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Abstract

The goal of this project was to design, fabricate and implement a parallel kinematic
manipulator robot with open architecture to be used in the Industrial Robotics course, ME/RBE
4815, curriculum for inverse kinematics and other classroom projects. The robot was designed
using solid modeling software and fabricated in the WPI machine shop with use of computer
aided manufacturing techniques. A programming architecture was also developed in concert with

the mechanical-electrical system to allow control of the robot via a touchscreen GUI.



Table of Contents

ADSTIACT ...t [
TabIe OF CONENES ... e bbb I
I U0 Lo o) o O SO R R v
1. INEFOTUCTION ...t 1
1.1 ProjeCt STAlEIMENT.......ccivi e iiece ettt e e re e sreesre e e 1
O (=T o To] g =0 U | SRR TURPPIN 1
2 BACKGIOUNG.. ..o bbbttt b e bbb 3
2.1 History of Parallel RODOTICS .........ccoiiiiiiiiicce s 3
2.2 Three-Arm Parallel Kinematic Manipulator ............c.ccccooviieiieiiiie e 5
2.3 Four Arm Parallel Kinematic Manipulator ..............ccccoveveiieieeiiiie e 6
R TV 1 011 1T 1Y TR OPR 7
3 MELNOAOIOGY ... 9
4 System Goals and REQUITEMENTS ......cc.oiiiiiiiiiieieie et 10
4.1  Mechanical Design CONSIIAINTS. ........ccoiiiiiiiieieieese s 10
4.2 Target Users and AUAIENCE ........cceoveiieeiieiie e ste e 11
5 System Design Evaluation and Prototyping ........ccccceveeieiiieie e 11
5.1 Programming for Proof of CONCEPL.........ccovveiieiiiiii e 13
5.2 SUMIMANY ..ottt b et ne e 14
6 Kinematics and Dynamic MOdeling .........ccccooviiiiiiiiiieieee e 15



6.1 Required Torque for 100G ACCEIEration..........ccceveerieiieiieii e

7 System Design and ManuUFaCtUNNG........ccueueiiriieiiieseee e e

7.1 Design of SUPPOIt TabIE ....cvveeiiieece e

7.2 Electrical System

DESION e

7.2.1 Electrical System ReqQUIEMENTS .......cccoviiviiieiiiie e

7.2.2  Electrical SYSteM LaYOUL ........ccuoiiiiieieieiiesesie e

7.2.3 Embedded Microcontroller Selection ...

T7.2.4 INterface BOArd........cooo oo

8 Software Architecture

8.1 Computer............

8.2 MOdES OF OPEIALION......ccuiiiieiiiieieite st

8.2.1 Graphical User INTErfaCe .........cccuiiiiriiieieie e

8.2.2 Touch Screen

CONSIAEIALIONS ...,

8.2.3  EXIEINAI CONTIOL ...

8.3 OpeN-ArChItECLUIE AP .....ooiiiei ettt

9 Project Summary .......

9.1 Project ACCOMPISNMENTS.......ccooiiiiiiiiiiiee e

9.2  ECONOMIC CONSIARIALIONS. ....ceeeeeeeeeeeeeeeeeee e,

9.3 Health/Safety ConsSiderations............ccoovviiiririeiese e

9.4 Reliability CONSIAeratioNnS .........ccoiveiiiiiiieiii i



9.5 SOCHIAI IMPACT......eiiiiie e e e 56

9.6 USE OF STANUAITS. .......eiieieieiieiieeei et 57
10 FULUIE WOTK ..o 58
10.1  Mechanical ReCOMMENALIONS. .........eiveiriiriiieiieeeese s 58
10.2  Electrical ReCOMMENAtIONS ........ocviviiiiiiiiiiieeseee s 58
10.3  Computer ReCOMMENUALIONS ........eiviiiieiiiieieie e 59
11 CONCIUSIONS ...ttt bbbttt b 61
BIDHOGIAPNY ... 64
Appendix A — Weight Analysis of Subassemblies ............cccccoveiiiiiiiciiii e 65
Appendix B — Four-arm Inverse KiNeMatiCS ........cccovveieeiiiiiieiieie e 68
Appendix C — Embedded Application COde...........ccoveiiiiieiineieseseeeee s 71
Appendix D — Instruction on How to Install Maple IDE............cccccooiiiiiiininiiiicins 76



Table of Figures

Figure 1 - ABB FIEXPICKET ......oouiiiiiiie e 6
Figure 2 — Snapshots of the miniature acrylic prototypes..........c.cooveveieienencncnenesene 12
Figure 3 - System Parameter DefinitionS............oooviieiiiiiiiieceeee s 15
Figure 4 - Torque Profile along the Z-aXis .........cccceieieiiiiieieeeee s 18
Figure 5. INitial Arm DESIGN .....c.ooiiiiiiiiii e 19
Figure 6 - Initial Connection Design CONCEPL .........cveriereieiirinieee s 20
Figure 7 - MOtOr MOUNE BASE ......c.voiiiiiieiiiiiesiieie et 21
Figure 8 - Final Base Assembly (with MOtOr SUPPOITS)........ccovrireiieieieese e 22
Figure 9 - Driver Arm ASSEMDIY .......coiiiiiiiiiiieee s 23
Figure 10 - Final Drive Arm DESION .....ccoiiiiiiiiiieieiee st 24
Figure 11 - U-Joint CoNNECtiON DESIGN ......ccviuiiiiiieieieieesie e 25
Figure 12 - Final U-JoINt ASSEMDBIY ......ooviiiiiiiiicee s 25
Figure 13 - Arm ASSEMDIY ..o s 26
Figure 14- Subassemblies during €poXY SELHNG .........coverrererereninicieiee s 27
Figure 15 - Platform ASSEMDIY .......coooiiii s 28
Figure 16 - Final Platform ASSEMDIY.........ccooiiiiiiiee s 28
Figure 17 - Final Robot Assembly, as DUIlt...........ccooiiiiiii 29
Figure 18 - Final Support Frame DESIQN .........ccoueirieierieieniesie e 30
Figure 19: Electrical Schematic of ENtire SyStem ..........cccccoveiiiniiiiniscseeeenees 33
Figure 20 - The Maple LeafLabs Board based on ARM Cortex-M3 Architecture .......... 37
Figure 21 - Timing Diagram of the PWM Input MOde ..........cccooviiiiniiiiiec e 40
Figure 22: External Interface Board LaYOUL ..........ccoveiierieieieninincseee s 42



Figure 23 - FreqUENCY RESPONSE........ciiiiiiiieiiieiieeie sttt sttt b e es 45

Figure 24 - Response Time vS. Load RESISTANCE ........cccooeiiiiiiniiicieeeee s 45
Figure 25 - Test Circuits for the Opto-Coupler ..o 45
Figure 26: J0g MOLION GUI ......cooiiiiiiiie s 47
Figure 27 - Coordinate MOtion GUI ..........ccoooiiiiiiiiiee s 47
FIgure 28 - Class DIAGIAM ........cveieiiiiiiieiie ettt 51
Figure 29 - Final Completed ASSEMDBIY ........cooiiiiiic s 54

Vi



1. Introduction

Industrial robots are divided into two major categories — serial and parallel kinematic
robots. The WPI Robotics Lab in Washburn Shops has several serial robots, which are used
extensively in the Industrial Robotics course, ME/RBE 4815, but currently has no parallel robots.
Parallel robots are particularly useful in a teaching setting, as they provide a gentler introduction
to inverse kinematics than their serial counterparts; having one available for student use would
be an excellent learning tool. The major limiting factor is price: a typical parallel kinematic robot
can cost upwards of $30,000, even with an educational discount. This project endeavored to
completely manufacture, assemble, and program a parallel kinematic robot for student and
classroom use at a fraction of the cost of a proprietary unit. As a secondary goal, the robot was
designed to be capable of accelerations up to 100Gs under ideal conditions, comparable to the
abilities of most advanced parallel robots currently available.

1.1 Project Statement

The goal of this project was to develop an open source, reliable parallel kinematic
manipulator for use in the Industrial robotics course at WPI. This robot will be designed to have
an open architecture, and will allow for students to utilize their own microcontrollers to pass
control signals to the robot which will allow for greater flexibility in the operation of the robot.
1.2 Report Layout

The rest of the report is organized as follows. Chapter 2 provides the history of parallel
kinematic industrial robotics. Chapter 3 covers the methods performed in pursuit of the project
goals, particularly in three major areas: mechanical, electrical and computers. Chapter 4
summarizes the results of the previous chapter. Chapter 5 relates prototyping of preliminary
designs for both three-arm and four-arm styles of robot. Chapter 6 covers the kinematics of the
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four-arm system that was selected to be pursued as the final design of the robot. Chapter 7
covers the final design of the system and the process followed for manufacturing of the robot,
including the support table and electronic subsystems. Chapter 8 covers the software
architecture, including the process of GUI design and passing commands to the motor
controllers. Chapter 9 provides an overall summary of the project. Chapter 10 provides
recommendations for future work across all three of the main components of the robot:
mechanical, electrical and computer programming. Finally, chapter 11 provides the conclusions
that were determined during the project, such as what worked, what did not work and a final

summary of future improvements.



2 Background

In order to determine the state of the art with regards to parallel kinematic manipulators,
it was decided to research the history of industrial robotics in general and PKMs in particular,
from their earliest roots in 1942.

2.1 History of Parallel Robotics

Parallel kinematics has its roots at the beginning of industrial robotics. In 1942, Willard
L.V. Pollard was awarded a patent for the first spatial industrial robot, designed for spray
painting. The design of the manipulator relied upon parallel kinematic chains to provide 5
degrees of freedom, but was never actually built. Pollard’s son, Willard L.V. Pollard Jr., was the
one who finally designed and built the first industrial parallel robot. The next development was
parallel robots that rely not on motors or rotary joints, but upon hydraulic rams (Zhang, 2).

In 1965 D. Stewart described a design for a 6-DOF robot meant for flight simulation.
These devices consist of a raised platform atop six prismatic actuators, which allow for
manipulation of the orientation of the platform with six degrees-of-freedom (three translational
and three rotational) (Zhang, 4). Such devices are usually referred to as Stewart platforms or
hexapods (for their six “legs”). The first device of this type for flight simulation applications was
built by Klaus Cappel in the mid-sixties, and was a basic form of modern flight simulators.
While Stewart is often credited for their invention, the first octahedral hexapod was actually
developed in 1954 by Dr. Eric Gough. It was called the “Universal Tyre Testing Machine” or
just “Universal Rig,” and had been designed and implemented for uses in tire load testing.
Derivatives of these two parallel robots were the standard for about 30 years.

