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Abstract  
 

The ability to numerically determine the received signal in an ultrasound pulse-

echo system is very important for many ultrasound applications such as tissue 

characterization, complex object recognition, identification of surface topology, and etc. 

The relationship between, on one hand, the output signal from an ultrasound pulse-echo 

system, and, on the other hand, the specified ultrasound transducer and the geometry, 

orientation and location of the reflector, is very complex. Consequently, only by 

numerical modeling can the output signal for a given measurement configuration be 

predicted. Especially when it comes to optimizing the design of an ultrasound system to 

carry out such tasks as identifying objects of specified shapes, determining surface 

topology or alignment of surface, etc., numerical modeling is the only practical way. This 

thesis is concerned with the numerically modeling and optimal design of annular array 

based ultrasound pulse-echo system.  

This thesis describes the implementation of two numerical modeling methods for 

calculating received signal from a transducer in a pulse-echo system. One method is the 

simple, but computationally demanding Huygens Method, based on the Huygens’ 

Principle, and the other one is the computationally more efficient Diffraction Response 

for Extended Area Method (DREAM). The DREAM method operates by dividing the 
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surface of the reflector into a relatively small number (say, a few hundred) of rectangular 

or triangular “tiles” and performing the spatial integration of the diffraction response over 

each tile by an equivalent low pass filtering. In this thesis, the DREAM method is 

implemented using both rectangular and triangular tiles. To determine the optimal tile 

size for the DREAM method for various combinations of transducers size, reflector 

location, etc, the results obtained by DREAM method are compared with the 

corresponding results obtained from the Huygens method as an accurate reference. Both 

graphical and numerical results are presented. The modeling concept is further extended 

to include ultrasound pulse-echo system using planar annular array transducers where the 

calculation for the individual array elements is based on calculation of the received 

signals from planar circular transducers. 

The optimal design of the ultrasound pulse-echo system for object recognition is 

based on the annular array transducer that gives us the flexibility to create a wide variety 

of insonifying fields and receiver characteristics. These fields and receiver characteristics 

can be realized by assigning different delay and amplitude gain values to each array 

element in transmit and receive, respectively. As the first step towards solving the 

optimization problem for identifying a given type of reflector among many possible ones, 

the problem of optimally identifying one out of two specific reflectors is investigated. To 

solve this problem, we propose to find the set of transmit and receive delay values which 

will maximize the energy of the difference signal between array output signals from the 

two reflectors. Two optimization methods have been investigated for the optimal delay 

set, the Global Search Method and the Waveform Alignment Method. The Global Search 

Method operates by searching through all possible combinations of delay values, applied 
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to the individual transmitting elements and the receiving elements of the annular array 

transducer, then calculates the energy of the difference signal between received output 

signals from the two reflectors for each delay value combination. The set of delay values 

that produces the largest energy in difference signal is considered the optimal delay set. 

The Waveform Alignment Method operates by using a time shifted and amplitude scaled 

version of a specific waveform to represent the calculated waveform in the received 

signal matrix which contains the received signal for all combinations of transmitting and 

receiving array elements. Thus, each received signal in the received signal matrix can be 

represented by a delay value and amplitude scale factor. In this thesis, only the delay 

values are used to align these waveforms to get the optimal delay matrix. The results 

obtained by the Global Search Method and the Waveform Alignment Method are 

presented and compared to each other. 
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Chapter 1  

Introduction 
 
1.1  Ultrasound Pulse-Echo Modeling Techniques 

The ability to numerically determine the received signal in an ultrasound pulse-

echo system is very important for many ultrasound applications such as tissue 

characterization, complex object recognition, identification of surface topology, etc. 

There exists very complex relationship between, on one hand, the output signal from an 

ultrasound pulse-echo system, and, on the other hand, the specified ultrasound 

transducer and the geometry, orientation and location of the reflector. As a result, only 

by numerical modeling can the output signal for a given measurement configuration be 

predicted. Especially when it comes to optimizing the design of ultrasound system to 

carry out such tasks as identifying objects of specified shapes, determining surface 

topology or alignment of surface, etc., numerical modeling is the only practical way. 

There are several techniques being applied to model the pulse-echo system, 

including analytical approaches, Finite-Element Method (FEM), Angular Spectrum 

Methods (ASM), and Spatial Impulse-Response Method (SIRM). As we will briefly 

discuss in this section, each technique has its own advantages and disadvantages. 

Analytical approaches, as the name indicates, are based on the analytical 

solutions for the received signal in the pulse-echo system. This type of approaches was 
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investigated by Johnson and Davaney [1] for a planar circular piston transducer 

insonifying an elastic infinite planar reflecting surface strictly at normal incidence. 

When the analytical solutions for the received signals are available, the analytical 

approaches make the computer simulation of the system efficient and general. However, 

analytical formulations do not exist for general transducer and reflector geometries; in 

addition, the analytical approaches can not include such effects as attenuation, 

scattering and refraction; therefore, analytical approaches are not of much interest in 

general purpose modeling. 

The FEM method, which is based on the solution of a complete set of 

fundamental differentiation equations with the restriction of linearity, is a well-

established numerical technique for field computations in complex and heterogeneous 

media. Lerch applied the FEM in the computation of sound fields in fluids and gases 

[2]. His theoretical results was quantitatively verified by measurements of electrical 

impedances of a long parallelepiped piezoceramic bar, mechanical displacements of 

array transducers and the sound field of piezoelectric transducers immersed in water [2]. 

Based on the theoretical framework developed by Lerch, the FEM was also applied to 

model the pulse-echo behavior of ultrasound transducers by Lerch, Landes and 

Kaarmann [3]. In their work, a hybrid scheme was applied, i.e., the FEM is used to 

model the transducer and the reflector as well as their fluid environment to calculate the 

reflected acoustic pressure while the forward and backward wave propagation between 

the transducer and the reflector was calculated via Helmholtz integral. With the FEM, it 

is possible to model very complex, thus more realistic, situations at the price of long 

computation time due to the complex model. Another problem of FEM is that when the 
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source and reflector are far apart, a large number of propagation steps are needed to 

propagate the wavefield from the transducer to the reflector and from the reflector back 

to the transducer. Therefore, the error introduced for each propagation step could 

accumulate to a unacceptably large error. 

The ASM method is based on a decomposition of the acoustic field into 

harmonic plane waves, and this method allows simple analysis of the propagation of 

scalar fields. Orofino and Pedersen discussed a practical angular spectrum 

decomposition method based on the 2-D FFT [4]. The angular spectrum decomposition 

was expressed as a 2-D spatial Fourier transform which, for a fixed temporal frequency, 

is a function of the spatial frequencies of the particle velocity distribution in the x- and 

y-directions. This method enables the decomposition of normal velocity and pressure 

fields radiated by transducers of arbitrary shape into component plane waves with 

amplitudes and propagation directions determined by the temporal frequency and spatial 

frequencies. The ASM based method was also extended to model the received 

ultrasound signals from finite planar targets by Pedersen and Orofino [5]. The 

propagation from source to reflector of a given plane wave component is directly 

achieved by a single phase term, therefore, ASM avoids the accumulative error problem 

encountered by the FEM. The ASM is very useful in some situations, particularly for 

modeling of reflections from planar reflectors of arbitrary size. However, the ASM is 

very computationally intensive when applied to pulse-echo modeling because the ASM 

is based on harmonic waves only. Hence, a temporal Fourier Transform is needed to 

decompose acoustic field into harmonic waves before the ASM can be applied. Another 

drawback of the ASM is that the determination of the spatial frequencies is very 
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complicated because the spatial frequencies are dependent on the geometry of 

transducer and reflector. 

The SIRM method is currently used for calculation of pressure field from a 

variety of transducer types [5]; in a similar fashion, the pulse-echo responses from a 

given transducer due to a point-like scatterer can be found using this method. The SIRM 

can be further extended to the calculation of the received signals due to extended 

reflector surfaces in pulse-echo system. Most of the SIRM applications for the pulse-

echo systems are based on the derivation by Weight and Hayman [6] of the received 

signal from a small reflector surface insonified by a transducer with short pulse 

excitation. Their derivation is based on Rayleigh integral and the principle of acoustic 

reciprocity. Using the results in [6], McLaren and Weight made detailed calculation of 

the received signals arising from solid targets of various size interrogated by short 

pulses of ultrasound propagating in a fluid medium [7]. They also investigated the 

effects of target size, field position and material on the amplitude and shape of the 

received signals. Later, Lhemery developed a model to predict the received signal from 

targets of complex geometry [8], with specific formulations for arbitrary shape targets 

with very high acoustic impedance, arbitrary acoustic impedance and near zero acoustic 

impedance. More details of SIRM will be presented in section 2.2. 

 

1.2  Objectives of the Thesis 

1.2.1 DREAM Method and Huygens Method 

A fast impulse-response based numerical modeling tool, the Diffraction 

Response from Extended Area Method (DREAM), was developed by Jespersen, 
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Pedersen, and Wilhjelm [9]. The DREAM is a SIRM based method. The acoustic 

principle behind DREAM is the same as used in [6, 7, 8]. The DREAM is based on 

linearity and operates by dividing the surface of the reflector into a relatively small 

number (say, a few hundred) of rectangular or triangular “tiles”. The spatial integration 

of the diffraction response over each tile is then performed by an equivalent low pass 

filtering. The DREAM method is able to efficiently calculate the received signal from a 

given ultrasound transducer due to a specified reflector at a specified location and 

orientation. 

The DREAM method using rectangular tile was implemented as part of the PhD 

thesis of S.K. Jespersen at Technical University of Denmark [10]. In his work, he 

compared the simulation results obtained using DREAM method with the results 

obtained using other simulation techniques, such as the angular spectrum method. For 

all the simulations, the transmitting and receiving transducers are both circular planar 

transducer with radius of 12.7mm. 

The DREAM method can also be implemented using triangular tiles. The use of 

triangular tiles solves two inherent problems with the implementation of rectangular 

tiles. First, it eliminates the small error introduced by the least squares approximation in 

the delay linearization for the rectangular tiles, as will be discussed in the next chapter. 

Second, the triangular tile can be used to tessellate a specific reflector surface more 

accurately than the rectangular tile. Therefore, one of the objectives of this thesis is to 

implement and evaluate the DREAM using triangular tiles. Furthermore, we would like 

to investigate the performance of the DREAM method over a wider range of simulation 

scenarios, that is, for more types of reflectors and for more different combination of 
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transmitting and receiving transducers. A simpler, but slower, method based on 

Huygens’ principle, namely, Huygens method, is used as benchmark to evaluate the 

results obtained by the DREAM method. The Huygens method is based on the 

integration of the diffraction response from a very large number of micro-tiles which 

make up the surface of the entire reflector.  

 

1.2.2 Optimal Design of Ultrasound System 

The modeling concept of ultrasound pulse-echo system can be extended to array 

transducers. With the DREAM method as an efficient modeling tool, the received signal 

from any array element due to transmission with any array element can be readily 

calculated, based on the superposition of the received signal from planar circular 

transducers. With array transducers, a large number of different acoustic fields can be 

produced by varying the relative excitation delay and the amplitude scale factor for the 

individual transmitting elements. In a similar fashion, a large number of receiver 

characteristics can be achieved. By customizing the acoustic field and receiver 

characteristics of an ultrasound pulse-echo system with annular array, it may be 

possible to develop an acoustic system which can be optimized in the terms of 

identifying a given object or interface among a limited set of objects or interfaces. 

Therefore, another objective of the thesis is to investigate the optimal design of 

ultrasound system for such tasks as identifying objects of specified shapes, determining 

surface topology or alignment of surface. 
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1.3  Contributions of the Thesis  

The original work of this thesis has made contributions in the following aspects: 

•  The Huygen method is implemented to model the output signal of a pulse-

echo system and some important implementation issues are investigated. 

•  The DREAM method is implemented using both triangular and rectangular 

tiles. The segmentation and the delay interpolation, which are the two most important 

aspects in the practical implementation of DREAM, are improved relative to the 

implementation in [9] to generate more accurate results for more general simulation 

scenarios, especially, when the transmitting and the receiving transducers are of 

different size. The issue of finding the optimal tile size for DREAM method is 

investigated in details. 

•  The results obtained by DREAM method are evaluated, in terms of accuracy 

and computation time, by comparing to those obtained by Huygens method for a variety 

of simulation scenarios. 

•  Two methods, the Global Search Method and the Waveform Alignment 

Method, are implemented as the first step towards the optimal design of ultrasound 

system in terms of identifying a given object or interface among a limited set of objects 

or interfaces. The optimal delay matrix is obtained as a preliminary solution to 

differentiate between two specific interfaces by optimizing the delay values assigned to 

the elements in the array.  
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1.4  Outline of the Thesis 

This section describes the overall content of the thesis. Chapter 2 and Chapter 3 

provide background material including a description of the pulse-echo system, the 

modeling of pulse-echo system and the implementation aspects of such system. Chapter 

4 and Chapter 5 present and evaluate the simulation results obtained by Huygens 

method and by the computationally efficient DREAM method, respectively. More 

results are included in Appendix A and Appendix B rather than in the individual 

chapters, in order to keep the main text concise. In Chapter 6, the modeling concept has 

been extended to annular array system. It is investigated how to optimally design an 

ultrasound system with respect to its ability to identify a given object or interface 

among a limited set of objects or interfaces. Chapter 7 presents the conclusion and 

future research work related to the work of this thesis. Each major chapter of this thesis 

is individually summarized below for the convenience: 

Chapter 2: 

The ultrasound pulse-echo system is briefly discussed. Definition of Pulse-echo 

Diffraction Impulse Response is presented to simplify the formulation of the received 

electrical signal in pulse-echo ultrasound systems. Then, the multi-rate algorithm, 

which is used to numerically compute the pulse-echo diffraction impulse response, is 

described. Two methods, which are used to calculate the received signal in pulse-echo 

systems from extended area reflectors, are introduced: Huygens method and Diffraction 

Response for Extended Area Method (DREAM). Finally, the modeling concepts are 

extended to calculate the received signal from individual array elements in annular array 

system. 
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Chapter 3: 

The details about the implementation of ultrasound pulse-echo simulation 

system are discussed in this chapter. First, the velocity potential impulse response as 

well as the diffraction response for one single field point are derived. Then, the 

Huygens method to calculate the received signal from extended reflector is discussed. 

Next, the computational efficient DREAM method is described based on the concepts 

of segmentation and delay interpolation. Finally, the mechanism for the simulation 

coding is described in term of efficiency. 

Chapter 4: 

Different aspects of the Huygens method are discussed in this chapter. First, 

Huygens method based on the integration of the response of central point of the micro-

tile is compared with Huygens method based on the integration of the response of 

corner point of the micro-tile. Next, the optimal micro-tile size which can be used by 

Huygens method to produce results with good accuracy is investigated. 

Chapter 5: 

The optimal tile-size, which can be used by DREAM method to produce results 

with good accuracy, is explored. The relationship between, on one hand, the DREAM 

Error, the energy of the received signal, and the normalized DREAM Error for a small 

reflector, and, on the other hand, such factors as the radial position of the reflector, the 

tilt angle of the reflector and the radii of the transducers are illustrated. Finally, the 

received signal from small flat reflectors, large tilted flat reflectors and large curved 

reflectors is calculated by the DREAM method (T-DREAM and/or R-DREAM), using 

optimal tile size. The results are calculated for different combinations of planar circular 
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transducers and evaluated by those obtained by Huygens method in terms of accuracy 

and computation time. 

Chapter 6: 

A brief introduction is given to the concept of the optimal design of ultrasound 

system, in the terms of identifying a given object or interface among a limited set of 

objects or interfaces. Two methods are introduced: the Global Search Method and the 

Waveform Alignment Method. Both methods are applied to find the best transmit and 

receive characteristics of the array transducer in the form of the optimal delay matrix, to 

most reliably differentiate between a tilted flat surface and a convex curved surface, 

based on a 3-ring annular array system. The Waveform Alignment Method is also 

applied based on a 6-ring annular array system. All the results are compared.  In 

addition, the Waveform Alignment Method is applied to find the optimal delay matrix to 

most reliably differentiate between a tilted flat surface and a concave curved surface, as 

well as between a convex curved and a concave curved surface, based on both a 3-ring 

annular array system and 6-ring annular array system. All the results are compared. 



 11

 

Chapter 2  

Modeling of Ultrasound Pulse-

Echo System 
 
 

The ultrasound pulse-echo system is the basis for most practical applications of 

ultrasound as images of local backscatter level (B-mode images) are readily generated 

using linear array transducers. The first section of this chapter begins with descriptions 

of an ultrasound pulse-echo system, introducing the operation of such a system, as well 

as the importance of numerical modeling of the system for quantitative analysis. In 

section 2.2, a term Pulse-Echo Diffraction Impulse Response is defined to simplify the 

formulation of the received electrical signal in pulse-echo ultrasound systems, followed 

by section 2.3 where a multi-rate algorithm, which is used to compute the pulse-echo 

diffraction impulse response, is described. Then the Huygens method and the 

Diffraction Response for Extended Area Method (DREAM), which are used to calculate 

the received signal in pulse-echo systems from extended area reflectors, are introduced 

in sections 2.4 and 2.5. Finally, in section 2.6, the modeling concept is expanded to 

calculate the received signals from individual elements in an annular array transducer. 
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2.1  Introduction 

Sound is mechanical energy transmitted by pressure waves in a medium. Sound 

waves, whose frequency is greater than 20 KHz, are termed ultrasound. The word 

transducer denotes any device that is used to convert signals or energy from one energy 

form to another.  In the context of this thesis, the term transducer refers to the ultrasonic 

transducer that converts acoustic signals to electrical signals and/or electrical signals to 

acoustic signals [11]. 

 

object
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receiver
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object
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Figure 2.1: Illustration of an ultrasound pulse echo system. 

 
When an ultrasonic transducer transmits short-duration acoustic pulses into a 

medium containing a reflecting object, the pulses undergo reflection at the surface of 

the object which gives rise to echo signals returning to the receive transducer [11].  

Such a system is called ultrasound pulse-echo system and is illustrated in Figure 2.1 in 

which the same transducer is used in both transmission and reception. The ultrasound 

transducer is typically implemented by using a piezoelectric layer with electrodes on 

each side. A piezoelectric transducer is a resonant device which has bandpass filter 
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characteristics. The excitation signal from a pulser/receiver is typically a large voltage 

spike, which can be modeled by a delta function. 

The ultrasound pulse-echo system is the basis for most practical applications of 

ultrasound as images of local backscatter level (B-mode images) are readily generated 

by using linear array transducers. In many situations, pulse-echo ultrasound is the only 

practical way that ultrasonic imaging, the most common qualitative ultrasound 

application, can be performed. Ultrasound imaging is carried out in both medical 

ultrasound and non-destructive testing. Proper development of quantitative ultrasound, 

on the other hand, often requires that the received signal in a pulse-echo system be 

determined. Quantitative ultrasound applications include tissue characterization, 

complex object recognition and identification of surface topology.  Unfortunately, it is 

quite difficult to efficiently determine the received electrical signal in pulse-echo 

ultrasound systems because of the complexity of generation, propagation, 

backscattering and reception of the ultrasound fields in pulse-echo systems. Therefore, 

efficient computational tools for pulse-echo system are essential to the progress of the 

quantitative medical and industrial applications of ultrasound. 

The relationship between the output signal from an ultrasound pulse-echo 

system on one hand and the excitation signal, the geometry, properties and location of 

the ultrasound transducers and size, geometry, location and orientation of the reflector 

on the other hand is very complex, so that only by numerical modeling can the output 

signal for a given measurement configuration be predicted. Especially when it comes to 

optimizing the design of ultrasound system to carry out such tasks as identifying objects 

of specified shapes, determining surface topology or alignment of surface, etc., 
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numerical modeling is the only practical way. The factors that influence the received 

signal include: the excitation signal; the geometry, location, electro-acoustic transfer 

function of the transmit and receive transducers; the size, shape, surface geometry, 

interface orientation, location of the reflector; and the effect of attenuation, absorption, 

refraction and non-linearity of the coupling medium [9]. 

As described in section 1.1.1, there are several modeling techniques being 

applied to model the pulse-echo system: 1) analytical approaches; 2) Finite-Element 

Method (FEM); 3) Angular Spectrum Methods (ASM), and 4) Spatial Impulse-

Response Method (SIRM). The Diffraction Response for Extended Area Method 

(DREAM method) which is the main topic of this thesis is based on the impulse-

response based approach. DREAM modeling utilizes the diffraction responses derived 

from the velocity potential impulse responses of the transmitting and receiving 

transducers as will be discussed in section 2.2.  The modeling concept has been 

extended to calculate the received signals from individual elements in an annular array 

transducer, described in section 2.6. 

 

2.2  Diffraction Response Formulation 

It is well known that a sound field from a baffled planar piston source in a fluid 

can be accurately described by the Rayleigh integral. For a source with a radiating 

surface S and a normal particle velocity function ),( tru sn

r
, the Rayleigh integral for 

time-dependent velocity potential ( , )r tφ
r

 is given by [12 – 14]  
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parameter c is the sound speed in the homogeneous propagation medium. If all of the 

points on the source vibrate with equal amplitude and in phase, i.e., the vibration of the 

piston is uniform, then )(),( tutru nsn =
r

 on S and zero outside, and (2.1) can be 

expressed as: 

),()(
||2

)/||(
),( trhtudS

rr

crrtu
tr n

S s

sn r
rr

rr
r

⊗=
−
−−

= ∫ π
φ    (2.2) 

where ⊗  is the convolution in time-domain, and ( , )h r t
r

 is the spatial impulse response 

of the velocity potential and defined as [14] 
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where 0ρ  is the density of the medium in front of the transducer. From (2.4), it is not 

difficult to understand why the method discussed above is named the “Velocity 

Potential Impulse Response Method ” or just the “Impulse Response Method ”.  

The impulse response method has also been applied to calculate the received 

signal in a pulse-echo system. The principle of acoustic reciprocity [16, p. 172] is the 

basis for the following derivation. One form of the principle states that if the locations 

and orientations of a small source and a small receiver are interchanged, the received 
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signal will remain the same. For pulsed radiation, the principle is stated as [6]: “For a 

given transducer in reception, the output voltage waveform due to a pulse emitted at a 

point is identical to the pressure waveform at that point resulting from transmission of 

the same pulse by the transducer.” 
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Figure 2.2 Illustration of the simplest pulse-echo system with point scatterer as reflector. 

 
The first step towards determining the received signal in a pulse-echo system is 

to calculate the received signal due to small reflector surface with dimensions much 

smaller than a wavelength, i.e., point scatterer. The situation is illustrated in Figure 2.2. 

The point scatter is at point r
r

 and is subjected to the incident pressure field ( , )ip r t
r

. 

Equation (2.4) gives the formulation for ( , )ip r t
r

 at point r
r

. It can be assumed that the 

incident field is locally plane if it is observed over a very small region. It is also 

assumed that the impedance of the point scatterer is either zero or infinite; therefore, the 

reflected pressure magnitude at the surface of the point scatterer is equal to the incident 

pressure magnitude. According to the principle of acoustic reciprocity, the received 

signal for the receiving transducer can be calculated by assuming the point scatterer acts 
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as a point source. The point source is characterized by its surface velocity ),( trus

v
, 

which is [16, p. 126] 
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and the surface velocity of the point source will create the reflected velocity potential 

over the surface of the receiver [17, p. 298-303], 
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where r’ is the distance from the point scatterer to the observation point on the 

transducer surface and dA is the small surface area of the point scatterer. By combining 

(2.4) and (2.6), the reflected pressure on the transducer, ( , )rp r t
r

, can be found as: 
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In equation (2.7), ),( tr
r

θ is the angle between the unit normal vector of the reflector 

surface and the particle velocity vector at r
r

; Therefore, the output voltage, ),( trdvr

v
, 

due to the point scatterer is: 
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where ( )rE t  is the acoustic-electrical impulse response of the receiving transducer. 

