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Abstract

Package managers are tools used to find, install, maintain, and uninstall software

packages. Anyone can publish packages to package managers, allowing developers to

install and use their code. While this is a revolutionary innovation for programmers,

it is also the perfect platform to enable threat actors to execute attacks. However,

malicious code is not the only threat that comes from downloading packages. It is

also possible that uploaded packages do not employ secure coding techniques and

therefore contain security vulnerabilities. If a developer were to download and use

an unknowingly vulnerable package in their project, this would make their project

vulnerable to attacks. Currently there are no tools available to determine the likeli-

hood that a package may contain an unknown vulnerability before downloading it.

Therefore, the goal of this project was to determine whether there are any pack-

age or repository metrics that reliably correlate with the security of packages. We

explored this idea specifically with packages from Node Package Manager (NPM),

an online repository for publishing open-source Node.js projects. The metrics of

NPM packages that we explored are number of monthly downloads, number of de-

pendents, number of open issues, number of closed issues, and each of these were

compared to the number of known vulnerabilities. The data for this project was

sourced from package libraries, the NPM website, GitHub’s website, and the Snyk

known vulnerability database. This data was then analyzed, and the metrics were

found to have a very weak correlation to known vulnerabilities. Future work and

testing is necessary to determine whether these metrics do correlate to security for

certain.
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Chapter 1

Introduction

Package managers are tools used to find, install, maintain, and uninstall software

packages. Anyone can publish packages to package managers, allowing developers to

install and use their code. While this is a revolutionary innovation for programmers,

it is also the perfect platform to enable threat actors to execute attacks. There are

many types of attacks that threat actors can utilize package managers to perform,

such as general supply chain attacks [10], dependency confusion [7], and typosquat-

ting [11].

With supply chain attacks the goal is to access source codes, build processes, or

update mechanisms by infecting legitimate apps to distribute malware. Attackers

hunt for unsecure network protocols, unprotected server infrastructures, and unsafe

coding practices. They break in, change source codes, and hide malware in build

and update processes. Because software is built and released by trusted vendors,

these apps and updates are signed and certified. In software supply chain attacks,

vendors are likely unaware that their apps or updates are infected with malicious

code when they’re released to the public. The malicious code then runs with the

same trust and permissions as the app [14].
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Package managers are a tool that threat actors have been able to exploit to

perform supply chain attacks, such as dependency confusion. Dependency confusion

is a relatively new type of supply chain attack. It takes advantage of internal

packages, i.e. packages that are used within an organization and not publicly shared.

Internal package.json files become embedded in public script files during their build

process, and therefore leak the names of these internal packages. These names are

then used by threat actors as names for their malicious packages, and are uploaded

to public package managers. Then, the malicious package would accidentally be

downloaded through public package managers and infiltrate large organizations.

Dependency confusion was detected inside more than 35 organizations to date, across

three tested programming languages. The vast majority of the affected companies

fall into the 1000+ employees category, and almost 75% of all the logged callbacks

came from NPM packages [2].

Typosquatting was initially thought of only as domain typosquatting or URL

hijacking, where an actor would register a domain under a name very similar to

that of a more popular site (i.e. using goggle.com to typosquatt google.com). It

relies on mistakes such as typos or translation errors made by Internet users to

direct traffic to the hijacked URL. The purpose of this could have been to drive

traffic away from competitors, to make money through advertisements on the site,

or even steal information from unsuspecting users through fake login portals [24].

However, this issue of typosquatting also appears in package managers. Packages

are often downloaded by users through the terminal by typing commands such as

npm install is-even. If a user misspells a package name, but the misspelling is

an existing package on the package manager, then it will still be installed. This

leaves room for threat actors to register malicious packages under names similar to

those of very popular packages, and rely on the fact that users may misspell the
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intended package’s name and download the malicious package by accident.