Until recently, most of the work in parallel kinematic robots was built upon the “Gough-

Stewart” design type. However, the early 1980s saw the invention of the Delta robot by



Reymond Clavel. Created in response to industry demand for a way to quickly move light
objects, it consisted of three arms attached to a base above the work space. There were two
features of this design which made it particularly effective; first, the positioning of all actuators
at the base (as opposed to along its arm, as in a serial robot) allowing for reduced arm weight and
thus much faster movement; second, the use of two parallel linkages in each arm restrict
rotational movement of the end effector (rotation at the end effector is achieved with a separate
actuator, either at the base or the end effector). The company Demaurex produced earliest delta
robots for use in industrial packaging. (Clement, 3)

There has also been a recent surge in development of mechanisms that use rotary joints as
opposed to prismatic joints. Some examples of these are the “Hexa” robot developed by
Uchiyama in 1994, which has 6 DOF (Zhang, 15); the Adept Quattro, which has 4 DOF; and the
ABB Flexpicker, which also has 4 DOF. Some key points of the design of these robots are: an
overhead style, high speed, high acceleration, stable coordinate translation, and increased
stiffness of the entire robot.

Parallel kinematic robots differ from serial kinematic robots, where each joint controls
one degree of freedom. Serial robots are far simpler and have their own set of pros and cons.
They are far easier to control, can have larger work cells with regard to their own volume, and
can approach more locations from a wide array of angles. Conversely, they suffer from additive
errors in each of their links as well as being limited in payload due to the fact that the robot must
support the weight of successive motors as well as the item being manipulated. As a result, they
are not the best solution for pick and place operations with short cycle times.

Currently, the companies ABB and Adept produce a majority of parallel kinematic

robots. ABB introduced its FlexPicker robot in 1999. In 2006, Adept introduced the Quattro, a



four-arm delta-style robot; its additional arm allowed for increased accuracy and speed.
Although parallel robots are still produced for packaging purposes by SIG Pack, a subsidiary of
Bosch, the Flexpicker and the Quattro are considered the standard for parallel industrial robotics.
These two robots were designed for industrial pick-and-place applications. Both have capacities
between 3 and 6 kg and have cycle times between 0.3 and 0.7 seconds. They are also capable of
repeatability of motion to within 0.1 mm in any direction. It is because of these qualities that this
project was tasked with the design and manufacture of a parallel kinematic manipulator. In order
to get a better idea for the capabilities of both the ABB FlexPicker and the Adept Quattro,
research was performed using the marketing materials provided by both companies. These
materials gave an idea of the sizing for individual components, as well as the benefits and

drawbacks to each design

2.2 Three-Arm Parallel Kinematic Manipulator

The first three-arm parallel robot was built in 1988, based off Reymond Clavel “delta”
design, a parallel kinematic manipulator with three arms driven by revolute motors. This system
allows 3 degrees of freedom of the end effector, all spatial translation. The delta utilizes
symmetry to create a simplistic system that can perform a pick and place operations at high
speeds and high accuracy. The motors are mounted to a base plate that is fixtured above the work
cell. The arms are attached with revolute joints, which allow the end effector to attain 3 degrees
of freedom. The delta was a big development for the industry. The speeds that the delta could
attain while maintaining its precision and rigidity made parallel kinematics the ideal choice for
pick and place operations on small objects.

Since the Delta’s appearance in the late 80’s, many companies have been investigating

this technology and many companies have their own versions of a three-armed parallel kinematic



manipulator. ABB’s FlexPicker is one of the industry leaders in three arm parallel kinematic

manipulators.

Figure 1 - ABB FlexPicker

ABB offers “clean room” specifications for their robots so parallel robots have made
their way into the health and food industry. ABB is only one of many companies that have noted

the efficiency of these systems and developed versions of their own.

2.3 Four Arm Parallel Kinematic Manipulator

A four arm PKM has four motors that attach to four individual driver links; these driver
links then attach to four separate arms. These arms tend to be attached by ball joints or ball-and-
socket joints at both ends of the driver link, meaning that for every motor there is one driver link
and for every driver link there are 2 links that make up one arm. The arms are then connected to
the end effecter; thus, the end effector is connected to eight links but only four arms.

This system is over-constrained; when you set the angles of three of the arms the angle of
the fourth arm is determined. Although an over-constrained system has less flexibility, the over-

constrained system is considered to be “redundant” and the additional links provide an additional



element of stability and control to the entire kinematic system (Clement, 5). Movement in the
cardinal directions is created by moving one motor forwards and its opposite motor backwards;
whether the robot is moving in the x-direction or the y-direction depends on which motors are
moving. Movement along the z-axis requires coordination motion of all four joints in the same
direction.

The Adept Quattro is the current leader in four-arm parallel robots. It features an
operating payload of 2 kilograms, operating speeds of up to 10 m/s and repeatability of motion
within .1 millimeter. The workspace of the Quattro is also the largest in the industry, with
diameters of over 50 inches. These specifications made it a worthy goal for this project to match
in terms of performance.

2.4 Summary

The history of parallel robotics is quite recent, although there have been great strides in
the field especially since their inception in the 1950s. There are two major types of parallel
manipulators, 3-arm delta robots or 4-arm Quattro style robots. These robots have become
increasingly common and there are a number of them on the market, such as the ABB FlexPicker
and the Adept Quattro. Through this research, it was determined that a four-arm manipulator
had several important benefits, including requiring less torque to generate high accelerations due
to the addition of the fourth motor and providing a greater level of stiffness for the end effector.
The four-arm style has several drawbacks, however, including increased weight of the moving
system, the necessity to purchase four potentially expensive motors as opposed to only three, and
more material required to manufacture the fourth arm. It was noticed that the three-arm design

also had their own benefits, including a light end effector and requiring fewer raw materials to



construct. It suffers from several drawbacks, including requiring more powerful motors, less

payload capability, and reduced repeatability of motion.



3 Methodology

To achieve the goals proposed by this project, a methodology had to be determined and
followed. Once the system goals were defined, the various options were prototyped and a final
design style was selected. A mechanical design phase then proceeded in parallel with electrical
and software developments. The mechanical designs proceeded from simple first drafts and
concept sketches to final models designed for ease of manufacturing as well as amount of
material needed. The electrical system proceeded from a functional analysis to component
selection, and finally to production of a working control system. The software development
proceeded from determining what choices for programming language would work for the
project, to determining what motor control communications protocol would allow for
synchronous motion of all four motors, to the creation of a graphical user interface that will

allow for users to interface with the robot.



4  System Goals and Requirements

The final mechanical system goals were defined as needing a workspace of roughly 30
inches in diameter and a height of 20 inches. The system should also be capable of unloaded
accelerations of 100G, carry a payload of 2 kilograms and operate at speeds up to 10 m/s at full
payload. The electrical system had the goals of allowing external microcontroller architectures
to be utilized in an open system, and as such required adequate system protection for both the
third party microcontroller and the internal system. The computer system was designed to allow
for a comparable control system to other industrial robots, allow for the creation of movement
programs, and be relatively simple for users to utilize, through both mouse and keyboard or
touch screen input.

4.1 Mechanical Design Constraints

The goal of this project from the beginning was to design a Parallel Kinematic
Manipulator that could be implemented for educational purpose in the Mechanical and Robotics
Engineering curriculums at WPI. For this reason, a table top design was needed that could easily
be added to WPT’s existing robotics laboratories. This led to the first design constraint: the final
product must have a foot print that is 30 in x 30 in and a work space height of 36 in.

The Current State-of-the-art technology of parallel kinematic manipulation is the Adept
Quattro, being credited as the fastest robot on the market. It was desired that the system to be
comparable with the current industrial PKM’s. Therefore, it was desired that the system operate
at speeds up to 10 m/s with a peak acceleration of 15g (roughly 150 m/s"2).

Lastly, it was a goal to design a system that was capable of reaching a peak acceleration

of 100g, or roughly 980 m/s"2 for research purposes. One of the focuses of the preliminary
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research was: whether it was desirable to follow a three-armed “delta” or four-armed “Quattro”
approach.
4.2 Target Users and Audience

To successfully design and implement this robot, understanding who is going to use the
robot and its intended use are extremely important. This robot will be used as an educational tool
in the Industrial Robotics course, ME/RBE 4815; it will be used to teach students inverse
kinematics in a closed kinematic loop. Therefore, it needs to be user-friendly, safe, and have the
ability to be seamlessly integrated into the course curriculum. The course currently utilizes a
Fanuc 200iB robotic arm which allows students to manually jog to positions or code into the
system; as well, it interfaces with a National Instruments Data Acquisition Module (NI-DAQ)
which allows students to connect sensors and send signals to the system. To integrate this robot
into the course, many of those features were emulated such as the GUI interface which is similar
to the teach pendant as well as the interface board which is similar to the available NI-DAQ.
System integration into the current curriculum will be greatly facilitated by designing the robot

with the goal of supplying a system tailored to the target users’ needs.

5 System Design Evaluation and Prototyping

Simplified models of the two designs were developed using SolidWorks© to gain an idea
of the basic proportions of both robots, as well as the required input for both designs to be
completely constrained. The kinematic chains of the models consisted of 3 lines with the main
rotation joint being constrained into planar motion. A ratio of approximately 1:2.5 of the driver
arm to the follower arm was selected based on researching other, existing designs and

determining what factors contributed to workspace size and shape.
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To gain firsthand experience regarding the pros and cons of the three-arm and four-arm
designs of a parallel kinematic robot as well as to parallelize software development, the group

built small scale prototypes of both parallel kinematic configurations, as shown in a)
Prototype of the delta style robot. b) Prototype of the Quattro style robot.

Figure 2.
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a) Prototype of the delta style robot. b) Prototype of the Quattro style robot.

Figure 2 — Snapshots of the miniature acrylic prototypes.

The prototypes were fabricated out of acrylic, due to the low cost, availability of a laser
cutter on campus, familiarity with the properties of the material, familiarity with the assembly
methods and time constraints. Hitec 485GH servos were used, which provided good location
control as well as appropriate amounts of torque to control the prototypes. These also have the
benefit of being inexpensive and easy to use as they take a PWM signal to control their current
position. A flat layout was created for the bases of both prototypes, to hold the servos and
provide support for the rest of the mechanism; a set of legs; and the driver arms were created,
and were sent to the laser for cutting. The driven links were created using Traxxas turnbuckles

from a radio control car and steel rods to create a four-bar linkage, which was attached to the

driver arm and a small manipulator platform.
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5.1 Programming for Proof of Concept

To program the prototype our team decided to use the DylO (Dynamic Input/Output) by
Neuron Robotics. The DylO is a small input and output board which can be utilized when
programming small robots.

When we began testing the servos, the arms were still attached. This made it difficult to
discern which servo was moving because, due the construction of the system, when one servo
moves it causes the arms attached to it to move and they pull the other arms and servos into
motion. We detached the arms, making it easy to see which servo was moving and how it was
moving. After experimenting with the motion of each servo, both individually and in relation to
the other servos, we decided that a center for each servo had to be declared to make coordinated
movement possible. The relative center for each servo had a slightly different potentiometer
value, but the position was determined by moving the servo until the driver arm was parallel to
the servo. The servos were then labeled 0 through 3 to make it easier to identify which servo was
connected to Port0, Portl, Port2, or Port3. When one servo moves, the opposite servo must
move, as well, or pressure will be put on the system.

The proof of concept program is written in the Java programming language, the native
language for the DylO. Selecting Java simplified communications with the DylO since no extra
libraries or classes had to be downloaded or written to interface with board.

