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ABSTRACT 
 MIT Lincoln Laboratory has expressed growing interest in projects involving Unmanned 

Aerial Vehicles (UAVs). Recently, they purchased a Cyber Technology CyberQuad quadrotor 

UAV. Our project’s task was to assist the Laboratory in preparation for the future automation of 

this system. In particular, this required the creation system allowing computerized-control of 

the UAV – specifically interfacing with the software tools Lincoln Laboratory’s Group 76 

intended use for future development, as well as a high-accuracy localization system to aid with 

take-off and landing in anticipated mission environments.  

 We successfully created a computer control interface between the CyberQuad and 

Willow Garage’s Robot Operating System used at the Laboratory. This interface could send 

commands to and receive responses from the quadrotor. We tested the performance of the 

quadrotor using our interface and compared it against the original analog control joystick. 

Latency and link health tools were developed, and they indicated that our solution, while clearly 

less responsive than the analog controller, would be usable after minor improvements. 

To enable localization we investigated machine vision and video processing libraries, 

altering the augmented reality library ARToolKit to work with ROS. We performed accuracy, 

range, update rate, lighting, and tag occlusion tests on our modified code to determine its 

viability in real-world conditions. Ultimately, we concluded that our current system would not 

be a feasible alternative to current techniques due to inconsistencies in tag-detection, though the 

high accuracy and update rate convinced us that this localization method merits future 

investigation as new software packages become available. 
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EXECUTIVE SUMMARY 
 Recent technological advances in robotics and aeronautics have fostered the 

development of a safer, more cost-effective solution to aerial reconnaissance and warfare: the 

unmanned aerial vehicle (UAV). These devices provide many of the same capabilities as their 

manned counterparts, with the obvious advantage of reduced human risk. Already, many of 

surveillance missions traditionally requiring a trained pilot and multi-million dollar piece of 

equipment can be performed by less-trained individuals using cheaper, smaller UAVs. 

 Following the trend of military interest in UAVs, MIT Lincoln Laboratory has expressed 

a growing interest in UAV projects. More recently, they purchased a Cyber Technology 

CyberQuad quadrotor UAV. It was our project’s goal to assist the Laboratory in preparation for 

the future development of this system. In particular, we required: 1) a means by which to 

communicate with the UAV directly using a computer running Lincoln Laboratory Group 76’s 

current software development platform, and 2) a localization system that could be used to assist 

automated quadrotor take-off and landing in anticipated mission environments.  

METHODOLOGY 
 Creating an interface between the CyberQuad and Willow Garage’s Robotic Operating 

System (ROS) required implementing a system which utilized CyberQuad’s existing serial 

protocol. The CyberQuad product is based on the open-source compilation of hardware and 

software made by the German company MikroKopter, which is specifically designed for UAV 

development. The MikroKopter system includes the ability to connect to communicate with a PC 

via a wired serial link for the purpose of limited debugging. Achieving full computer control of 

the CyberQuad, however, required handling of additional quadrotor messages – control 

functionality not present in the commercial software, yet made available in MikroKopter 

firmware. Additionally, this functionality was encapsulated within the fundamental structure of 

ROS, a node, to ensure compatibility with the other robotic platforms in use at the Laboratory.  
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 To address the issue of localization, we chose to investigate the field of machine vision. 

Rather than attempting to write the vision processing code ourselves, we utilized an augmented 

reality (AR) software library.  This library included functionality to determine the location and 

orientation of specific high-contrast, pattern-based tags in respect to a camera. We encapsulated 

the functionality of the library we chose (ARToolKit) into a form compatible with ROS and 

designed a simple program to pass the library’s output data into native ROS structures that 

could be accessed by other ROS processes.  

RESULTS 
 The localization scheme we developed was tested for accuracy and robustness to 

determine its viability in real-world quadrotor applications. Using a webcam as an analog to the 

CyberQuad’s on-board camera, we ran accuracy, range, update rate, variable lighting, and tag 

occlusion tests with our modified library. The system performed within our specified accuracy 

and update rate requirements. Additionally, the detection range of the software was a function 

of tag scale, suggesting that the range requirements specified by our design specifications (0.5-

15 ft) would be obtainable. Our testing, however, revealed a number of issues that might prevent 

immediate real-world system application. Variable lighting and minimal tag obstruction both 

proved to be of major concern in reliable tag recognition.  

 We demonstrated the functionality of our CyberQuad-PC interface system with a ROS 

gamepad, frequently used by Group 76, to demonstrate proper communication between ROS 

and the CyberQuad. We also tested the tools that we designed to monitor the wireless link 

between computer and CyberQuad. Using this link monitor, we were able to calculate average 

message latency and the amount of messages dropped by the wireless serial link that we 

employed. 

 Finally, we demonstrated the integration of the systems by creating a control loop to 

move the UAV to a set location in space using only our localization code as feedback. Using ROS 

transform-visualization tools, we were able to determine that the correct error between the 
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desired position and UAV’s current location was generated correctly. From debugging messages, 

we were also able to conclude that the correct commands were being sent to the quadrotor to 

correct for this error. However, the physical responses of the CyberQuad never truly matched 

the anticipated motions. We suspect this is a result of compound latency issues that were 

exhibited by both the localization and interface systems. The irregular performance of the 

localization system and limited control rate of the interface also likely contributed to the erratic 

behavior.  

CONCLUSION 
 Our experiences with the localization system and quadrotor interface led to the 

conclusion that extensive work is required before either system is ready for real-world 

application. This project demonstrated that computer vision-based localization is a tool worth 

further investigation, mainly due to its ability to function in GPS denied locations. The current 

system that we provided to Lincoln Laboratory will never function reliably in real-world 

conditions, based on the shortcomings of the vision system in the areas of light compensation 

and tag obstruction. Future work should focus on replacing the outdated computer vision 

processing algorithms used in this project with more modern commercial libraries. Additionally, 

research should continue into sensor fusion between vision-based localization data and the 

CyberQuad’s on-board sensor data. 

 Although the interface we developed for the CyberQuad functions as our design 

specifications required, the data-rate limitations and latency in the wireless serial link make 

research into alternative approaches to quadrotor UAV communication schemes necessary. In 

the current iteration, a significant portion of the computer’s resources were required to 

communicate with the UAV. We suspect that much more effective methods of achieving UAV 

automation can be implemented by creating a computer-controlled analog control emulator 

(essentially a serial controlled version of the existing CyberQuad analog controller) or by  
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offloading high-precision trajectory calculations and localization into the CyberQuad’s firmware 

to avoid serial data-rate limitations.   
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1.0 INTRODUCTION 
 Current high-tech, complex military operations require a high degree of real-time target 

and mission-relevant information. The US military frequently depends on airborne 

reconnaissance to deliver this information. In the past, manned aircraft with onboard cameras 

and other sensors have had a primary role in airborne intelligence operations. More recently, 

however, technological advances have allowed unmanned aerial vehicles (UAVs) to carry out 

reconnaissance missions in the place of the conventional manned aircraft. For the purpose of 

this report, we use the Department of Defense (DoD) definition of UAVs: “powered aerial 

vehicles sustained in flight by aerodynamic lift over most of their flight path and guided without 

an onboard crew” [1]. 

Systems deployed today are generally significantly smaller than manned aircraft, yet 

larger than a traditional model airplane. They generally carry a highly sophisticated payload of 

sensors and surveillance cameras and are designed to be operated semi-autonomously using a 

remote operation-based control scheme [1].  

 MIT Lincoln Laboratory recently began investigating a new class of UAVs with different 

mission capabilities and intended applications. In particular, researchers have started work with 

“quadrotor” rotorcraft systems to explore potential future applications. Quadrotors are non-

fixed-wing rotorcraft platforms that utilize four propellers to achieve vertical lift and maneuver 

through the air. Our project supported this exploratory effort by investigating the newly 

available CyberQuad Mini quadrotor platform, (developed by Cyber Technology) by designing a 

software codebase for future quadrotor projects at MIT Lincoln Laboratory.  

Although quadrotor systems are new to Lincoln Laboratory, a number of the Lab’s recent 

robotics applications – in areas other than UAVs– use a standardized robotic development 

framework, known as ROS (Robotic Operating System), to streamline the process of 

development. The newly-acquired CyberQuad system, however, does not integrate with ROS - a 

problem for engineers looking to preserve a laboratory-wide standard. To enable a consistent 
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development platform, we first needed to integrate the UAV’s built-in software, produced by the 

German company MikroKopter, with ROS. An interface between the two was the necessary 

first step toward providing Lincoln Laboratory with a foundation for further investigation of 

quadrotor UAVs.    

Additionally, our team sought to perpetuate MIT Lincoln Laboratory’s knowledge of 

collaborative aerial and ground based robotic systems. Quadrotor UAVs have a number of 

potential applications when integrated with existing unmanned ground vehicles (UGVs), 

including joint terrain mapping, reconnaissance, target tracking, and more. These applications, 

however, often exceed the maximum operating time allowed by the quadrotor’s onboard 

batteries. During the mission, the quadrotor will undoubtedly require recharging or possibly 

repairs. Therefore, before truly autonomous aerial-ground collaborative robotic missions could 

be feasible, the UAV must be capable of locating its ground-based counterpart and executing a 

landing. The first step toward a precise, safe landing, however, lies in locating the ground-based 

system and calculating the UAV’s relative position to the landing platform. As such, we sought to 

create a robust localization system for the UAV that was both practical and precise in real-world 

environments at ranges at which GPS navigation is impractical. 

A number of past quadrotor projects performed at other institutions have employed 

advanced object-tracking systems that are unsuitable in terms of this particular task. Many of 

these systems employ rooms comprised of position-finding cameras, high-resolution GPS 

modules, or other expensive equipment to determine the quadrotor’s position. On the other 

hand, some of the existing work in this field has involved cheap, consumer devices to provide a 

solution. Our goal was to create a quadrotor control system that is suitable for real-world 

scenarios involving only the CyberQuad UAV and collaborating ground-based vehicle. 

 .  
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In particular, we employed the CyberQuad Mini quadrotor UAV, provided by MIT 

Lincoln Laboratory, as the primary focus of our development. This rotorcraft system is outfitted 

with a camera, which allowed for the vision-based localization element that was one of the foci 

of this project. We used the open-source robot operating system (ROS) provided by Willow 

Garage to interface with the CyberQuad hardware and software. Due to the limited time 

constraints, we simulated the ground-based vehicle with a Linux-based computer and a mock-

up landing platform for testing.  

 We established three major goals to guide us toward the successful realization of our 

overarching goal for UAV-UGV collaboration: 

 

• Develop a PC control interface for the CyberQuad system 

• Enable precise UAV localization 

• Provide documentation to enable continued development of the CyberQuad system 

 

These goals led to the development of an end product that could be utilized by future 

MIT Lincoln Laboratory researchers. Additionally, to showcase our efforts, our team developed 

a number of demonstration materials that both encapsulate the work that we accomplished and 

that help illustrate the abilities and potential applications of the system. 

This paper discusses the process by which these steps were completed, major design 

decisions, and the results achieved. We also provide a set of recommendations for continued 

work with the quadrotor UAV by MIT Lincoln Laboratory.  

1.1 METRICS FOR SUCCESS 
At the beginning of the project, we developed the following metrics to evaluate the success of 

this project. These metrics were applied throughout the project to ensure that the project’s 
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outcomes were consistently guided. This section should act as a rubric against which the project 

should be measured. These metrics are:  

 

1. The project should produce a wireless communications scheme that allows sensor and 

control information to be transmitted easily between the UAV and a ROS-enabled 

computer. The system should be extendable to support communication between multiple 

UAV systems, as well as be generic enough to port easily to other UAV platforms. 

a. The API created for the UAV must provide users with a convenient means of 

communication with the quadrotor, but must also provide complete visibility for 

the benefit of future developers. For the purposes of logging, playback, and 

visibility, all commands must be sent in the form of ROS topic messages.  

2. A simple control loop should be produced, having wireless control over the motion of the 

UAV in real time. Minimally, open-loop vertical, directional, and rotational controls need 

to be supported. Optimally, this would also allow for low-level control adjustments. The 

system must be able to continue sensor feedback communication during control 

procedures as well.  

a. A test fixture is required to demonstrate functionality in the computer control of 

the UAV. This fixture must hold the quadrotor in place so that no damage will be 

sustained, but also must allow for enough movement to demonstrate that 

external control is functional.  

3. The PC controller must be able to wirelessly query the state of the UAV sensors in real 

time. In our system, the state of each onboard sensor should be received at a user-

specified interval.  

4. The project should produce a system which allows UAV location and orientation 

information to be determined visually in an indoor environment by means of computer 
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vision. The localization scheme employed should have the capacity to function in an 

outdoor environment as well, though outdoor testing may be impractical.  

a. This vision system must be viable for real-world, outdoor environments. As such, 

it must take into account conditions which make visual systems inoperable or 

cause problems. Thus, the final project should be able to be moved out of a closed 

testing environment and still be able to function under normal weather 

conditions.  

5. The computer vision should be able to produce position information which is measurably 

more precise and accurate than GPS and other available systems in close-range 

scenarios. While the position and orientation of the UAV should be able to be 

determined within the specified range of 0-15 feet, we must demonstrate increased 

precision when within 0-5 feet of the UGV platform.  

a. The localization method chosen must provide position knowledge at a range of 15 

feet with a 12-inch tracking target, or “tag”. It also must provide tag detection at a 

minimum range of 6 inches. At all ranges, the localization system must have an 

average error of less than 50 centimeters.    
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2.0 BACKGROUND  
The safe take-off, operation, and landing of UAVs traditionally require a pilot with 

extensive training [2]. These pilots must be trained to carefully handle these large, expensive 

vehicles and execute difficult landing and take-off maneuvers similar to those of a manned 

fighter. More recently, however, work has been done to automate these complex procedures [3]. 

These developments reduce the possibility of human error, and reduce the amount of training 

required to operate the craft. 

 The emerging quadrotor UAV technologies offer a solution to the complications inherent 

in the operation of traditional UAVs. These systems offer a simpler solution that will allow even 

untrained pilots to operate the quadrotor. With the growing interest in quadrotors, however, a 

higher level of development and functional maturity is required for successful deployments of 

the new technology. While quadrotors are capable of more complex maneuvers than fixed-wing 

aircraft, granting a higher potential for more complex autonomous behaviors, the technology 

has not yet advanced to the point that they can be employed in real-world situations. Their 

potential for a more advanced mission repertoire makes research into their operation key for the 

advancement of autonomous, or simply computer-augmented control.  

 At present, fixed-wing UAVs employ complex navigational systems comprised of high-

accuracy global positioning systems (GPS) and internal instrumentation. Their inertial guidance 

systems (IGS) contain compasses, accelerometers, and gyroscopes to provide relative position 

information to the UAV. While the GPS and IGS-based navigation schemes are practical for 

most fixed-wing UAVs deployed today, these navigation methods may prove inadequate in 

future quadrotor applications. 

 

Several shortcomings in current localization techniques exist for quadrotor UAVs [4]: 

• Traditional systems are often bulky; they do not fit rotorcraft payload limitations. 

• Traditional systems do not provide object-to-object relative orientation information. 
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• Traditional systems (i.e. GPS) do not provide accurate elevation information. 

• GPS requires a clear view of the sky and is not available in some deployment situations. 

 

As UAVs become increasingly complex, the control mechanisms must also become more 

sophisticated. Therefore, an increased level of automation is required to use these systems them 

to their full potential. To enable automated control, UAVs must provide detailed information 

about their position and orientation in their environment. Given the complex maneuvers 

possible with rotorcraft, this information must be very detailed including positions relative to 

targets and obstacles. Other positioning system often do not provide this object-to-object 

relative data, instead relying on a global frame of reference (GPS), or self-relative (IGS) with 

compounded error. Because the technologies in deployment today are not suitable for quadrotor 

aircraft to accomplish these goals, a new localization method must be employed. 

2.1 THE QUADROTOR   The first step toward completing our project was to research the CyberQuad Mini system 

with which we would be working over the course of the project. This quadrotor used in this 

project will be MIT Lincoln Laboratory’s UAV application development platform in the future, 

and an understanding of its operation and construction is important both to this as well as any 

future projects. This section provides specific details of the specifications of this particular UAV.  

2.1.1 SPECIFICATIONS 
 The hardware system employed in this project is a quadrocopter rotorcraft (or 

“quadrotor”) UAV manufactured by Cyber Technology in Australia, called the CyberQuad Mini. 

