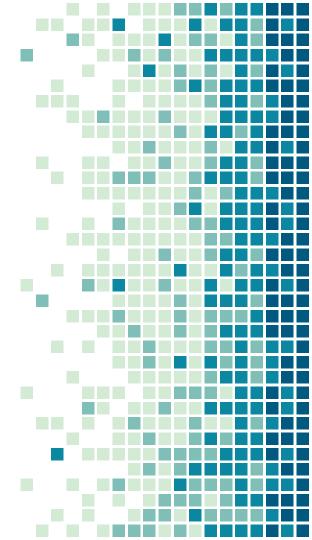

Industry 4.0: Digitization in Danish Industry

Ryan Darnley, Matt DiPlacido, Michelle Kerns, Alexander Kim An Interactive Qualifying Project - Denmark May 2018



Denmark & Industry 4.0

A Background section

Denmark's industrial sector lags behind those of its European counterparts

99% of businesses are SMEs

Shortage of skilled labor and engineers

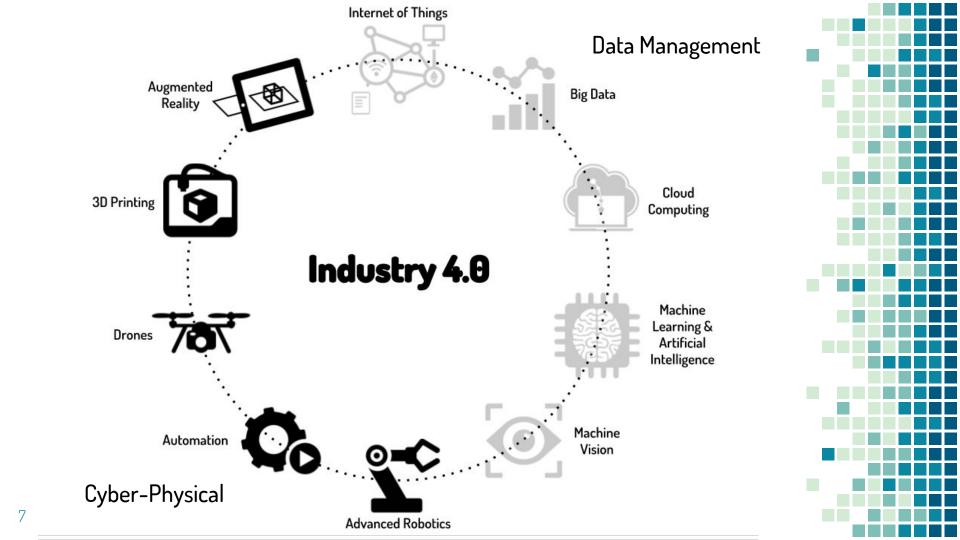
75% of GDP generated by Service Sector

Increase in industrial outsourcing

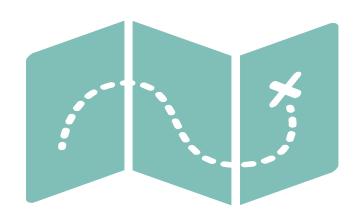
Aspects of Danish culture can help solve some industrial problems

Government Initiatives

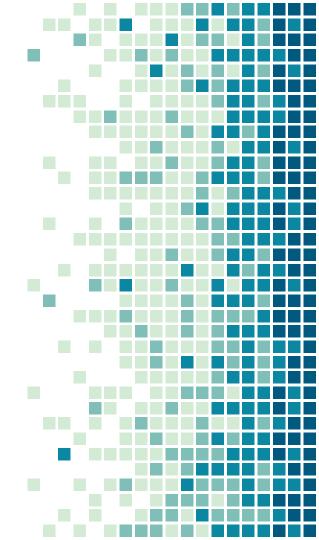
Strong Technological Background Collaborative Social Culture Accelerator Programs for SMEs


Our Project

- 1. Identify company attributes indicative of a successful implementation of Industry 4.0 Technologies
- 2. Recommend companies for participation in the Copenhagen School of Entrepreneurship's Digital Growth Path


Industry 4.0 = Augmented Operations

Increased Productivity



How We Did It

A Methodology section

Objectives

Identify SMEs Involved with I40 Technologies

Determine the
Applications
and
Effectiveness of
Digitization

Evaluate
Characteristics of
Companies Using
140

Determine Method of Assessing I40 Readiness in Companies

Identify SMEs Involved with I40 Technologies

- Mapped companies developing I40 tech
- Mapped companies utilizing I40 tech
- Established connections with companies