Three classes were developed to control both the three-arm and four-arm prototypes.
These classes take the predefined input, ServoChannels, which is provided by the DylO.
Channels 0 through 3 were chosen to provide output to the servos, and variables were then
declared in order to center the servos. Methods were then written to take place inside two

separate classes, ThreeArm and FourArm. Two methods that were written for basic motion
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include recenter() and setAngle(). The method for recenter() merely sends each servo to its
home position using the preset center variable. The setAngle() method allows for the program to
adjust the angle of each individual servo, which allows for a coordinated motion program to be
created.

In order to test the programming written for the prototypes and to show that coordinated
motion is possible, a Test class is created. Inside this class, new instances are created of
FourArm and ThreeArm, and a main() is written. This class is where commands sent to the
prototypes are written, and due to the organization of Java, code outside of the main() is not
executed, so therefore all test programs are created inside of the main() method.

It was determined from this small scale program testing important factors for
initialization of the full scale robot, including the requirement for the motors to be tested
individually prior to the attachment of the end effector and driver arms. This is an important
factor to prevent accidents during assembly and testing of the control logic and electronic
components.

5.2 Summary

The prototypes were found to be very valuable because they provided a valid starting
point for the design of the full scale robot. By utilizing the prototypes for small scale tests as
well as a focus of discussion, it was determined that the additional power provided by the four
motors of the “Quattro” design would give it a larger payload and would make it more likely that
the full size robot would be able to reach the goal acceleration of 100G. As a result, it was

decided to proceed with the “Quattro” style Parallel robot for the final design.
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6 Kinematics and Dynamic Modeling

Unlike the serial manipulator, determining the position of the parallel robot is quite
difficult. A serial manipulator has one open kinematic chain that can be easily handled with the
application of the Denavit-Hartenberg representation. This method, introduced by Jacques
Denavit and Richard S. Hartenberg, reduces each joint of the robot down to two distance values,
d and r, and two rotational values, theta and alpha. With this minimalist representation in place,
four basic transformation matrices are used to determine the position of each joint. However,
with a parallel robot, a forward kinematics solution is not as straight forward. The parallel
kinematic manipulator has multiple closed kinematic chains and a direct kinematic solution is
very complex and computationally intensive. For this reason, we have chosen to rely on an
inverse kinematic approach. This method relies on both geometry and vector analysis, and no
single solution exists. Inverse kinematics is the opposite of direct kinematics. In this model, the
position of the end effector and the geometry of the robot are used to calculate the input angles of

the motors.

Figure 3 - System Parameter Definitions
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The inverse kinematics of the four-armed parallel robot is calculated using both geometry
and vectors. By knowing the position of the end effector and the position of the motors, the
position of the middle joint (“knee” joint) can be calculated which leads to the calculation of the
input angles of the motors. Figure 3 shows the setup of the kinematic system and the
nomenclature of the design parameters.

Mathcad was used to calculate the angular position of each motor, g. The first section of
the Mathcad file defines all of these constants. P is defined as the length from the origin of the
robot to the rotational axis of the motor. The variable | defines the length of the driver arm,
while L defines the length of the lower arm assembly. A defines the length from the point of
rotation of the lower arm assembly to the center of the end effector platform. The user inputs the
desired position of the end effector and Mathcad automatically calculates the necessary angular
orientation of each motor.

The calculation is based off of the following equation.
14:B,I|* = 17|
Simply, the magnitude of vector AB squared is equal to the length L squared. This is
common sense but allows for an equation for qgi (where i=1,2,3,4) to be derived from the
definition of a vector.
By — Ay)? + (B, — A)" + (B, — A4,)? = I2.
Equations for Bx, By and Bz are created based on the geometry of the system and the
unknown variable q. The three equations are as follows:
B,; = P x cos(a;) + | * cos(q;) * cos(a;)
B,; = P = sin(a;) + [ = cos(q;) * sin(a;)

B, = 1 sin(q;)
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These equations are substituted back into the original equation and then a solution for q
may be calculated.

There are two possible solutions for each motor. In each section, both are calculated.
One of the positions will cause an inverted positioning of the arms that is not physically possible.
To find the impossible solutions, a simplistic stick model was created in SolidWorks to verify the
results of the calculations and to help visualize the movements of the arms.

Another goal of this project was to create an industrial robot with a workspace with a
diameter of approximately 30 inches and a height of around 20 inches. In order to select the
proper size of each arm of the robot, the maximum extents of each set of lengths had to be
calculated.

The size of the workspace was determined geometrically through the input of the extreme
angles for each arm using the properly scaled stick model. This geometric analysis revealed that
the resulting workspace of the robot as designed meets the criteria laid out in the project proposal
of a diameter of 30 inches and a height of 20 inches. The shape of the workspace was found to
not be a perfect cylinder, but an upward facing parabolic shape. This means that at the work
surface, the diameter of the workspace is about 8 inches, while at the maximum vertical extents it
meets the desired 30 inch diameter.

6.1 Required Torque for 100G Acceleration

To determine the required motor and gearbox, it was needed to calculate the torque
profile of the robot. As the goal of accelerations of 100G would be the most demanding of the
motors as far as the torque required, the analysis performed focused on that scenario. To
simplify the problem, it was decided that the optimal path for the 100G tests would be an

oscillation along the Z-axis. This would allow for all four motors to work together in order to
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attain that maximum speed and acceleration. With this simplification, the motion was analyzed
as a four bar crank-slider mechanism with an offset. From this it is possible to find the torque
profile along the Z-axis. An input of 1 Nm was used to show the correlated output in Newtons.
The Mathcad file used to calculate and plot the torque profile along the Z-axis is provide in
Appendix B. The curve shows the output of force at the end effector along the Z axis. It was
found that at a range of Z=-28..-29, the greatest force output can be achieved. It was concluded

that this location in the workspace would be optimal for achieving maximum acceleration.
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Figure 4 - Torque Profile along the Z-axis
7 System Design and Manufacturing
Once the four-arm design was chosen through prototyping, a detailed design was then

developed using SolidWorks. Several paper design iterations were used which lead to the

conceptualization process using computer software. The main design constraint behind the
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design was to develop a design that could be maintained within the limited budget as well as fit

the strict weight requirements set to meet the performance specifications.

Figure 5 - Initial Arm Design

The initial designs were constructed with the idea that off-the-shelf parts would be easier
to obtain, replace, and ultimately be a cheaper cost alternative to custom manufactured parts. As
seem in Figure 5, the arm design uses a simple rod with caps on the end that are attached to
eyebolts. The idea behind this was that two of these rods can be held together around the drive
arm and platform using springs that would act as a backup safety mechanism should the robot
venture out of its mechanically limited work plane. Such an extreme move would cause the

springs to stretch and allow the platform to fall in order to prevent damage.
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Figure 6 - Initial Connection Design Concept

In Figure 6 - Initial Connection Design Concept the off-the-shelf arms can be seen
connected to the platform. The off-the-shelf concept proved to be generally effective in terms of
cost analysis, however, when it came to material analysis and meeting the 1kg end-effector
weight goal it became nearly impossible to use off the shelf parts. This factor forced a complete
restructuring of the effective design possibilities that could be utilized to create a more robust,

all-inclusive system of affordable and lightweight parts.

20



Figure 7 - Motor Mount Base

Being the first design concept for the base, in which all the motors would mount, it is the
only component that could be designed without worrying about weight. The main design
considerations for the base were that it had to be strong enough to support the Maxon motors and
the torques that would be applied from the weight of the system. This being said the design
concept was simple and utilized four 1”°x8” slabs of aluminum that would be mounted together to
form a rigid frame. Machined into each slab would be slots for the motors to mount into as well
as tapped holes on the ends for each plate to mount to the other. When all was said and done the
final motor mount base would look like Figure 7. This would weigh in at 14.5lbs and be by far

the heftiest and strongest aspect of the entire design.
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Figure 8 - Final Base Assembly (with Motor Supports)

Despite many series and revisions of the base mounting system, the final base design
does not differ much from the initial design. Lengthening the base to meet the workspace
criteria and thinning down/pocketing the base are among a few of the changes that were
undertaken. The new base design allows for the drive arm axes to line up as well as become
adjustable should the work plane need to change. This change was driven by the fact that the
gear boxes had not arrived prior to final design approval, and with inconsistent CAD files from
Maxon Motors, the drive shaft lengths available could not be trusted until the actual gear boxes
arrived. The final base design also utilizes two different mounting points allowing for future
modification of the robot workspace and work cell. This includes mounting the frame through
the middle of the base plates, a 2”x2” square which mates with a piece of aluminum box

extrusion that then attaches to the support frame, and four %2” mounting holes on the ends of each
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base plate to allow for future work to be done on the robot.. The final design also incorporated a
new feature, motor supports. These supports help alleviate stress on the mounting holes at the
front of the base, keeping the motor shafts in line with their holes on the frame. Knowing that
the entire assembly will be reaching close to 100Gs requires that the motors need to be securely

attached to prevent catastrophic failures.

Figure 9 - Driver Arm Assembly

The driver arm was made by using two aluminum caps to sleeve over a 0.5”x 1’ x 0.018”
hollow carbon fiber bar. As seen in Figure 9 the left side of the driver arm houses the connection
to the steel coupler that would be used to connect to the drive shaft of the gearbox. Using carbon
fiber significantly improved the strength of the driver arm while reducing the weight of the drive
arm assembly by 2lbs, in comparison to a design that utilized aluminum that demonstrated one

quarter of the strength.
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Figure 10 - Final Drive Arm Design

The final system however, called for lighter, stronger, smaller drive arms that could be
manufactured with parts already purchased and without the addition of expensive off the shelf
parts, as well as being capable of being machined. Square internal pockets are impossible to
make through the machining processes available at WPI. Carbon fiber is also cheaper and
stronger in round shapes, such as tubes. These factors contributed to a need for a redesign of the
driver arms. The new design as shown in Figure 10 was the solution that was developed. By
reducing the weight by a factor of two-thirds and adding twice the strength, the final drive arm
design proved both easy to manufacture and the lightest design yet adding a big win to the final

weight category of the robot.
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Figure 11 - U-Joint Connection Design

Throughout the design considerations, the lower arms and custom manufactured U-joints
remained relatively the same. The same bearings are used in the final design; the same female
U-joint lengths and even the male U-joint lengths are used in both the prototype design as well as

the final design.

Figure 12 - Final U-joint Assembly
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The only modification came in the center shaft and bearing spacing. Due to the
impossible manufacturability of a two-diameter shaft as small as the one required for the given
design, a new strategy had to be devised. The answer was to use the sub-assemblies’ own
tolerances to secure it together. The bearings, center shaft, and U-joints were all press fit
together which saved time and money compared to the initial design. The “drive shaft” was the
turning point in realizing that every part needed to be manufacturing friendly in order to make

the overall product successful.