This Vertical Take-Off and Landing (VTOL) aircraft focuses on simplicity, stability, safety, and 

stealth [5]. The number of available features and payload options allow for a wide range of 

potential applications.  
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 FIGURE 1: THE CYBERQUAD MINI 

 

 The CyberQuad Mini features four ducted fans, powered by brushless electric motors, for 

safety and durability. Its small form factor allows for a wide range of short-range operating 

conditions, particularly in the urban environment. The CyberQuad Mini's more specific physical 

technical specifications are as follows: 

 TABLE 1: CYBERQUAD TECHNICAL SPECIFICATIONS 
Dimensions 420mm x 420mm x 150mm (~16.5in x ~16.5in x ~5.9in) 

Airspeed 50 km/h (~31mph) 

Payload 500g (~1.1lbs) 

Endurance ~25min of flight 

Altitude 1km (video link) 

Range 1km (video link) 

Noise 65dBA @ 3 m 
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 The CyberQuad Mini possesses varying levels of autonomy. While the UAV can be 

controlled by a wireless handheld controller, some flight functions are controlled by the on-

board hardware; the robot has built-in control for attitude and altitude and features optional 

upgrades for heading hold and waypoint navigation. The attitude and altitude control keeps the 

CyberQuad level and limits tilt angles to prevent the pilot from overturning the UAV during 

flight; this control also maintains altitude while limiting the maximum height and rate of climb 

and decent [5]. The next level of autonomy involves the on-board GPS and 3D magnetometer to 

enable the quadrotor to maintain its position, compensating for wind drift. These sensors can 

also be used to remember the robot's "home" position and to return to it autonomously. The 

final implemented level of autonomy utilizes GPS waypoint navigation to control the UAV via a 

pre-programmed route with auto take-off and landing.  

  This UAV system also contains a number of Cyber Technology's optional quadrotor 

features in addition to the basic setup - one of which being the real-time video camera. With 

VGA video resolution of 640x480, a low-light CCD sensor, replaceable lenses for varying field of 

view, gyro-stabilized and servo-controlled elevation, and a 5.8GHz analog video transmitter, the 

CyberQuad is able to supply video to an off-board system allowing the operator to fly the UAV in 

real time even without direct line of sight to the rotorcraft.  

 Another feature is the handheld controller for manual manipulation, experimentation, 

and testing. It sports two analog control sticks (one controlling thrust and yaw and the second 

control pitch and roll) and a number of buttons for controlling previously described features 

while the system is in flight. Additionally it has a LCD display that allows the monitoring of 

many of the CyberQuad’s internal sensors. This 12-channel transmitter with a 5.8GHz video 

receiver, coupled with the included video goggles, allows the operator to control the UAV with 

precision from a distance of roughly 1km (according to the specifications).  

 The final addition to the CyberQuad present in Lincoln Laboratory’s model is the 

navigation upgrade. In order to operate in "full autonomous" mode, the robot required GPS and 
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3D magnetometer information. This upgrade provided the required sensors to allow for built-in 

autonomous heading hold and waypoint navigation.  

2.2 MIKROKOPTER 
 The CyberQuad Mini electronics are provided by the German company MikroKopter, 

which is an open-source solution for quadrotor control. This hardware and software solution 

contains necessary functions for controlled flight, as well as additional functionality for 

retrieving data from on-board sensors.  

 

2.2.1 MIKROKOPTER HARDWARE 
The MikroKopter control hardware in the CyberQuad platform is divided into several 

core modules that control different aspects of the device: FlightCtrl, BrushlessCtrl, NaviCtrl, 

MK3Mag, and MKGPS. Each module adds different functionality or sensors to the quadrotor. 

All of the modules above were present in this project’s UAV. Additionally, a pair of 2.4 GHz 

ZigBee XBEE Bluetooth transceivers is used to establish the serial link between the MikroKopter 

and the ROS enabled computer. 
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 FIGURE 2: MIKROKOPTER HARDWARE ARCHITECTURE 
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FLIGHTCTRL 
 FlightCtrl manages flight-related functions of the MikroKopter device. This module is 

controlled by an Atmega 644p microprocessor, which manages several onboard sensors 

necessary to maintain stable flight. Three gyroscopes are used to determine the rate of angular 

rotation about the X, Y, and Z axes, allowing FlightCtrl to maintain the aircraft's directional 

orientation. Additionally, a three-axis (X, Y, Z axes) accelerometer is used to maintain level 

flight. Lastly, an onboard barometric sensor allows approximate altitude to be maintained, when 

the system is sufficiently elevated during flight.  

 FlightCtrl supports two methods of communication to and from the device. It handles 

the input from a radio receiver, allowing the MikroKopter to be controlled remotely from a 

traditional analog wireless controller. It also supports communication over an I2C bus, allowing 

the board to relay sensor and motor-control data and to receive flight control parameters from 

other MikroKopter modules. 

BRUSHLESSCTRL 
 BrushlessCtrl controls the speed of the four brushless flight motors. While this module 

can be controlled using various interfaces (I2C, serial, or PWM), it is controlled by FlightCtrl by 

default via I2C. 

NAVICTRL 
 NaviCtrl allows for remote computer control and communication over a serial link. This 

module has an ARM-9 microcontroller at its core, managing the connection to the MKGPS 

(GPS) and MK3Mag (compass) modules, handling request/response user commands via the 

serial link, and sending movement commands back to FlightCtrl. By communicating with the 

GPS and compass modules, this device allows the MikroKopter to hold its position and 

orientation with respect to the global (world) coordinates, as well as to navigate to different 

coordinates using waypoints.   
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MK3MAG 
 MK3Mag and MKGPS interface directly with the NaviCtrl module through header 

connections. MK3Mag is a magnetometer (compass) module providing orientation data with 

respect to magnetic north. This sensitive sensor must be calibrated before each flight, and must 

remain some distance from intense EMF-emitting devices to ensure accuracy. MKGPS is a 

Global Positioning System (GPS) module providing absolute global coordinates. This sensor 

requires no calibration, but must have a clear view of the sky to function properly. 

WIRELESS COMMUNICATION 
The ZigBee XBEE-PRO Bluetooth adapter pair allows for a wireless communications 

between the PC and MikroKopter hardware via a 2.4GHz network-protocol serial link. 

Specifically, the XBEE that was added to the CyberQuad was connected to the NaviCtrl module 

via its serial debug port. This serial interface allows for access to useful FlightCtrl, NaviCtrl, and 

MK3Mag control mechanisms, and provides all interfaces to remotely control the CyberQuad 

and receive sensor feedback. 

2.2.2 MIKROKOPTER SOFTWARE  
All communication with MikroKopter hardware will take place over the serial interface 

provided by NaviCtrl. This module implements the MikroKopter serial interface format and 

enables for 2-way communication (PC to device) with all onboard modules, using command and 

response messages of varying lengths.   TABLE 2: MIKROKOPTER SERIAL PROTOCOL 
Start Byte Device Address Command ID Data Payload Checksum End Byte

# 1 Byte 1 Byte Variable length message 2 Bytes \r
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 Specifically, all messages are in the following format: Start Byte (always "#"), Device 

Address Byte (1 for FlightCtrl, 2 for NaviCtrl, 3 for MK3Mag), Command ID Byte (a character), 

N Data Bytes (any number of bytes, including zero), and two Bytes for Cyclic Redundancy Check 

(CRC), and finally the Stop Byte (always a "\r"). Each PC command may or may not produce a 

resulting response from the MikroKopter software; however, if a response is sent, the Command 

ID Byte character returned is the same character as was sent by the PC, but with the character 

case inverted (upper case characters become the equivalent lower case letters and vice versa). 

 There are approximately 30 distinct serial commands that can be sent to the 
MikroKopter, producing about 23 different responses. A list of these commands and their 
responses taken directly from the MikroKopter website [6] can be found below in     Table 3: Common Commands, Table 4: FlightCtrl Commands, and Table 5: NaviCtrl Commands. 

Some responses are simply a "confirm frame" signifying the command was successfully received, 

while others return information about the state of the MikroKopter. Specifically, the commands 

are broken down into four classifications: Common, FlightCtrl, NaviCtrl, and MK3Mag 

commands. Common commands return high level system information (such as the data text to 

hand-held controller's display), as well as providing the means for remote movement control 

(with a similar abstraction as the hand-held controller). FlightCtrl commands provide the means 

for reading and writing low level system parameters, as well as a means of testing the motors. 

NaviCtrl commands provide a means for sending waypoints and receiving sensor data, as well as 

testing the serial port. MK3Mag command provides attitude information, though are only used 

internally. 
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    TABLE 3: COMMON COMMANDS 
Command Data from PC Data from MK 

Analog Values u8 Channel Index u8 Index, char[16] text 

ExternControl ExternControl Struct ConfirmFrame 

Request Display u8 Key, u8 SendingInterval char[80] DisplayText 

Request Display u8 MenuItem u8 MenuItem, u8MaxMenu, char[80] DisplayText

Version Request -- blank -- VersionInfo Struct 

Debug Request u8 AutoSendInterval Debug Struct 

Reset -- blank -- N/A

Get Extern Control -- blank -- ExternControl Struct 

 TABLE 4: FLIGHTCTRL COMMANDS 
Command Data from PC Data from MK 

Compass Heading s16 CompassValue Nick, Roll, Attitude… 

Engine Test u8[16] EngineValues N/A 

Settings Request u8 SettingsIndex u8 SettingsIndex, u8 Version, u8 Settings Struct

Write Settings u8 SettingsIndex, u8 Version, Settings Struct u8 Settings Index 

Read PPM Channels -- blank -- s16 PPM-Array[11] 

Set 3D-Data Interval u8 Interval 3DData Struct 

Mixer Request -- blank -- u8 MixerRevision, u8 Name[12], u8 Table[16][4]

Mixer Write u8 MixerRevision, u8 Name[12] u8 ack 
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Change Setting u8 Setting Number u8 Number 

Serial Poti s8 Poti[12] - 

BL Parameter Request u8 BL_Addr u8 Status1, u8 Status2, u8 BL_Addr, BLConfig Struct

BL Parameter Write u8 BL_Addr, BLConfig Struct u8 Status1, u8 Status2 TABLE 5: NAVICTRL COMMANDS 
Command Data from PC Data from MK 

Serial Link Test u16 EchoPattern u16 EchoPattern 

Error Text Request -- blank -- char[] Error Message 

Send Target Position WayPoint Struct - 

Send Waypoint WayPoint Struct u8 Number of Waypoints 

Request Waypoint u8 Index u8 NumWaypoints, u8 Index, WayPointStruct

Request OSD-Data u8 Interval NaviData Struct 

Redirect UART u8 Param - 

Set 3D-Data Interval u8 Interval 3DData Struct 

Set/Get NC-Param ? - 

 

Software written by and for the MikroKopter development team is a primary resource for 

developing the software interface. The exact format of the structures sent over the serial link can 

be found in the NaviData project code available online, and examples of usage can be found in 

the QMK Groundstation project code. The QMK Groundstation project [7] is similar to the goal 

of this project, as it provides a limited interface to the MikroKopter hardware (albeit a graphical 

interface) from a desktop computer. As such, it has some similar input/output functionality 

implemented, and was a springboard for development. 

2.3 ROS  
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 Willow Garage’ Robotic Operating System (ROS) is an open-source project, specifically 

aimed at the integration of robotic systems and subsystems [8]. Designed to operate either on a 

single computer or over a network, ROS provides an inter-system communication framework, 

allowing for message passing both locally and over a network, as shown in Figure 3. This “meta-

operating system” provides a number of services to simplify the development of advanced 

robotic systems. Namely, it provides:  

• Hardware abstraction  

• Low-level device control  

• Implementation of commonly-used functionality 

• Message-passing between processes 

• Package management 

 

 FIGURE 3: A TYPICAL ROS NETWORK CONFIGURATION 

 

ROS was developed to be highly extendible, currently having integration with client 

libraries of C++ and Python (with more to come).The client libraries provide the interfaces with 

the ROS communication framework, as well as other advanced features. Using this system, 

executables written in different languages, perhaps running on different computers, can easily 

communicate if necessary. . In this project, however, we will be strictly using C++ for 

development. 
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 ROS is designed to operate across multiple computers, providing a convenient method 

for writing and running code between systems and users. All code in ROS core libraries and 

applications is organized into packages or stacks. Packages are the lowest level of ROS software 

organization, containing code, libraries, and executables. These packages may contain any 

amount of functionality. The idea, however, is to create a new package for each application. For 

example, in Figure 4, a package would exist for each the camera, the wheel controller, and the 

decision-maker of a robot. Stacks are collections of packages that form a ROS library or a larger 

ROS system.  

 

 

 

 

 The actual operation of ROS is based on executables called nodes. Ideally, each ROS 

package contains no more than one node. These nodes each operate as a separate application 

and utilize the ROS message scheme to communicate. In the example in Figure 4, above, the 

user would have created a ROS stack (My_Stack). In this stack, there exist nine different 

packages, one for each of the above nodes. Each package contains its own message definitions, 

source code, header files, and executable. The diagram depicts the directions of communication 

between the nodes. The “Command” node controls the entire system, receiving data from all of 

Laser Robot Map
Localization 
Command 

Wheels Arm 
Gimble

Motor Control
FIGURE 4: AN EXAMPLE ROS SYSTEM 



29 | P a g e   

the various navigation and control systems. It then sends commands to the robot and to the 

motor controller to direct the robot’s actions.  

In ROS, these nodes have two primary methods of communication between one another: 

asynchronous topic-posting and synchronous request/response. The method preferred at MIT 

Lincoln Laboratory employs asynchronous data transfer using various, user-defined “topics”. 

ROS, however, also provides a request/response, synchronous communication scheme known as 

“services”. ROS also allows parameters from nodes anywhere in the system to be stored in a 

global parameter server.  

 In ROS, data is transferred between nodes in the form of msgs (messages). Msg files are 

simple text files that describe the format and data fields of a ROS message. These messages can 

contain primitive data types (signed or unsigned int8, int16, int32, int64), floats (float32, 

float64), strings, times, other msg files, and arrays of variable or fixed length.  

 ROS's asynchronous style of data transfer utilizes msgs continuously posted to topics 

from which other nodes may read. A node will "publish" to a topic at pre-defined intervals, 

independent of other ROS operations. Any number of nodes may "subscribe" to this topic. The 

subscribers, however, need not be at the same level in the ROS hierarchy to subscribe to a topic - 

topics are globally visible. When a node subscribes to a topic, it will constantly listen for a 

posting to that topic, and when received, will execute a certain command.  

 The other form of ROS communication is the synchronous scheme, executed by services. 

A srv message is comprised of two parts: a request and a response. A node that provides a 

service operates normally until it receives a request for one or more of its services. This 

"request" will contain all of the parameters defined in the srv message. The node will then 

execute its service function and return the "response" defined in the srv message.  

 Each system of communication comes with advantages and disadvantages. The primary 

advantage of topics is visibility. Any node in the entire system may access a topic and see the 

data. Additionally, topics can be logged into a .bag file for later analysis, and may even be used 
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to replay events. These topics, however, only transmit data in one direction. Bi-directional 

communication between two nodes requires two topics, between three nodes requires three 

topics, and so on. On the other hand, services are perfect for bi-directional communication on a 

"need-to-know" basis. Any node in the system may access a node's service, give it data, and 

receive the data needed in return. Services, however, are not as easily logged and cannot be 

replayed later using bag files.  

2.4 LOCALIZATION:  
 Many practical applications of UAVs require that the craft determine its position in space 

relative to some coordinate frame while in motion. These reference frames can be internal (IGS), 

global (GPS), relative to a pre-defined coordinate system, or relative to an external object. The 

UAV’s ability to localize itself in these reference frames is entirely dependent on the method of 

localization implemented. 

A number of localization schemes exist to determine the location of a source object in 

relation to a reference coordinate frame. The vast majority of these depend on either acoustic or 

radio signals produced or received at some known location, which are then interpreted by 

various processing methods to extrapolate desired position data. Commonly, time of arrival 

(TOA), time difference of arrival (TDOA), and differences in received signal strength (RSS), or 

angle of arrival (AOA) between multiple nodes or multiple transmitters provide distances that 

can be converted into relative position through simple trigonometry. Yet, these methods are far 

from error free. The first issue lies in disruption of the required signal. Both radio waves and 

acoustic signals are subject to reflection, refraction, absorption, diffraction, scattering, or (in the 

case of mobile systems) Doppler shifts that may result in the introduction of non-trivial error 

[9]. Moreover, in real world situations, either intentional or coincidental conditions can lead to 

low signal-to-noise ratios in the desired medium, which will compound any instrument errors. 
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 One of the most pervasive localization systems is the global positioning system (GPS) 

which uses radio signals and a satellite network enable worldwide localization. However, current 

high-precision systems are not available in a form factor (weight and size) that is appropriate for 

the specific limitations of a small quadrotor UAV. 