In 2018 alone, research indicated more than 100 malicious packages had more

than a cumulative 600 million downloads [9]. A study by Symantec showed that

supply chain attacks increased by 78% in 2019 [25]. With malicious attacks through

package managers increasing at an alarming rate, it is important to take counter-

measures to protect against them. There are some tools used to detect and mitigate

these attacks, including NPM Audit and Spellbound. NPM Audit is a security fea-

ture that is built into NPM. It checks the current version of the installed packages in

a project (aka, dependencies) against known vulnerabilities reported on the public

NPM registry. If it discovers a security issue, it reports it. Notably, the report

contains the level of severity of the identified vulnerability. The extent of severity

is determined by the impact and exploitability of the issue [16]. Spellbound is used

when downloading a package, and warns the user if the package they are download-

ing is likely typosquatting a similar, more popular package. This is accomplished by

defining string transformation patterns, such as repeated characters, omitted char-

acters, swapped characters, common typos, etc. If the given package name matches

at least one package from a list of popular packages after a set of allowed transfor-

mations, then it is considered to be a typosquatting suspect and the user is alerted

[26].

However, intentionally malicious code is not the only threat that comes from

downloading packages. It is also possible that uploaded packages do not employ

secure coding techniques and therefore contain security vulnerabilities. If a devel-

oper were to download and use an unknowingly vulnerable package in their project,

this would make their project vulnerable to attacks. Currently there are no tools

available to determine the likelihood that a package may contain an unknown vul-

nerability before downloading it. Therefore, the goal is to determine whether there

3



are any package or repository metrics that reliably correlate with the security of

packages.

1.1 Approach

The approach taken when evaluating this idea was to determine what package and

repository metrics are available and common across all packages, and to interpret

what their values could represent in relation to security. These metrics then needed

to be gathered from a package manager and code repository using an automated

program. Information about the number of known vulnerabilities per package would

also needed to be identified and collected.

1.2 Obstacles

There were many roadblocks when creating the program to gather the metrics,

such as GET request timeouts when trying to use the GitHub API to get metric

information. We had initially thought that using an API to do some of the work

for us would be the most time efficient method of gathering repository information.

However, the GitHub API limits requests to 5,000 per hour and so it was not feasible

to continue using this for data collection. Initially the program took many hours to

run due to the number of packages that were being used and the number of requests

that had to be made per package. After employing multi-threading techniques and

scraping the GitHub repository pages instead of using the GitHub API, the program

was able to run much more quickly and avoided GET request timeouts.
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1.3 Results

After the data was collected, correlation to known vulnerabilities and other general

statistics needed to be calculated. The Pearson Correlation Coefficient (PCC) was

calculated to measure the linear correlation, r, between each of the sets of data,

with x representing a package metric and y as the number of known vulnerabilities.

This coefficient is known as the best method of measuring the association between

variables of interest because it is based on the method of covariance, which measures

the total variation of two random variables from their expected values. Once the

PCC was calculated it was interpreted with the standard thresholds for correlation.

Metrics averages were also calculated, as well as the maximum, minimum, and

standard deviation of each metric. This was done to gain insight and compare

packages with known vulnerabilities to those that have no known vulnerabilities.
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Chapter 2

Background

2.1 Packages and Package Managers

A software package is a file or files bundled together that perform dedicated func-

tions. Packages can be created by anyone and uploaded to package managers. Soft-

ware packages can be used to perform simple calculations such as is-even, which

takes an input and determines if it is even or not, or for providing complex libraries,

such as react to manage DOM elements. Developers can download and include

packages in their projects to add functionality without having to re-create it them-

selves, saving valuable time. Using packages also allows developers to offload code

maintenance to the package’s owners. Packages managers automate the installa-

tion process, upgrades, maintenance, and uninstallation process for packages. They

also collect and display download data, dependency and dependent data, as well

as version information, a corresponding GitHub repository URL, and collaborator

information. We decided to work with the Node Package Manager (NPM) because

we have previously worked with packages from this manager, and were most familiar

with it.
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2.2 GitHub

GitHub is a code hosting platform for version control and collaboration amongst de-

velopers [12]. Most packages are open-source, meaning their source code is available

to the public, and is usually published to a GitHub repository or a similar service.

Members of the open source community can suggest changes to the code through

pull requests, which can be accepted or denied by the maintainers of the repository.

