
1	
	

 
 
 
 
 
 
 
 
 
 

Designing	a	realistic	virtual	bumblebee	
	

Tim	Marsden	
	

Worcester	Polytechnic	Institute	
	
	
	

Advisors:	
	

Dr.	Robert	J	Gegear	
	

Dr.	Elizabeth	Ryder	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2	
	

Table	of	Contents	
	
Abstract	...................….......................................................................................................	3	
Introduction......................................................................................................................	4	
Methods	.............................................................................................................................	6	
	 ODD.........................................................................................................................	6	
	 The	Optimal	Diet	Model	...................................................................................	9	
	 Simulation	Parameters	...................................................................................	10	
Results	...............................................................................................................................	12	
	 The	SimBee	Model	.............................................................................................	12	
	 SimBee	Procedure	Overview	..........................................................................	13	
	 Determining	Environments	............................................................................	14	
	 Partial	Preference	in	ODM	..............................................................................	15	
	 Limited	Memory	Impact	..................................................................................	16	
	 Handling	Time	....................................................................................................	17	
	 Validating	the	Model	........................................................................................	19	
Discussion	........................................................................................................................	22	
References	.......................................................................................................................	24	
Appendix	1:	Code	Structure	.......................................................................................	28	
Appendix	2:	Full	Code	..................................................................................................	30	
	

Figures	
	
Figure	1:	ODM	Equations	.............................................................................................	10	
Figure	2:	SimBee	user	interface	.................................................................................	12	
Figure	3:	Bee	detection	radius	.....................................................................................13	
Figure	4:	SimBee	Procedure	Overview	.....................................................................	14	
Figure	5:	Determination	of	Environments	..............................................................	15	
Figure	6:	Percentage	yellow	flowers	accepted	.......................................................	16	
Figure	7:	Schematic	of	environment	variability	....................................................	17	
Figure	8:	Handling	Time	in	SimBee	...........................................................................	18	
Figure	9:	Environments	by	handling	time	mode	...................................................	19	
Figure	10:	Validating	SimBee	in	lab	setting	...........................................................	20	
	

Tables	
	
Table	1:	State	variables	for	SimBee	Agents	...........................................................	6	
	
	
	
	
	
	
	
	
	



3	
	

Abstract	
	

Optimal	Foraging	Theory	is	a	set	of	mathematical	models	used	in	the	field	of	
behavioral	ecology	to	predict	how	animals	should	weigh	foraging	costs	and	benefits	
in	order	to	maximize	their	food	intake.		One	popular	model,	referred	to	as	the	
Optimal	Diet	Model	(ODM),	focuses	on	how	individuals	should	respond	to	variation	
in	food	quality	in	order	to	optimize	food	selection.		The	main	prediction	of	the	ODM	
is	that	low	quality	food	items	should	only	be	accepted	when	higher	quality	items	are	
encountered	below	a	predicted	threshold.		Yet,	many	empirical	studies	have	found	
that	animals	still	include	low	quality	items	in	their	diet	above	such	thresholds,	
indicating	a	sub-optimal	foraging	strategy.		Here,	we	test	the	hypothesis	that	such	
‘partial	preferences’	are	produced	as	a	consequence	of	incomplete	information	on	
prey	distributions	resulting	from	memory	limitations.					To	test	this	hypothesis,	we	
used	agent-based	modeling	in	NetLogo	to	create	a	model	of	flower	choice	behavior	
in	a	virtual	bumblebee	forager	(SimBee).	We	program	virtual	bee	foragers	with	an	
adaptive	decision-making	algorithm	based	on	the	classic	ODM,	which	we	have	
modified	to	include	memory.	Our	results	show	that	the	probability	of	correctly	
rejecting	a	low	quality	food	item	increases	with	memory	size,	suggesting	that	
memory	limitations	play	a	significant	role	in	driving	partial	preferences.		We	discuss	
the	implications	of	this	finding	and	further	applications	of	our	SimBee	model	in	
research	and	educational	contexts.			
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



4	
	

Introduction	
	
Animals routinely face the problem of deciding how and what to eat in complex 

foraging environments.  To gain a better understanding of how animals adaptively 
address these foraging-related problems, behavioral researchers have developed 
numerous optimization models derived from the field of economics, collectively referred 
to as Optimal Foraging Theory (OFT).   The central assumption of OFT is that natural 
selection has shaped the behavioral system of animals to weigh foraging costs and 
benefits and adopt foraging strategies that maximize their net rate of energy gain and 
therefore their probability of survival (Darwinian fitness) [Charnov, 1976].  Thus, each 
model predicts how animals should respond in a particular foraging environment within a 
given specific set of constraints.  Such predictions are then tested empirically to 
determine whether foraging decisions in a particular floral environment are optimal 
[Zhang, 2014; Pyke, 1984]. 

One of the most widely used models within the OFT framework deals with the 
problem of diet selection.   In this ‘prey choice’ model, foragers randomly encounter prey 
items that vary in quality and must decide whether to consume the item or reject it and 
continue searching for an alternative item [Sih, 2001].   This scenario assumes that 
animals are ‘all-knowing’ and therefore have all of the prey information needed to make 
the optimal decision.  Given this assumption, the diet model predicts that animals will 
develop a foraging strategy that always rejects a lower quality prey item if the abundance 
of a higher quality item is above a particular threshold [Holt, 2013; Gonzales-Varo, 2013; 
Sih, 2013; Beecher, 2014].  Yet, most empirical tests of the prey choice model have 
found that animals still accept low quality items to some extent even when high quality 
items are abundant, a phenomenon known as partial preference.  Although there have 
been several explanations for partial preferences proposed over the years, its cause 
remains unknown [Arundel, 2013; Couvillon, 2015].  Here, we describe a series of virtual 
experiments designed to investigate the role of memory limitations in driving partial 
preferences in bumblebee foragers. 

Bumblebees are an ideal behavioral system to study mechanisms of adaptive prey 
choice.  As social insects, they form colonies comprised of a single queen and up to 
several hundred workers.  A small subset of workers called ‘foragers’ have the sole task 
of finding and collecting food for the colony in the form of floral nectar and pollen 
rewards [Dyer, 2004; Goulson, 2009].  Each forager faces the daunting task of 
maximizing nectar delivery to the colony in habitats containing multiple flower types that 
vary in their reward quality [Dyer, 2004; Das, 2013; Lourenco, 2015].  Foragers are not 
pre-programmed with information on floral reward quality; rather, they must learn and 
remember the reward level and sensory cues (color, odor, shape) associated with each 
type of flower that they visit [Muth, 2015; Faruq, 2013].  Memory therefore plays a 
fundamental role in bumblebee survival and reproductive success [Muth, 2015; Zhang, 
2014].        