Determine the Applications and Effectiveness of Digitization

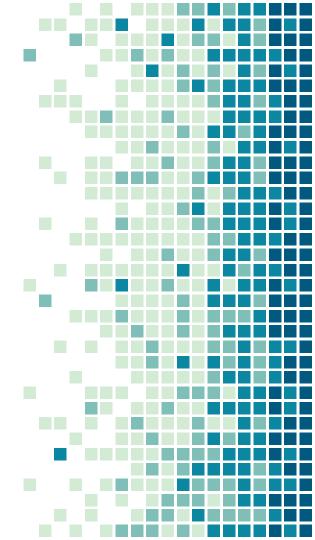
- Acquired product attributes and statements from company representatives
- Performed supplementary research

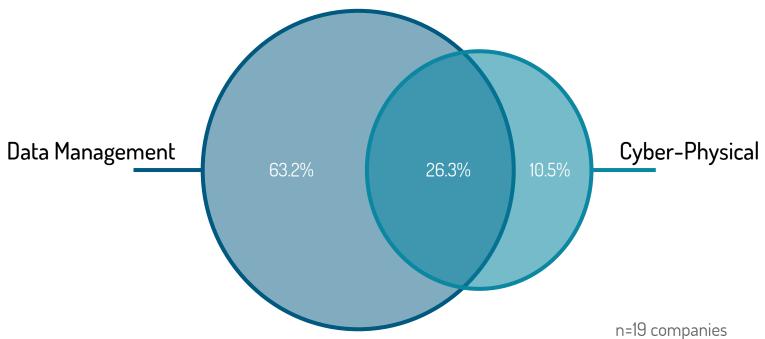
Evaluate Characteristics of Companies Using 140

- Identified benefits and drawbacks of utilizing I40 tech
- Determined the attributes needed for digitization

Determine Method of Assessing 140 Readiness in Companies

Creation of an Industry 4.0 Readiness Assessment Tool





What We Found

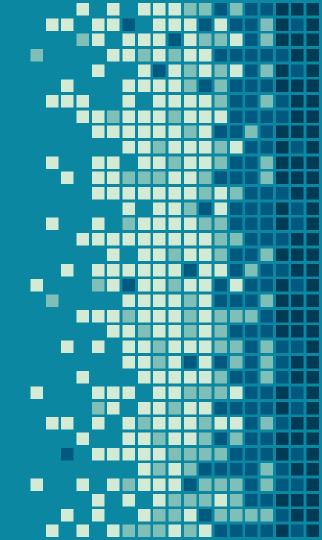
A Findings & Analysis section

Distribution of Industry 4.0 Technologies in Interviewed Companies

Industry 4.0 technologies positively affect company performance

Finding 1: Coordinated data management techs improve business operations

Finding 2: Data management techs are easy to implement Finding 3: Cyber-physical systems expedite traditionally human performed processes



** No human could do what those robots do today

-David Coen, Haarslev Industries

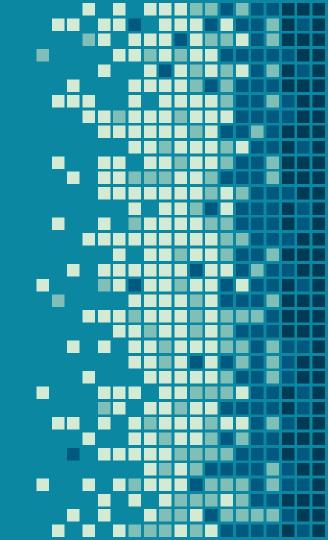
Cultural and societal externalities directly affect the implementation of Industry 4.0

Finding 4: Using I40 tech results in a shift to technical skills, but not a decrease in employment

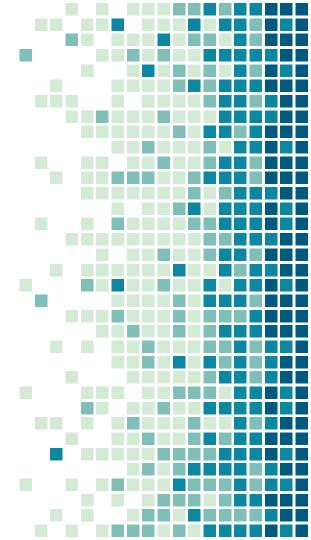
Finding 5: Time and resource constraints prevent companies from investing in digitization

Cultural and societal externalities directly affect the implementation of Industry 4.0

