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Abstract 

Composite building materials, such as Fiber Reinforced Polymers (FRP) are widely used in the exterior 

cladding systems of modern buildings. Its characteristic of light-weight, fast, and easily customizable 

design has appealed to both architects and engineers. However, FRP's classification as a combustible 

material presents concerns with respect to external fire spread. Combustible exterior cladding assemblies 

are required to pass the NFPA 285 multi-story building test. The full-scale NFPA 285 test is expensive to 

run, and it is challenging to repeatedly test the exterior cladding specimen when considering potential 

alterations to the assembly. This project focuses on utilizing a cost-effective intermediate-scale screening 

rig in the WPI Fire Laboratory to provide results, which are indicative of the full-scale NFPA 285 test. An 

instrumented assembly specimen is tested in the intermediate-scale test, and results are compared to 

previous tests, and the NFPA 285 standardized test. 
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design of our practice wall platform. The supplemental information includes calculation for wall design, 

calibration process and results, and relevant in-depth information are included in the appendix. 

Table of Contents 

Abstract ............................................................................................................... 2  

Acknowledgements ................................................................................................ 2  

MQP Report Organization ....................................................................................... 2  

Table of Contents  .................................................................................................. 3  

Table of figures:  .................................................................................................... 5  

Table of tables ...................................................................................................... 7  

Authorship ........................................................................................................... 8  

Introduction ......................................................................................................... 9  

Background ........................................................................................................... 9  

Exterior Cladding – FRP .......................................................................................................................... 9 

Exterior Wall.......................................................................................................................................... 9 

Fiber Reinforced Polymer ................................................................................................................... 10 

International Building Code ................................................................................................................ 12 

NFPA 285 ........................................................................................................................................... 15 

Intermediate Scale Rig ......................................................................................... 16 

Comparison Chapter ............................................................................................................................... 16 

Instrumentation Details  ....................................................................................... 19 

Thermocouples ........................................................................................................................................ 20 

Thin skin calorimeters ............................................................................................................................. 20 

Practice Wall Design ............................................................................................ 21 

Mobile Base Construction ....................................................................................................................... 22 

Conclusion .......................................................................................................... 24 

Recommendations ............................................................................................... 25 

Reference ........................................................................................................... 26 

Appendix A: Test comparison information  .............................................................. 28 

Appendix B: Instrumentation Calibration  ............................................................... 43 

1.0 Thermal Couple ................................................................................................................................ 43 

2.0 Thin Skin Calorimeter ....................................................................................................................... 44 

Step 1: Thin Skin Calorimeter Design ................................................................................................ 48 

Step 2: Finite Different Method Model .............................................................................................. 50 

Step 3: Cone Test and Experiment Analysis ....................................................................................... 53 

Step 4: Thin Skin Calibration.............................................................................................................. 72 



4 
 

Appendix C ......................................................................................................... 94 

Appendix C1:  Finite Difference Method Boundary Condition Sample Calculation .............................. 94 

Appendix C2: Finite Difference Method and Semi-Infinite Method Verification ................................... 95 

Finite Difference ................................................................................................................................. 95 

Semi-Infinite Difference Method ........................................................................................................ 97 

Appendix C3: Contact Conductance Verification ................................................................................. 100 

Appendix C4: Constant hcc Calibration Calculation ........................................................................... 100 

Appendix C5: Dynamic hcc Calibration Calculation ........................................................................... 100 

Appendix D: Back face Temperature  .................................................................... 101 

Material Properties ........................................................................................................................... 101 

Temperature Diffusion Time ............................................................................................................. 102 

Temperature Calculations................................................................................................................. 108 

Finite Difference Method ................................................................................................................... 108 

Appendix E: Mobile Base Calculation ................................................................... 116 

Appendix F: Burner Design .................................................................................. 120 

Appendix G: Standard Operating Procedure  .......................................................... 126 

Pre Test ................................................................................................................................................. 126 

Test ........................................................................................................................................................ 127 

Post Test ................................................................................................................................................ 128 

 

 

 

 

 

 

 

  



5 
 

Table of figures: 

FIGURE 1: RAINSCREEN EXAMPLE ........................................................................................................................................ 10 
FIGURE 2: FIBER REINFORCED PANEL IN SANDWICHED CONSTRUCTION ....................................................................................... 11 
FIGURE 3: FRP PANELS ON THE SAN FRANCISCO MOMA BUILDING ............................................................................................ 12 
FIGURE 4: FLAME HEIGHT COMPARISON BASED ON TEMPERATURE ............................................................................................. 18 
FIGURE 5: AIR CAVITY TEMPERATURE COMPARISONS ............................................................................................................... 19 
FIGURE 6: LEFT TO RIGHT, FINAL BURN PATTERN OF LAST YEAR’S EXPERIMENT. THE WHITE LINE IS DRAWN TO DISTINCTLY SHOW THE CHAR 

PATTERN, FINAL BURN PATTERN OF SOUTHWEST 1, FINAL BURN PATTERN OF SOUTHWEST 2 .................................................. 19 
FIGURE 7: CALIBRATION COMPARISON BETWEEN CONSTANT AND DYNAMIC HCC ........................................................................... 21 
FIGURE 8: SCHEMATIC SHOWING THE CONSTRUCTION OF THE PRACTICE WALL .............................................................................. 22 
FIGURE 9: SCHEMATIC OF THE FORCES IN PLAY WITH THE RIG AND PLATFORM ASSEMBLY................................................................. 23 
FIGURE 10: EQUATION USED IN THE CONSTRUCTION OF THE PLATFORM ...................................................................................... 24 
FIGURE 11: THERMOCOUPLE TEMPERATURES AT HRR STEP 1................................................................................................... 31 
FIGURE 12: THERMOCOUPLE TEMPERATURES AT HRR STEP 1 MQP AND NFPA 285 ................................................................... 32 
FIGURE 13: THERMOCOUPLE TEMPERATURES AT HRR STEP 2................................................................................................... 33 
FIGURE 14: THERMOCOUPLE TEMPERATURES AT HRR STEP 2 MQP AND NFPA 285 ................................................................... 34 
FIGURE 15: THERMOCOUPLE TEMPERATURES AT HRR STEP 3................................................................................................... 34 
FIGURE 16: THERMOCOUPLE TEMPERATURES AT HRR STEP 3 MQP AND NFPA 285 ................................................................... 35 
FIGURE 17: THERMOCOUPLE TEMPERATURES AT HRR STEP 4................................................................................................... 36 
FIGURE 18: THERMOCOUPLE TEMPERATURES AT HRR STEP 4 MQP AND NFPA 285 ................................................................... 36 
FIGURE 19: THERMOCOUPLE TEMPERATURES AT HRR STEP 5................................................................................................... 37 
FIGURE 20: THERMOCOUPLE TEMPERATURES AT HRR STEP 5 MQP AND NFPA 285 ................................................................... 38 
FIGURE 21: THERMOCOUPLE TEMPERATURES AT HRR STEP 6................................................................................................... 38 
FIGURE 22: THERMOCOUPLE TEMPERATURES AT HRR STEP 6 MQP AND NFPA 285 ................................................................... 39 
FIGURE 23: DIAGRAM REPRESENTING A THERMOCOUPLE.......................................................................................................... 43 
FIGURE 24: THIN SKIN CALORIMETER DESIGN 1 ..................................................................................................................... 49 
FIGURE 25: THIN SKIN CALORIMETER DESIGN 2 ..................................................................................................................... 49 
FIGURE 26: THIN SKIN CALORIMETER INSULATION SET UP........................................................................................................ 50 
FIGURE 27: THE CONE SIDE VIEW ......................................................................................................................................... 53 
FIGURE 28: THE CONE CROSS SECTIONAL VIEW ....................................................................................................................... 53 
FIGURE 29: THE CONE TOP VIEW ......................................................................................................................................... 54 
FIGURE 30: THIN SKIN CALORIMETER SKETCH UNDER CONE TEST .............................................................................................. 55 
FIGURE 31: HEAT FLUX OF 25KW/M2 .................................................................................................................................. 56 
FIGURE 32: HEAT FLUX OF 50KW/M2 .................................................................................................................................. 57 
FIGURE 33: HEAT FLUX OF 75 KW/M2 ................................................................................................................................. 58 
FIGURE 34: HEAT FLUX OF 25KW/M2 INTERIOR CONDITION ..................................................................................................... 59 
FIGURE 35: HEAT FLUX OF 50KW/M2 INTERIOR CONDITION ..................................................................................................... 60 
FIGURE 36: HEAT FLUX OF 75KW/M2 INTERIOR CONDITION ..................................................................................................... 61 
FIGURE 37: HEAT FLUX OF 25KW/M2 BOUNDARY CONDITION 2 ................................................................................................ 62 
FIGURE 38: HEAT FLUX OF 50KW/M2 BOUNDARY CONDITION 2 ................................................................................................ 63 
FIGURE 39: HEAT FLUX OF 75KW/M2 BOUNDARY CONDITIONS 2 .............................................................................................. 63 
FIGURE 40: OVERALL TEMP PROFILE 25 KW/M^2 .................................................................................................................. 65 
FIGURE 41: OVERALL TEMP PROFILE 50 KW/M^2 .................................................................................................................. 66 
FIGURE 42: OVERALL TEMP PROFILE 75 KW/M^2 .................................................................................................................. 66 
FIGURE 43: PLATE COMPARISON ......................................................................................................................................... 67 
FIGURE 44: MIDDLE COMPARISON ...................................................................................................................................... 68 
FIGURE 45: BOTTOM COMPARISON ..................................................................................................................................... 69 
FIGURE 46: COMPARISON RESULTS TEMPERATURE VS DEPTH HEAT FLUX OF 25KW/M2 ................................................................ 70 
FIGURE 47: COMPARISON RESULTS TEMPERATURE VS DEPTH HEAT FLUX OF 50 KW/M2 ............................................................... 71 



6 
 

FIGURE 48: COMPARISON RESULTS TEMPERATURE VS DEPTH HEAT FLUX OF 75KW/M2 ................................................................ 71 
FIGURE 49: FDM & SEMI-INFINITE TEMPERATURE HISTORY COMPARISON ................................................................................. 74 
FIGURE 50: FDM & SEMI-INFINITE TEMPERATURE PROFILE COMPARISON .................................................................................. 75 
FIGURE 51: PLATE TEMPERATURE SIMULATION WITH FDM UNDER 25KW/M2 ............................................................................ 77 
FIGURE 52: HCC VERIFICATION UNDER 25KW/M2 ................................................................................................................... 78 
FIGURE 53: PLATE TEMPERATURE SIMULATION WITH FDM UNDER 50KW/M2 ............................................................................ 80 
FIGURE 54: HCC VERIFICATION UNDER 50KW/M2 ................................................................................................................... 81 
FIGURE 55: PLATE TEMPERATURE SIMULATION WITH FDM UNDER 75KW/M2 ............................................................................ 83 
FIGURE 56: HCC VERIFICATION UNDER 75KW/M2 ................................................................................................................... 84 
FIGURE 57: CALIBRATION OF 25KW IHF ............................................................................................................................... 86 
FIGURE 58: CALIBRATION OF 50KW IHF ............................................................................................................................... 86 
FIGURE 59: CALIBRATION OF 75KW IHF ............................................................................................................................... 87 
FIGURE 60: 25 KW/M^2 DYNAMIC & CONSTANT HCC COMPARISON ......................................................................................... 91 
FIGURE 61: 50 KW/M^2 DYNAMIC & CONSTANT HCC COMPARISON ......................................................................................... 92 
FIGURE 62: 75 KW/M^2 DYNAMIC & CONSTANT HCC COMPARISON ......................................................................................... 93 
FIGURE 63: TEMP PROFILE AT INTERFACES VS. TIME ............................................................................................................... 111 
FIGURE 64: TEMPERATURE PROFILES AT 5MIN INTERVALS ....................................................................................................... 111 
FIGURE 65: TEMP PROFILE AT INTERFACES VS. TIME .............................................................................................................. 112 
FIGURE 66: TEMPERATURE PROFILES AT 5MIN INTERVALS ....................................................................................................... 112 
FIGURE 67: TEMP PROFILE AT INTERFACES VS. TIME 1 LAYER OF CERABLANKET ........................................................................... 114 
FIGURE 68: TEMPERATURE PROFILES AT 5MIN INTERVALS WITH 1 LAYER OF CERABLANKET ............................................................ 114 
FIGURE 69: TEMPERATURE PROFILES AT 5MIN INTERVALS WITH 2 LAYERS OF CERABLANKET .......................................................... 115 
FIGURE 70: TEMPERATURE PROFILES AT 5MIN INTERVALS WITH 2 LAYERS OF CERABLANKET .......................................................... 115 
FIGURE 71: LINE BURNER ASSEMBLY .................................................................................................................................. 121 
FIGURE 72: LINE BURNER PLACEMENT ............................................................................................................................... 122 

 

  



7 
 

Table of tables 

TABLE 1: NFPA 285 CALIBRATION TEMPERATURES ................................................................................................................ 28 
TABLE 2: TEMPERATURE TABLE FOR LAST YEAR'S MQP TEST. ................................................................................................... 29 
TABLE 3: TEMPERATURE TABLE FOR THE FIRST SOUTHWEST RESEARCH TEST ................................................................................ 30 
TABLE 4: TEMPERATURE TABLE FOR THE SECOND SOUTHWEST RESEARCH TEST. ........................................................................... 30 
TABLE 5: AIR CAVITY TEMPERATURE DATA ............................................................................................................................. 39 
TABLE 6: RIG TEST FLAME HEIGHTS AND OBSERVATIONS ........................................................................................................... 40 
TABLE 7: SOUTHWEST AUGUST 9, 2012 FLAME HEIGHTS AND OBSERVATIONS.............................................................................. 40 
TABLE 8: SOUTHWEST JUNE 27, 2013 FLAME HEIGHTS AND OBSERVATIONS ................................................................................ 42 
TABLE 9: PROPERTY OF THIN SKIN CALORIMETER .................................................................................................................... 54 
TABLE 10: THERMAL AND MATERIAL PROPERTIES OF CFB ........................................................................................................ 73 
TABLE 11: TEMPERATURE DEBRIEF DATA UNDER HEAT FLUX OF 25KW/M2 ................................................................................ 76 
TABLE 12: THERMAL PROPERTIES OF PLATE, CFB AND GWB FOR 25KW/M2. ............................................................................. 78 
TABLE 13: TEMPERATURE DEBRIEF DATA UNDER HEAT FLUX OF 50KW/M2 ................................................................................ 79 
TABLE 14: THERMAL PROPERTIES OF PLATE, CFB AND GWB FOR 50KW/M2. ............................................................................. 80 
TABLE 15: TEMPERATURE DEBRIEF DATA UNDER HEAT FLUX OF 50KW/M2 ................................................................................ 82 
TABLE 16: THERMAL PROPERTIES OF PLATE, CFB AND GWB FOR 75KW/M2. ............................................................... 84 
TABLE 17: MATERIAL PROPERTIES FOR TS CALIBRATION .......................................................................................................... 85 
TABLE 18: SAMPLE CALCULATION FOR INCIDENT HEAT FLUX OF 25KW/M2K ............................................................................... 89 
TABLE 19: CALIBRATION VALUES ......................................................................................................................................... 90 
TABLE 20: FINITE DIFFERENCE METHOD GIVEN CONDITIONS ...................................................................................................... 95 
TABLE 21: SEMI-INFINITE DIFFERENCE METHOD GIVEN CONDITIONS ............................................................................................ 97 
TABLE 22: SEMI-INFINITE DIFFERENCE METHOD CALCULATION RESULTS (NODE 1-26) .................................................................. 99 
TABLE 23: PRACTICE WALL MATERIAL THICKNESS ................................................................................................................ 102 
TABLE 24: PRACTICE WALL MATERIAL THERMAL PROPERTIES ................................................................................................. 102 
TABLE 25: THERMAL DIFFUSION TIME AT DEPTH RESULTS ...................................................................................................... 106 
TABLE 26: TIME-STEP GAS TEMPERATURE AND HEAT TRANSFER COEFFICIENT FROM PRIOR TESTING ............................................. 108 
TABLE 27: METHANE AND PROPANE COMPARISON TABLE ...................................................................................................... 123 
TABLE 28: BURNER FLOW RATES (CFM) ............................................................................................................................ 124 
TABLE 29: BURNER FLOW RATE BY TIME STEP ..................................................................................................................... 127 

  



8 
 

Authorship 

Section Author 

Abstract Keith 

Acknowledgements Michelle  

Introduction Michelle  

Background Shannon 

Intermediate Scale Rig Michael 

Instrumentation Details Michelle  

Practice Wall Design Keith & Shannon 

Conclusion Michelle  

Recommendation Michael & Michelle  

Appendix A  Michael 

Appendix B Michelle & Michael 

Appendix C  Michelle 

Appendix D Shannon 

Appendix E Keith 

Appendix F Shannon 

Appendix G Shannon & Keith 

Formatting  Michael, Michelle, Shannon 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

Introduction  

 The external wall containing combustible materials need to meet certain regulation from NFPA 285 

testing for building construction. Fiber reinforced polymer is a widely used composite building materials. 