To investigate the relationship between memory capacity, floral choice behavior, 
and reward intake, we used the agent-based modelling (ABM) software NetLogo to 
develop a virtual bumblebee-plant system called ‘SimBee’.  Many computational 
simulations rely largely on equation-based or analytical modeling, which does not allow 
for model flexibility at the individual level [Castello, 2013; Liu, 2015].  In contrast, 



5	
	

agent-based modelling allows variability by defining the behaviors of individuals with 
their own set of decision rules, allowing the user to study interconnections between the 
agents themselves, as well as modelling collective behaviors [Helbing, 2012; Janssen, 
2014; Mills, 2015].  Additional characteristics of ABM that are important with respect to 
biological applications: the modular structure is useful by allowing the modification of 
existing agent rules or the addition of new agents into pre-existing model structure, 
emergent properties of higher level relationships are the result of individual agents’ local 
interactions, and abstraction of new behavior information can occur when there is 
incomplete knowledge about the target biological process based on known information 
[Politopoulos, 2007]. 

Other investigators have developed agent-based models simulating pollinator 
behavior.  In particular, the ‘A-bees-see’ model simulates the differences in the scanning 
approaches of honeybees and bumblebees to targeting flowers, to develop a better 
understanding of the evolution of these behaviors [Bukovac, 2013].   The BEEHAVE 
model simulates multiple environmental stressors on honeybee colonies [Becher, 2014], 
while the EcoSimInGrid model explores the effects of multiple pollinators on plant 
communities [Qu, 2014].  Our SimBee model focuses on the behavior of an individual 
virtual bumblebee, which is programmed with the ability to learn the properties of a 
simulated floral environment and then use information stored in memory to make 
foraging decisions based on mathematical components contained in the classic prey 
selection model.   Our long-term goal is to observe the collective impact of individual 
decisions using this foraging model on population dynamics over time.  

In the work presented here, we describe the SimBee model, and use it to study the 
effects of limited memory capacity on behavioral choices of an individual bee interacting 
with varied floral environments.  We show that partial preferences emerge from the 
optimal diet model as a natural consequence of bees with limited knowledge interacting 
with a random floral environment.  We further show that how the virtual bee calculates 
the search time for a rewarding floral type has a large impact on its behavioral choices.   
Finally, we describe the ability of SimBee to generate environments that can be used to 
verify model predictions experimentally. 
 
	 	



6	
	

Methods	
	
SimBee	Model	Overview,	Design	concepts,	and	Details	(ODD)	
The	ODD	is	a	standard	method	of	describing	ABM	models	[Grimm,	2010].			 	
A	complete	description	for	each	subroutine	process	and	is	located	in	the	Code	
Structure	section	(Appendix	1),	a	detailed	flowchart	of	the	decision-making	process	
is	located	in	the	results	section	(Figure	4),	and	the	actual	Netlogo	program	with	
comment	descriptions	can	be	found	in	Appendix	2.	
	
Purpose		
This	model	is	designed	to	serve	as	an	accurate	representation	of	the	basic	foraging	
behavior	of	bees.	It	includes	the	behaviors	that	are	involved	in	the	bees	collecting	
nectar,	and	bringing	it	back	to	the	hive.		The	bee	‘decides’	which	flowers	to	visit	
based	on	the	optimal	diet	model	(ODM)	that	we	have	modified	to	include	a	learning	
and	memory	component.		The	reason	for	creating	this	model	is	to	provide	a	more	
realistic	and	consistent	base	upon	which	more	involved	models	can	be	built,	and	test	
how	individual	bee	behavior	has	been	shaped	by	natural	adaptively	respond	in	
heterogeneous	floral	environments.	
	
Entities,	State	Variables,	and	Scales		
The	model	has	three	different	individuals:	bees,	flowers,	and	hives.		The	state	
variables	for	the	agent	types	are	summarized	in	Table	1.		There	are	no	special	units	
or	environment	in	this	simulation.		

Table	1:	State	Variables	for	SimBee	Agents	(ML	=	memory	list)	
Hive	 Flower	 Bee	
Nectar	Accumulated	 Nectar	Content	 Location	
		 Handling	Time	 Heading	
		 		 Detected	Flowers	
		 		 On	Flower?	
		 		 Last	Flower	Visited	
		 		 Nectar	Held	
		 		 Next	Flower	
		 		 Time	of	Last	Blue	flower	visited	
		 		 Time	of	Last	Yellow	flower	visited	
		 		 Sample	Mode?	
		 		 ML	yellow	handling	time	
		 		 ML	blue	handling	time	
		 		 ML	yellow	search	time	
		 		 ML	blue	search	time	
		 		 ML	yellow	energy	content	
		 		 ML	blue	energy	content	

	
	



7	
	

Process	overview	and	Scheduling		
Each	tick,	the	bee	moves	forward	one	patch	in	a	random	direction	(see	stochasticity	
below)	on	where	the	bee	is,	it	calls	different	functions.	Each	tick,	each	of	the	three	
breeds	updates	their	variable	values	to	account	for	nectar	transfer	if	it	occurs.		Each	
tick,	bees	store	and	adjust	information	in	memory	lists	if	applicable.		In	this	
simulation,	10	ticks	are	equivalent	to	1	second.	A	bee	is	expected	to	remain	on	a	
flower	for	the	flower’s	handling	time,	default	is	2	seconds	(20	ticks).		A	bee	can	hold	
up	to	800	units	of	nectar	by	default,	and	since	the	default	nectar	amount	for	blue	
flowers	is	40ul	and	yellow	flowers	is	10ul,	the	bee	is	expected	to	visit	between	60	
and	120	flowers	before	returning	to	hive.	(20	if	all	blue	visits,	80	if	all	yellow	visits)	
	
	
Design	Concepts		
	
Basic	principles:		
SimBee	models	continuous	foraging;	there	is	no	day/night	cycle.	When	a	hive	is	
present	and	the	bee	has	the	maximum	amount	of	nectar	that	they	can	hold,	they	
bring	it	back	to	the	hive.		If	no	hive	is	present,	the	bee	will	collect	nectar	indefinitely	
until	simulation	end.	
	
Objectives:		
In	this	model,	the	bees’	objective	is	to	collect	nectar,	and	if	a	hive	is	present,	to	bring	
it	back	to	its	hive.		
	