For repository metrics, we chose to search for the package’s repositories on GitHub.

GitHub is the largest collaborative version control platform in the world, report-

ing having over 40 million users and more than 190 million repositories as of 2020

[12]. This makes GitHub the ideal candidate for gathering reliable and up-to-date

metrics, as it is likely that a package will be hosted using this service. In fact, of

the roughly 16,000 packages used for this project only about 3.5% had no GitHub

repository information.

2.2.1 Issues

GitHub issues are suggestions to the code base, but do not supply the necessary code

to make the change. They are often bug reports or suggestions for improvement.

Issues are marked as open until they are resolved with a pull request or manually

closed, marking them as closed. It was our belief that GitHub issues could be used

as a metric to determine the security of a package due to the nature of why issues are

submitted and what they represent. Issues can be used by the community to report

potential vulnerabilities, and therefore a greater number of issues could represent a

larger number of vulnerabilities being reported.
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2.3 Security Concerns

The benefits of using packages are very clear, however, there are some downfalls

when considering security. If the developer of a package does not employ secure

coding practices, then their software could contain vulnerabilities. Threat actors

could also take advantage of this, and include malicious or vulnerable code into a

package. Unfortunately, discovering vulnerabilities in code is not an easy task. Most

of the time, vulnerabilities remain undisclosed until they are exposed, for instance,

by an attack during the software operational phase. There are many studies on

the use of software and/or program metrics for determining if a program contains

potentially vulnerable code, and some have been able to reliably do this [6] [8] [13]

[22]. However, these methods are language specific and are mostly designed to be

used in the development process of the program.

2.4 Motivation

The goal of this project is to determine if there are any package or repository met-

rics that correlate with the security of a package, providing a foundation for a larger

project to develop vulnerability scanning tools for end users to use when download-

ing packages from package managers. Since package and repository metrics are not

language specific, such a tool could be used with any language that has a pack-

age manager. We explored this idea specifically with packages from Node Package

Manager (NPM), an online repository for publishing open-source Node.js projects

[15].
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Chapter 3

Related Works

Software Ecosystem Security: Past research has focused on the security of pack-

age managers themselves, performed and tested attacks against them, and have rec-

ommendations for building secure package managers [1] [4]. These works discuss

attacks directly to package managers and the consequences of these attacks, but do

not discuss how package managers could be used to perform attacks on others.

Discovering Vulnerabilities in Dependencies: The Snyk vulnerability scanner

is an open source tool for developers. It scans open source dependencies for known

vulnerabilities including SQL injections, cross-site scripting (XSS), insecure direct

object references (IDOR), cross-site request forgery (CSRF), and security miscon-

figuration [21]. NPM Audit is a similar tool for reporting known vulnerabilities in

dependencies [16]. In fact, there are other open source tools available that perform

this task [3] [17] [18]. However, these tools do not provide information about the

potential unknown vulnerabilities within dependencies or packages.

Using Software Metrics to Determine Security of Packages: In past research

software metrics have been used to determine whether code may be vulnerable. Most

of the research focused on creating vulnerability prediction models using complexity
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metrics. According to their findings, traditional metrics including code churn, com-

plexity, and fault history exhibit similar performance in vulnerability prediction as

they exhibit in fault prediction models [19] [20] [5]. Recent research has tested soft-

ware metrics at different granularity levels to predict vulnerable code components

(i.e., vulnerable classes and methods), and have found success with this method

[22] [23] [13]. This research has shown promising results using software metrics to

discover potentially vulnerable code, however it is often language specific. There

is no universal method to calculate software metrics, and not all metrics are ap-

propriate for all languages (ex. metrics related to Objects are not relevant to non

object oriented programming languages such as C). This was a large motivation of

using package and repository metrics as indicators of vulnerability, because they are

universal.
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Chapter 4

Methodology

4.1 Metrics

To discover what metrics could reliably determine the security of an NPM package,

we first had to decide what metrics to calculate and why they might correlate with

security. The metrics of NPM packages that we explored are number of monthly

downloads, number of dependents, number of open issues, number of closed issues,

and each of these were compared to the number of known vulnerabilities. These

metrics were chosen because almost all packages have data for them on NPM and

GitHub, with only 3.5% of packages used missing GitHub information, allowing for a

large data set to be analyzed. We used the Pearson Correlation Coefficient (PCC) to

measure the linear correlation, r, between each of the sets of data, with x representing

a package metric and y as the number of known vulnerabilities. This coefficient

is known as the best method of measuring the association between variables of

interest because it is based on the method of covariance, which measures the total

variation of two random variables from their expected values. The PCC ranges from