However, its combustible property has concerned our sponsor Kreysler and Associates to determine if this 

material can be used and pass the NFPA 285 test. NFPA 285 is a test that studies the potential for vertical 

and horizontal fire spread on the exterior of buildings however it is also a relatively expensive and large 

test to run. Therefore, the MQP group decide to build an intermediate scale rig to closely replicate the 

full-scale NFPA 285 test. 

In order to evaluate if the intermediate scale rig would be a good representation for the full-scale NFPA 

285 Test, we will first design and calibrate all instrumentations to closely simulate NFPA 285 test then 

design and optimized our practice wall based on the design from past MQP team.  

Background 

Exterior Cladding – FRP 

Exterior Wall   
Exterior walls are a protective assembly layer of materials that separate a building’s structure and 

interior, from exterior conditions. The exterior wall system is commonly comprised of a layer of interior 

sheathing or drywall, framing, a water penetration layer, insulation, exterior sheathing, drainage segment, 

and a base coat, and a finish coat. The outermost layer of an exterior wall is known as the exterior 

cladding. Exterior cladding includes poured concrete, stucco, masonry (brick or stone), vinyl, wood 

shingles (cedar), fiber-cement siding w/ plywood sheathing on vertical furring strips, tile siding with 

horizontal furring strips, clay tiles, and aluminum. For this project, our exterior cladding will be 

comprised of a fiber reinforced polymer rainscreen.   
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Figure 1: Rainscreen Example 

A rainscreen is a form of exterior cladding, where the cladding is separated from the remainder of 

the exterior wall system, as shown in Figure 1, creating a capillary break to allow for drainage and 

evaporation. The rainscreen also adds strength to the building's structure. When a rainscreen is used, the 

layer beneath the exterior cladding must consider exterior conditions. Rainscreens also provide the 

structure with an additional layer of thermal insulation.   

Fiber Reinforced Polymer               
Fiber reinforced polymer is a composite material composed of a polymer matrix of resins 

reinforced with fibers. Polyester, epoxy, vinyl ester, and urethane are materials used in the resin matrix to 

protect and transfer stress between the reinforcing fibers. Thermoset resins are typically used, which 

begin as liquid polymers and are curing to solid form during the molding process. This process is called 

crosslinking, and is irreversible. Thermoset resins may not be melted or reshaped. Thermoplastics, on the 

other hand, will melt at a given temperature and can be solidified into new shapes by cooling to ambient 

temperatures. Carbon, glass, basalt and aramid are used as reinforcing fibers to provide strength and 

stiffness. Glass accounts for over 90% of the reinforcements in use. These reinforcements are arranged to 

provide support in the direction of loading (uni-directional orientation), if there are multidirectional 
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forces, the fiber shall be arranged in either bi-directional or multi-directional orientation. Additives to 

fiber reinforced polymers may present fire retardant properties.   

Additives are typically used to modify the properties of the material, and tailor its performance, to 

its desired use. For polyester FRP a type of peroxide or benzoyl peroxide is added to induce the curing 

process, and crosslinking. Tertiary butyl catechol may be used to slow the process, while dimethyl aniline 

may be used as an accelerator. Fillers are used in composite design to reduce costs, and the organic 

content, in addition to tailoring the performance of the material. Fillers also improve dimensional stability 

of the FRP for thermoplastic resins, as fillers will deform less. Alumina trihydrate and calcium sulfate are 

commonly used fillers. Alumina trihydrate will give off water when exposed to high temperature, which 

helps reduce smoke and fire from propagating. Calcium sulfate is a lower cost alternative that works on a 

similar concept, but with less water released, and at a lower temperature. Panels of fiber reinforced 

polymers are used in a sandwich construction, commonly with a foam material, to reduce weight, and 

increase durability and stability in construction. Surface finishes on the FRP provide corrosion resistance 

to exterior conditions.  Alternatives to foam include waffle patterned, or honeycomb designed cores, or 

balsa wood cores.  

 

Figure 2: Fiber Reinforced Panel in Sandwiched Construction 

FRP possesses linear elastic behavior until failure, with no yielding, and its design shall account 

for this. FRP therefore has a higher ultimate strength, and presents a lower strain at failure. FRP is 

incorporated in designs for weight saving for building loading design, and can also be easier and faster to 
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operate during construction. Architects are fond of FRP's easily formable properties, as it may take a 

multitude of creatively designed shapes.    

Kreysler and Associates erected an FRP rainscreen for the San Francisco, California Museum of 

Modern Art, as shown in Figure 3. The panels used for this design are approximately 1 meter x 10 meters. 

The average weight of the panels, including the integral frame is approximately 8 pounds per foot.   

 

Figure 3: FRP panels on the San Francisco MoMA building 

FRP panels were chosen for this design because of their ability to be easily formed into complex shapes, 

as well as FRP's high strength and lightweight characteristics. The material's light weight allowed for 

fewer, and smaller, connections.  

Since there are many different options for the creation of FRP, from the choice of resin, reinforcements, 

additives, fillers, and tailoring the FRP to its designed use, it is not an exact science to quantify the 

material properties of all FRP. However, a general comparison to steel, aluminum, and wood may be 

considered based off tested materials. FRP weighs 75% less than steel and 30% less than aluminum, yet 

presents a similar strength when in the lengthwise direction. (Steel: 36ksi, Aluminum: 25ksi, FRP: 30ksi, 

Wood: 12ksi). FRP is also corrosion resistant, non-conductive, and a good thermal insulator, which are 

beneficial qualities for exterior cladding.   

International Building Code  
The International Building Code (IBC) is a regulated code adapted on a federal level and 

amended on a state level. We have considered the federal level regulations in regards to FRP and exterior 
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wall systems. Chapter 26 of the most recent IBC (2015) focuses on Plastics, which covers Fiber 

Reinforced Polymers in section 2613. Exterior cladding is covered by chapter 14.   

FRP may not exceed 20 percent of a wall covering, or may not exceed 10 percent of an 

architectural element. When using FRP on an exterior system, the flame spread index shall not exceed 25. 

Fire blocking must also be used with FRP. When installing FRP on a building exterior, the layer the FRP 

is attached to must be of noncombustible material substrate, or separated from the exterior wall by 

corrosion-resistant steel with a minimum base thickness of 0.016 inches, or aluminum with a minimum 

base thickness of 0.019 inches. When the building is less than 40 feet above grade, and the fire separation 

distance is no greater than 5 feet, FRP may not cover more than 10 percent of an exterior wall. When the 

building is less than 40 feet above grade, and the fire separation distance is more than 5 feet, there shall be 

no restriction on the percent covering of FRP on exterior walls. On buildings less than 40 feet above 

grade, the flame spread index shall not exceed 200; unless the thickness of paint or coatings applied 

directly to FRP does not exceed 0.036 inches, in which case there will be not flame spread index 

requirement.   

Requirements for the foam plastic insulation in panels are to follow test methods as outlined in 

NFPA 259, "Standard Test Method for Potential Heat of Building Materials." The vertical and lateral 

flame propagation of the exterior wall shall be in accordance with NFPA 285, "Standard Fire Test Method 

for Evaluation of Fire Propagation Characteristics of Exterior Non-Load-Bearing Wall Assemblies 

Containing Combustible Components." In addition, the exterior wall may not display sustained flaming 

when tested in accordance with NFPA 268, "Standard Test Method for Determining Ignitability of 

Exterior Wall Assemblies Using a Radiant Heat Energy Source." Fireblocking shall also be used in the 

exterior wall system, to separate combustible construction and break up flaming regions.  

Requirements in the International Building Code for exterior cladding revolve around general 

requirements that encompass the main concerns for fire safety, and the tests referenced to be passed for 

appropriate material behavior in fire conditions. In addition to these general requirements, there are 
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additional modified requirements for Exterior Insulation and Finish Systems (EIFS), High-Pressure 

Decorative Exterior-Grade Laminate (HPL), and Metal Composite Material (MCM).   

Exterior cladding may be constructed of combustible material. However, non-plastic material 

may not exceed 10 percent of an exterior wall surface when the fire separation distance is less than 5 feet, 

and may not be more than 40 feet in height above the plane. The ignition resistance of the cladding shall 

be tested in accordance with NFPA 268, "Standard Test Method for Determining Ignitability of Exterior 

Wall Assemblies Using a Radiant Heat Energy Source" unless the material is wood, or meets a minimum 

thickness requirement. For results from the NFPA 268 test, sustained flaming shall not be present. Refer 

to the table 1406.2.1.1.2 in the IBC for allowable fire separation distance based on the incident radiant 

heat flux experienced in accordance with NFPA 268. The exterior cladding must be separated from the 

exterior wall shall not exceed 1 5/8 inches when fireblocked.  

Exterior Insulation and Finish Systems (EIFS), are non-structural, non-load bearing, exterior wall 

cladding systems that consist of an insulation board attached either adhesively or mechanically, or both, 

to the substrate, with an integrally reinforced base coat and a textured protective finish coat. This is 

required to comply with all general specifications with the addition of meeting the performance standards 

of ASTM E 2568, "Standard Specification for PB Exterior Insulation and Finish Systems."   

High-Pressure Decorative Exterior-Grade Laminate (HPL), are panels consisting of layers of 

cellulose fibrous material impregnated with thermosetting resins and bonded together by a high-pressure 

process to form a homogeneous non porous core suitable for exterior use. Specifications are in line with 

general requirements with some additions and modifications. The flame spread index is specified at 75 or 

less and smoke-development index of 450 or less, in accordance with ASTM E 84, "Test Method for 

Surface Burning Characteristics of Building Materials." HPL shall be separated from the building by an 

approved thermal barrier of ½ inch material tested by NFPA 275, "Temperature Transmission Fire Test 

and the Integrity Fire Test." The HPL system must also be tested with minimum and maximum 

thicknesses and pass the full-scale NFPA 285, "Standard Test Method for Evaluating the Fire Propagation 

Characteristics of Exterior Non-Load-Bearing Wall Assemblies Containing Combustible Components." If 
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none of the above mentioned requirements are met for HPL systems, there are requirements based on 

height and fire separation distance to determine the percentage covering the HPL system may present on 

the building.  

Metal Composite Material (MCM) is a factory manufactured panel consisting of metal skins 

bonded to both faces of solid plastic. The requirements for MCM are the same as HPL, with added 

requirements if the NFPA 285 test is not passed. Since there are different combustibility classes of MCM, 

the fire separation distances and max allowable percentage coverings vary slightly. 

NFPA 285 

The National Fire Protection Association (NFPA) developed fire test 285 to study the potential 

for vertical and horizontal fire spread on the exterior of buildings. In the 1970s foam plastic was a 

proposed material for exterior wall insulating. This material did not meet the requirements for the 

building codes at the time and was rejected as an idea. The Society of the Plastics Industry (SPI) was 

tasked with developing a test to prove that a wall with foam plastic insulation that was on fire would not 

spread to far horizontally or vertically. The test standard was created and has gone through a couple of 

adaptations. The most recent version of NFPA was created in 2012. NFPA 285 is used to test four 

abilities of the exterior wall assemble that is to be tested. These abilities include the wall assembly’s 

ability to resist flame over the exterior face of the wall assembly, resist vertical fame propagation within 

the combustible components from one story to the next, to resist vertical flame propagation over the 

interior surface of the wall assembly from one story to the next, and the ability to resist lateral flame 

propagation from the compartment of fire origin to adjacent compartments or spaces.  

The setup of the most recent 285 test is relatively simple. The test involves a two story concrete 

structure with the exterior wall assembly attached to its front face. The structure has two vertically 

stacked rooms. The lower room has a single window in the test specimen where a burner is placed to 

replicate the fire spilling out of the window. Also inside the lower room there is a burner which replicates 

a fire burning inside of the room. For an apparatus that is being tested using NFPA 285 there are some 

criteria that the test must meet. This criteria includes no vertical and horizontal spread outside of the 
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impingement zone in the exterior face, no vertical and horizontal spread in the components or insulation, 

the maximum temperature in the second story test room cannot exceed 500 degrees Fahrenheit, there are 

no flames present in the second story test room, and there is no flame spread to the side walls of the 

assembly.   

2.1.4.1 Problems with current test   

The NFPA 285 test poses multiple complications for companies or individuals who would like to 

run the test:   

1. Size- The dimensions of the 285 rig is 14’X18’. These dimensions can be too large for an average 

test facility to accommodate.     

2. Price- The current test is expensive and for an assembly to fail is also inherently expensive. The 

price of the test can range from $15,000 to $50,000.   

3. Walls must be built on site- The exterior wall need to be attached to the testing rig. This increases 

the time, cost, and manpower necessary to run the test.   

4. Portability- The 285 rig is made of concrete and brick walls. This means that it is a stationary rig 

that will permanently occupy the space it will be built in.    

5. Test time- The current test takes a long time to occur. This limits the amount of tests that can be 

performed in one day.  

Intermediate Scale Rig 

Comparison Chapter  

 The intermediate scale rig we are using is meant to replicate, to the best of its ability, the results 

that would be expected from an NFPA 285 test. To corroborate that our scale rig does provide data that 

matches with data from NFPA 285 we compared our scale rig data with NFPA 285 test calibration data 

and two NFPA 285 tests performed by the Southwest Company.  

One area of comparison for these four sets of test data is the average temperature in Celsius of the 

thermocouples spaced out at one foot intervals up the wall at the six designated time steps. This data can 
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be observed on table 1 through table 4 in Appendix A. From this data you can observe that the scale rig 

data provides similar temperature readings to the NFPA 285 calibration data and the Southwest tests 

when you compare the temperature readings above the three foot mark for each test. The scale rig data 

shows a higher temperature at the bottom of the wall during the entire duration of the test. An explanation 

for this is that the NFPA 285 test is run with a larger wall face without side walls and there is an internal 

combustion chamber below the window in addition to the line burner. The internal chamber creates a 

flame plume outside of the window and that is why the temperatures lower on the wall are lower in 

comparison to the scale rig. 

The charts displayed in Appendix A show the temperature differences between the four tests as well at 

each Heat Release Rate Step. Please note that all data points are up to six feet above the "top of the 

window", because after that point, we do not have data from all four sources. Also note, that we do not 

have comparative data for the critical ten foot point either, with the reason of having the NFPA flame 

temperature line for each graph is for a means of giving an update of where the test temperatures are 

3/5ths of the way up the face of the wall. 