 Alternatively, many autonomous vehicles use inertial guidance systems (IGS) in 

navigation. Inertial guidance systems record acceleration and rotation to calculate position and 

orientation relative to a point of initial calibration. However, the system becomes increasingly 

inaccurate as time progresses and sensor error accumulates. Similarly to the GPS, reductions in 

size and weight result in unacceptable inaccuracies. Once again, we are forced to consider 

additional options.  

 A less-commonly used technology for UAV-specific localization is computer vision and 

video processing. While computer-vision based localization systems have been in use 

throughout the history of robotic systems, it was only in the past decade that this technology has 

come to widespread use. This likely occurred because of the recent availability of powerful open-

source vision-processing libraries. For instance, Utilizing 2-dimensional, high-contrast tags 

containing unique patterns (see Figure 5: Sample A. R. Tag Patterns), special visual processing 

software can allow objects to be tracked in real time. By detecting the tag’s edges and analyzing 

the perspective view and dimensions of the tag in the frame, the precise location and orientation 

can be computed [3]. Visual based tracking has the advantage of rapid updates, and will not be 

restricted by overhead obstacles. Moreover, because surveillance UAVs are, by the requirements 

of their task, already outfitted with the necessary optical equipment, computer vision promises 

to be well suited to the specifics of our project. 
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 FIGURE 5: SAMPLE A. R. TAG PATTERNS 
 

  

  

2.5 PREVIOUS PROJECTS 
 A number of projects from various research institutions have been conducted with 

varying levels of success in the area of UAV computer-based vision and object tracking, many of 

which are of interest to this project. Some of the most notable, applicable projects follow. We 

explored a number of previous research projects in the field of quadrotor UAVs, navigation 

schemes, control implementations, and potential applications. These projects helped to form a 

basis for our continued research. Several of such projects are summarized below. 

2.5.1 UNIVERSITY OF TÜBINGEN:  
Using the AsTec Hummingbird Quadrocopter, researchers at the University of Tübingen 

have set out to create a quadrotor system that is able to fly autonomously, without connection to 

a base station. They have outlined a number of areas in which research is required to complete 

their overall goal: flight control, lightweight solutions, three-dimensional mapping and path-

finding, and vision-based self-localization. 
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The process involves low-cost, lightweight, commodity consumer hardware. Their 

primary sensor for the UAV is the Wii remote infrared (IR) camera (informally known as the 

Wiimote), which allows robust tracking of a pattern of IR lights in conditions without direct 

sunlight. The Wii remote camera allows position and orientation relative to the IR beacons on 

the moving ground vehicle to be estimated 

The data returned from the Wii remote camera contains position of the four IR beacons 

in the camera frame, as well as intensity. This represents a clear example of the perspective-n-

point problem (PnP). The use of IR, however, is impractical in the real-world, outdoor 

environment. We will utilize similar programming, but using a different form of vision to obtain 

the same data [10].  

 

2.5.2 CHEMNITZ UNIVERSITY OF TECHNOLOGY:  
Utilizing the Hummingbird quadrotor, researchers from Chemnitz University of 

Technology designed a UAV system that is able to take off, navigate, and land without direct 

human control, particularly in environments and scenarios when GPS data is unavailable or too 

inaccurate. They realize that a system that is robust and reliable enough for everyday use does 

not yet exist. They seek to design and create a robustly recognizable landing target, an efficient 

algorithm for the landing pad detection, a sensor configuration suitable for velocity and position 

control without the use of GPS, and a cascaded controller structure for velocity and position 

stabilization. 

These researchers recognize one of the major problems of target tracking systems on 

UAVs: visibility of the target. If the target is too small, it cannot be identified from longer 

distances, thus rendering the vision system useless. Additionally, if the target is too large, the 

camera cannot fit the entire image in frame during closer-range flight. Our work with 

augmented reality tags will encounter the same problem with vision over varying distances.  
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To resolve this issue, the research team determined that their target had to be unique, 

but still simple enough to be tracked at a high frame rate. They used a series of white rings of 

unique widths on a black background so that the rings might be uniquely identified. Because 

each ring is indentified individually, the target can be identified even when not all rings are 

visible.   

 FIGURE 6: CHEMNITS QUADROTOR TARGET  
The Chemnitz team, however, conducted the experiment as such that the landing target 

was on flat, stationary ground. Additionally, they assumed that the UAV was always perfectly 

parallel to the ground. If it was not, they used the internal inertial measurement unit (IMU) to 

provide adjustment. We seek to perform all position calculation based entirely on the vision 

system, with no aid from other sensors [11].  

 

2.5.3 J INTELL ROBOT SYSTEMS:  
Another project, completed by J Intell Robot Systems, also implements the Wii remote 

IR camera for visual tracking on a UAV. Their objective was to use inexpensive hardware to 

control the UAV with solely onboard processing. This project involves having a miniature 

quadrotor hover in a defined position over a landing place, similarly to our project’s end goal for 
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localization. This project, however, uses the IR camera to calculate distance (or z position) and 

the yaw angle and uses the internal guidance system (IGS) to estimate relative x and y positions. 

These researchers focused on hovering at distances between 50cm and 1m from the landing 

platform using four IR beacons. Our team, however, will localize the UAV entirely based on the 

vision system at greater distances to demonstrate a more realistic application [12].  

 

2.5.4 INSTITUTE OF AUTOMATIC CONTROL ENGINEERING:  
At the Institute of Automatic Control Engineering, researchers completed a project that 

sought to use an onboard vision system, combined with the internal IMU, to hover stably at a 

desire position. This system uses a series of five markers of different shapes and sizes to 

determine the z position of the UAV, as well as the yaw angle. Again, the x and y components are 

determined by the IMU and the pitch/roll angles [13].  

 FIGURE 7: SHAPE-BASED TAG 
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2.5.5 RESEARCH CONCLUSION 
Many of these projects attempt to solve the UAV localization and landing problem, often 

with methods similar to our own. This MQP, however, differs, as it puts a higher emphasis on 

the following:  

• Purely vision-based localization, utilizing Augmented Reality Tags 

• Support for localization between the UAV and a potentially moving target 

• Recognition of real-world scenarios (distance from target, light conditions, relative 

velocities of objects)  
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3.0 METHODOLOGY  
Our overall goal was to provide Lincoln Laboratory with a functional UAV system upon 

which they may expand in the future. To provide a strong foundation for further development, 

we set three goals; the completion of which would signify a successful project. Our project 

sought to: 1) create a functional PC-UAV control interface to allow commands to be sent to the 

CyberQuad, with relevant sensor data being returned when requested, 2) establish a localization 

scheme sufficient to operate the quadrotor with a high degree of accuracy in the 0-5ft range, and 

3) provide clear documentation of our development process and the UAV’s operation for the 

staff at MIT Lincoln Laboratory. Each goal represents a smaller sub-project with its own 

procedures, specifications, and results. In this chapter we discuss these sections of the project 

individually.  

MIT Lincoln Laboratory envisioned this project as a springboard for future projects with 

quadrotors and desired that we demonstrate the abilities or potential of the system. The final 

product served as a proof-of-concept for quadrotor applications. We determined that the final 

demonstration would include the following:  

• A functional interface between ROS and the CyberQuad’s software 

• Tele-operation of the CyberQuad via a ROS-controlled joystick 

• A functional Augmented Reality localization system using an external camera  

o Movable camera in varying positions/orientations relative to the test-bed 

o Real-time, precise position/orientation knowledge feedback 

o Basic position-holding control-loop using constrained quadrotor setup 

 

GENERAL DEVELOPMENT STRATEGY 
To better manage this complex project and deal with the uncertainties that we foresaw in 

the early stages of development, we decided to follow a parallel path, iterative design process. 
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Because of our short development period, we understood the potential complications that could 

have arisen if we attempted to follow a linear development timeline. By dividing our project into 

three separate sub-projects, one for each of our three goals mentioned above, and focusing on 

specific iterations, we hoped to avoid the bottlenecks caused by a minor problem in one section 

of development. As such, if a problem were to occur with the control interface development, we 

would still be able to show progress in the localization scheme. Properly divided, this project 

provided sufficient work to keep each member of the project busy on a completely independent 

task for its duration. Each team member was charged with taking the lead role in one aspect of 

the project, but also helped in other areas to provide a different perspective on difficult 

problems.  

  

3.1 DEVELOP PC CONTROL INTERFACE 
 

SCOPE 
The CyberQuad system, running the open-source MikroKopter control code, was originally 

intended to be operated by remote control or by pre-programmed routes programmed with a 

MikroKopter control program such as QMK-Groundstation (Linux) or MikroKopter-Tool 

(Windows). The first logical step in establishing a framework for future autonomous quadrotor 

applications was to devise a method for the programmable control of the system. If we were 

unable to use a PC to directly interface with the CyberQuad’s MikroKopter hardware, we would 

not have been unable to accomplish the more sophisticated goals of the project – including 

integration with ROS. Lincoln Laboratory determined that this CyberQuad system (and 

MikroKopter hardware) is the platform they will be using in future, and standardizing moving to 

a standard control system would facilitate accelerated collaborative development moving 

forward. 
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 We determined that the most logical method of communication to the quadrotor from 

the PC was to utilize the MikroKopter hardware’s serial debugging port – the same connection 

used by the stock MikroKopter control utilities, such as QMK-Groundstation. This serial link, 

when connected via a wireless serial adapter, would therefore provide a simple method for 

communication between the PC and quadrotor.  

Below, Figure 8 shows the conventional communication methods with the CyberQuad – a 

handheld transmitter and pre-programmed waypoints.  

 FIGURE 8: CONVENTIONAL MIKROKOPTER CONTROL METHODS 

 Figure 9 represents the designed communication scheme that we planned to implement. It 

allowed communication by handheld wireless transmitter, pre-programmed waypoints, ROS 

joystick, and wireless PC control.  
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(for Waypoint Programming)
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Wireless Controller
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Wired / Wireless Serial Link

CyberQuad UAV
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 FIGURE 9: OUR PROJECT’S IMPLEMENTED CONTROL METHODS FOR THE MIKROKOPTER  3.1.1 DESIGN SPECIFICATIONS 
The PC control interface needed to meet a number of requirements to demonstrate its 

success. These specifications, determined in the proposal phase of the project, served as 

guidelines for system’s development. They are as follows: 

• Our system must be able to pass commands to the MikroKopter hardware from a ROS 

node (with demonstration via a ROS joystick). 

• The UAV adapter must provide a level of abstraction sufficient to offer Lincoln 

Laboratory engineers the ability to communicate with the quadrotor in a form that is 

more convenient than by forming low-level MikroKopter serial commands.  

• The UAV adapter should provide visibility for all messages passed by the system. ROS 

offers two available options for inter-nodal communication: asynchronous 

publishing/subscribing and synchronous request/response. The publisher/subscriber 

sub-system allows for detailed logging and playback of all messages passed. Our system 

must employ this asynchronous system because the messages are visible to ROS logging 
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tools, while synchronous communication messages are not. This implementation will 

ensure that the UAV can be operated by both high-level command nodes as well as at the 

low level via the command prompt.  

• Given the time constraint, our system must first implement functions for passing only 

the most important messages. The adapter must be able to send basic movement-related 

controls, receive navigation data, and overall ensure functional, extendible serial 

communications. The serial communication test should be used to test the system for 

functionality. 

• The serial communication scheme must feature multi-threading to ensure simultaneous 

read/write functionality.  

 

3.1.2 DESIGN DECISIONS 
Before any coding began, we dedicated a significant portion of time to designing a 

control system architecture that was appropriate for the task at hand. This helped to break up 

the complex task of developing the quadrotor interface into more manageable components. 

Furthermore, with well defined interfaces within the system, multiple individuals could work on 

the same project in parallel without having to wait on the completion of one section to start 

another.  

INITIAL DESIGN 
Creating a CyberQuad control interface began with research regarding the two software 

and hardware systems to be interconnected. We studied the existing MikroKopter hardware and 

software of the CyberQuad, as well as ROS documentation and sample ROS systems. Our focus 

was initially towards determining methods by which to exploit any existing message-passing 

systems in the MikroKopter hardware and software. In particular, we intended to use the 

quadrotor’s serial message protocols to provide navigation-related feedback and flight control.  
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In our research, we discovered that there already existed a several relevant software 

projects on the topic of serial communication schemes. Within the ROS library, there were 

several simple examples of serial communication nodes. Likewise, the pre-existing diagnostic 

and command tool for the CyberQuad, QMK-Groundstation (the MikroKopter ground-control 

center software for Linux), made use of the serial communication protocol. While neither 

project fit perfectly into our program specifications, a combination of the two provided a 

solution to the task of establishing PC-UAV communication. 

The next step in the design of our project was to determine the level of abstraction 

presented to the user of the control system. The interface concept was applied to the 

CyberQuad, with the system providing an abstraction of the lower-level processes so that 

Lincoln Laboratory researchers would be able to operate the UAV with simple, high-level 

commands, rather than the complex low-level, ambiguous serial commands made available by 

the MikroKopter software. Taking advantage of ROS’s simplified multi-process communication 

system, a layered interface approach could be used in the development of the system. Once the 

lowest level communication node was created, additional interface nodes could be layered on 

top of this and each other, each providing a higher level of abstraction to the user than those it 

builds upon. As such, the abstraction level could become increasingly higher-level as the system 

undergoes development in the future. 

To initiate this abstraction, we chose to first develop what we called an “adapter” - a 

system providing the ROS-topic API to the to the low-level MikroKopter serial commands. This 

would hide the low-level serial protocols and processes, only providing user-access to more 

user-friendly commands and data. The physical data stream between the devices would only be 

handled internally, as it is not immediately important to other elements in the ROS system. The 

adapter we developed will allow researchers at Lincoln Laboratory to record, analyze, and repeat 

the messages passed over serial communications, with the messages remaining in a human-

readable format.  
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A functional adapter system required multiple processes running simultaneously to 

accomplish the tasks at hand, namely: sending commands through the serial port, receiving 

serial responses, and monitoring the link between the PC and the quadrotor. The two main 

possibilities for the structure of the ROS-MikroKopter communication were: 1) a system 

multiple ROS nodes to emulate the required “multithreading” capabilities, or 2) employ actual 

C++ multithreading in a single ROS node to accomplish all of the tasks. Clearly there are 

advantages and disadvantages to both methods, particularly with regard to our previous 

experiences – a high degree of C++ experience, with no ROS background - and to the task at 

hand. Given this, our first design developed into a single, monolithic C++ program encapsulated 

within a single ROS node, as pictured in Figure 10. Moreover, this implementation would have 

clearly fit the standard definition of an “interface”, in that it provides functionality to a user 

through a defined API, yet hides all the implementation that provides the functionality. 

Likewise, it would minimize inter-ROS node communication, as the user API could be defined to 

have only a few, simple commands. Though it was against the message visibility guidelines, we 

initially planned to use a request/response system for any communications that needed to 

occur, as it often simplified the implementation. 
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 FIGURE 10: UAV_ADAPTER MONOLITHIC DESIGN 
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FINAL DESIGN 
Following the initial project proposal presentation, we changed our software architecture 

to more readily accommodate the desires of MIT Lincoln Laboratory. The new configuration is 

shown below in Figure 11. The ROS-distributed system required message passing in the form of 

visible “topics” that were visible throughout the entire ROS system. This implementation more 

clearly fit our design specifications, and was therefore, the optimal choice. The primary 

motivation for changing our system, however, was to enable greater low-level visibility. Our 

project would be used by Lincoln Laboratory after its completion and the Laboratory engineers 

required visibility access to the serial communications for the purposes of logging and repeating 

experiments and procedures. This new philosophy helped to create an “adapter” that would 

allow for complete and unmodified access to the MikroKopter protocols through ROS, rather 

than a true system interface for the CyberQuad system. The original monolithic C++ structure 

was divided up into several ROS nodes that communicate via topics (rather than request/reply 

services), as seen in Figure 12. 
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 FIGURE 11: UAV_ADAPTER FINAL STRUCTURE  
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In our design, there were three ROS nodes placed at varying system levels. The lowest 

level ROS node was the uav_adapter. The purpose of this node was to handle all of the serial 

port communication between the CyberQuad and the PC. The uav_adapter subscribed to ROS 

topics and translated those messages into MikroKopter-compliant serial messages. It also 

received messages over the serial link and converted those messages back into ROS-compliant 

messages. The uav_adapter then posted the ROS messages to the appropriate ROS topics for 

use in other parts of the system. 