With several straightforward operations and applying equation (2.7), equation (2.8) can 

be rewritten as [6, 9] 
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where )(tun  is the uniform particle velocity on the surface of  the transmitter and 

),( trht

r
 and ( , )rh r t

r
 are the velocity potential impulse response of the transmitter and 

receiver, respectively. Now, the received signal due to a small reflector surface with 

dimensions much smaller than a wavelength can be expressed as (2.10) by application 

of (2.9) (multiplied by two since the small reflector is now part of an extended, locally 

smooth reflector) [8, 9]: 
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If we express un(t) as )()()( tEtvtu texcn ⊗=  and then define )()()( tEtEtE rt ⊗=  where 

Et(t) is the acoustic-electrical impulse response of the transmitting transducer and vexc(t) 

is the excitation voltage applied to the transmitting transducer,  equation (2.10) can be 

rewritten as: 
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This result, in a similar format, was originally derived by Weight and Hayman, and 

some measurement results were presented [6]. Those measured results, using short 

pulses and small targets, are consistent with the theoretical results based on the 

reciprocity between transmission and reception. Figure 2.3 illustrates one of the 

experimental results obtained in [6]. The transducer is 8mm radius disk of PZK backed 

with tungsten-epoxy composite and the target is 0.8mm diameter axial target at 20mm 

range. The predicted result in part (b) agrees well with the measured result in part (a), 
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apart from a low-frequency component, which according to the authors is due to “radial 

mode reverberation in the transducer” and “the limited dynamic range of the transducer 

(~ 55dB)” [6], as well as the limited bandwidth of the transducer.  

    
(a)      (b) 

Figure 2.3 Comparison of the experimental output voltage (solid line in part a) and the theoretical 
prediction (broken line in part b) from 0.8mm diameter axial target at 20mm range. The transducer 
is 8mm radius disk of PZK backed with tungsten-epoxy composite [6]. 

 
To simplify the notation in (2.11), the Pulse-Echo Diffraction Impulse Response 

is defined as: 
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Further simplification of (2.11) is achieved by: i) assuming that )()( ttE δ=  and 

)()( ttvexc δ= . Although these assumptions are not realistic, they do not limit the 

practical value of the approach because the realistic functions for )(tE  and )(tvexc  can 

be convolved onto the calculated response at any time in the process; ii) approximating 
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to equation (2.11), the resulting expression becomes: 
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2.3  Computational Strategies for Calculating the Diffraction Response 

From equations (2.13), it can be seen that it is will not be difficult to obtain the 

received signal in pulse-echo ultrasound system for a very small reflector surface as 

long as the diffraction response can be calculated. With the definition of diffraction 

response in equation (2.12), we know that the key to calculate the diffraction response is 

to obtain the velocity potential impulse response of the transducer. Analytic 

formulations of the velocity potential impulse response for a planar piston transducer 

will be presented in section 3.1.1. As will also be illustrated in section 3.1.1, the 

bandwidth of the velocity potential impulse response is quite large, especially when the 

field point is near the transducer axis. Therefore, high sampling rates such as 6.4Ghz, 

3.2GHz, etc., are required to avoid aliasing effect. However, since the frequency of our 

interest is from near dc to 15.625MHz, such high sampling rates are excessive in the 

final results, and we can decrease the sampling rates of the velocity potential impulse 

response to save computational sources. Therefore, a multi-rate digital signal 

processing algorithm is used to calculate the velocity potential impulse response. The 

procedure of the algorithm is briefly described as following [15]: 

1. Analytical solutions to velocity potential impulse response have been found 

for a number of transducer geometries [9], such as a planar circular piston [18, 19], a 

rectangular planar piston [20], a spherically curved rectangular strip [21], a spherically 

focused circular piston [22] and a triangular piston [23]. These analytical solutions are 

the basis for further signal processing. 

2. The analytical solutions of the velocity potential impulse response must be 

sampled or discretized before further signal processing procedure can be carried out. 
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There are many types of sampling, including nonuniform sampling, uniform sampling, 

random sampling and multiple-function uniform sampling [24]. We have used uniform 

(periodic) sampling. The frequency f is the sampling rate and is a fundamental 

consideration in many signal processing techniques and applications. It often 

determines the convenience, efficiency and/or accuracy with which the signal 

processing can be performed. In some cases, it may be necessary to convert the 

sampling rates of the signals in the system from one rate to another. Such systems are 

referred as multirate system [24].  

The first step to sample the analytical solution of the velocity potential impulse 

response is to specify the minimum global sampling rates fsm based on different 

applications and the error level allowed. Next, the maximal duration of the velocity 

potential impulse response is determined. For a planar circular transducer of radius a, 

the duration of the velocity potential impulse response, t∆ , is always less than the 

travel time of the wave across the transducer surface, cat /2max =∆ , where c is the 

sound speed as defined in equation (2.1). Based on the specified minimal global 

sampling frequency fsm and the maximal duration of the velocity potential impulse 

response maxt∆ , the maximum sample sequence length N for a specific transducer can be 

obtained as smftN ×∆≥ max , which guarantees the sampling rates for all observation 

points are higher than or equal to fsm. Then the local sampling frequency fsl for a specific 

field point is determined by the duration, t∆ , of the velocity potential impulse response 

at that point and the N: tNf sl ∆= / . However, in order to achieve a more efficient 

down-sampling scheme by limiting the number of sampling rate values, the velocity 
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potential function is sampled at a global sampling frequency sgf , which is defined to be 

an even multiple of the predetermined minimum global sampling rates fsm. The chosen 

sampling rate for a given observation point is the largest global sampling rate less than 

or equal to the local sampling frequency, fsl, of that point [15]. More details and 

quantitative analysis will be presented in Chapter 3 “Implementation for simulation 

system”.  

3. The global sampling rates used in step 2 are much higher than the range of 

frequencies of interest. Therefore, the velocity potential function obtained in discrete 

form in step 2 can be low-pass-filtered and decimated to decrease the sampling rate. 

This results in a reduced number of samples, which saves significant amount of CPU 

time and computer memory without decreasing the accuracy of the signal processing. 

The digital process that converts the sampling rate of a signal from a given rate to a 

lower rate [24] is referred to as Decimation. If it is necessary, this step can be repeated 

with different down-sampling rates. The final sampling rate is the same for all 

observation points and depends on the specific application. For the calculation of the 

velocity potential function and the received signal, only a single lowpass digital filter 

was designed with a given set of normalized design parameters. The passband and 

stopband cutoff frequencies of such a filter vary with the sampling frequency of its 

input sequence. Such implementation simplifies the design work, saves space when 

storing the filter coefficients and creates a more efficient decimation calculation.  

For the DREAM algorithm, a Linear-Phase Digital Lowpass Filter was chosen 

because of the phase-sensitivity of pulse-echo ultrasound system. After the LPF is 

designed, the impulse response of the filter in time-domain as well as frequency-domain 
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response should be checked because the segmentation algorithm following the LPF and 

the decimator is sensitive to the amplitude characteristics of the time-domain response 

as it tries to find the peak values of the amplitude of the response. 

After the velocity potential impulse responses are obtained for the transmitting 

and the receiving transducers, the two velocity potential impulse responses are 

convolved, then the results of the convolution is differentiated twice to obtain the 

diffraction response as in given (2.12). Because of the high final sampling rate used in 

multi-rate algorithm, specifically 400MHz, the straightforward digital differentiation 

method can be applied with acceptable error level. This will be discussed in Chapter 3. 

Therefore, the procedure to obtain the diffraction response from the velocity potential is 

very straightforward. Figure 2.4 illustrates the whole procedure to obtain the diffraction 

response. It is noted that step 1 and step 2 are carried out only once for a specific 

simulation scenario. Step 3 to step 7 are carried out for each field point. 
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Figure 2.4 Flow chart of the calculation of diffraction response. 
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2.4  Huygens Method 

As discussed in section 2.2, the received signal from a point scatterer in a pulse-

echo system is obtained using the velocity potential impulse response method. Such 

method can be expanded to calculate the received signal from an extended reflector. 

With the assumption of linearity, that is, all effects due to multiple scattering, angle 

dependent reflection coefficients, etc. are excluded, the received signal from an 

extended reflector is just the integration or summation of the responses obtained by 

equation (2.13) over the reflector surface, as shown in (2.14): 

∑∫ ∆== AtrDrAdAtrDrAtv
Ar ),()](cos[),()](cos[)( 11

rrrr
θθ   (2.14) 

The most straightforward way to implement (2.14) is to divide the reflector 

surface into a large number of planar small surface elements, calculate the responses 

from each point and sum the responses. With this approach, it will be possible to obtain 

the received signal as long as the diffraction response is calculated. This method will be 

referred to as Huygens method.  

Huygens’ principle [25] states that, for a plane vibrating surface, every point 

may be considered the source of an outgoing spherical wavelet and that the field at an 

arbitrary point can be constructed from the superposition of these wavelets. As 

discussed in section 2.2, the calculation of the diffraction response is based on Rayleigh 

integral which is a special case of Huygens principle, in which the radiating source and 

boundary lie in a plane. Therefore, the method is named after Huygens. 
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2.5  DREAM Method 

Huygens method described in last section is straightforward to implement. The 

disadvantage of it is that the size of the surface elements must be chosen very small to 

satisfy the assumption of point source behavior. Therefore, then the number of the 

integrated points is very large, and thus the computation time to obtain the received 

signal for the whole reflector is quite long. 

A new approach to efficiently calculate the received signal due to an extended 

reflector of arbitrary geometry has been derived by Professor Pedersen at Worcester 

Polytechnic Institute [9]: the Diffraction Response for Extended Area Method (DREAM 

method). It is based on the velocity potential impulse response and the basic idea is: 

Divide the reflector surface into planar reflector elements (tiles) of moderate 

dimensions, such that the tessellated tiles are chosen to approximate the reflector 

surface well. Then calculate the received signal contribution from each tile and sum the 

received signals. This overall principle is identical to the Huygens method, but the 

DREAM allows for much larger tiles, thus much less computation time. The problem 

becomes how to obtain the received signal from a moderate size flat reflector tile based 

on the diffraction responses of points on the tile plane, specifically, the corners and the 

center of the tile. As will be shown in section 2.5.1 and section 2.5.2, the spatial 

integration formulation in equation (2.15) and (2.25) for obtaining the received signal 

from a moderate size of the tile is replaced by a time domain filtering of a single 

diffraction response, as in equation (2.22) and (2.30). The time-domain filters are 

determined by the delay difference of the responses from the corners of the tile. At 
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present, the DREAM is implemented for the pulse-echo system in which the transmitter 

and receiver are planar circular piston transducers. However this algorithm can be 

applied to transmitting and receiving transducers with different geometry.  

The DREAM algorithm has been implemented with both rectangular and 

triangular tiles, as will be discussed in following subsections.  

 

2.5.1 Rectangular-tile-based DREAM (R-DREAM) 

Figure 2.5 illustrates the pulse-echo system with a reflector in the form of a 

single rectangular tile. The side lengths of the tile are U and V in the u-direction and v-

direction, respectively. It is noted that the rectangular tile is drawn much larger than it 

should be for the purpose of clarity. By applying (2.14), the received signal due to the 

single rectangular tile is 

   ∫ ∫∫ ∫ ==
U VU V

tile dvdutvuDrAdvdutvuDvuAtv
0 010 01 ),,()](cos[),,()],(cos[)(

r
θθ      (2.15) 

where ),( vuθ  is the angle between the unit normal vector of the tile surface and the 

particle velocity vector at the position of the tile. Because the tile surface is planar, the 

),( vuθ  is approximated as  

nzrvu
rr

•=≅ ˆ)(),( θθ      (2.16) 

where ẑ  is a unit vector in the z-direction and n
r

is the unit normal vector of the 

reflector surface. The basis for this approximation is the fact that the plane waves which 

make up the actual field from the transducer propagate mainly in the z-direction as long 

as the aperture of the transducer, measured in wavelengths, is large. 
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Figure 2.5 Illustration of the pulse-echo system with s single rectangular tile. 

 

During the implementation of diffraction responses of the individual field 

points, it is found that, for points situated not too far away from each other, the 

responses are quite similar. The responses have similar shape or waveform, similar 

amplitude, except for different delays. (Detailed discussion and illustrations will be 

presented in section 3.2 “Implementation of DREAM”, and an example of pulse-echo 

diffraction responses from four corners of a 1mm*1mm tile will be presented in Figure 

3.8). Therefore, the diffraction response of the center of the rectangular tile, with the 

propagation delay removed, can be used to approximate the diffraction response of the 

field points within the small rectangular area shown in Figure 2.5, apart from the 

roundtrip propagation delay associated with each field point. It is also possible to 

linearize the delay of the diffraction responses over the rectangular area, i.e., to find a 

delay linearization plane to represent the delay of individual diffraction response as a 

linear function of its coordinates u and v, based on the diffraction responses of the four 
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corners of the rectangular tile. For the delay linearization, the common propagation 

delay from transducer to tile and back is removed. 

1τ

τ

3τ

4τ
2τ

u

vdelay linearization plane

V

U
 

Figure 2.6  Delay linearization plane for the delays for the corners of a rectangular tile. 

 
From planar geometry, we know that only three points are needed to specify a 

plane. Now there are four delay values available to specify the delay linearization plane, 

which means it is over-determined. A Least Mean Square Error (LMSE) method is 

applied to find an adaptive delay linearization plane which minimizes the mean square 

error of the four corners’ delay values of the rectangular tile with respect to the delay 

linearization plane [9]. The plane is shown in Figure 2.6 and defined as  

vuvu vu
c Γ+Γ+= 1),( ττ      (2.17) 

where uΓ  and vΓ  are the delay slopes in the u and v-directions. Using LMSE method, 

we can derive that [10, section 3.1.2]: 

)(
2

1
4231 ττττ +−+−=Γ

Uu  

)(
2

1
4231 ττττ ++−−=Γ

Vv  

and  
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]3[
4

1
43211 τττττ −++=c      (2.18) 

The parameters 1τ , 2τ , 3τ , 4τ  are the delays for diffraction response of the four corners 

of the rectangular tile shown in Figure 2.5. With (2.17), the diffraction response for 

individual field points on the tile plane, ),,( tvuD , can be expressed as: 

)),((),(),,( 0 vuttrDtvuD center τδ −⊗=
r

    (2.19) 

where ),(0 trD center

r
 means the diffraction response of the individual field point at the 

center of the rectangular tile, with the propagation delay from the transducer and back 

removed. By means of (2.19), (2.15) becomes: 
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  (2.20) 

It is easy to find, based on (2.17), that 

)()()()),(( 1 vtuttvut vu
c Γ−⊗Γ−⊗−=− δδτδτδ    (2.21) 

With some straightforward operations on (2.20), the overall response from the 

rectangular tile can be found as: 

)()(),()](cos[)( 101 tFttrDrAtv c
centertile ⊗−⊗= τδθ
rr

  (2.22) 

where F(t) is the delay filter defined as: 

)()(   )()()(
00

tXtXdvvtduuttF vu

V

v

U

u ⊗=Γ−⊗Γ−= ∫∫ δδ   (2.23) 

The functions )(tX u  and )(tX v  in (2.23) have been derived in [10] and are specified as 

follows: 
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In summary, by use of the delay interpolation method, we are able to calculate 

the delay slopes in the tile plane using the delays of tile corners, then formulate a delay 

filter which is used to filter the reference response, i.e., the diffraction response at the 

center of the rectangular tile, with the delay removed, This operation, with some scale 

factors added, produces the received signal for the given tile.  

 

2.5.2 Triangular-tile-based DREAM (T-DREAM) 

The pulse-echo system with a single triangular tile is shown in Figure 2.7, where 

the longest side of the triangular tile ABC is the side AC. It is noted that the triangular 

tile ABC is drawn much larger than it should be for the purpose of clarity. The u-v 

coordinate system is determined so that the u-axis is in the direction of the BC side and 

the origin is at the corner B, which is opposite to the longest side of the triangle. 
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Figure 2.7 Illustration of the pulse-echo system with a single triangular tile. 

 
By applying equation (2.14), the response due to the triangular tile is: 

∫∫
∆

= dvdutvuDrAtvtile ),,()](cos[)( 1

r
θ    (2.25) 

In equation (2.25), ∆ refers to the area of the triangular tile. 
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Figure 2.8 Delay linearization plane for the delays for the corners of a triangular tile. 

 
Similar to the approach used for the rectangular-tile-based DREAM (R-

DREAM), the spatial integration in equation (2.25) which is used to obtain the received 

signal from the triangular tile can be replaced by temporal filtering of a single 
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diffraction response. The delay filter is decided by the delay linearization plane, which 

is shown in Figure 2.8 and defined as: 

vuvu vuB Γ+Γ+= ττ ),(     (2.26) 

where uΓ  and vΓ  are the delay slopes in the u and v-directions. Based on equation 

(2.26), equation (2.25) becomes: 
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The delay filter function F(t) is defined as: 

∫∫
∆
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and the delay filter function can be derived as [10, section 3.1.3]: 















<≤
−−
∆−

<≤
−−
∆−

=

otherwise                                                    ,0

              ,
))((

2*)(

              ,
))((

2*)(

)( max
maxminmax

max

min
minmaxmin

min

ττ
ττττ

τ

ττ
ττττ

τ

t
t

t
t

tF med
med

med
med

  (2.29) 

where min τ , medτ , max τ  are the smallest, middle, and largest of the delay values at the 

three corners of the triangular tile, respectively. The parameter ∆  is the area of the 

triangular tile. The received signal from the triangular tile, )(tvtile  can now be expressed 

as:  

)(),()](cos[)( 01 tFtrDrAtv centertile ⊗=
rr

θ    (2.30) 
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where )(r
r

θ  is the angle defined in (2.16); and ),(0 trD center

r
 is the diffraction response 

(with the delay removed) of the center of the triangular tile. 

It is readily seen that the delay linearization plane of T-DREAM is exactly 

determined by the delays of the three corners of the triangular element. For R-DREAM, 

the delay linearization plane is over-determined because of the availability of the delays 

of four corners; therefore, an approximated delay linearization plane is used. Another 

advantage of T-DREAM is that triangle provides a better tessellation and match to the 

surface of the reflectors, especially those with complicated shape. The triangular 

element is the standard element used in many finite element methods. Therefore, there 

are software packages for surface tessellation into triangular elements available [9] 

which makes the practical applications of T-DREAM much easier to implement. The 

advantage of R-DREAM is that the derivation of its delay linearization plane is much 

more straightforward than that of T-DREAM. 

Now, based on the discussion in section 2.5.1 and 2.5.2, we observe that the 

calculation of the received signal for a flat tile of moderate size is carried out by 

calculating the diffraction responses at the corners and at the center of the tessellated 

tile, either rectangular or triangular, and finding the corresponding delay filter, followed 

by the convolution of the center response with the delay filter. The received signal from 

the entire reflector is finally found by applying (2.14): 

, ( ) ( )r all tile
all tiles

v t v t= ∑       (2.31) 

In summary, the data-processing procedure for DREAM method is as follows: 
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1) Tessellate the reflector into M tiles (rectangular or triangular), each of which 

are small enough to apply DREAM. Calculate the velocity potential impulse responses 

of the transmitter transducer and receiving transducers, using multi-rate digital signal 

processing algorithm with final sampling rate of 400MHz for the corners and the center 

of the tile: ),( trht

v
 and ),( trhr

v
. 

2) Calculate the diffraction response for the corners and the center: 

)],(),([),( 2

2

trhtrh
t

trD rt

vvv ⊗
∂
∂

=  

3) Determine delay filter based on the diffraction responses for the given tile. 

4) Calculate the received signal from the tile using delay filtering: )(tvtile . 

5) Calculate overall received signal: ∑=
M

tilesall
tileall tvtv )()( . 

6) Calculate the spectra of received signal: )]([)( tvFV allall =ω . 

 

2.6  Modeling of Pulse-echo System with Annular Array Transducer 

Now, the received signal of the pulse-echo system with planar circular 

transducers can be readily formulated, based on the discussion in sections 2.3, 2.4 and 

2.5. The actual received signal from a reflector for a specific pair of transmitting and 

receiving transducers requires the analytic formulations of the velocity potential 

impulse response for a planar circular transducer which will be presented in section 

3.1.1. The detailed implementation and results will be presented in following chapters.  

The modeling concept can be extended for pulse-echo system with planar 

annular concentric array as well. Array transducers are of specific interest in this 
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research, as they allow a given transmitter field and a given receiver characteristics to 

be formulated for a specific measurement situation. The received signal from a given 

element in the array, due to transmission with any element in the same array, can be 

derived based on the superposition of the received signal from the planar circular 

transducer. Figure 2.9 indicates the geometry of an annular array transducer, which 

consists of N concentric rings. 
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ai
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ai

 
Figure 2.9 Geometry of an N-ring planar concentric annular array, indicating annulus outer radii 
ai. 

 
For a given reflector, an N×N signal matrix VREFL(t) of the form shown in 

equation (2.32) can be generated in the pulse-echo system with N-ring annular array.  
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The elements of the matrix are represented by )(, tvREFL
ji , ],1[, Nji ∈ . )(, tvREFL

ji  

refers to the received signal from the entire reflector, produced with the ith ring as 
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transmitter and the jth ring as receiver. If the entire reflector is approximated by a 

number of small tiles, by applying equation (2.31), it is simple to get 

∑=
tilesall

ji
REFL

ji trvtv ),()( ,,

r
    (2.33) 

where ),(, trv ji

r
  is the receive signal from a single tile at location r

r
 on the reflector 

surface, produced with the ith ring as transmitter and the jth ring as receiver. In principle, 

),(, trv ji

r
 can be calculated using equation (2.14) and (2.12): 
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where ),(1, trh ii

r
−  and ),(1, trh jj

r
−  are the velocity potential impulse responses at the field 

point for the ith ring as transmitter and the jth ring as receiver, respectively. Based on the 

assumption of linearity, we can write 
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In equation (2.35), ),( trhi

r
 is the velocity potential impulse responses at the field point 

for the planar circular transducer with radius of ai shown in Figure 2.9 and ),(, trD ji

r
 is 

the diffraction impulse response at the field point for a pulse-echo system with a planar 

circular transmitter of radius ai and a planar circular receiver of radius aj. As can readily 

be seen, now, equation (2.34) can be expanded into four terms as in equation (2.36): 
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 (2.36) 

Each term in (2.36) represents the received signal from different combinations of planar 

circular transmitting and receiving transducers, and can be calculated using either 

equation (2.22) or (2.30), based on the shape of the tiles used to tessellate the entire 

reflector. Now, by combining equation (2.33) and (2.36), )(, tvREFL
ji  can readily be 

calculated. And the summed output voltage from the entire annular array transducer can 

be calculated as 

∑∑
= =

+−⊗=
N

i

N

j

ji
REFL

jijitotal ttvAAtv
1 1

'
,

' ))(()()( ττδ   (2.37) 

where Ai is an amplitude scale factor, assigned to the ith element in the array in 

transmitting mode, Aj′ is an amplitude scale factor, assigned to the jth element in the 

array in receiving mode, τi is the (positive) delay assigned to the ith element in the array 

in transmitting mode, τj
’
 is the (positive) delay assigned to the jth element in the array in 

receiving mode and ⊗  indicates convolution. 
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Chapter 3  

Implementation of Simulation 

System 
 
 

In this chapter, the details about the implementation of ultrasound pulse-echo 

simulation system are discussed. Two methods are implemented to calculate the 

received signal due to an extended reflector surface, namely Huygens method and 

DREAM method. In this chapter, all implementations are based on planar piston 

transducers. However, the approaches can also be applied to other transducer types. In 

section 3.1, we discuss the Huygens method. In section 3.2, the DREAM method is 

discussed. Finally, the mechanism for the simulation coding is described in term of 

efficiency.  

 

3.1  Implementation of Huygens Method 

Recall that the expression for the received signal due to an extended reflector 

was derived in (2.14) in section 2.4. Equation (2.14) is repeated below for convenience: 

∑ ∆= AtrDrAtvr ),()](cos[)( 1

rr
θ      (3.1) 
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In equation (3.1), 1A  is a system related constant as defined in section 2.2; ( )rθ
r

is the 

angle between the unit normal vector of the reflector surface and the particle velocity 

vector at the field point r
r

; ),( trD
r

 is the diffraction response of one single field point 

and A∆  is the area of a small planar reflecting surface, located at the field point. 