 A second means of comparison can be derived from the average temperature readings of the four tests. 

The flame height cannot exceed ten feet from the top of the window opening for the NFPA 285 test, 

otherwise that constitutes as a failure of the material meeting the minimum requirements. Flame height 

can be determined based on temperature readings. When a temperature of 5380C is detected by a 

thermocouple at a determined height that indicates that flames are present at that height. The following 

bar chart shows a comparison of the four tests where a flame temperature of 538
 
0C have been reached at 

various heights during the time steps. From this chart, it can be observed that the screening rig has similar 

flame heights to the other three tests. 
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Figure 4: Flame height comparison based on Temperature 

Besides determining flame heights based on temperature readings visual observations can be used to 

make comparisons. The flame heights based on visual observations of the screening rig test from last 

year, Southwest test one, and Southwest test two can all be compared. The screening rig test from last 

year flames reached the 2 foot mark after about 1.5 minutes. Southwest test 1 flames took 12 minutes to 

reach the 2 foot mark and Southwest test 2 flames took 8 minutes to reach the 2 foot mark. The second 

point of comparison is the flame heights of the tests after 15 minutes of burner exposure. The screening 

rig test from last year flame height at this time are reaching the 6 foot mark. For Southwest test 1 the 

flame height at this time is at the 11 foot mark which is located 6 feet above the top of the window. For 

Southwest test 2 the flame height at this time is at the 9.5 foot mark which is located 4.5 feet above the 

top of the window. The maximum flame height of the screening rig test from last year is about 6.5 feet. 

For Southwest test 1 the max flame height is about 6.5 feet and for Southwest test 2 the max flame height 

is about 5.5 feet. 

The chart below shows the comparison of the internal air cavity temperatures of each of the screening rig 

test data from last year and both of the Southwest tests. Last year’s data and the first Southwest test have 

the most comparable data. The rate at which the temperature increased in last year’s test is at a rate that 

was in between the rates of the Southwest tests. Southwest 2 ends at a temperature around 212.8 0C and 

the test last year ended at a value closer to 67.7
 
0C. The reason for a discrepancy in the data collected can 

be attributed to the differences in materials tested and the differences in how the screening rig is run in 

comparison to the NFPA 285 test.   
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Figure 5: Air cavity temperature comparisons 

The burn pattern of the screening rig test and both Southwest tests are represented below. Each burn 

pattern is observed to have a wider char pattern at the base and the pattern becomes thinner to form a 

parabolic point. The char pattern tips are at similar locations for all three tests. The char patterns at the 

base for both Southwest tests are just a bit thinner than the width of the pipe burner. The entire wall face 

of last year’s rig test is charred. For last year’s test the tip is just getting to the 7 foot mark, for Southwest 

test 1 it was at 9 feet above the burner, and Southwest 2 was just at 8 feet above the burner.    

There are some differences in the shape of the char pattern of the rig test last year and both Southwest 

tests. This is attributed to the fact that our rig has sidewalls that are attached to the vertical wall face we 

are burning. Where as in the Southwest test they are burning a wall with a larger width and no sidewalls.  

 

Figure 6: Left to Right, Final burn pattern of last year’s experiment. The white line is drawn to distinctly show the char pattern, 
Final burn pattern of Southwest 1, Final burn pattern of Southwest 2 

Instrumentation Details  

Two primary instruments for temperature measurement in this project are thermocouples and thin skin 

calorimeters.  
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Thermocouples  

Thermocouples were built by the MQP team to measure temperature for this project. Thermocouple wires 

were stripped on both ends, one end is twisted and welded together for a contact point. The other end of 

the thermocouple is attached to the type K thermocouple plug. The welded point produce and pass 

temperature reading for data collection. Detail information for thermocouple are listed in Appendix B. 

Thin skin calorimeters  

The thin skin calorimeter is used to measure an incident heat flux. Incident heat flux is the sum of the 

incoming radiation and convection. This instrument is created by welding a thermocouple to the back of a 

thin metal plate, two layers of ceramic fiber board and gypsum wall board. The face of the plate is painted 

black to minimize radiation heat loss. Thin skin calorimeters can be calibrated under a known heat flux 

generated by a cone calorimeter. With known thermal properties of each layer of material, temperature 

distribution throughout the thin skin calorimeter can be determined. The thin skin calorimeters are then 

calibrated under three different incident heat flux 25kw/m2, 50 kw/m2 and 75 kw/m2. Following equation 

was used to backtrack the incident heat flux and evaluate the accuracy of our calibration process 

ρCpδ
𝑑𝑇𝑃𝐿

𝑑𝑡
= 𝜀𝑞𝑖

′′ − 𝜀𝜎(𝑇𝑃𝐿
4 − 𝑇0

4) − ℎ𝑐𝑜𝑣  (𝑇𝑃𝐿 − 𝑇∞) − ℎ𝑐𝑐(𝑇𝑃𝐿 − 𝑇0
𝑖)  

Where left-hand side of the equation is the change of energy stored in the plate of the thin skin 

calorimeter. The first term on the right-hand side is the radiative energy absorbed by the plate. The second 

term is the radiative energy emitted by the plate.  The third term is the conductive heat loss. The last term 

is calculating the heat loss into the ceramic fiberboard which requires using a contact conductance factor 

(hcc). TpL is the temperature of the thin skin calorimeter, T∞ is the ambient temperature, and T0 is the 

temperature of the first node using finite difference method. 

By creating and using the explicit finite difference method, two calibration process were conducted to 

better determine if the thin skin is calibrated correctly. Following graph provides results from two 

calibration method (dynamic and constant contact conductance) for thin skin calorimeter under 25kw/m2 

incident heat flux.  
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Figure 7: Calibration Comparison between constant and dynamic hcc 

The overall incident heat flux from finite difference model for both methods contains some errors. Two 

calibration process provides an error of ±10kw/m2 in compared to the known incident heat flux 25kw/m2. 

One reason why there are errors occurred is delayed response from thermocouples and varying hcc value 

only gives a minor affect to the calibration results. The fluctuation of the heat loss into ceramic fiberboard 

affects the heat flux after 200s, which tells us this model will not work for a time base of seconds. 

However, as we will be working on the time base of a minute for this project, we can conclude that the 

thin skin calorimeter has been calibrated successfully.  

 Detail thin skin calorimeter design and calibration calculation can be found in Appendix B.  

Practice Wall Design  

The practice wall was designed with durability and efficiency in mind. In accordance with appendix D, 

the practice wall composition was adjusted so that none of the materials would reach critical temperatures 

apart from the front face of sheetrock, from which the instrumentation is mounted.  
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Figure 8: Schematic showing the construction of the practice wall  

Two layers of cerablanket will prevent the second layer of sheetrock from critical dehydration. The wood 

frame is only in discrete locations, therefore considerations for backface temperature will be considered to 

the plywood backface. Figure 8 above is a schematic displaying the construction of the practice wall. 

 

The aluminum rig temperature is of concern as well, as the temperature shall not cause structural of 

strength concerns, as well as maintaining a safe temperature if a human were to come in contact with it. 

Analysis of semi-infinite behavior, and finite difference method were used and outlined in Appendix C to 

come to the conclusion of two layers of cerablanket being required to maintain temperatures under the 

critical limits.  

 

Mobile Base Construction 
In order to make our intermediate-scale test rig easier to transport, we created a mobile platform 

on four 6-inch diameter wheels. The platform itself, we made a frame of two 2X6s 72 inches long on their 

side (on the 6 inch side), and two 2X6s 58 inches long on their side as well. Two interior 58 inch 2X6s 

were added to support the interior of the platform as well, which was topped with a sheet of plywood. In 

order to make sure that we had a robust and satisfactory platform, we calculated the clamp force of the top 

layer of the platform, the rolling and sliding force required to push the rig and platform assembly, the 

rig’s center of gravity, the tipping force required to tip the rig over, and the bending stress acting upon the 

platform itself.  
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Figure 9: Schematic of the forces in play with the rig and platform assembly 

The first factor we looked into with the platform was the clamp force of the platform top, which measures 

how secure the top of the platform is put together.  This was determined based on the diameter of the 

screws we used to fasten the platform top along with the amount of screws used.  Fortunately for us, it 

was determined that a monumental and unrealistic force of 48,000 LBS would be required to unfasten the 

top of the platform from the rest of the structure. 

We calculated the force required to move the rig by itself if it were on a stationary plywood platform (I.e. 

no wheels) versus the force required to move the rig on the mobile platform. We found that in order to 

move the mobile base with the rig, one needs to exert 18.4 LBS of force vs. 161 LBS of force for pushing 

the rig off of a stationary platform. 

The next factor we determined was the center of gravity of the rig and platform assembly.  This was done 

by using the dimensions of the rig and platform and their respective weights, or weight of each part in the 

case of the rig, and then determining the overall center of gravity from there.  We ended up with a final 

center of gravity of (28.5, 41.1, 37.2) inches in the (x, y, z) direction. 

The force required tipping the rig and platform over was determined if somehow the platform were to 

somehow get stuck while being rolled. We determined that in order to tip the 850 pound rig and base 

over, we would have to exert a force of 305 LBs at a height of 80 inches, which was our assumed 

maximum push height. For lower heights, the required force would only be larger due to the decreased 

area between the "stuck wheel" and the push. 
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We also looked into doing a worst-case scenario analysis for the strength of the supporting 2X6s. In order 

to do this, we calculated the bending stress of a 72 inch 2X6 which was acted upon by a 2400 LB force at 

the center (weight used based on the max capacity of the wheels). Using a beam supported by a pin and 

roller as a model, we determined that the bending stress exerted on the beam equals 3600 PSI, which is 

well under the 5100 PSI rupture modulus for the wood we used (pine). We then assumed that the other 

supporting members would check out too, since their length only 58 inches as opposed to 72, which 

would lead to a lesser bending stress if acted upon at the center. 

 

Figure 10: Equation used in the construction of the platform 

Conclusion  

The project successfully established an intermediate practice rig with all instruments constructed 

and calibrated successfully.  Based on the comparison results between NFPA 285 test, southwest and test 

from past MQP we are able to conclude that our intermediate rig can closely replicate the full-scale NFPA 

285 test. Through this project, improvement and adjustments were done to the intermediate scale rig to 

improve the efficiency for further experiment process. With the mobile base, the mobility of the rig is 

greatly improved.  By adding additional insulation layer, the test wall is able to operate under multiple 

practice runs which will also allow for the FRP panels provided by Kreysler and Associates to be suitably 

tested and analyzed when the time comes. Through the simulation results, the intermediate scale rig is 

safe to operate and is an indication of the full scale NFPA rig test, however, improvements should be 

considered with future experiment results. 
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Recommendations 

Through this project, following recommendations are established by the MQP team, 

1. Total weight for practice wall and rig should stay below the weight limit and placed on the 

mobile base properly. 

2. When performing practice calculations in regards to an exterior cladding test it is recommended 

to perform more than one test. To perform two tests it is recommended to construct a practice 

wall that can be used for more than one burn test. A way of doing this is to construct a practice 

wall in the form of a sandwich with one piece of test wall at the back face, insulating material, 

and then a front piece of test wall, as shown in Figure 8. 

3. When constructing the practice wall in sandwich orientation it is recommended to experiment 

with different insulation material to study the potential of extending the multi-usage feature. 

4. In order to receive more accurate data from the experiment based on our 2-D plume theory 

design, we recommend using line burner instead of pool fire, as included in Appendix F. 

5. Additional fire modeling tools are recommended to add into this project to improve the accuracy 

of this intermediate-scale rig in compare to the full scale NFPA 285 test. 
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Appendix A: Test comparison information 

 

  Time interval(min)            

Thermocouple height (ft.) 0-5  5-10  10-15  15-20  20-25  25-30  

Interior wall surface  573.8  703.3  778.3  858.9  857.8  901.7  

1 ft. above window  316.7  465.6  511.1  533.3  563.3  581.1  

2ft  359.4  546.1  605  639.4  673.9  702.2  

3ft  341.1  521.7  591.1  634.4  673.9  712.2  

4ft  302.8  458.9  527.8  572.8  612.8  662.2  

5ft  271.7  407.2  468.3  509.4  541.7  596.6  

6ft  244.4  365.6  419.4  457.8  489.4  543.3  

Table 1: NFPA 285 Calibration Temperatures 
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 Time 

interval 

(min) 

     

Thermocouple 

height (ft.) 

0-5 5-10 10-15 15-20 20-25 25-30 

0 665.3 729.2 774.5 784.3 767.6 732.5 

1 602.5 682.1 723 780 800.1 763.7 

2 483.5 597.9 635.8 727.5 767.8 758.7 

3 342 484.7 541.2  682.1 725.6 703.4 

4 234.7 341.7 384.3 552.6 593.7 598.9 

5 185.4 262.3 297.8 449.8 497.5 505 

6 147.5 204.3 230.2 337.1 383. 389.2 

7 124.3 167.5 185.6 260.2 293.9 298.6 

8 106.2 141.9 155.7 211.2 236.2 242.2 

9 90 118.8 129 167.7 186.6 192.3 

10 81.2 107 124.4 170.6 186.4 213.4 

11 83.7 111 116.4 154.1 167.7 163.2 

Table 2: Temperature Table for last year's MQP Test. 
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  Time interval(min)            

Thermocouple height (ft.)  0-5  5-10  10-15  15-20  20-25  25-30  

Interior wall surface  632.1  750.8  787.2  852.7  890.6  929  

1  332.3  524.8  546.7  582.9  597.8  608.3  

2  358.3  572.3  604.3  646.7  675  691.1  

3  318.2  516.1  565.7  618.6  651.7  667.8  

4  272.7  446.3  499.8  557.4  628.3  640  

5  243.1  384.9  441.2  498.1  562.8  573.9  

6  217.1  331.5  383.1  436.1  525.6  537.2  

Table 3: Temperature Table for the first Southwest Research Test 

 

 

  Time interval(min)            

Thermocouple height (ft.)  0-5  5-10  10-15  15-20  20-25  25-30  

Interior wall surface   638.3  720  792.8  865  890.6  907.2  

1  328.3  476.1  541.7  588.9  597.8  608.3  

2  328.3  540  611.1  667.8  675  691.1  

3  318.3  503.3  587.2  645.6  651.7  667.8  

4  296.7  472.2  561.1  620  628.3  640  

5  247.2  402.2  496.1  548.9  562.8  573.9  

6  229.4  366.1  456.1  508.3  525.6  537.2  

Table 4: Temperature Table for the second Southwest Research Test. 

 The four above tables show the average temperature readings at determined heights of the four 

tests. The orange highlighted cells indicate where temperatures are high enough for flames to be present.   
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The following charts display the temperature differences between the four tests as well at each 

Heat Release Rate Step. 

 

Figure 11: Thermocouple Temperatures at HRR Step 1 
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Figure 12: Thermocouple Temperatures at HRR Step 1 MQP and NFPA 285 
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Figure 13: Thermocouple Temperatures at HRR Step 2 
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Figure 14: Thermocouple Temperatures at HRR Step 2 MQP and NFPA 285 

 

Figure 15: Thermocouple Temperatures at HRR Step 3 
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Figure 16: Thermocouple Temperatures at HRR Step 3 MQP and NFPA 285 
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Figure 17: Thermocouple Temperatures at HRR Step 4 

 

Figure 18: Thermocouple Temperatures at HRR Step 4 MQP and NFPA 285 
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Figure 19: Thermocouple Temperatures at HRR Step 5 
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Figure 20: Thermocouple Temperatures at HRR Step 5 MQP and NFPA 285 

 

Figure 21: Thermocouple Temperatures at HRR Step 6 
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Figure 22: Thermocouple Temperatures at HRR Step 6 MQP and NFPA 285 

 The following table shows the average temperature data of the air cavities of the screening rig test 

and both Southwest tests.  