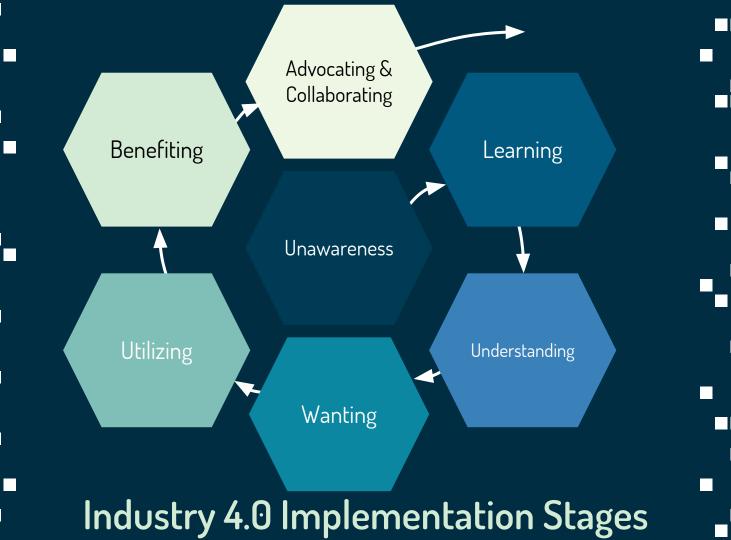
Finding 6: Measures can be taken to decrease fears of cyber attacks from digitization


Finding 7: People are skeptical of 140 due to its new and experimental nature

Industry 4.0 is a leap of faith


-Ole Feddersen, Novo Nordisk CVP

What We Recommend

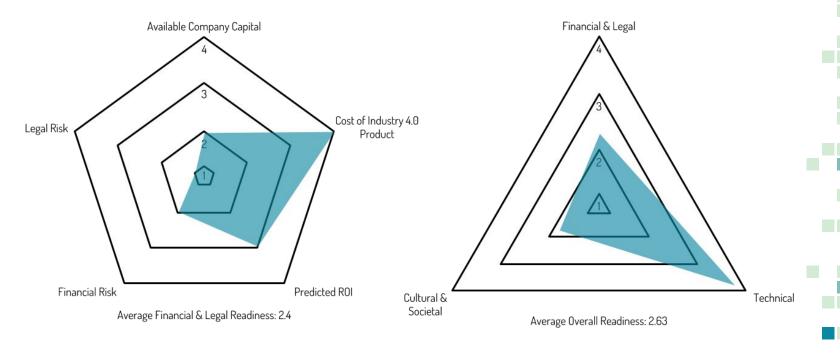

A Recommendation section

For the Digital Growth Path

 We recommend that CSE continue to treat participant and client companies on a case-by-case basis

For the Digital Growth Path

- We recommend that companies exhibit five key attributes before attempting implementation of I40 technologies
- 1. Adequate financial capacities
- 2. Adequate technological infrastructure and background
- 3. Strong connection between management and operator
- 4. Solid understanding of the benefits of digitization
- 5. Desire to innovate



Company 140 Readiness Tool

- Financial and Legal
- Technical
- Cultural and Societal

Financial and Legal Readiness				
Parameters	Score			
Available Company Capital	1 < DKK 2,000	2 DKK 2,000-20,000	3 DKK 20,000-100,000	4 > DKK 100,000
Cost of Industry 4.0 product	1 > DKK 100,000	2 DKK 20,000-100,000	3 DKK 2 000-20,000	4 < DKK 2,000
Predicted Return on Investment	1 > 5 years	2 2-5 years	3 1-2 years	4 <1 year
Financial Risk	1 None identified	2 Some identified	Some identified, limited precautions	4 Many identified, precautions active
Legal Risk	1 No protection, no regulation	Some protection, limited regulation	3 Robust protection, outdated regulation	4 Robust protection, high regulation

