. From the distance 

histograms for all experiments of PAO1 interacting with various probes it can be seen 

that the interactions between the unmodified probe and PAO1 persist to long distances up 

to a 1000 nm. While more than 80% of adhesion events of PMA-modified probe with 

PAO1 occur at distances shorter than 200 nm and more than 90% of adhesion events of 

SHA-modified probe with PAO1 are less than 200 nm. The long range of pull-off 

distances when the bacteria are interacting with a free polymer surface could be due to 

the flexibility of the polymer brushes to be stretched out further distances from the 

bacterial surface. While in the other cases, the probe also is covered with polymer 

brushes and the interactions between two polymer brushes are more complicated.   

The first thing that can be noticed from the force histograms of various probes 

interacting with PAO1 is that adhesive forces between the unmodified probe and PAO1 

are the least among all interactions with PAO1. The second thing that can be seen is that 

the adhesive forces between the NOM-modified probes and PAO1 increased with 

increasing the complexity of the NOM.  

Our adhesive force results are in agreement with the work of Johnson et al. (45) 

on studying bacterial transport through porous media using column transport 

experiments. They showed that retention of Savannah River strain A1264 on iron oxide 

coated quartz pre-equilibrated with NOM was higher than it is retention on quartz porous 

media. That was true for both SRHA and SHA. The reason behind this behavior could be 

due to the surface charge heterogeneity resulting from the presence of iron oxide on the 
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quartz surface, and if the iron oxide surface is not fully covered with the NOM it would 

be expected that the bacterial deposition will increase relative to that on quartz alone.   

Using the Mann-Whitney Rank Sum Test for the adhesive forces from all the 

experiments with PAO1 showed that there was not a statistically significant difference 

between the values of adhesive forces for both the PMA-modified probe and the 

unmodified probe interacting with PAO1 (P = 0.371). This finding supports our previous 

suggestion that PMA has similar behavior to the unmodified probe while interacting with 

PAO1 strain and that could be due to similar charge densities on both surfaces. 

The Mann-Whitney Rank Sum Test was used also for both SRHA and SHA 

interacting with PAO1 and the results showed that there was not a significant difference 

between the adhesive forces of both SRHA and SHA interacting with PAO1 (P =0.651). 

These results indicate that the surface polymers of both SRHA and SHA are very similar, 

which is in agreement with the repulsive forces of both SRHA and SHA from the 

approach force curves.     

4.3.3.3.3 Modeling of Steric Interactions      

The steric interaction model was used to fit the experimental data for the approach 

of various probes to Pseudomonas aeruginosa PAO1. For the unmodified probe, we used 

the steric model corresponding to the case where only one surface is coated with a 

polymer brush.   

For the case of P. aeruginosa interacting with NOM-modified probes, we used a 

form of the steric model that was developed for two surfaces coated with (equal) polymer 

brushes. Although using this form of the steric model is not fully adequate since the 
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polymer brushes on both the bacterial surface and the NOM-coated surface are most 

likely unequal in length, the model fits showed excellent agreement with the 

experimental data as shown in Figure 26. This agreement suggests that when the surfaces 

of the opposed polymer layers approach each other, the steric repulsion becomes 

predominant. 

Figure 28 and Figure 29 show another way to verify whether the steric model is a 

good fit for the experimental data. Figure 28 makes a comparison between the average 

decay length values from the experimental data and the average values of equilibrium 

polymer brush length from the interactions of the various probes with PAO1. 

The results of using the Mann-Whitney Rank Sum Test showed that there was not 

a statistically significant difference between the average decay length values from the 

experimental data and the average values of equilibrium polymer brush length from all 

the different interactions with PAO1. These results strongly demonstrate that the steric 

model is a good fit for the experimental data. 

Figure 29 makes a comparison between the average values of force at zero 

distance from the experimental data and the average values of force at zero distance 

calculated from the steric model fits of Pseudomonas aeruginosa PAO1 interacting with 

various probes. In all cases the similarity between the forces at zero distance from the 

experimental data and the steric model fits was so clear, with a slight increase in the 

reported values of the force at zero distance from the steric model fits. This 

overestimation is expected since the forces at zero distance of the theoretical fits are 

generated from average values of the steric model fitting parameters. 
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Table 5 summarizes the fitting parameters values from the theoretical fits of 

Pseudomonas aeruginosa PAO1 interacting with different modified probes.  It can be 

noticed from the table that in most cases: the higher was the graft density the larger was 

the equilibrium polymer brush length.  