Figure 13 - Arm Assembly

Weighing about five pounds, the arm assembly was a work of art and the lightest

assembly of the entire robot, despite being the largest subassembly in the robot.
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Figure 14- Subassemblies during epoxy setting

Assembly of the U-joints, drive shafts and arm assemblies were done in stages, these
stages utilized jigs to ensure that every arm and u-joint assembly was spaced evenly. This was a
crucial factor, as one arm being longer than the other would throw off the entire assembly of the
platform. Due to the fact that carbon fiber is extremely strong when compressed and not
expanded from within, the rods were never press fit onto or into any other part to ensure that they
would not crack. After research and testing, it was determined that JB Weld was the best
solution to bond the carbon fiber to the aluminum components. JB Weld is a two-part epoxy that
has a tensile strength of 27.3MPa and adhesion strength of up to 12MPa. Due to its versatility,

JB Weld was used on all parts where carbon fiber met aluminum.
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Figure 15 - Platform Assembly

The initial platform assembly was not only lightweight, but also had a better visual
appeal than anything on the market today. However, after some serious machine time, coming
back to review the platform had the group instantly realizing that such a picture perfect part was

not a machine friendly part.

Figure 16 - Final Platform Assembly
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The final platform assembly utilized parts that had already been purchased and was
composed of two parts that could be easily machined as well as quickly assembled. The number
of mounting holes on the re-design of the end effector was increased by a factor of four, making

the overall robot more universal with a wider variety of end effector attachments.

Figure 17 - Final Robot Assembly, as built

7.1 Design of Support Table

In order to support the robot as well as provide a workspace for users to perform
their operations, a frame with integrated table was designed and built. Various options were
pursued for the design of the table; in particular, a design utilizing materials from 8020 Inc. was

favored for its ability to be reconfigured for different workspace needs. After a cost/benefit
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analysis, it was determined by the team that similar table designs utilizing much cheaper inch
angle steel would serve a similar purpose while still remaining within the project’s budget.

The functional objectives to the design of the table were that it is able to support
the weight of the robot statically, provide a full enclosure of the robot’s work envelope during
operation for safety, provide minimal dynamic motion during operation of the robot, provide the
ability to securely fasten the table to the ground during operation as well as be capable of being
repositioned through the work of three or four people to fulfill the request of Torbjorn

Bergstrom, the Operations Manager of the Manufacturing Labs.

Figure 18 - Final Support Frame Design
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The design seen in Figure 18 is simple, utilizing three levels, four feet square, at the
ground, three and a half feet, and at seven feet, all welded to the verticals of the table. The top
level supports the weight of the robot, and is braced at the corners with pieces of steel to provide
rigidity to the entire table. The middle level provides a work surface for mounting of
components for project work to be done by students in a laboratory setting, particularly for pick
and place operations. The bottom level is flush with the floor, giving a good location for
securely fastening the table to the ground.

7.2 Electrical System Design

Some of the key aspects of the electrical system design and implementation were
supplying power to the whole system, the wiring of the communications network, and design and
construction of an external interface board. There were a number of concerns that were tackled
during the development of the electrical system, such as ensuring that the communication
protocol could have the speed necessary to control a highly dynamic system. The project
accomplished many goals, these include creating an open-architecture platform that allows the
users to interact with the robot in a number of ways, either through a GUI and jog functions or

through an interface board where the user can input signals and pull out feedback.

7.2.1 Electrical System Requirements

Some of the requirements of the whole system include an open-architecture, movement at
100G, and the ability to be smoothly integrated into the Industrial Robotics curriculum. These
requirements were then analyzed to ensure the electrical system fulfilled these requirements
while still ensuring it helped the system as a whole satisfy these requirements. The first system
requirement was that the robot have an open-architecture, this was done by giving the students

two options on how to interface with the robot. A student can choose to interact with the robot
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through the GUI or though the external interface board. By incorporating the interface board,
users are allowed to get digital feedback from the system as well as input analog and PWM
signals for more hands-on control over motor position.

The second system requirement which was central to the project was designing and
implementing a system which moves at 100G. The electrical component requirement was to set
up a communication network which would allow for information to be sent fast enough to keep
an extremely dynamic system moving synchronously at such a high acceleration. Lastly, an
essential requirement of the system is that it must assimilate into the Industrial Robotics class.
This was done by designing and creating the external interface board. The Industrial Robotics
class utilizes the Fanuc 200iB robotics arm which allows users to add sensors and get signal
feedback by using a National Instruments Data Acquisition Module (NI-DAQ), by creating the
external interface board this feature of the Fanuc robot was emulated making it possible for easy

incorporation into the curriculum.

7.2.2 Electrical System Layout
Within the electrical portion of the project, there were many large accomplishments;
these include the wiring and powering of the whole system as well as the design and creation of

the external interface board. Figure 19 provides a schematic of the whole electrical system.
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Figure 19: Electrical Schematic of Entire System

When wiring the system, sending power to the motors and controllers is the first concern.
This is done by using a 24V power supply connected to a barrier strip, where all four motor
controllers were also connected. By connection the system in this manner, the power supply
could be placed anywhere around the robot’s area and still supply each motor controller with
24V. One issue that arose was how to power the EPOS2 P which would be destroyed if run on
24V. This was solved using a computer power strip, by cutting the end where the cord usually
connects to a computer and soldering a power connector to the cord, a power cord supplying 17V
was able to be used to power the EPOS2 P. The next largest issues were how to wire the
communications cables and how to include the external interface board in the system’s
schematic.

The EPOS2 P and four EPOS2 controllers all communicate through CAN and are

connected in daisy chain fashion. This causes commands to be sent to one controller after the

33



other, nonetheless by using the EPOS2 P coordinated motion was still achieved using this
protocol. The EPOS2 P connects directly to the PC though USB and functions as a master device
while the other controllers function as slaves. After the computer, motor controllers, and motors
were connected and communicating the external interface board had to be integrated into the

schematic.

7.2.3 Embedded Microcontroller Selection

The embedded systems portion of the project included selecting an embedded platform
that was extensible and comprehensive, designing an interface board that would shield
electronics, and developing software libraries that would be used on the embedded platform.

The selection of the embedded platform included reviewing and understanding what was
available as well as taking into consideration the differences of the embedded system vendors.
The Arduino microarchitecture was selected preliminarily because of its open-source architecture
and extensibility. Arduino is an open-source electronics platform that is focused on flexibility
and ease of use. It also has a large community that contributes to both the hardware and software
libraries. The community continually adds and supplements hardware technology and the
associated software to the collection of sensors and displays that are in the market. For instance,
there are GPS, camera, Ethernet, and infrared sensors that can be easily added to the Arduino
based family of boards. Some of the extensions are often housed in daughter boards also referred
to as Arduino Shields.

Reviewing the extensive set of hardware and software libraries that the Arduino
community has developed was only part of the analysis. The capability of the embedded
microarchitecture was also an important factor that was researched. This analysis was primarily

focused on the performance, the size of the data bus, and the availability of peripherals such as
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UARTS and DAC. For instance, the Arduino community is predominately focused on 8-bit
microcontrollers, while other microcontrollers can use 16 or even 32-bit operators. For this
reason it was felt that an Arduino board may not have the performance necessary for the system;
however, finding a community and embedded vendor that could offer the same open architecture
as Arduino was still an important goal.

The 32-bit microcontroller embedded boards are not as common when compared to the 8-
bit microcontroller space, but many vendors have embraced making Arduino compatible boards.
Some of the analysis that was performed during the selection of an embedded board vendor
centered on the following capabilities and functionalities:

e 8 bit versus 32 bit
e Auvailability of hardware boards and shields
e Clock speed
e Number of I/O ports
e Number of timer interrupts
e Number and size of the counters
e Serial communication
e ADCs and DACs
e Software compatibility
e Arduino compatibility
Using the list of capabilities and functionalities, a comparison table was devised on the

boards that available within the budget of the project.
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Table 1 - Comparison of ATMEGA and LeafLabs board

Performance 16 MHz 72 MHz
Core 8-bit 32-bit
RAM 8KB 128KB

Serial Communication USARTS, limited USB

USB and USARTS

Timers 8/16-bit Timers 16-bit Timers
PWM 8-bit PWM 16-bit PWM
ADC 10-bit 12-bit
Digital 1/0 14 9
Analog Input Pins 8 15

After reviewing the capabilities, the Maple LeafLabs board was chosen.

The Maple

board is Arduino compatible, but it relies on the STM 32 family of microcontrollers based on the

32-bit ARM Cortex-M3 architecture rather than 8-bit Atmel AVR chip. The vendor claimed to

be software compatible, but there is always a difference due to the difference in chipsets. The

Maple board was also compatible with the Arduino Shields on the market which was another

benefit since the team was targeting the fabrication of an extensible robotic platform. The

selected Maple LeafLabs board is displayed below.
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Figure 20 - The Maple LeafLabs Board based on ARM Cortex-M3 Architecture

The Maple board would interface with a host PC. This board can interface with a variety
of operating systems such as Windows, Linux and Mac OS X. The lab PC has the Windows 7
64-bit operating system. Software would be compiled on the host PC and loaded onto the Maple
board via a USB connection. A USB-to-mini USB cable is used for host PC to Maple
communications and even power. Maple provides an integrated development environment
(IDE), called the Maple-IDE [11]. This package contains a compiler, upload utility, software
library, text editor, example code, and a serial monitor utility. The bundle has been tested on
Windows XP, Linus Ubuntu 10.04, and Mac OS X. There was additional installation work to
ensure that it would function on the Windows 7 64-bit operating system, which is the currently
supported operating system at Worcester Polytechnic Institute.

The programming language used for the Maple LeafLabs board is Wiring which is the
same language used for the Arduino boards. The syntax is like C/C++; and in fact, Wiring is
simply a wrapper for C++. Unlike C/C++ where every program has a main() function, with
Wiring, setup() and loop() functions are required. The function, setup, is only run once and is

used to initialize variables, configure general purpose 1/0O as in the case of the pin mode
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instruction, set up interrupt handlers, and access libraries. The loop function gets called
repeatedly, thereby allowing the program to respond and react. Projects in Wiring are called
sketches.

One key capability that LeafLabs board, namely the ARM architecture offered is the
ability to read PWM signals and determine the period and duty cycle of the submitted signal.
This functionality is a result of the extensive timer capabilities. The board provides 8 timers
with timer 1 and timer 8 being advanced timers and the others providing general time
functionality. To leverage this capability the team developed a program to configure the board
and calculate the period and duty cycles of submitted signals. The ARM Cortex based
microcontroller that the Maple LeaflLabs board uses is the STM32F103RB microcontroller
developed by STM Electronics. To develop the program, the reference and data sheets were
extensively consulted to ensure that the microcontroller was properly configured

To measure the period and duty cycle of a PWM signal, the timer must be configured as
PWM input mode. This is a special case of the input capture mode. The input capture mode
refers to latching the counter value when a transition is detected in the input. The PWM input
mode will latch both transitions: the one from low to high and the other from high to low. In
order to latch both types of transitions, the timer needs to be an advanced timer capable of
performing this and it needs to have a slave counter as well. Because of these requirements, the
timer that was chosen was timer 1, which offers both capabilities.