Learning:		
The	bees	remember	the	handling	times,	energy	content,	and	search	times	of	the	past	
flowers	encountered.		The	number	of	past	flowers	remembered	(memory	length)	is	
user-defined,	ranging	from	1	to	1000.	
	
Prediction:		
The	bees	change	whether	their	next	flower	encounter	will	be	accepted	or	not	based	
on	the	information	from	past	flower	visits	stored	in	memory	lists,	using	the	ODM	
equation:		S1	>	((E1*h2)	/	E2)	-	h1.		The	right	side	of	this	equation	is	referred	to	as	
the	threshold.	
S1	=	average	search	time	for	past	blue	flowers	
E1	=	average	energy	content	for	past	blue	flowers	
E2	=	average	energy	content	for	past	yellow	flowers	
h1	=	average	handling	time	for	past	blue	flowers	
h2	=	average	handling	time	for	past	yellow	flowers	
If	S1	>	threshold,	the	bee	will	accept	both	flower	types	if	encountered.		If	S1	<	
threshold,	the	bee	will	accept	only	blue	flowers	if	encountered.	
	
Sensing:		
The	bees	have	a	cone	of	sight,	which	they	use	to	see	nearby	flowers	in	the	direction	
in	which	they	are	heading.	They	are	able	to	select	a	random	flower	within	this	cone	



8	
	

of	detection.	Bees	also	know	the	location	of	the	last	flower	visited	so	they	don’t	
immediately	return	to	it.	
	
Interaction:		
When	the	bee	is	on	the	same	patch	as	the	flower	it	has	chosen	to	encounter	next	
(from	the	mentioned	above	detected	flowers)	the	bee	“lands”	on	that	flower	and	
gathers	all	of	its	nectar,	asking	the	flower	to	change	its	energy	value	to	0,	and	set	its	
occupied?	variable	to	true.	The	bee	stays	on	that	patch	for	the	handling	time	
corresponding	to	the	selected	flower,	and	the	nectar	quantity	transferring	from	
flower	to	bee.	Once	the	bee	leaves	this	location,	the	flower	detects	no	bees	are	
present	and	changes	its	occupied?	Boolean	back	to	false.			
	
Stochasticity:		
The	direction	in	which	the	bee	travels	is	based	on	pseudorandom	numbers,	the	
pseudorandom	number	generator	used	by	Netlogo	always	uses	Java’s	“strict	math”	
library	and	details	can	be	found	in	the	Netlogo	User	Manual	[Wilensky,	1999].	If	it	
has	not	detected	a	flower	to	encounter,	the	bee’s	heading	is	adjusted	randomly	
between	30	degrees	right	to	30	degrees	left.		This	is	to	emulate	the	natural	‘drifting’	
flight	patterns	bees	exhibit	in	real	life.		The	flower	chosen	by	bees	to	be	next	
encountered	is	also	a	stochastic	process	because	according	to	ODM,	prey	is	
randomly	encountered	before	the	acceptance	decision	occurs.  This means that if the 
bee has more than one flower in the detected range, the selection is based on 
pseudorandom numbers.	
 
Collectives:		
The	bees	are	all	part	of	a	colony	and	all	colonies	are	part	of	the	population.	The	
activity	of	the	individual	contributes	to	how	the	whole	population	is	doing.		In	this	
model	each	trial	only	has	one	bee	active	at	a	time.	
	
Observation:		
The	data	outputs	needed	to	observe	internal	dynamics,	solve	the	problem	the	model	
was	designed	for,	as	well	as	system-level	behavior	include:	total	nectar	gathered,	the	
total	number	of	flowers	encountered,	the	number	of	times	the	bee’s	average	blue	
search	time	fluctuated	relative	to	the	threshold,	The	number	of	yellow	flowers	
encountered,	the	number	of	yellow	flowers	accepted,	the	number	of	blue	flowers	
encountered,	the	number	of	blue	flowers	accepted,	and	the	timestamp	of	when	
sampling	phase	ended.		Output	of	the	bee’s	information	stored	in	memory	lists	is	
also	required	to	confirm	certain	aspects	of	bee	behavior	are	correct,	such	as	keeping	
search	time	and	handling	time	mutually	exclusive.			
The	tools	needed	to	obtain	these	outputs	include	Excel	and	BehaviorSpace.	
	
Initialization		
Upon	clicking	the	setup	button,	a	number	of	blue	flowers	determined	by	the	blue-
flower-count	slider	are	generated	in	random	locations,	and	a	number	of	yellow	
flowers	determined	by	the	yellow-flower-count	slider	are	generated	in	random	
locations.		These	flowers	have	variables	defined	by	the	following	sliders:	blue-



9	
	

handling-time,	yellow-handling-time,	blue-energy,	yellow-energy.		A	bee	is	also	
generated,	with	memory	length	defined	by	the	bee-memory-length	slider.	
If	testing	identical	environments	with	varying	bee	memory	lengths,	the	‘generate-
worlds’	button	should	first	be	used.		This	will	output	world	files	with	the	same	user-
defined	flower	variables,	each	with	a	differing	bee	memory	length:	1000,	10,	5,	3,	2,	
1.		These	worlds	can	be	manually	imported	afterward	using	the	‘setup-imported’	
button,	or	automatically	using	BehaviorSpace.	
	
Input	Data		
If	testing	a	specific	environment,	or	a	set	of	identical	environments	with	varying	bee	
memory	lengths,	world	input	files	are	needed	(from	the	‘generate-worlds’	button	
described	above).		These	files	are	named	g(number).csv,	ranging	from	g0.csv	to	
whatever	the	number	of	worlds	generated	ends	at.	
	