Generally, ( )rθ
r

 is very computationally demanding to evaluate. As long as the field 

point is not very close to the surface of the transducer, it is valid to approximate that 

nzr
rr

•= ˆ)(θ        (3.2) 

where ẑ  is a unit vector in the z-direction and n
r

is the unit normal vector of the 

reflector surface. Recall the definition of diffraction response in (2.12) in section 2.2, it 

is restated here for convenience because it will be referred to quite often in the 

following parts of the chapter: 
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3.1.1 Calculation of Velocity Potential Impulse Response for One Single Field 

Point 

From (3.1) and (3.3), it is seen that the first step to calculate the diffraction 

response is to calculate the velocity potential impulse response ( , )h r t
r

 for the baffled 

transmitter and receiver. As described in section 2.3, the multi-rate digital signal 

processing algorithm is used to calculate the velocity potential based on the analytical 

solution to velocity potential impulse response. Figure 3.1 illustrates a specific 

simulation scenario with a baffled planar circular transducer and two field points.  
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Figure 3.1: The side view of the geometry of the simulation scenario with a planar circular piston 
transducer and two field points. The radius of the transducer is a=12.7mm. The radial distance of 
the field point 1, 1ρ , is less than a; the radial distance of the field point 2, 2ρ , is larger than a. 

 

The analytical solutions of ( , )h r t
r

 for this case was derived in [18] 
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The variables 0t , 1t , 2t  and ),( tr
r

Ω are given as: 

czt /0 =  

czat /)( 22
1 +−= ρ  

czat /)( 22
2 ++= ρ     (3.6) 
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In equations (3.4) to (3.7), the parameter z is the axial distance from the plane of the 

transducer surface to the field point; ρ  is the radial distance from the field point to the z 

axis; and a is the radius of the planar circular piston transducer. The distances z and ρ  

are illustrated in Figure 3.1. 
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Figure 3.2 The velocity potential responses at different field points for a planar circular piston of 
radius a=12.7mm.  The axial distance of the points is 50mm. The radial distance of the points are 
0mm, 6mm, 12mm, 18mm respectively.  

 

Figure 3.2 illustrates the velocity potential impulse responses ),( trh
r

 for four 

different radial distances from a planar circular piston, which are obtained from the 

analytical solutions given in (3.4) and (3.5). The analytical solutions to ),( trh
r

 needs to 

be discretized before we can make use of them to calculate the diffraction response. The 

sampling rate to discretize ),( trh
r

 must be high enough to make aliasing effects 

negligible. As can be found from the shapes of the response in Figure 3.2, the 

bandwidth of the velocity potential impulse response increases as the field point moves 

closer to the transducer axis, namely, the z-axis. When it moves onto the z-axis, the 



 43

bandwidth of the velocity potential impulse response reaches the maximum and the 

),( trh
r

 has the form of a rectangular function. The thin solid line in Figure 3.3 

illustrates the envelope of the spectrum of the on-axis ),( trh
r

, which is a sinc function 

and denoted )(
~

fH . 
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Figure 3.3 Magnitude spectrum of velocity potential function of on-axis field point, illustrating how 
to determine approximate aliasing error due to its discrete representation. 

 

If the sampling rate is fs and fn = fs/2 is the corresponding Nyquist frequency, the 

dominating contribution to aliasing signal at a given frequency is approximately equal 

to )(
~

ffH s −  and the dash dot line in Figure 3.3 illustrates the aliasing signal. We can 

determine the approximate aliasing error using the envelopes of the true and aliasing 

signal. The envelope of )(
~

fH  is denoted )(
~

fE  and can be deduced to be [15]: 

fcfE π/)(
~ =       (3.8) 

 Similarly, the envelope of the aliasing signal is:  
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)](/[)(
~

ffcffE ss −=− π     (3.9) 

If Err is defined as the ratio of the aliasing signal frequency magnitude and the true 

signal frequency magnitude, it can be approximated as [15]: 
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    (3.10) 

Therefore, the minimal sampling rate sf  which satisfies the aliasing error requirement 

is: 

)/11(max Errff s +≥       (3.11) 

where fmax is the highest frequency of interest, i.e., fmax = 15.625MHz in our case. For 

Err = 0.3%, i.e., the aliasing signal frequency magnitude is at least 50 dB below the true 

signal frequency magnitude at frequency f, we can easily derive that 3.5≥sf GHz. 

When the field points moves away from the axis, the duration of the velocity potential 

increases. Meanwhile, the spectrum of the velocity potentials becomes more narrow, so 

that much lower sampling rates can be used to keep the level of aliasing error 

acceptable low. One example is given in Figure 3.4 and Figure 3.5. The sampling rate is 

800MHz. Within the frequency range that we are interested in, i.e., the frequency less 

than 15.625Mhz, for the on-axis field point, the aliasing signal is only about 30 dB 

below the true signal at some frequency points, which corresponds to about 3% aliasing 

error. While for the field point with 18mm radial distance, the aliasing signals are 

almost 50 dB below the true signal, which corresponds to 0.3% aliasing error.  So the 

minimal sampling frequency, fsm, which is used to sample the long temporal velocity 

potential of field points far from the source, may be set equal to 800MHz with 
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acceptable aliasing error. When the field point moves closer to the z-axis, the duration 

of the velocity potential decreases which allows higher sampling rate if the sample 

sequence length is the same for all field points. One thing to keep in mind is that the 

minimal global sampling frequency is dependent on different applications and the 

maximal aliasing error allowed. 
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Figure 3.4 Illustration of the magnitude spectrum with the aliasing signal for two different field 
points for a planar circular piston of radius a=12.7mm.  The sampling rate is 800MHz. The axial 
distance of the points is 50mm. The radial distance of the points are 0mm, 18mm respectively. 
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Figure 3.5 Enlarged version of Figure 3.4 to highlight the frequency range of interest, i.e. 0-
15.625MHz. 
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For a planar circular transducer of radius a, the duration of the velocity potential 

impulse response, t∆ , is always less than the travel time of the wave across the 

transducer surface, which is [15]: 

maxt∆ = 2a/c       (3.12) 

In equation (3.12), the parameter c is the sound speed. Based on the specified minimal 

global sampling frequency fsm and the maximal duration of the velocity potential 

impulse response maxt∆ , the maximum sample sequence length N for a specific 

transducer can be obtained as smftN ×∆≥ max , which guarantees the sampling rates for 

all observation points are valid, i.e., all sampling rates are higher than or equal to the 

minimal global sampling rate fsm as shown in equation (3.13) 

smftNf ≥∆= maxmin /      (3.13) 

Thus, from (3.12) and (3.13), it can be derived that if  

cfaN sm /**2≥       (3.14) 

there exists no invalid sampling regions. In our case, with transducer radius 12.7mm and 

800MHz minimal sampling rate, N should be larger or equal to 13547. For the 

convenience of following calculation, N is set to 16384, i.e., 214. 

Based on the maximum sample sequence length N, the sampling rate at any field 

point can be calculated by 

tNf sl ∆= /        (3.15) 

where t∆  is the duration of the velocity potential at that field point. fsl is called local 

sampling rate because it is specified for each individual field point. The actual sampling 

is carried out using global sampling rate for efficient calculation. The global sampling 
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rate is defined to be an even multiple of the predetermined minimum global sampling 

rate fsm. As discussed above, fsm is 800Mhz for our application, therefore, the global 

sampling rates can take on a limited number of specific values, 6.4GHz, 3.2GHz, 

1.6GHz, etc. The chosen sampling rate for a given observation point is the largest 

global sampling rate less than or equal to the local sampling frequency, fsl, of that point 

[15]. The conversion from local sampling rate to global sampling rates is illustrated in 

the first two rows in Table 3.1.  

Table 3.1: Local to global sampling rate translation and down-sampling ratio used in DREAM. 

 
Local sampling rate: slf  (GHz) 

 
slf >=6.4 

slf <=6.4 

slf >=3.2 
slf <=3.2 

slf >=1.6 
slf <=1.6 

slf >=0.8 
 

slf <=0.8 

Global sampling rate: sgf  

(GHz) 

6.4 3.2 1.6 0.8 Invalid 

Down-sampling ratio, M: 16 8 4 2  
Final sampling rate (MHz): 400 MHz  

 

The frequency range that we are interested in is from dc component to 

15.625MHz. If the high sampling rates, such as 6.4GHz, 3.2GHz, etc., were to be kept 

in the following calculation, a lot of resources, such as the computer memory, CPU 

time would be wasted. In addition, when the sampling rate is too high, too few 

frequency-domain samples are left in the relatively narrow frequency range of interest. 

Hence, the discretized velocity potential has to be down-sampled to lower sampling 

rate for further calculation. For our purpose, i.e., to calculate the diffraction response 

by twice differentiation of the convolution of velocity potentials, the sampling rate of 

400MHz is necessary for the direct digital differentiation to be carried out with 

negligible error [9], as will be discussed in detail in section 3.1.2. Therefore, the final 
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down-sampling rate is set to be 400MHz and the third row of Table 3.1 indicates the 

down-sampling ratio corresponding to different global sampling rate. For other 

applications, such as mapping of pressure fields, it is convenient to use a second stage 

of low-pass-filtering and decimation to decrease the final sampling rate to a much 

smaller value.  

In order to down-sample the high frequency velocity potential while 

minimizing the signal aliasing, the velocity potential must be processed by a low-pass 

filter prior to the decimation operation. A Linear-Phase Digital Filter is chosen to low-

pass-filter the high frequency velocity potential because of the phase-sensitivity of 

pulse-echo ultrasound system. In order to simplify the design work, save space when 

storing the filter coefficients and create a more efficient decimation calculation, only 

one single lowpass digital filter was designed with a given set of normalized design 

parameters in our implementation. The absolute passband and stopband cutoff 

frequencies of such a filter vary with the sampling frequency of its input sequence. 

The absolute passband cutoff frequency must be larger than the desired baseband 

before the decimation, which is the multiplication of the down-sampling ratio M and 

the maximum frequency of our interest, i.e., fmax=15.625MHz. Therefore, the 

normalized passband cutoff frequency pbω  can be decided by [15]:  

max

maxmax

sg
pb f

Mf
>ω       (3.16) 

In equations (3.16), the parameter Mmax is the largest down-sampling ratio, i.e., 16 in 

Table 3.1 and fsgmax is the largest input global sampling rate, i.e., 6.4GHz in Table 3.1. 

To prevent aliasing of the decimated output, the stopband cutoff frequency must be less 
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than the Nyquist frequency of the subsequent decimation stage, which is fsg/M/2. But 

because the frequency of our interest is in the range from dc to fmax=15.625MHz, there 

is no aliasing introduced in the frequency range of our interest as long as the stopband 

cutoff frequency is less than fsg/M − fmax. Therefore, the normalized stopband cutoff 

frequency sbω  can be decided by [15]: 

max

max

max

1

sg
sb f

f

M
−<ω       (3.17) 

For maximum computational efficiency, pbω  is chosen to be as small as possible, and 

sbω  is chosen to be as large as possible as long as they satisfy (3.16) and (3.17). The 

Matlab function “REMEZ” is used to obtain the coefficients of the low-pass-filter 

based on the parameters decided by (3.16) and (3.17). 

During the actual implementation, the low-pass-filtering and decimation are 

implemented at the same time, which means that the filter operates on the decimated 

signal directly instead of decimating the low-pass-filtered signal. Therefore, the 

computation is more efficient.  

 

3.1.2 Calculation of Diffraction Response for One Single Field Point 

In section 3.1.1, the discretized velocity potential at any field point is obtained 

with same final sampling rate 400MHz for all field points. Now (3.3) is applied to 

calculate the diffraction response in two steps. 

1) Convolution of the velocity potential for the transmitter with the velocity 

potential for the receiver: ),( trht

r
 and ),( trhr

r
. This step is implemented with Matlab 
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command “CONV”. Figure 3.7 part (a) illustrates the convolution signals for a pulse-

echo system using the same planar circular piston as the transmitter and receiver.  

2) Double differentiation of the convolution result with respect to time to obtain 

diffraction response. The differentiation is implemented using a simplified direct digital 

differentiation method, which is based on:  

01

01
2/)(

)()(
|

10 tt

tftf

t

f
ttt −

−
≈

∂
∂

+=      (3.18) 

The transfer function of (3.18) is 

)/sin(2)( ss fffjfH π=     (3.19) 

As well known, the transfer function of an ideal differentiator is: 

 fjfH ideal π2)( =      (3.20) 

By comparing (3.19) and (3.20), we can find there is no phase difference between the 

ideal differentiator and the simple differentiator because both expressions are purely 

imaginary. The magnitude error of the simple differentiator is: 
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 (3.21) 

And Figure 3.6 illustrates the relative magnitude error derived in (3.21) as a function of 

normalized frequency f/fs: 
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Figure 3.6 The relative magnitude error of the transfer functions for the simple differentiator. 

 
From Figure 3.6, it can be seen that the error magnitude increases dramatically 

when the normalized frequency f/fs increases. For the maximal frequency of interest, 

i.e., fmax = 15.625MHz, if the sampling rate is fs = 400MHz, then fmax/fs = 0.0391 and the 

magnitude error is around 0.25% as can be observed in Figure 3.6 or be calculated by 

equation (3.21). This magnitude error is small enough to be negligible. 

Figure 3.7 part (b) and (c) illustrate the first and second differentiation result 

respectively. Because the signal, resulting from second differentiation, for the field 

point with radial distance 18mm is much smaller than others, it is not shown in part (c). 

Figure 3.7 part (d) is the enlarged version of part (c) to shown more details for field 

points with large radial distance. 
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(c) (d) 

Figure 3.7 Illustration of the steps involved in the calculation of diffraction responses. A planar 
circular piston with radius a=12.7 mm acts as both transmitter and receiver. The axial distance is 
50 mm and the radial distance is 0 mm, 6 mm, 12 mm, 18 mm respectively. a) The convolution of the 
velocity potential of transmitter and receiver. b) The first differentiation of the convolution results. 
c) The second differentiation of the convolution results. d) Enlarged version of c) 

 

3.1.3 Huygens Method for the Received Signal from Extended Reflector 

After the extended reflector is tessellated into “microtiles” and the diffraction 

responses from individual field point are obtained, (3.1) can be applied to obtain the 

diffraction response from the entire extended reflector by the integration of the 

individual response over the reflector surface. In this context, a “microtile” is a small 

rectangular planar surface whose dimension must be small relative to the wavelength at 
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the highest frequency considered. The data-processing procedures of the Huygens 

method is summarized as follows: 

1). Tessellate the reflector into N tiles which are small enough to be treated as 

simple sources. A simple source means a reflector with dimensions much smaller 

than a wavelength.  

2). Calculate the velocity potential impulse response, use the multi-rate digital 

signal processing algorithm with final sampling rate of 400MHz, for each point: 

),( trh
r

 

3). Calculate the diffraction response for each point: )],(),([),( 2

2

trhtrh
t

trD
rrr

⊗
∂
∂

=  

4). Calculate received signal from the extended reflector using equation (3.1): 

∑ ∆=
N

tilesall
r AtrDrAtv ),()](cos[)( 1

rr
θ  

During the implementation of Huygens method, there are two things to keep in mind: 

1) If the response of central point of rectangle is used for the integration instead of 

that of one corner point of the rectangle, the accuracy of the result may be quite 

different for some cases. 

2) The largest size of the microtile, which can be chosen to obtain acceptable 

accuracy for the linear assumption, is quite dependent on geometry and the tilt angle 

of the surface. 

Different implementation results for Huygens method will be shown and discussed in 

Chapter 4 “Evaluation of Huygens method”.  
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3.2  Implementation of DREAM Method 

Figure 3.8 illustrates the pulse-echo diffraction responses from four corners of a 

1mm*1mm rectangular planar reflector surface with its center at (x,y,z)=(3,3,50)mm and 

tilted o10  in the y-direction. In this case, a planar circular piston with radius a=12.7mm 

acts as both the transmitter and receiver. For the purpose of clarity, the first positively 

going impulses have been truncated at 3213 /10*5 sm , while they actually extend to 

about 3214 /10*7.3 sm . By examining the diffraction responses at the four corners of the 

tile with moderate dimension in Figure 3.8, we can find that the shape of the waveforms 

from the four corner points are very similar, while the time shift of the waveforms are 

quite different. It can also be found that the diffraction responses consist of several short 

“impulsive” segments, separated by regions of very low amplitude and different 

segments exhibit different amount of time shift. Another observation is that the number 

of segments for the four corners is the same. To compensate for the different time shift 

of different segments, i.e., the time compression/expansion of the diffraction response, a 

segmentation method is used to divide the responses into several segments. Then the 

equivalence between spatial integration and delay filtering, which is discussed in 

section 2.5, is applied to segments to obtain the corresponding contribution by 

individual segments for the entire tile. The overall response from the entire tile is the 

sum of the responses of the individual segments as in (3.22): 

∑
=

⊗⊗−=
segn

i
iririrrtile tFtrsegtrAtv

_

1
,,1 )](),()([*))(cos(*)(

vr
τδθ  (3.22) 
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where n_seg is the number of segments; ir ,τ  is the delay of the ith segment of the 

diffraction response of the reference point; segr,i is the responses of the ith segment of 

the diffraction response of the reference point, with associated propagation delay 

removed; Fi(t) is the delay filter obtained for the ith segment. 
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(c)       (d) 

Figure 3.8: Example of pulse-echo diffraction responses from four corners of a 1mm*1mm tile as 
well as the segmentation (3 segments) of the diffraction responses. A planar circular piston with 
radius a=12.7mm acts as both transmitter and receiver. The tile centers at (x,y,z)=(3,3,50)mm and 

tilted o10  in the y-direction. 

 

It is important to note that the similarity of the diffraction responses from the 

corners of the tile (either rectangular tile or triangular tile) is the basis for the DREAM 

method, or, specifically, the delay filtering approximation of the spatial integration. For 
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some cases, for example, when the radius of the transmitter is 12.7mm and the radius of 

the receiver is 3mm, smaller tile size must be chosen so that the diffraction responses 

from the corners of the tile do not differ too much. This issue will be discussed in 

details from section 5.1 to 5.5 in chapter 5. 

 

3.2.1 Segmentation 

As shown in Figure 3.8, the diffraction responses can generally be divided into 

a limited number of segments such that the signal level around each segment boundary 

is almost zero. In addition, different segments exhibit different time shift, therefore, it 

is necessary to perform a separate delay filtering for each of these segments. The 

procedure of the segmentation of a single response is as follows: 

1) Find the peak points of the overall diffraction response: Find the maximal 

amplitude among the peak points of the response first and call it “the largest 

response amplitude”. Then identify all the extremes; if the amplitude of one 

extreme is larger than a specified fraction of “the largest response amplitude”, it 

can be considered as peak point of the diffraction response. For our application, 

the fractional value is set to 20%.  

2) Segment the signal with one peak point per segment and set the segment 

boundaries to occur at the time instance between the peak points where the 

amplitude is closest to zero. 

3) Check the boundaries between segments. If the amplitude at a given boundary is 

above a specified fraction, i.e., 20% of the smaller amplitude of peak points, the 

two segments separated by that boundary are merged into one segment. 
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The stars “*” in Figure 3.8 illustrate the segmentation of the diffraction responses for 

the four corners of the tile described above. 

 

3.2.2 Delay Interpolation 

As discussed in section 2.5, a delay filter is used to filter the response of one 

reference point to obtain the overall response of the entire tile. The delay filter is based 

on the delay slopes in the tile plane which is calculated by delay interpolation method. 

Therefore, it is meaningful to check the delay interpolation method first. Now the delay 

interpolation method is used to estimate the diffraction response of the field point c in 

Figure 3.9, based on the diffraction responses of other field points on the same plane as 

it. Point c is the central point of the rectangle ABCD. The length of the rectangle is U 

and the width is V. For the convenience of formulation, it is supposed that there are 

three segments of the diffraction response. The formulation of the time delay 

interpolation is similar for Rectangular-tile-based DREAM (R-DREAM) and 

Triangular-tile-based DREAM (T-DREAM), while not exactly the same. We discuss 

the two DREAM methods separately. 
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Figure 3.9 The simulation scenario for the delay interpolation method. 
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As a test of the validity of the delay interpolation method, we will first try to 

estimate the diffraction response of point c based on the diffraction responses of point 

A, B, C, D which corresponds to the R-DREAM. The response of one corner (e.g. the 

upper-right corner B) is chosen to be the reference response. The three segments of the 

response of this corner are time shifted by individual delays calculated by the delay 

interpolation method and then added to form the total estimated response at the center 

of the tile. Mathematically, ),(1, trsegB

r
, ),(2, trsegB

r
, ),(3, trsegB

r
 are defined as the 

responses of each segment of the diffraction response at the point B, with the associated 

propagation delay )(1, rB

r
τ , )(2, rB

r
τ , )(3, rB

r
τ  removed. )(, rji

r
τ  is defined as the delay of 

the jth segment of the response for the ith corner. Using delay interpolation method [9], 

we are able to estimate the delay of the three segments of the center point: )(1, rc

r
τ , 

)(2, rc

r
τ  and )(3, rc

r
τ , given )(, rji

r
τ  (i=A,B,C,D and j=1,2,3) and the length U and width 

V of the tile: 
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Then the estimated diffraction response of the center of the tile is given by: 
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Similarly, we tried to estimate the diffraction response of point c based on the 

diffraction responses of point A, B, C which corresponds to the T-DREAM. The triangle 

is redrawn in Figure 3.9 part (b) for purpose of clarity. The response of corner B was 

chosen to be the reference response. As discussed in section 2.5.2, by applying equation 

(2.26), we are able to estimate the delay of the three segments of the center point: 

)(1, rc

r
τ , )(2, rc

r
τ  and )(3, rc

r
τ , given )(, rji

r
τ  (i = A, B, C and j=1,2,3) as: 

2
*

2
*)( ,,,,

A
jv

C
jujBjc

VU
r Γ+Γ+= ττ
r

     (3.25) 

In equation (3.25), CU  is the length of side BC; AV  is the v-direction component of side 

BA, but because in this case, the triangle ABC has been chosen to be a right triangle, AV  

is the length of side BA; ju ,Γ and jv ,Γ  are the delay slopes in the u- and v- directions, 

respectively, for the jth segment of the diffraction response. By plugging the delay 

values of the point C and A into equation (3.25), it is easy to find ju ,Γ and jv ,Γ  as 

CjBjCju U/)( ,,, ττ −=Γ  

AjBjAjv V/)( ,,, ττ −=Γ       (3.26) 

Then the estimated diffraction response of point c is readily obtained by equation 

(3.24). 

Figure 3.10 shows the results for diffraction response of the central point of 

specific rectangular tile discussed in section 3.2.1. Also for the purpose of clarity, the 
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positively going impulse for the first segments has been truncated at 3213 /10*5 sm , 

while it actually extends to about 3214 /10*7.3 sm .  
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Figure 3.10: Example of how well the estimated pulse-echo diffraction responses obtained by R-
DREAM and T-DREAM delay interpolation method compares to the true response at the center of 

1mm*1mm planar rectangular tile. The tile centers at (x,y,z)=(3,3,50)mm and tilted o10  in the y-
direction. 

 
It can be found that the results of the time delay interpolation model based on 

rectangular tile and triangular tile closely approximate the true response. The good 

match between the real response and the estimated responses obtained by the delay 

interpolation method verifies that the delay linearization plane can be used to linearize 

the diffraction responses on the planar tile area, either rectangular or triangular tile. 

 
3.2.3 DREAM Method 

Based on the discussion in section 2.5, section 3.2.1 and section 3.2.2, the data-

processing procedures of the DREAM method is summarized as following: 
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1). Tessellate the reflector into M tiles (rectangular or triangular), which are small 

enough to apply DREAM. Normally, M << N where N is the number of tiles 

tessellated by Hugyens method.  

2). Calculate the velocity potential impulse responses of the transmitter transducer 

and receiving transducers, using multi-rate digital signal processing algorithm with 

final sampling rate of 400MHz for the corners and the center of the tile: ),( trht

v
 and 

),( trhr

v
. 

3). Calculate the diffraction response for the corners and the center of the tile: 

)],(),([),( 2

2

trhtrh
t

trD rt

vvv ⊗
∂
∂

=  

4) Segment the diffraction responses from the corners and the center. 