The Maple LeafLabs libraries did not specifically support the hardware timer functions
that were needed. What is meant by support refers to the Maple IDE providing functions,
settings and libraries that perform the tasks needed. For instance, they support

OUTPUT_COMPARE but not INPUT_COMPARE. The support library function,
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OUTPUT_COMPARE generates a pulse when a certain value is reached. Even though there
was no configuration or library setting within the Maple IDE, the ARM chip could be
programmed with the necessary settings. This means that bit masking and setting had to be done
directly versus using a canned library to configure the timer. The hardware timer functions were
clearly flagged on the website as being in a state of change and being incomplete.

To configure the Maple LeafLabs board so that microcontroller would be in the PWM
input mode, the following steps were taken to ensure that the period count was in the first capture
register and the counts associated with the duty cycle are placed in the second capture register:

- Select the Timer 1 Input in the Capture/Compare Mode Register linked to the counter of
period

- Establish the polarity for the signal that triggers the capture register associated with the
period count. Polarity for this capture register is rising edge.

- Select the Timer 1 Input in the Capture/Compare Mode Register associated with the
counter of duty cycle

- Establish the polarity for the signal that triggers duty cycle count with the falling edge of
Timer 1 Input

- Select the proper filtered trigger in the Slave Mode Controller Register

- Configure the Slave Mode Controller Register in reset mode

- Enable the capture registers — one for period and another for duty cycle

- Enable an interrupt per capture register
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Figure 21 - Timing Diagram of the PWM Input Mode

The timing diagram depicts how the Timer 1 Input (TI1) is the input and how
Capture/Compare Registers 1 and 2 contains the counts associated with the period and duty
cycle. The counts also rely on the pre-scalar and clock frequency of the board. The diagram also
shows how interrupts are fired with transitions of the timer 1 input.

The above procedure refers to configuring the Maple LeaflLabs board to measure duty
cycle and the period of a PWM signal, the pre-scalar and the timer clock frequency were
configured and overflow was accounted. The chip’s operating clock functions at 72MHz. A pre-
scaled factor can be defined to divide the clock frequency into more desirable operable timer
counter cycles. An overflow refers to where the limit of the counter will reach before
overflowing. An interrupt was also set up in case of an overflow scenario. Overflow is not
expected in this case. The upper limit of 2'° — 1 was set up as the overflow.

To validate the embedded application, a test PWM signal was developed. A test signal,
consisting of a PWM signal having a frequency of 100 Hz and a 50% duty cycle was used to

prove the hardware. A pre-scalar of 288 was used against 72MHz clock, which resulted in a 250
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kHz clock signal. The test signal was generated on Pin 7 and fed to Pin 6 via a jumper cable. Pin
6 is the input associated with the timer 1 input. The software would display the counts associated
with the period and duty cycle using the Serial Monitor application provided by the Maple IDE.
The SerialUSB function was used to pipe the counts out to the Serial Monitor application. The
counts that the application displayed for the given test PWM were 2510 for the period and 1255
for the duty cycle counts. These values correspond to a 100 Hz PWM with 50% duty cycle using

a 250 kHz clock.

7.2.4 Interface Board

The external interface board connects to the computer through USB on the Maple
LeafLabs board. The external interface board was designed as a shield or daughter board for the
Maple board; through this board, users can input PWM signals to control the position of the
motors. After the PWM signal is imputed into the interface board, it is sent to the Maple, and
then sent over USB to the computer, which then sends position information to the motor
controllers based on the input signal. Moreover, the interface board connects to the encoders by
connecting to a ribbon cable which is pressed onto the encoder wire that is attached the encoders.
By pressing the ribbon cable extender onto the encoder cable, encoder feedback can be pulled
out and used as available feedback through the interface board.

Although the external interface board was integrated in to the larger electrical
infrastructure of the system, the board’s design and implementation were also a major

accomplishment of the project.
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Figure 22: External Interface Board Layout

As can be seen in Figure 22, one of the major components of the board is the opto-
couplers used to isolate the signals being inputted and outputted to the system. These allowed for
no electrical connection to be made between the headers available to the user and the wires going
to the embedded board. Using the opto-couplers was one key manner in which the electronic
components were shielded from harmful signals injected into the system. As well, when looking
at the top of the interface board only the back of the Maple LeaflLabs embedded system can be
seen, this is due to how the interface board connects to the Maple board. The interface board has
pins which correspond to certain headers in the Maple board, what is seen in Figure 22 is

actually the Maple fitting perfectly with the external interface board. Next, what can be seen is
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the headers on either side of the board. The board was designed with all the headers available to
the user located towards the outside of the board and all the wires to the embedded board running
up through the middle. This allowed for all the opto-couplers integrated circuits (ICs) to be
oriented in the same direction which is a standard electronics design practice. The right side of
the board is where all the digital I/O is available to the user, while the analog I/O is all located on
the left side of the board. This allowed for easy streamline design of the board, which would
permit for ease-of-use for any user utilizing the external interface board. By completing the
external interface board, a second mode of interaction with the robot was made available to the
users; this is a significant task that needed to be accomplished to allow for easy integration into
the Industrial Robotics class.

Since the robot is intended for classroom use, it is necessary to protect the system from
harmful circuitry that could be connected to the system. To ensure that the custom electronics
created for the robot were project, much research was done to find a method to completely
isolate the signals being input into the system. It was then decided to utilize opto-couplers also
known as opto-isolators. Opto-couplers are used in electronics to isolate circuitry from
potentially harmful outside circuitry. The isolation is accomplished by the use of a light source
and a photoresistor. The voltage applied to one side of the circuit is converted to a beam of light
thereby preventing any high voltages such as voltage spikes from one side of the circuit from
harming the other side of the circuit.

A typical opto-coupler consists of a power source, a LED (light emitting device), a closed
channel, and a device sensitive to light, such as photosensor. Typical examples of photosensors
are photodiodes or phototransistors. There is no electrical connection between the LED and the

photosensor other than light. The input voltage is the opto-coupler’s power source and is utilized
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to generate a beam of light via the LED. This beam travels down the closed channel until it
reaches the photosensor. The photosensor will convert the light back to electricity. This
electricity powers the second side of the circuit.

Opto-couplers can be utilized to isolate analog or digital signals. The problem is that
opto-couplers tend to be non-linear devices so they are better suited for digital signals. Although
they are not as well suited for analog signals, they are still an inexpensive way of isolating
signals. In this case, the key focus is isolating signals such as an analog signal being sent to drive
one of the motors, which students may attempt to inject as well as removing electrical
interferences such as power surges.

In this project, the LTV-847 opto-coupler was selected. It provides four channels per
device meaning it will isolate four different circuitry pairs. It also provides a high degree of
voltage isolation, namely 5,000 Vms. The device also offers a cutoff frequency, f., of 80 kHz
with rise, t;, and fall, t;, times of 4 and 3 ps. These characteristics are associated with an R of
100Q. Ry is the resistor that serves as a pull-up resistor for the output voltage. In practice, there
is a tendency to use a higher value for the pull-up resistor values. After setting up the circuitry
and working with higher pull up resistor values that would still yield a suitable cutoff frequency,
a pull-up resistance of 330Q was selected. Typically, pull-up resistors for transistor circuits tend
to be 1000-5000 Q, but that would result in an inadequate cutoff frequency as denoted by the
frequency response diagram, Figure 23 - Frequency Response. The 330Q provided both an
adequate cutoff frequency and rise and fall times as detailed by Figure 23 - Frequency Response

and Figure 24 - Response Time vs. Load Resistance.
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Figure 24 - Response Time vs. Load Resistance
The LTV 847 datasheets were used in the design of these circuits and were validated
using the test circuits shown in Figure 23.
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Figure 25 - Test Circuits for the Opto-Coupler
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8 Software Architecture

The goal of the project from a computer programming perspective was to create
an open software architecture capable of operating in multiple modes, depending on user
preference. Achieving this goal required the creation of an extensive application programming
interface (API) and touchscreen graphical/natural user interface (GUI or NUI) for the robot,
which would provide the functionality most desired by WPI robotics students and faculty in a
natural and accessible way.

8.1 Computer

The robot control program is stored on and run from a PC, which communicates by USB
with the main EPOS2 P controller. This controller in turn communicates with 4 subordinate
EPOS2 controllers, each of which is in charge of managing the motion of a single motor. A
touchscreen monitor allows users to interact more naturally with the control interface, but a
mouse and keyboard can also be used.
8.2 Modes of Operation

In keeping with the project’s design philosophy of open architecture, multiple ways of
interfacing with the robot are provided for users. In addition to the GUI, the interface board

allows users to communicate directly with the robot using their own PC or controller.

8.2.1 Graphical User Interface

The GUI was developed using NetBeans GUI Builder. The right side of the interface has
information relevant to the current position and orientation of the robot. The left side contains
movement controls; the user can use tabs to switch between jog motion controls and coordinate
input controls. Additionally, the coordinate control tab contains text fields to allow the entry of

an alternate origin, and buttons to allow users to string multiple movement commands together
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into a single program. The interface was developed in parallel with our API, tying new
functionality to its corresponding buttons/menus/etc. as it was created. Both views of the GUI

can be seen below Figure 26 and Figure 27

Figure 26: Jog Motion GUI
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Figure 27 - Coordinate Motion GUI
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8.2.1.1 GUI Design considerations

Members of the WPI Computer Science faculty were asked for advice on how to create
an effective and robust user interface. This feedback was used to generate use cases and class
and state diagrams as helpful planning tools, and the information from the professors stressed the
importance of an iterative design process to ensure we accomplished as many of our goals as
possible as completely as possible.

In an effort to develop an effective set of use cases, we spoke with professors and
students in the WPI1 Robotics Engineering and Mechanical Engineering departments to determine
what functionality they would find most valuable in a parallel kinematic robot. A number of
common requests were identified, from the simple (movement commands, end effector feedback
and control, alternative coordinate systems) to the complex (writing programs; setting/getting
velocity, position and time between movements; writing logic). The list that was created helped
outline specific programming milestones that were most desirable while still being achievable in
the time frame available. The final list of important milestones, ranked in order of importance is:

1. Implementing kinematics equations derived during mechanical system analysis

(including limits of the work area)

2. Jog movement

3. Movement speed regulation (as a percentage of maximum system speed)

4. Movement to specified XYZ coordinates

5. Position and orientation feedback from the end effector

6. Ability to string several sets of movement coordinates into a single program

7. 3D representation of our robot in our GUI

8. Feedback from encoders, including joint angles
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9. Set and get velocity, position and time between movements

10. Ability to write higher level logic for the robot to obey

Additionally, common testing procedures were researched to identify those that would be
most useful in determining how well the goals that were set would be met, and how well the
system performed in a more general sense. The three testing types that were found to be most
useful were scalability testing (testing large or very complex data inputs), soak testing (working
the system for an extended period of time) and stress or load testing (essentially, trying to
“break” the system by issuing multiple simultaneous or conflicting commands). Specific testing

procedures were further outlined for a number of the milestones.

8.2.2 Touch Screen Considerations

Since the API was developed primarily in Java, Swing was used to develop the GUI.
Swing has no “touchscreen library,” per se, so a number of freely available mouse gesture
libraries were researched, mainly iGesture and Smardec’s Mouse Gestures. Since, on the
touchscreen purchased for the project, a “touch” is equivalent to a mouse click, these libraries
would allow us to incorporate more complex motions into the GUI for more advanced control of
the system.