The	Optimal	Diet	Model	(Charnov	and	Orians,	1973)	
	 	
	 The	optimal	diet	model	assumes	that	the	predator	encounters	prey	items	of	
different	types	sequentially	and	randomly,	and	must	decide	whether	to	accept	or	
reject	the	prey	item	once	encountered	in	order	to	maximize	rate	of	energetic	gain.		
The	profitability	(P)	of	each	prey	item	equals	the	energy	content	of	the	prey	item	
divided	by	the	handling	time	of	the	prey	item	(P	=	E/h).		For	our	model,	the	handling	
time	is	the	amount	of	time	it	takes	the	bee	to	consume	all	the	available	nectar	from	a	
flower.		Search	time	and	handling	times	are	considered	mutually	exclusive	events	in	
the	ODM,	meaning	the	predator	is	always	either	searching	or	consuming	prey,	but	
never	both.				In	the	SimBee	model,	only	two	prey	types	are	considered.		For	the	
experiments	conducted	here,	the	more	profitable	prey	type	is	blue	flowers,	which	
have	an	energy	content	of	40J	and	handling	time	of	2s,	which	equals	a	profitability	of	
20J/s.		The	less	profitable	prey	type	is	yellow	flowers,	which	have	an	energy	content	
of	10J	and	handling	time	of	2s,	which	equals	a	profitability	of	5J/s.			
	 The	bee	must	determine	whether	specialization	(accepting	the	more	
profitable	prey	type)	or	generalization	(accepting	both	prey	types)	will	optimize	the	
rate	of	energy	gain,	which	is	the	total	energy	gained	over	the	total	time	spent	
foraging,	as	shown	in	Figure	1.		With	both	specialist	(R1)	and	generalist	(R1,2)	rates	
calculated,	the	bee	will	specialize	if	R1	>	R1,2,	and	generalize	if	R1	<=	R1,2.		Since	
the	encounter	rate	is	the	inverse	of	the	search	time,	this	inequality	reduces	to	Eqn	3	
(Figure	1).		Thus,	the	decision	to	specialize	only	depends	on	the	search	time	for	the	
more	profitable	prey	type.		If	the	blue	flowers	are	plentiful	(short	search	times),	the	
bee	shouldn’t	spend	time	accepting	less	profitable	flowers;	however,	if	blue	flowers	
are	scarce,	the	bee	should	accept	both	flower	types.		If	the	predator	has	complete	
knowledge	of	the	parameters	given	in	Figure	1,	it	should	always	choose	either	to	
specialize	or	generalize	at	all	time	(referred	to	as	the	‘all-or-none’	rule	for	selecting	
the	less	profitable	type);	thus,	the	ODM	predicts	that	animals	should	never	show	a	
partial	preference.	
	



10	
	

	
Figure	1:		ODM	Equations	for	specialization	and	generalization.	For	specializing,	the	
total	energy	equals	the	product	of	the	encounter	rate	(#	of	blue	flowers	encountered/time),	
Energy	gained	from	each	blue	flower,	and	the	total	time	spent	searching.		The	total	time	
spent	foraging	is	search	time	added	to	the	total	time	spent	handling	blue	flowers,	which	
equals	the	product	of	encounter	rate,	handling	time	required	for	each	blue	flower,	and	total	
time	spent	searching	(Eqn1).			For	generalizing,	the	idea	is	similar	except	now	the	total	
energy	is	the	sum	of	total	yellow	flower	energy	gained	and	total	blue	flower	energy	gained,	
and	the	total	time	includes	total	time	spent	handling	yellow	flowers	and	total	time	spent	
handling	blue	flowers	(Eqn2).			If	Eqn1	>	Eqn2,	the	bee	should	specialize;	this	inequality	
reduces	to	the	threshold	equation	(Eqn3).		If	S1	<	threshold,	the	bee	should	specialize.	
	
Simulation	experimental	parameters	
	
	 Unless	stated	otherwise,	simulation	experiments	were	performed	in	batch	
mode	(Behavior	Space	in	Netlogo)	using	the	default	settings	described	below.		Bee	
memory	length	was	one	of	the	following	settings:	1,000,	10,	5,	3,	2,	or	1.		The	time	
required	for	each	sampling	period	depended	on	this	memory	length.		For	example,	if	
the	memory	length	was	10,	the	bee	would	sample	10	blue	flowers	and	10	yellow	
flowers	before	entering	forage	mode.		The	forage	time	period	was	always	300,000	
ticks	after	sampling	ended,	which	is	approximately	8	hours	in	real	time	(1	second	=	
10	ticks).	



11	
	

The	more	profitable	flowers	(prey1)	were	always	blue,	contained	40ul	of	
nectar,	and	required	2	seconds	of	handling	time.		The	less	profitable	flowers	(prey2)	
were	always	yellow,	contained	10ul	of	nectar,	and	required	2	seconds	of	handling	
time.	Each	flower	instantly	regenerates	the	stored	nectar	amount	once	a	bee	has	
harvested	the	flower	and	left	the	particular	location.		For	generalized	foraging	
environments,	where	both	prey	types	are	always	accepted	during	foraging,	the	
environment	contained	10	blue	and	50	yellow	flowers,	randomly	placed	within	the	
landscape.		For	specialized	foraging	environments,	when	only	the	most	profitable	
prey	type	is	accepted	during	foraging,	the	environment	contained	20	blue	and	50	
yellow	flowers,	randomly	placed	within	the	landscape.		
	
	
	
	
	 	



12	
	

Results	
	
The	SimBee	model	
	
	 The	SimBee	user	interface	is	illustrated	in	Figure	2.		Upon	setup,	the	virtual	
environment,	termed	a	‘world’,	is	generated.			A	user-defined	number	of	flowers	is	
randomly	distributed	in	the	world	for	each	flower	type.			Currently	two	types	of	
flowers	are	allowed,	depicted	by	blue	and	yellow	flower	icons.		The	user	determines	
the	energy	content	and	handling	times	for	each	flower	type.		For	experiments	
reported	here,	the	blue	flowers	are	always	most	profitable	(energy	content	of	40J,	
handling	time	2	seconds),	and	the	yellow	flowers	are	always	least	profitable	(energy	
content	of	10J,	handling	time	2	seconds).			Flowers	refill	instantaneously	after	being	
accepted	as	prey	by	a	bee.	
	 The	bee	is	placed	at	a	random	location	in	the	environment.		The	bee	moves	
around	the	simulation	until	it	detects	a	flower.		The	bee	detects	adjacent	flowers	
within	its	line	of	sight,	using	a	user-defined	view	radius	and	arc.		For	experiments	
reported	here,	a	view	radius	of	9	patches	and	an	arc	of	140°		were	used.			(Figure	3).		
If	there	are	multiple	flowers	within	detection	range,	the	bee	will	choose	a	random	
flower	and	travel	to	this	location;	this	action	is	termed	an	encounter	with	the	flower.			
The	bee	will	accept	the	flower	(take	nectar	from	it)	based	on	the	optimal	diet	model	
strategy	described	below.		If	the	bee	accepts	the	flower,	it	will	remain	at	the	flower	
location	for	the	handling	time	associated	with	that	flower.		The	bee	stores	the	search	
time	and	profitability	from	its	most	recent	acceptances	of	each	flower	type,	up	to	its	
memory	capacity,	which	can	range	from	1	to	1000.		The	user	can	choose	whether	or	
not	to	include	handling	time	in	the	search	times	for	each	flower	type.			
	