5). Determine delay filters for each segment of the responses of the tile. 

6). Calculate the received signal from each tile using segmentation and delay 

filtering: )(tvtile . 

7) Calculate overall received signal from the entire reflector: ∑=
M

tilesall
tileall tvtv )()( . 

Different implementation results for DREAM method will be shown and discussed in 

Chapter 5 “Evaluation of DREAM method”. 

 

3.3  Mechanism for Coding 

One of the most important issues we concern about on the modeling methods is 

the computational time of the algorithms. One factor effecting the execution time is the 

language used for coding. 
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Currently, Matlab and C are widely used for scientific and engineering numeric 

computation. Matlab is an interactive, matrix-based system and its strength lies in the 

fact that a solution to the complex numerical problems can be developed easily and in a 

fraction of the time required with C. Matlab can also be easily extended to create new 

commands and functions. In the terms of signal processing, there are a lot of well-

developed functions in Matlab, such as Fast Fourier transform (FFT), inverse FFT, 

functions for filter analysis, implementation and design, etc., not to mention such basic 

operations as correlation, convolution and so on. It is also very convenient to visualize 

the results obtained in Matlab. The drawback of Matlab is that the execution time is 

much larger for some mathematics operations than C codes, especially for “for-loop” 

operations. In order to take advantage of both Matlab and C, we decided the mechanism 

for the coding as follows: The overall code should be controlled from Matlab, with the 

computationally intensive parts written in C. The C subroutines are compiled into 

MEX-file routines. After MEX files are generated, there is no need for a C compiler and 

the MEX-file routines are callable directly from Matlab as other Matlab functions. 

To have an idea about how well our coding mechanism works, the 

computational time using two implementation methods are compared for the task of 

calculating acoustic pressure field, one is pure Matlab, and the other is C embedded 

Matlab. It is found that if all the multi-rate algorithm was implemented in Matlab, it 

would take about 71 minutes to calculate the complex pressure field of one frequency 

points over a 50*50 grid of spatial observation points and 76 minutes for all 2048 

frequencies (from 0Hz to 62.5MHz with a resolution of roughly 30.52KHz). However if 

we calculate the impulse velocity potential functions and implement the low-pass-filter 
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and decimator in C, it takes only 59 seconds (compared with 70 minutes) and 74 

seconds (compared with 76 minutes) to produce the exactly same results as we obtained 

before. The computation time used to calculate the received signal from pulse-echo 

system will be presented in chapter 5, together with description of the specific 

simulation scenarios and other parameters. 
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Chapter 4  

Evaluation of Huygens Method 
 
 

In section 2.4 and section 3.1, we discussed the principle and implementation of 

Huygens method. In this chapter, Huygens method will be used for calculating the 

received signals in ultrasound pulse-echo systems for different parameter values, such 

as tile dimension, and different simulation scenarios. Huygens method is based on the 

integration of the response from a very large number of micro-tiles which form the 

surface of the entire reflector. The dimension of these micro-tiles must be much smaller 

than the wavelength at the highest frequency of interest, and they can be viewed as 

rectangular or square tiles with a finite small area.  

First, in section 4.1, the different results are compared for two implementation 

methods: (1) The received signal from the entire reflector is obtained based on the 

diffraction response at central point of the micro-tile. (2) The received signal from the 

entire reflector is obtained based on the diffraction response at one corner point of the 

micro-tile. It is found that the first method produces a higher accuracy. Therefore, the 

Huygens method, based on the response of central point of the micro-tile, is used 

throughout the following sections in this thesis. In section 4.2, the accuracy of the 

spectra of the received signal obtained with different tile size is investigated for 
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different simulation scenarios. In using Huygens method, it is preferable for the micro-

tile size to be as large as possible to reduce computation time. However, the larger the 

tiles are, the larger is also the error. Considering the trade-off between the 

computational time and accuracy, we need to find the optimal tile size, which is the size 

of the micro-tiles we use to tessellate the entire reflector. It is found that the accuracy of 

the spectra of the received signal obtained with a given tile size is dependent on the 

parameters of the specific simulation scenario such as the tilt angle of the reflector 

surface, the radial location relative to the radius of the transducer, shape and size of 

reflector, etc. Therefore, the “optimal micro-tile size” is found empirically by “trial and 

error” method, and the optimal size is dependent on specific simulation scenario.  

 

4.1  Center Summation versus Corner Summation Huygens Methods 

Recall that the expression for the received signal due to an extended reflector 

was derived in (2.13) in section 2.4. Equation (2.13) is repeated below for convenience: 

∑ ∆= AtrDrAtvr ),()](cos[)( 1

rr
θ      (4.1) 

The extended reflector is tessellated into micro-tiles which are small enough to be 

treated as simple sources (reflectors with dimensions much smaller than a wavelength). 

These micro-tiles can be viewed as square or rectangular tiles with finite small area, and 

the diffraction response can be calculated at any real point inside the rectangle. The 

“real point” means an abstract point with infinite small dimension.  In practice, either 

the corner or the center of the rectangle is used for convenience. Thus, the received 

signal from the extended reflector can be calculated either by the summation of the 
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response of the corners of the tessellated micro-tiles or by the summation of the 

response of the centers of the tessellated micro-tiles. Because the center is normally 

considered a good approximation for all points within the area of the micro-tile, 

intuitively, we think that summation using the diffraction response at the center should 

produce better result than summation using the diffraction response at the corner, if the 

choice of the diffraction response really makes difference. Now both ways are evaluated 

and compared for calculating the received signal due to a 1mm*1mm square reflector. 

The reflector is centered at (ρ, z) = (7.07, 50) mm and is tilted 10° relative to the 

transducer surface. The parameter ρ is the radial distance of the center of the square 

reflector from the z-axis and z is the axial distance from the transducer. Two planar 

circular piston transducers of radius 3mm and 6mm are used as transmitter and receiver, 

respectively. This simulation scenario is chosen as a representative scenario. Square 

tessellation tiles with different side lengths are used for the summation: 500µm, 200µm, 

100µm, 50µm, 20µm, 10µm, 5µm. Because the spectrum of the received signal is used 

for the error analyses, the following discussion takes place in the frequency domain. 

The accuracy of the spectrum of the integrated diffraction responses are compared using 

the Mean Square Error (MSE) method, and the MSE is calculated as: 

MSE= %100*
|)(|

|))(||)((|

15
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   (4.2) 

In equation (4.2), Vr(f) is the frequency spectrum of vr(t), the signal whose accuracy is 

to be evaluated. Vref(f) is the frequency spectrum of the reference signal vref(t) (the 

reference signal is to be explained shortly). In our calculation, a discrete approximation 
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of the integral in (4.2) is used with a frequency interval ∆f = 400MHz/8192 = 48.8KHz, 

which is the frequency resolution of discrete Fourier Transform. The MSE is calculated 

only for the frequency range of our interest: [0-15MHz]. The smallest tile size to be 

considered is 5µm which is much smaller than the smallest wavelength in the frequency 

range of interest, i.e. λmin=1500/(15×106) [m] = 100µm. The difference between the 

results obtained by the summation of the diffraction responses at the center and corner 

of the 5µm tile is just 0.0002% using (4.2), which means they are very close indeed. 

Thus, it is reasonable to use the result obtained by summation of the diffraction 

responses at the center of 5µm tile as a reference signal, Vref(f), when evaluating the 

accuracy of the center summation method for different tile sizes. Similarly, the result 

obtained by summation of the diffraction responses at the corner of 5µm tile is 

considered a reference signal when evaluating the accuracy of the corner summation 

method for different tile sizes. Table 4.1 illustrates the accuracy obtained by two 

methods with different tile sizes. As can be found from Table 4.1, when “center 

summation” method is used, the results obtained with 10µm and 20µm tile size are the 

same as that obtained with 5µm tile size. In contrast, for “corner summation” method, 

there still exists some difference between the results obtained with 10µm and 5µm tile 

sizes, although very little. Also can be found from Table 4.1, when the tile size 

increases to 50µm, 100µm and larger, the “corner summation” method produces much 

larger error compared with “center summation” method. Based on this, we are confident 

in saying that the “center summation” method produces higher accuracy than “corner 

summation” method, especially when the tile size is relatively large. Therefore, center 
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summation Huygens method will be used as a reference for the remaining part of the 

thesis.  

Table 4.1: Mean Square Error of the spectra of the received signals obtained by center and corner 
summation methods and with different tile size. The reflector is a 1mm*1mm square reflector and 
centers at (ρρ, z) = (7.07, 50) mm and tilted 10°° relative to the transducer surface. Two planar 
circular piston transducers of radius 3mm and 6mm are used as transmitter and receiver, 
respectively. The results obtained by the summation of the diffraction responses of the 5µµm tiles are 
used as reference signal for each method, respectively. The unit of MSE is “%”. 

 5µm 10µm 20µm 50µm 100µm 200µm 500µm 
center summation 0 0 0 0.0003 0.0047 0.1879 21.8272 
corner summation 0 0.0002 0.0021 0.0208 0.1083 0.7905 48.1841 

 

Figure 4.1 illustrates the spectra of the received signals obtained by center 

summation Huygens method using different tile size from the 1mm*1mm square 

reflector described above. For the purpose of clarity, the spectra obtained with 10µm 

and 20µm tile size are not shown because they are too close to the spectrum obtained 

with 5µm tile size. In using Huygens method, the micro-tile size should preferably be as 

large as possible to reduce the computational time. From Figure 4.1, we can observe 

that the result obtained with 50µm tile size is also quite close to that obtained with 5µm 

tile size, while the result obtained with 100µm tile size has relatively larger difference. 

As a result, considering the trade-off between the computation time and accuracy, we 

choose the micro-tile size of 50µm to be the optimal micro-tile size for this specific 

simulation scenario. 
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Figure 4.1 Spectra of received signal from a 1mm*1mm square reflector to show the different 
results obtained by center summation Huygens method using different tile size. The reflector 
centers at (ρρ, z) = (7.07, 50) mm and tilted 10°° relative to the transducer surface. Two planar 
circular piston transducers of radius 3mm and 6mm are used as transmitter and receiver, 
respectively. 

 
4.2  Optimal Tile Size for Huygens Method 

In the previous section, we checked the different results obtained by the center 

summation and corner summation Huygens method and found that the center 

summation method produces more accurate results. It is also found in previous section 

that the optimal micro-tile size is 50µm which is the largest tile size that can be used to 

obtain the received signal with high accuracy. It should be emphasized that the optimal 

micro-tile size is very dependent on tilt angle of the reflector surface, the location, shape 

and size of reflector, the size of the transducers, etc.  
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Table 4.2 illustrates the accuracy of the results obtained with different tile sizes 

for different simulation scenarios. The reflector and the transducers are the same as 

those in section 4.1 except that the reflector is tilted 2° and 20°, respectively, relative to 

the transducer surface. To make the comparison convenient, the results obtained when 

the reflector is tilted 10° are repeated in Table 4.2. It can be found that the different tilt 

angle really makes a difference.  

Table 4.2: Mean Square Error of the spectra of the received signals obtained by center summation 
Huygens method with different tile size and tilt angle of reflector. The reflector is a 1mm*1mm 
square reflector and centers at (ρρ, z) = (7.07, 50)mm. The reflector is tilted 2°°, 10°°, 20°° relative to 
the transducer surface, respectively. Two planar circular piston transducers of radius 3mm and 
6mm are used as transmitter and receiver, respectively. The results obtained by the summation of 
the diffraction responses of the 5µµm tiles are used as reference signal for each case. The unit of 
MSE is “%”. 

 5µm 10µm 20µm 50µm 100µm 200µm 500µm 
Tilted 2° 0 0 0 0 0.0004 0.0075      0.9266      
Tilted 10° 0 0 0 0.0003 0.0047 0.1879 21.8272 
Tilted 20° 0 0 0.0001 0.0017            0.0436       8.0159       73.8032       

 

Figure 4.2 and Figure 4.3 illustrate the spectra of the received signals obtained 

for a 2° tilted reflector and a 20°  tilted reflector, respectively. For the purpose of clarity, 

the spectra obtained with 10µm and 20µm tile size are not shown in Figure 4.2 because 

they are too close to that obtained with the 5µm tile size. From Figure 4.2, we can 

observe that the result obtained with 100µm tile size is quite close to that obtained with 

5µm tile size, while the results obtained with 200µm tile size has an observable 

difference. As a result, we may choose the tile size of 100µm to be the optimal tile size 

when the reflector is tilted 2°. However, when the reflector is tilted 20°, as shown in 

Figure 4.3, we find that the received signal obtained with 100µm tile size is quite 
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different from that obtained with 5µm. Even the result obtained with 50µm tile size is 

not close to that obtained with 5µm. Therefore, we choose the tile size of 20µm to be the 

optimal tile size for this specific simulation scenario. In Figure 4.3, for the purpose of 

clarity, the received signal obtained with 10µm and 500µm tile size are not shown 

because the former is too close to that obtained with 5µm tile size, while the latter is too 

different from that obtained with 5µm tile size. 

 
Figure 4.2 Spectra of received signal from a 1mm*1mm square reflector to show the different 
results obtained by center summation Huygens method using different tile size. The reflector 
centers at (ρρ, z) = (7.07, 50) mm and tilted 2°° relative to the transducer surface. Two planar circular 
piston transducers of radius 3mm and 6mm are used as transmitter and receiver, respectively. 
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Figure 4.3 Spectra of received signal from a 1mm*1mm square reflector to show the different 
results obtained by center summation Huygens method using different tile size. The reflector 
centers at (ρρ, z) = (7.07, 50) mm and tilted 20°° relative to the transducer surface. Two planar 
circular piston transducers of radius 3mm and 6mm are used as transmitter and receiver, 
respectively. 

 
From Table 4.2 and from the comparison between Figure 4.1, Figure 4.2 and 

Figure 4.3, we have found that the accuracy of the results obtained with certain tile sizes 

is dependent on the tilt angle of the reflector surface. It is also found that the accuracy 

of the results obtained with certain tile size is dependent on many other factors, such as 

the location, shape and size of the reflector, and the transducer size. We will now 

present several different simulation scenarios to give a general illustration of this issue. 

Case 1: The reflector is a 1mm*1mm square flat reflector, tilted 10° relative to the 

transducer surface and centered at (ρ, z) = (0.707, 50) mm. Two planar circular piston 

transducers of radius 3mm and 6mm are used as transmitter and receiver, respectively; 

Case 2: The simulation parameters are the same as those in case 1, except that the 

reflector is centered at (ρ, z) = (7.07, 50) mm; Case 3: The simulation parameters are the 
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same as those in case 1, except that the reflector is centered at (ρ, z) = (14.14, 50) mm; 

Case 4, 5 and 6: The simulation parameters are the same as those in case 1, 2 and 3, 

respectively, except that a planar circular piston transducer of radius 12.7mm is used as 

both the transmitter and receiver; Case 7: The simulation parameters are the same as 

those in case 2, except that the reflector is a curved one. It is a 60° arc of a cylinder with 

radius = 1mm and length = 1mm, with the arc centered at (ρ, z) = (7.07, 50) mm. Table 

4.3 summarizes the different parameters for the seven different simulation scenarios 

described above. Table 4.4 presents the accuracy of the results obtained for those seven 

cases. In the same way as in Table 4.1 and Table 4.2, the results obtained with the 5µm 

tiles are used as reference signal for each case. We observe that the accuracy of the 

received signals obtained with certain tile size is quite dependent on the situation of the 

specific simulation scenario. To give a graphical comparison between the simulation 

scenarios considered, we have included Figure 4.4 to illustrate the spectra of the 

received signals for “case 1” to “case 6”. In Figure 4.5, the spectra of the received 

signals for “case 2” and “case 7” are presented to make comparison between the 

received signals of flat and curved reflectors. 

Table 4.3 Summary of the parameters used for different simulation scenarios discussed above. 

 reflector center position transmitter radius receiver radius reflector shape 
case 1 (0.707, 50) mm at = 3 mm ar = 6 mm flat 
case 2 (7.07, 50) mm at = 3 mm ar = 6 mm flat 
case 3 (14.14, 50) mm at = 3 mm ar = 6 mm flat 
case 4 (0.707, 50) mm at = 12.7 mm ar = 12.7 mm flat 
case 5 (7.07, 50) mm at = 12.7 mm ar = 12.7 mm flat 
case 6 (14.14, 50) mm at = 12.7 mm ar = 12.7 mm flat 
case 7 (7.07, 50) mm at = 3 mm ar = 6 mm curved 
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Table 4.4: Mean square error of the spectra of the received signals obtained by center summation 
Huygens method for different simulation scenarios. The unit of MSE is “%”. 

 5µm 10µm 20µm 50µm 100µm 200µm 500µm 
case 1 0 0 0.0001 0.0051 0.0929 2.974 403.5808 
case 2 0 0 0 0.0003 0.0047 0.1879 21.8272 
case 3 0 0 0 0 0.0004           0.0189      1.5636      
case 4 0 0 0 0.0006            0.0115       0.507       42.1549        
case 5 0 0 0 0.0017       0.0315        1.061        107.178         
case 6 0 0 0 0.0006            0.0111       0.3969       39.7812       
case 7 0 0 0.0001             0.0097        1.086        21.2744         127.8321       

 

  

  (a) Case 1     (b) Case 4 

  

  (c) Case 2     (d) Case 5 
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  (e) Case 3     (f) Case 6 

Figure 4.4 Spectra of the received signals obtained by center summation Huygens method for 6 
different simulation scenarios: case 1 to case 6 as described above. 

 

 
  (a) Case 2     (b) Case 7 

Figure 4.5 Spectra of the received signals obtained by center summation Huygens method for two 
different simulation scenarios: case 2 and case 7 as described above. 

 
As can be observed from Table 4.4, when two planar circular piston transducers 

of radius 3mm and 6mm are used as transmitter and receiver, respectively, the error 

produced by a given tile size decreases when the radial distance of the reflector 

increases from 0.707mm to 7.07mm and then to 14.14mm; however, when a planar 

circular piston transducer of radius 12.7mm is used as both the transmitter and receiver, 
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the error produced by a given tile size increases and then decreases as the radial 

distance increases from 0.707mm to 7.07mm and then to 14.14mm. Such results are 

surprising because, normally, we think that the error should change in a similar way 

when the radial distance of the reflector changes.  

We have calculated the spectra of the received signals from the 1mm*1mm 

square flat reflector, tilted 10° relative to the transducer surface, for a number of 

simulation scenarios by changing the size of the transmitter and receiver as well as 

changing the radial position of the reflector. For all these simulation scenarios, the axial 

distance of the center of the reflector is z = 50mm and the radial distance of the center 

of the reflector is ρ = 0mm, 0.707mm, 1.414mm, 2.828mm, 4.243mm, 5.657mm, 

7.07mm, 8.485mm, 9.899mm, 11.31mm, 12.73mm, 14.14mm, 15.56mm, 16.97mm, 

respectively. Figure 4.6 illustrates the relationship between the radial distance and the 

Mean Square Error (MSE), obtained with the 100µm tile size for different simulation 

scenarios. It is another form of evidence that the accuracy of the received signals 

obtained with given tile size is quite dependent on the position of the reflector as well as 

the size of the transmitting and receiving transducer. More discussion about Figure 4.6 

will be presented in section 5.2 in chapter 5. 
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Figure 4.6 The relationship between the radial distance and the Mean Square Error of the spectra 
of the received signals obtained with the 100µµm tile size, from a 1mm*1mm square flat reflector, 
which is tilted 10°° relative to the transducer surface. Part (a): The MSE produced when same size 
planar circular piston transducer is used as both the transmitter and receiver, the radius is 3mm, 
6mm, 9mm and 12.7mm, respectively; Part (b) (c) (d) (e) and (f): The comparison between the MSE 
produced when two different size planar circular piston transducers are used as the transmitter 
and receiver, and the MSE produced when same size planar circular piston transducer is used as 
both the transmitter and receiver. 
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From above examples, we conclude that the accuracy of the received signals 

obtained with a specified tile size is quite dependent on the parameters of the specific 

simulation scenario, such as the tilt angle of the reflector surface, the location, shape 

and size of reflector, the size of the transducers, etc. Therefore, the “optimal micro-tile 

size” needs to be found empirically by “trial and error” method. 
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Chapter 5  

Evaluation of DREAM Method 
 
 

In chapter 4, the simple, but computationally more demanding Huygens method 

was evaluated based on the received signals obtained from a 1mm*1mm square reflector 

under different simulation scenarios.  In this chapter, the DREAM method will be used 

for calculating the received signal due to reflectors with different size, shape and 

position in different simulation scenarios. As described earlier in this thesis, the 

DREAM method tessellates the reflector into tiles of moderate size. To consider the 

trade-off between the computation time and accuracy for DREAM method, we need to 

find the optimal tile size for DREAM method. We have carried out a detailed 

investigation, and in this chapter we try to develop a set of rules that may help to decide 

the optimal tile size efficiently. The two implementations of the DREAM method, based 

on both rectangular tile (R-DREAM) and triangular tile (T-DREAM), will be used. The 

results obtained by DREAM method using the optimal tile size are compared and 

evaluated with the results obtained by Huygens method.  

In chapter 4, the results obtained by Huygens method with 5µm micro-tile size 

were used as the reference signal to evaluate results obtained with larger tile size. 

However, when the reflector size becomes much larger, for example, 15mm*15mm, the 
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computation time using Huygens method with 5µm micro-tile size becomes too long to 

be acceptable. More than 140 hours are required to calculate the received signal from 

15mm*15mm square flat reflector for just one set of transmitting and receiving 

transducers. As we found in chapter 4, the results obtained by Huygens method using 

the optimal micro-tile size are very close to the “ideal” results obtained with 5µm 

micro-tile size. Therefore, in this chapter, the results obtained by Huygens method using 

the optimal micro-tile size are used to make comparison with the DREAM method.  

As discussed in section 2.6, the DREAM method can be used to calculate the 

received signal from an annular array transducer, which is the basis for chapter 6, The 

Optimal Design of Acoustic Field and Receiver Characteristics. The received signal 

from an array is calculated based on the superposition of the received signals from 

different combinations of planar circular transducers. Therefore, in this chapter, planar 

circular piston transducers with four different radii are used as transmitter and receiver, 

and all combinations of transmitter radius and receiver radius are considered. The radii 

of the transducers are 3mm, 6.3mm, 9mm and 12.7mm. 

In section 5.1, a brief introduction is given to the behavior of diffraction 

response versus the radial position of the field points for different transmitting and 

receiving transducers. In section 5.2, a new term “DREAM Error” is defined. Section 

5.3 evaluates the energy of the received signal from a small reflector, and in section 5.4, 

the term “Normalized DREAM Error” is introduced, based on the information from 

section 5.3. The DREAM Error, the energy of the received signal, and the normalized 

DREAM Error for a small reflector are dependent on such factors as the radial position 

of the reflector, the tilt angle of the reflector, and the radii of the transmitting and 



 81

receiving transducers. The relationship between the DREAM Error, the energy, and the 

normalized DREAM Error and the above-mentioned factors are illustrated in section 

5.2, 5.3 and 5.4, respectively. In section 5.5, the issue of the optimal tile size for 

DREAM method is discussed, based on the discussions in sections 5.2, 5.3 and 5.4. In 

section 5.6, 5.7 and 5.8, different simulation results are presented. In section 5.6, to give 

more illustration to the discussion in sections 5.2 and 5.5, the spectra of the received 

signal from 1mm*1mm square tilted flat reflectors with different radial locations are 

presented, for a specific transmitter and receiver combination. The results obtained by 

Huygens, R-DREAM and T-DREAM method are presented and compared. Section 5.7 

is similar to section 5.6 except that the reflectors are 15mm*15mm square flat reflectors 

with different tilt angles. In section 5.8, the received signals from a large curved 

reflector are presented. By the comparison of the results in sections 5.2 and 5.4, it is 

concluded that the T-DREAM produces better results than the R-DREAM for the same 

tile area. In addition, we prefer to T-DREAM in the practical applications. Therefore, in 

the last part of section 5.7 and section 5.8, only the results obtained by T-DREAM are 

presented and compared with those obtained by Huygens method. 