The major consideration that differentiates touchscreen interfaces from traditional mouse
and keyboard GUIs is that the former requires larger controls and greater tolerances. Mice are far
more precise pointing devices than fingers, and any touchscreen must take this into account. The
GUI developed for this project uses oversized buttons and text fields to account for this

difference.
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8.2.3 External control

Other than the GUI, the user can control the robot’s motion and position using the
external interface board. The board has the capabilities to take in PWM signals, send them to the
computer, and move the motors to a desired position based on the input PWN signal. To do this,
code which accepted a PWM signal input and read the signal’s period and duty cycle had to be
written; the period and duty cycle of the signal correspond to a certain motor position. Once the
Maple LeaflLabs board reads the period and duty cycle, it sends this information to the PC. The
robot has an allowable workspace, which translates to a collection of allowable end effector
positions, using inverse kinematics the corresponding motor positions are found for all accepted
end effector positions. The motor position calculated from the input PWM signal is then
compared with the collection of permissible motor positions within the workspace. If the desired
motor position is within the allowable workspace the motors move to the new positions;
however, if the desired motor position is not within the workspace the PC does not allow the
motors to move to the new position.
8.3 Open-Architecture API

The first step in developing the code to run our robot was programming on our
prototypes. This was very simple, proof-of-concept programming in Java, consisting of a simple
sequence of move commands. While very basic, it provided valuable insight for future work,
most usefully in the intricacies of getting multiple motors to work cooperatively. This was part
of the reason the four-motor design was selected over the three-motor design— it was felt that it
would be easier to program two sets of opposing motors working more or less in tandem than

three completely independent motors.
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After the prototyping work had given a rudimentary idea of the size and nature of the
goal, extensive research of API, GUI and software design best practices as they applied to the
project. It was decided to work primarily in Java and C, as these were the languages that
provided the most functionality for both the GUI and the motor controllers

The actual writing of code for the PKM was a complicated task. The program needed to
perform complex inverse kinematic calculations to determine motor position for each point the
robot moved to. Not only that, all four motors had to perform their motion commands
simultaneously to ensure smooth movement and prevent damage to the system.

A basic class diagram of the program can be seen in Figure 28. All of the kinematics
calculations are done in the abstract AbsKinematics class with the calculateAngles method;
provided a desired set of (X, y, z) coordinates, it calculates the angle below horizontal that each
upper arm needs to be set at to place the end effector at those coordinates. The subclass
RealRobot can then take the angular value produced and convert it into a position value that the
motor encoders can interpret. The initial plan was to create a VirtualRobot class that would also
extend the AbsKinematics class to create a virtual representation of the robot in our GUI.
Unfortunately, due to time constraints and general lack of experience working in 3-D modeling

languages, this goal was forced to be abandoned for this iteration of the project.

~calculateAngles( )

|

Controller RealRobot VirtualRobot
+setingles()

Figure 28 - Class Diagram
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One problem that was encountered after the controllers had been selected was that the
EPOS controllers are not capable of handling commands in Java, only C++ (for which Maxon
has created an extensive command library). As such, intermediate, “wrapper” classes had to be
created in the Java framework, which would allow for C++ commands to be called.

The synchronization aspect of the robot’s motion was the most difficult functionality to
implement. Extensive work was done with EPOS Studio, proprietary software provided by
Maxon for programming the EPOS controllers in order to understand the EPOS communication
protocols and how to best approach synchronization. A program was adapted from a sample

program provided by Maxon, to automatically coordinate motion between the motors.
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9 Project Summary

The following section provide the accomplishments of the project and other
considerations including economic, health/safety, and reliability along with social impacts and
use of standards as observed in the design and realization of the system.

9.1 Project Accomplishments

The mechanical portions of the robot have been completely manufactured and assembled.
A steel frame was welded together, but will not serve as an acceptable long-term mounting
platform for the robot. The steel used to construct the frame is too thin to properly support the
robot during operation without significant vibration. There is some backlash concern in the
motors, which allows the end effector to wiggle. Some method of biasing the gearboxes to one
side of the gear teeth, possibly with springs, would need to be implemented to solve this
problem. The project’s limited budget did not allow for re-machining of parts, so any

imperfections that occurred during machining simply became a part of the final project.
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Figure 29 - Final Completed Assembly

The robot is currently operated using a program written with Maxon’s proprietary EPOS
Studio software. While an APl and GUI have been created for the robot, they did not see use
during the course of the project. The GUI needs to be made to communicate with the API, and

C++ wrapper classes need to be written to allow the API to control the robot.
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The electrical system has had a majority of the external interface board completed, and
only requires several more connections to be made between the encoder headers and the opto-
isolators as well as between the opto-isolators and the microcontroller. All of the wiring on the
robot itself has been essentially completed, and only requires some neatening up into proper
wiring harnesses.

9.2 Economic Considerations

One of the biggest challenges when implementing this system was the economic impact
of both building it and keeping it in operation. Since this robot will be used as a learning tool, it
was necessary to keep costs to a minimum while still create a robust, effective system. For this
reason many of the parts were custom machined out of stock or scrap metal. The most expensive
components are the motors and motor controllers which were donated. Although the robot was
successfully built for approximately $1400, the cost of operation and maintenance is still a
significant concern. One of the largest costs that still must be incurred is the cost of making it
comply with OSHA standards. Lastly, the costs of operation and maintenance will be costs that
the will be incurred by the robot over time for the entire time it is in use, these costs include
electrical costs to power and use the robot as well as repair costs for any damaged components.
Although this robot poses economic concerns, it has proven to be a lower cost solution compared
to the cost of purchasing a proprietary unit.

9.3 Health/Safety Considerations

When building an industrial robot the health and safety conditions are of principal
concern. The first issue that must be tackled is making the system compliant with OSHA
standards; these include adding emergency stops and light shields to the robot. Some of the

safety concerns presented by the system are the pinch points in all the universal joints as well as
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the high operational speed of the robot. Also, if the robot moved outside of the work envelope it
could cause damage to its area or injury to anyone who is operating it. Although this robot will
be an excellent addition to the Industrial Robotics lab, it must be made safe for students to use
before it can be integrated into the curriculum.
9.4 Reliability Considerations

There are several important concerns to consider regarding the reliability of the system.
While the system is designed to be mechanically very robust, it is intended to be used in a
classroom/laboratory setting. This setting exposes it to physical danger from inexperienced or
undertrained operators. This can result in breakages of the carbon fiber arms, the end effector
platform or the motors and gearboxes. The electrical system can suffer from issues due to the
use of brushed motors to power the robots motion. These brushes suffer from unavoidable wear
as the motors are used. The motor controllers are also limited in the amount of power that they
can provide to the motors, which provides an upper bound to the speed and acceleration of the
end effector.
9.5 Social Impact

The aesthetic of the work performed was very important, especially with regard to the
user interface components. It is important to consider the ways in which the user might want to
interact with the system, and attempt to provide a framework which would allow them the
freedom to utilize the PKM in whatever manner they need. With this in mind, the Computer
Science Faculty at Worcester Polytechnic Institute were consulted for what they felt made an
effective user interface, and their recommendations were implemented into the design of the user

interface.
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9.6 Use of Standards

During the construction of the robot, the electrical system was the location where the
most commercial off the shelf components were used. The EPOS2 and EPOS2 P are available
for sale from Maxon to provide power to the motors and collect feedback from the attached
sensors. The Maxon RE-Max motors and accessories are also available as off the shelf
components, including the attached gearboxes and encoders for feedback to the control system.
All of the individual components of the opto-isolator board, including the Maple microcontroller
are also available off the shelf, and were purchased from a variety of vendors, including Digi-

Key and Radio Shack for this project.
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10 Future Work

The following sections provide areas of potential system enhancements as consideration
for future work.

10.1 Mechanical Recommendations

While the mechanical system is ready for operation, there are several improvements that
can be implemented to increase the capability of the system. In particular, a new frame would
contribute to the overall stability of the system. Purchasing larger extrusions of steel to ballast
the system would be beneficial, as it would prevent the robot from vibrating the table at the
resonance frequency of the supports. Further modifications also should be included to the table,
including integration of a light curtain system to remove the possibility of unintended activation
while users are in danger.

A further improvement to the mechanical system would be the placement of the robot in
a semi-permanent location, which would allow it to be solidly attached to the floor. This system
should also be easy to fasten and unfasten to allow for reconfigurations of the manufacturing
laboratories, especially during machine tool exchanges with Haas.

Further machine guarding can be implemented using light curtain systems available in the
manufacturing laboratories. These will be an important addition to the mechanism, especially
while the robot is being utilized by students for a variety of projects in the Industrial Robotics
curriculum.,

10.2 Electrical Recommendations

Throughout this project significant progress was made in the design and implementation

of the electrical infrastructure. The completed electrical system included integration of the power

electronics, such as power supplies, motors, and controllers, as well as embedded electronics,
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such as the Maple LeafLabs board and the opto-coupler integrated circuits. Although this portion
was successful in its completion there are a number of recommendations that can be made to
improve the system.

One of the issues encountered throughout the electronics design was the non-linearity of
the opto-couplers. The opto-couplers currently on the board work perfectly for the digital input
and output isolation; however, when implementing the analog input ports using the opto-couplers
on the board became more challenging. Thus one of the recommendations suggested is the use of
linear opto-couplers when isolating the analog signals.

The second most important recommendation is to create a printed circuit board for the
electronics interface board. This would make the system more robust, as well it would allow for
much easier replacement and transfer of parts if issues arise from a user frying or damaging the
board. Lastly, due to the issues that arose during design and implementation of the electronics a
large amount of testing was not done. Some testing was done on the Maple LeafLabs board to
ensure it could take in a PWM and read its period and duty cycle; nevertheless, it is testing of the
whole implemented board was not done. Any testing would increase the performance of the
system as well as ensuring any difficulties found could be corrected and improved.

10.3 Software Recommendations

The API and GUI currently exist as separate Java archive files; these need to be
integrated with each other if further work is going to be performed on this project. A C++
framework to communicate with the controllers must be developed as well, complete with
wrapper classes in the current API to allow the Java code to properly control the robot. This
code will then need to be rigorously tested with the robot to ensure safe and proper performance.

This testing will need to ensure that the robot cannot move outside of its set workspace, and
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ensure that position values sent to the motors are accurate to prevent damage to robot
components. Additionally, it may be necessary to tweak the resolution of motion commands to
ensure that the robot moves at appropriate speeds and along the smoothest possible path.

As of the completion of this project, the API is capable of both jog and coordinate motion
commands, speed control as a percentage of max system speed, and origin offset. This is
obviously a much shorter list than the full set of use cases generated early in the project. Further
study of student and classroom requirements could be useful in refining, clarifying and
expanding this set of use cases, and future programming work should be geared towards adding

this missing functionality.
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11 Conclusions

The goal of this project was to develop an open-architecture, reliable parallel kinematic
manipulator for use in the Industrial Robotics course at WPI. The result of this project has been
the creation of a capable platform that is expandable, reliable and open source for use in
Industrial Robotics curriculum at Worcester Polytechnic Institute. As an operating system, this
robot has several economic considerations, including the cost of replacement parts, such as
motors, controllers and carbon fiber. This robot, being used as a teaching tool, is subjected to the
potential for accidents that could result in breaking one or more delicate components. These
components can be very valuable both in monetary cost and in the time required to manufacture
replacements.