	
Figure	2:	SimBee	user	interface:		The	user	can	set	model	parameters	using	the	sliders	and	
inputs	on	the	left,	while	observing	the	simulation	in	real	time	on	the	right.	
	



13	
	

	
Figure	3:	Bee	detects	flowers	within	a	user-defined	radius	and	angle.		The	green	circle	
surrounding	the	bee	demonstrates	the	distance	the	bee	can	detect	from	in	relation	to	itself,	
while	the	white	area	visualizes	the	radius	and	angle	the	bee	considers	within	its	detection	
area.			Here,	one	yellow	and	two	blue	flowers	are	detected	by	the	bee.	
	
SimBee	Procedure	Overview	
	
	 The	SimBee	model	procedure	overview	is	shown	in	Figure	4.		After	the	
interface	is	set	up,	an	initial	sampling	mode	is	utilized	by	the	bee	in	order	to	
determine	profitability	of	the	available	flower	types.		In	sampling	mode,	the	bee	will	
always	accept	both	prey	types	upon	encountering	them.	Once	the	bee	memory	
capacity	is	reached	for	both	flower	types,	the	bee	switches	to	foraging	mode.		In	our	
experiments,	foraging	mode	is	run	for	300,000	steps	(simulating	approximately	8	
hours,	where	each	model	step	corresponds	to	0.1	seconds).			During	this	time,	each	
encounter	decision	to	accept	or	reject	a	flower	type	depends	on	the	threshold	
inequality	derived	from	the	Optimal	Diet	Model	(See	Methods,	Fig.	1,	Eqn	3).		If	the	
encounter	is	with	a	blue	flower	(most	profitable),	it	is	always	accepted	by	the	bee,	
and	the	flower’s	profitability	and	search	time	values	are	added	to	the	bee	memory.		
If	the	encounter	is	with	a	yellow	flower	(less	profitable),	the	bee	will	accept	the	
flower	if	the	average	blue	flower	search	time	is	currently	greater	than	the	threshold	
calculation.		Otherwise,	the	bee	will	reject	this	yellow	flower	and	continue	foraging.	
	



14	
	

	
Figure	4:	SimBee	Procedure	Overview.		Upon	setup,	the	bee	enters	sampling	mode,	where	
every	flower	encountered	is	accepted	to	determine	profitability	of	flower	types.		Once	a	set	
number	of	flowers	are	accepted	for	each	flower	type,	the	bee	will	switch	to	forage	mode,	
and	use	the	information	gathered	during	sampling	mode	to	determine	whether	one	of	both	
flower	types	should	be	accepted.		Upon	flower	encounter,	if	the	flower	type	is	blue	(most	
profitable),	it	is	automatically	accepted,	adds	the	information	into	its	memory,	and	returns	
to	searching	for	flowers.		If	the	flower	type	is	yellow	(less	profitable),	it	determines	if	the	
average	search	time	for	blue	flowers	is	above	or	below	the	threshold.		If	below,	it	rejects	the	
yellow	flower	and	continues	searching.		If	above,	it	accepts	the	yellow	flower,	adds	the	
information	to	its	memory,	and	returns	to	searching	for	flowers.		This	continues	for	a	set	
interval	of	time	(300k	ticks,	which	is	roughly	8	hours	or	one	day	of	foraging).			
	
Determining	Specialized	(S)	and	Generalized	(G)	environments	
	
	 In	order	to	test	the	behavioral	effects	of	changes	in	memory,	we	first	wanted	
to	create	environments	in	which	a	bee	with	complete	knowledge	of	the	environment	
(an	‘all-knowing’	bee)	will	either	always	specialize	(S	environment)	or	always	
generalize	(G	environment).			For	our	simulated	environments,	we	determined	that	
a	bee	with	memory	length	of	1000	was	‘all-knowing’,	with	essentially	complete	
knowledge	of	the	environment.		We	ran	multiple	trials	of	with	bee	memory	length	
1000	for	a	range	of	blue	flower	counts,	and	determined	the	environments	in	which	
bees	always	specialized	or	always	generalized	for	every	trial.		By	running	10	trials	
for	environments	with	50	yellow	flowers	and	variable	numbers	of	blue	flowers,	it	
was	determined	that	10	blue	flowers	and	50	yellow	flowers	always	resulted	in	
generalization	while	20	blue	flowers	and	50	yellow	flowers	always	resulted	in	
specialization	(Figure	5).		For	environments	with	intermediate	numbers	of	blue	
flowers,	the	simulation	sometimes	generated	G	and	sometimes	S	environments,	due	
to	the	random	placement	of	flowers	within	the	environment.		Thus	we	chose	10	and	
20	blue	flowers	to	define	our	G	and	S	environments,	respectively.	



15	
	

	

	
Figure	5:	Determination	of	Specialized	and	Generalized	Environments.		‘All-knowing’	bees	
were	subjected	to	different	worlds	containing	a	specific	number	of	blue	flowers	(8,	10,	12,	
etc.)	and	50	yellow	flowers.		We	ran	10	trials	per	number	of	blue	flowers,	with	each	trial	
containing	a	different	distribution	of	each	flower	type.		In	these	trials,	search	times	for	prey	
did	not	include	handling	times.		A	trial	was	considered	to	be	‘generalized’	if	both	prey	items	
were	selected	over	the	simulation	period.	
	
Changing	memory	size	affects	bee	behavior:	Partial	preference	in	ODM	
	

In	order	to	test	whether	memory	strength	affects	behavioral	choices,	we	ran	
the	simulation	with	virtual	bees	of	various	memory	lengths	in	the	specialized	and	
generalized	environments	defined	above.		We	generated	10	random	S	environments	
and	10	random	G	environments.		Within	each	environment,	we	tested	a	bee	for	each	
memory	length	(1000,	10,	5,	3,	2,	1).		We	measured	the	percent	yellow	flowers	
accepted;	0%	acceptance	indicates	the	bee	had	completely	specialized	on	blue	
flowers,	while	100%	acceptance	shows	the	bee	had	completely	generalized	and	
accepted	both	flower	types.		Any	percentage	between	indicates	that	the	bee	
fluctuated	between	specialization	and	generalization	at	certain	points	in	the	
simulation.		Averages	for	a	generalized	environment	and	specialized	environment	
were	graphed	with	95%	CI	(Figure	6).		These	findings	show	that	reduced	memory	
can	result	in	the	appearance	of	partial	preferences	when	the	same	bee	with	‘all-
knowing’	memory	would	always	either	specialize	or	generalize	for	each	trial.			Note	
that	as	memory	size	decreases,	the	virtual	bee	shows	greater	partial	preferences;	
that	is,	it	accepts	yellow	flowers	more	frequently	in	a	specialized	environment,	or	
less	frequently	in	a	generalized	environment.	