Table 5: Air cavity temperature data 

Last year’s test data Southwest 1 Southwest 2 

Time 

interval(min) 

Average 

Temp(0C) 

Time 

interval(min) 

Average 

Temp(0C) 

Time 

interval(min) 

Average 

Temp(0C) 

0-5 26.5 0-5 32.2 0-5 43.3 

5-10 38 5-10 36.7 5-10 90.6 

10-15 44.2 10-15 43.3 10-15 128.1 

15-20 55.1 15-20 48.9 15-20 165.6 

20-25 64.7 20-25 57.2 20-25 193.3 

25-30 67.7 25-30 71.1 25-30 212.8 
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Flame height comparison based on visual observations: 

Table 6: Rig test flame heights and observations 

Time (min:sec) Flame Height (ft.) Observations 

 0 About 9” at the edges and 3’ in 

the middle  

Beginning of burn test 

00:24 About 1’ at the edges and 3’ in 

the middle 

Charring is present at the 2’ 

mark.  

1:5 About 1’ from the bottom of the 

wall at the edges and 3’ in the 

middle 

Charring is present at the 3’ 

mark. 

4:00 About 2’ from the bottom of the 

wall at the edges and 

approaching 4’ in the middle 

Flame is present in first gap and 

charring is present past the 4’ 

mark 

5:03 Uniform flame plume with the 

flame reaching 5’ 

Flames are licking past the 5th 

thermocouple and charring is 

present to the 6’ 

15:31 Uniform flame plume with the 

flame reaching 6’ 

Charring is present at the 7’ 

mark. There is sustained flames 

in the gap of the first two panels 

20:35 Uniform flame plume at 6’ with 

flame wisps reaching 7’ 

Charring is present at the 7.5’ 

mark. There is sustained flames 

in the gap of the first two panels 

30:14 Uniform flame plume at 6’ with 

flame wisps reaching 7’ 

This is the end of the fire test 

 

Table 7: Southwest August 9, 2012 flame heights and observations 
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Time (min:sec) Flame height (ft.) observations 

0 No flame present The top of the window starts at 

the 5’ mark 

7:45 No real flame height to speak of The inner compartment is fully 

involved. There is the start of 

flames touching the top of the 

window 

11:26 Flames are up to the 6’ mark Charring observed up to the 7’ 

mark 

15:20 Flames are up to the 6’ mark Charring observed up to the 9’ 

mark 

18:19 Flames on the sides are at the 6’ 

mark and the flame at the 

centerline is at the 10’ mark 

Flames and charring are 

concentrated at the centerline 

20 Flames are up to the 11’ mark.  

21:16 Flames are up to the 11.5’ mark. Flames and charring pattern start 

wide at the bottom and get 

thinner as it travels up 

23 Flames have receded to the 10’ 

mark 

 

25:13 Flames have receded to the 9.5’ 

mark 

Flame size has reduced. A 

darker char pattern reaches up to 

14’. Signs of less severe 

charring can be observed up to 

16’ 



42 
 

29:34 Flames have receded to the 9’ 

mark 

Flame size has reduced. A 

darker char pattern reaches up to 

14’. Signs of less severe 

charring can be observed up to 

16’ 

30 Flames have receded to the 9’ 

mark 

The test is ended after 30 min 

 

Table 8: Southwest June 27, 2013 flame heights and observations 

Time (min:sec) Height (ft.) Observations 

0 No flames present Start of test 

5 No flames present on vertical 

surface 

Burner is put into place 

8:40 Flames are up to the 6’ mark There is barely any charring 

visible on the wall 

15:51 Flames are up to the 7.5’ mark Charring is visible up to the 9’ 

mark 

16:27 Flames are up to 10’ mark at the 

centerline and at the 6’ mark on 

the sides 

There is a distinct char pattern 

up to the 9’ mark 

20:32 Flames recede closer to the 9.5’ 

mark 

A char pattern in the 

approximate shape of an 

equilateral triangle with its point 

going up can be observed. The 

point is a bit above the 11’ mark  
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29:26 

 

 

 

 

 

Flames recede to the 8’ mark The char pattern is in a similar 

shape. It is wider at its edges 

than before and reaches the 12’ 

mark 

 

These tables were developed using a video of the screening rig test and from picture provided 

with both Southwest reports. 

Appendix B: Instrumentation Calibration 

In this project, thermocouple and thin skin calorimeter are two primary instruments that will be used for 

temperature measurement. 

1.0 Thermal Couple   

A thermocouple is created when two dissimilar metals touch and the contact point produces a 

small open-circuit voltage as a function of temperature. This thermoelectric voltage is known as Seebeck 

voltage.    

 

Figure 23: Diagram representing a thermocouple 

 The circuit contains three dissimilar metal junctions: J1, J2, and J3. This results in a Seebeck 

voltage between J3 and J2 that is proportional to the temperature difference between J1. Because copper 

wire is connected to both J2 and J3, there is no additional voltage contributed between the temperature 

difference of the J2/J3 junction and the point where the voltage is measured by the data acquisition 
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device. To determine the temperature at J1, you must know the temperatures of junctions J2 and J3. You 

can then use the measured voltage and the known temperature of the J2/J3 junction to infer the 

temperature at J1. Thermocouples require some form of temperature reference to compensate for the cold 

junctions. The most common method is to measure the temperature at the reference junction with a direct-

reading temperature sensor and then apply this cold-junction temperature measurement to the voltage 

reading to determine the temperature measured by the thermocouple. By using the Thermocouple Law of 

Intermediate Metals and making some simple assumptions, you find that the measured voltage depends 

on the thermocouple type, thermocouple voltage, and the cold-junction temperature. The measured 

voltage is independent of the composition of the measurement leads and the cold junctions, J2 and J3.   

Science behind thermocouples: If heat is applied at one end, the electrons at that end become 

more energetic. They absorb energy and move out of their normal energy states and into higher ones. 

Some will be liberated from their atoms entirely. These newly freed highly energetic electrons move 

toward the cool end of the wire. As these electrons speed down the wire, they transfer their energy to 

other atoms. As these electrons build up at the cool end of the wire, they experience an electrostatic 

repulsion. The not-so-energetic electrons at the cool end move toward the hot end of the wire, which is 

how charge neutrality is maintained in the conductor. As electrons move from the cold junction to the hot 

junction, these not-so-energetic electrons are able to move easier in one metal than the other. The 

electrons that are moving from the hot end to the cold end have already absorbed a lot of energy, and are 

free to move almost equally well in both wires. This is why an electric current is developed in the loop.  

2.0 Thin Skin Calorimeter  

The purpose of a thin skin calorimeter is to measure an incident heat flux. Incident heat flux is the sum of 

the incoming radiation and convection. This instrument is created by welding a thermocouple to the back 

of a thin metal plate. The thickness of the wire used is dependent on the thickness of the metal plate. The 

face of the plate is painted black to minimize radiation heat loss. Thin skin calorimeters can be calibrated 

under a known heat flux generated by a cone calorimeter.  
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Measurement on the heat transfer rate to a metal calorimeter of finite thickness is based on the 

assumption of one-dimensional heat flow. After an initial transient, the response of the calorimeter on the 

exposed face of the thin skin calorimeter is calculated by using a lumped parameter analysis: 

 

 

 

Energy balance within the thin skin calorimeter is an energy balance which can be simplified as  

𝑞𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡 

Where qin is the incident heat flux and qout is the loss of heat from the plate to its surroundings. The loss 

can be summarized as  

𝑞𝑜𝑢𝑡 = 𝑞𝑐𝑜𝑛𝑣 − 𝑞𝑟𝑎𝑑 − 𝑞𝑐𝑜𝑛𝑑 

Where qconv is the convective losses to the surrounding; qrad is the radiative losses to the surroundings 

and qcond is the conductive losses.  

During a transfer of heat, heat loss should be take into account while calculating the flux. A thermic 

balance on a plate can be present as below, where � is emissivity of the plate; 

 

With thermal condition influenced by convection, radiation and internal energy generation, energy stored 

in the plate of the thin skin calorimeter can by represented as 

ρCpδ
𝑑𝑇

𝑑𝑡
= 𝜀𝑞𝑖

′′ − 𝜀𝜎(𝑇𝑃𝐿
4 − 𝑇0

4) − ℎ𝑐𝑜𝑣  (𝑇𝑃𝐿 − 𝑇∞) − ℎ𝑐𝑐(𝑇𝑃𝐿 − 𝑇0
𝑖)  
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Where left hand side of the equation is the change of energy stored in the plate of the thin skin 

calorimeter. The first term on the right hand side is the radiative energy absorbed by the plate. The second 

term is the radiative energy emitted by the plate.  The third term is the conductive heat loss. The last term 

is calculating the heat loss into the ceramic fiberboard which requires to use of a contact conductance 

factor (hcc). 

For our project, we are assuming the plate is lumped sum and thermally thin which allows us to use 

Newtonian cooling and contact conductance to represent transfer coefficient. In order to calculate the 

contact resistance, an explicit finite difference method is used to perform this analysis. An explicit finite 

difference method uses values at a current time step to evaluate values at a future time step, which can be 

represent as following equation 

∂T

∂t
=

𝑇𝑛
𝑖+1 − 𝑇𝑛

𝑖

∆𝑡
  

(Where i represents time and n represents node.) 

A boundary condition of initial node is also applied: 

BC1: − K
∂T

∂t
= ℎ𝑐𝑐(𝑇𝑃𝐿 − 𝑇0) 

Where T pl is the temperature of the plate and T0 is the temperature of the initial node 0.  

The boundary condition of the final node is: 

BC2: − K
∂T

∂t
= 0 & 𝑇 = 𝑇𝑛 

Where Tn is the temperature of the final node,n. To simplify our solution, addition layer of insulation is 

added on the back face and  the insulation is assumed to be perfect.  

By using the explicit finite difference method, the two boundary condition can be rewriten as following 

two equations for calculating the initial and final nodes temperature.  
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BC1: 𝑇𝑛
𝑖+1 = 2𝐹𝑜𝐵𝑖(𝑇𝑃𝐿 − 𝑇𝑛

𝑖) − 2𝐹𝑜(𝑇𝑛
𝑖 − 𝑇𝑛+1

𝑖 ) + 𝑇𝑛
𝑖   

BC2: 𝑇𝑛
𝑖+1 = 2𝐹𝑜(𝑇𝑛−1

𝑖 − 𝐵𝑖𝑇∞) − 2𝐹𝑜𝑇𝑛
𝑖 − 2𝐹𝑜𝐵𝑖 𝑇𝑛

𝑖 + 𝑇𝑛
𝑖 

Where Fo is the fourier number,which is a dimensionless term that describe the ratio of the heat 

conduction rate to the rate of thermal energy storage in a solid. 

Fo =
𝛼∆𝑡

∆𝑥2
 

Where Δt is time(s)，Δx is thickness(m) and α is thermal diffusivity (m2/s)  can be represent as  

α =
𝑘

𝜌𝐶𝑝
 

Where k is the thermal conductivity (kW/mK), ρ is the density (kg/m3) and Cp is specific heat (kJ/kgK). 

Bi is athe dimesionless Biot number which can be determined by using equation below, 

Bi =
ℎ𝑐𝑐∆𝑥

𝑘
 

Finally for an interior node, the explicit finite difference solution is  

Interior ∶  𝑇𝑛
𝑖+1 = 𝐹𝑜(𝑇𝑛+1

𝑖 + 𝑇𝑛−1
𝑖 ) + 𝑇𝑛

𝑖 − 2𝐹𝑜𝑇𝑛
𝑖 

Additionally, because explicit finite difference method is not always stable, in order to achieve the correct 

value from each time step. A specific condition is needed to be followed; 

Fo ≤
1

2
 

Fo(1 + Bi) ≤
1

2
 

Thin skin calorimeters measure the net heat flux experienced by a surface. By knowing the thin skin 

calorimeters’ material properties, and properties of the environment we are able to calculate the 

convective, radiative, conductive affects. By knowing these values, the incident heat flux may be 
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measured. For this purpose, thin skin calorimeters will be placed on the surface of the cladding being 

tested. This will give us incident heat flux distribution with respect to location and time. 

 

Step 1: Thin Skin Calorimeter Design 

Based off past MQP team experiment and our previous experiment results, the team decide to revise the 

design of the thin skin calorimeter to improve its performance for this project. 

The first layer of our thin skin calorimeter is a 2-inch-by-2-inch ASTI 301 stainless steel plate, which is 

spray painted black to minimize heat loss and absorb radiation. There are two metal wires are welded on 

the back of the plate and on the other side of these two wires are two type k thermocouples. This set up 

mimics the thermocouple concept where the plate acts as the third metal. The next two layer are 13mm 

thick substrates that are made of ceramic fiberboard. The last layer is a 16.6 mm thick gypsum wallboard.  

Based on our B term experimental results, the team decide to create two different set up. The first set up 

we drill a hole in the center of the second layer and have the wire attached to the plate run through and out 

in between the two ceramic fiberboards. Have another thermocouple sitting in between two ceramic 

fiberboards and one in between ceramic fiberboard and gypsum wallboard. 

To secure these layers and minimize the air gap within the setup, small ditches in between Ceramic 

Fiberboard and Gypsum Board (Drywall) are done to create space for placing thermocouple wire. We 

then use Ceramic fiberboard material to fulfill the hole on the side of thin skin calorimeter to minimized 

air gap and radiative heat transfer.  Two metal screws are used to ensure the layers are tightly bounded. 

Figure 24 provides a schematic of our first thin skin calorimeters set up. 
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Figure 24: Thin Skin Calorimeter Design 1 

 

The second set up for our thin skin calorimeter has “Thermocouple 1” only go through stainless steel 

plate to avoid drilling hole in the first ceramic fiberboard and prevent air gap. Figure 25 provides a 

schematic of our second thin skin calorimeters set up. 

 

Figure 25: Thin Skin Calorimeter Design 2 

Before the thin skin calorimeters are placed under the cone calorimeter, they are wrapped with two layers 

of insulation. The insulation is 4 inch thick Cerablanket. The following figure provide the insulation set-

up. 
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Figure 26: Thin Skin Calorimeter Insulation Set Up 

 

Step 2: Finite Different Method Model 
 

In order to better understand the thermal characteristics of thin skin calorimeter and better utilize the cone 

test data. A one dimensional finite difference model is created to determine the temperature distribution of 

the sample. Semi-infinite method is then utilized to verify the accuracy of the FDM model. 

Finite Difference Method 

With an assumption of twenty-six nodes that were distributed through the thin skin calorimeter. The first 

node locates at surface of the plate, the eighth node locates between the plate and ceramic fiberboard. The 

sixteenth node is at the interface between ceramic fiberboard and gypsum wall board.  

Two different boundary conditions were used for the property estimation. The initial condition is simply 

using the thermocouple data from the surface of the plate.  