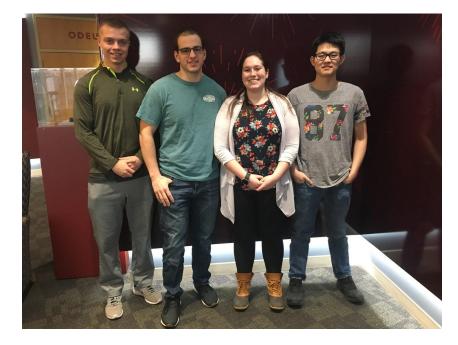
Readiness Tool Example

Recommendations for Encouraging Industry

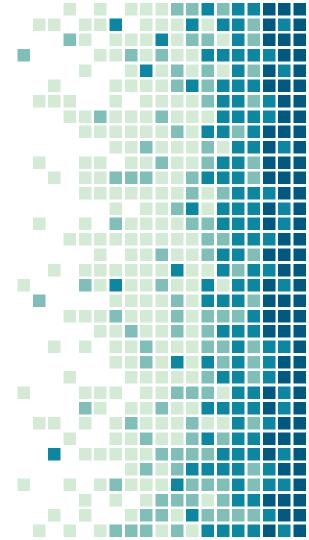
4.0 Adoption in Denmark

- We recommend CSE focuses on improving inter-industry collaboration and communication
- We recommend CSE and other academic organizations increase emphasis on technical education for Danish students and manufacturing employees

Recommendations for Future Research


Perform more interviews
 with representatives
 from company
 demographics that were
 not covered

 Determine possible methods of increasing awareness of Industry 4.0 benefits



Acknowledgments

- CSE, Claus Birkedal, Britta Ravn Bjerklund, Erik Sonne, Natasja Bjørklund and Mads Løntoft
- WPI, Prof. Constance Clark, Prof. Holly Ault, Paige Neumann, Prof. Seth Tuler, Prof. Steven Taylor
- All of our interviewees and their companies
- Xenia Obel, Ivan Butler
- SlidesCarnival & Unsplash

Questions?

Bibliography

AddiFab - Industrial Additive Fabrication. (n.d.). Retrieved from http://www.addifab.com/

Advanced Analytics. (n.d.). Retrieved from https://www.gartner.com/it-glossary/advanced-analytics/

Agca, O., Gibson, J., Godsell, J., Ignatius, J., Davies, C., & Xu, O. (2017). An Industry 4 readiness assessment tool. Coventry, UK: University of Warwick.

Ahluwalia, Yamini. (n.d.). Tool Automation [Digital image]. Retrieved from https://thenounproject.com/term/automatic/59219/

Agubig. (n.d.). Retrieved from http://agubig.com/en/home-2/

Baur, Cornelius & Wee, Dominik. (2015). Manufacturing's next act. Retrieved from https://www.mckinsey.com/business-functions/operations/our-insights/manufacturings-next-act

Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing Maturity Models for IT Management. Business & Information Systems Engineering 1(3), 213-222.

Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective.

International Journal of Information and Communication Engineering 8(1), 37-44.

Burke, R., Mussomeli, A., Laaper, S., Hartigan, M., & Sniderman, B. (2017). The smart factory: Responsive, adaptive, connective manufacturing. Retrieved from

https://www2.deloitte.com/insights/us/en/focus/industry-4-0/smart-factory-connected-manufacturing.html

Business Intelligence. (n.d.). Retrieved from https://www.gartner.com/it-glossary/business-intelligence-bi/

Cai, J., Liu, X., Xiao, Z., & Liu, J. (2009). Improving supply chain performance management: A systematic approach to analyzing iterative KPI accomplishment. *Decision Support Systems* 46(2), 512-521.

Colotla, Ian, & Hoengaard, Peter. (2016). Winning the Industry 4.0 race: How ready are Danish manufacturers?. Copenhagen, DK: Boston Consulting Group, Inc.

The Competitor Monitoring platform made for you. (n.d.). Retrieved from https://e-shoptimizer.com/

CSE - Copenhagen School of Entrepreneurship. (2017). Retrieved from https://cse.cbs.dk/

Custom-made applications. (n.d.). Retrieved from http://www.frontiot.com/en

Damvig 3D Print - Prototyper og Produktion. (n.d.). Retrieved from https://damvig.dk/

De, Prasanta K. (2014). Technological competitiveness of the Danish manufacturing industry: a critical review. South Asian Journal of Management 21(4), 100-119.

Denmark | Data. (2018). Retrieved from https://data.worldbank.org/country/Denmark

Digital Growth Path | Go Grow. (2017). Retrieved from http://go-grow.dk/programme/digital-growth-path/

Dorfman, Peter. (2018). 3 Advances Changing the Future of Artificial Intelligence in Manufacturing. Retrieved from https://www.autodesk.com/redshift/future-of-artificial-intelligence/

Drone inspection Software, Cloud Based Inspection Software. (n.d.). Retrieved from http://scopito.com/

Bibliography Cont.

Emplate. (n.d.). Retrieved from http://www.emplate.it/

Ericsson. (2016). Every. Thing. Connected. A study of the adoption of 'Internet of Things' among Danish companies. San Jose, CA: Author.