Our results are highly supported by the work of Yamamoto et al. (97). They 

studied the effect of polymer grafting density on the interaction forces between 

Poly(methyl methacrylate) (PMMA) brushes and a silica particle attached to the end of a 

cantilever using the AFM.  They found that the force curve is strongly dependant on the 

graft density, and the higher was the graft density, the larger was the separation where the 

interactions were observed. They concluded that as the graft density of the polymer 

increases the graft chains get more and more extended.  

The highest graft density value and the largest equilibrium polymer brush length 

were associated with the interactions between the unmodified probe and P.aeruginosa 

PAO1. These characteristics of the interactions between the unmodified probe and 

P.aeruginosa PAO1; of high polymer density along with the strong resistance against 

compression are still not fully understood and difficult to explain and they could be 

related to the dynamic properties of the polymer brush.  

4.3.3.4 Pseudomonas aeruginosa AK1401  

4.3.3.4.1 Approach Curves 

All the experiments with Pseudomonas aeruginosa AK1401 showed repulsive 

forces during the approach of the probe to the cell surface. In general, the repulsive forces 

are governed by the steric interactions experienced between the bacterial polymer brush 
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and the silica probe or between two opposing polymer chains. In addition to the entropic 

and elastic interactions originated from the steric interactions, the surface polymer chains 

are influenced by the long-range electrostatic interactions. Our findings are in agreement 

with previous work of Abraham et al. (4) on interactions between strongly charged 

polyelectrolyte brushes. They suggested that the repulsive forces of higher magnitude are 

not of electrostatic nature but probably due to steric interactions or the physical contact of 

highly stretched polyelectrolyte brush surfaces. Also our results are in agreement with the 

work of Yamamoto group (97) on studying surface interaction forces between high 

density polymer brushes using the AFM. They observed repulsive forces at the brush 

surfaces, which originate from the steric interaction between the solvent-swollen 

Poly(methyl methacrylate) (PMMA) brushs and the probe sphere, and they suggested the 

strong dependency of the force curve on the graft density. 

It can be seen from Table 6 that AK1401 also has higher repulsive forces with 

PMA-modified probe than it does with both SRHA and SHA which is expected, since the 

PMA surface has a higher charge density than both SRHA and SHA surfaces (92). 

 The results of using the Mann-Whitney Rank sum Test for fifty values of 

repulsive forces at zero separation from all the experiments with AK1401 showed that, 

there was a statistically significant difference between the values of repulsive forces at 

zero separation from the three NOM-modified probes interacting with AK1401 with (P ≤ 

0.001) in all cases.  

Although the results of using the Mann-Whitney Rank sum Test for fifty values of 

repulsive forces at zero separation from both experiments of SRHA and SHA interacting 

with AK1401 showed that, there was a statistically significant difference between the 
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values of repulsive forces at zero separation for both the SRHA-modified probe and the 

SHA-modified probe interacting with AK1401 strain with (P ≤ 0.001), it is still obvious 

that the magnitudes of the forces at zero distance for both SRHA and SHA interacting 

with AK1401 are more alike than the force at zero distance of PMA interacting with 

AK1401. This observation suggests that there are more common characteristics between 

the surfaces properties of both the natural humic acids when compared to the surface 

properties of PMA.  

It can be noticed from the decay lengths values shown in Table 6 that the largest 

decay length is for the interactions between the unmodified probe and AK1401. Since the 

bacteria is interacting with polymer free surface there is a larger possibility for it is 

surface polymer brushes to extend for a longer range of repulsion. While in the other 

cases the surface polymers of the bacteria are interacting with other polyelectrolytes. 

These polyelectrolytes with their own specific surface confirmation may have more 

complicated interactions with the bacterial surface.     

The results of using the Mann-Whitney Rank Sum Test for fifty values of the 

decay lengths from the experiments of both SRHA and SHA interacting with AK1401 

showed that there was a statistically significant difference between the decay lengths 

values for both the SRHA and the SHA modified probes interacting with AK1401 with (P 

≤ 0.001). However, it can be seen from Table 6 that the average values of decay lengths 

of both SRHA and SHA are very close and far from the average value of decay length of 

PMA.  This result supports the previous suggestion that both the natural humic acids 

might have similar surfaces.   
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4.3.3.4.2 Retraction Curves 