One of the most important considerations of the completed robot is the potential for
operator injury during use of the robot. There are many potential pinch points in the mechanism,
and while these are rather easy to see, the potential for injuries always exists and this is a danger.
Another consideration is that during high speed operations, any small flaws in the composite
materials run a great risk of becoming catastrophic failures.

The parallel kinematic manipulator is designed to be reliable in its positioning of the end
effector. The parallel kinematic chains that support the manipulator provide a high amount of
stiffness to the entire system, and this interdependence reduces the backlash present in the
motors and gearboxes. One important factor regarding the reliability of the completed system is
the potential for failures in either the electric or computer systems. As it has been pointed out
earlier in this report, extensive testing is required before this system can be proven to be reliable.

Extensive kinematic and mathematical analysis of three- and four-arm parallel robots

granted an understanding of the pros and cons of each, and of the effect on system performance
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of the manipulation of various robot parameters and relative lengths. Once the four-arm design
was decided upon, and the ideal robot configuration to achieve project goals was determined,
SolidWorks models were created. These models provided a blueprint for the machining of parts
for mechanical assembly, almost entirely from carbon fiber and aluminum to minimize weight.
Motors and controllers, generously provided at a very steep discount by Maxon Motors, were the
final components necessary to complete the assembly. An electrical infrastructure necessary to
power the system, carry out the communication between the controllers, and an external interface
board which allows students more low level control of the robot was realized. An application
programming interface (API) and graphical user interface (GUI) which are run from a dedicated
PC with touchscreen monitor were developed to allow control of the robot.

At the conclusion of the project, all mechanical components were completely
manufactured, assembled, and integrated with electronic components. The electrical system was
created that successfully powers the system and allows users to pull out digital feedback and
input PWM signals for controlling the motors. The programming architecture was not fully
implemented, but it should be possible for the current API to control the robot with some
additional coding work to allow proper communication between the PC and the robot.

The conclusion of this project was successful, although there are a number of
improvements that need to be made for it to be ready to use in a classroom setting. This project
will be a great addition to the Industrial Robotics class and will be extremely helpful to students
learning inverse kinematics for the very first time. The robot was built for a fraction of the cost
of a proprietary unit and had many of the features stated by Mechanical Engineering and

Robotics Engineering students as most important in the development of a new robot for the class.
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These were two of the essential design requirements of the system and the robot far surpassed

those basic requirements.
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Appendix A — Weight Analysis of Subassemblies

Mass Praperties = 2|
P

[ pant.. |[ copy |[ close [ options... |[ Recaluate |

Output coordinate system: -~ default - -
Paralleligram Arm Assembly.SLDASM

Selected items:

Indude hidden bodies/components
Show output coordinate system in corner of window
[7] Assigned mass properties
Mass properties of Paralleligram Arm Assembly ( Assembly Configuration - Default ) -
Output coordinate System: — default —
Mass = 0.31 pounds
Volume = 3.67 cubic inches
Surface area = 135,53 square inches
Center of mass: (inches )
X =-0.04

¥=-1143
Z=-055

Principal axes of inertia and principal moments of inertia: { pounds * square inches )
Taken at the center of mass.

Moments of inertia: { pounds * square inches )
Taken at the center of mass and aligned with the output coordinate system.

Lxx = 42,34 Lxz = -0.00
Lyx = 0.01 Lyz =0.00
Lzx = -0.00 Lzz = 43.58
Moments of inertia: { pounds * square inches )
Taken at the output coordinate system.
Ixx =83.01 Ixy =0.16 Ixz =0.01
Iyx =0.16 Iyy = 1.36 Iyz = 1.96
Iz =0.01 Izy = 1.96 Izz =84.15
4 »

m Mass Properties ‘ = 2|

[ Pt |[ copy ][ cose |[ options.. || Recalaiate |

Output coordinate system: - default — -
drive arm female shaft. SLDASM

Selected items:

[#]Include hidden bodies/components

Show output coordinate system in corner of window

[7] Assigned mass properties

Mass properties of drive arm female shaft ( Assembly Configuration - Default ) -
Output coordinate System: - default —

Mass = 0.11 pounds

Volume = 1.28 cubic inches

Surface area = 23.35 square inches

.05

Principal axes of inertia and prindpal moments of inertia: ( pounds * square inches )
Taken at the center of mass.

Moments of inertia: ( pounds *square inches )
Taken at the center of mass and aligned with the output coordinate system.

Lxx =0.01 Lxy =0.00 Lxz = -0.00
Lyx =0.00 Lyy =0.32 Lyz =0.00
Lzx = -0.00 Lzy =0.00 Lzz =0.32

Moments of inertia: { pounds * square inches )
Taken at the output coordinate system.

Ix =0.01 Ixy =-0.00 Ixz =-0.00
Iyx =-0.00 Iyy =0.33 Iyz =0.00
Izx = -0.00 Izy = 0.00 Izz =0.32
4 3
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'm Mass Properties =) = ‘

l Print... ” Copy ” Close ” Options... ” Recalculate ]

Output coordinate system: - default -

driver arm.SLDASM
Selected items:

Incude hidden bodies /components

Show output coordinate system in corner of window

[ Assigned mass properties

Mass properties of driver arm { Assembly Configuration - Default ) -
Output coordinate System: — default -

Mass = 1.350 pounds

Volume = 14.937 cubic inches

Surface area = 184.091 square inches

Center of mass: (inches )

Principal axes of inertia and prindpal mements of inertia: ( pounds * square inches )
Taken at the center of mass.

Ix = (1000, -0.000, 0.027) Px =0.893
Iy = (0.000, 1.000, 0.001) Py = 38.963
Iz = (0.027, -0.001, 1.000) Pz = 39,355

Moments of inertia: { pounds * square inches )
Taken at the center of mass and aligned with the output coordinate system.
Lxx = 0.920 Lxy = -0.002 026
Lyx = -0.002 Lyy = 38.963
Lzx = -1.026 Lzy = 0.000

Moments of inertia: { pounds = square inches )
Taken at the output coordinate system.

&5 Mass Propertics = % |

[ Print... H Copy H Close H Options. .. ][ Recalculate ]

Output coordinate system: - default - -
Motor mount base.SLDASM

Selected items:

Indude hidden bodies/components

Show output coordinate system in corner of window

D Assigned mass properties

Mass properties of Motor mount base ( Assembly Configuration - Default ) -
Output coordinate System: — default —

Mass = 14,25 pounds

Volume = 146. 13 cubic inches

Surface area = 472.34 square inches

Center of mass: (inches )

X=041
Y =047
Z=-0.85

Principal axes of inertia and principal moments of inertia: { pounds * square inches )
Taken at the center of mass.

Ix = (0.00, 0.00, 1.00)  Px = 145.02

Ty = (1.00,0.00,0.00) Py = 145.02

Iz = (0.00, .00, 0.00) Pz = 226.64

Moments of inertia: { pounds * square inches )
Taken at the center of mass and aligned with the output coordinate system.

Lxx = 145,02 Lxy =0.00 Lxz = 0.00
Lyx =0.00 Lyy = 226.64 Lyz =0.00
Lzx = 0.00 Lzy = 0.00 Lzz = 145.02

Moments of inertia: { pounds * square inches )
Taken at the output coordinate system.

Dox = 158.41 Iny = 2.77
Iyx =2.77 Iyy = 239.23
Izx = -4.95 Izy =-5.70
Fl 3
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Mass Praperties =
p

13

(Cpmte ][ coow ][ cose ][ Optom | [ Recaare |

Output coordinate system: - default — -

PlatformAssembly.SLDASM
Selected items:

Include hidden bodies/components
Show output coordinate system in corner of window
[7] Assigned mass properties
Mass properties of PlatformAssembly { Assembly Configuration - Default )
Output coordinate System: - default —
Mass = 0.55730 pounds
Volume = 5.71330 cubic inches
Surface area = 71.93351 square inches
Center of mass: (inches )
X =-0.01298
¥ =0.05508

Z =-0.02927

Principal axes of inertia and prindpal moments of inertia: { pounds * square inches )
Taken at the center of mass.

Ix = (1.00000, 0.00000, 0.00000) Px = 2,10797
Iy = (0.00000, 0.00000, -1.00000) Py = 210738
Iz = (0,00000, 1.00000, 0.00000) Pz = 415171

Moments of inertia: ( pounds * square inches )
Taken at the center of mass and aligned with the output coordinate system.

Liox = 2.10797 Lxy = 0.00000
Lyx = 0.00000 Lyy = 4.15171
Lzx =0.00000 Lzy =0.00000

Maments of inertia: { pounds * square inches )
Taken at the output coordinate system.

Dox = 2.11014 Icy = -0.00040 Ixz = 0.00021
Iyx =-0.00040 Iyy = 4.15228 Iyz = -0.00090
Izx = 0.00021 Izy = -0.00090 Izz = 2.10976
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Appendix B — Four-arm Inverse Kinematics

ector-Based imwerse kinematic analysis of the 4 amn Parallel Kinematic Manipul ator

Given Constants

desired position of the End Effector

Distance from center of End effector

to the connection A,

Distance of Maotor from origin

Length of upper am
Lemgth of lower am

angular position of motor 1-4

position af A

Paosition of A,

Angular position of motor 1
Position of B4

a1
y=0
Zim—5
A1
P=2
E—!
ki
1:—1]

=7

2
3=

G J—
477

A=zt A
A=Y
Ag1=2
Axymx

_ﬂqrzs-]r+ﬂ

Position of Az

Position of Ay

Aﬁ:-z

Ag-x-A
Az =y
Ag-z
Agy-x
Amy-A
Agy-z

Bofay) = (Pcos( ) + Leos(ay)cos( 4))
Byy(ay) = Psin( 1) + beos(ay)-smn( )

Bzﬂ:ql}:' l-sin[q]}
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Given

(Baafa)? - *"‘xl)1 + (Bpfar)- J"rl}l + (Bafar - “"ﬂ}l e
Find(q; ) -
Angular Posifion of motor 2
Position of B Bry(az) = (Bcos 2) + Leodap)cos{ 2))
Byp(az) == Psin{ 3] + beos{ap) sinf o)
Ba(a) = Lsin{aa)
(Bralen~ ) + (Bl - 22) + (B~ ) =1
Find(gp) - »
Angular Posifion of motor 3
Position of B3 Bys(ag) = (Bcos 3) + Leoqag)eo 3))
Bys(as) = Psin 3]+ Leos{az) s 3)
Bza(as) = Lsinlas)
(B~ As2) (s~ Ays) = (Bl - ) =5°
Fiﬂ{‘l;]l -1
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Angular Posifion of motor 4

Posiion o 8, Belas) - (P 4]+ o) )
Bfas) - P )+ o)
Bpalag) = Lsinfay)
(e~ ne) + (Bt~ ) + (Baslaa - ) -1
Find(qy) -1
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Appendix C — Embedded Application Code

/*

* This code is based on publicly available code available at the following sources:
* http://pastebin.com/NQtbVCFh

* http://forums.leaflabs.com/topic.php?id=1038

*

* The above sources provided period measurement guidance for generic timer

* The following uses advanced timer capabilities such as timer with slave and PWM input mode to
measure period and duty cycle

*/

#include <timer.h>

/l'initialize global variables
int periodvalue = 0;

int dutycyclevalue = 0;

int count = 0;

int overflow_flag = 0O;

HardwareTimer timerl = HardwareTimer(1);

/Iquick function to return if there's anyone on the other end of the serialusb link yet.
boolean isConnected(){
return (SerialUSB.isConnected() && (SerialUSB.getDTR() || SerialUSB.getRTS()));

}

void setup()

SerialUSB.begin();
while(lisConnected()); //wait till console attaches.
SerialUSB.printin("Hello!);

/ISetup Timerl Channel 1 (pin 6) as an input
pinMode(6, INPUT);

/IConfigure pin 7 as an output (L00Hz 50% duty cycle will be generated and outputted pin 7. //A jumper
from pin 7 to pin 6 will be applied.
pinMode(7, OUTPUT);

/I set up advanced timer capabilities
setup_timer();

}

void __measurePulse_irq()

{

/[For some reason, the interrupt is triggered as soon as

/lthe device is turned on. This gets around that bug.