Forside - Dansk Drone Kompagni ApS - foto, video, inspektion, kortlægning med nyeste drone-teknologi. (n.d.). Retrieved from http://www.dronekompagniet.dk/

Freudenberg IT. (2014). IT Innovation Readiness Index. Munich, DE: Pierre Audoin Consultants

Geissbauer, R., Vedso, J., & Schrauf, S. (2016). Industry 4.0: Building the digital enterprise. PricewaterhouseCoopers.

Go Grow Helps Startups Grow. (2017). Retrieved from http://go-grow.dk/about/

Gökalp, E., Şener, U., & Eren, P. (2017). Development of an Assessment Model for Industry 4.0: Industry 4.0-MM, presented at International Conference on Software Process Improvement and Capability Determination, Palma de Mallorca, 2017. Palma de Mallorca, ES: Springer International Publishing AG.

Hercko, J., Slamkova, E., & Hnat, J. (2015). Industry 4.0 as a factor of productivity increase, presented at Transcom 2015, Žilina, 2015. Žilina, SK: University of Žilina.

Holm-Hansen, Christopher. (n.d.). Eye Tracking [Digital image]. Retrieved from https://thenounproject.com/term/observe/30117/#

Hoogendoorn, Joris. (n.d.). Drone [Digital image]. Retrieved from https://thenounproject.com/jorishoogendoorn/uploads/?i=118815

Human Capital Analytics Group. (2016). Skills gap in Denmark: investigation of Børsen's top 1000. Frederiksberg, DK: Copenhagen Business School

Icons8. (2013). 3D Printer - Free Web Icon [Digital image]. Retrieved from https://icons8.com/icon/1544/3d-printer

Icons8. (n.d.). Industry Robot Icon [Digital image]. Retrieved from http://www.iconarchive.com/show/windows-8-icons-by-icons8/Industry-Robot-icon.html

Industry 4.0 [Digital image]. (2015). Retrieved from http://www.aethon.com/wp-content/uploads/2015/07/Industry4.0-1024x761.png

Industry 4.0 - Self Assessment. (2015). Retrieved from https://i40-self-assessment.pwc.de/i40/landing/

Industry 4.0: What is it and What Does it Mean for Firms?. (n.d.). Retrieved from https://ipc.mit.edu/research/production/industry-40-what-it-and-what-does-it-mean-firms

Inniti. (n.d.). Retrieved from http://www.inniti.dk/

Jedynak, Eunika. (2015). Small and medium-sized enterprises in Denmark. Acta Universitatis Nicolai Copernici 42(4), 103-114.

Josh. (n.d.). Big Data [Digital image]. Retrieved from https://thenounproject.com/term/big-data/225372/

Kagermann, Henning. (2014). Change Through Digitization - Value Creation in the Age of Industry 4.0. In Management of Permanent Change (pp. 23-45). Springer Gabler, Wiesbaden.

Karahanna, E., Straub, D., & Chervany, N. (1999). Information Technology Adoption Across Time: A Cross-Sectional Comparison of Pre-Adoption and Post-Adoption Beliefs. *MIS Quarterly*, 23(2), 183-213.

Bibliography Cont.

Klaus Poulsen. (n.d.). Retrieved from http://www.roboman.dk/

Larosse, Jan. (2017). Analysis of national initiatives on digitising European industry. Directorate-General Communications Network, Content and Technology.

Lee, In, & Lee, Kyoochun. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440.

Liebrecht, C., Bürgin, J., Benterbusch, J., Kiefer, C., & Lanza, G. (2016). Shopfloor-getriebene Einführung von Industrie 4.0. wt Werkstattstechnik online 106(7/8), 539-543.

Lichtblau, K., Stich, V., Bertenrath, R., Blum, M., Bleider, M., Millack, A., Schmitt, K., Schmitz, E., & Schröder, M. (2015). Industrie 4.0 readiness. Frankfurt, DE: Impuls-Stiftung.

Made in Denmark - er det stadig muligt? (n.d.). Retrieved from http://optipeople.dk/

Manufacturing App Platform - Tulip. (n.d.). Retrieved from https://tulip.co/

Mátyás, Kriztián. (n.d.). Artificial Intelligence [Digital image]. Retrieved from https://thenounproject.com/term/machine-learning/1080491/

Mátyás, Kriztián. (n.d.). Smart Contract [Digital image]. Retrieved from https://thenounproject.com/term/smart-contract/1287873/

Mclennan, Eloise. (2017). Tools of the trade: using Industry 4.0 to drive growth. Food Processing Technology. Retrieved from

https://www.foodprocessing-technology.com/features/tools-trade-using-industry-4-0-drive-growth/

Mell, Peter & Grance, Timothy. (2011). The NIST Definition of Cloud Computing. Gaithersburg, MD: National Institute of Standards and Technology.