 

5.1  Introduction to the Behavior of Diffraction Response  

When the DREAM method is applied, it is also necessary to consider the trade-

off between the computation time and accuracy as was done for Huygens method. That 

is, we also need to find the optimal tile size for DREAM method. For the DREAM 

method to produce the received signal with a small error, the tile size should be chosen 

so that the diffraction responses from the corners of the tile do not differ too much. 
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Therefore, it is useful to first have some idea about the behavior of the diffraction 

response. The factors which may cause the change of the diffraction response in both 

waveform (shape) and amplitude include the radial position of the field point and the 

radii of the transmitting and receiving transducers.  
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Figure 5.1 Illustration of the different diffraction responses when the radial position of the field 
points changes. Two planar circular pistons with radius 3mm and 9mm act as transmitter and 
receiver respectively. The axial position of the field points is 50mm. The radial positions are 1mm, 2 
mm, 3mm and 4mm in part (a), (b), (c) and (d), respectively. 

 
Figure 5.1 illustrates the different diffraction responses when the radial position 

of the field point changes from 1mm to 4mm with 1mm increment. The axial position of 

the field points is 50mm and the radii of the transmitter and receiver are 3mm and 9mm, 

respectively. By examining Figure 5.1, we can get some idea about the change of the 
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shape and amplitude of the diffraction responses when the radial position of the field 

point changes.  

Figure 5.2 is similar to Figure 5.1, except that for Figure 5.2, the radii of the 

transmitter and receiver are 6.3mm and 9mm, respectively. By comparing corresponding 

parts in Figure 5.1 and Figure 5.2, we can observe that the shape and/or the amplitude 

of the diffraction response of a field point at a specific position change a lot when the 

radius of one transducer in the pulse-echo system differs.  
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Figure 5.2 Illustration of the different diffraction responses when the radial position of the field 
points changes. Two planar circular pistons with radius 6.3mm and 9mm act as transmitter and 
receiver respectively. The axial position of the field points is 50mm. The radial positions are 1mm, 2 
mm, 3mm and 4mm in part (a), (b), (c) and (d), respectively. 
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5.2  DREAM Error versus Radial Distance 

As illustrated in section 5.1, the shape and amplitude of the diffraction responses 

change significantly when the radial position of the field points and/or the radii of the 

transducers change. However, it is hard to accurately/mathematically describe the 

change of the diffraction responses because it is difficult to define the measure for 

“change of the diffraction responses” precisely.  The reason why we investigate the 

behavior of the diffraction response versus the radial position of the field points for 

different transmitting and receiving transducers is that we’d like to make use of such 

information to help us to determine the optimal tile size for DREAM method, and then 

to calculate the received signal for a pulse-echo system using DREAM method with the 

optimal tile size. Therefore, instead of investigating the “change of the diffraction 

responses”, we calculate the error of the received signal obtained by DREAM method 

with a fixed tile size, using the received signal obtained by Huygens method as the 

reference signal. Large error (the numerical values will be discussed in section 5.5) 

means the tile size is too large for the delay linearization of DREAM method to produce 

good approximation. The larger the error when evaluated with a constant tile size, the 

smaller is the proper tile size that must be chosen for DREAM method.  

To develop rules for the optimal tile size for a range of measurement situations, 

we investigate the relationship between the error and such factors as reflector position, 

the radii of the transmitting and receiving transducer, which are the factors closely 

related to the change of the diffraction responses. By doing this, we can get some idea 

about how those factors affect the choice of the tile size used by DREAM method. The 
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error is named “DREAM Error” and is calculated in the frequency domain, using the 

same MSE method as defined by equation (4.2) in Chapter 4. Equation (4.2) is repeated 

below for convenience: 

 DREAM error = MSE = %100*
|)(|

|))(||)((|
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where Vr(f) is the frequency spectrum of the received signal calculated with the 

DREAM method whose accuracy is to be evaluated. Vref(f) is the frequency spectrum of 

the reference signal calculated with the Huygens’ method. 

To illustrate the relationship between the DREAM Error and the radial location 

of the reflector, the received signal from a small square reflector (the size of the 

reflector will be presented later) is calculated by Huygens method as well as by both T-

DREAM and R-DREAM method using equation (5.1). Next, the DREAM Error is 

calculated for both T-DREAM and R-DREAM method. The small square reflector is 

tilted 0.6° with respect to the transducer surface as shown in Figure 5.3 (a), followed by 

a set of measurements where the small reflector is tilted 6°. The center of the small 

square reflector moves in small steps along the dotted line shown in both Figure 5.3 (a) 

and (b). The center can be described in polar coordinates as 

mm
r

rzr p
pp ))6.0sin(

)6.0(cos1
50,(),(

2
°

°+
+=    (5.2) 

where 22 yxrp +=  is the radial position of the center of the small reflector and varies 

over the range of (0.35, 11.3)mm and z is the axial position of the center. The 

parameters rp and z are shown in Figure 5.3 (b). 
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Figure 5.3 Illustration of the simulation scenarios used to illustrate the relationship between the 
DREAM Error and the radial location of the reflector. 

 
When R-DREAM is applied, the size of the small reflectors is set to be 

500µm*500µm. The received signal from those small reflectors are calculated by 

Huygens method using 100µm point spacing and by R-DREAM using tile size of 

500µm*500µm. Then the DREAM Error is calculated for each small reflectors using 

equation (5.1), where Vr(f) now is the frequency spectrum of the received signal from 

the 500µm*500µm square reflectors obtained by R-DREAM method and Vref(f) is the 

frequency spectrum of the received signal obtained by Huygens method. When T-

DREAM is applied, the size of the small tiles is set to 700µm*700µm and the received 

signal from the tile is calculated by Hugyens method using 100µm point spacing. Each 

700µm*700µm tile is divided up into two equilateral right-triangles of same size along 

the diagonal line of the small square reflector and the received signal from the square 

tile is calculated by T-DREAM using the two equilateral right-triangles. Then the 

DREAM Error is calculated in the same way as that for the R-DREAM. The area of 

these triangular tiles used by T-DREAM is 0.7mm*0.7mm/2 = 0.245mm2 which is about 
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the same as the area of those tiles used by R-DREAM, i.e., 0.5mm*0.5mm = 0.25mm2. 

Therefore, the DREAM Error can also be used to compare the accuracy of the results 

obtained by T-DREAM and R-DREAM.  

Our calculations have shown that the DREAM Error also depends strongly on 

the radii of the transmitting and receiving transducers. As described at the beginning of 

this chapter, we are considering four transducers of different sizes; therefore, there are 

ten simulation sets based on the different combination of these four transducers as 

transmitter and receiver. Table 5.1 shows those combinations. It should be noted that, 

due to reciprocity, we obtain the same received signal when the transmitter and receiver 

radii are a1 and a2, respectively, as when the transmitter and receiver radii are a2 and a1, 

respectively. The procedure described above to illustrate the relationship between the 

DREAM Error and radial position is applied to all these ten simulation sets. 

Table 5.1 Summary of the simulation scenarios based on the different combination of the 
transducers as the transmitter and receiver. 

 transmitter radius receiver radius 
simulation set 1 at = 3 mm ar = 3 mm 
simulation set 2 at = 3 mm ar = 6.3 mm 
simulation set 3 at = 3 mm ar = 9 mm 
simulation set 4 at = 3 mm ar = 12.7 mm 
simulation set 5 at = 6.3 mm ar = 6.3 mm 
simulation set 6 at = 6.3 mm ar = 9 mm 
simulation set 7 at = 6.3 mm ar = 12.7 mm 
simulation set 8 at = 9 mm ar = 9 mm 
simulation set 9 at = 9 mm ar = 12.7 mm 

simulation set 10 at = 12.7 mm ar = 12.7 mm 
 

Part (a) and (b) in Figure 5.4 illustrate the relationship between the DREAM 

Error and the radial position when the radii of the transmitter and receiver are both 

6.3mm. Part (a) is for T-DREAM and part (b) is for R-DREAM. Part (c) and (d) in 
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Figure 5.4 illustrate the relationship between the DREAM Error and the radial position 

when the radii of the transmitter and receiver are 3mm and 6.3mm, respectively. Part (c) 

is for T-DREAM and part (d) is for R-DREAM.The results for all the ten sets of 

simulation scenarios, listed in Table 5.1, are included in Appendix A.2.  
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Figure 5.4 Illustration of the relationship between the DREAM Error (=MSE) and the radial 
position, basing on the MSE of the received signal obtained by DREAM method from small square 
reflectors. The results obtained by Huygens method with 100µµm point spacing are used as reference 
signal. The reflectors are tilted 0.6°° with respect to the surface of the transducer. The radii of the 
transmitter and receiver are: in part (a) and part (b): both 6.3mm; in part (c) and part (d): 3mm 
and 6.3mm. Part (a) and part (c) are for T-DREAM and part (b) and part (d) are for R-DREAM. 

 
It is found from Figure 5.4 that, when the radii of the transmitter and receiver 

are both 6.3mm, the DREAM Error is relative large in both the region near the 

transducer axis and the region whose radial position is about the radius of the 
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transducer. The same conclusion holds for the other situations when the size of the 

transmitter and receiver are the same. When the size of the transmitter and receiver are 

different, the DREAM Error is also large in the near-axis region. And in most cases, the 

DREAM Error is also large in the region whose radial position is about the radius of the 

smaller transducer. 

Recall that in section 4.2 of chapter 4, we investigated the relationship between 

the radial distance and the Mean Square Error (MSE) of the spectra of the received 

signals obtained by Huygens method (for the convenience of discussion, we will refer to 

the MSE as Huygens Error). By comparing Figure 5.4 and Figure 4.6, we can observe 

that the DREAM Error and the Huygens Error are both large in the region whose radial 

position is about the radius of the transducer. 

During our investigation, we found that the DREAM Error also depends on the 

tilt angle of the reflector with respect to the surface of the transducer. Therefore, we 

have repeated the same simulations described above, except that the tilt angle of the 

small square reflector with respect to the transducer surface is now increased to 6°, 

instead of 0.6°. The trajectory of the center of the reflector is described as: 
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Figure 5.5 Illustration of the relationship between the DREAM Error (=MSE) and the radial 
position, basing on the MSE of the received signal obtained by DREAM method from small square 
reflectors. The results obtained by Huygens method with 50µµm point spacing are used as reference 
signal. The reflectors are tilted 6°° with respect to the surface of the transducer. The radii of the 
transmitter and receiver are: in part (a) and part (b): both 6.3mm; in part (c) and part (d): 3mm 
and 6.3mm. Part (a) and part (c) are for T-DREAM and part (b) and part (d) are for R-DREAM. 

 
Figure 5.5 shows the relationship between the DREAM Error and the radial 

position when the reflector is tilted 6° with respect to the surface of the transducer, for 

the same cases as shown in Figure 5.4. Please refer to Appendix A.5, for the DREAM 

Error of all the ten sets of different combination of transducers. 

By comparing Figure 5.4 and Figure 5.5, we can observe that the DREAM Error 

in 6° case is larger than that in corresponding 0.6° case. However, similar to the cases 
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with 0.6° tilted angle, for most cases with 6° tilted angle, the DREAM Error is relative 

large both in the region near the axis and the region where the radial position is about 

the same as the radius of the transducer. In general, larger DREAM Error means that 

smaller tile size should be used by DREAM method. Therefore, we can conclude that 

the optimal tile size for a specific set of transmitting and receiving transducers varies 

with the radial position of the reflector. More illustration will be presented in section 

5.6, after we discuss the optimal tile size for DREAM method in section 5.5. 

By comparing the DREAM Error for both T-DREAM and R-DREAM in Figure 

5.4 and Figure 5.5, we can tell that T-DREAM produces better results than R-DREAM 

does for the same simulation scenario with same tile area. 

 
5.3  Energy of the Received Signal from Small Reflector versus Radial 

Distance 

The information given in section 5.2 is quite important if we are interested in the 

received signal from small reflector with a size such as 0.5mm*0.5mm or 1mm*1mm. 

When we try to calculate the received signal from a much larger reflector, for example, 

15mm*15mm flat reflector, other considerations should be made when it comes to 

finding the optimal tile size. One thing to be noted is that the energy of the received 

signal from the small reflector, which was described in section 5.2, differs a lot when its 

radial position changes. The energy distribution along the radial distance is also a 

function of the radii of the transmitter and receiver. The energy is defined as: 
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where Vref(f,rp) is the spectrum of the received signal from the 0.5mm*0.5mm reflector, 

as a function of the radial position rp.  
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Figure 5.6 Illustration of the energy of the received signal from a 0.5mm*0.5mm tile as a function of 
the radial position of the center of the tile. The reflector is tilted 0.6°° with respect to the transducer 
surface. The radii of the transmitter and receiver are: in part (a) both 3mm; in part (b): 3mm and 
6.3mm; in part (c): 6.3mm and 6.3mm; in part (d): 9mm and 9mm. 

 
Figure 5.6 illustrates the energy of the received signal from a 0.5mm*0.5mm tile 

as a function of the radial position of the center of the tile. The reflector is tilted 0.6° 

with respect to the transducer surface, and the trajectory of its center is described by 

equation (5.2) in section 5.2. In part (a), the radii of the transmitter and receiver, are 
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both 3mm; in part (b): 3mm and 6.3mm; in part (c): 6.3mm and 6.3mm; in part (d): 9mm 

and 9mm. Please refer to Appendix A.1, for the energy distribution for all the ten 

situations with different combination of transducers. 
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Figure 5.7 Illustration of the energy of the received signal from a 0.5mm*0.5mm tile as a function of 
the radial position of the center of the tile. The reflector is tilted 6°° with respect to the transducer 
surface. The radii of the transmitter and receiver are: in part (a) both 3mm; in part (b): 3mm and 
6.3mm; in part (c): 6.3mm and 6.3mm; in part (d): 9mm and 9mm. 

 
As we did in section 5.2, we repeat the energy calculations for the small 

reflector which now is tilted 6° with respect to the transducer surface, and the trajectory 

of its corner is described by equation (5.3) in section 5.2. Figure 5.7 illustrate the 

relationship between the energy of the received signal from a 0.5mm*0.5mm tile as a 
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function of the radial position of the center of the tile for the same cases as shown in 

Figure 5.6. Please refer to Appendix A.4, for the energy distribution for all the ten 

situations with different combination of transducers. 

By observing Figure 5.6 and Figure 5.7, we find that the received signal from a 

small reflector near the axis contains much more energy than the received signal from a 

reflector far away from the axis. The smaller the size of the transmitter and receiver, the 

more energy is concentrated in the received signal from the small reflectors near the 

axis. The energy distribution curves for the 0.6° case are similar to those for the 6° case, 

while the overall energy level is much higher when the reflector tilted 0.6° than when it 

is tilted 6°. 

 
5.4  Normalized DREAM Error versus Radial Distance 

In section 5.3, we calculated the energy of the received signal from a small tile 

as a function of the radial position of the center of the tile. As most modeling situations 

involve the received signal from an extended reflector, it is appropriate to define a 

normalized DREAM Error (or MSE) in which the mean square error of a small tile is 

normalized by the energy of the received signal from a large reflector. Such a 

normalized DREAM Error is defined as 

Normalized DREAM Error= %100*
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where Vr_tile(f,rp) is the frequency spectrum of received signal from the small reflector 

obtained by DREAM method. The reflector is tilted either 0.6° or 6° with respect to the 

transducer surface, and the trajectory of its corner is described by either equation (5.2) 



 95

or (5.3) in section 5.2. For R-DREAM, the size of the small reflector is 0.5mm*0.5mm, 

and the received signal is calculated by R-DREAM using one square tile with area of 

0.5mm*0.5mm. For T-DREAM, the size of the small reflector is 0.7mm*0.7mm and the 

received signal is calculated by T-DREAM using two equilateral right-triangles with 

area of 0.7mm*0.7mm/2. The function Vref_tile(f,rp) is similar to Vr_tile(f,rp) except that it 

is obtained by Huygens method. Vref_reflector(f) is the frequency spectrum of the received 

signal from a 8mm*8mm flat reflector, which is placed in the first quadrant of the x-y 

plane with one of its corner on the z-axis. It is tilted by the same angle as the small 

reflector with respect to the transducer surface. Thus, the small square reflector moves 

along the diagonal of the large reflector. 

Figure 5.8 illustrates the relationship between the normalized DREAM Error 

and the radial position when the reflectors are tilted 0.6°. Part (a) and (b) are for T-

DREAM and R-DREAM, respectively, when the radii of the transmitter and receiver 

are both 6.3mm. Part (c) and (d) present the relationship between the normalized 

DREAM Error and the radial position when the radii of the transmitter and receiver are 

3mm and 6.3mm, respectively. Please refer to Appendix A.3 for the results for all ten 

combinations of the transmitter and receiver. 
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Figure 5.8 Illustration of the relationship between the radial position and the Normalized DREAM 
Error of the received signal from small square reflector. The results obtained by Huygens method 
with 100µµm point spacing are used as reference signal. The reflector is tilted 0.6°° with respect to the 
transducer surface. The radii of the transmitter and receiver are: in part (a) and part (b): both 
6.3mm; in part (c) and part (d): 3mm and 6.3mm. Part (a) and part (c) are for T-DREAM and part 
(b) and part (d) are for R-DREAM. 

 
Figure 5.9 illustrates the relationship between the normalized DREAM Error 

and the radial position when the reflectors are tilted 6° for the same cases as shown in 

Figure 5.8. Please refer to Appendix A.6 for the results for all ten combinations of the 

transmitter and receiver. 
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Figure 5.9 Illustration of the relationship between the radial position and the Normalized DREAM 
Error of the received signal from small square reflector. The results obtained by Huygens method 
with 50µµm point spacing are used as reference signal. The reflector is tilted 6°° with respect to the 
transducer surface. The radii of the transmitter and receiver are: in part (a) and part (b): both 
6.3mm; in part (c) and part (d): 3mm and 6.3mm. Part (a) and part (c) are for T-DREAM and part 
(b) and part (d) are for R-DREAM. 

 
It can be observed from Figure 5.8 and Figure 5.9 that the normalized DREAM 

Error is quite large in the region near the transducer axis. However, when the radial 

distance increases, the normalized DREAM Error becomes much smaller which means 

that this region contributes only a small fraction to the overall error. Consequently, 

larger tile size may be used in this region. It can also be found that the normalized 

DREAM Error largely depends on the sizes of the transducers, especially the size of the 

smaller of the transmitter and receiver. Generally, the smaller the size of the transducer, 
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the larger is the normalized DREAM Error and the smaller is the optimal tile-size. The 

observation holds true when the received signal is calculated for an extended reflector 

covering both near-axis region and the far-axis region. Figure 5.8 and Figure 5.9 also 

shows that the normalized DREAM Error is smaller in 0.6° case than that in 6° case and 

that T-DREAM produces better results than R-DREAM does in the same simulation 

scenario with same tile area, as we also found in section 5.2. 

 

5.5  The Optimal Tile Size for DREAM Method 

So far, we have calculated and analyzed several factors that may affect the error 

of the results obtained by DREAM method. The error magnitude in turn affects the 

optimal tile size that can be used by DREAM method to calculate the received signal in 

a pulse-echo system. The specific optimal tile size being chosen is also dependent on 

the allowable error level of the results in a specific application. In the work of this 

thesis, we define the optimal tile size in the DREAM method as the size which gives the 

shortest computation time and which at the same time keeps the error of the result 

obtained by DREAM less than 0.2%, compared with the result obtained by Huygens 

method, using equation (5.1).  

One thing that should always be kept in mind is that the optimal tile size also 

depends on the shape of the reflector surface. The tile size must be chosen so that the 

tessellated tiles can approximate the surface sufficiently accurate. The more 

complicated the shape of the reflector surface is, the smaller the tile size should be 

chosen. How to optimally approximate a specific reflector surface with flat rectangular 
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or triangular tiles is an important topic closely related to DREAM method. 

Unfortunately, because of the limit of time, it is beyond the scope of this thesis. We will 

just try to keep the size of the tile moderate for the purpose of the optimal surface 

approximation. Although it is possible that, for some simulation scenarios, the DREAM 

method may produce good results with larger tile size, for all the following simulations, 

we limit the largest possible side length of the rectangular tile of R-DREAM method to 

1mm and limit the largest possible side length of the triangular tile of T-DREAM 

method to 1.414mm which corresponding to the length of the diagonal line of the 

rectangular tile. For the ease of tessellation, the tessellated triangular tiles in the 

following parts are all right triangles generated by splitting a rectangular tile along the 

diagonal line. However, the T-DREAM is equally applicable to arbitrary-shaped 

triangular tiles. Furthermore, tessellation using arbitrary triangular tiles might be able to 

produce better results because the arbitrary-shaped triangular tiles can approximate the 

complex reflector surface more effectively. That is also one of the reasons that we 

prefer the T-DREAM to the R-DREAM. 

For the convenience of tessellation, if a tile of specific size does not produce the 

results with required accuracy, it is tessellated into four smaller tiles with the same area. 

In most cases presented in the following part of this thesis, the R-DREAM uses square 

tiles and the T-DREAM uses equilateral right-triangular tiles. Note that we will use the 

side length of the square tile or the length of the hypotenuse of the equilateral right-

triangular tile to describe the tile size used by R-DREAM or T-DREAM. Additional 

explanation will be given when the tile is not a square tile or an equilateral right-

triangular tile for some cases. For the R-DREAM, the tile side length is set to be either 
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1000µm, 500µm, 250µm or 125µm. For the T-DREAM, the hypotenuse is set to be 

either 1414µm, 707µm, 354µm or 174µm. Of course, these values may be adjusted 

slightly for the convenience of the tessellation for a specific reflector surface.  

Based on the discussion in previous sections, we try to develop several rules that 

may help to decide the optimal tile size efficiently. However, similar to what we found 

for Huygens method, the optimal tile size for DREAM method is quite dependent on 

specific simulation scenario and the allowable error level of the results. It is impossible 

to tell which tile size to be used in a specific situation without actual numerical 

experiments, and the basic way to decide the optimal tile size is “trial and error” 

method. Based on the discussion in previous sections and “trial and error method”, we 

find that, in general, when the tilt angle of the reflector is small, for example, less than 

2° or 3°, 1000µm or 500µm tile size can be used by R-DREAM and 1414µm can be 

used by T-DREAM.  

When the tilt angle of the reflector becomes larger, the optimal tile size is 

dependent on factors such as the radial position of the tile, the size of the transducer and 

receiver. For the purpose of clarity, we use tables to summarize the optimal tile size for 

different situations. Based on the relationship between the DREAM Error and the radial 

position illustrated in Figure 5.5 and Appendix A.5, Table 5.2 and Table 5.3 summarize 

the optimal tile sizes when the reflector is small (dimensions in the order of 1mm*1mm) 

and tilted around 6° with respect to the transducer surface. Table 5.2 is for T-DREAM 

method and Table 5.3 is for R-DREAM method. Results based on the optimal tile size 
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will be presented in section 5.6 for small reflectors. More explanation will be presented 

in section 5.6. 