 The connection to other ROS nodes was divided into two broad categories: command-

type and the return-type messages. The command type included a topic for each command in 

the MikroKopter serial protocol. The returned message type includes a topic corresponding to 

each message returned from the MikroKopter serial protocol. 

 The next ROS node in the system hierarchy was the uav_translator that was designed to 

translate higher-level ROS messages into a more complex set of low-level MikroKopter 

commands, as well as provide an abstraction layer for the sensor returns. Though this node 

MikroKopter

UAV_AdapterParserPacker 

UAV_Translator UAV_Health_Monitor 
UAV_Command

FIGURE 12: ROS NODE CONFIGURATION 
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would never be fully implemented for this project, it would provide the framework where future 

developers could create simplified commands. In the simplified version used for this project, 

this node would subscribe to a higher-level command node and pass messages to the 

uav_adapter, then receive the uav_adapter’s return messages to be passed upward, acting as a 

pass-through. 

 Finally, the highest level node was uav_command, providing the application-level 

programming for the UAV control system. This node served to implement some degree of 

automated control of the UAV. This way it served both as a means to test existing code and a 

placeholder for future high-level development. 

 Another ROS node was created in parallel to this message-translation system: the 

uav_health_monitor. This node subscribed to one ROS command message and one 

MikroKopter returned message that existed to test the serial link. It compared the sent and 

received messages and generated a metric of link health and latency, posting the results to a 

separate topic. 

3.1.3 DEVELOPMENT 
Development of the UAV adapter system involved developing a series of independent 

ROS nodes, with different levels of abstraction. We were able to decompose the development 

process to allow each node to be developed individually and simultaneously, and in some cases, 

to enable simultaneous development of different elements of the same node. While one team 

member worked on the serial communication, another was able to work on the non-serial 

components of each ROS node – some of which did not even require serial communication to 

fully develop. Each component was developed iteratively, often beginning with example code 

from ROS or the MikroKopter QMK-Groundstation source code in early iterations. After a 

sufficient understanding was achieved, the code was re-written to more accurately meet our 
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goals. In this section, we explain the development process for each of these major components of 

the UAV adapter.  

SERIAL PROTOCOL 
 In an effort to save time in the development of the serial communication code, we 

modified existing code to serve our purpose. While researching potential pre-existing ROS 

nodes with serial components, we came across the ROS serial_port package. For some time, we 

discussed the merits of using this seemingly functional system. Ultimately, we decided that 

modifying the serial_port package as a ROS node would create too much overhead, in the form 

of unnecessary ROS messages, and additional latency because every message would have to 

travel through multiple sockets. Moreover, we anticipated that attempting to modify this code to 

be multi-threaded would take longer than developing the multi-threaded system on our own. 

Although all ROS node support multithreading through the Boost library which is included in 

the core ROS library, by rewriting the serial_port package we would have had the greatest 

control over the multithreaded behavior and shared serial port resources. 

Although the decision was made to not use the serial_port package as a self-contained 

system, we repurposed a significant amount of the C++ source code. The first issue we 

encountered during the serial development portion was the inability of our operating system 

(Ubuntu 2.6.13) to recognize the MikroKopter debug board (MK-USB) as a TTY device. 

However, to test our code, we connected two PCs together via serial crossover cable with one PC 

using our serial code to generate serial data and the other PC receiving the serial data in a 

terminal window. 

Eventually, we found a solution by which to accomplish serial communication across the 

MKUSB. By removing the default Ubuntu package brltty, a package designed to allow for Braille 

hardware interfaces, we were able to open the ttyUSB port corresponding to the MK-USB board 

with both read and write capability.  
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Once the serial port was open, we began testing our serial code with simple MikroKopter 

commands. During these early tests, however, communication only functioned in one direction; 

we sent messages to the quadrotor, but could receive none of the expected return messages. We 

employed the QMK-Groundstation software recommended by the CyberQuad developers, other 

example serial code, and a direct electrical analysis of the serial port using an oscilloscope to 

determine that the fault in the communication was a result of a faulty UART connector.  

With a working connection, we began developing the correct MikroKopter message 

frames that would allow for bi-directional communication to the quadrotor. Each MikroKopter 

message was formed by a start byte, a destination address byte, message ID byte, a variable 

length payload, a two byte checksum, and an end byte. We employed previous MikroKopter 

communication projects in order to accelerate our development of these messages, particularly 

QMK-Groundstation, the Linux equivalent to CyberQuad’s default debugging software suite. 

QMK-Groundstation received feedback from the MikroKopter sensors, performed engine tests, 

and configured low-level settings.  

Our message generation development involved simple tests to ensure that 

communication between the computer and MikroKopter was functional - sending small, well-

defined messages which provided consistent return values. We manually encoded these 

messages into a buffer to be sent to the quadrotor using our serial handling code. Our 

communication code successfully sent messages over the serial link to both run the engines in 

test mode and to trigger system version responses. The next step in development required the 

ability to send messages that carried a higher data payload, as these test messages carried very 

little data.  

MikroKopter’s serial protocol specifies a modified 64 bit encoding scheme, which was 

handled correctly by QMK-Groundstation by using the Linux Qt libraries. Our code, however, 

lacked the data types and operations provided by Qt. Therefore, we had to address this encoding 

ourselves to properly encode these messages. In MikroKopter’s encoding scheme, valid payload 
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characters range from ‘=’ (decimal 61) to ‘}’ (decimal 125). Although never explicitly explained in 

the English pages of the MikroKopter Wiki, it seems that this scheme is implemented to prevent 

payloads from inadvertently containing frame starting or ending characters (‘#’ decimal 35 and 

‘\r’ decimal 13). Table 6 presents an example of MikroKopter’s encoding system that we 

addressed in our serial code. 

 TABLE 6: SIMPLE BASE64 COMPUTATION Original value A (decimal) B (decimal) C (decimal) Offset value (n) a (decimal) = A + n b (decimal) = B + n c (decimal) = C + n Bit representation of new value a7a6a5a4a3a2a1a0 b7b6b5b4b3b2b1b0 c7c6c5c4c3c2c1c0 

Base 64 representation 00a7a6a5a4a3a2 a1a0b7b6b5b4 00b3b2b1b0c7c6 00c5c4c3c2c1c0 

  

We addressed, and compensated for, the encoding difficulties that arose because the data 

payload was expanded in such a way that the encoded serial payload was no longer consistent 

with the size specifications in the MikroKopter serial protocol documentation. For example, a 

serial link test pattern was specified to have an unsigned 16 bit (2 byte) payload. When 

expanded to base 64, however, the true message becomes 4 bytes - twice the anticipated data 

length. Without properly accounting for this change, data payload was incomplete and 

misinterpreted, and checksum generation was often incorrect; these incorrect messages were 

often ignored by the MikroKopter.  

  

ROS NODES 
The UAV adapter system required a number of different ROS nodes to accomplish all of 

the functionality established by the design specifications. These nodes were constructed in a 

hierarchical structure to fit the needs of the final system. Figure 13 shows the ROS system 
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configuration created for the operation of the CyberQuad. The arrows demonstrate the 

directions of communication between the nodes. The uav_msgs node does not communicate 

with any of the other nodes, but it supplies message definitions to all of them. Additionally, 

Joystick_Ctrl was not created specifically for the quadrotor; it is a commonly-used ROS node 

that was adapted to operate with this particular hardware and project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

uav_adapter 

The uav_adapter involved three different classes to perform the multithreading 

functions of serial I/O for which this node was designed. The first class, the Packer, subscribed 

to messages from a node higher in the hierarchy of the UAV adapter system, converted the 

messages to a MikroKopter-compatible format, and sent those messages over serial to the 

quadrotor. The second class in the uav_adapter was the Parser. This class received returned 

serial messages from MikroKopter, parsed those messages back into a ROS-readable format, 

and published them back into the ROS system. The final class was the UAV_Adapter class that 

MikroKopter

UAV_AdapterParserPacker

UAV_Translator UAV_Health_MonitorUAV_Teleop 
UAV_CommandUAV_ARTag 

UAV_Msgs* 

Joystick_Ctrl 

* This node contributes to every ROS node, but doesn’t directly communicate with any.
FIGURE 13: THE CYBERQUAD'S ROS CONFIGURATION 
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provided the constructors and destructors for the Packer and the Parser. Each of these classes 

was developed individually due to their independent functionality. This division of the 

uav_adapter into separate objects allowed all the group members to work effectively in parallel. 

The first step in developing the uav_adapter was to establish the base class, 

UAV_Adapter to handle the constructors and destructors of each thread. In the early stages of 

development, we created placeholders for the constructors of the Parser and Packer to ensure 

that each thread was instantiated correctly. Initial development of multithreading began with 

the creation of a method in the UAV_Adapter class that called separate methods to instantiate 

the Packer and Parser as separate threads using the boost::thread method. To confirm that the 

multithreading was working properly, the constructors in the Parser and Packer were 

temporarily configured to continuously print status messages. Be viewing the output of the 

UAV_Adapter class’s execution, we were able to confirm that several threads were executing 

simultaneously and functioning correctly.  

Once the serial communication code had been implemented, revisions were made to the 

Parser and Packer constructors to allow for references to shared resources to be passed into the 

object to allow for simultaneous use of the serial port. Additionally, a boost::mutex object was 

created in the UAV_Adapter class, to which both the Packer and Parser were provided access. 

By locking and unlocking this mutex around critical sections in the executed code, the shared 

serial resource was protected. The Packer served to write to the serial connection, while the 

Parser performed all read functions simultaneously. 

In the Parser, we developed a state machine that received a series of data characters 

from the incoming serial buffer and reconstructed them into a full message. Based on the known 

start and end bytes of the MikroKopter serial protocol and the checksum analysis code from the 

QMK-Groundstation, we determined the difference between correct and corrupted messages. 

The Parser would then publish these reconstructed ROS messages to a node higher in the UAV 

system hierarchy. 
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For the message reconstruction code, we created a set of structures for the relevant 

MikroKopter messages to be copied into. This way, we had access to specific fields of a message 

by first casting that message into a general structure. Once the data fields of a received 

MikroKopter message were all processed, the information was inserted into a ROS message 

structure and posted to the appropriate ROS topic.  

The Packer was constructed in a similar manner. In its idle state, it continuously polled 

the topics to which it subscribed for new messages from other nodes in the hierarchy. When it 

received a message, it triggered a callback function that created a message with the required 

MikroKopter message ID and populated the outgoing message with the proper data fields. Then 

the message was sent over the serial link to the MikroKopter. 

To ensure that the entirety of the system was functioning as a whole, we had a separate 

ROS node, the uav_health_monitor, send out MikroKopter echo packets. These messages were 

interpreted by the Packer, triggered in the correct callback, packed into the correct data frame, 

and sent over the serial to the MikroKopter hardware. The MikroKopter generated a response 

message and returned it over the serial link. The Parser then reconstructed the message byte-

by-byte, and forwarded the correct message back into the UAV system. The 

uav_health_monitor listened for this return message, and determined if messages had made it 

around the full loop to the MikroKopter and back. 

 

uav_translator 

The uav_translator node was originally designed to act as an abstraction layer 

converting higher level commands to low-lower level (such as those used by uav_adapter). For 

this project, it served a slightly different purpose, simply re-routing messages from other nodes 

to the uav_adapter. Additionally, this node received return data from the MikroKopter after it 

has been read from serial, parsed, and sent as a MikroKopter-returned ROS message from the 

uav_adapter. This node was also designed to receive these return messages, translate them into 
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a more usable, higher-level message, and post them to topics readable by nodes higher in the 

hierarchy. Figure 14 demonstrates an example of the proposed functionality of this node, if it 

were implemented as desired for the final design. The messages employed by the 

uav_translator module are simpler, clearer, and more intuitive than the obscure MikroKopter 

protocols sent at the lower levels. 

 

 

 

 

  

  

    

 

 

 

 

Development of this node began before the formats of either the low-level or high-level 

messages were determined. The first iteration saw a simple implementation of the 

publish/subscribe feature, with the ability to post to all topics that carried a command to be sent 

to the MikroKopter, as well as to subscribe to all topics that contained messages returned by the 

MikroKopter. Work on this node was largely suspended for a majority of the project during the 

period when no return messages could be read from the quadrotor.  

We realized, however, that we needed testing procedures to ensure that our code was 

operating properly once connected to the UAV hardware. We determined that the 

uav_translator should be used as a test suite for the low-level commands that we intended to 

implement. Because of its ability to pass MikroKopter commands directly to be packed and sent 

FIGURE 14: UAV_TRANSLATOR 

 UAV_Command 

 UAV_Translator  UAV_Adapter 
MoveLeft () 

ExternControl (-50, 0, 0, 0)
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over serial, this node worked well for testing. It published test messages and subscribed to the 

responses. This node contained none of the multithreading complications inherent in directly 

testing the uav_adapter, and it allowed for easy comparison between commands sent and 

responses received.  

Finally, framework for adding high-level commands in the future was established. 

Several example messages were implemented in code, albeit not fully, though the framework has 

been established for use by future developers. In future iterations of this particular node, the 

number of topics the uav_translator publishes and subscribes to must be increased. At the 

completion of this project, the translator only published those messages that we found to be 

most relevant to providing the proof-of-concept system. Many of the minor functions of the 

MikroKopter serial protocol remained unimplemented in each translating, sending, and 

receiving.  

 

uav_health_monitor 

 The uav_health_monitor was an addition to our adapter system to provide an indication 

about the state of the messages being passed to and from the CyberQuad system. In the first 

iteration of this node, it subscribed to all of the important message topics, both from the 

uav_translator and the uav_adapter. The uav_health_monitor implemented a linked list to 

store a queue of message times on the “sent” side of the uav_adapter. It would then assign 

message times coming from the “received” side of the quadrotor to a separate queue. Over a 

specified time period, the uav_health_monitor would build these queues, and at the end of that 

period, it would calculate the average latency over that time period, compare the number of 

messages sent to the number of messages received to determine link health, advance the queues, 

and clear old messages.  

 Figure 15 depicts the linked list employed by the uav_health_monitor to keep track of all 

messages sent and the time at which they were sent.  
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 Soon after development began, we realized an problem in our design. With the 

uav_health_monitor subscribing to so many messages, if a message were dropped, there was no 

way of knowing what message it was. Additionally, the queues of messages only stored a 

timestamp, and no other relevant data. Finally, this method provided only a sampling of link 

health; it would potentially fall very behind in the queues while it processed the data, advanced, 

and cleared the queues. We determined also that this implementation would take a significant 

amount of time to develop and test. This would likely require modifying the MikroKopter 

firmware to provide timestamps as a field on all return messages, for a full implementation.  

 After re-evaluating the uav_health_monitor, we developed an entirely different 

technique f or monitoring link health. This time, we used the built-in MikroKopter serial 

command serial_link_test to monitor the connection. The uav_health_monitor sent a message 

to the MikroKopter at a user-defined rate that carried an “EchoPattern,” (an unsigned integer) 

and the quadrotor would return that same value. The queue was changed to store only the 

serial_link_test messages sent from the uav_health_monitor – their EchoPattern, or index#, 

and a timestamp. This message would be read by the uav_adapter, sent to the MikroKopter, 

and the response received. When the uav_adapter posted the return message, a callback 

function in the uav_health_monitor assigned the incoming message a “return time”. It would 

then compare the index of the incoming message to the first message in the queue of sent 

messages. A mismatch implied a dropped message, and could be handled accordingly. 

Otherwise, the uav_health_monitor calculated latency based on the sent time vs. return time, as 

well as the link health based on the number of packets dropped over a certain time interval.  

FIGURE 15: THE LINKED LIST OF SENT MESSAGES 

Serial Link Test Message  Time A  *Ptr to Next Msg Serial Link Test Message Time B  *Ptr to Next Msg Serial Link Test Message Time C  *Ptr to Next Msg 
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 Figure 16 is the new setup of the linked list system that would keep track of both 

“EchoPattern” and the timestamp associated with both the incoming and outgoing messages. 

The messages returned by MikroKopter (through the uav_adapter) are not linked, as they are 

solely used to compare against the existing linked list, then discarded. 