-1 to +1, with a positive coefficient meaning that as x increases, y increases and a
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negative coefficient meaning that as x increases, y decreases. Correlation coefficient

absolute values below 0.3 are considered to be very weak; 0.3-0.5 are weak; 0.5-0.7

are moderate; >0.7 are strong.

Pearson Correlation Coefficient (r)

r =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2

It is important to calculate and interpret this coefficient to determine whether these

package metrics are related to known vulnerabilities. We hypothesize that more

downloads or dependents a package has, the less likely it is to have a known vul-

nerability. The reasoning for this is that more downloads/dependents means more

users rely on that package to be secure, and would likely have noticed a vulnerability

if one existed. This hypothesis can be tested by calculating the Pearson coefficient

between downloads and known vulnerabilities; in this case the hypothesis would be

proven by a negative coefficient, showing that as downloads increase known vul-

nerabilities decrease. We also hypothesize that if a package has many open issues,

it may be more vulnerable. Likewise, if a package has many closed issues, it may

be more secure. GitHub issues are used to request or report feature changes, new

features, bugs/bug fixes, as well as vulnerabilities/vulnerability patches. Therefore,

if a package has many open issues it may be true that the open issues include vul-

nerability reports and the package is vulnerable. Similarly, if a package has many

closed issues, this may mean that many vulnerabilities have been patched and the

package is more secure. This may not be a useful metric on its own because GitHub

issues are not solely used for reporting vulnerabilities. However, We thought it was

important to explore this.
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4.2 Popularity Baseline

There are over 1.4 million packages on NPM, and while the information from each of

these packages may be useful there are many cases where packages lack documenta-

tion of vulnerability history. The assumption was made that popular packages have a

greater expectation to have clear and complete documentation of code changes. We

also assumed that popular packages are more likely to have vulnerabilities identified

due to the number of users exposed to the code base. To ensure that the packages

analyzed would have the data necessary we used a popularity baseline to decide

what packages would be included in the data set. This baseline is inspired by Spell-

bound; Taylor et al. determined that the number of downloads for a package was the

most indicative measure of popularity, and considered packages with 100,000 weekly

downloads as ”unquestionably popular”[26]. However, the authors also mention an

important piece of information, that download counts represent more than the num-

ber of people that have downloaded the package. The creators of NPM estimated in

2014 that a package can be downloaded up to 50 times per day without ever being

installed by an actual developer[26]. Therefore, ensuring packages had community

involvement and a history of documentation also meant it was important to set a

baseline that would eliminate packages that were not be downloaded by humans.

For these reasons, the popularity baseline set for this project includes packages with

50,000 or more monthly downloads. This would eliminate any packages with counts

that are inflated by bots or automated services, and include packages that clearly

have strong community usage and involvement.
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4.3 Gathering the Data

After determining what metrics to calculate and the data needed, we created a

program that would scrape various websites and use APIs to gather the information

needed. To get a list of package names, it queries the official NPM registry which

returns a JSON array of the packages and some extra data that was discarded. Then

the package names are used to query the NPM registry for the number of downloads

per package in the past month. Once the package names and download counts were

determined, packages with less than 50,000 downloads were filtered out, following

the popularity baseline. This left me with about 15,949 out of 1.4+ million packages.

This new list of packages is then used to get the number of dependents from the

Libraries.io API, as well as the GitHub repository URL associated with the package.