Table 5.2 Summary of the optimal tile size for T-DREAM when the reflector is small (with the 
dimension of 1mm*1mm) and tilted around 6°° with respect to the transducer surface. 

radii of 
transducers reflector radial position r 

T-DREAM optimal tile 
size  

r < 3.5mm  354µm 
3.5mm ≤ r < 4.5mm;8mm ≤ r < 707µm 

 
3mm 

 
 

 
3mm 

4.5mm ≤ r < 8mm;10mm ≤ r < 11mm 1414µm 
r < 3mm  354µm 

3mm ≤ r < 8mm;10mm ≤ r < 11mm 707µm 
 

3mm 
 

 

 
6.3mm 

8mm ≤ r < 10mm 1414µm 
r < 3mm  354µm 

3mm 
 

9mm 3mm ≤ r < 11mm 707µm 
r < 2mm  354µm 

3mm 
 

12.7mm 2mm ≤ r < 11mm 707µm 
r < 1.5mm;4mm ≤ r < 7mm 354µm  

1.5mm ≤ r < 4mm;7mm ≤ r < 8mm 707µm 
 

6.3mm 
 

 

 
6.3mm 

8mm≤ r < 11mm 1414µm 
r < 2mm;3.5mm ≤ r < 5.5mm 354µm   

6.3mm 
 

9mm 2mm ≤ r < 3.5mm;5.5mm ≤ r < 707µm 
r < 1.5mm;3.5mm ≤ r < 5mm 354µm  

6.3mm 12.7mm 1.5mm ≤ r < 3.5mm;5mm ≤ r < 707µm 
r < 1.5mm; 7mm ≤ r < 9mm  354µm   

9mm 
 

9mm 1.5mm ≤ r < 7mm;9mm ≤ r < 11mm 707µm 
r < 1.5mm; 6mm ≤ r < 8mm  354µm   

9mm 
 

12.7mm 1.5mm ≤ r < 6mm;8mm ≤ r < 11mm 707µm 
r < 1.5mm  354µm   

12.7mm 
 

12.7mm 1.5mm ≤ r < 11mm 707µm 
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Table 5.3 Summary of the optimal tile size for R-DREAM when the reflector is small (with the 
dimension of 1mm*1mm) and tilted around 6°° with respect to the transducer surface. 

radii of transducers  reflector radial position r R-DREAM optimal tile size 
r < 3.5mm  125µm 

3.5mm ≤ r < 5mm 250µm 
 

3mm 
 
 

 
3mm 

5mm ≤ r < 11mm 500µm 
r < 1.5mm  125µm 

1.5mm ≤ r < 5mm 250µm 
 

3mm 
 

 

 
6.3mm 

5mm ≤ r < 11mm 500µm 
r < 1.5mm  125µm 

1.5mm ≤ r < 5mm 250µm 
 

3mm 
 

 

 
9mm 

5mm ≤ r < 11mm 500µm 
r < 1.5mm  125µm 

1.5mm ≤ r < 5mm 250µm 
 

3mm 
 

 

 
12.7mm 

5mm ≤ r < 11mm 500µm 
r < 1.5mm;4mm ≤r < 7mm 250µm 

1.5mm ≤r < 4mm;7mm ≤r < 9mm 500µm 
 

6.3mm 
 

 

 
6.3mm 

9mm≤r < 11mm 1000µm 
r < 1.5mm 125µm 

1.5mm ≤r < 9mm 250µm 
 

6.3mm 
 
 

 
9mm 

9mm≤r < 11mm 500µm 
r < 1.5mm 125µm 

1.5mm ≤r < 9mm 250µm 
 

6.3mm 
 

 

 
12.7mm 

9mm≤r < 11mm 500µm 
r < 2mm  125µm  

9mm 
 

9mm 2mm≤r < 11mm 250µm 
r < 2mm  125µm  

9mm 
 

12.7mm 2mm≤r < 11mm 250µm 
r < 2mm  125µm  

12.7mm 
 

12.7mm 2mm≤r < 11mm 250µm 
 

When the reflector is large and covers both regions near the transducer axis and 

the regions far from the transducer axis, the rules for the optimal tile size are a little 

different from that for the small reflectors. Based on the “trial and error” method and 

the relationship between the normalized DREAM Error and the radial position 

illustrated in Figure 5.9 and Appendix A.6, Table 5.4 summarizes the optimal tile size 
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when the reflector is large and tilted around 6° with respect to the transducer surface. 

Results for large reflectors based on the optimal tile size will be presented in sections 

5.7 and 5.8.  

Table 5.4 Summary of the optimal tile size for both T-DREAM and R-DREAM when the reflector 
is large and tilted around 6°° with respect to the transducer surface. 

radii of transducers  tile radial position r T-DREAM R-DREAM 
r < 4mm 354µm  125µm  

3mm 3mm 4mm ≤ r < 11mm 707µm 500µm 
r < 3mm 354µm  125µm  

3mm 6.3mm 3mm ≤ r < 11mm 707µm 500µm 
r < 3mm 354µm  125µm  

3mm 9mm 3mm ≤ r < 11mm 707µm 500µm 
r < 3mm 354µm  250µm  

3mm 12.7mm 3mm ≤ r < 11mm 707µm 500µm 
r < 2mm 354µm  250µm  

2mm ≤ r < 6.3mm 707µm 500µm 
 

6.3mm 
 

6.3mm 
6.3mm ≤ r < 11mm 1414µm 1000µm 

r < 6.3mm 707µm 500µm 
6.3mm 9mm 6.3mm ≤ r < 11mm 1414µm 1000µm 

r < 6.3mm 707µm 500µm 
6.3mm 12.7mm 6.3mm ≤ r < 11mm 1414µm 1000µm 

r < 9mm 707µm 500µm  
9mm 9mm 9mm ≤ r < 11mm 1414µm 1000µm 
9mm 12.7mm r < 11mm 1414µm 1000µm 

12.7mm 12.7mm r < 11mm 1414µm 1000µm 
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5.6  Received Signal from Small Tilted Reflector 

To validate the conclusion we drew in sections 5.2 and 5.5, the DREAM method 

is used to calculate the spectra of the received signals due to 1mm*1mm square flat 

reflectors, using the optimal tile size. The reflector is tilted 6° with respect to the 

transducer surface and the radii of the transmitter and receiver are both 6.3mm. Table 

5.5 summarizes the position of center of these small reflectors.  

Table 5.5 Summary of the position of the 1mm*1mm square flat reflectors. The radii of the 
transmitter and receiver are both 6.3mm and the reflector is tilted 6°° with respect to the transducer 
surface. 

 reflector center position 
reflector 1 (R1) (0.71, 50.05) mm 
reflector 2 (R2) (2.12,50.16) mm 
reflector 3 (R3) (3.53,50.26)mm 
reflector 4 (R4) (4.94, 50.37)mm 
reflector 5 (R5) (6.35, 50.47)mm 
reflector 6 (R6) (7.76, 50.57)mm 
reflector 7 (R7) (9.17, 50.68)mm 
reflector 8 (R8) (10.58, 50.78)mm 

 

The optimal tile size is based on the values listed in Table 5.2 and Table 5.3 and 

is listed in Table 5.6 together with the MSE of the results obtained by R-DREAM and 

T-DREAM. The received signals obtained by Huygens method with 50µm point 

spacing are used as reference for the calculation of MSE. It is noticed that for some 

cases, for example for reflector position R1, the MSE of the result obtained by T-

DREAM with 354µm is 0.0083%, which is much smaller than the MSE value we used 

to define the optimal tile size for DREAM, namely, 0.2%. However, if we were to use 

707µm tile size for T-DREAM in this case, the MSE becomes 0.3431%, which doesn’t 
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satisfy our definition of the optimal tile size. Therefore, 354µm is the optimal tile size in 

this case.  

Table 5.6: Optimal tile size, Mean Square Error (MSE) and the computational time for R-DREAM, 
T-DREAM method for a 1mm*1mm square tile at various radial position. The results obtained by 
Huygens method with 50µµm point spacing are used as reference signal for each case. 

 R-DREAM T-DREAM Huygens 
 tile-size MSE(%) Time(s) tile-size MSE(%) Time(s) Time(s) 

R1 250µm 0.0574 1.76 354µm 0.0083 2.74 13.02 
R2 500µm 0.1409 0.6 707µm 0.0929 0.93 14.66 
R3 500µm 0.126 0.66 707µm 0.1078 1.04 16.53 
R4 250µm 0.0991 3.02 354µm 0.0127 4.4 18.68 
R5 250µm 0.017 3.18 354µm 0.0265 4.89 21.09 
R6 500µm 0.1103 1.04 707µm 0.0296 1.7 23.67 
R7 1000µm 0.0926 0.33 1414µm 0.0653 0.49 26.09 
R8 1000µm 0.0313 0.33 1414µm 0.0268 0.55 29.55 

 

In Table 5.6, the computation time for each tile position is also included for the 

Huygens method, T-DREAM and R-DREAM. By comparing the computation time, we 

may easily determine how efficient the DREAM method is. One thing to note is that the 

“computation time” is NOT a formal and strict way to evaluate the efficiency of 

different algorithms, because the computation time depends not only on the algorithms, 

but also on such factors as the kind of operating system used, the current status of CPU 

usage and so on. But it does provide a straightforward and convenient measure to 

roughly compare the computational efficiency of different algorithms. 

For the convenience of further discussion, Figure 5.5 (a) and (b) in section 5.2 

are presented as Figure 5.10 again. The graph illustrates the relationship between the 

radial distance and the DREAM Error when the reflector is tilted 6° with respect to the 

transducer surface and the radii of the transmitter and receiver are 6.3mm. Recall that in 

section 5.2, we concluded that the larger the DREAM Error is, the smaller the tile size 
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must be chosen for DREAM method to obtain the results with good accuracy. By 

comparing the optimal tile size given in Table 5.6 and the DREAM Error curve given in 

Figure 5.10, we find that our conclusion really holds. Take the results for R-DREAM 

for example: when the tile center is at (0.71, 50.05) mm, which is very near the axis, the 

DREAM Error found in Figure 5.10 is relative large with the value at about 0.5%, 

therefore, the tile size must be chosen small to get good results, i.e., 250µm in this case; 

when the tile center is at (2.12,50.16) mm, the DREAM Error found in Figure 5.10 is 

relative small with the value at about 0.15%, therefore, larger tile size may be used, i.e., 

500µm; when the tile center is at (4.94, 50.37)mm, the DREAM Error found in Figure 

5.10 is large, then smaller tile size must be used. Similar analysis can be given to the 

results obtained for all the other reflectors listed in Table 5.5, as well as to the results 

obtained by T-DREAM. 
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Figure 5.10 Illustration of the relationship between the DREAM Error and the radial position of a 
small square reflector. The results obtained by Huygens method with 50µµm point spacing are used 
as reference signal. The reflectors are tilted 6°° with respect to the surface of the transducer. The 
radii of the transmitting and receiving transducers are both 6.3mm. 
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Figure 5.11 (a), (b), (c) and (d) illustrate the spectra of the received signals from 

four reflector positions defined in Table 5.5: R1, R2, R7 and R8. Please refer to 

Appendix B.1 for the spectra of the received signals from all the reflector positions.  
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Figure 5.11 Spectra of received signal from a 1mm*1mm square reflector to show the different 
results obtained by Huygens method, R-DREAM, T-DREAM. Part (a), (b), (c) and (d) correspond 
to the received signal from reflector positions R1, R2, R7 and R8, respectively. 
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Figure 5.12 Time-domain received signal from a 1mm*1mm square reflector to show the different 
results obtained by Huygens method, R-DREAM, T-DREAM. Part (a), (b), (c) and (d) correspond 
to the received signal from R1, R2, R7 and R8, respectively. 

 
Figure 5.12 (a), (b), (c) and (d) illustrate the time-domain received signals from 

the same four reflector positions: R1, R2, R7 and R8. Please refer to Appendix B.5 for 

the time-domain received signals from all the reflectors. We find that the received 

signals obtained by different methods agree very well except that, in part (a) and (b), the 

signal obtained by Huygens method contains some very high frequency oscillations in 

the time range [66.5~ 67]µs.  These oscillations appear because the Huygens method 

uses discrete summation instead of the continuous integration of the diffraction 

response over the reflector surface which is not able to smooth out the strong impulses 
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at the start of the diffraction response unless even smaller micro-tile size is used by 

Huygens method. However, the high frequency oscillations will not give error in the 

frequency range of interest.  Based on the spectra of the received signal, we may 

investigate the system response only in the frequency range of interest. In general, the 

ultrasound transducers may be considered a bandpass filter with moderate bandwidth; 

therefore, only a certain frequency range of the received spectrum produces the output 

signal. In addition, we expect that more features identifying a given reflector can be 

found in the spectra. Therefore, for the simulations in later sections, only the spectra of 

the received signal will be included while the time-domain received signals may be 

found in corresponding Appendices. 

 

5.7  Received Signal from Large Flat Reflector  

In this section, the DREAM method is used to calculate the received signal due 

to 15mm*15mm square flat reflectors in different simulation scenarios. In section 5.7.1, 

the flat reflector is tilted 0.6° with respect to the transducer surface. Results obtained by 

both R-DREAM and T-DREAM are presented and compared with the corresponding 

results obtained by Huygens method for all ten sets of transmitter and receiver 

combinations. In section 5.7.2, the flat reflector is tilted 6° with respect to the transducer 

surface. Here, only the results obtained by T-DREAM are presented and compared with 

those obtained by Huygens method for all ten sets of transmitter and receiver 

combinations. 
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5.7.1 Received Signal from Large Flat Reflector Tilted 0.6°° 

To validate the conclusion drawn in section 5.5, that is, when the tilt angle of the 

reflector is small, large tile size can be used by DREAM to produce good results, the 

DREAM method is used to calculate the received signals from the flat reflector when it 

is tilted 0.6° with respect to the surface of the transducer. Table 5.7 summarizes the 

relevant parameters, and Table 5.8 presents the optimal tile size used as well as the 

MSE obtained for R-DREAM and T-DREAM. The results obtained by Huygens 

method with 100µm point spacing are used as reference signal. For the convenience of 

the comparison, the relative computation time of DREAM method to that of Huygens 

method is presented in the columns “Time” of Table 5.8.  

Table 5.7 Summary of the parameters used for different simulation scenarios to calculate the 
diffraction response from 15mm*15mm square flat reflector. 

 transmitter radius receiver radius tilted angle 
case 1 at = 3 mm ar = 3 mm 0.6° 
case 2 at = 3 mm ar = 6.3 mm 0.6° 
case 3 at = 3 mm ar = 9 mm 0.6° 
case 4 at = 3 mm ar = 12.7 mm 0.6° 
case 5 at = 6.3 mm ar = 6.3 mm 0.6° 
case 6 at = 6.3 mm ar = 9 mm 0.6° 
case 7 at = 6.3 mm ar = 12.7 mm 0.6° 
case 8 at = 9 mm ar = 9 mm 0.6° 
case 9 at = 9 mm ar = 12.7 mm 0.6° 

case 10 at = 12.7 mm ar = 12.7 mm 0.6° 
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Table 5.8 Optimal tile size, Mean Square Error (MSE) of the results and the computation time 
obtained by R-DREAM, T-DREAM method. The results obtained by Huygens method with 100µµm 
tiles are used as reference signal for each case. 

 R-DREAM T-DREAM 
 optimal size MSE (%) Time optimal size MSE (%) Time 

case 1 500µm 0.0244 14.1% 1414µm 0.0219 5.9% 
case 2 500µm 0.0216 16.9% 1414µm 0.0601 6.6% 
case 3 500µm 0.0151 17.5% 1414µm 0.0873 7.4% 
case 4 500µm 0.0432 19% 1414µm 0.1232 8.2% 
case 5 500µm 0.0342 16.6% 1414µm 0.0756 6.5% 
case 6 1000µm 0.0559 4.2% 1414µm 0.0217 6.6% 
case 7 1000µm 0.06 4.7% 1414µm 0.0234 7.3% 
case 8 1000µm 0.0874 4.9% 1414µm 0.0556 7.1% 
case 9 1000µm 0.048 4.7% 1414µm 0.0091 7.3% 

case 10 1000µm 0.0636 4.8% 1414µm 0.0175 7.3% 

 

Figure 5.13 illustrates the spectra of the received signal for cases 1, 2, 9 and 10 

in Table 5.7. Please refer to Appendix B.2 for the spectra of the received signal and 

Appendix B.6 for the time-domain received signals for all the cases. It can be seen from 

the figures in Figure 5.13 and the numerical values in Table 5.8 that the results obtained 

by DREAM methods really match those obtained by Huygens method very well. 
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Figure 5.13 Spectra of the received signal from a 15mm*15mm square reflector to show the 
different results obtained by Huygens method, R-DREAM, T-DREAM. The reflector is tilted 0.6°° 
with respect to the transducer surface. Part (a), (b), (c) and (d) correspond to the received signal for 
case 1, 2, 9 and 10, respectively. 

 
5.7.2 Received Signal from Large Flat Reflector Tilted 6°° 

Now, the DREAM method applying the optimal tile size in Table 5.4 is used to 

calculate the received signal due to 15mm*15mm square flat reflector, which is tilted 6° 

with respect to the transducer surface. We found in sections 5.2 and 5.4 that the T-

DREAM produces better results than the R-DREAM does. In addition, in practical 

applications, triangular tiles can approximate reflector surface better than rectangular 

tiles. Based on these reasons, only results obtained by T-DREAM will be presented 

from now on. Table 5.9 summarizes the different parameters for the simulation 

scenarios and presents the optimal tile size used as well as the MSE obtained for T-

DREAM. The results obtained by Huygens method with 50µm point spacing are used as 

reference signal. In Table 5.9, the column “Time” gives the relative computation time of 

DREAM method to that of Huygens method for the convenience of the comparison. 

Figure 5.14 illustrates the spectra of the received signal for cases 11, 12, 19 and 20 in 
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Table 5.9. Please refer to Appendix B.3 for the spectra of the received signal and 

Appendix B.7 for the time-domain received signals for all the cases. 

Table 5.9 Summary of the parameters used for different simulation scenarios to calculate the 
received signal from 15mm*15mm square flat reflector: The tile size used by T-DREAM method, 
Mean Square Error of the results and the computation time obtained by T-DREAM method. The 
results obtained by Huygens method with 50µµm tiles are used as reference signal for each case. The 
reflector is tilted 6°° with respect to the surface of the transducer. 

 T-DREAM 
 radii of transducers optimal size MSE (%) Time 

case 11 3mm 3mm 
if r < 4mm, 354µm; 

 else 707µm 
0.1981 9.2% 

case 12 3mm 6.3mm 
if r < 3mm, 354µm;  

else 707µm 
0.0798 7.7% 

case 13 3mm 9mm 
if r < 3mm, 354µm;  

else 707µm 
0.0923 8.8% 

case 14 3mm 12.7mm 
if r < 3mm, 354µm; 

else 707µm 
0.0702 9.5% 

case 15 6.3mm 6.3mm 

if r < 2mm, 354µm; 
2mm ≤ r < 6.3mm, 707µm 

else 1414µm 

0.0928 5.2% 

case 16 6.3mm 9mm 
if r < 6.3mm, 707µm;  

else 1414µm 
0.1238 4.4% 

case 17 6.3mm 12.7mm 
if r < 6.3mm, 707µm;  

else 1414µm 
0.1467 4.7% 

case 18 9mm 9mm 
if r < 9mm, 707µm;  

else 1414µm  
0.1467 4.5% 

case 19 9mm 12.7mm 1414µm 0.1011 1.8% 
case 20 12.7mm 12.7mm 1414µm 0.1333 1.8% 
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Figure 5.14 Spectra of the received signal from a 15mm*15mm square reflector to show the 
different results obtained by Huygens method, T-DREAM. The reflector is tilted 6°° with respect to 
the surface of the transducer. Part (a), (b), (c) and (d) correspond to the received signal for case 11, 
12, 19 and 20, respectively. 

 

5.8  The Results Obtained for Curved Large Reflector 

In this section, the DREAM method is used to calculate the received signal due 

to a large curved reflector for different simulation scenarios. The curved reflector is a 

10° arc of a cylinder with radius = 86mm and length = 15mm, with the arc centered at 

(rp, z) = (0, 50) mm. The x-y cross-sectional area of the reflector is 15mm*15mm. Figure 

5.15 illustrates the cross-sectional views of the curved reflector.  
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Figure 5.15 Cross-sectional views of the curved reflector. 

 
For this case, it is hard to tessellate the reflector using equilateral right triangles. 

We tessellate it using right triangles with side length of 1000µm, 750µm and 1250µm, 

respectively. Table 5.10 summarizes the different parameters for the simulation 

scenarios and presents the optimal tile size used as well as the MSE of the received 

signal obtained for T-DREAM. The results obtained by Huygens method with 

50µm*37.5µm micro-tile size are used as reference signal.  

Table 5.10 Summary of the parameters used for different simulation scenarios to calculate the 
received signal from the curved reflector: The tile size used by T-DREAM method, Mean Square 
Error of the results and the computationtime obtained by T-DREAM method. The results obtained 
by Huygens method with 50µµm tiles are used as reference signal for each case. The curved reflector 
is a 10°° arc of a cylinder with radius = 86mm and length = 15mm. 

 T-DREAM 
 radii of transducers optimal size MSE (%) Time 

case 21 3mm 3mm 1000µm*750µm /2 0.034 1.5% 
case 22 3mm 6.3mm 1000µm*750µm /2 0.064 1.7% 
case 23 3mm 9mm 1000µm*750µm /2 0.1439 1.8% 
case 24 3mm 12.7mm 1000µm*750µm /2 0.1928 2% 
case 25 6.3mm 6.3mm 1000µm*750µm /2 0.0886 1.6% 
case 26 6.3mm 9mm 1000µm*750µm /2 0.0511 1.6% 
case 27 6.3mm 12.7mm 1000µm*750µm /2 0.0744 1.8% 
case 28 9mm 9mm 1000µm*750µm /2 0.0932 1.8% 
case 29 9mm 12.7mm 1000µm*750µm /2 0.0914 1.8% 
case 30 12.7mm 12.7mm 1000µm*750µm /2 0.0916 1.9% 
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Figure 5.16 illustrates the spectra of the received signal for cases 21, 22, 29 and 

30 in Table 5.10. Please refer to Appendix B.4 for the spectra of the received signal and 

Appendix B.8 for the time-domain received signals for all the cases. It can be seen from 

the figures in Figure 5.16 and the numerical values in Table 5.10 that the results 

obtained by T-DREAM methods with tile size of 1000µm*750µm/2 match those 

obtained by Huygens method very well. 
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Figure 5.16 Spectra of the received signal from a curved reflector to show the different results 
obtained by Huygens method, T-DREAM. Part (a), (b), (c) and (d) correspond to the received 
signal for case 21, 22, 29 and 30, respectively. 
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Recall the results presented in Table 5.9 in section 5.7.2 for a flat reflector tilted 

6° with respect to the transducer surface. When the radius of the smaller transducer is 

3mm, a small tile area of 354µm*354µm/2 must be used by T-DREAM in the region 

near the axis to produce good result. In this case, T-DREAM using large tile area of 

1000µm*750µm/2 produces good results even when the radius of the smaller transducer 

is 3mm. To approximate a 10° arc, the largest tilt angle of the flat triangular tiles is 5° at 

the edge of the reflector. For those tiles near the axis, the tilt angle is much smaller and 

large tile size may be used by T-DREAM, even when the radius of the smaller 

transducer is small. For the region far from the transducer axis with large tilt angle, as 

illustrated by the relationship between the normalized DREAM Error and the radial 

position in section 5.4, the normalized DREAM Error is very small, therefore, large tile 

size may also be used in this region to produce good results. Therefore, such large tile 

size as 1000µm*750µm/2 may be used to generate good results for this curved reflector 

when the radius of the smaller transducer is 3mm. When the radius of the smaller 

transducer is large, as we can see in Table 5.9 in section 5.7.2, the T-DREAM is able to 

produce good results with large tile size when the entire reflector is tilted 6° with 

respect to the transducer surface. Therefore, it is not strange that T-DREAM is able to 

produce good results with large tile size for the curved reflector, for which the largest 

tilt angle of the reflector surface is only 5°. 
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Chapter 6  

Optimal Design of Acoustic Fields 

and Receiver Characteristics 
 
 

As discussed in section 2.6, the modeling concept of ultrasound pulse-echo 

system can be applied to an annular array transducer. The received signal from any 

array element due to transmission with any array element can be derived, based on the 

superposition of the received signal from planar circular transducers. With the annular 

array transducer, a large number of different acoustic fields can be produced, by varying 

the relative excitation delay and the amplitude scale factor for the individual 

transmitting elements. Similarly, a large number of receiver characteristics can be 

generated by varying the relative delay and gain factor for the individual receiving 

element. By customizing the acoustic field and receiver characteristics of an ultrasound 

pulse-echo system with annular array, the system can be optimized in the terms of 

identifying a given object or interface among a limited set of objects or interfaces. 

To realize the optimal identification, a sequence of several numerical methods 

are required: 1) An effective means to determine the received signal from a given array 

element when transmitting with any given array element, based on the shape, location 

and orientation of the reflector; 2) a method for determining optimal acoustic field and 
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receiver characteristics for a specific application, by varying the relative delays and/or 

amplitude scale factors to the individual transmitting and receiving elements; 3) neural 

networks or self-organizing maps to achieve the most accurate classification of the 

actual reflector. 