The sample calculation of initial node is shown below: 

Change in Energy = 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡 𝑜𝑓 𝑁𝑜𝑑𝑒 − 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡 𝑜𝑓 𝑁𝑜𝑑𝑒 
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ρCp
∆𝑥

2

(𝑇𝑛
𝑖+1 − 𝑇𝑛

𝑖)

𝑑𝑡
= ℎ𝑐𝑐 (𝑇𝑃𝐿 − 𝑇𝑛

𝑖) − 𝑘
(𝑇𝑛

𝑖 − 𝑇𝑛+1
𝑖 )

𝑑𝑥
 

𝑇𝑛
𝑖+1 =

2 × ℎ𝑐𝑐 × ∆𝑡

ρCp ∆𝑥
 (𝑇𝑃𝐿 − 𝑇𝑛

𝑖) −
2 × 𝑘∆𝑡

ρCp ∆𝑥2 (𝑇𝑛
𝑖 − 𝑇𝑛+1

𝑖 ) + 𝑇𝑛
𝑖 

Because:  

 Fo =
𝛼∆𝑡

∆𝑥2
;  α =

𝑘

𝜌𝐶𝑝
 

Bi =
ℎ𝑐𝑐∆𝑥

𝑘
 

FoBi =
ℎ𝑐𝑐∆𝑡

ρCp ∆𝑥
 

Therefore 

Boundary Condition (BC) 1: 𝑇𝑛
𝑖+1 = 2𝐹𝑜𝐵𝑖(𝑇𝑃𝐿 − 𝑇𝑛

𝑖) − 2𝐹𝑜(𝑇𝑛
𝑖 − 𝑇𝑛+1

𝑖 ) + 𝑇𝑛
𝑖  

The equation for each interior node is derived below, 

Interior: 

𝑞𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡 

ρCpδ
(𝑇𝑛

𝑖+1 − 𝑇𝑛
𝑖)

𝑑𝑡
= 𝑘

(𝑇𝑛−1
𝑖+1 − 𝑇𝑛

𝑖)

𝑑𝑥
− 𝑘

(𝑇𝑛
𝑖+1 − 𝑇𝑛+1

𝑖 )

𝑑𝑡
 

𝑇𝑛
𝑖+1 = 𝑇𝑛

𝑖 +
𝑘∆𝑡

𝜌∁𝑝∆𝑥2 (𝑇𝑛+1
𝑖 + 𝑇𝑛−1

𝑖 ) −
2𝑘∆𝑡

𝜌∁𝑝∆𝑥2
𝑇𝑛

𝑖 

Fo =
𝛼∆𝑡

∆𝑥2
;  α =

𝑘

𝜌𝐶𝑝
 

Fo =
𝑘∆𝑡

𝜌𝐶𝑝 × ∆𝑥2
 

𝑇𝑛
𝑖+1 = 𝐹𝑜(𝑇𝑛+1

𝑖 + 𝑇𝑛−1
𝑖 ) + 𝑇𝑛

𝑖 − 2𝐹𝑜𝑇𝑛
𝑖 
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The second boundary condition for the back face of the thin skin calorimeter is shown below, 

Storage Energy = 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡 𝑜𝑓 𝑁𝑜𝑑𝑒 − 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡 𝑜𝑓 𝑁𝑜𝑑𝑒 

ρCp
∆𝑥

2

(𝑇𝑛
𝑖+1 − 𝑇𝑛

𝑖)

𝑑𝑡
= 𝑘

𝑇𝑛−1
𝑖 − 𝑇𝑛

𝑖

𝑑𝑥
− ℎ𝑐𝑐(𝑇𝑛

𝑖 − 𝑇∞) 

𝑇𝑛
𝑖+1 − 𝑇𝑛

𝑖 =
2 × 𝑘∆𝑡

ρCp ∆𝑥2
(𝑇𝑛−1

𝑖 − 𝑇𝑛
𝑖) −

2 × ℎ𝑐𝑐 × ∆𝑡

ρCp ∆𝑥
 (𝑇𝑛

𝑖 − 𝑇∞) 

Because  

FoBi =
ℎ𝑐𝑐∆𝑡

ρCp ∆𝑥
 

𝑇𝑛
𝑖+1 − 𝑇𝑛

𝑖 = 2𝐹𝑜(𝑇𝑛−1
𝑖 − 𝑇𝑛

𝑖) − 2𝐹𝑜𝐵𝑖 (𝑇𝑛
𝑖 − 𝑇∞) 

BC2: 𝑇𝑛
𝑖+1 = 2𝐹𝑜(𝑇𝑛−1

𝑖 − 𝐵𝑖𝑇∞) − 2𝐹𝑜𝑇𝑛
𝑖 − 2𝐹𝑜𝐵𝑖 𝑇𝑛

𝑖 + 𝑇𝑛
𝑖 

Semi- Infinite Method  

In order to successfully conduct correct data analysis in a solid, it is important to ensure that the finite 

different method is written correctly. Therefore, the team decide to use semi-infinite solid analysis to 

verify the finite different method.  The semi-infinite solid boundary condition assumes a constant incident 

heat flux at the surface with convective and radiative heat losses. Carslaw and Jaeger define the following 

equation, 1965 (Heat transfer Book) 

𝑇(𝑥, 𝑡) − 𝑇𝑖

𝑇∞ − 𝑇𝑖
= 𝑒𝑟𝑓𝑐 (

𝑥

2√𝛼𝑡
) − exp (

ℎ𝑐𝑐𝑥

𝑘
−

ℎ2𝛼𝑡

𝑘2 ) 𝑒𝑟𝑓𝑐(
𝑥

2√𝛼𝑡
+

ℎ𝑐𝑐√𝛼𝑡

𝑘
) 

Detail Verification is explained in Appendix C2. 
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Step 3: Cone Test and Experiment Analysis  

Cone Calorimeter 

In order to calibrate our thin skin calorimeters to read an incident heat flux we need to use a cone 

calorimeter to supply a known incident heat flux. The cone is an upside down stainless steel dome with 

coils running in the inside of the dome. These coils heat up to a known temperature and release a known 

heat flux down toward the testing area. The cone uses a temperature controller in order to control the 

output temperature of the cone. For our experiments. The temperature settings are 25kW/m2 (530 °C), 50 

kW/m2 (730 °C) and 75 kW/m2 (840 °C). 

 

Figure 27: The cone side view 

 

 

 

Figure 28: The cone cross sectional view 
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Figure 29: The cone top view 

The cone calorimeter reads temperatures by attaching our thermocouples into the correct female adaptors, 

which located below the cone testing area. The temperature data in each one-second time interval is then 

computed through a developed program “Lab View”. For our experiment, three thin skin calorimeters 

(assumed with same properties which is listed as the table below) were run under the cone for 10 minutes. 

Table 9: Property of Thin Skin Calorimeter 

Plate Properties Values 

Length (m) 0.05 

Width (m) 0.05 

Thickness (m) 0.044  (0.00146 for the plate) 

Conductivity (kw/mK) 0.001 

Density (kg/m3) 80300 

Specific Heat(kJ/kgK) 1 
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Figure 30: Thin Skin Calorimeter Sketch under Cone Test 

Cone Experiment Results- Temperature Vs Time 

In this section, the team studied the temperature distribution profile for all three boundary condition of 

three samples that has similar thermal and physical properties. The raw data was first analyzed by 

subtracting the initial temperature from each time step to maintain the starting temperature is at constant 

zero.  
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Boundary Condition 1 

Heat Flux of 25kw/m2 

 

Figure 31: Heat Flux of 25kw/m2 
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Heat Flux of 50kw/m2 

 

Figure 32: Heat Flux of 50kw/m2 
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Heat Flux of 75 kw/m2 

 

Figure 33: Heat Flux of 75 kw/m2 
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Interior Condition 

Heat Flux of 25kw/m2 

 

Figure 34: Heat Flux of 25kw/m2 interior condition 
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Heat Flux of 50kw/m2 

 

Figure 35: Heat Flux of 50kw/m2 interior condition 
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Heat Flux of 75kw/m2 

 

Figure 36: Heat Flux of 75kw/m2 interior condition 
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Boundary Condition 2  

Heat Flux of 25kw/m2 

 

Figure 37: Heat Flux of 25kw/m2 boundary condition 2 
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Heat Flux of 50kw/m2 

 

Figure 38: Heat Flux of 50kw/m2 boundary condition 2 

Heat Flux of 75kw/m2 

 

Figure 39: Heat Flux of 75kw/m2 boundary conditions 2 
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From our experimental data, all three boundary conditions appear to have similar trend and increment for 

each samples under different heat flux. In graphs above we discover that experimental error has cause 

temperature difference among samples by ± 50 °C, therefore the average of all trails were used to 

minimize the experimental error. 
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Overall Temperature Profile  

Next, we studied the average temperature profiles of three thermal couples and we found all temperature 

profiles follow a similar trend under different heat flux. 

 

Figure 40: Overall Temp Profile 25 kw/m^2 
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Figure 41: Overall Temp Profile 50 kw/m^2 

 

Figure 42: Overall Temp Profile 75 kw/m^2 
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Comparison Results Temperature vs Time 

In this section, we will be comparing the plate, middle and bottom temperature distribution profiles under 

three different heat flux. 

We will also study how temperature various with the depth of each thermocouple. 

Plate Comparison 

 

Figure 43: Plate Comparison 
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Middle Comparison 

 

Figure 44: Middle Comparison 
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Bottom Comparison 

 

Figure 45: Bottom Comparison 
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Comparison Results Temperature vs Depth  

Heat Flux of 25kw/m2  

 

Figure 46: Comparison Results Temperature vs Depth Heat Flux of 25kw/m2 
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Heat Flux of 50kw/m2 

 

Figure 47: Comparison Results Temperature vs Depth Heat Flux of 50 kw/m2 

Heat Flux of 75kw/m2 

 

Figure 48: Comparison Results Temperature vs Depth Heat Flux of 75kw/m2 
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Step 4: Thin Skin Calibration 

In order to calibrate our thin skin calorimeter (TSC) we will first need to develop a correct finite 

difference model. Once the correct model is determined, we will use experimental plate temperature data 

from cone test to evaluate contact conductance factor (hcc). Lastly, with known incident heat flux we will 

vary contact conductance and thermal properties parameters to better calibrate our model to match with 

our thin skin calorimeter. 

For this project, we used 25kw/m2, 50 kw/m2and 75 kw/m2. The equations we use to calibrate our incident 

heat flux is: 

ρCpδ
𝑑𝑇𝑃𝐿

𝑑𝑡
= 𝜀𝑞𝑖

′′ − 𝜀𝜎(𝑇𝑃𝐿
4 − 𝑇0

4) − ℎ𝑐𝑜𝑣  (𝑇𝑃𝐿 − 𝑇∞) − ℎ𝑐𝑐(𝑇𝑃𝐿 − 𝑇0
𝑖) 

Where Tpl is the temperature of the thin skin calorimeter, T∞ is the ambient temperature, T0 is the 

temperature of the first node using finite difference method and hcc is the contact conductance between the 

thin skin plate and the ceramic fiberboard.  

FDM & Semi-infinite Model Verification on Ceramic Fiber Board 

In order to solve for temperatures changes within a solid, we will first need use finite difference method 

to simulate. When a finite difference analysis is used to solve for the temperatures in a solid it is 

important to ensure that the model is written correctly. For verification purpose, we then use semi-infinite 

analysis to ensure the accuracy of finite difference method and boundary conditions... 

To comprise the sample, we assume 26 nodes and 25 mm of thickness for the finite difference model. 

Then use following thermal and material properties of ceramic fiberboard to calculate temperature for 

each node. 
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Table 10: Thermal and Material Properties of CFB 

Tambient  700 k 

k 0.002 kw/mk 

CFB ( ρ ) 250 Kg/m3 

Cp 1 J/gk 

Hcc (Contact Conductance factor) 0.8 Kw/m2k 

Dx 0.001 m 

 

α =
𝑘

𝜌𝐶𝑝
= 0.0000008 

Fo =
𝛼∆𝑡

∆𝑥2
= 0.048 

Additionally, because explicit finite difference method is not always stable, in order to achieve the correct 

value from each time step, fourier number need to follow condition below; 

Fo ≤
1

2
 

Fo(1 + Bi) ≤
1

2
 

Biot number 1 =
ℎ𝑐𝑐∆𝑥

𝑘
= 4 

Biot number 2 =
ℎ𝑐𝑐∆𝑥

𝑘
= 0 

Dt=0.06s 

With given parameters, Newtonian equations of two boundary conditions and interior node were used to 

calculate the temperature changes over time.  

 Boundary Condition1:  
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 𝑇𝑛
𝑖+1 = 2𝐹𝑜𝐵𝑖(𝑇𝑃𝐿 − 𝑇𝑛

𝑖) − 2𝐹𝑜(𝑇𝑛
𝑖 − 𝑇𝑛+1

𝑖 ) + 𝑇𝑛
𝑖 

 Boundary Condition 2: 

𝑇𝑛
𝑖+1 = 2𝐹𝑜(𝑇𝑛−1

𝑖 − 𝐵𝑖𝑇∞) − 2𝐹𝑜𝑇𝑛
𝑖 − 2𝐹𝑜𝐵𝑖 𝑇𝑛

𝑖 + 𝑇𝑛
𝑖 

 Interior Node: 

𝑇𝑛
𝑖+1 = 𝐹𝑜(𝑇𝑛+1

𝑖 + 𝑇𝑛−1
𝑖 ) + 𝑇𝑛

𝑖 − 2𝐹𝑜𝑇𝑛
𝑖 

Based on given condition, two boundary conditions are Node 1 &26 (Thermocouple 1 & Thermocouple 

3) and the interior condition is Node 12. Sample calculations are included in Appendix C1. Detail 

calculation excel file can be found in Appendix C2. 

Figure 49 and 50 show the comparison between finite difference and semi-infinite method. 

 

Figure 49: FDM & Semi-Infinite Temperature History Comparison 
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Figure 50: FDM & Semi-Infinite Temperature Profile Comparison 

 

As the graphs show, the results for semi-infinite and finite difference methods are similar which 

concludes the finite difference boundary conditions are correctly derived and this method is correctly 

modeled.  

Contact Conductance (hcc) verification 

By assuming the plate is a lumped sum and thermally thin, this will allow us to include radiative, 

conductive and convective loss between the plate and the substrate into one heat transfer coefficient –

contact conductance (hcc). By varying the contact conductance, we will be able further calibrate our thin 

skins.  
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data to calibrate TSCs by using known thermal and physical properties of plate, ceramic fiberboard (CFB) 
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Having experimental cone test data, we are able to evaluate contact conductance value when the 

comparison graph between the cone test and FDM of interior and back face temperature distribution are 

matching or close to each other. In this section, detail hcc verification process under different incident 

heat flux are included below. 

Heat Flux of 25kw/m2 

First, with given cone test plate results, polynomial 4th order equation is generated below. 

Table 11: Temperature Debrief Data under Heat Flux of 25kw/m2 

Time 

Plate 

Average 

0 0 

1 1.961949408 

2 3.919767795 

3 5.862920103 

4 7.792729086 

5 9.710468233 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

648 339.4191705 

649 339.4307485 

650 339.4610757 

651 339.531452 

652 339.5905913 

653 339.6309314 
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Y = (−3.2081 × 10−9 × 𝑥4) + (6.5991 × 10−6 × 𝑥3) − (0.005311 × 𝑥2) + (2.0684 × 𝑥) − 1.4458 

Next by using polynomial equation above, we are able to obtain a close matching plate temperature graph 

between finite difference analysis and cone test. 

 

Figure 51: Plate Temperature Simulation with FDM Under 25kw/m2 

By using plate temperature distribution as the heater for CFB and GWB and equations (1, 2 and 3) which 

can be found below, we will be able to calculate temperature of each node (between CFB and GWB).  