 

 

 

 

 

  

 

 

 

 

 

 

To improve on the old system, the new design updated latency and link health in a 

continuous, real-time manner, as opposed to the sampling method used previously. The updated 

uav_health_monitor employed a moving buffer that stores the result of each message callback; 

it stored a ‘0’ for a successfully returned message, and a ‘1’ for a dropped message. The link 

health was calculated over this set-length time interval, and when the buffer advanced, it cleared 

old results, as seen in Figure 17. This way, as time advanced, new dropped messages remained 

significant to the calculation of link health. Additionally, the latency of the link was calculated 

using a weighted average to ensure that the most present latency results were the most 

significant, but also so that there is some smoothing of the sampling, ensuring an outlier does 

not potentially provoke an overreaction from the subscribing quadrotor control nodes.  

Serial Link Test Message  Index A  Time A  *Ptr to Next Msg 
Serial Link Test Message Index B  Time B  *Ptr to Next Msg 

Serial Link Test Message Index C  Time C  *Ptr to Next Msg 
Sent by uav_health_monitor 

Returned by uav_adapter 

Serial Link Test Message  Index A  Time A2 Serial Link Test Message Index B  Time B2 Serial Link Test Message Index C  Time C2 FIGURE 16: AMMENDED LINKED LIST SYSTEM 
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In a late evaluation of this node’s functionality, however, we noticed another 

shortcoming in its design. While the uav_health_monitor kept track of the number of dropped 

messages, latency, and link health, this information was only made available to other nodes 

when that information could be calculated (if and only if a response was received from the 

MikroKopter). If, for some reason, the link was disconnected, the user wouldn’t necessarily be 

aware of the dropped connection because uav_health_monitor only publishes a message after 

receiving that response. Thus, we implemented a timing system to monitor the responses and 

ensure that a response is received every few seconds (the exact value to be assigned by the user). 

Otherwise, uav_health_monitor publishes to a separate topic that alerts any subscribers that 

the link is disconnected. Upon re-establishing connection, the node returns to normal operation. 

This node was completed with all of the specified functionality. Additional functionality 

could be added to monitor another MikroKopter command, rather than having an entire 

publisher-subscriber topic just for testing the link health. In a more advanced quadrotor system, 

this extra serial_link_test topic might place unnecessary burden on the serial port that could be 

avoided by sampling the output of another message. The best possible alternative would be to 

FIGURE 17: LINK HEALTH QUEUE CONTROL 
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monitor the external command (which has a confirm frame similar to the serial test message) or 

the OSD data (navigational data returned from the MikroKopter at user-defined intervals) 

comparing return time to the expected return time as defined by one of the MikroKopter serial 

commands. For the purposes of our project and projects in the near future, however, this 

implementation was determined to be more than sufficient.  

 

uav_teleop 

This simple node serves to allow for ROS joystick (in this case, a dual 2-axis Logitech 

Gamepad) control of the quadrotor for the main purpose of testing. Many ROS-enabled robots 

at Lincoln Laboratory utilize this controller, and we felt it appropriate to adopt the same 

standard. Building off of ROS’s built-in joystick control functionality, uav_teleop subscribes to 

the joystick node’s output messages (in the form of two arrays: axis[] with one element for each 

joystick axis, and buttons[] with one element for each button on the controller). This node then 

converts these values into quadrotor-specific functionality for each axis and button.  

Our joypad implementation features handling for two analog control sticks (altitude and 

yaw, pitch and roll) and four buttons. The first button enables the ‘locking’ of output thrust, 

meaning that you can set the UAV to a desired thrust using the control stick, hold this button 

and release the control stick and the UAV will continue to receive the same thrust. The second 

button acts as a scaling mechanism for the joystick axis in the event that the operator wishes to 

issue more precise commands to the quadrotor. For example, without the scaling, full left on the 

left control stick might make the quadrotor rotate at a rate of 1 radian/second. With the scaling 

button pressed, it would only rotate at a maximum rate of 0.5rad/sec. This function allows the 

user to adjust the control scheme in real-time for more precise maneuvers. The third button 

allowed for the re-centering of the thrust control stick. From our limited flight experience, we 

concluded that it was useful to have the default position of the thrust control stick to be the 

value that makes the quadrotor hover. However, because this value can vary substantially from 
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flight to flight, it could not be hardcoded into the software or even passed as a parameter on the 

launching of the ROS node. Instead we had this button take the current value of the thrust and 

adjust all subsequent values so that the new default value of the control stick was hover. The 

final button was simply a reset button, which reset the centered control stick back to its original 

configuration. 

The uav_teleop node existed as a framework for future implementation. Though we did 

implement the essential control elements, we did not experiment with all of the MikroKopter’s 

serial commands to determine if there were others that were valuable to implement on the 

controller. Future projects will likely find a number of additional uses for the buttons on the 

gamepad, and this node is designed to easily support adding new functionality. 

 

uav_command 

We developed uav_command as the central processing center for the quadrotor’s 

operation. This node would operate above the uav_translator and uav_adapter in the 

hierarchy and pass high-level commands through the uav_translator. All sensory systems – AR 

vision, GPS data, sensor fusion, etc. – would be analyzed and combined in this node to 

determine the UAV’s best course of action.  

Due to time constraints, however, we were unable to fully implement all of the 

functionality for which this node was designed. Instead we created a framework for anticipated 

future applications. Additionally, we also programmed a number of test cases into the current 

version of the uav_command to demonstrate proof-of-concept and provide an outline for future 

developers.  

One of the primary means by which to quantitatively measure the functionality of the 

UAV system as a whole was to write and retrieve data from a log file for analysis. We used the 

standard C++ I/O libraries and some file manipulation to output the results of the various 
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processes of the UAV system to comma separated value (*.csv) files for later analysis. Persistent 

data could now be saved outside of ROS for more extensive external analysis. 

Additionally, in order to test our localization system, we created the means by which to 

specify an arbitrary 3D coordinate anywhere in space in respect to the augmented reality test tag 

and then calculate the difference between this “setpoint” and actual position of the UAV based 

on the localization data provided by uav_artag. To accomplish this error calculation, we made 

use of ROS’s built-in frame transformation messages. Every time uav_artag detected an 

augmented reality tag, it would post the orientation and position data as a frame 

transformation. The uav_command subscribed to these messages, and would combine the 

incoming data with frame transformation information about the UAV’s position in respect to the 

camera, upon receiving a message. This allowed for the construction of a ROS frame 

transformation tree and for the forwards kinematics calculation of the setpoint (initially set in 

respect to the coordinate frame of the augmented reality tag) transforming it into the coordinate 

frame of the UAV. This vector was then parsed into the component X, Y, and Z error (the specific 

measurement of meters between the desired and actual position of the UAV). Figure 18 shows 

the transformation process and the relationship between the tag’s frame of reference, the UAV’s 

frame of reference, and the test setpoint that we defined.  
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 FIGURE 18 UAV TO SETPOINT FRAME TRANSFORMATIONS  
Finally, in an effort to showcase the functionality of both our localization and 

MikroKopter control interface simultaneously, we implemented a very simple position-hold 

control loop. We used our previously-mentioned transformation code to calculate the error 

between actual UAV position and desired position, and passed these error values into a PI 

(proportional, integral) feedback control loop. Error in the X and Z-coordinates of the UAV were 

handled by setting the roll and pitch, respectively, of the UAV. For example, if the target setpoint 

were in front of the UAV (a negative Z value) and to the right (a positive X value), the 

transformation system would send a positive value to the UAV’s external control pitch field and 

a negative value to its roll field, causing it to pitch forwards and roll right. The overall thrust 

provided to the system was a function of absolute magnitude of the error – the greater the error, 

the larger a “gas” value generate. If the Y-error specified the UAV was above the target location, 
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the gas was reduced from the amount of thrust required to hover, allowing the quadrotor to 

descend. If the Y-error indicated the UAV was below the target point, gas was added to the hover 

thrust to raise the UAV.  

A number of situations were not addressed in our simple framework implementation of 

the control loop. One of the issues occurred when uav_artag momentarily lost sight of the tag. 

We implemented a solution to this problem in which the UAV would revert to the “hover” thrust 

and zero yaw, pitch, roll orientation when no tags were visible. Another issue left un-addressed 

was that of yaw control of the quadrotor. The system clearly is capable of moving in any 

direction horizontal to the ground plane without changing yaw (y-axis in the UAV frame), but 

for our limited testing purposes no yaw control was implemented. However, it is worth noting 

that in a real-world implementation, control over yaw would be necessary in order to keep the 

augmented reality tag in the viewing angle of the camera at all times. 

 

uav_msgs 

Unlike the other nodes in the UAV system, this node contains no actual C++ code or 

executables. The uav_msgs node provides the message definitions used in the UAV structure. 

Without this node, the other packages would have to contain dependencies on one another, 

which could potentially have caused circular dependencies if two nodes were required to 

communicate. Now, all quadrotor packages only depend on one standardized package to provide 

all of the necessary messages.  

In future projects, this package will see a large amount of improvement. Any new UAV 

node will contribute msg files to uav_msgs. One such example is the uav_command node that 

had to add new high-level messages that were not implemented during our project.     
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3.2 ENABLE UAV LOCALIZATION 
SCOPE 
 A number of potential real-world quadrotor applications require relative localization 

between a UAV and ground-based system. For example, the execution of a safe, reliable landing 

on the back of a potentially moving unmanned ground vehicle (UGV) requires the knowledge of 

the UAV’s position relative to the ground vehicle in real-time with a high degree of precision. 

The GPS systems built into each vehicle provide an excellent method of tracking one another at 

long ranges. However, the resolution of the GPS modules possesses a level of error in shorter 

ranges that is compounded in relative position calculations.  

 The UAV's vision system can be employed to facilitate a more precise localization. We 

decided to use the vision data to control the quadrotor’s relative position to the ground platform. 

Accurate knowledge of its location allows a UAV to accomplish a number of tasks including, but 

not limited to, landing. Any vision system that we developed could also be employed in a 

number of different future projects.  

 

3.2.1 DESIGN SPECIFICATIONS 
This project included two well-defined components; the UAV adapter (the integration of 

MikroKopter hardware with ROS), and system localization (the modification and encapsulation 

of vision processing libraries in ROS). The constraints and specifications developed in the initial 

phases of the project for developing this localization scheme were separated into those relating 

to the UAV, those relating to the ground-station testing computer containing the ROS server, 

and those relating to the implementation and performance of the localization system. This 

section presents those specifications developed in the initial planning phase of the project. 

 

 



66 | P a g e   

UAV SPECIFICATIONS 
The method chosen for localization must easily integrate with the CyberQuad UAV 

platform. As such, any additional hardware required must be light enough to fit the maximum 

payload (500 grams) and weight distribution constraints specified for our device. Additionally, it 

must be able to either interface with the MikroKopter hardware boards and firmware, or operate 

completely independently, sending information directly to the ground station. In either case, the 

system could not interfere with the normal flight operations of the system. 

If a camera (visual) system was used, these constraints are thus made more specific. 

Specifically, if a camera other than the model in the current CyberQuad package was necessary, 

the new system would have to integrate with the existing transmitter and camera angle-control 

system, or would have to be an entirely separate system.  

GROUND STATION SPECIFICATIONS 
While the ground station does not have weight and size requirements as specific as the 

UAV, there are several considerations to be made if the ground station is to remain mobile. First 

of all, any device used cannot exceed the dimensions of the platform. Additionally, the method 

for localization should not interfere with the operation of the ground station or the flight of the 

UAV. As such, the system should include minimal protrusions which might be hazardous to 

UAV flight operations. Any hardware that the ground station employs must be compatible with a 

Linux-based PC with standard hardware. However, in terms of this project, the main hardware 

limitation is that the localization device must be securely attached to the ground station. 

Because the ground station must run Linux with ROS, the software developed for the 

localization method must be compatible with the provided interfaces. Specifically, all programs 

must be written in a language which can send and receive messages using the ROS constructs 

(currently limiting us to either Python or C++). Also, these programs must operate in real-time, 

and provide low-latency, accurate, and precise information about the current state of the 
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system. These systems must also account for connection problems, gracefully handling error 

conditions without damaging hardware. 

LOCALIZATION SPECIFICATIONS 
With a vision based system, the cameras and capture systems would need to provide a 

detailed view of the environment. They must provide a wide field of view, providing for a large 

coverage area of the ground platform, as well as providing a high-quality image. For the system 

to function in real world environments, the images must be returned with extremely low latency 

and must automatically adjust for environmental changes in lighting through adjustments in the 

brightness and contrast levels of the output image. 

 Assuming the Augmented Reality Tag system is used, the libraries used, and software 

developed, must be able to distinguish the specified tag from the noise of the environment. 

From this, the software must be able to provide position coordinates and orientation 

information relative to the camera's view of the tag. The software must also be able to handle 

views of the tag at extreme angles. Finally, it must compensate for problems with sporadic target 

loss. 

In general, the solution for localization should provide a level of accuracy higher that 

what can be obtained using traditional methods, including GPS or IGS. This includes superior 

close-range localization, various environment support, and superior update rates. 

 

3.2.2 DESIGN DECISIONS 
  INITIAL DESIGN 

To properly determine its three-dimensional location and orientation with respect to a 

landing platform, the initial UAV design used an entirely camera-based system that tracked a 

specially-designed target. The image processing would run in a single ROS node, which would 
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then post the UAV’s position/orientation information to a standard ROS transform construct to 

be read by the general UAV controller node. This controller was intended to serve as the 

governing controller for all future UAV applications. It was designed to receive all relevant UAV 

sensor data and make critical decisions based on this input.   FINAL DESIGN 
Several augmented reality tag libraries were considered for this project: ARTag, 

ARToolKitPlus, Studierstrube Tracker, and ARToolKit. The key factors in our decision regarding 

these libraries were: product availability, tag-tracking features, camera-interface features, 

available APIs, and Linux compatibility. The chosen library would optimally be open source, be 

able to track multiple tags, and be compatible with C++ and Ubuntu Linux. 

 TABLE 7: FEATURE COMPARISON OF A. R. TAG TRACKING LIBRARIES 
 

ARToolKit • Open Source, Widely Used / Developed  
• Can track multiple tags 
• Written in C 
• Compatible with Linux, Windows, Mac OS 
• Built-in 3D Overlay Feature 

 
ARTag • Closed Source, No longer available 

• Can track multiple tags 
• Compatible with Linux, Windows, Mac OS 
• Built-in 3D Overlay Features  

ARToolKitPlus • Open Source, No longer maintained (since June 2006) 
• Can track up to 4096 tags 
• Compatible with Linux 
• Written in C++, class-based API 
• Supposedly faster than ARToolKit, with better thresholding and pose estimation  

Studierstrube 
Tracker  

• Closed Source, Not currently available (still in development) 
• Can track up to 4096 tags 
• No built-in video capture support 
• Support for Windows (XP, CE, Mobile), Linux, Mac OS, iPhone, Symbian 
• Developed as an improved successor to ARToolKitPlus 

 

 

Based on the descriptions of the features provided by these four libraries, the clear 

choice was to use Studierstrube Tracker, mainly because it seemed to be the newest and most 
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actively-maintained project with the most features and support. As a successor to 

ARToolKitPlus, it claimed to include all the same functionality, but with improved performance. 

It provided the most features, the best tracking ability (based on the sample videos), and the 

most diverse platform compatibility. However, we were unable to procure a license to use this 

product. 

Then, the next obvious choice would be ARToolKitPlus, since it was available, 

compatible with our system, provided a C++ class-based API, and was described as an 

improvement over ARToolKit. However, it did not provide an integrated solution for capturing 

frames from a video source like ARToolKit did. In addition, it did not provide a built-in feature 

for 3D overlays that provided useful testing information. Lastly, according to the change-logs, 

the last active development of ARToolKit was more recent than ARToolKitPlus. 

Despite the improvements ARToolKitPlus describes, the decision was made to develop 

with ARToolKit. This library seemed to have more active projects than the other alternatives. By 

using a widely-used library, we assumed that there would be more development information and 

documentation available. Also, ARToolKit was still officially an active development project. 

ARTag was not considered because it has not been in development for several years and the 

source files are no longer available.  3.2.3 DEVELOPMENT  REQUIRED HARDWARE 
For testing purposes in parallel to quadrotor development without employing the actual 

quadrotor hardware, we researched and procured several webcams for ARToolKit testing using 

the most widely-supported hardware available. In future projects, these webcams could also 

eventually be used as additional tag-tracking cameras on the ground-station. Additionally, we 

obtained several video capture interfaces to allow the tag-tracking software to make use of the 
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video from the CyberQuad sent over the wireless receiver. These webcams represent only an 

"optimal-case" video source because the CyberQuad would need a better standard camera 

available to accomplish these same results. 