In previous chapters, we discussed the modeling of ultrasound pulse-echo 

system, as well as the implementation of the numerical modeling system, especially for 

a system with planar circular transmitter and receiver. Based on those discussions, the 

received signal from an array element or from an entire array can readily be derived. In 

this chapter, the optimal design of acoustic field and receiver characteristic will be 

explored which is carried out by varying the relative excitation delay of the individual 

transmitting and receiving elements. The last step in the sequence, “neural networks or 

self-organizing maps”, will not be covered in the thesis. 

In chapter 5, the DREAM method using optimal tile size was used to calculate 

the received signal from different reflectors for different sets of planar circular 

transducer combinations. All the results obtained by DREAM method were compared to 

those obtained by Huygens method. The results obtained by both methods match very 

well in both frequency-domain (0 to 15MHz) and in time-domain, while DREAM 

method is much more computationally efficient. It was also shown in chapter 5 that T-

DREAM produces better results than the R-DREAM does when using the same tile 

area. In practical applications, triangular tiles can approximate reflector surface better 

than rectangular tiles. Therefore, in this chapter, only T-DREAM with optimal tile size 

will be used to determine the received signal in an annular array system.  
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In this chapter, both a 3-ring annual array system and a 6-ring annual array 

system are used. The radii of the rings are chosen so that the area of each ring is about 

the same. The radius of the whole annular array is 9mm for the 3-ring array and 12.7mm 

for the 6-ring array. Consequently, for the 3-ring array, the outer radii of each ring are 

5.1mm, 7.3mm and 9mm, respectively; for the 6-ring array, the outer radii of each ring 

are 5.2mm, 7.3mm, 9mm, 10.4mm, 11.6mm and 12.7mm, respectively.  

In section 6.1, a brief introduction is given to the concept of the optimization 

which will be used to find the set of delay values for an annular array system to 

optimally differentiate between two specific interfaces. Two methods are introduced: 

the Global Search Method and the Waveform Alignment Method. In section 6.2, both 

methods are applied to find the optimal set of delay values or the optimal delay matrix 

to best differentiate between a tilted flat surface and a convex curved surface.  

The optimal delay matrix is the delay matrix which will maximize the energy of 

the difference signal between the received signals from two specified reflectors. As will 

be discussed later, the delay values contained in the optimal delay matrix need to be 

decomposed into separate transmit and receive delays; thus, the optimal delay matrix is 

an intermediate result from which the optimal set of delay values may be obtained. 

Because the Global Search Method is computationally infeasible when the number of 

elements in an array is large, it is only applied for a 3-ring annular array system. The 

Waveform Alignment Method is applied for given sets of two reflectors, using both 3-

ring and 6-ring annular array systems. The actual output signals are presented as well. 

Specifically, in section 6.3, the Waveform Alignment Method is applied to obtain the 

optimal delay matrix which will best differentiate between a tilted flat surface and a 
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concave curved surface, using both 3-ring and 6-ring annular array systems. Section 6.4 

is similar to section 6.3, except that the two reflector surfaces are a convex curved 

surface and a concave curved surface. 

 

6.1  The Concept of Optimization 

In section 2.6, the summed received signal (output voltage) from an annular 

array transducer due to an unspecified reflector is derived in equation (2.36), which is 

repeated below for convenience: 
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In equation (6.1), )(, tvREFL
ji  refers to the received signal from a specific reflector, 

produced with the ith ring as transmitter and the jth ring as receiver. Due to reciprocity, 

)()( ,, tvtv REFL
ij

REFL
ji = ; Ai is an amplitude scale factor (excitation signal amplitude) 

assigned to the ith element in the array in transmitting mode; Aj’ is an amplitude scale 

factor (gain value) assigned to the jth element in the array in receiving mode; τi is the 

delay assigned to the ith element in the array in transmitting mode; τj’ is the delay 

assigned to the jth element in the array in receiving mode and ⊗  indicates convolution. 

As a first step to solve the optimization problem more generally, our objective in this 

thesis is to differentiate between only two specified interfaces at a time. In addition, we 

only consider the optimization of the delay assigned to the elements in the array and 

hence all Ai and Aj’ values will be set equal to unity. Therefore, equation (6.1) is 

simplified to 



 122 

∑∑
= =

+−⊗=
N

i

N

j

ji
REFL

ji
REFL

total ttvtv
1 1

'
, ))(()()( ττδ     (6.2) 

Now, consider an N element annular array transducer and two reflectors with 

specified shape, location and orientation, namely, reflector A and reflector B. As 

discussed in section 2.6, an N×N signal matrix of the form shown in equation (2.32) can 

be generated for the received signals from each reflector, namely VA(t) and VB(t). 

Therefore, an N×N difference signal matrix VA-B(t) = VA(t) − VB(t) can readily be 

generated for the difference signal between the received signals from reflector A and 

reflector B. Figure 6.1 illustrates the calculation of the difference signal matrix for 3-

ring annular array transducer. Equation (6.3) illustrates the general form of the 

difference signal matrix VA-B(t): 
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In equation (6.3), each element of the matrix, )(, tv BA
ji
− , for ],1[, Nji ∈ , refers to the 

difference signal between the received signals from reflector A and reflector B, 

produced with the ith ring as transmitter and the jth ring as receiver, and 

)()()( ,,, tvtvtv B
ji

A
ji

BA
ji −=−     (6.4) 

Obviously, VA-B(t) is symmetric due to reciprocity, as long as no time shifts have been 

introduced. 
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Reflector A: size, 
location, orientation

Reflector B: size, 
location, orientation

Signal matrix 

VA (t) for 3-ring 
annular array 
transducer

Signal matrix 

VB(t) for 3-ring 
annular array 
transducer

+ –

Difference signal 

matrix, VA–B (t), 
for 3-ring annular 
array transducer

Modeling of received signal 
elements with DREAM-T

Modeling of received signal 
elements with DREAM-T

 
Figure 6.1 Calculation of the Difference Signal Matrix VA-B(t) for a 3-ring  annular array 
transducer. 

 
When separate transmit and receive delays are assigned to the individual 

components in the difference signal matrix, the summed output voltage of the difference 

signal from the two reflectors, )(tv BA
total

− , is: 
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In equation (6.5), )(tv A
total   and )(tvB

total  refer to the summed output voltage from 

reflector A and reflector B, respectively, produced by the entire annular array 

transducer. )(tv A
total  and )(tvB

total  are calculated using equation (6.2); )(, tv A
ji  and )(, tvB

ji  

refer to the received signal from reflector A and reflector B, respectively, produced with 

the ith ring as transmitter and the jth ring as receiver; )(, tv BA
ji
−  is as defined in equation 

(6.4). Clearly, )(tv BA
total

− can take on many forms, depending on the chosen set of τi, τj
’, i, 

j∈[1, N]. We define the difference energy between )(tv A
total  and )(tvB

total  as BA
totalE −  which 

is formulated as 
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If we can find a set of time delays, that is, a set of τi, τj
’, i, j∈[1, N] which will maximize 

the difference energy BA
totalE − , then )(tv A

total  and )(tvB
total  will be considered optimally 

separated in terms of energy of the difference signal. Two different ways are 

implemented to find the optimal delay set to maximize the difference energy defined in 

equation (6.6): the Global Search Method and the Waveform Alignment Method. 
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6.1.1 The Global Search Method 

The most straightforward method to find the optimal delay set is to search 

through all possible delay combinations for the elements of the annular array transducer 

in either transmitting or receiving mode. That is, apply all the possible combination of τi 

and τj
’, for i, j∈[1, N], in equation (6.6) to calculate the corresponding difference 

energy. The set of τi and τj
’, which produces the largest difference energy, is then the 

optimal delay set.  

Because the delays are relative delays and one delay can be set arbitrarily, there 

are N-1 transmit delays to be chosen independently for the N rings in transmitting 

mode. Similarly, there are N-1 independent receive delays. If there are m1 possible 

transmit delay values and m2 receive delay values, )1(
21

)1(
2

)1(
1 )( −−− ×=× NNN mmmm  

calculations are needed to find the optimal delay set for a N-ring array with Global 

Search Method. As an example, a 3-ring annular array will be considered. We 

arbitrarily set 0'11 == ττ  and assume that the transmitting delay values τi can be set to 

be one of  –1µs, 0µs and 1µs for i = 2, 3; and the receiving delay values τj’ can be set to 

be one of –2µs, 0µs and 2µs for j = 2, 3. Therefore, there are 3(3-1)× 3(3-1) = 81 possible 

combinations of (τi, τj’), for i, j ∈ [1, 3], or, 81 sets of delay values {τ1 , τ2 , τ3 , τ1’ ,τ2’,  

τ3’}. They are {0, –1, –1, 0, –2, -2} µs, {0, –1, –1, 0, –2, 0} µs, {0, –1, –1, 0, –2, 2} µs, 

{0, –1, –1, 0, 0, -2} µs, and so on. All the 81 sets of delay values are plugged into 

equation (6.6) to calculate the difference energy; the set which produce the largest 

energy in equation (6.6) is the optimal delay set. 
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Two major disadvantages of this method are: 1) The search can only be carried 

out over a limited delay range with discrete delay steps, which makes it probable that 

the optimal delay sets found is sub-optimal. 2) The computation time is so long that the 

Global Search Method is computational infeasible when the number of the elements in 

the array is large. For example, using just 41 discrete delay steps for both transmitting 

and receiving delays, which corresponds to 0.1µs step for a delay range of –2µs to 2µs, 

a 6-ring array transducer would require 412(6-1) calculations, i.e., 1.34×1016 calculations. 

For a fast calculation speed of one calculation per microsecond, about 426 years would 

be needed. An example with specified simulation scenario will be presented in section 

6.2 to find the optimal delay set for a 3-ring array system with the Global Search 

Method.  

 

6.1.2 The Waveform Alignment Method 

For the convenience of following discussion, we define an N×N delay matrix T 

of the form shown in equation (6.7):  
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In equation (6.7), τi and τj’, for i, j ∈ [1, N], have the same definition as in equation 

(6.1). Therefore, each element of the delay matrix T, ti,j, is the combination of 

transmitting and receiving delays, which is exactly the delay values that should be 

assigned to the element of the difference signal matrix VA-B(t) to obtain the summed 
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output voltage of the difference signal, )(tv BA
total

− . By doing this, equation (6.6) is 

simplified as: 
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and the delay matrix which maximize the BA
totalE −  is the optimal delay matrix. 

The concept behind the Waveform Alignment Method is to represent each 

element, or signal, )(, tv BA
ji
− , in the difference Signal Matrix VA-B(t) by a time shifted and 

amplitude scaled version of a specified waveform, termed w(t), solely for the purpose of 

establishing the optimal delay matrix. The waveform w(t) is chosen to be a good 

approximation to the impulse response of the combined transmitting and receiving array 

transducer; it should be remembered that in actual experiments, the measured received 

signal is a convolution of this impulse response with the received signal as calculated 

under the assumption of frequency-independent transducers. Furthermore, the center 

frequency of the array transducer should be selected so that it will capture much of the 

energy of the difference signal; in other words, the mean (magnitude) spectrum of the 

difference signal should have a significant overlap with the (magnitude) spectrum of 

w(t). The single waveform approximation is illustrated in the top part of Figure 6.2. 
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Difference signal matrix, 

VA–B (t), for 3-ring 
annular array transducer, 
from Figure 6.1

Single waveform matrix, 
providing best match 
between difference signal 

matrix, VA–B (t), and 
waveform w(t)  

tw
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tw22

tw 32
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33

tw 23
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31

Delay matrix, T Wave , generated 
from positions of w(t)  in single 
waveform matrix

Optimal delay matrix, 
TOpt ,  with time delay 
values to be applied to 

signals in matrix VA(t) 

and matrix VB(t)   
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t23  = 

t33  = 

t22  = 

t32  = 
 

Figure 6.2 Calculation of the optimal delay matrix TOpt using the Waveform Alignment Method. 
Note that in the lower part, the superscript “Opt” for ti,j has been left out for clarity. 

 
As described earlier, we need to represent )(, tv BA

ji
−  by a time shifted and scaled 

version of w(t), in order to determine the optimal delay matrix. Thus, )(, tv BA
ji
−  and w(t) 

are approximately matched as follows: 

)()()()( ,,,,,
w
jiji

w
jiji

BA
ji ttwAtttwAtv −=−⊗≈− δ      (6.9)  
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In equation (6.9), Ai,j is the amplitude scale factor and w
jit ,  is the time shift relative to 

some time reference. To determine w
jit ,  and Ai,j, the cross-correlation function of w(t) 

and )(, tv BA
ji
−  is calculated, and the location and amplitude of the cross-correlation peak 

is determined.  This operation is performed separately on all the elements in the 

difference signal matrix VA-B(t). The operation of representing )(, tv BA
ji
−  by )( ,,

w
jiji ttwA −  

may be viewed as a wavelet transform of )(, tv BA
ji
−  where only the first term is retained. 

Further description of the actual implementation of the Waveform Alignment Method is 

given in section 6.2.2.  

The value of the scale factor, Ai,j, is not utilized in research presented here, but 

the time delay, w
jit , , is used to define a waveform alignment delay matrix, Twave as 

follows: 
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The top part of Figure 6.2 illustrates the “best match” locations of w(t) for the 

signals in the difference signal matrix VA-B(t), as determined by the cross-correlation 

function. The amplitude scale factor has been left out for clarity. The delay matrix, 

Twave is then obtained from the “best match” locations, as also shown in Figure 6.2.  

The difference between the summed output voltage from reflector A and the 

summed output voltage from reflector B is denoted )(tv BA
total

− and was defined in equation 
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(6.5) where the delays τI, and τj
’ were left unspecified. In order to align the signal 

components in the difference signal matrix VA-B(t), and thereby maximize the energy of 

)(tv BA
total

− , the signal components need to be individually time shifted.  

Only the Global Search Method, performed with very small time steps, can 

identify the set of time shifts that maximizes the energy of )(tv BA
total

− . However, as has 

been shown, the computation time required to execute the Global Search Method makes 

this method impractical except for array transducers with only a few elements. The 

Waveform Alignment Method is based on the idea that the set of time shifts which 

aligns the waveforms in single waveform matrix also will align the signals in the 

difference signal matrix VA-B(t) in such a way that, at least to a first approximation, the 

energy of )(tv BA
total

−  is maximized. 

Equation (6.5) for calculating )(tv BA
total

−  was written for arbitrary transmit and 

receive delays, τI and τj
’, respectively. In order to maximize the energy of )(tv BA

total
− , an 

additional delay, referred to as the optimal combined transmit and receive delay, 

'
, ji
OPT

jit ττ += , is determined so that the waveforms, )( ,
w

jittw − , in the single waveform 

matrix will be aligned. Applying the approximation for )(, tv BA
ji
−  from equation (6.9) to 

equation (6.5) and substituting OPT
jit ,  for '

ji ττ +  gives: 
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If we want to maximize the energy of )(tv BA
total

− , the OPTw
ji ji

tt
,, +  should be the same for all I, 

j∈[1, N]. With the practical implementation of the Waveform Alignment Method in 

mind, only positive time shifts will be considered. For this purpose, we identify the 

maximum delay value in the delay matrix Twave as maxt  and set it to be OPTw
ji ji

tt
,, + . For 

the case illustrated in Figure 6.2, maxt = wt 3,2 . Therefore, the optimal combined delay 

values, OPT

ji
t

,
, necessary for the waveforms in single waveform matrix to be aligned are 

given as 

w
ji

OPT
ji ttt ,max, −=       (6.12) 

and the optimal delay matrix TOPT is readily obtained as shown in the lower part of 

Figure 6.2. The summed difference signal )(tv BA
total

− , optimized to have the largest energy, 

can be calculated using equation (6.11). The corresponding difference energy can be 

calculated from equation (6.8). 

To obtain the actual received signals from reflector A and reflector B, under the 

condition of optimized energy difference, the delay values in the optimal delay matrix 

TOPT are applied to the corresponding signals in the signal matrices, VA(t) and VB(t), 

respectively. This is illustrated in the top part of Figure 6.3. Next, each signal in the 

signal matrices VA(t) and VB(t) are bandpass filtered with a filter with the impulse 

response w(t). This operation emulates the filtering effect of the transmitting and 

receiving transducers, as discussed earlier in this section. Finally, the actual received 

signals from reflector A and reflector B are obtained by simply summing all the signals 

in the filtered signal matrices VA(t) and VB(t), respectively, as shown in Figure 6.3. 
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Signal matrix VA(t) 
from Figure 6.1

Signal matrix VB(t) 
from Figure 6.1

Signal matrix 

VA (t), with time 
shifts applied 
according to delay 
matrix, T Opt

Signal matrix 

VB(t), with time 
shifts applied 
according to delay 
matrix, TOpt

Bandpass filtering of each 

signal in signal matrix VA (t), 
using a filter with impulse 
response, w(t)

Bandpass filtering of each 

signal in signal matrix V B(t), 
using a filter with impulse 
response, w(t)

Filtered signal 

matrix V A(t), 
with time 
shifts applied 
according to 
delay matrix, 
TOpt

Filtered signal 

matrix VB(t), 
with time shifts 
applied 
according to 
delay matrix, 
T Opt

Summation of all signals in 

filtered signal matrix VB(t)
Summation of all signals in 

filtered signal matrix VA (t)

Received signal from array 
transducer due to reflector A, 
optimally reparated from 
received signal from reflector B

Received signal from array 
transducer due to reflector B, 
optimally reparated from 
received signal from reflector A

Optimal delay 
matrix, TOpt , 
from Figure 6.2
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Figure 6.3 The calculation of the actual received signals from individual reflector A and reflector B, 
under the condition of optimized energy difference, using the Waveform Alignment Method: 
Alignment of array signal components; bandpass filtering and summation of signal components. 
Note that in the top part, the superscript “Opt” for ti,j has been left out for clarity. 
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6.1.3 Comparison of Two Optimization Methods 

In the previous sections, two optimization methods are introduced, i.e., the 

Global Search Method and the Waveform Alignment Method. It is important to note 

that the results produced by the two methods differ in some important ways. 

The result obtained by the Global Search Method is the optimal set of separate 

transmit and receive delay values. The delay values can be used directly to implement 

an actual experiment. In general, the optimal transmit delay values are different from 

the optimal receive delay values, which means that the array transducer will have 

different transmit and receive characteristics and the corresponding optimal delay 

matrix is not symmetric.  

In contrast, the result produced by the Waveform Alignment Method is the 

optimal delay matrix, whose terms are a combination of the transmit and receive delays. 

We need to decompose the delay matrix into separate transmitting and receiving delay 

matrices before the optimal system can be implemented for an actual experiment. More 

discussion about the decomposition of the delay matrix will be presented in subsection 

6.1.4 “Separating delay matrix into transmit and receive delay sets”. Further, the 

optimal delay matrix obtained by the Waveform Alignment Method is symmetric. 

Based on the modeling results given later in this chapter, this aspect does not seem to 

have a seriously negative effect on the performance. 

 

6.1.4 Separating Delay Matrix into Transmit and Receive Delay Sets 

As mentioned in subsection 6.1.3, we need to decompose the delay matrix into 

separate transmit and receive delay matrices before the optimal system can be 
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implemented for an actual experiment, based on the results obtained by the Waveform 

Alignment Method. It can be done using the relationship between iτ , 'jτ  and jit , , for i, j 

∈ [1, N], as presented in equation (6.7). This task is far from trivial. We will discuss it 

in this section without providing an actual solutions. For this reason, in section 6.2, 6.3 

and 6.4, the delay values will be presented in the form of optimal delay matrix TOPT 

instead of separated transmit and receive delay sets, and the received signals will be 

calculated based on TOPT.  

We know that the difference signal matrix VA-B(t) is symmetric, i.e., 

)()( ,, tvtv BA
ij

BA
ji

−− = , as long as no time shifts have been introduced. Except for this 

symmetry relationship, no other relationship between the terms in the matrix has been 

determined and hence, the number of independent terms is (N+1)N/2 for a N×N matrix. 

Therefore, for a N-ring array system, there are (N+1)N/2 independent terms in the 

optimal delay matrix TOPT obtained by the Waveform Alignment Method. However, as 

we discussed in section 6.1.1, in an actual physical system, there are N-1 independent 

transmitting delays and N-1 independent receiving delays. Therefore, there are only 

2(N-1) independent terms in the delay matrix for a real system, which means that the 

optimal delay matrix obtained by Waveform Alignment Method is over-determined. 

The easiest way to solve this problem is to formulate 2(N-1) equations using 

only 2(N-1) independent terms in the optimal delay matrix and solve for the 

transmitting and receiving delays. However, this means that the remaining [(N+1)N/2] – 

[2(N-1)] delay values are not considered for the optimization. 
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For the convenience of the following discussion, equation (6.7) is rewritten as 

follows in equation (6.13), 
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It is easily seen that, if we want to separate jit ,  into '
ji ττ + , any element in the delay 

matrix must satisfy  

1,1,1,

'
1

'
11

''
1,1 )(

+++

+++++

−+=

+−+++=+=

jijiji

jijijijiji

ttt

t ττττττττ
   (6.14) 

An appropriate way is to modify the optimal delay matrix TOPT obtained by Waveform 

Alignment Method, so that the rule in equation (6.14) is fulfilled. Obviously, there are 

an infinite number of modified delay matrices Tm which can satisfy equation (6.14). 

However, the best Tm is a modified delay matrix which minimizes the difference 

between T and Tm. In the other words, the strategy is to minimize the error defined in 

equation (6.15). 

∑∑
= =

−
N

i

N

j

m
ji

OPT
ji tt

1 1

2
,, )(      (6.15) 

In equation (6.15), the term m
jit ,  is the element of the modified delay matrix Tm. It is an 

undesirable aspect of the Waveform Alignment Method that it produces a symmetrical 

delay matrix while not fulfilling the rule given in equation (6.14) which is required. 
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However, the modified delay matrix, Tm, will in general only differ slightly from a 

symmetrical delay matrix. 

 

6.2  Optimal Delay Matrix for Convex Reflector and Tilted Flat 

Reflector  

In section 6.1, two different ways are introduced to find the optimal delay matrix 

which gives a maximum differentiation between two reflectors with respect to the 

energy of the received signal. In this section, both methods are applied to find the 

optimal delay matrix to differentiate between a convex reflector and a tilted flat 

reflector. Figure 6.4 illustrates the simulation scenario. The transducer is the 3-ring 

array or the 6-ring array as described at the beginning of this chapter. The convex 

reflector is a 10° arc of a cylinder with radius = 86mm and length = 15mm. The x-y 

cross-sectional area of the convex reflector is 15mm×15mm. The other one is a 

15mm×15mm square flat reflector which is tilted 0.6° with respect to the transducer 

surface. The two reflectors are both centered on the acoustic axis of the transducer and 

the axial distance is 50mm. 

50mm

Convex 
reflector

z

Annular array
transducer

50mm

Convex 
reflector

z

Annular array
transducer

    

50mm

Flat 
reflector

z

Annular array
transducer

tilted angle=0.6o

50mm

Flat 
reflector

z

Annular array
transducer

tilted angle=0.6o

 
  (a)      (b)  

Figure 6.4 Cross-sectional view of the measurement scenarios with convex and tilted flat reflectors. 
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As we discussed in sections 2.6 and 6.1, using T-DREAM method, two 3×3 

signal matrices Vconvex(t) and Vflat(t) can be generated for the received signals from the 

convex reflector and the tilted flat reflector for all the combinations of transmitting and 

receiving rings in a 3-ring annular array transducer. Figure 6.5 and Figure 6.6 illustrate 

the received signal matrices where Figure 6.5 is for the convex reflector and Figure 6.6 

is for the tilted flat reflector. 
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Figure 6.5 The received signal matrix Vconvex(t) for convex reflector.  
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Figure 6.6 The received signal matrix Vflat(t) for tilted flat reflector.  