The pull-off distances and the pull-off forces of the adhesion events were 

collected and presented respectively in Figure 32 and Figure 33. From the distance 

histograms for all experiments of AK1401 interacting with various probes it can be seen 

that the interactions between AK1401and both the unmodified probe and PMA-modified 

probe persist to long distances up to a 1000 nm. While more than 80% of adhesion events 

of both SRHA-modified probe and SHA-modified probe interacting with AK1401 occur 

at distances shorter than 200 nm. The long range of pull-off distances for both the 

unmodified and PMA-modified probes interacting with AK1401 could be due to the 

flexibility of the polymer brushes to be stretched out further distances from the bacterial 

surface. While in the case of the natural humic acids, the probe is highly covered with 

polymer brushes which may complicate the interactions between the natural humic acids 

surfaces and the bacteria, besides that the probe now is considered soft material and not 

stiff enough to be able to stretch the bacterial surface polymers further distances. The 

similar pull-off distances distribution for both SRHA and SHA interacting with AK1401 

suggests that both humic acids have similar polymer brushes covering their surfaces.  

The first thing that can be noticed from the force histograms of various probes 

interacting with AK1401 is that adhesive forces between the unmodified probe and 

AK1401 are the highest among all interactions with AK1401. The second thing that can 

be seen is that the adhesive forces between the NOM-modified probes and AK1401 

decreased with increasing the complexity of the NOM.  
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Our adhesive forces results for AK1401 are in agreement with the work of 

Johnson et al. (43) on facilitating transport of polycyclic aromatic hydrocarbons by NOM 

in aquifer sediments using column transport experiments. They showed that transport of 

hydrophobic contaminants in the presence of humic substances should be facilitated 

relative to transport of such contaminants alone. That was true for both SRHA and SHA.   

Using the Mann-Whitney Rank Sum Test for the adhesive forces from all the 

experiments with Ak1401 showed that there was a statistically significant difference in            

the values of adhesive forces for all interactions between AK1401 and various probes 

with (P ≤ 0.001).  

4.3.3.4.3 Modeling of Steric Interactions 

The steric interactions model was used to fit the experimental data for the 

approach of various probes to Pseudomonas aeruginosa AK1401. Figure 30 

demonstrates that the steric model fit showed an excellent agreement with the 

experimental data. For the unmodified probe, we used the steric model corresponding to 

the case where only one surface is coated with a polymer brush.   

For the case of P. aeruginosa interacting with NOM-modified probes, we used a 

form of the steric model that was developed for two surfaces coated with (equal) polymer 

brushes. The model showed excellent agreement with the experimental data as shown in 

Figure 35. This agreement suggests that when the two surfaces approach each other, the 

steric repulsion becomes predominant. 

Figure 37 and Figure 38 show another way to verify whether the steric model is a 

good fit for the experimental data. Figure 37 makes a comparison between the average 
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decay length values from the experimental data and the average values of equilibrium 

polymer brush length from the interactions of the various probes with Ak1401. The 

results of using the Mann-Whitney Rank Sum Test showed that there was not a 

statistically significant difference between the average decay length values from the 

experimental data and the average values of equilibrium polymer brush length from all 

the different interactions with AK1401. These results strongly demonstrate that the steric 

model is a good fit for the experimental data. 

Figure 38 makes a comparison between the average values of force at zero 

distance from the experimental data and the average values of force at zero distance 

calculated from the steric model fits of Pseudomonas aeruginosa AK1401 interacting 

with various probes. In all cases the similarity between the forces at zero distance from 

the experimental data and the steric model fits was so clear, with a slight increase in the 

reported values of the force at zero distance from the steric model fits. This 

overestimation is expected since the forces at zero distance of the theoretical fits are 

generated from average values of the steric model fitting parameters. 

Table 7 summarizes the fitting parameters values from the theoretical fits of 

Pseudomonas aeruginosa AK1401 interacting with different modified probes.  It can be 

noticed from the table that in most cases: the higher was the graft density the larger was 

the equilibrium polymer brush length.  

Our results are highly supported by the work of Yamamoto et al. (97). They found 

that the force curve is strongly dependant on the graft density, and the higher was the 

graft density, the larger was the separation where the interactions were observed. They 
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concluded that as the graft density of the polymer increases the graft chains get more and 

more extended.  