After our research, we obtained two webcams that we thought would be most optimal for 

this application: a Logitech QuickCam Pro 9000, and a Creative Live! Optia AF webcam. These 

two webcams were chosen because they provided a high-resolution, high-frame rate video 

output, auto-focus (allowing for close and far range tag tracking), and Linux compatibility.  

Several standard video-quality markers were printed for use in side-by-side testing of the 

cameras using the Linux capture program "luvcview". Image captures were taken from the two 

cameras at various distances from the markers and the image quality was compared. 

Additionally, observations were made about the latency and frame-rate of the video image.  

 

 FIGURE 19: EXAMPLE SCREEN-SHOT: CREATIVE CAMERA (LEFT), LOGITECH CAMERA (RIGHT) 

 

From these tests, we determined that the Logitech camera was the better of the two 

cameras. It provided a sharper image, more accurate colors, a good white balance, and a wider 

field of view. While the Creative webcam could focus more closely (2 inches vs. 12 inches), both 

were sufficient for our purposes. Additionally, this test revealed information about the cameras’ 

performance on various resolution settings. The highest resolutions on each camera 
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(1600x1200) only allowed for 15fps video, versus 30fps with the standard 640x480 resolution. 

The higher resolution video seemed to have about 0.25 second of latency, whereas the standard 

resolution produced a higher latency of about 1 second.  

To capture the video transmitted from the UAV, a 5.8 GHz “Nano 5.8” wireless receiver 

was obtained from Iftron Technologies, as well as a 4-port composite PCI video interface by 

Hauppauge and a USB “Video Live 2” interface by Hauppauge. A significant amount of time was 

spent trying to obtain and install the proper drivers for these devices so the actual video camera 

from the UAV could be used in testing. However, we were unable to configure the capture cards 

with the systems available and we decided to continue testing using only the webcams.   ARTOOLKIT INSTALLATION & CONFIGURATION 
The ARToolKit Augmented Reality Tag tracking suite was designed to overlay OpenGL 

objects over tags shown in a video feed. ARToolKit provides functions that will return the 

position and orientation of the tag in a 3x4 matrix, both with respect to the tag and to the 

camera using a built-in transform function. Additionally, this software provides a means to 

calibrate for camera distortion and depth of field.  

This program requires the Video4Linux and GStreamer packages be installed on the 

system. Video4Linux provides an abstraction of a video source (such as a webcam), and 

GStreamer provides a pipeline interface for manipulating video streams in Linux. According to 

the documentation, Video4Linux can be used alone, or in conjunction with GStreamer to 

connect the video input with ARToolKit. 

While it may work "out of the box" on older systems, the example program binaries in 

the "bin" folder with default parameters did not immediately work on our system. These 

example programs were designed to perform simple tests, such as opening the video display and 

overlaying a 3-Dimensional box over an example tag in the frame. ARToolKit was originally 

compiled for use with Video4Linux or with a joint Video4Linux-GStreamer system, but in the 
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end, we were only able to get it to work with the joint Video4Linux-Gstreamer option.  

Initially, we attempted to make the ARToolKit example files work with only Video4Linux 

because it is installed by default in Ubuntu. However, when we attempted to run any of the 

example binaries, the programs would immediately crash upon trying to open the video device. 

We assumed the problem was a result of the default parameters used to configure the camera, 

we modified these parameter settings. After numerous failed attempts, we chose to use 

GStreamer to bridge the connection between ARToolKit and the Video4Linux abstraction. 

Getting GStreamer to route the video to ARToolKit in the correct format was also very 

difficult. Using the GStreamer utility called "gst-launch-0.10", we were able to test different 

pipelines and export the end result to a window on the screen. We eventually discovered a 

pipeline that showed the image from the webcam on the screen to verify that GStreamer could 

indeed read from the webcam through the Video4Linux source. 

Next, we entered this pipeline into the ARToolKit example projects as the stream 

parameters. This, however, did not work and program crashed on launch for resolutions greater 

than 400x320. With this pipeline, the example program "simpleTest" opened properly and 

could track the example tag (the center tag from Figure 5: Sample A. R. Tag 

Patterns). This was sufficient for some preliminary testing, but the system required 

improvement to support the full resolution of the camera. By changing some undocumented 

parameters that set the Video4Linux width and height before resizing by the GStreamer 

pipeline, we were able to open the video source at the full resolution and track the tag. 
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 After the full resolution was obtained from the camera, we ran the ARToolKit camera 

distortion calibration program with the camera. This required a special grid of dots and a series 

of snapshots of this grid from various angles. The user then manually selected the center of each 

dots. By using this calibration file, ARToolKit was able to provide more accurate localization 

information. 

 FIGURE 22: EXAMPLE ARTOOLKIT CALIBRATION RESULT  C++ AND ROS INTEGRATION  
To enable ARToolKit to be used with ROS, we needed to compile the libraries alongside 

the executables in a ROS node. Additionally, this node had to encapsulate all of the functionality 

of one of the ARToolKit example programs in C++. This ROS node was called uav_artag, and in 

the end, was able to track a tag and publish both a ROS transform as well as a ROS topic 

FIGURE 21: FIRST HIGH-RESOLUTION TEST FIGURE 20: FIRST SUCCESSFUL TEST 
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containing the transformation information. 

For the first step in developing this node, we moved the example ARToolKit program 

"simpleLite.c" into the ROS node source directory and configured it to compile alongside the 

empty ROS node. This required conversion from the original standard Makefile in C into the 

hybrid cmake/ROS Makefile format. We had to ensure that the libraries linked to ARToolKit’s 

installation directory. After simpleLite.c was compiled successfully in the new location using the 

ROS Makefile format, we began adapting the program to use standard C++ structures. 

Problems were encountered upon switching from ARToolKit’s original gcc C compiler to 

the g++ C++ compiler used by ROS. The differences in how the two compilers handled memory 

caused ARToolKit to crash with a segmentation fault significantly more often, both during 

initialization and at some points while running. Many of these problems were traced to 

ARToolKit functions that did not fully specify any return values or array indexing and memory 

access errors. Once we created and applied patches to the ARToolKit libraries, the program 

crashed much less frequently; however, unresolved problems in the ARToolKit libraries still 

exist. These changes and problems were extensively documented on the Lincoln Lab wiki page. 

To start the conversion of ARToolKit’s C code into C++ style, we modified the ARToolKit 

example program to create an "ARTag" object. We also made the previously-global functions 

and data public or private as needed. Additionally, the appropriate initialization functions were 

created for the variables, including the new ROS structures. This example program became the 

entirety of uav_artag.  

After the basic conversion was complete, we encountered a problem regarding OpenGL 

and GLUT, the 3D rendering system that ARToolKit uses to draw to the screen and perform 

transform translations. Because OpenGL is written in C and is not inherently object-oriented, 

only one instance can be used in any given process. It maintains configuration information 

internally and cannot be used for multiple objects. We changed the code to store a global pointer 

to the C++ object upon instantiation and created global wrapper functions for the C++ methods.  
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To allow multiple ROS ARToolKit nodes to exist and communicate, we used standard 

ROS parameters from the Parameter Server as a method of configuring the GStreamer, tag, and 

camera settings. These parameters could be set in a ROS Launch File, or, if left unspecified, set 

to the defaults defined in the C++ class. 

The next step in the development of the localization scheme was to address the 

conversion between ARToolKit output data and ROS transforms. The transformation matrix 

returned by ARToolKit, containing the rotation and orientation of the tag, was returned as a 3x4 

transformation matrix. ROS transforms, however, use a different format, known as 

“Quaternion”, to store the rotation information. Thus, the transformation matrix was separated 

into the location and rotation elements, and these elements were used with ROS conversion 

functions to create the standard ROS transform objects. These transforms are different than 

standard topics and are always available to every node. However, because a transform is not 

included in a ROS bag file, we converted this transform into a standard ROS topic containing the 

same information. These transform messages were verified using the ROS built-in transform 

visualization application, rviz. Figure 23 shows an example of ARToolKit transforms being 

converted into ROS transforms and their visualization in rviz. 
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 FIGURE 23: RVIZ VISUALIZATION 

 ARTOOLKIT TEST PROCEDURE 
Several tests were performed to determine the characteristics of the tracking system. 

Tests were performed to quantify the scaling factors in the X, Y, and Z directions, maximum 

range, maximum angles at different ranges, and general variability of the measurements. These 

scaling factors were required to find the actual coordinates because ARToolKit does not provide 

the ability to configure for real-world coordinates accurately. Also, there is no guarantee that the 

dimensions (especially X and Y versus Z) will be scaled equally, due to variable camera focal 

length. 

 

TESTING FIXTURE 
 Before any tests could be performed, we created a testing fixture to allow for precise 

positions and angles of the camera and target tag positioning. To establish a reliable testing 

fixture, we employed two tripods, each with the ability to easily adjust the angle of the head. The 

camera and tag were fixed to these tripod heads using tape. 
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 The camera was calibrated by using the target tag on the tripod. First, uav_artag was 

modified to print out the X, Y, and Z perceived coordinates and a timestamp every time a 

message was sent for the duration of these tests. The end result of “calibrating the camera” on 

the tripod was such that the act of moving the target away from the camera along a straight line 

on the floor did not cause the perceived X and Y position values to change. Assuming the tag 

originally started at the X-Y origin (center), the lack of X-Y variation means that the camera is 

perfectly level with the floor. We ran uav_artag and adjusted the parameters on both tripods 

until the tag was as near the X-Y origin as possible. 

  

POSITION SCALING FACTORS AND VARIABILITY 
 To determine the scaling factors in each dimension, we performed a series of tests that 

compared the perceived values from ARToolKit with the physically measured values. During this 

testing phase, we tested each dimension individually while the two other dimensions were held 

as constant as possible. Additionally, the tag orientation remained as fixed as possible and 

always faced in a plane parallel to the camera. After moving the target tripod, the new distance 

offset was measured using a measuring tape, and then uav_artag was started, printing 

coordinates to the screen. For each offset, samples were reported to the screen and one second 

worth of data was randomly selected, using the corresponding timestamps. 

 Specifically for the Z-direction measurements, the X and Y coordinates were held as 

constant as possible, with the target tag held as close to the center of the frame as possible while 

the target moved away from the camera until it was no longer detected. For the X-direction test, 

the Y and Z coordinates remained fixed while the target tripod was moved left and right. A 

similar test was performed for the Y-direction in with the X and Z coordinates were fixed and 

the target tripod moved up and down. However, because it was unknown if there was a 

relationship between the Z value and the X or Y value, the same tests were performed again for 

the X and Y dimensions, using different Z distances. 
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By assuming that the other two dimensions were fixed during measurement, we could 

plot the perceived offsets versus the actual measured offsets to determine the linear relationship 

between the two and convert the ARToolKit units into actual units. Additionally, by collecting 

one second’s worth of samples, we received information about the sample rate, as well as the 

ability to derive the approximate measurement error using the model.  
ANGLE MEASUREMENT ACCURACY AND VARIABILITY 

Our next test helped us to obtain a general sense of the accuracy and variability of the 

angles being measured by ARToolKit. During this test, the target tag, set at the same height as 

the camera, was moved to various distances away from the camera, and ten samples were taken 

from ROS of the roll, pitch, and yaw angles. For each distance, samples were taken on the left 

and right extremes of the frame, as well as in the center. We assumed that the vertical axis 

showed similar results if the tag was instead moved up and down. We determined the accuracy 

and variability of ARToolKit using actual measured angles of the tag and these samples taken 

from ROS.  

 

MAXIMUM ANGLES AND RANGE APPROXIMATION 
Our next test was to gain a general understanding of the maximum range of the 

ARToolKit system. The question of range depended on the camera resolution, the tag size, the 

position in the frame, the lighting conditions, and the maximum required recognition angle. As 

such, the test was performed to provide an approximate answer for the specific setup utilized 

during this testing phase. 

During this test, the target tripod, at the same height as the camera, was moved to 

different distances away from the camera along the far left edge of the image frame. Next, at 

each distance, we varied the yaw of the tag by rotating the tag clockwise until the tag was no 
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longer consistently or accurately detected. Similarly, at each distance, the yaw of the tag was 

rotated in the counter-clockwise direction. This first test would determine the worst case angle 

for that distance, and the second determined the best case.  

This measurement was performed several times, moving back until the maximum 

detection angle range was very low, detecting the tag only when flat forward to the camera’s 

plane of view. This test shows approximately the ranges of camera angles available at different 

distances, assuming the target is aligned vertically in the center of the frame.  MESSAGE UPDATE RATE 
To test the average rate of messages being sent by ARToolKit, we ran statistics on the 

previously collected data. Since each sample set for distance measurements was taken over a one 

second period, the number of samples in those time intervals readily available. We created a 

frequency histogram for each sample that shows the approximate rate distributions for this 

particular PC and camera.  

 

3.3 DOCUMENTATION 
 

This project also produced information which will allow future projects to easily extend 

our work. As such, each step of the procedure has been documented clearly in the Chapter 3 of 

this report, describing any problems that were encountered and outlining reasons behind all 

major project decisions. The report also includes general information about how the project 

progressed. 

Additionally, we produced a Wiki page which provides detailed information regarding 

the specific configuration of the system, including setup and testing procedures. It also includes 

reference information about the UAV hardware and software. The software documentation 
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describes higher-level functionality and how to use the developed software API. This page 

should be the primary resource for those seeking to investigate similar projects. 

All code that is produced by this project is extensively documented in a readable, 

understandable fashion. In keeping with MIT Lincoln Laboratory’s existing software, we 

emulated their methods of documentation for ROS nodes in which non-default or non-intuitive 

ROS functions are described. The documentation of the quadrotor’s adapter software involves 

much more detail than the Laboratory’s existing code on the grounds that this project will be 

picked up by an entirely new team with no knowledge of the adapter’s API. Additionally, the 

code is written in a modular and generic way, so pieces of it can be applied to other projects 

without significant modification. It will be kept in source control for future Lincoln Laboratory 

development. The types of documentation for the CyberQuad include: 

• Software documentation 

• System hardware documentation 

• Relevant software installation procedures 

• Instructions for the use of completed deliverables 

• Lists of unimplemented functionality 

• Recommendations for future development 

 

Our project aimed to provide MIT Lincoln Labs with a UAV system that will function as a 

step in the direction of real-world quadrotor applications. Our goal was to simplify future 

development, as well as to demonstrate the potential of the CyberQuad UAV to the Laboratory’s 

robotics division. The development of a system by which a UAV can be controlled via computer, 

in particular, is great evidence that a number of proposed real world autonomous quadrotor 

applications are viable. . With the tools we have provided, there is little doubt that the 

CyberQuad will be a vital component of Lincoln Laboratory’s future UAV development.   
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4.0 RESULTS AND ANALYSIS 
Our project aimed to provide Lincoln Laboratory with a basis for further development of 

the CyberQuad platform. As such, we tested our designs and implementations to determine their 

feasibility in future applications. Each element of the project - the interface, the localization 

scheme, and the documentation - provided useful information for use by future developers. This 

chapter presents all measureable data collected over the course of the project, as well as some 

analysis, to demonstrate the effectiveness of the features implemented during this project and to 

provide documentation for future endeavors.  

4.1 PC CONTROL INTERFACE 
The first major section of this project was the development of the UAV adapter system 

that allowed for PC communication to and control of the CyberQuad. All testing performed in 

this section primarily involved analysis of this communication to and from the quadrotor. We 

measured the connection strength, speed, and robustness. This section also involves an 

evaluation of the performance of the various nodes created over the course of the project.  

4.1.1 UAV_HEALTH_MONITOR 

 The purpose of this ROS node was to provide future developers with a tool which 

provides a metric for how well the computer is communicating with the CyberQuad hardware. 

This would provide them with a general sense of which maneuvers are possible (complex versus 

simple actions) given a certain level of degraded control and communication. If this information 

was not taken into consideration, poor link conditions could potentially cause too many missed 

commands and a poor reaction time, potentially leading to a disastrous result.  

Testing of this node allowed us to gain an understanding and a reasonable measurement 

of the quality of the serial link between the ROS master PC and the CyberQuad under various 

conditions. The uav_health_monitor served to calculate both the latency of the connection, and 
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to keep track of the number of dropped messages. This data could then be used to determine if 

the quadrotor would be able to operate consistently in real-world situations.  