 

By subtracting the received signal matrix in Figure 6.6 from that in Figure 6.5, 

we can obtain the difference signal matrix between the received signals from the convex 

reflector and the tilted flat reflector for the 3-ring annular array system. Figure 6.7 

illustrates the difference signal matrix. 
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Figure 6.7 Difference signal matrix between the received signal from convex reflector and that from 
the tilted flat reflector.  

 
Now the difference signal matrix is obtained as shown in Figure 6.7; both the 

Global Search Method and the Waveform Alignment Method use the difference signal 

matrix as input functions. In section 6.2.1, the optimal set of delay values is calculated 

by the Global Search Method, based on the 3-ring annular array described at the 

beginning of this chapter. In section 6.2.2, the optimal delay matrix is calculated by the 

Waveform Alignment Method, based on the same 3-ring annular array as in section 

6.2.1. In section 6.2.3, the optimal delay matrix is calculated by the Waveform 

Alignment Method, based on the 6-ring annular array described at the beginning of this 

chapter.  
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6.2.1 Results Obtained by the Global Search Method, based on 3-Ring Array 

Now, the Global Search Method is applied to find the optimal set of delay 

values. We arbitrarily choose τ1 = 0 and τ1
’ = 0. We also limit the possible transmitting 

and receiving delays τi, τj
’, i, j∈[2, 3] to be the values in the range of –2µs to 2µs with 

0.1µs incremental step. Therefore, there are 414 possible combinations of (τi, τj’), for i, j 

∈ [1, 3], or 2,825,761 sets of possible delay values {τ1 , τ2 , τ3 , τ1’ ,τ2’,  τ3’}. The optimal 

delay set, which produces the largest difference energy in equation (6.6), is found to be: 

{0, –0.1, –0.1, 0, 0, 0} µs; and the corresponding optimal delay matrix is: 

sµ
















−−−
−−−=

1.01.01.0

1.01.01.0

000

TOPT
global  

 

6.2.2 Results Obtained by the Waveform Alignment Method, based on 3-Ring 

Array 

As discussed in section 6.1.2, all the difference signals in Figure 6.7 can be 

approximated by an amplitude scaled and time shifted version of a single waveform 

w(t) as in equation (6.9). Recall that the measurements with transducer can be 

considered as filtering operations, and the spectrum of w(t) should closely match the 

combined transmit-receive frequency response of the actual ultrasound array transducer. 

In this chapter, we assume that the annular array transducers acts like a bandpass filter 

with 7.5MHz central frequency and 7.5MHz bandwidth at the –3dB level. Figure 6.8 

illustrates the time-domain and frequency-domain impulse response of the annular 

arrays.  
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   (a)      (b) 

Figure 6.8 The time-domain and frequency-domain response of the annular array transducers. 

 

The waveform w(t) shown in Figure 6.8 (a) is cross-correlated with each 

difference signal shown in Figure 6.7 to obtain the time shift w
jit ,  for w(t) which will best 

approximate the difference signal. Then a scale factor is calculated to match the energy 

of the difference signal and the time shifted w(t). Figure 6.9 illustrates the cross-

correlation functions between w(t) and the difference signal between the received signal 

from convex reflector and that from the tilted flat reflector shown in Figure 6.7. 
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Figure 6.9 Illustration of the cross-correlation functions between w(t) and the difference signal 
shown in Figure 6.7 of the received signal from convex reflector and that from the tilted flat 
reflector. The x-axis for all signals is in µµs and the y-axis for all signals is in m4/s3. 

 
Figure 6.10 illustrates the single waveform matrix obtained to approximate the 

difference signal matrix shown in Figure 6.7. The amplitude and the start time of the 

waveform w(t) are indicated in Figure 6.10; the start time of the waveforms are the 

same as those shown in Figure 6.9. The amplitudes of the waveforms are the product of 

scale factors shown in Figure 6.9 and the amplitude of the waveform shown in Figure 

6.8 (a).  
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Figure 6.10 The single waveform matrix used to approximate the difference signal matrix of the 
received signal from convex reflector and that from the tilted flat reflector shown in Figure 6.7. The 
x-axis for all signals is in µµs. 

 
In Figure 6.10, we observe that the waveform with the largest shift, i.e., 

66.605µs, is found when the received signal is due to ring 1 and ring 3. As was 

discussed in section 6.1.2, this value is set to be maxt , and using equation (6.12), we can 

obtain the optimal delay matrix as:  

sµ















=

055.01825.00

1825.0195.00725.0

00725.01725.0

TOPT
align_3  
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6.2.3 Results Obtained by the Waveform Alignment Method, based on 6-Ring 

Array 

In this section, the optimal delay matrix is calculated for the 6-ring array system. 

The waveform w(t) is the same as that in section 6.2.2. Using similar steps to those in 

section 6.2.2, we can obtain the optimal delay matrix as: 

sµ

























=

007.068.06775.0385.03675.0

07.0815.07225.044.06525.047.0

68.07225.0465.07375.07.05725.0

6775.044.07375.07375.08675.06825.0

385.06525.07.08675.08775.07525.0

3675.047.05725.06825.07525.0855.0

TOPT
align_6   

Now, the optimal delay matrix has been obtained by three ways: the Global 

Search Method based on the 3-ring array; the Waveform Alignment Method based on 

the 3-ring array; the Waveform Alignment Method based on the 6-ring array. Using 

equation (6.8), with OPT
jiji tt ,, = , the energy of the summed difference signal from the two 

reflectors can readily be calculated. Table 6.1 gives the energy of the summed 

difference signal as well as the energy of the summed received signal from individual 

convex reflector and tilted flat reflector. All the signals are filtered using the band-pass 

filter with the frequency response of the array transducer, shown in Figure 6.8 because 

we assume that the annular array transducers act like a bandpass filter.  
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Table 6.1 Energy of the summed difference signal, summed received signal from individual convex 
and tilted flat reflector. 

 Convex 
reflector 

Tilted flat 
reflector 

Difference 
signal 

Global search optimal delay 
matrix in 3-ring array system 

 
1.1656e+011 

 
1.6329e+011 

 
3.5207e+011 

Waveform alignment optimal 
delay matrix in 3-ring array 

system 

 
2.4786e+011 

 
8.3998e+010 

 
4.5159e+011 

Waveform alignment optimal 
delay matrix in 6-ring array 

system 

 
4.7206e+011 

 
2.5082e+011 

 
1.0992e+012 

 

From Table 6.1, we can find that the difference energy obtained with the optimal 

delay matrix obtained by the Waveform Alignment Method is larger than that obtained 

with Global Search Method, for the 3-ring array system. The possible reasons for this 

result are that: 1) The global search can only be carried out in a limited delay range with 

discrete delay steps which makes it most probably that the optimal delay sets found is 

sub-optimal. The smaller the delay steps, the better the sub-optimal results should be. 2) 

The waveform alignment calculates the combined delay for the transmitter and receiver 

ring pair directly, which in general cannot be directly decomposed into separate delays 

for individual transmitter and receiver rings. If we have to modify the delay matrix to 

decompose it into separate transmit and receive delays, the energy of the difference 

signal obtained by the modified delay matrix must be become less.  

We can also find from Table 6.1 that the difference energy obtained with the 

optimal delay matrix obtained by Waveform Alignment Method for the 6-ring array 

system is larger than that for the 3-ring array system. It also agrees with our expectation 
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because the 6-ring array presents more flexibility in varying the relative delay for 

individual array elements. 
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Figure 6.11 The sum received signal from convex reflector, flat reflector and the difference signal 
from those two reflectors. The first column is based on the optimal delay matrix obtained by the 
Global Search Method and the 3-ring array; the second column is based on Waveform Alignment 
Method and the 3-ring array and the third column is based on the Waveform Alignment Method 
and the 6-ring array. The x-axis for all signals is in µµs. 

 

Figure 6.11 illustrates the time-domain summed signals after the bandpass 

filtering. The three signals in first column are the summed received signal from convex 

reflector, the summed received signal from the tilted flat reflector, and the difference 

signal, respectively, based on the optimal delay matrix obtained by the Global Search 



 147 

Method and the 3-ring array. The signals in second column are those based on the 

optimal delay matrix obtained by the Waveform Alignment Method and the 3-ring 

array. The signals in third column are those based on the optimal delay matrix obtained 

by the Waveform Alignment Method and the 6-ring array. 

 

6.3  Optimal Delay Matrix for Concave Reflector and Tilted Flat 

Reflector  

In this section, the Waveform Alignment Method is applied to find the optimal 

delay matrix to differentiate between a concave reflector and a tilted flat reflector. Both 

the 3-ring array and the 6-ring array transducer are used. The concave reflector is a 

square 10� arc of a cylinder with radius = 86mm and side length = 15mm. The x-y cross-

sectional area of the reflector is 15mm×15mm. The concave reflector is centered on the 

acoustic axis of the transducer and the axial distance is 50mm. Figure 6.12 illustrates the 

cross-sectional view of the concave reflector. The tilted flat reflector is same as 

described in section 6.2. 

Concave 
reflector

z

50mm

Annular array
transducer

Concave 
reflector

z

50mm

Annular array
transducer

 
Figure 6.12 Cross-sectional view of the measurement scenario with concave reflector. 

 



 148 

Figure 6.13 illustrates the 3×3 difference signal matrix VA-B(t) generated for the 

difference signal between the received signals from the concave reflector and the tilted 

flat reflector for a 3-ring annular array system. 
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Figure 6.13 Difference signal matrix between the received signal from concave reflector and that 
from the tilted flat reflector.  

 
Using similar steps and the same waveform w(t) used in sections 6.2.2 and 

section 6.2.3, we can obtain the optimal delay matrix to optimally differentiate between 

the concave reflector and the titled flat reflector as: 

sµ















=

1275.0105.00575.0

105.0115.00925.0

0575.00925.00

TOPT
align_3  



 149 

sµ

























=

3225.15875.0031.12825.1205.1

5875.0335.12425.13525.13375.1275.1

02425.1365.12575.122.132.1

31.13525.12575.143.14075.13625.1

2825.13375.122.14075.14175.13975.1

205.1275.132.13625.13975.13025.1

TOPT
align_6  

Table 6.2 illustrates the energy of the summed difference signal, as well as the 

energy of the summed received signal from the concave reflector and the tilted flat 

reflector. As in section 6.2, all the signals are filtered using the bandpass filter shown in 

Figure 6.8 before the energy is calculated. 

Table 6.2 Energy of the summed difference signal, summed received signal from individual concave 
and tilted flat reflector. 

 Concave 
reflector 

Tilted flat 
reflector 

Difference 
signal 

Waveform alignment optimal 
delay matrix in 3-ring array 

system 

 
9.2091e+010 

 
2.5164e+011 

 
5.0486e+011 

Waveform alignment optimal 
delay matrix in 6-ring array 

system 

 
1.2581e+011 

 
7.0590e+011 

 
1.1585e+012 

 

Figure 6.14 illustrates the time-domain summed signals after band-pass filtering. 

The summed signals are received from the concave reflector, the tilted flat reflector and 

the difference signal between these two reflectors. The signals in the first column are 

those based on the optimal delay matrix obtained by the Waveform Alignment Method 

and the 3-ring array. The signals in the second column are those based on the optimal 

delay matrix obtained by the Waveform Alignment Method and the 6-ring array. 
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Figure 6.14 The summed received signal from the concave reflector, flat reflector and the 
difference signal from those two reflectors. The first column is obtained with the optimal delay 
matrix using the Waveform Alignment Method and the 3-ring array and the second column is 
obtained with the 6-ring array. The x-axis for all signals is in µµs. 
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6.4  Optimal Delay Matrix for Convex Reflector and Concave Reflector  

Figure 6.15 illustrates the 3×3 difference signal matrix VA-B(t) which contains 

the difference signals between the received signals from the convex reflector and the 

concave reflector for the 3-ring annular array system. The convex reflector and the 

concave reflector are the same as were described previously. 
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Figure 6.15 Difference signal matrix of the received signal from convex reflector and that from 
concave reflector.  

 
Using similar steps and the same waveform used in sections 6.2 and section 6.3, 

we can obtain the optimal delay matrix to optimally differentiate between the convex 

and concave reflector as: 
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sµ















=

02575.0085.0

2575.027.02425.0

085.02425.02575.0

TOPT
align_3  

sµ

























=

03275.13875.143.1455.14325.1

3275.14025.146.151.154.1535.1

3875.146.15375.15725.1875.16425.1

43.151.15725.16575.1915.17425.1

455.154.1875.1915.19275.18275.1

4325.1535.16425.17425.18275.1915.1

TOPT
align_6  

Table 6.3 illustrates the energy of the summed difference signal as well as the 

energy of the summed received signal from the individual convex and concave 

reflectors. As in sections 6.2 and 6.3, all the signals are filtered using the bandpass filter 

shown in Figure 6.8 before the energy is calculated. 

Table 6.3 Energy of the summed difference signal, summed received signal from individual convex 
and concave reflector. 

 Convex 
reflector 

Concave 
reflector 

Difference 
signal 

Waveform alignment optimal delay 
matrix in 3-ring array system 

 
2.3688e+011 

 
1.8166e+011 

 
4.2275e+011 

Waveform alignment optimal delay 
matrix in 6-ring array system 

 
6.2343e+011 

 
1.1232e+011 

 
8.0054e+011 

 

Figure 6.16 illustrates the time-domain summed signals after the bandpass filtering. The 

summed signals are received from convex reflector, concave reflector and the difference 

signal between these two reflectors. The signals in the first column are those based on 

the optimal delay matrix obtained by Waveform Alignment Method applied to the 3-

ring array. The signals in the second column are those based on the optimal delay 

matrix obtained by Waveform Alignment Method applied to the 6-ring array. 
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Figure 6.16 The summed received signal from the convex reflector, concave reflector and the 
difference signal from those two reflectors. The first column is obtained with the optimal delay 
matrix using the Waveform Alignment Method and the 3-ring array and the second column is 
obtained with the 6-ring array. The x-axis for all signals is in µµs. 
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Chapter 7  

Conclusions and Future Work 
 
7.1  Conclusions 

This thesis describes the implementation of a fast numerical modeling method, 

the Diffraction Response from Extended Area Method (DREAM), for calculation of the 

received signal from a transducer in a pulse-echo system. The modeling concept has 

been extended to calculate the received signal from individual elements in an annual 

array transducer, in which case the received signal is based on the superposition of the 

received signals from planar circular transducers. Then, based on the modeling of 

annular array system, we investigated the optimal design of ultrasound pulse-echo 

system for tasks such as identifying objects of specified shapes, determining surface 

topology or alignment of surfaces. 

The DREAM method operates by dividing the surface of the reflector into a 

relatively small number (say, a few hundred) of rectangular or triangular “tiles” and 

performing the spatial integration of the diffraction response over each tile by an 

equivalent low pass filtering. The DREAM method has been implemented based on 

both rectangular tiles (R-DREAM) and triangular tiles (T-DREAM). Improvements 

have been made to the segmentation and the delay interpolation which are the two most 

important aspects in the practical implementation of DREAM. The results obtained by 
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both R-DREAM and T-DREAM are evaluated by comparing with the results obtained 

by the simpler, but slower method based on Huygens’ Principle. The results from the 

two techniques match well. We have concluded that DREAM method is more 

computationally efficient than Huygens method. We have also found that T-DREAM 

performs better than R-DREAM in terms of accuracy and computation time. T-DREAM 

eliminates the small error introduced by the least squares approximation in the delay 

linearization for the rectangular tiles. In addition, in practical applications, triangular 

tiles can approximate reflector surface better than rectangular tiles do, and triangular 

tiles are standard elements used for surface tessellation. As a result, we decided to use 

T-DREAM as the modeling tool for our further research work. 

The optimal design of the ultrasound pulse-echo system is based on annular 

array transducer which gives us the flexibility to create a wide variety of insonifying 

fields and receiver characteristics. As the first step to solve the optimization problem 

more generally, our objective is to differentiate between only two specified interfaces. 

We only consider the optimization of the delay values assigned to the elements in the 

array while the excitation amplitude and the receiver gain are kept constant for all the 

elements in the array. The optimization is realized by finding the optimal set of transmit 

and receive delay values, which will maximize the energy of difference signal between 

the array output signals from the two reflectors. Two optimization methods have been 

investigated for the optimal delay set: the Global Search Method and the Waveform 

Alignment Method.  

The Global Search Method is searching through all possible delay combinations 

of the elements of the annular array transducer in either transmitting or receiving mode, 
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then calculating the difference signal between the received output signals from the two 

reflectors for each delay value combination. The set of delay values that produces the 

largest energy in difference signal is considered the optimal delay set. The disadvantage 

is that the search time increases even faster than exponentially with the number of array 

elements, and becomes computationally overwhelming even for a modest number of 

elements. In addition, the search can only be carried out in a limited delay range with 

discrete delay steps, which makes it probably that only a sub-optimal delay set is found.  

The Waveform Alignment Method is using a time shifted and amplitude scaled 

version of a specified waveform to approximate the difference signal between two 

specified reflectors for each transmitting and receiving ring pair. Thus, each difference 

signal in the difference signal matrix can be represented by a delay value and amplitude 

scale factor. In our current research work, only the delay values are then used to align 

these waveforms to get the optimal delay matrix. The Waveform Alignment Method is 

very efficient. However, as it is currently implemented, the results obtained by the 

Waveform Alignment Method is the optimal delay matrix, whose items are combined 

transmit and receive delays. The optimal delay matrix is symmetrical and, in general, it 

cannot be decomposed into separate transmit and receive delays. This problem needs to 

be solved before the optimal system can be implemented for an actual experiment. In 

addition, as noted in the next section “future work”, much more research work needs to 

be carried out with respect to the optimal design of ultrasound system. 



 157 

 

7.2  Future Work  

As part of the work of this thesis, we implemented and investigated the efficient 

modeling tool of ultrasound system: DREAM method. An important topic closely 

related to DREAM method, but not covered in this thesis, is how to optimally 

approximate a specific reflector surface with flat rectangular or triangular tiles. For 

future work, it is advantageous to merge the DREAM tools with optimal surface 

tessellation tools, in order to apply DREAM method to more complicated reflector 

surfaces.  

Waveform Alignment Method is a promising method for the optimization of 

ultrasound pulse-echo system with respect to its ability to identify a given object or 

interface among a limited set of simple objects or interfaces. Future work on the 

Waveform Alignment Method may include: The optimal differentiation between two 

reflectors which includes: 1) developing the theory for separating the combined 

transmit-receive delays in the optimal delay matrix which is obtained by the Waveform 

Alignment Method into separate transmitting and receiving delays; 2) the optimization 

of the amplitude gain values assigned for each array element in transmitting and 

receiving modes; 3) exploring the effect of choosing different waveforms to represent 

the received signal for each transmitting and receiving ring pair; 4) using different 

criteria, for example, spectral features, for the optimization rather than maximizing the 

energy of the difference signal. After we accomplish the optimal differentiation between 

two reflectors, the next step is to exploring the optimal delay sets to identify a given 

reflector among more than two reflectors.  
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Another research topic closely related to the optimization of the ultrasound 

system is the development of the neural network or Self-Organizing Maps to achieve 

the most accurate classification of the actual reflectors.  The inputs to the neural 

network are the received signals in the ultrasound pulse-echo system from the entire 

array transducer.  The transmit and receive delays of each element in the array are 

adjusted according to the optimal delay sets obtained by the Waveform Alignment 

Method. 

Experiments can be carried out as the verification of the numerical modeling 

results and the optimization techniques. The Tomoscan Focus (TF) instrument, 

manufactured by R/D Tech in Quebec City in Canada, can generate customized acoustic 

fields and receiver characteristics under software control. Therefore, by connecting the 

TF instrument and the computer to the array transducer in a real ultrasound pulse-echo 

system, the transmit and receive delays of each element in the array can be customized 

according to the optimal delay sets obtained by the Waveform Alignment Method.  The 

received signals from the experiments can be used to verify the simulation results 

obtained by the DREAM modeling method.  In addition, the experimental results can be 

used as the inputs to the neural network for the classification. 
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Appendix A 
 
 
Appendix A.1 
 
The relationship between the radial distance and the energy of the received signal from 
a 0.5mm*0.5mm square flat reflectors for the simulation scenarios given in section 5.3 
when the reflector is tilted 0.6° relative to the transducer surface. Refer to section 5.3 
for more details. 
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Appendix A.2 
 
The relationship between the radial distance and the DREAM Error (=MSE) of the 
received signal from small square flat reflectors for the simulation scenarios given in 
section 5.2 when the reflector is tilted 0.6° relative to the transducer surface. Refer to 
section 5.2 for more details. 
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Appendix A.3 
 
The relationship between the radial distance and the normalized DREAM Error (=MSE) 
of the received signal from small square flat reflectors for the simulation scenarios 
given in section 5.4 when the reflector is tilted 0.6° relative to the transducer surface. 
Refer to section 5.4 for more details.  
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Appendix A.4 
 
The relationship between the radial distance and the energy of the received signal from 
a 0.5mm*0.5mm square flat reflectors for the simulation scenarios given in section 5.3 
when the reflector is tilted 6° relative to the transducer surface. Refer to section 5.3 for 
more details. 
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Appendix A.5 
 
The relationship between the radial distance and the DREAM Error (=MSE) of the 
received signal from small square flat reflectors for the simulation scenarios given in 
section 5.2 when the reflector is tilted 6° relative to the transducer surface. Refer to 
section 5.2 for more details. 
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Appendix A.6 
 
The relationship between the radial distance and the normalized DREAM Error (=MSE) 
of the received signal from small square flat reflectors for the simulation scenarios 
given in section 5.4 when the reflector is tilted 6° relative to the transducer surface. 
Refer to section 5.4 for more details. 
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Appendix B 
 
 
Appendix B.1 
 
The spectra of the received signal from 1mm*1mm square reflectors discussed in section 
5.6. The parameters of the simulation scenarios are summarized in Table 5.5. 
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Appendix B.2 
 
The spectra of the received signal from 15mm*15mm square reflectors discussed in 
section 5.7.1. The reflector is tilted 0.6° relative to the surface of the transducer and the 
parameters of the simulation scenarios are summarized in Table 5.7. 
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Appendix B.3 
 
The spectra of the received signal from 15mm*15mm square reflectors discussed in 
section 5.7.2. The reflector is tilted 6° relative to the surface of the transducer and the 
parameters of the simulation scenarios are summarized in Table 5.9. Refer to section 
5.7.2 for more details. 
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Appendix B.4 
 
The spectra of the received signal from curved reflectors discussed in section 5.8. The 
parameters of the simulation scenarios are summarized in Table 5.10. 
 

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10°  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=3mm; a

r
=3mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10 °  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=3mm; a

r
=6.3mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

 
 



 183 

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10°  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=3mm; a

r
=9mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10°  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=3mm; a

r
=12.7mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

 

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10 °  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=6.3mm; a

r
=6.3mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10 °  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=6.3mm; a

r
=9mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

 

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10°  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=6.3mm; a

r
=12.7mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10°  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=9mm; a

r
=9mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

 

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10°  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=9mm; a

r
=12.7mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

0 5 10 15
-60

-50

-40

-30

-20

-10

0

Frequency [MHz]

M
ag

ni
tu

de
 s

pe
ct

ru
m

 [d
B

]

10°  curved reflector, center at (r
p
,z

p
)=(0, 50)mm,   a

t
=12.7mm; a

r
=12.7mm

huygen:50um*37.5um     
T-dream: 1000um*750um/2

 



 184 

Appendix B.5 
 
The time-domain received signal from 1mm*1mm square reflectors discussed in section 
5.6. The parameters of the simulation scenarios are summarized in Table 5.5. 
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Appendix B.6 
 
The time-domain received signal from 15mm*15mm square reflectors discussed in 
section 5.7.1. The reflector is tilted 0.6° relative to the surface of the transducer and the 
parameters of the simulation scenarios are summarized in Table 5.7. 
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Appendix B.7 
 
The time-domain received signal from 15mm*15mm square reflectors discussed in 
section 5.7.2. The reflector is tilted 6° relative to the surface of the transducer and the 
parameters of the simulation scenarios are summarized in Table 5.9. 
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Appendix B.8 
 
The time-domain received signal from curved reflector discussed in section 5.8. The 
parameters of the simulation scenarios are summarized in Table 5.10. 
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