BC1: 𝑇𝑛
𝑖+1 = 2𝐹𝑜𝐵𝑖(𝑇𝑃𝐿 − 𝑇𝑛

𝑖) − 2𝐹𝑜(𝑇𝑛
𝑖 − 𝑇𝑛+1

𝑖 ) + 𝑇𝑛
𝑖  ( 1 ) 

BC2: 𝑇𝑛
𝑖+1 = 2𝐹𝑜(𝑇𝑛−1

𝑖 − 𝐵𝑖𝑇∞) − 2𝐹𝑜𝑇𝑛
𝑖 − 2𝐹𝑜𝐵𝑖 𝑇𝑛

𝑖 + 𝑇𝑛
𝑖  ( 2 ) 

Interior ∶  𝑇𝑛
𝑖+1 = 𝐹𝑜(𝑇𝑛+1

𝑖 + 𝑇𝑛−1
𝑖 ) + 𝑇𝑛

𝑖 − 2𝐹𝑜𝑇𝑛
𝑖  ( 3 ) 

To determine a good estimation of hcc, we will compare the FDM simulation on thermal couple (TC) 2 

and 3 with cone test of middle and bottom temperature profile using following condition and material 

properties of ceramic fiberboard (CFB) and gypsum wallboard (GWB).  

-50

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800

Te
m

p

Time

25 kw Cone Test Vs FDM Plate Temperature

FDM Plate

Actual Cone Test plate



78 
 

Table 12: Thermal Properties of Plate, CFB and GWB for 25kw/m2. 

This figure presents when hcc value is set equal to 0.085kw/m2k, will provide the closest comparison 

graphs between cone test and finite difference method for TC2 and TC3 temperature distribution over 

time under 25 kw/m2. 

 

Figure 52: hcc verification under 25kw/m2 

 

Heat Flux of 50kw/m2 
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Table 13: Temperature Debrief Data under Heat Flux of 50kw/m2 

Time 

Plate 

Average 

0 0 

1 5.198229383 

2 10.37212566 

3 15.50259618 

4 20.56433744 

5 25.58987096 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

648 495.8343408 

649 495.9621448 

650 496.1315698 

651 339.531452 

652 339.5905913 

653 339.6309314 

 

Y = (−1.1917 × 10−8 × 𝑥4) + (2.2477 × 10−5 × 𝑥3) − (0.015182 × 𝑥2) + (4.3798 × 𝑥) − 26.1651 

By using the equation above, a close match between FDM plate and cone test is generated.  
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Figure 53: Plate Temperature Simulation with FDM Under 50kw/m2 

By using plate temperature distribution as the heater for CFB and GWB and equations (1, 2 and 3), we 

will be able to calculate temperature of each node (between CFB and GWB).  

In order to obtain a good estimation of hcc, we will compare the FDM simulation on thermal couple (TC) 

2 and 3 with cone test of middle and bottom temperature profile using following condition and material 

properties of ceramic fiberboard (CFB) and gypsum wallboard (GWB).  

Table 14: Thermal Properties of Plate, CFB and GWB for 50kw/m2. 

 

Figure 4 shows the closest comparison graphs between cone test and finite difference method for TC2 and 

TC3 temperature distribution over time under 50 kw/m2 when hcc value is set equal to 0.09 kw/m2k.  
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Figure 54: hcc verification under 50kw/m2 

  

-50

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

Te
m

p

Time

50 kw/m2 Cone Test  vs FDM

FDM TC2

FDM TC3

50kw Middle Cone

50 kw Bottom Cone



82 
 

Heat Flux of 75kw/m2 

Under heat flux of 75kw/m2, we are able to generate a fourth order polynomial equation by using given 

cone test data.  

Table 15: Temperature Debrief Data under Heat Flux of 50kw/m2 

Time 

Plate 

Average 

0 0 

1 6.510686291 

2 12.95893351 

3 19.39018428 

4 25.6917769 

5 32.03166916 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

535 557.0331748 

536 557.0435373 

537 557.0498674 

538 557.1267336 

539 557.1377062 

540 557.1916333 

 

Y = (−4.2869 × 10−8 × 𝑥4) + (5.9644 × 10−5 × 𝑥3) − (0.030038 × 𝑥2) + (6.5718 × 𝑥) + 8.0043 
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By using polynomial equation above, a close match between FDM plate and cone test is shown below, 

 

Figure 55: Plate Temperature Simulation with FDM Under 75kw/m2 

By using plate temperature distribution as the heater for CFB and GWB and equations (1, 2 and 3), we 

will be able to calculate temperature of each node (between CFB and GWB).  

In order to obtain a good estimation of hcc, we will compare the FDM simulation on thermal couple (TC) 
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Table 16: Thermal Properties of Plate, CFB and GWB for 75kw/m2. 

 

Figure 5 shows the closest comparison graphs between cone test and finite difference method for TC2 and 

TC3 temperature distribution over time under 50 kw/m2 when hcc value is set equal to 0.09 kw/m2k.  

 

Figure 56: hcc verification under 75kw/m2 

Calibration with Constant Contact Conductance 

Now that with verified contact conductance and finite difference model, we can calibrate our thin skin 
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For our project, temperature setting of 530 °C gives a heat flux of 25 kW/m2, 730 °C gives a heat flux of 

50 kW/m2 and 840 °C gives us a heat flux of 75 kW/m2.  

With known govern equation below and following material properties, we are able to determine heat 

storage within each parameter.  

Table 17: Material Properties for TS Calibration 

T ambient 0 c 

hcc of CFB 0.09 kw/M2k 

dx 0.001 m 

rho 7850 kg/m3 

cp 0.8 J/Kg*K 

stefan-boltzmann constant 5.67E-08 w/m2k4 

Convection heat transfer coefficient   15 w/m2*k 

 

 

 

Figures following show calibration for our thin skin under three incident heat flux. 
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25kw/m2 

 

Figure 57: Calibration of 25kw IHF 

 

50kw/m2 

 

Figure 58: Calibration of 50kw IHF 
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75kw/m2 

 

Figure 59: Calibration of 75kw IHF 

Figures above show that the overall incident heat flux from FDM model contains some errors. The 

fluctuation of the heat loss into ceramic fiberboard affects the heat flux after 200s, which tells us to 

consider a better calibration in order to improve simulation on our thin skins. Another reason why there 

are errors occurred is delayed response from TCs and varying hcc value gives no significant change 

within the IHF calibration.  
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Calibration with Dynamic Contact Conductance  

With the concern of if the calibration process from last section is a good representation for our project. In 

this section the team decide to study how radiation affect the calibration by dividing the contact 

conductance into two parts which can be represents as  

ℎ𝑐𝑐 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = ℎ 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + ℎ 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

After determine dynamic hcc values, we will then compare the incident heat flux calibration with the 

previous calibration process (constant hcc) to determine if radiation can improve the calibration process 

results.  

To study the effects of radiation, we will first use the cone experimental data and temperature from each 

node using FDM. We will then use the following equation to determine a sequence of dynamic h 

radiation.  

ℎ𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎 (𝑇𝑃𝐿
2 + 𝑇𝐶𝐹𝐵

2 )(𝑇𝑃𝐿 + 𝑇𝐶𝐹𝐵)  

Where 𝜎 is Stefan-bolzmann constant, TPL is plate temperature from cone test. TCFB is temperature of node 

one which locates between plate and ceramic fiberboard.  

With known thermal conductivity of air is 0.04w/mk, we then use h radiation sequence to backtrack 

thickness of air gap between plate and CFB when the h cond gives the closest trend of known incident 

heat flux.  

ℎ𝑐𝑜𝑛𝑑 =
𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑎𝑖𝑟

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑖𝑟 𝑔𝑎𝑝
 

Sample Calculation for Incident Heat Flux of 25kw/m2k is shown below, 

Given condition  
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Table 18: Sample Calculation for Incident Heat Flux of 25kw/m2k 

 

k 0.0002 kw/mk 

a 8.88889E-07   

dx 0.001 m 

Fo 0.053333333   

rho 250 kg/m3 

Stefan Boltzmann Constant 5.67E-08 W/m2k4 

cp 0.9 J/gk 

 

ℎ𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎 (𝑇𝑃𝐿
2 + 𝑇𝐶𝐹𝐵

2 )(𝑇𝑃𝐿 + 𝑇𝐶𝐹𝐵) 

𝐵𝑖 =
ℎ𝑐𝑐 ∗ 𝑑𝑥

𝑘
 

All temperature value for radiative calculation is in K.  

𝑇 (𝐾) = 𝑇(℃) + 273 + 𝑇∞ 

h radiation is then calculated at listed below 

  



90 
 

Table 19: Calibration values 

 

The closest trend line that we are able to get under 25kw/m2 incident heat flux is when  

ℎ𝑐𝑜𝑛𝑑 = 0.066
𝑘𝑤

𝑚2𝑘
; 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑖𝑟 𝑔𝑎𝑝 = 0.0006061 𝑚 

The comparison graph between two calibration processes are shown below. 
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Figure 60: 25 kw/m^2 Dynamic & Constant hcc Comparison 

 With similar approach we are able to 
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; 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑖𝑟 𝑔𝑎𝑝 = 0.000667 𝑚 

 

The comparison graph between two calibration processes are shown below. 
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Figure 61: 50 kw/m^2 Dynamic & Constant hcc Comparison 

The closest trend line that we are able to get under 50kw/m2 incident heat flux is when  

ℎ𝑐𝑜𝑛𝑑 = 0.066
𝑘𝑤

𝑚2𝑘
; 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎𝑖𝑟 𝑔𝑎𝑝 = 0.000606061 𝑚 

The comparison graph between two calibration processes are shown below. 
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Figure 62: 75 kw/m^2 Dynamic & Constant hcc Comparison 

Through figures above, we discover that radiation has some minor effects to our model. However, these 

minor changes do not improve the delayed response time nor as the fluctuation phenomenon. Two 

calibration process provides error of ±10kw/m2. Since the fluctuation of the heat loss into ceramic 

fiberboard only affects the heat flux after 200s and for our project we will be working on time base of 

minutes (10-40min), we can state that this dynamic hcc simulation is a good model for our project.  

Detailed calibration calculation for dynamic hcc is listed in appendix C5. 
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Appendix C 

Appendix C1:  Finite Difference Method Boundary Condition Sample Calculation 

Following calculation shows, how temperature of each node at different location is determined.  

Node 1 (BC1) 

𝑇∞ = 700 𝑘;  𝑇𝑛
𝑖 = 𝑁𝑜𝑑𝑒 1 𝑎𝑡 𝑇𝑖𝑚𝑒 0𝑠 = 25 𝑘; 

 𝑇𝑛+1
𝑖 = Node 2 at Time 0s = 25 k; Fo = 0.048; Bi = 4 

𝑇𝑛
𝑖+1 = 2𝐹𝑜𝐵𝑖(𝑇∞ − 𝑇𝑛

𝑖) − 2𝐹𝑜(𝑇𝑛
𝑖 − 𝑇𝑛+1

𝑖 ) + 𝑇𝑛
𝑖  (1) 

 = 2 × 0.048 × 4(𝑇∞ − 25) − 2 × 0.048(25 − 25) + 25 = 284.2 𝑘 

Node 26 (BC2) 

𝑇𝑛−1
𝑖 = 𝑁𝑜𝑑𝑒 25 𝑎𝑡 𝑇𝑖𝑚𝑒 0𝑠 = 25𝑘 ;   𝑇𝑛

𝑖 = 𝑁𝑜𝑑𝑒 26 𝑎𝑡 𝑇𝑖𝑚𝑒 0𝑠 = 25 𝑘; 𝐵𝑖 = 0  

𝑇𝑛
𝑖+1 = 2𝐹𝑜(𝑇𝑛−1

𝑖 − 𝐵𝑖𝑇∞) − 2𝐹𝑜𝑇𝑛
𝑖 − 2𝐹𝑜𝐵𝑖 𝑇𝑛

𝑖 + 𝑇𝑛
𝑖  (2) 

= 2 × 0.048(25 − 0 × 25) − 2 × 0.048 × 25 − 2 × 0.048 × 0 × 25 + 25 = 25 

Node 12 (Interior) 

 𝑇𝑛+1
𝑖 = Node 13 at Time 0s = 25 k; 𝑇𝑛−1

𝑖 = 𝑁𝑜𝑑𝑒 11 𝑎𝑡 𝑇𝑖𝑚𝑒 0𝑠 = 25𝑘 ;   

𝑇𝑛
𝑖 = 𝑁𝑜𝑑𝑒 12 𝑎𝑡 𝑇𝑖𝑚𝑒 0𝑠 = 25 𝑘; 

𝑇𝑛
𝑖+1 = 𝐹𝑜(𝑇𝑛+1

𝑖 + 𝑇𝑛−1
𝑖 ) + 𝑇𝑛

𝑖 − 2𝐹𝑜𝑇𝑛
𝑖  (3) 

= 0.048 × (25 + 25) + 25 − 2 × 0.048 × 25 = 25  
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Appendix C2: Finite Difference Method and Semi-Infinite Method Verification 

Finite Difference  

With given condition  

X:Thickness of Plate (m) 0.025 

Ti: Initial Temperature ( C ) 25 

Dx: Distance between each node (m) 0.001 

K: Thermal Conductivity (kw/mK) 0.016 

Cp: Specific Heat of the plate (kJ/kgK) 1 

T∞:Ambient Temperature ( C ) 30 

Hcc: Contact Conductance (kw/m2 K) 0.1 

ρ:Density (kg/m3) 7850 

Table 20: Finite difference method given conditions 

Thermal diffusivity is calculated by using  

α =
𝑘

𝜌𝐶𝑝
 

α =
0.016kw/mk

7850kg/m3 × 1kJ/kgK
= 2.038 × 10−6 

In order to achieve the stable condition; 

Fo ≤
1

2
     ;  Fo =

𝛼∆𝑡

∆𝑥2 

 

With Dx of 0.001m 

Dt =
0.5 ∗ 0.001m2

2.038 × 10−6
= 0.2 𝑠 

fourier number is calculated as a fixed value: 
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Fo =
2.038 × 10−6 × 0.2𝑠

0.001𝑚2
= 0.4076 

Biot Number is calculated under different node 

Bi =
ℎ𝑐𝑐∆𝑥

𝑘
 

 

Node 1: Bi =

0.1𝑘𝑤
𝑚2 ∗ 0.001𝑚

0.016𝑘𝑤/𝑚𝑘
= 0.00625 

Node 26 Condition 1: (same hcc value): Bi =0.00625 

     Node 26 Condition2: (with hcc=0): Bi=0 
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Semi-Infinite Difference Method 

With given condition  

Table 21: Semi-infinite difference method given conditions 

X:Thickness of Plate (m) 0.025 

Ti: Initial Temperature ( C ) 25 

Dx: Distance between each node (m) 0.001 

K: Thermal Conductivity (kw/mK) 0.016 

Cp: Specific Heat of the plate (kJ/kgK) 1 

T∞:Ambient Temperature ( C ) 30 

Hcc: Contact Conductance (kw/m2 K) 0.1 

ρ:Density (kg/m3) 7850 

Thermal diffusivity is calculated by using  

α =
𝑘

𝜌𝐶𝑝
 

α =
0.016kw/mk

7850kg/m3 × 1kJ/kgK
= 2.038 × 10−6 

In order to achieve the stable condition; 

Fo ≤
1

2
     ;  Fo =

𝛼∆𝑡

∆𝑥2 

 

With Dx of 0.001m 

Dt =
0.5 ∗ 0.001m2

2.038 × 10−6
= 0.2 𝑠 

fourier number is calculated as a fixed value: 
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Fo =
2.038 × 10−6 × 0.2𝑠

0.001𝑚2
= 0.4076 

Biot Number is calculated under different node 

Bi =
ℎ𝑐𝑐∆𝑥

𝑘
 

 

Node 1: Bi =

0.1𝑘𝑤
𝑚2 ∗ 0.001𝑚

0.016𝑘𝑤/𝑚𝑘
= 0.00625 

Node 26 Condition 1: (same hcc value): Bi =0.00625 

     Node 26 Condition2: (with hcc=0): Bi=0 

𝑇(𝑥, 𝑡) − 𝑇𝑖

𝑇∞ − 𝑇𝑖
= 𝑒𝑟𝑓𝑐 (

𝑥

2√𝛼𝑡
) − exp (

ℎ𝑐𝑐𝑥

𝑘
−

ℎ2𝛼𝑡

𝑘2 ) 𝑒𝑟𝑓𝑐 (
𝑥

2√𝛼𝑡
+

ℎ𝑐𝑐√𝛼𝑡

𝑘
) ( 1.2) 

Node 1: 

𝑇(𝑥, 𝑡) − 25℃

30℃ − 25℃
= 𝑒𝑟𝑓𝑐 (

0.00025𝑚

2√2.038 × 10−6 × 0.2𝑠
) 

− exp (
0.1kw/m2 K × 0.00025m

0.016𝑘𝑤/𝑚𝑘

−
0.1kw/m2 K2 × 2.038 × 10−6 × 0.2𝑠

0.016𝑘𝑤/𝑚𝑘2 ) 𝑒𝑟𝑓𝑐(
0.00025𝑚

2√2.038 × 10−6 × 0.2𝑠

+
0.1kw/m2 K × √2.038 × 10−6 × 0.2𝑠

0.016𝑘𝑤/𝑚𝑘2
) 

T(x, t) = 25.0156 

Node 2-26 is then be calculated with same equation but with changing thickness and time, detail 

calculation results can be found from the following table; 

Verification Excel file is included on USB submission. 
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Table 22: Semi-Infinite Difference Method Calculation Results (Node 1-26) 
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Appendix C3: Contact Conductance Verification   

In this section, verification excel file can be found on USB submission. 