 To conduct testing of this node, the latency was logged in three separate tests. The first 

test involved running the uav_health_monitor, uav_command, and uav_adapter nodes. The 

uav_command was run in this case because it subscribes to the uav_health_monitor’s output 

messages, displaying the latency and link health to screen as well as logging the data to disk. 

Using this data, graphs and tables were generated, as presented in this section. Figure 24 shows 

the results of the latency test when running the nodes listed above. 

 

 FIGURE 24: LATENCY IN HEALTH MONITOR TEST 
  

In this test, the latency was consistently above 0.018 seconds, spiking as high as 0.062 

seconds at points in the test. More specifically, the average latency over 30 seconds was 0.023 

seconds with a standard deviation of 0.0087. We determined this latency to be low enough for 
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most applications of the quadrotor. The low deviation in the connection also demonstrated 

sufficient reliability of the system for normal use.  

The previous test provides a good sense of link latency of simple commands without a 

heavy load over the serial port. However the results were not necessarily consistent with the 

operation of the full system working together. To properly test the link during heavier and more 

realistic loading of the system, we ran a second test that employed the uav_health_monitor, 

uav_translator, uav_adapter, uav_command, joystick, and uav_teleop. The operation of all of 

the nodes simultaneously provided the best possible representation of a fully-operational 

quadrotor system. Figure 25 shows the graph of the system’s latency over 30 seconds with all of 

the UAV’s features operational, including external control.  

  FIGURE 25: FULLY LOADED LATENCY TEST   
In the second test, the latency proved to be only slightly less stable, and nearly just as low 

as in the lower-operation test. The average latency was 0.025 seconds, while the standard 

deviation was 0.0101. Based on this data, we determined that the serial link, and the 
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functionality that we created to manage its operation, work well enough for this quadrotor to 

react appropriately in real-world applications.  

 The above tests were completed over an interval of 30 seconds to more clearly, visually 

demonstrate the operation. These second of these two tests, however, was repeated over 1000 

seconds to analyze the performance over time – particularly, whether the link health would 

degrade with time. The histogram shown in Figure 26 below represents the results of the test 

over the extended time period. The majority of the latency results remained in the area of 0.025 

seconds or less, even over the long time period. This suggests that the quadrotor command 

response would be somewhat consistent the majority of the time.  

 

 FIGURE 26: LATENCY OF FULLY-LOADED SYSTEM  
 Once latency was evaluated, the next important step was to evaluate the overall stability 

of the connection. The uav_health_monitor’s functionality to calculate the number of packets 

dropped served as the basis for this test. Two tests were performed on the link, each identical in 

setup to the previous two tests: the first test involved light-loading of the system, while the 

second involved full-loading. 

 In the first test, the link health remained at 100% over the 30 seconds of testing. As such, 

we can assume that there would be few problems with the serial connection with these few 
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processes running. The consistent link health persisted over the full range of the test, 

demonstrating that time was not a factor in the link’s health. 

 Under full loading, a small number of messages were dropped over the course of the full 

range testing. In this test, the link health averaged at 98.82%. The lowest link health reached 

was 96%, which, based on the configuration of the sampling frequency and queue size, 

represents 2 dropped messages per 50 messages sent (or about 1 message every 1.7 seconds, 

based on the 15 Hz message send rate). Figure 27 shows the link health for a 30 second sample 

of the full 1000 second test. Note that this behavior, varying between 100 and about 98 percent, 

repeated over the course of the full test. 

 

 FIGURE 27: LINK HEALTH DURING FULL LOADING AT 15HZ   Later, we tested the quadrotor with different external command sending frequencies to 

see if the bandwidth of the serial port would be exceeded. In Figure 27, the publishing frequency 

of external control messages was 15 Hz. We tested the system again at frequencies of 10Hz, 
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30Hz, and 50Hz. At 30Hz, there was no measureable change from the 15Hz test. At 50Hz, 

however, we did notice a significant change in the link health. 
 Below, Figure 28 shows a 100 second sample from the 50Hz test. The average link health 

over this duration was still 97.18%, though this decrease over time. The increased frequency of 

the external control publisher resulted in more dropped serial_link_test messages. The general 

decline apparent in Figure 28: Link Health Under Full Loading at 50 Hz, however, did not continue 

after 100 seconds. The link health continued to fluctuate within the same range, never reaching 

lower than 88%. While we determined that this link health was still sufficient to fly the UAV in a 

real-world environment, we needed to discover the cause of the dropped messages. 

 

 FIGURE 28: LINK HEALTH UNDER FULL LOADING AT 50 HZ 

 

We theorized that there were three possible explanations as to why messages were dropped: 

1. During this test, the large volume of messages passing through the serial port 

blocked the serial connection and the messages were ignored by ROS and not sent to 

the CyberQuad hardware. 
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2. The external commands required too much of the CyberQuad’s processing power and 

it was unable to reply with the proper when an EchoPattern is received. The 

EchoPattern could have either been returned out of order or skipped altogether.  

3. The XBEE wireless serial modem would occasionally drop messages or corrupt 

packets during normal operation.  

 

We performed a new set of tests to narrow down the cause of the dropped serial link 

messages. This test employed a direct cable connection to CyberQuad, as opposed to the XBEE 

wireless modem. If no messages were dropped while using the serial cable, we could determine 

the cause of the imperfect connection. In this test, the UAV system was run with full loading and 

an external control publishing frequency of 50Hz. Figure 29 shows a 30 second sample of the 

latency results of this test with the MKUSB cable attached, rather than the XBEE wireless 

module.  

 

 FIGURE 29: LATENCY AT FULL LOAD WITH SERIAL CABLE CONNECTION 
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 The average latency in the test of the direct serial cable connection was 0.012 seconds 

with a standard deviation of 0.01 seconds, having nearly half of the latency as that obtained by 

the XBEE. Figure 30 shows the latency of this test over the full test. In comparison to the 

previous test with the wireless serial connection, the majority of the MKUSB’s latency results 

were below 0.015 seconds, as compared to the majority being under 0.025 with the XBEE.  

 

 FIGURE 30: LATENCY FOR FULL LOADING -WIRED CONNECTION  
 Additionally, in the serial cable connection test, the number of packets dropped over the 

full 1000 seconds of testing was also recorded. The system had 100% link health throughout the 

test, proving that dropped messages recorded in previous tests were a result of the wireless 

serial connection. Even though the direct cable is superior, the quadrotor cannot operate while 

attached to a cable in a real-world scenario. A wireless system is mandatory for most 

applications, but these tests demonstrate that it is an imperfect solution. Future applications 

must either factor this potentially flawed link into account when planning aggressive or 

command-intensive maneuvers or devise a new communication scheme to be more reliable.  

While the uav_health_monitor provided useful information regarding the status of the 
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and received by the CyberQuad hardware. This command was designed specifically for the 

purpose to which we applied it. Testing only this command, however, does not inform the 

system as to whether or not an important message (such as navigation waypoint planning or 

external control) is dropped. It can only determine if a serial_link_test message is dropped. As 

such, adding future functionality for tracking important messages must be implemented.  

 4.1.2 UAV_TELEOP 
 The uav_teleop’s ability to send external control messages to the CyberQuad makes it 

one of the more important features of the quadrotor’s control system. When completed, we 

tested the operation of this node on the CyberQuad. During testing, we realized a number of 

important features that needed further exploration.  

 The first major consideration in the operation of the uav_teleop was the reaction time of 

the quadrotor. In the very first trial of the fully-operational system, when the joystick was 

depressed, the UAV experienced a delay before reacting. The amount of delay time varied from 

test to test, but was always noticeable to the tester. Having a reaction time this slow would likely 

mean the quadrotor would have problems operating with high-speed closed control loop, as 

would be necessary in a real-world environment.  

As a result, a test was performed with a smaller load on the ROS computer, assuming the 

delay was an artifact of slow computer hardware, or inefficient programs. Before beginning the 

test, ROS was restarted, all non-required processes were closed, and the UAV system was 

controlled through the command line, rather than the eclipse development environment. The 

resulting quadrotor performance appeared to be improved from the previous trial, though a 

delay time was still noticeable. Though likely still not fast enough for precise control, the 

quadrotor could have likely been piloted remotely at higher altitudes using the perceived 

amount of delay. 
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 To address the fluctuating delay time, we tested the quadrotor with a number of different 

update rates from the joystick node. By changing the joystick node’s update rate, we were able to 

determine one cause of delay time in the system. One theory was that the 15Hz refresh rate that 

we used by default placed too much strain on the serial connection and overflowed the serial 

connection’s bandwidth. The other theory was that a higher refresh rate would send more 

continuous commands to the CyberQuad to help give it more stable control and smooth 

movements. We tested a number of frequencies to determine which appeared to consistently 

produce the lowest latency and the smoothest transitions between joystick-directed movements. 

These observations are summarized in Table 8 below: 

 TABLE 8: CONTROL OBSERVATIONS, VARYING JOYSTICK UPDATE RATE 
10 Hz 

• Delay time no noticeably different than at 15Hz 
• Very crude motion with jerking and jumping from one speed setting to another 

15 Hz • Slight delay in response 
• Jerky movements when the control stick was moved quickly 

30 Hz • Delay time no noticeably different than at 15 Hz 
• Movements slightly smoother than at 15Hz 

50 Hz 
• Delay time no noticeably different than at 15 Hz 
• Smooth movements 
• Easier to control properly 

100 Hz 
• Delay time no noticeably different than at 15Hz 
• Smoothest movements achieved 
• Easy to control properly 

 

 Overall, based on the quadrotor’s performance at the various frequencies, we determined 

that the best publishing frequency for the external control would be in the range of 50 to 100 Hz. 

The most optimal quadrotor flight was achieved at 100Hz. When operating many other 

processes in ROS or sending more commands to the CyberQuad, however, this frequency might 

result in a bandwidth overflow, due to the large packed data structures being sent over the serial 

connection, or unacceptable reductions in the operating speed of the PC. The best possible 

external control publishing frequency requires a tradeoff between smooth controls and link 
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health. The frequency should be set at the highest possible value without consistently 

overflowing the bandwidth – a frequency that must be both determined on a case-by-case basis, 

based on the PC’s hardware configuration, as well as the fixed 57600 baud speed of the serial 

interface.  

4.1.3 UAV_COMMAND 
 In order to demonstrate both computer control of the quadrotor and an accurate vision-

based localization scheme working in conjunction, a simple algorithm was created in the 

uav_command node that takes in a user specified position and then calculates the relative 

difference in positions between the UAV and the user-specified “home position” in the frame of 

the UAV. These values can then effectively be used in error-based control in a simple control 

loop, allowing for autonomous position seeking and holding.  

 The performance of this system is very much dependant on the performance of the two 

main facets of this project: the external control commands, and the ARToolKit localization. The 

UAV position error is entirely reliant on the uav_artag node (with the addition of several static 

ROS transformations to handle the anticipated camera offset from the center of rotation of the 

UAV) and therefore suffers from the same restrictions that were revealed by the testing of 

ARToolKit. Likewise, the actual speed at which commands can be sent to the UAV by wireless 

serial is limited by the fixed baud rate of 57600, full-system latency, and general link health 

issues. Taking these problems into consideration, the decision was made not to attempt to test 

the system in free flight, but rather to mount the UAV in a test fixture and move the webcam 

above the UAV’s target tag in order to simulate a complete system. Doing this, we were able to 

track the resulting error vectors on a screen printout and watch the physical motions of the UAV 

to confirm that correct position correction was occurring.  

Although the restrictions on flight as a result of the testing fixture prevented extensive 

testing or tuning of the control loop, it was obvious from terminal output and the ROS Rviz 
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transform visualization tools that the correct error vector was being generated relative to the 

UAV’s frame of reference. Likewise, from the debugging information it was apparent that the 

correct error compensation messages were being generated reliably. Moving a point simulating 

the UAV’s position away from the setpoint correctly resulted in the corresponding pitch and roll 

compensations to correct the motion. Moving the camera below the setpoint correctly results in 

an increased thrust. These results indicate strongly that integration of the PC control interface 

and localization scheme is feasible.  

However, no similar success was ever achieved in accurate UAV motion based on the 

error calculations. The resulting motions of the quadrotor based on the output of 

uav_command proved to be erratic. The cause of these issues remained unclear. The most likely 

reason for the delayed, sporadic movements was system latency. From visual observations, we 

noted that the majority of the time the UAV reacted in a way that was consistent with our 

expectation; however, these actions were often delayed by several seconds, indicating that the 

external control latency in conjunction with any localization latency was exceeding reasonable 

operating parameters. Additionally, the jerking behavior that occurred during testing may be a 

result of similar publishing rate issues experienced during joystick testing, which were mitigated 

in those tests by increased message rates. In this experiment, the output of uav_adapter was 

limited by a hardware configuration bottleneck that occurred in uav_command that prevented 

the external control message rate from exceeding 15 to 20 Hz. This prevented us from 

attempting the same solution discovered during the joystick testing. Many of these symptoms 

could have been a result of insufficient hardware resources, and future efforts to distribute the 

processing load of machine vision, control loop, and serial I/O among multiple machines may be 

worthwhile. 

Another possible explanation for this delay was unconditioned sensor issues. The error 

of the feedback loop was completely dependent on the information provided by uav_artag . 

This data proved often to be volatile and, under certain conditions, the reported angle of the 
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target jump unexpectedly to radically different values for a message or two. This problem, 

combined with frequent dropped targets or false positive tag acquisitions in different locations 

(very near or very far) also resulted in unreliable system performance. These concerns strongly 

demonstrated the necessity for additional work in visual processing before real-world systems 

could be reliable. 
 

4.2 ARTOOLKIT RESULTS 
 The results of the tests performed on ARToolKit and the uav_artag discussed in this 

section provide an important insight into the performance of the library, both qualitatively and 

quantitatively. While the testing of the library was not entirely complete due to time constraints, 

it provided a strong background as to the plausibility of ARToolKit as a UAV localization 

scheme.  

4.2.1 POSITION SCALING FACTORS AND VARIABILITY 

The first step in analyzing the performance of ARToolKit was to identify the scaling 

factors used in the library – i.e. the relationships between the output results of ARToolKit and 

real-world values. Based on measurements performed during tests, we determined the scaling 

factors along all three dimensions and the error in the measurements along each axis. By 

graphing the perceived distance (the output results from ARToolKit) versus the real-world, 

measured distance and drawing a trend line, we determined the scaling function. The figures 

below show the test results along three dimensions - the z-, x-, and y-offsets from the camera. 

These scaling results were used to determine the error between the actual measurements and 

the scaled results from ARToolKit. This data is represented below in Table 9. 

We observed that distance did not seem to affect the average measurement for the 

horizontal and vertical axis, based on the data from the 2ft and 4ft measurements. These sets of 
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data were graphed together, thus adding to the number of data points used when calculating the 

scaling factor. The important information (the difference in number deviations) was maintained 

by calculating this separately for each dataset as shown in Table 9. 

The approximate maximum distance for detecting the tag when directly in line with the 

camera was 3530mm (11.6 feet). With this tag, the minimum detection distance was 

approximately 106mm (0.35 feet). However, when using the maximum resolution of the camera, 

ARToolKit could only detect the tag up to about 215mm (0.71 feet). 

Though it was less noticeable for the two short-distance measurements (2 and 4 feet), 

the deviations in perceived distance increased as the distance from the camera increased. This 

can be seen in Figure 31 below, as the sample points spread out as the distance increased. This 

result appeared logical, as the tag representation to ARToolKit used fewer and fewer pixels as 

the distance increased. This result was further demonstrated by the Standard Deviation of the 

error for the tests, shown in Table 9. The shorter distance tests exhibit error deviations of about 

1 cm and less, whereas the error deviation for the long distance test is about 3 cm. This number 

was likely higher because the test included more long-range positions, with the increased 

distance causing increased deviation. 