Ministry of Industry, Business, and Financial Affairs. (2017). Redegørelse om vækst og konkurrenceevne 2017. Copenhagen, DK: Author.

MM Technology • Industry 4.0 elegant and easy. (n.d.). Retrieved from http://mmtec.io/

Mobley, R. K. (2002). Benefits of Predictive Maintenance. In An introduction to predictive maintenance (pp. 60-74). Woburn, MA: Elsevier Science.

Operator Systems A/S - new location. (n.d.). Retrieved from http://operatorsystems.com/

Pessl, E., Sorko, S., & Mayer, B. (2017). Roadmap Industry 4.0 - Implementation Guideline for Enterprises. International Journal of Science, Technology and Society 5(6), 193-202.

Real-time Production Monitoring Software | Data Collection System for Manufacturing | Blackbird. (n.d.). Retrieved from https://www.blackbird.online/

Rodriguez, M., Libbey, R., Mondal, S., Carbeck, J., & Michalik, J. (2018). Exponential technologies in manufacturing: Transforming the future of manufacturing through technology, talent, and the innovative ecosystem. Deloitte Development LLC.

Robust Industrial Sensors with Electro-Active Polymer tech. (n.d.). Retrieved from http://www.elastisense.com/

Roser, Christoph. (2017). Industry 4.0 [Digital image]. Retrieved from https://www.allaboutlean.com/industry-4-0/industry-4-0-2/

Schröder, Christian. (2016). The Challenges of Industry 4.0 for Small and Medium-sized Enterprises. Bonn, DE: Division for Economic and Social Policy.

Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity manufacturing enterprises. Procedia CIRP 52(1), 161-166.

Bibliography Cont.

Silhouette Attractive engineer using laptop track matte [Video file]. (n.d.). Retrieved from

https://www.videoblocks.com/video/silhouette-attractive-engineer-using-laptop-track-matte-4uh22ptslil4bmu3b

Silhouette Happy young engineer wearing helmet talking to camera [Video file]. (n.d.). Retrieved from

https://www.videoblocks.com/video/silhouette-happy-young-engineer-wearing-helmet-talking-to-the-camera-bnv8tlaixj0i60lj8

Silhouette Young engineer in helmet checking construction drawings [Video file]. (n.d.). Retrieved from

https://www.videoblocks.com/video/silhouette-young-engineer-in-helmet-checking-construction-drawings-rhlcw8poej0i49h8j

Silhouette Young engineer woman reading technical drawings and analyze it [Video file]. (n.d.). Retrieved from

https://www.videoblocks.com/video/silhouette-young-engineer-woman-reading-technical-drawings-and-analyze-it-sxz2yugaej12u5xso

Sommer, Lutz. (2015). Industrial Revolution - Industry 4.0: Are German Manufacturing SMEs the First Victims of this Revolution?. *Journal of Industrial Engineering and Management*, 8(5), 1512-1532.

Tice, Brian P. (1991). Unmanned Aerial Vehicles - The Force Multiplier of the 1990s. Airpower Journal 5(1), 41-55.

timtitim. (2017). Augmented reality [Digital image]. Retrieved from https://github.com/FortAwesome/Font-Awesome/issues/11394

The Tuborg Research Centre for Globalization and Firms. (2016). Danish manufacturing - winning in the next decade. Copenhagen, DK: McKinsey & Company.

University Rankings | Top Universities. (2018). Retrieved from https://www.topuniversities.com/university-rankings

University student exams reading book silhouette - 1080p [Video file]. (n.d.). Retrieved from https://www.videoblocks.com/video/university-student-exams-reading-book-silhouette---1080p-q1ydygf

What is 3D printing? How does a 3D printer work? Learn 3D printing. (n.d.). Retrieved from https://3dprinting.com/what-is-3d-printing/

World Economic Forum. (2018). Readiness for the Future of Production Report 2018. Geneva, CH: Author.

The World Factbook - Central Intelligence Agency. (2017). Retrieved from https://www.cia.gov/library/publications/the-world-factbook/

Yusuf, Bulent. (2018). 10 Types of 3D Printing Technology - Simply Explained. Retrieved from https://all3dp.com/1/types-of-3d-printers-3d-printing-technology/