1 async function getDependendentsAndUrl(packageName) {

2 const librariesData = await fetch_retry_json(‘https :// libraries

.io/api/NPM/${packageName }? api_key=${librariesioApiKey }‘)

3

4 if (librariesData == null) {

5 // return[dependentCount , URL], -1 is used to represent no

data found

6 return [-1, null]

7 }

8 return [librariesData.dependents_count , librariesData.

repository_url]

9 }

The GitHub repository web page is then scraped for the number of open and

closed issues.

1 async function getIssues(repo) {

2 // issuesCache is used to reduce the amount of redundant

queries
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3 if (repo in issuesCache) return issuesCache[repo]

4 const res = await fetch_retry(‘https :// github.com/${repo}/

issues ‘)

5

6 // 404 is a page not found error

7 if (res.status === 404) {

8 console.log(‘https :// github.com/${repo}/issues ‘)

9 return ["Not On Github", "Repo Removed "]

10 }

11 const text = await res.text()

12 const parsed = parse(text);

13

14 // This is where the GitHub page is scraped for the issue

counts

15 let issues = parsed.querySelectorAll (’#js -issues -toolbar a’).

slice(0, 2)

16 if (issues.length === 0) {

17 return [0, 0]

18 }

19 try {

20 let open = parseInt(issues [0]. removeWhitespace ().text.split

(’ ’)[0]. replace (/,/g, ’’))

21 let closed = parseInt(issues [1]. removeWhitespace ().text.

split(’ ’)[0]. replace (/,/g, ’’))

22 issuesCache[repo] = [open , closed]

23 console.log(‘${repo}: ${open}, ${closed}‘)

24 return [open , closed]

25 } catch (err) {

26 console.error(‘Error getting issues for ${repo}: ${err}‘)

27 issuesCache[repo] = [-1, -1]

28 return [-1, -1]
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29 }

30 }

For information on known vulnerabilities associated with each package, we uti-

lized Snyk’s online vulnerability database [21]. This database provides detailed

information for known vulnerabilities associated with all versions of a package, in-

cluding their classification (high risk, medium risk, low risk), a description of the

vulnerability, and what version resolved the vulnerability if applicable. For the pur-

pose of this project, only vulneravility data about the latest version of the package

was collected, and excluded vulnerabilities associated with the dependencies of the

package. The purpose for this was to keep the collected data as relevant and related

as possible. The data for downloads, dependents, and issues were collected in real

time, and therefore are related to the current version of the package and should be

compared to the current number of known vulnerabilities in the package. Vulnera-

bilities associated to dependents of a package were not included because they are not

directly in the package’s code and therefore the other data collected is not related to

it. There is also a significant amount of research and existing tools that can search

packages dependencies for known vulnerabilities, so working on this further would

have been redundant. Snyk’s database also excludes dependency vulnerabilities by

default. So, the Snyk database page associated with the package is scraped for the

number of known vulnerabilities in the latest version.

1 async function getVulns(packageName) {

2 let vulnCount = 0;

3 // getting the number of vulnerabilities from the Snyk.io DB

4 let res = await fetch_retry(‘https :// snyk.io/vuln/npm:${

packageName }‘)

5 let snykBody = await res.text();

6 let $ = cheerio.load(snykBody)
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7 if (! snykBody.includes(’No known vulnerabilities have been

found for this package in Snyk\’s vulnerability database.’) &&

8 !snykBody.includes ( ’404: Page not found ’)) {

9 // The known vulnerabilities in the current version are in

the first 3 elements with this class on the page

10 $(’.severity__item -count ’).each((i, e) => {

11 if (i < 3) {

12 vulnCount += parseInt($(e).html());

13 }

14 });

15 console.log(’vuln count ’ + vulnCount);

16 return vulnCount;

17 }

18 return -1

19 }

The data is then written to a CSV file which can then be exported and analyzed.