 

   FIGURE 31: PERCEIVED VS. ACTUAL Z-OFFSET FIGURE 32: PERCEIVED VS. ACTUAL X-OFFSET 
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 FIGURE 33: PERCEIVED VS. ACTUAL Y-OFFSET   TABLE 9: MEASURED VS. PERCEIVED X-Y-Z OFFSET ERROR 

  4.2.2 ANGLE MEASUREMENT ACCURACY AND VARIABILITY 
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together to demonstrate any correlations in the results. Particularly, we observed if there were 

any correlations between the position in the frame and the angles that were recorded. These 

graphs for the roll, pitch, and yaw deviations are shown below. 
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  FIGURE 34: ROLL DEVIATION  FIGURE 35: PITCH DEVIATION  

 FIGURE 36: YAW DEVIATION 
 

 Based on the above graphs, it was hard to find any sort of well-defined correlation 

between the positions in the frame and the deviation from the actual angles. We had assumed 

that for the left and right extremes of the frame, there would have been a larger error from the 

actual angle, with this error increasing as the distance increased. The data supported this 

assumption, though not entirely consistently.  

The graphs above, especially Figure 34 and Figure 345, clearly show that the 

measurements taken in the center of the frame had a smaller error than the edge measurements 

overall. Additionally, as the distance increased in each experiment, the angle error increased as 

-4.00

-2.00

0.00

2.00

4.00

6.00

250 750 1250 1750

De
vi

at
io

n 
(d

eg
re

es
)

Z-distance from Camera (mm)

Roll Deviation from Actual Angle

Roll (far Left) Roll (center) Roll (far Right)

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

250 750 1250 1750

De
vi

at
io

n 
(d

eg
re

es
)

Z-distance from Camera (mm)

Pitch Deviation from Actual Angle

Pitch (far Left) Pitch (center)

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

250 750 1250 1750

De
vi

at
io

n 
(d

eg
re

es
)

Z-distance from Camera (mm)

Yaw Deviation from Actual Angle

Yaw (far Left) Yaw (center)



97 | P a g e   

well. However, the error was not increasing in a consistent manner, with the data groupings for 

each set of samples varying between positive deviation and negative deviation between 

measured distances. 

Looking at the data further, we drew some important conclusions based on certain 

trends in the data. Below, Table 10 shows the standard deviation for all sample sets taken 

during this test. After averaging the deviations at discrete distances, it became apparent that as 

the distance from the tag increased, the deviation also increased. At 6 feet from the camera, the 

deviation in angle was about six times greater than at 2 feet, with a deviation about 0.5 degrees 

within the sample set. This was consistent with the observations for sample-set coordinate 

deviations described previously. 

 TABLE 10: STANDARD DEVIATIONS OF MEASUREMENTS (ALL) 
 Roll Pitch Yaw Averages 

 Far left Center Far Right Far left Center Far Right Far left Center Far 
Right 

2 feet 0.042 0.061 0.095 0.068 0.070 0.121 0.047 0.087 0.133 0.0804
4 feet 0.103 0.329 0.137 0.208 0.387 0.496 0.128 0.103 0.276 0.2410
6 feet 0.342 0.100 0.356 0.396 0.170 1.287 0.477 0.524 0.744 0.4884  
 Additionally, Table 11 below describes the deviations between the samples at all 

distances combined. This data describes the error one can expect between samples at different 

distances in different positions in the frame. Therefore, it gives a better idea of the sorts of 

variations one should expect throughout the detection range. Between the roll, pitch, and yaw 

measurements, the largest standard deviation was for the roll at 2.51 degrees. Therefore, the 

general error in angle, when reflected generally, was ±2.5-3 degrees of error in each direction. 
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TABLE 11: STANDARD DEVIATIONS OF MEASUREMENTS (COMBINED 2 FT, 4 FT, 6 FT)  Roll Pitch Yaw
Far left Center Far Right Far left Center Far Right Far left Center Far Right 

Std. Dev. (degrees) 2.08 0.90 2.35 1.60 0.70 1.24 0.64 0.67 0.97 
Overall Std. Dev. 

(degrees) 2.51 1.77 0.769   4.2.3 MAXIMUM ANGLES AND RANGE APPROXIMATION 

 Based on the measurements performed during these tests, we obtained an idea of the 

maximum tag-detection angles achievable and angle measurement error. Below, Figure 37: 

Tag-Detection Angle Graphic represents an overall summary of the test procedure. 

We calculated the maximum clockwise and counter-clockwise angles for tag detection in the far-

left and center of the frame. The two graphs below detail the angle detection data that was 

collected for these two test scenarios. 

 FIGURE 37: TAG-DETECTION ANGLE GRAPHIC  
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 Based on the graphs, we determined that the detection angle extremes are dependent on 

the location of the tag in the video frame. In the graph shown in Figure 39: Tag-Detection Angles (Far Left), on the far-left of the frame, the tag could be detected at about half the range when 

rotated clockwise from forward as compared to when rotated counter-clockwise from the front. 

Also, for the graph in Figure 38: Tag-Detection Angles (Center), the maximum rotation angle 

appeared consistent with the results from the previous graph. If one were to take the range of 

the detection angles from Figure 39: Tag-Detection Angles (Far Left), the maximum angle in Figure 38: Tag-Detection Angles (Center) falls about at the halfway point in that range. This 

comparison demonstrated the proportional nature between the position in the frame and the 

clockwise and counter-clockwise maximum detection angles. 

 The tables below show the average values for the clockwise and counter-clockwise 

detection angles for the tag, in both the far-left and center tag test. Both tables show that across 

the different distances, the standard deviations in the both the measured and perceived angles 

were somewhat high. Additionally, the difference between the average perceived angle and the 

measured sometimes differed by nearly 15 degrees in the tests. Despite these non-trivial errors, 

one can still approximate the detection ranges. 
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Table 12, the difference between the measured and perceived values was about 13 

degrees for the counter-clockwise direction. Taking the average of the perceived and measured 

values, we can estimate that the maximum counter-clockwise detection angle was about 90 

degrees. Conversely, the difference for the clock-wise rotation was much smaller, with an 

average clockwise detection angle of about 41 degrees. This means that the overall range of 

detection angles when the tag was located at the far-left of the frame was 131 degrees.    TABLE 12: TAG-DETECTION ANGLES (FAR LEFT) 
      
 Similarly to the far-left tag test, the data in the center-tag test in Table 13 below had 

a rather large difference between the measured and perceived angles. Based on the two distance 

ranges in the table, we determined that the 2-8 foot range has a much larger standard deviation 

in values than the 2-6 foot range. This is representative of the shape of the graph, where at 8 

feet, the detection range seemed to drop off significantly and no longer accurately represented 

the detection angles in the short-range. Therefore, the 2-6 foot range would probably be more 

representative of the range of consistent detection angles. Using this subset of the data, we 

determined the range of maximum detection in both directions is about 73 degrees. This means 

that the system would be able to detect a 146 degree range of angles. 

  

2 – 8 Foot Range Average Std. Dev. 

CCW Rotation
(degrees) 

Measured 96.40 6.58
Perceived 83.62 3.63

CW Rotation 
(degrees) 

Measured 40.00 3.49
Perceived 41.90 5.70
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TABLE 13: TAG-DETECTION ANGLES (CENTER) 
2 - 8 ft Range Average Std. Dev. 2 - 6 ft Range Average Std. Dev. 

Measured 70.80 14.30 Measured 78.38 2.37
Perceived 56.75 18.99 Perceived 66.74 4.26

   4.2.4 MESSAGE UPDATE RATE 

The next step in our analysis of ARToolKit was to determine the maximum message rate 

of the library to determine how continuously the data was posted for use in the rest of the 

system. Based on the number of messages being collected per second (sample rate) on the test 

machine, we created a histogram shown in Figure 40: Histogram of Message Update Rate that 

demonstrates the rate achieved. This shows that in our particular configuration, about 22-24 

messages were sent per second, though this rate is dependent on the hardware employed in the 

test machine (Intel Core 2 Duo 2.2GHz) and that machine’s current CPU load.  

We also noticed during testing that if the resolution of the camera was reduced, the 

message rate would increase, potentially providing a higher frame-rate of capture (relevant to 

webcams, mostly) and requiring less time to process the data. We observed qualitatively, that 

the lower resolutions produced an increased number of messages per second. 
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4.2.5 LIGHTING AND TAG OCCLUSION OBSERVATIONS 

One of the biggest challenges when performing the tests of ARToolKit was overcoming 

glare from the lights in the testing area. Because the tag was printed using a laser printer, the 

black surface was slightly reflective, causing a loss of tag detection when tilted towards the 

lights, as shown in Figure 41: Effects of Glare on Detection below.  

This glare problem illustrated a much larger problem with the ARToolKit library: it does 

not handle lighting gradients well. This problem was very apparent with shadows as well; the 

detection ability would severely degrade when shadows were cast on the tag. Additionally, if 

there was a high contrast between lighting and the shadows cast on the tag, the system would 

fail to detect the tag. These problems were likely because ARToolKit performs a simple 

threshold algorithm on the input video stream instead of taking steps to compensate for 

gradient lighting. 

 

 FIGURE 41: EFFECTS OF GLARE ON DETECTION  
 Next, this system lost detection when the tag was obscured in any way, even if the 

obstruction was minimal. As shown in Figure 42: Tag-Occlusion Example below, when the tag is 

obscured even slightly, here by a portion of the thumb, the detection would totally cease. This 

would be a problem in any real-world situation in which an object could block a portion of the 

tag periodically. We believed that there is a “confidence” parameter that could be adjusted in the 

ARToolKit library configuration that could help to lessen this issue. 
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 FIGURE 42: TAG-OCCLUSION EXAMPLE   
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5.0 CONCLUSIONS AND RECOMMENDATIONS  The goals of this project were to develop a PC control interface for the CyberQuad 

system, enable precise UAV localization, and provide documentation to enable the continued 

development of the CyberQuad system at MIT Lincoln Laboratory. Over the course of the 

project, we were able to achieve all of our outlined goals to the level representative of a proof-of-

concept design and implementation. The resulting baseline system suggests that highly 

autonomous quadrotors could be feasible in the near future, utilizing low-footprint vision-based 

localization systems to aid in take-off and landing procedures.   

However, there is still a significant amount of system development which must first 

occur before an autonomous, vision-guided quadrotor can be fully realized. Specifically to our 

CyberQuad system, latency problems with the control scheme must first be resolved, followed by 

significant work in making the localization system more robust. Our observations about the 

project status and suggestions for future work are outlined below. 

UAV LOCALIZATION SYSTEM 
 With our limited stay on the MIT Lincoln Laboratory campus, we were only able to test 

ARToolKit with a stationary camera and tag. However, in real-world settings, the ability to 

consistently track moving (dynamic) tags will be equally as significant as its ability to accurately 

determine the location and orientation of a fixed target.  

To fully quantity the abilities of ARToolKit, or any augmented reality library, we 

recommend a regimen of testing using the Vicon motion-capture system as a base line. Using 

this, a tag could be moved around freely in an environment while both the ARToolKit ROS node 

and the Vicon system gathered position and orientation data. By analyzing the collected data, it 

would be possible to accurately calibrate and determine the tracking limitations of the system, 

both with static and dynamic tags. One could more-accurately determine the maximum 

detection ranges as well as the amount of error one would expect from the system. Additionally, 
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one could generalize the average position-update rate of the uav_artag node in varying 

environmental conditions and fast-motion scenarios, and also to measure the percent of the 

time our system fails to, or incorrectly recognizes the target tag. 

Generally, we feel further research should focus on multiple tag systems and alternative 

techniques to expand the limited abilities of the tracking system. We feel that the following plan 

for development should be observed:  

1) First, one must establish a consistent, somewhat robust single-camera tracking system 

on the UAV. A robust system should be able to track multiple tags (as compared to a 

single tag per-camera in our system) of multiple sizes, to allow for both close and longer-

range detection, as well as provide a failsafe if environmental factors prevent detection of 

some of the tags. This could also include an investigation into a nested tag system, where 

smaller tags are embedded within the pattern of a larger tag, allowing for both long and 

short-range tracking using one condensed tag area. 

2) Next, a flexible sensor-fusion system should be developed, enabling multiple cameras to 

be used both on the UAV and on the ground-station. This system would likely start with 

adding additional cameras to the UAV, simply providing more data-points from which to 

make conclusions about the UAV’s location and orientation. Next, a feasibility study 

should be done to see if the same augmented-reality tag system could be used to track 

the UAV from the ground. If this is not possible, a natural-feature-tracking system could 

be developed, allowing the ground-station to detect the UAV simply by its silhouette 

against the sky, providing a failsafe if one of the two vision systems is shut down 

completely.  

UAV CONTROL SYSTEM 
 With our current system, problems with system performance would prevent any real-

time closed-loop UAV control in the future, unless changes are made. The system communicated 



106 | P a g e   

with the CyberQuad device and could send commands, but the system was far from usable, 

having problems both with the ROS system and apparently with the serial link. 

Because there were visible reductions to the control-computer’s performance when 

running the full stack (all of the CyberQuad associated nodes, localization and control loops), 

the low-latency, fast-response-time system required for UAV control was simply not present.  

Future work with this system should seek to mitigate these performance problems by seeking to 

streamline the software, as well as by running the ROS nodes in a distributed manner (running 

resource intensive nodes, uav_artag and uav_adapter, on separate machines). This 

functionality is already supported by the ROS architecture, so minimal effort will be required to 

eliminate one of the potentially highest causes of system latency. 

Additionally, our system exhibited noticeable lag between receiving input (via the 

joystick or other control node), packing and sending commands, and the CyberQuad’s physical 

response to these commands. Though these problems could have been a result of the poor 

performance of the hardware running the ROS nodes, another possibility is that the serial 

connection itself was actually over-loaded, with too much data being passed over the low-data-

rate connection. Alternatively, the ZigBee wireless serial connection was simply dropping too 

many packets. 

The delayed response may also have been the result of limitations present in the 

CyberQuad’s MikroKopter hardware. In our configuration, control messages sent to the 

quadrotor are first processed by the NaviCtrl board, and then forwarded to the Flight-Ctrl board 

before being executed. This introduces a small, but finite latency not experienced by commands 

sent by the analog controller.  

Therefore, research should be conducted to analyze the serial connection and determine 

if messages are being dropped or delayed, and where the problem is occurring in the message 

pipeline.  
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Overall, if this lag problem cannot be resolved, alternative methods of system interfacing 

must be investigated. A computer-controlled analog control emulator (effectively a radio-control 

dongle) would allow for more continuous computer communication to the quadrotor, 

replicating the exact communication scheme employed by the current analog controller. If this 

suggestion did not mitigate the problem, work would likely need to be done to offload all 

localization processing and control onto the CyberQuad itself, significantly reducing the data-

rate requirements for the serial connection. 

FUTURE CONTROL SYSTEMS 
 There is still significant software development required before the CyberQuad can be 

used in real world collaborative robotic projects. Our project focused on the goal of obtaining 

basic computer control over the UAV. While we accomplished this, before any ground-air 

coordination can occur, conceptually higher levels of control of the UAV must be created to 

automate landing, takeoff, and mission execution procedures. This would require developing 

complex control algorithms and procedures, far out of the scope of this project. 

 To aid in this development, we recommend using the Vicon system for the free-flight 

testing of the UAV. By collecting data on the orientation of the UAV in flight with the Vicon 

system, it would be possible to generate a better dynamic model for any control scheme 

eventually implemented in software. Likewise, the Vicon system would be a good means to 

measure the performance of the current feedback control code or, in our case, the augmented-

reality tag-tracking system. We recommend sensor-fusion integration between the vision system 

and onboard IGS systems required achieve a truly robust system in future project iterations. 

Eventually, we foresee extensive work being done in the areas of waypoint programming 

for mission planning, with long range trajectory coordination between the UAV and ground-

based system. At this point, the take-off and landing procedures, as well as several others, would 

be fully automatic, fully accomplishing the vision of MIT Lincoln Laboratory and this project 

overall. 
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RESOURCE OBSERVATIONS 
 With regards to the localization system, we would recommend investigating augmented 

reality libraries other than ARToolKit. ARToolKit was readily available during the period of our 

project, but research shows that a number of superior and more up-to-date alternatives exist. 

With the framework we have established, it should be relatively easy to replace with a 

commercial product that is available or will be available in the near future. It simply did not 

prove usable under the conditions which would make this feasible in outdoor, real-world 

environments. 

 Additionally, with regards to the UAV system chosen for MIT Lincoln Laboratory, we 

would tentatively recommend future quadrotor work be developed on systems not sold by Cyber 

Technology, or at least not this specific system. Throughout our project we had a number of 

issues that can be attributed, at least in part, to this company’s lack of experience and quality 

control of CyberQuad product. The quality of the provided quadrotor and product support 

simply did not reflect its price. Moreover, the prohibitive cost of the quadrotor in many cases 

limited our ability to experiment, as we were significantly more cautious than we might have 

been with a similar, less-expensive system. 
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