The highest graft density value and the largest equilibrium polymer brush length 

were associated with the interactions between the unmodified probe and P.aeruginosa 

AK1401. These characteristics of the interactions between the unmodified probe and 

P.aeruginosa AK1401; of high polymer density along with the strong resistance against 

compression are still not fully understood and difficult to explain and they could be 

related to the dynamic properties of the polymer brush.  
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4.3.3.5 Comparison between Both Pseudomonas aeruginosa Strains 

4.3.3.5.1 Approach Curves 

The repulsive forces of both strains interacting with different types of NOM have 

the same trend. Both strains had higher repulsive forces with PMA and less repulsive 

forces with both SRHA and SHA.  However, in all cases Pseudomonas aeruginosa PAO1 

has stronger repulsive forces and longer decaying distances than Pseudomonas 

aeruginosa AK1401 as shown in Figure 39 and Figure 40.  

The difference in the repulsive forces and decaying distances between both strains 

interacting with various probes is due to differences in the polysaccharide component of 

the Pseudomonas aeruginosa lipopolysaccharide. The A-band polysaccharides of 

Pseudomonas aeruginosa AK1401 are composed of neutral D-rhamnose polysaccharides 

(36). The neutral polysaccharide component of the surface of P. aeruginosa AK1401 

could be responsible for the less repulsive forces of AK1401 compared to PAO1.  

Pseudomonas aeruginosa AK1401 does express the A-band polysaccharides only, 

while Pseudomonas aeruginosa PAO1 coexpress both the A-band and the B-band 

polysaccharides. The A-band and the B-band polysaccharides of P. aeruginosa PAO1 

range up to 25 to 30 KDa in size, while the largest polymers of A-band polysaccharides 

P.aeruginosa AK1401 would be less than 6 KDa in size (36). Hence, it is reasonable that 

the polysaccharides of P.aeruginosa PAO1 would project out from the bacterial surface 

considerably further than the polysaccharides of P.aeruginosa AK1401.  
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Since the PMA surface has a higher charge density than both SRHA and SHA 

surfaces (92), it is expected that PMA-modified probe has higher repulsive forces while 

interacting with both strains if compared to both SRHA and SHA modified probes.  

4.3.3.5.2 Retraction Curves 

The two strains showed differences in their adhesive forces with the different 

NOM-coated probes as shown in Figure 41. Forexample, P. aeruginosa AK1401 has 

higher adhesive forces than P. aeruginosa PAO1 when interacting with the unmodified 

probe. While P. aeruginosa PAO1 has higher adhesive forces than P. aeruginosa 

AK1401 when interacting with both the SRHA and SHA-modified probes.  

  Using the Mann-Whitney Rank Sum Test for the adhesive forces from all the 

experiments of both strains interacting with various probes showed that there was a 

statistically significant difference between the values of adhesive forces for each single 

case from both strains (P ≤ 0.001). The results of using the Mann Whitney Rank Sum 

Test along with our findings suggest that the two strains are very different while 

interacting with unmodified, simple NOM-modified, and complex NOM-modified 

probes. This difference is mainly due to differences in the LPS from both strains.  

The results also showed inconsistency between the behavior of PMA and both 

SRHA and SHA while interacting with the two strains of P.aeruginosa. This finding 

suggests that the surface characteristics of the complex NOM are different from the 

surface characteristics of PMA and that could be due to many factors, one of them is the 

polydispersity of the natural humic acids (92).    
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4.3.3.5.3 Modeling of Steric Interactions 

The steric interactions model was used to fit the experimental data for the 

approach of various probes to both strains of Pseudomonas aeruginosa. The steric model 

fit showed an excellent agreement with the experimental data. The fitting parameters of 

the steric model along with the values of the forces at zero distance from all the 

experiments with both Pseudomonas aeruginosa strains are summarized in Table 8. 

It can be seen from Table 8 that for both strains the largest equilibrium polymer 

brush length was associated with the interactions between both strains and the 

unmodified probe, and that the equilibrium polymer brush length was decreasing with 

increasing the complexity of the NOM. Since both strains are interacting with polymer 

free surface when they are interacting with the unmodified probe, there is a larger 

possibility for the bacterial surface polymer brushes to extend for a longer range of 

repulsion. While in the other cases the surface polymers of the bacteria are interacting 

with other polyelectrolytes. These polyelectrolytes with their own specific surface 

confirmation they tend to have loops and tails in the adsorbed state (92), and hence they 

may have more complicated interactions with the bacterial surface. However, in all cases 

Pseudomonas aeruginosa PAO1 has longer equilibrium polymer brush length than 

Pseudomonas aeruginosa AK1401. This is expected since the A-band and B-band 

polysaccharides of P. aeruginosa PAO1 are much larger in the size (25-30 KDa) than the 

size of the A-band polysaccharides of P. aeruginosa AK1401 (< 6 KDa) (36). 