	
	
	

(a)	

0
0.2
0.4
0.6
0.8
1

1.2

8 10 12 14 16 18 20 22

%
	G
en
er
al
iz
ed
	T
ria
ls

#	Blue	Flowers

Percentage	of	Generalized	Trials	by	Sampling	end
(Handling	Time	excluded)	



16	
	

	
(b)	

	
Figure	6:	Percentage	yellow	flowers	accepted	over	encountered	by	bees	with	varying	
memory	lengths	in	generalized	(a)	and	specialized	(b)	environments.		‘Mx’	denotes	the	
number	of	blue-blue	transitions	(blue	search	times)	that	can	be	stored	in	memory.		Partial	
preferences	are	observed	when	values	are	between	0	and	1.			N=10	for	each	memory	length.			
	
The	impact	of	limited	memory	and	environmental	variability	on	bee	decision	
making	
	

By	examining	paths,	a	bee	might	take	during	a	simulation	trial,	we	can	
understand	why	partial	preferences	are	observed.		Environmental	variability’s	effect	
on	decision	making	is	illustrated	in	figure	7	with	bee	memory	length	3.		Here,	the	
bee	is	in	a	generalizing	environment,	where	a	bee	with	a	memory	length	of	1000	
would	always	accept	yellow	flowers.		For	the	bee	taking	the	violet	path,	the	average	
of	the	past	three	blue	search	times	is	greater	than	the	threshold	of	60,	so	the	bee	will	
accept	the	next	yellow	flower	encountered	(Figure	7).		For	the	bee	taking	the	red	
path,	the	average	of	the	past	three	blue	search	times	is	less	than	the	threshold	of	60,	
so	the	bee	will	reject	the	next	yellow	flower	encountered	(Figure	7).	
	

0

0.2

0.4

0.6

0.8

1

1.2

m1000 m10 m5 m3 m2 m1

%
 A

cc
ep

te
d 

/ E
nc

ou
nt

er
ed

Memory Length

Percent Yellow Accepted / Encountered
20 blue 50 yellow - Generalized Environment

0

0.05

0.1

0.15

0.2

m1000 m10 m5 m3 m2 m1

%
 A

cc
ep

te
d 

/ E
nc

ou
nt

er
ed

Memory Length

Percent Yellow Accepted / Encountered
10 blue 50 yellow - Specialized Environment



17	
	

	
Figure	7:	Schematic	of	how	environmental	variability	can	effect	optimal	decision	making	
processes.		For	the	bee	following	the	red	path,	the	past	3	blue	flower	encounters	have	an	
average	search	time	of	23	ticks,	which	is	below	the	threshold	of	60.		This	indicates	that	the	
more	profitable	prey	type	is	frequent	enough	that	less	profitable	prey	types	should	be	
rejected,	so	the	incoming	yellow	flower	encounter	will	be	rejected.		For	the	bee	following	
the	violet	path,	however,	the	average	search	time	for	the	past	3	blue	encounters	is	64.		This	
is	above	the	threshold	of	60,	which	indicates	that	the	more	profitable	prey	type	is	
uncommon	enough	that	accepting	all	prey	types	is	optimal,	and	the	incoming	yellow	flower	
encounter	will	be	accepted.	
	
Inclusion	of	handling	time	within	search	times	
	

The	ODM	defines	search	time	and	handling	times	as	mutually	exclusive.		In	
actuality,	it’s	unclear	whether	bees	are	capable	of	calculating	prey	handling	times	
separately	from	search	times,	especially	when	considering	hundreds	of	past	
encounters.		By	default,	SimBee	removes	handling	times	of	yellow	flower	encounters	
that	occurred	between	blue	flower	encounters,	so	that	the	average	search	time	of	
blue	flowers	(S1)	follows	the	ODM	definition	(Handling	Time	Excluded	mode,	Figure	
8).		We	also	incorporated	the	ability	to	include	handling	times	in	the	calculation	of	
search	times,	possibly	more	closely	following	an	actual	bee’s	perception	of	search	
times	(Handling	Time	Included	mode,	Figure	8).			
	
	 	
	



18	
	

	
	
Figure	8:	Search	time	and	Handling	time	relationship	in	the	SimBee	model.	When	handling	
time	is	excluded	from	search	time,	the	blue	search	time	equals	the	sum	of	5	search	times	
(purple	arrows)	for	93	ticks.		When	handling	time	is	included	in	search	time,	the	blue	search	
time	includes	the	handling	times	for	the	4	yellow	flowers	encountered;	the	total	search	time	
is	173	ticks.			
	
	
Specialized	(S)	and	Generalized	(G)	environments	by	Handling	Time	mode	
	
	 When	handling	time	is	included	in	search	time,	the	search	time	is	much	
longer,	and	the	numbers	of	flowers	required	to	generate	Specialized	and	
Generalized	environments	change.		By	running	10	trials	with	a	range	of	blue	flower	
counts	and	plotting	the	percentage	of	generalized	trials,	we	demonstrated	that	the	
number	of	blue	flowers	required	to	generate	Specialized	environments	shifts	from	
10	blue	flowers	for	handling	time	excluded,	to	20	blue	flowers	for	handling	time	
included	(Figure	9).		For	Generalized	environments,	the	number	of	blue	flowers	
shifts	from	20	blue	flowers	for	handling	time	excluded,	to	40	blue	flowers	for	
handling	time	included	(Figure	9).		This	shift	was	considered	significant	for	the	
purpose	of	demonstrating	how	the	relationship	between	handling	and	search	time	
can	alter	how	bees	perceive	generalized	or	specialized	environments,	while	further	
trials	are	needed	in	order	to	consider	this	shift	truly	statistically	significant.	
	



19	
	

	
	
Figure	9:	Specialized	(S)	and	Generalized	(G)	environments	by	handling	time	mode.		With	
handling	time	excluded,	G	environment	is	achieved	with	10	blue	flowers,	and	S	environment	
is	achieved	with	20	blue	flowers.		When	handling	time	is	included	in	search	times,	however,	
G	environment	is	shifted	to	20	blue	flowers,	and	S	environment	is	shifted	to	40	blue	flowers.	
	