4.4 Data Analysis

Using the data collected from the program, we calculated the Pearson Correlation

Coefficient and graphed the relationships between the number of known vulnerabili-

ties and each of the other metrics, number of monthly downloads, number of depen-

dents, number of open issues, and number of closed issues. Correlation coefficient

absolute values below 0.3 are considered to be very weak; 0.3-0.5 are weak; 0.5-0.7

are moderate; ¿0.7 are strong. There was a notable outlier in the data, a package

called node-sass. We investigated node-sass and found that it is a Node.js bindings

package for libsass, a python package, and its vulnerabilities are directly caused by

its bundled usage of libsass. Because of this, node-sass and its corresponding data
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was excluded from the correlation calculations and graphs.
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Chapter 5

Results and Discussion

From the data collected, we would like to know if any of the package or repository

metrics (monthly downloads, dependents, open issues or closed issues) correlate

with the number of known vulnerabilities for a package. We hypothesized that the

number of monthly downloads, the number of dependents, and the number of closed

issues would have negative Pearson Correlation Coefficients. This would mean that

as these metrics increase, known vulnerabilities decreases. Therefore, packages with

many downloads or dependents or closed issues can be said to be more secure. We

also hypothesized that the Pearson Correlation Coefficient for open issues would be

positive, meaning that as it increases, known vulnerabilities increases. Therefore,

packages with many open issues can be said to be more vulnerable.

The Pearson Correlation Coefficient (PCC) for downloads or dependents vs.

known vulnerabilities were both negative, which confirms the hypothesis that as

downloads or dependents increase, known vulnerabilities decreases, but the absolute

value of r in each case was less than 0.3 and therefore the correlation is very weak.

However, the public dependent count only includes the number of packages that

directly depend on a given package, while number of downloads includes direct and
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indirect downloads through chains of dependencies [26]. Therefore the data for the

number of dependents per package is not complete, and it may not be the best

metric to use as an indicator of vulnerability. The PCC for open or closed issues

vs. known vulnerabilities were both positive which means that as open or closed

issues increase, vulnerabilities increase, but the absolute value of r in each case was

less than 0.3 and therefore the correlation is very weak. This proves the hypothesis

about open issues, but is not what was predicted for closed issues.

Pearson Correlation Coefficients (r)

Downloads(x)andV ulnerabilities(y) r = −0.010

Dependents(x)andV ulnerabilities(y) r = −0.004

OpenIssues(x)andV ulnerabilities(y) r = 0.019

ClosedIssues(x)andV ulnerabilities(y) r = 0.009

However, there are many cases where packages share repository information (i.e.

react and react-addons-update) which means it is not possible to accurately deter-

mine issue counts for each package using this method of collecting data. Therefore,

these metrics cannot yet be said to correlate in any way with package security.

The correlations between these metrics and known vulnerabilities are not strong,

and therefore are not certain. More data is necessary to determine whether these

metrics correlate to security in any way.
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5.1 Monthly Downloads

Figure 5.1: The relationship between the number of monthly downloads and the

number of known vulnerabilities for NPM packages.

The figure above displays the number of monthly downloads vs. known vulnerabili-

ties for each package in the data set. Notice that packages with 1 known vulnerability

are heavily concentrated on the lower end of the x-axis.

Table 5.1: Monthly Download Statistics

Average Number of Downloads for All Packages 6,519,233

Minimum Number of Downloads with Known Vulnerability 50,129

Maximum Number of Downloads with Known Vulnerability 34,386,901

Average Number of Downloads with Known Vulnerability 1,923,944.46

Standard Deviation of Downloads with Known Vulnerability 5,668,886.66

Also, packages with 1 or more known vulnerability have an average of about
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1,923,944 monthly downloads compared to the overall average of about 6,712,474

monthly downloads for packages with no known vulnerabilities. Therefore, it can be

said that generally, packages with known vulnerabilities are downloaded less than

packages with no known vulnerabilities.

5.2 Dependents

Figure 5.2: The relationship between the number of dependents and the number of

known vulnerabilities for NPM packages.