Appendix C4: Constant hcc Calibration Calculation  

In this section, detail calibration excel file can be found on USB submission. 

Appendix C5: Dynamic hcc Calibration Calculation  

In this section, detail calibration excel file can be found on USB submission. 
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Appendix D: Back face Temperature 

Material Properties 
The rig was built with two aluminum alloys, 6061- T6 and 6061-T6516, which have a melting point of 

650C; 923K which is lower than the upper temperatures the intermediate scale rig will be subjected to 

(upwards of 800C; 1073K) during fire tests. Insulation is therefore necessary to limit the temperatures the 

intermediate scale rig will be exposed to during fire tests.  

While the melting temperature of the aluminum is 650C; 923K, its material properties are affected at 

significantly lower temperatures. The previous MQP completed in April, 2015 by Sean Gills, Nicholas 

Houghton, David Scott, and Joseph Weiler researched the temperature at which long term thermal effects 

would take place on the intermediate scale rig. It was determined as a recommendation that the 

temperature be limited to 2/3 of the temperature of aging during manufacturing. Since aging occurs 

approximately at 180C; 453K the limiting temperature threshold was determined to be 120C; 393K. The 

MQP group determined this by investigating the losses to the yield strength, and tensile strength, and 

increase in strain with elevated temperatures. Also investigated was the temperatures at which the 

aluminum is heated, formed, and aged during manufacturing since the aluminum the rig is composed of is 

treated.  

The MQP team also considered the temperature at which the aluminum would cause harm with human 

interaction. A study by Ungar and Stroud at the NASA/Johnson Space Center determined that any 

temperature of aluminum below 45C; 318K would be below the threshold of pain for human touch. It 

would be ideal to keep the temperature of the back of the aluminum below 45C; 318K, using insulation.  

Another consideration we will be taking into account because of the setup of our practice wall, is the 

dehydration of sheetrock, or gypsum board. Since the practice wall is composed of a front face of 

sheetrock for the first practice test, and then insulation, followed by the sheetrock for the second practice 

test. We would like to ensure that the second panel of sheetrock will be in sufficient condition for a 

second practice test, and be able to support a safe temperature at the back face. From several studies on 

gypsum by Mehaffey et al, Gerlich et al, McIntosh et al, gypsum board has been determined to contain 

approximately 21% water by weight. When gypsum boards are heated to temperatures above 80C; 353K, 
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the chemically bound water dissociates from its crystal lattice and evaporates. This process, known as 

“dehydration” of gypsum, and takes place at temperatures between ~80 C and ~250 C (353K-523K). A 

study by Benichou in 2001 found that the mass loss of gypsum wallboard remains nearly unchanged up to 

100C; 373K. Between 100 C and 160 C (373K-433K) the mass loss under four hours of exposure is 

approximately 15 percent, as moisture is lost. 

Cerablanket; ceramic fiber blanket insulation, and sheetrock; or gypsum board, are to be used to insulate 

the rig, and as a means to mount instrumentation. Cerablanket is utilized due to its low thermal 

conductivity, accessibility, and previous reliability in WPI’s fire laboratory. The back face of the practice 

wall to which the gypsum wallboards and cerablanket is mounted is a 0.8" sheet of plywood. Also, for 

wall stability a standard wood frame is also used in discrete locations. The following table illustrates the 

practice wall materials and thicknesses. From left to right, the front face to the back face respectively. The 

total thickness is 0.13462m. 

Table 23: Practice Wall Material Thickness 

Sheetrock Cerablanket Sheetrock Plywood Wood frame (in 

discrete 

locations) 

0.5" 1 ¾" 0.5" 0.8" 1 ¾" 
0.0127m 0.04445m 0.0127m 0.02032m 0.04445m 

The material properties of these substances are outlined in the following table. 

Table 24: Practice Wall Material Thermal Properties 

  Notation Thermal 

Conductivity 

(W/mK) k 
  

Density 

(kg/m3) rho 
Specific Heat 

(J/kgK) Cp 
Thermal 

Diffusivity 

(m2/s) 

a=k/rhoCp 

Sheetrock a, c 0.17 481 1300 2.718695E-7 
Cera blanket b 0.04 96.1 670 6.212434E-7 
Plywood d 0.13 545 1215 1.963227E-7 
Wood e 0.11 561 1400 1.400560E-7 

Sources: Engineering Toolbox, Manufacturers' Websites 

Temperature Diffusion Time 
  

By using semi-infinite 1D conduction analysis with exposure to a hot gas temperature, to determine the 

time for the temperature gradient to reach the wall, the thermal diffusivity over the material thickness is 

considered a constant average.  
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The constant thermal diffusivity, determined with relation to the thickness of each layer is calculated, for 

example: 

 

 

 

  There is not a practiced method to modeling multiple layers with a singular 

average thermal diffusivity term, however this method is justified intuitively by taking into account the 

thickness ratio of each material. All thermal diffusivity terms are in the range of 1.4E-7 m2/s to 6.2E-7 

m2/s so the resulting 3.3E-7 m2/s will produce representative results, as this range is reasonable. 

  

Thermal conductivity is added in series with respect to the length. 

 

 

 

 

  

Back Face of Wood Frame 
Semi-infinite behavior may be assumed if the thickness of the overall insulating body is greater than or 

equal to 4 times the square root of the overall thermal diffusivity multiplied by the time. (Drysdale, 2011) 

 

Using this equation the time at which the heat reaches the back face of our wall may be determined. 
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In addition, by using semi-infinite behavior, the time at which the back face sees a temperature rise on the 

order of 15% may be determined by the following equation. 

 

 

 

Since the duration of the test we will be completing is providing exposure to the burner flame for 30 

minutes, and then incorporates a cool down phase, the back face temperature of the wall through these 

layers due to 1D conduction should not be within the range of damage to the rig (40C; 313K).  

  

Back Face of Plywood 
Let us now consider the semi-infinite conduction model to the back face of the plywood, since the wood 

frame is only in discrete locations. 

The new constant thermal diffusivity value becomes,  

 

The new thickness not considering the wood framing becomes 0.09017m. Using the semi-infinite 

analysis: 

 

 

 

This time is not ideal, since it is within our testing range, however this plywood wall will not be in direct 

contact with the rig, since the framing will leave an air gap. The time to 15% temperature rise at the back 

face of the plywood is determined: 
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These calculations indicate that by the commencement of the 30-minute testing period, the heat will have 

reached the back face, however the temperature rise on the back face will be less than 15%. Based off of 

NFPA 285 calibration the approximate front face temperature for the 30 minutes of testing will be 

considered 700C; 973.15. A 15% temperature rise to the back face would indicate 

 

Therefore this temperature rise calculation will be a good measure of the point of dehydration to the 

sheetrock (within the range of 80C-250C). However further analysis is required to insure the safe human 

pain threshold temperature of the aluminum is not reached (40C; 313K). 

  

Back Face of Cerablanket 
Since the degradation of the second gypsum sheetrock is a concern, a semi-infinite analysis will be taken 

at the back face of the cerablanket, at the front face of the second gypsum board. At this location, the 

thermal diffusivity term is calculated to be, a= 5.43605E-7 m2/s. The thickness of the front layer of 

gypsum, and layer of cerablanket, t= 0.05715m.  

 

 

 

This time is not ideal, since it is within our testing range, additional thickness of cerablanket may be 

required to keep the second layer of gypsum sheetrock from dehydrating to a critical state. The time to 

15% temperature rise at the back face of the cerablanket, and front face of the second layer of gypsum 

sheetrock is determined: 
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Since this temperature rise is seen within the 30-minute test exposure, we can assume that with this 

design there will be degradation of the second layer of sheetrock. 

  

Temperature Diffusion Time Results 
The results from all three conditions are summarized in the following Table. 

Table 25: Thermal Diffusion Time at Depth Results 

  Effective 

Thermal 

Diffusivity 

(m2/s) a 

Effective  

Thermal 

Conductivity 

(W/mK) k 

Thickness (m)  Time for 

thermal 

penetration to 

back face 

(mins) 

Time for 15% 

Temperature 

Rise (mins) 

Back face of 

Wood frame 
3.32129E-7 0.073924 0.13462 56.84 227.35 

Back face of 

Plywood 
4.26813E-7 0.063636 0.09017 19.84 79.37 

Back face of 

Cera blanket 
5.43605E-7 0.048189 0.05715 6.26 25.05  

Back face of 

additional 

layer of Cera 

blanket 

5.7757E-7 0.044228 0.1016 18.62 74.5 

The results for temperature diffusion with respect to time indicate that within the 30 minutes of testing, 

there is temperature diffusion to the back face of the plywood, but on the order of less than a 15% rise. 

The plywood is not in direct contact with the aluminum rig, so there is not a significant concern for the 

durability of the aluminum with regards to temperature ware. There is however, a concern for the 

dehydration of the second layer of the gypsum sheetrock which was designated for a second practice test. 

The 15% temperature rise is reached by the front face of the second layer of gypsum sheetrock. 

The temperature of the gas in each gas flow phase at each centerline height is known from the NFPA 285 

design test, the Southwest Institute study, and a previous MQP study is mentioned in the comparison 

chapter. Since the temperature gradient, and diffusion calculations were based on the temperature of the 

front face of the practice wall at the material, and not the gas temperature of the fire, convective loss must 

be taken into consideration before using the temperature gradient analysis to determine back face 

temperatures. 

We will be using a max heat flux of 40kW/m2, and a max temperature at the lower height of the rig, in the 

last five-minute phase of 700C. For a temperature gradient to be on the order of 15%, the back face 
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temperature would be 105C. Therefore, if the max temperature of 700C was seen throughout the 30 

minute span, the temperature at the front face of the second layer of gypsum would reach 105C at the 

25.05minute mark. Since the temperature is not a constant maximum value, this temperature would be 

reached after the 25 minutes.  

By using a temperature average over the 30-minute test period, this would give a lower bound of the 

temperature at the second layer of gypsum board to provide context for the problem. An average value of 

the gas is on the order of 600C. This would indicate at 25 minutes the temperature at the second layer 

gypsum reaching 90C. Since the dehydration process begins for the sheetrock at temperature of 80C, this 

is more reasonable, however the exposure may still support dehydration. 

Additional Layer of Cerablanket Analysis 

Working backwards, we can determine the thickness of the cerablanket given that ideally there is not a 

15% temperature rise at the back face of the cerablanket/front face of the gypsum sheetrock until 30-

minutes into the test. Therefore: 

 

 

 

Using the equation for 15% temperature rise: 

 

 

 

If one more layer of cerablanket were added, the added thickness (b) would be 0.04445m.  

 

The time to 15% temperature rise at the back of the second layer of gypsum would be, 
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With initial temperature rise, 

 

 

Therefore, it is recommended that an additional layer of cerablanket be added to the practice wall to 

protect the second layer of gypsum sheetrock; to ensure that the board is in good condition and not 

significantly dehydrated, and so that it may be used in a second practice test. With the one layer 

composition, there will be dehydration of the gypsum sheetrock. 

Temperature Calculations 
Using analysis of measured gas temperature, heat transfer coefficient and heat flux, an idea of the 

temperature profile over time may be generated to indicate the duration of critical exposure. The gas 

temperature and heat transfer coefficient of reference are determined from previous MQP, NFPA 285, and 

Kreysler tests. The magnitude of the parameters under consideration are reported in the following table. 

Table 26: Time-Step Gas Temperature and Heat Transfer Coefficient from Prior Testing 

Time step (mins) Gas Temperature (C) hc (W/m2K) 

0-5 300 27 
5-10 500 31 
10-15 590 32 
15-20 615 35 
20-25 650 37 
25-30 700 40 

It is important to consider these may not be the most extreme conditions, as there is variance. 

  

Finite Difference Method 
  

The finite difference method is used to determine the temperature at depth within the solid. This 

approach is used to model both the incident heat flux boundary condition, and the convective heating 

from the gas temperature boundary. These results may be compared with the semi-infinite solution.  

  

  

Interior Nodal Equation: 
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General 1D heat conduction 

 

 

 

 

FDM 

 

 

The sum of the two above equations: 

 

Applied to temperature 

 

 

 

 

Interior Nodal Equation: 

 

  

Incident heat flux boundary 

Front Face Boundary Condition: 

 

For purposes of consistency 

 

By Taylor series expansion 
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Applied to temperature gradient  

 

 

Solve for  

 

 

 

 

 

 

 

Insert this into the interior nodal equation 

 

 

  

 

 

 

  

To back face of plywood, with: 1 layer of cera blanket 
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Figure 63: Temp profile at interfaces vs. time 

 

Figure 64: Temperature profiles at 5min intervals 

With two layers of cerablanket: 
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Figure 65: Temp profile at interfaces vs. Time 

 

Figure 66: Temperature profiles at 5min intervals 

Convective heating by gas temperature boundary  

Front Face Boundary Condition: 
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For purposes of consistency 

 

By Taylor series expansion 

 

Applied to temperature gradient  

 

 

Solve for  

 

 

 

Insert this into the interior nodal equation 

 

 

  

To back face of plywood, with: 1 layer of cerablanket 
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Figure 67: Temp profile at interfaces vs. time 1 layer of Cerablanket  

 

Figure 68: Temperature profiles at 5min intervals with 1 layer of cerablanket 

With 2 layers of cerablanket: 
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Figure 69: Temperature profiles at 5min intervals with 2 layers of cerablanket 

 

Figure 70: Temperature profiles at 5min intervals with 2 layers of cerablanket 
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Appendix E: Mobile Base Calculation 

 

Clamp Force of the Platform Top 

The following equation was used to determine the force needed for the rig to shear the top layer of the 

platform when pushed... 

FClamp = T/ (DBolt*µ)*N 

Where: T = Torque applied to the bolt/screw (assumed 200 Lbin. Of torque used to secure each screw 

with drill) 

DBolt = Diameter of the bottom of the bolt/screw (Measured to be 0.25 inches) 

µ = friction coefficient of the wood with the bolt/screw = 0.2 

N = number of fasteners in the face of the wood, which for our platform is 12 screws 

So 

FClamp = (200 Lbin.)/ (0.25in.*0.2)*(12 screws) 

FClamp = 48,000 LBS 

A monumental and unrealistic force of 48,000 pounds would be required to shear the top of the platform. 