/I came with sample code - probably used because pulse may be in unknown state
if(count==0)
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return;
else {

if(~overflow_flag) {

periodvalue = TIMER1_BASE->CCR1;
/Iread the captured value - period defined from pulse going up to next cycle where pulse goes //high.
CCR1 contains period count

}

else {
periodvalue = 0;
overflow_flag = 0;

}

timerl.setCount(0); //Zero timer

}
}

void __measureDutyCycle_irq()

{

/IFor some reason, the interrupt is triggered as soon as
/Ithe device is turned on. This gets around that bug.
if(count==0)

return;
else {

if(~overflow_flag) {
dutycyclevalue = TIMER1_BASE->CCR2; //read the captured value — dutycycle count defined from
pulse going up to pulse going down. CCR2 contains duty cycle count

}

else {
dutycyclevalue = 0;
overflow_flag = 0;

}

}
}

/loverflow irg accounts for when the counter overflows. Overflow is defined in this case as //65535 (2716-
1). Should not be getting overflow.
void handle_overflow() {

overflow_flag = 1;

}

void loop() {
/[Display the counter values (period and duty cycle) very 500 mS

if( count == 100 ) {
/ldelay(500);
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SerialUSB.print("Period: ");
SerialUSB.printin(periodvalue);
SerialUSB.print("Duty Cycle: ");
SerialUSB.printIn(dutycyclevalue); //value = 0;
count = 0;

/[Pulse pin 7 at a rate of 100Hz @ 50% DC - this is the PWM signal with 100Hz and 50% duty //cycle.
digitalWrite(7, HIGH);

delay(5);

digitalWrite(7, LOW);

delay(5);

count++;

/[Halt processor and flash LED - used for debugging - code that calls this function is currently //not used -
can be removed.
void HaltAll(void) {

/ITimerl.pause();
timerl.pause();
pinMode(BOARD_LED_PIN, OUTPUT);

while(1) {

toggleLED();
delay(1000);

/I configure timerl which is an advanced timer with a slave to measure period and duty cycle.
void setup_timer(void) {

/[Create a pointer to the timer (why?)
timer_dev *t = TIMERZ,;

/nitialize timer
timerl.pause();

/*

* A prescaler of 288 means that at 72MHz, | get the following:
* 100 Hz = 2510

*10 Hz = 25084

*/

timerl.setPrescaleFactor(288);

timerl.setOverflow(65535);
timerl.setCount(0);
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/INew code to set overflow timer

timerl.setMode(3, TIMER_OUTPUT_COMPARE); //Set this channel to compare
timerl.setCompare(3, 65534); //Set the compare for the channel to the overflow value
timerl.attachinterrupt(3, handle_overflow); //Assign the interrupt handler

timerl.refresh();

/ICreate a pointer to the timer registers (why?)
timer_reg_map r = t->regs;

/[capture compare regs TIMx_CCRXx used to hold val after a transition on corresponding ICx

/lwhen cap occurs, flag CCXIF (TIMx_SR register) is set,
/land interrupt, or dma req can be sent if they are enabled.

/lif cap occurs while flag is already high CCxOF (overcapture) flag is set..

/ICCIX can be cleared by writing 0, or by reading the capped data from TIMx_CCRXx
/ICCXOF is cleared by writing O to it.

/ICapture/Compare 1 Selection

/I set CC1S bits to 01 in the capture compare mode register.

/I 01 selects TI1 as the input to use. (page 336 stm32 reference)

/I (assuming here that TI1 is D6, according to maple master pin map)
/I CC1S bits are bits 0,1

bitSet(r.adv->CCMR1, 0);

bitClear(r.adv->CCMR1, 1);

/lInput Capture 1 Filter.

/I need to set IC1F bits according to a table saying how long

/I we should wait for a signal to be 'stable’ to validate a transition
/I on the input.

/I (page 336 stm32 reference)

/[ |C1F bits are bits 7,6,5,4

bitClear(r.adv->CCMRL1, 7);

bitClear(r.adv->CCMR1, 6);

bitSet(r.adv->CCMR1, 5);

bitSet(r.adv->CCMR1, 4);

/[sort out the input capture prescaler..

//00 no prescaler... capture is done as soon as edge is detected
bitClear(r.adv->CCMR1, 3);

bitClear(r.adv->CCMRL1, 2);

/Iselect the edge for the transition on TI1 channel using CC1P in CCER
/ICC1P is bit 1 of CCER (page 339)

// 0 =rising

/I 1 = falling

bitClear(r.adv->CCER,1);

/ICapture/Compare 1 Selection of down part of the pulse on TI1

/[ set CC2S bits to 10 in the capture compare mode register.
/I 01 selects TI1 as the input to use. (page 336 stm32 reference)
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/I (assuming here that TI1 is D6, according to maple master pin map)
/ICC2S bits are bits 8,9

bitSet(r.adv->CCMR1, 9);

bitClear(r.adv->CCMR1, 8);

/Iselect the edge for the transition on TI1 channel using CC2P in CCER
/ICC2P is bit 5 of CCER (page 339)

/I 0 = active high

/I 1 = active low

bitSet(r.adv->CCER,5);

/Iselect filtered trigger option: TS bits are set 101 in SMCR
/Iselects the trigger input to be used to synchronize counter
/fin this case a filtered TI1 (page 328)
bitSet(r.adv->SMCR,6);

bitClear(r.adv->SMCR,5);

bitSet(r.adv->SMCR,4);

/Iselect slave mode selection: SMS bits are set 100 in SMCR
/lconfigure slave mode in reset mode (page 329)
bitSet(r.adv->SMCR, 2);

bitClear(r.adv->SMCR,1);

bitClear(r.adv->SMCR,0);

/Iset the CCL1E bit to enable capture from the counter.
/ICCEL1 is bit 0 of CCER (page 339)

/[Enable capture

bitSet(r.adv->CCER,0);

/Iset the CC2E bit to enable capture from the counter.
/ICCEZ2 is bit 4 of CCER (page 339)
bitSet(r.adv->CCER,4);

/lattach interrupts for when pulse goes high for period measurement and pulse goes low for //duty cycle
measurement

timerl.attachinterrupt(1, __measurePulse_irq);

timerl.attachinterrupt(2, _ measureDutyCycle_irq);

/ltimer_resume(TIMERA4);
timerl.resume();

75



Appendix D — Instruction on How to Install Maple IDE

The following instructions were used to install the Maple IDE. First, extract all the files
from zip file that was downloaded. Regardless of the OS and its edition, drivers needed to be
downloaded and installed prior to using the IDE.

Here is a list of actions that were performed to ensure the proper installation of the IDE:

- Install Serial Drivers

- Install (Device Firmware Upgrade) DFU Drivers

- Compile the sample blink application

- Place in the board in boot load operations mode

- Upload the blink application

- Verify the board LED is blinking to validate blink application
- Reset board

- Compile the HelloWorld application

- Select Serial Port from Tools menu

- Place in the board in boot load operations mode

- Upload the HelloWorld application

- Open SerialMonitor application from Tools menu

- Verify that “Hello World” phrase 1s displayed on the Serial Monitor application

Although the instructions on the Maple site list the installation of the DFU drivers before
the serial drivers, it was noticed that doing so impacted the serial driver functionalities and
installation, especially when installing the IDE on a 64-bit Windows OS. The site also mentions
that the OS will prompt for the drivers. That was not the case, especially with Windows 7. To

solve this problem, the drivers were manually installed and this issue was reported to the
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community forum. Although the community simply lists installing the DFU drivers and the
serial drivers and trying the blink applications, it was decided to do a more thorough test of the
IDE installation.

To install the serial drivers, plug the Maple board to the host PC, and go to the “Device
Manager” that is located in the “Control Panel”. The board may appear under “Other Devices”
or “Ports (COM & LPT)”. Highlight the board name and select “Update Driver Software” from
the Action menu. Browse for the serial drivers that were part of the unzipped bundle. The serial
drivers should be located in /drivers/MapleDrv/serial. There may be a prompt indicating the
driver is not signed. The installation of the unsigned driver should be done regardless of the
prompt.

There are DFU drivers in the /drivers/MapleDrv/dfu directory, but they are suitable for
Windows XP 32-bit and not for Windows 7 64-bit. The proper DFU drivers can be obtained

from http://sourceforge.net/projects/libush-win32/files/.  The libUSB bundle needs to be

extracted. The Maple board needs to be connected to the host PC, and the “Device Manager” in
the “Control Panel” needs to be opened. The Maple board should be put into the continuous
Boot loader mode by pressing the “Reset” button until the LED blinks fast and then the blinking
slows down. The “Reset” button needs to be pressed again and the button “BUT” should be hit
and held until the blinking slows again. The “Device Manager” will display a USB device with a
reference to Maple as broken. This should not be confused with the COM device. There is a
wizard in the /bin/x86 bundle libUSB labeled in-wizard.exe. This wizard application should be
executed and the dialogs should be reviewed. The team discovered that the IDE looks for DFU
at 0x0003 but the wizard tends to use 0x0004 for an ID. This ID for the driver needs to be

changed to 0x0003 so that it will work with the IDE. A file with the file type of .inf is generated
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and the driver can now be installed by going to the computer’s “Device Manager” and selecting
“Update Driver Software” menu option. If the device does not appear, a device can be added
and the newly created .inf file is supplied. There may be a prompt validating if the user wishes
to install an unsigned driver; regardless of the prompt the driver should be installed.

Once the drivers have been installed, the test applications such as blink and HelloWorld
can be compiled and uploaded. There are times that the uploaded application was so time-
consuming that the “Reset” button needs to be pressed more than once or the board needs to be

put in boot load mode.
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