The figure above displays the number of dependents vs. known vulnerabilities for

each package in the data set. Notice that similar to figure 4.1, packages with 1

known vulnerability are heavily concentrated on the lower half of the x-axis.
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Table 5.2: Dependent Statistics

Average Number of Dependents for All Packages 802.78

Minimum Number of Dependents with Known Vulnerability 3

Maximum Number of Downloads with Known Vulnerability 3513

Average Number of Dependents with Known Vulnerability 384

Standard Deviation of Dependents with Known Vulnerability 744.61

Also, packages with 1 or more known vulnerability have an average of about 384

dependents compared to the overall average of about 828 dependents for packages

with no known vulnerabilities. Therefore, it can be said that generally, packages

with known vulnerabilities have less dependents than packages with no known vul-

nerabilities.
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5.3 Open Issues

Figure 5.3: The relationship between the number of open issues and the number of

known vulnerabilities for NPM packages.

The figure above displays the number of open issues vs. known vulnerabilities for

each package in the data set. Unlike the previous figures, packages with known

vulnerabilities are more distributed along the x-axis but seem to be concentrated

more towards the middle.

Table 5.3: Open Issue Statistics

Average Number of Open Issues for All Packages 49.85

Minimum Number of Open Issues with Known Vulnerability 0

Maximum Number of Open Issues with Known Vulnerability 992

Average Number of Open Issues with Known Vulnerability 95.10

Standard Deviation of Open Issues with Known Vulnerability 175.49
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Also, packages with 1 or more known vulnerability have an average of about 95

open issues compared to the overall average of about 49 open issues for packages

with no known vulnerabilities. Therefore, it can be said that generally, packages

with known vulnerabilities have more open issues than packages with no known

vulnerabilities.

5.4 Closed Issues

Figure 5.4: The relationship between the number of closed issues and the number

of known vulnerabilities for NPM packages.

The figure below displays the number of closed issues vs. known vulnerabilities for

each package in the data set. Similar to figure 4.3, packages with known vulnerabil-

ities are more distributed along the x-axis.
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Table 5.4: Closed Issue Statistics

Average Number of Closed Issues for All Packages 427.65

Minimum Number of Closed Issues with Known Vulnerability 0

Maximum Number of Closed Issues with Known Vulnerability 4568

Average Number of Closed Issues with Known Vulnerability 587.59

Standard Deviation of Closed Issues with Known Vulnerability 1108.40

Also, packages with 1 or more known vulnerability have an average of about 587

open issues compared to the overall average of about 426 open issues for packages

with no known vulnerabilities. Therefore, it can be said that generally, packages

with known vulnerabilities have more closed issues than packages with no known

vulnerabilities.

5.5 Data Restrictions and Limitations

Out of the 15,949 packages that passed the popularity baseline only 64 packages

had at least one known vulnerability. This resulted in a very small amount of data,

something that we were not expecting. In this preliminary investigation the level

of documentation for a package is irrelevant, and so we believe that the popularity

baseline may not be necessary for this project. It may not be feasible to collect this

data for all 1.4+ million packages on NPM, but the popularity baseline put in place

was certainly too strict. However, we believe the idea of a popularity baseline will

be useful for future work.
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Chapter 6

Future Work

6.1 Package Manager and Repository Metrics

6.1.1 Open and Closed Issues

We believe there is still more work needed to determine if the number of open

or closed issues correlates with security. Packages that share repositories have their

own download count and dependent count, but share the number of open and closed

issues with other packages. This creates ambiguity, because the package may only be

a small portion of a repository but be associated with the issue counts for a larger,

more popular package. Therefore, the current issue counts and known vulnerability

correlation is likely inaccurate. Future work could filter packages from the data

set that share repositories, therefore only including packages that have independent

data. This would give a much more accurate and informative result.
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6.1.2 Number of Dependencies

The number of dependencies a package had was originally a metric we considered,

but decided was too complex to use for this project, because the interpretations for

what the number of dependencies could mean is not clear. There are two assump-

tions that can be made about the number of dependencies a package has: (1) The

more dependencies a package has, the more likely it is to be vulnerable because it

is depending upon potentially vulnerable code. (2) Assuming all dependencies are

completely secure, then the more dependencies a package has, the more secure it is,

because less of the code is written and maintained by the main developer(s).

However, there is a flaw with assumption (2): For example, assume a package has

20 dependencies. Assuming these are all secure (2) would then mean that request is

more likely to be secure. However, if the 20 dependencies each have 0 dependencies,

then it would mean that they are more likely to be vulnerable. This makes me

believe that assumption (1) would be the best avenue to pursue.