Rolling Friction of the Rig 

Next we determined the push force required to get the rig and platform assembly on the assumed four 

wheels... 

We use the following equation... 

F = f*W/R*N 

Where f = friction coefficient of the hard rubber wheels on the concrete floor, it was found to be 0.02 

W = weight of the rig, 806.6 Lbs. 

R = radius of each wheel, 3.5 inches (since we will use 7 inch wheels) 

N = number of wheels, 4 

We solve accordingly... 

F = (0.02)*(806.6 Lbs. /3.5 in.)*(4 wheels) 

F = 18.4 Lbs. 

18.4 pounds of force will be required to move the rig and platform on all four wheels simultaneously. 

Sliding Force 

The following calculations were done as a means of determining the force required to slide the rig on the 

platform. It was done in concurrence with the rolling friction calculation above. 

F = µs*w 
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Where: µs = static friction coefficient between the rig and the platform, which was found to be a 

minimum of 0.2 (aluminum and dry wood) 

W = weight of the rig, 806.6 pounds 

So F = (0.2)*(806.6) 

F = 161.3 Lbs. 

161 pounds of push force is required to slide the rig over the platform, which is much greater (almost by a 

factor of 10) than the force required to move the four wheels of the platform. 

Center of Gravity for the Rig and Platform Assembly 

The following calculations were taken to determine the 3-dimensional (x, y, z) center of gravity for the rig 

and platform. Note that the dimensions were as follows: x from the left of the rig to the right, y from the 

front of the rig to the back of the rig, and z from the bottom of the rig to the top of the rig... 

Figure: Symmetry of the rig frame in the x-direction 

First of all, we assumed that the assembly is perfectly symmetric in the x-dimension, and therefore placed 

the center of gravity at an x-coordinate that coincided with that assumption. Therefore Cx= 28.5 inches 

Next we determined the y-coordinate of the center of gravity, which is split up by weight in the following 

picture... 

Figure: Drawing that features the weight segments of the rig in the y-direction 

From the figure above, we have three segments of the rig that have different weights 

First we have the two sidewalls and part of the bottom of the side rails, assuming the vast majority of the 

weight is in the sidewalls, we solve for the weight of the first segment... 

C1y = (44/52)*(373.14 Lbs.) = 315.7 Lbs. 

The second segment of the rig contains the back wall, the vertical piece of the side rails and a part of the 

side walls as well, the following equation was used to determine the weight of this segment, assuming 

that 1/3rd of the weight of the side rails is concentrated in this segment... 

C2y = (8/52)*(373.14Lbs) + (137.34 Lbs.)+ (1/3)*(296.12 Lbs.) = 293.5 Lbs. 

The third segment contains only the remaining piece of the side rails. Its weight equation is as follows... 

C3y = (2/3)*(296.12 Lbs.) = 197.4 Lbs. 

Now we can solve for the y-coordinate of the center of gravity for the assembly, including the platform in 

the calculation... 

Cy = (50/856.6)*(36.5 in.) + (315.7/856.6)*(22in.) + (293.5/856.6)*(48) + (197.4/856.6)*(62.5) 

Cy = 41.1 inches 

For the center of gravity in the z-direction, we use a similar method with the y-direction, except now we 

have two segments instead of three 

Figure: Drawing that features the weight segments of the rig in the z-direction. 
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The first (bottom) segment is made up of the bottom of the side rails along with the bottom portion of the 

side walls, and the back wall (also C1y + C2y = 609.2 Lbs.) 

We first solve for C1z using the following... 

C1z = (2/3)*(296.12 Lbs.) + (18/96)*(609.2 Lbs.) = 311.6 Lbs. 

We now solve for segment 2, which is made of the sum of the first two y-direction segments only... 

C2z = (78/96)*(609.2 Lbs.) = 495 Lbs. 

We now solve for the center of gravity, including the platform... 

Cz = (50/856.6)*(2 in.) + (311.6/856.6)*(13 in.)+ (495/856.6)*(56 in.) 

Cz = 37.2 inches 

We have a final center of gravity of (28.5, 41.1, 37.2) 

Bending Stress 

We now look to the maximum bending stress to occur to the platform’s supporting members, and see if it 

exceeds the wood’s rupture modulus of 5,100 PSI (for Southern Pine, Engineering Toolbox) 

σ = (3*W*L) / (2*w*d2), Where 

W = Weight of load = 2400 Lbs. based on the ratings of the wheels 

L = Maximum length of the supporting member = 72 inches 

w = width of the supporting member = 2 inches 

d = depth/height of the supporting member = 6 inches 

We solve for σ, 

σ = (3*2400 Lbs.*72 inches)/ (2*2 inches*(6 inches) 2) 

σ = 3600 PSI 

The maximum bending stress of the assembly is 1500 PSI less than the wood’s rupture modulus of 5,100 

PSI. 

Tipping Force/Moment 

The following calculations were to determine the force required to tip the rig if the platform were to hit a 

bolt or some other obstruction on the floor 

Without considering velocity, we use the following equilibrium equation to determine the push force 

necessary to tip a stopped rig over... 

Tw = TC 

W*Cx = F*height of push 

So essentially, we determine which force will cause the push torque or TC, to be greater than the torque 

generated by the rig upon the front wheel 

We first have our givens... 
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W = 856.6 Lbs. 

Cx = 28.5 in. 

We then solve for F, using a push height of 80 inches which was used as a “worst case” scenario. 

F = (W*Cx)/h = (856.6 LBS*28.5 in.)/80 in. 

F = 305.0 Lbs. 

A minimum static force of 305 Lbs. would need to be exerted to tip the rig over, when stopped. 

These preliminary calculations were done to make sure that while moving the rig on this platform, we 

would not be in any risk of breaking the platform or tipping over the rig, which would be a very 

unpleasant situation for us. 
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Appendix F: Burner Design  

Based on the MQP completed in 2015 by Blake Cornachini, Matt Foley, Scott Knight, and Tom 

Ritchey, "Calibration of an Intermediate Scale Fire Test for Exterior Wall Assemblies: Source 

Fire," our burner settings were determined. By utilizing the 2D plume theory, adapting heat 

transfer principles, and running fire models, the source fire simulates the thermal insult of NFPA 

285. The NFPA 285 test involves the base of our practice wall placed directly above a window. 

The rig accommodates for this with side channels that are used to match the vertical gas flow 

exhausting from the NFPA 285 window. In the NFPA 285 test there are two burners, one in the 

room, and one at the window. 

In order to accurately compare the fire of NFPA 285 and that of the designed burner, it was 

necessary to characterize NFPA 285 in terms of the plume which the test specimen is exposed to. 

This characterization comes primarily from the calibration provided within NFPA 285 as well as 

existing work completed by Czarnowski et al. 

NFPA 285 provides external plume centerline temperature data for one to six feet above the top 

of the window frame, and heat flux data for two to four feet above the window frame. Utilizing 

the existing 2D and spill plume theory, Czarnowski et al. determined that the flow resulting from 

the dual burner arrangement of NFPA 285 could be considered nominally a 2D Spill Plume. 

Next it was necessary to characterize the plume of an NFPA 285 calibration in terms of the 

modes of heat transfer between the resultant plume and the wall specimen. To do this 

fundamental radiation and convection heat transfer equations were utilized, along with data from 

the calibration procedure. Utilizing the calibration heat flux values from NFPA 285, the total 

heat flux to the three locations along the centerline of the wall was known. 

 



121 
 

The heat flux due to radiation was calculated by determining the emissivity of methane, from 

data in NFPA 285. 

  

By knowing this value, the convective heat transfer coefficient of the plume was determined. 

 

Since the NFPA 285 test can be characterized as a 2D plume, this means that the smoke plume 

created is only considered to exist in two directions, height and width, and it is assumed to be 

infinitely long in the third direction. For this reason, a line burner was chosen as the type of 

burner for this project. A line burner is a cylindrical pipe with a straight slot cut out along its 

length. A mesh screen lines the slot to diffuse the gas as it exits the burner, where it is ignited to 

create a non-premixed flame. The burner was designed for this project to resemble the window 

burner from NFPA 285 as closely as possible. For this reason, the pipe diameter and slot 

thickness were maintained from NFPA 285, while the slot length needed to be scaled down from 

48 inches to fit in the intermediate rig assembly. This resulted in a final slot size of 0.5 inches by 

28 inches. The main two inch pipe is fed on both sides by symmetric one inch diameter steel 

piping to ensure even gas flow. 

 

Figure 71: Line Burner Assembly 
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In the previous MQP Rig Assembly, the test wall was balanced on the burner box as shown in 

the following figure, so the burner was placed under the burner box. The same results may be 

achieved by supporting the line burner in front of the test specimen, and inserting the gas line 

from the front of the assembly. 

 

Figure 72: Line Burner Placement 

The previous MQP group performed practice tests on a temporary test specimen with the burner 

at different heights and distances from the bottom of the test specimen in an effort to best 

simulate the window opening. The optimum placement of the line burner was determined to be 9 

inches below the bottom of the test specimen, and 1 ¾ inches horizontally in front of the test 

specimen, and centered along the length of the slot.  

Although NFPA 285 uses natural gas, propane gas was used for testing because it has a higher 

soot yield and is more readily available in the WPI Fire Protection Laboratory. A higher soot 

production is beneficial to this project because it increases the radiative heat flux produced by 

the burner. This is necessary because the combined plume created by the room and window 

burners in NFPA 285 carries more convective heat flux than can be produced by the single 

burner designed for this project. For this reason, radiative heat flux produced by soot can be used 

to supplement some of the missing heat flux. 
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A comparison table between methane and propane supports this decision 

Table 27: Methane and Propane Comparison Table 

 

The MQP group which focused on the burner scaled the HRR from NFPA 285, and their practice 

tests by using the width of the window for NFPA 285 (1.98m), and the length of the line burner 

for their tests (0.71m). After scaling the NFPA 285 heat release rates from the window and room 

burners, they were converted to flow rates by using the heat of combustion and density of 

propane, and added together. 

These heat flows were then tested, and the temperature and heat flux results were compared to 

expected values. The temperature profiles of all the burns, were scaled by the height above the 

burner divided by the heat release rate per unit width to the 2 /3 power, following the precedent 

set by Yuan & Cox. The profiles were compared to the theoretical temperature rise as correlated 

by Yuan &Cox. The data from the burns collapsed well about the correlation with some notable 

variation. 

By leveraging the existing 2D plume theory, the team was able to fit a correlation to the results 

by imposing the physical constraints of the three flame regions, continuous, intermittent and 

plume upon the data. The correlation was fit using an average error minimization technique. The 

form of Yuan & Cox’s equation was replicated, keeping the exponential constants the same and 
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varying the coefficient B.  This correlation adjusts the existing theory based upon a burner in the 

open to a line burner against a vertical face. 

The heat flux profiles were then compared, and a similar method was employed to create a 

correlation for heat flux by separating the three flaming regions, continuous, intermittent, and 

plume, with an adjusted B value. 

The group concluded that 2D plume theory with three flaming regions aligned all data collected 

with expected NFPA 285 comparison results. Also the line burner against a wall required 

adjustment in calculations.  

Based on their test, comparisons, and analysis, the MQP group developed a set of recommended 

burner flow rates for the 6, five minute steps to match NFPA 285 testing.  

Table 28: Burner Flow Rates (CFM) 

 

All considerations were taken at the 3 foot height from the base of the test specimen. This was 

done due to the mass of hot gases exiting the burn compartment of NFPA 285, the measurements 

closer to the window frame are reported as lower than those farther up. Fire plume theory states 

that the centerline temperature measurements should be at a maximum closest to the origin of the 

fire and decrease in magnitude as you ascend vertically up the plume. The reason for the 

divergence of NFPA 285 from the theory is what the group has defined as “Exit Effects”. This is 
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due to the momentum of the compartment exhaust separating the thermal boundary layer away 

from the wall horizontally, before it eventually attaches to the wall further up the face.  

When considered as an absolute average, the burner was able to reproduce temperatures and heat 

fluxes by the MQP group to within 19% and 23% of NFPA 285 respectively. When you discount 

the points deemed “Exit Effects” this accuracy improves to 14% and 13%. Finally, in the initial 

time step of NFPA 285 only the room burner is ignited. This profile is highly difficult to 

replicate with a single line burner, and when removed from the data set the accuracy of the 

results improves further to 11% for each. These results were based off a test specimen with the 

same face as the practice wall we will be analyzing, therefore we do not foresee any large 

deviations, and can expect to obtain similar temperature and heat flux values. 
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Appendix G: Standard Operating Procedure 

Pre Test 
Since our goal is to run fire tests that can successfully mimic a full-scale NFPA 285 test, it is 

important to follow the same test operating procedure as of that outlined by NFPA 285.  The 

following steps shall take place after the transport of the rig to under the hood.  They coincide 

with 2012 NFPA 285, 8.1.1 through 8.1.5. 

1. The thermocouples and thin skin calorimeter(s) on the test wall shall be checked to 

ensure that they are properly working.  This can be achieved by checking the data 

acquisition for a temperature signal along with the successful calibration of the thin skin 

calorimeter. 

2. The burner shall be turned on and burned to a small extent before final positioning.  That 

way we can ensure a vertical flame direction up the wall during the test. 

3. The final positioning of the burner shall be so that its horizontal centerline is 

approximately 9 inches from the bottom surface of the wall and the vertical centerline is 

approximately 2 inches from the wall assembly in accordance with 2012 NFPA 285 4.4.9 

through 4.4.12, and past MQP test results. 

4. Take note of the ambient conditions in the test lab, including the temperature, relative 

humidity, and airflow (if possible). 

5. Videotape the rig assembly noting all instrumentation placement, wall materials, and 

processes being utilized, note any variations made from previous assemblies. Include a 

timer in the screen of the video for the observer to use as reference. Continue to video 

tape until 5 minutes post-test. 

These steps shall be followed in order to ensure a properly run fire test. 
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Test 
After the Pre Test Procedure is complete, the Testing Procedure will be as follows  

1. Continue to video tape until 5 minutes post-test. While testing, note on the video 

recording when the time step changes, and any observations: including heat experienced, 

flame behavior, smoke behavior, material condition, and any other notable observations. 

2. Since our burner has capabilities for programmable gas flow rates, we will be using this 

feature to increase the heat release rate each five minutes. 

Table 29: Burner Flow Rate by Time Step 

Time Step 

(min) 
Burner Flow 

Rate (CFM) 

0-5 4.7 

5-10 6 

10-15 7.5 

15-20 12 

20-25 13.6 

25-30 15 

2. Ensure the area surrounding the rig is safely cleared, turn on the gas, and ignite the 

burner. 

3. After the burner is ignited, we will ensure that all instruments are still in working order, 

in position, and reading reasonable values. 

4. For each 5 minute time step we will be recording the burn pattern, but also making 

qualitative remarks, and recording all of them, and recording a video or taking pictures 

5. After each 5-minute time step the gas flow rate is increased. The calibration of the burner 

before the test will provide the desired flow rates to provide equitable results to NFPA 

285 4.4.13 and 7.1.11  

6. The gas is provided for 30 minutes. After 30 minutes the gas is turned off  
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7. Any residual burning on the test specimen shall not be extinguished until not less than 10 

minutes after the gas is turned off 

Post Test 
Upon the completion of the test, the following measures shall be taken... 

1. Continue video until 5 minutes post-test, then video may be turned off. After the 30 

minutes to allow the rig to cool down, a video should be taken of the inspection of the rig 

and its condition. 

2. The rig shall be left under the hood for no less than 30 minutes to cool off for further 

analysis. 

3. The data from the test shall be saved. 

4. The top layer of sheetrock and the layer of cerablanket shall be taken off of the wall and 

observed for damage. 

5. Pictures or video will be taken of Post Test conditions 

 