Validating	the	SimBee	Model	in	a	lab	setting	
	
	 In	order	to	test	whether	the	model	corresponds	to	real	bee	behavior,	we	
wanted	to	generate	simulation	worlds	that	could	be	replicated	and	used	in	a	
laboratory	environment.		Comparison	of	real	and	simulated	bee	behavior	would	
then	enable	us	to	validate	and	refine	the	simulation,	as	well	as	providing	a	way	of	
estimating	actual	bee	memory	length	and	behavioral	strategies.			To	accomplish	this,	
we	developed	a	switch	to	facilitate	laboratory	parameters	for	the	SimBee	model.		
For	the	floral	environment	layout,	possible	flower	locations	were	constricted	to	a	
grid:	15	rows	by	22	columns	totaling	330	possible	flower	positions.		Each	row	and	
column	were	6.5cm	apart,	and	knowing	bees	flight	speed	approximated	15cm/s	
between	encounters,	the	simulation	parameters	were	structured	to	emulate	this	
behavior	(Figure	10).		Blue	flowers	were	adjusted	to	contain	13ul	of	nectar	and	have	
a	4.5	second	handling	time.		Yellow	flowers	were	adjusted	to	contain	6.5ul	of	nectar	
and	have	a	4.5	second	handling	time.			
	 Using	the	SimBee	in	Laboratory	mode,	we	generated	a	laboratory	
environment	corresponding	with	a	simulation	world	(Figure	10).		The	laboratory	
replica	replaces	color	discrimination	with	odor	discrimination,	because	this	forces	
bees	to	approach	flowers	very	closely	in	order	to	discriminate	rewarding	and	non-
rewarding	odors,	similar	to	the	programmed	bee	behavior	in	the	model.			
Laboratory	tests	will	allow	us	to	determine	whether	we	observe	specialized	and	

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

%
	G
en
er
al
iz
ed
	T
ri
al
s

#	Blue	Flowers

Percentage	of	Generalized	Trials	by	Sampling	end
(Both	Handling	Time	modes)	(10	trials,	always	50	yellow)

Handling	Time	Included

Handling	Time	Excluded



20	
	

generalized	environments,	as	well	as	partial	preferences,	similar	to	those	observed	
in	our	simulations.		The	accuracy	of	this	method	of	designing	model	parameters	to	
emulate	known	lab	specifications	will	remain	unclear	until	assessment	metrics	are	
incorporated	for	comparison	against	actual	bee	behavior	data.	
	

	
	
Figure	10:	Testing	simulation	predictions	with	laboratory	data.		In	Laboratory	mode,	the	
simulation	generates	floral	environments	on	a	grid	(top	panel)	that	is	easily	translated	to	a	
foam	board	with	slots	for	positioning	artificial	flowers	–	microfuge	tubes	filled	with	sugar	
water	‘nectar’	surrounded	by	foam	‘petals’	(bottom	panel).		Odorants	on	the	surface	of	
flowers	enables	bees	to	differentiate	low	and	high	quality	flowers.		The	board	fits	into	a	bee	
cage;	bees	can	be	released	into	the	cage	and	their	behavior	tracked	by	video	monitoring.		
	



21	
	

	 	



22	
	

Discussion:	
	

By	programming	virtual	bee	foragers	with	an	adaptive	decision-making	
algorithm	based	on	Optimal	Diet	Model	developed	by	Charnov	(1976),	modified	to	
include	memory,	a	realistic	virtual	bumblebee	was	developed	that	can	be	used	to	
emulate	actual	bee	behavior	and	better	assist	future	studies	involving	foraging	
behavior	on	the	population	level.		By	comparing	percentage	of	prey	acceptance	over	
encounter	of	varying	memory	sizes	in	the	same	environments,	the	results	show	that	
reductions	in	memory	cause	bees	to	make	non-optimal	choices	when	floral	
resources	are	randomly	distributed	in	the	environment.		Previous	diet	model	
designs	cannot	explain	partial	preferences	due	to	model	constraints,	however	by	
incorporating	memory	ability	into	the	model,	partial	preferences	are	a	natural	
outcome	from	environmental	variability.		By	investigating	how	handling	times	are	
incorporated	into	search	times,	the	model	allows	comparison	to	actual	bee	behavior	
to	determine	how	bees	actually	perceive	search	times	during	foraging,	and	also	to	
estimate	actual	bee’s	memory	capacity.			These	results	suggest	that	environmental	
stressors	affecting	memory	may	contribute	to	population	decline	by	increasing	non-
optimal	foraging	choices,	which	could	ultimately	reduce	the	reproductive	potential	
of	bumblebee	colonies.			

The	BeeSim	model	is	novel	because	it	is	a	memory-based	extension	of	the	
optimal	diet	model	rules	in	the	foraging	model.			In	Becher	et	al’s	BEEHAVE	model,	
an	agent-based	foraging	model	is	derived	for	honeybee	colonies	that	incorporates	
colony	dynamics	and	an	agent-based	foraging	model,	however	it	does	not	
incorporate	the	optimal	diet	model	for	agent	decision	making.	Dyer	et	al’s,	Bee	
reverse-learning	behavior	simulations	incorporate	agent-based	computer	
simulations	that	involve	parameters	of	flower	handling	times	and	rewards	in	order	
to	help	predict	efficiency	in	bee	behavior	when	adjusting	to	rewarding	flowers	
changing	to	unrewarding	flowers,	but	does	not	address	the	diet	model	in	their	
model	designs.		Qu	et	al’s	EcoSimInGrid	model	is	a	spatially	explicit	agent-based	
simulator	for	complex	analyses	of	pollinators	on	plant	populations,	however	their	
design	does	not	incorporate	behavioral	choices	based	on	the	optimal	diet	model.	

Zhang	et	al’s	recent	experience-driven	(RED)	decision-making	foraging	
model	explains	partial	preferences	by	using	a	probability-based	model	that	
determines	prey	acceptance	by	comparing	the	profitability	of	the	current	encounter	
to	the	average	of	the	most	recent	flower	encounters.		Instead	of	incorporating	
search	times	for	various	types	into	decision-making	as	in	the	optimal	diet	model,	
Zhang	et	al.	include	an	aversion	factor	related	to	the	hunger	of	the	forager	over	time:	
foragers	that	haven’t	eaten	recently	are	more	likely	to	accept	encountered	prey.		
While	an	interesting	model,	this	simulation	is	less	likely	to	be	relevant	to	bumblebee	
foragers,	since	their	behavior	is	not	driven	by	individual	hunger	[Goulson,	2009].	