6.2 Software Metrics

Research has shown that there are project-level software metrics that strongly cor-

relate to the number of vulnerabilities in a project [13]. These metrics include

Coupling Between Objects (CBO) of a project (calculated by counting the number

of functions/methods of a file/class that are coupled with other files/classes) and

SumEssential complexity metric (calculated by count-ing the cyclomatic complexity

after iteratively replacing all structured programming primitives with a single state-

ment)[13]. However, these metrics have not been calculated or tested on JavaScript

packages and were only tested on 5 projects. Calculating software metrics such as

these could be used with package and repository metrics to determine the security
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of NPM packages. This could be a tedious and expensive investigation to carry out

on all packages in NPM. It could be implemented on a per-package basis, calculat-

ing the metrics and determining its likelihood to contain a vulnerability before it is

downloaded by a user.

6.3 Metric Manipulation

While trying to determine what metrics reliably correlate to the security of a pack-

age, it is also important to think about the ways these metrics could be manipulated

if they were to be used in the field. Malicious actors could fabricate large down-

load counts for a malicious package to make it seem secure. Similarly, while a large

number of closed issues could imply that a package is well maintained and therefore

secure, the contributors of the package could easily create ”false” issues to inflate

their closed issue count. It is necessary to consider how these metrics will be im-

plemented so as to avoid metric manipulation. To prevent this it may be necessary

to include a metric that is not easily manipulated when evaluating a package, such

as software metrics like cyclomatic complexity. Software metrics cannot be manipu-

lated through the package manager or repository directly, and therefore would have

to be manipulated within the package code itself. It still may be possible to ma-

nipulate software metrics, but disguising the fact that there is code in the package

specifically for manipulating these metrics may be difficult for threat actors.

6.4 Version Testing

This project was a preliminary investigation into the use of software and security

metrics to determine the security of NPM packages. For further context surrounding

these metrics they could be compared across different package versions. This is
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where we believe the popularity baseline would be best utilized to find packages

with extensive documentation. The Snyk database provides information on known

vulnerabilities across versions, and could be used to find versions of a package that

are vulnerable as well as the version that resolves the vulnerability. This was the

original goal of this project, but finding the number of downloads, dependents, open

and closed issues of past versions was not something we were able to do. This may

be more feasible with other metrics, such as package complexity.

6.5 Vulnerability Score

After determining what individual metrics may correlate with security, an investiga-

tion on the combination of metrics and how they correlate with security is necessary.

This combination of metrics could be used to determine a vulnerability score for a

given package. Software metrics have had success with determining whether code

may contain vulnerabilities, so we would combine these metrics with package or

repository metrics that correlate to security.
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Chapter 7

Conclusion

Package managers are great tools for developers, but currently lack safeguards to

prevent their users from malicious attacks or unintentional vulnerabilities. The goal

of this project was to determine if there are any package or repository metrics that

reliably correlate to the security of a package on NPM. If there are any metrics

that correlate to security, a tool could be created to evaluate a package before it is

downloaded to warn users of potentially vulnerabilities. The data for this project

was collected from package libraries, the NPM website, GitHub’s website, and the

Snyk known vulnerability database using a program we created. This data was then

analyzed, and the metrics were found to have a very weak correlation to known

vulnerabilities. From the data analyzed, it was found that generally packages with

known vulnerabilities have less downloads or dependents compared to those with no

known vulnerabilities. Packages with known vulnerabilities were also found to have

generally more open and closed issues than those with no known vulnerabilities.

However, there were data restrictions and limitations that may delegitimize these

findings. For example, packages with shared repositories have independent package

metrics, but shared repository metrics. Also, the dependent counts for packages is
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not complete, as it is only the count of direct dependents. Therefore, future work

and testing is necessary to determine whether these metrics do correlate to security

for certain. A larger data set should be analyzed, as well as removing packages with

shared repository information. There is also potential for future work to focus on

the combination of metrics to determine a vulnerability score and develop a tool for

scanning packages before they are downloaded by a user.
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