It can also be noticed from the table that for both strains in most cases: the higher 

was the graft density the larger was the equilibrium polymer brush length, and in all cases 

PAO1 has higher graft density values than AK1401 which can be due to the big 
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difference between the size of polymer brushes covering the surface of PAO1 compared 

to the size of polymer brushes covering the surface of AK1401 (36, 78).    

Our results are highly supported by the work of Yamamoto et al. (97). They found 

that the force curve strongly depends on the graft density, and the higher was the graft 

density, the larger was the separation where the interactions were observed. They 

concluded that as the graft density of the polymer increases the graft chains get more and 

more extended.  

The highest graft density values were associated with the interactions between the 

unmodified probe and both P. aeruginosa strains. The characteristics of the interactions 

between the unmodified probe and P. aeruginosa are still not fully understood and 

difficult to explain and they could be related to the dynamic properties of the polymer 

brush.  

The repulsive forces at zero distance calculated from the theoretical fits of both 

strains interacting with different types of NOM have the same trend. Both strains had 

higher repulsive forces at zero distance with PMA and less repulsive forces with both 

SRHA and SHA.  However, in all cases Pseudomonas aeruginosa PAO1 has stronger 

repulsive forces at zero distance than Pseudomonas aeruginosa AK1401 as shown in 

Table 8.  

The difference in the repulsive forces between both strains interacting with 

various probes is due to differences in the polysaccharide component of the Pseudomonas 

aeruginosa lipopolysaccharide. The A-band polysaccharides of Pseudomonas aeruginosa 

AK1401 are composed of neutral D-rhamnose polysaccharides (36). The neutral 
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polysaccharide component of the surface of P.aeruginosa AK1401 could be responsible 

of the less repulsive forces of AK1401 compared to PAO1.  

Since the PMA surface has a higher charge density than both SRHA and SHA 

surfaces (92), it is expected that PMA-modified probe has higher repulsive forces while 

interacting with both strains if compared to both SRHA and SHA modified probes.  
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5 Conclusion 

We studied the interactions between two well defined strains of Pseudomonas 

aeruginosa and three different NOM-coated surfaces. The two strains showed contrary 

adhesive interactions with the different NOM-coated surfaces. P.aeruginosa PAO1 had 

the highest adhesion with complex NOM while P.aeruginosa AK1401 had the lowest 

adhesion with the complex NOM. Since the LPS structure is the only difference between 

the two strains, it is supposed that the contrary adhesive interactions are due mainly to the 

effect of the LPS structure. 

We demonstrated the effect of PMA as a simple model of the NOM, and both 

SRHA and SHA as two complex types of NOM on the adhesive properties of the two 

strains of Pseudomonas aeruginosa.  The two natural humic acids were very similar in 

their interactions with each of the studied bacterial strains, and different from the 

behavior of PMA. The inconsistency between the effect of both the complex NOM and 

the effect of the simple NOM on both strains of Pseudomonas aeruginosa is an indication 

of different characteristics of the surface polymer brushes. Hence, PMA is not a good 

representation of the natural organic compounds.  

Steric interactions are the dominant interactions that control the approach of the 

unmodified or the modified probes to the surface of both strains of P.aeruginosa. 

However, steric forces are not the only forces which are responsible for the repulsive 

forces in the approach curves; there are other forces such as the electrostatic forces which 

are present and play a role in explaining the repulsion in the force curves.    
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For both strains of Pseudomonas aeruginosa, the force curve strongly depends on 

the graft density: the higher was the graft density, the larger was the separation where the 

interactions are observed. This clearly shows that the polymer chains get more and more 

extended as the graft density is increased. Further studies on the properties of the polymer 

brushes are needed to explain the strong resistance of the high density polymer brushes 

against compression.     

We were able to achieve a successful modification of the silicon probes with iron 

oxide and natural organic matter, in order to be used in examining the interactions 

between the NOM-coated surfaces and the two strains of Pseudomonas aeruginosa. AFM 

images of the NOM coated surfaces were obtained to verify the successful modification 

of the silicon probes with iron natural organic matter. Also reproducible force-distance 

curves of the interactions between the NOM coated surfaces and clean glass slide were 

obtained from three different experiments to verify the successful probe coating 

procedure.   
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