Future	work	using	the	SimBee	model	will	involve	more	realistic	aspects	of	
the	simulation,	including	changing	floral	environments,	alternate	memory	weights,	
and	additional	prey	types	that	offer	a	range	of	available	rewards	instead	of	a	static	
value.		Adjusting	the	decision-making	algorithm	to	include	multiple	prey	types	that	
place	more	weight	on	the	most	recent	data	gathered	will	create	a	more	realistic	
system,	allowing	bees	to	adapt	to	constantly	changing	resources	available.		



23	
	

Predicting	the	effect	of	memory	impairment	on	the	overall	bee	population	is	the	
final	goal	of	the	SimBee	model.		The	model	will	complement	and	enhance	
information	gained	from	laboratory	and	field	studies.					

The	SimBee	model	can	also	be	used	in	an	educational	tool	that	allows	
students	to	learn	about	biological	concepts	through	agent-based	modelling.		The	
simulation	separates	aspects	of	foraging	into	single	variables,	which	gives	students	
the	ability	to	hypothesis	test	by	adjusting	single	parameters	of	the	model	with	
separate	sliders	for	each	applicable	model	aspect.		The	model	by	design	is	user	
friendly	and	interactive	with	the	real-time	ability	to	adjust	environmental	values,	
which	can	facilitate	public	education	and	a	greater	understanding	of	the	importance	
of	bumblebee	decline.	

	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



24	
	

	
	
	
References:	
	
Arundel,	J.,	Oldroyd,	B.P.,	Winter,	S.	(2013)	Modelling	estimates	of	honey	bee	(Apis	
spp.)	colony	density	from	drones.		Ecological	Modelling	267:	1-10	

Becher,	M.A.,	Grimm,	V.,	Thorbek,	P.,	Horn,	J.,	Kennedy,	P.J.,	Osborne,	J.L.	(2014)	
BEEHAVE:	a	systems	model	of	honeybee	colony	dynamics	and	foraging	to	explore	
multifactorial	causes	of	colony	failure.	Journal	of	Applied	Ecology	51:	470–482.	

Bukovac,	Z.,	Dorin,	A.,	Dyer,	A.G.	(2013)	A-Bees	See:	A	Simulation	to	Assess	Social	
Bee	Visual	Attention	During	Complex	Search	Tasks.		ECAL	2013:	276-283.	

Castello,	E.,	Yamamoto,	T.,	Nakamura,	T.,	Ishiguro,	H.	(2013)	Task	Allocation	for	a	
robotic	swarm	based	on	an	Adaptive	Response	Threshold	Model.		Control,	
Automation	and	Systems	(ICCAS)	12:	259-266	

Charnov,	E.	(1976).	Optimal	Foraging:	Attack	Strategy	of	a	Mantid.	The	American	
Naturalist	110:	141-151.		

Couvillon,	M.J.,	Toufailia,	H.A.,	Butterfield,	T.M.,	Shrell,	F.,	Ratnieks,	F.L.W.,	Shurch,	R.	
(2015)	Caffeinated	Forage	Tricks	Honeybees	into	Increasing	Foraging	and	
Recruitment	Behaviors.		Current	Biology	25:	2815-2818	

Das,	S.,	Biswas,	S.,	Kundu,	S.	(2013)	Synergizing	fitness	learning	with	proximity-
based	food	source	selection	in	artificial	bee	colony	algorithm	for	numerical	
optimization.		Applied	Soft	Computing	13:	4676-4694	

Dyer,	A.G.,	Chittka,	L.	(2004)	Biological	significance	of	distinguishing	between	
similar	colours	in	spectrally	variable	illumination:	bumblebees	(Bombus	terrestris)	
as	a	case	study.		Journal	of	Comparative	Physiology	190:	105-114	

Dyer,	A.G.,	Dorin,	A.,	Reinhardt,	V.,	Garcia,	J.E.,	Rosa,	M.G.P.	(2014)	Bee	reverse-
learning	behavior	and	intra-colony	differences:	Simulations	based	on	behavioral	
experiments	reveal	benefits	of	diversity.		Ecological	Modelling	277:	119-131.			

Faruq,	S.,	McOwan,	P.W.,	Chittka,	L.	(2013)	The	biological	significance	of	color	
constancy:	An	agent-based	model	with	bees	foraging	from	flowers	under	varied	
illumination.		J.	Vis	10:	1-4.	

González-Varo,	J.P.,	Biesmeijer,	J.C.,	Bommarco,	R.,	Potts,	S.G.,	Schweiger,	O.,	Smith,	
H.G.,	Steffan-Dewenter,	I.,	Szentgyörgyi,	H.,	Woyciechowski,	M.,	Vilà,	M.	(2013)	
Combined	Effects	of	global	change	pressures	on	animal-mediated	pollination.	
Trends	in	Ecology	&	Evolution	28:	221-240		



25	
	

Goulson,	D.	Bumblebees:	Behaviour,	Ecology,	and	Conservation	(2nd	Edition).	2009.		
Oxford	University	Press.	

Grimm,	V.,	Berger,	U.,	DeAngelis,	D.L.,	Polhill,	J.G.,	Giske,	J.,	Railsback,	S.F.	(2010)	The	
ODD	protocol:	A	review	and	first	update.		Ecological	Modelling	221:	2760–2768	

Helbing,	D.	(2012)	Social	Self-Organization	Agent-Based	Simulations	and	
Experiments	to	Study.	Emerging	Social	Behavior	11:	341-349.	

Holt,	R.D.	(2013).		Unstable	predator–prey	dynamics	permits	the	coexistence	of	
generalist	and	specialist	predators,	and	the	maintenance	of	partial	preferences.	
Israel	Journal	of	Ecology	and	Evolution	59:	5-9	

Janssen,	M.A.,	Hill,	K.	(2014)	Benefits	of	Grouping	and	Cooperative	Hunting	Among	
Ache	Hunter–Gatherers:	Insights	from	an	Agent-Based	Foraging	Model.		Human	
Ecology	42:	823-835	

Liu,	B.,	Cai,	M.,	Yu,	J.	(2015)	Swarm	Intelligence	and	its	Application	in	Abnormal	Data	
Detection.		Informatics	39:	1-13	

Lourenco,	R.,	Delgado,	M.,	Korpimaki,	E.,	Penteriani,	V.	(2015)	Evaluating	the	
influence	of	diet-related	variables	on	breeding	performance	and	home	range	
behavior	of	a	top	predator.		Population	Ecology	57:	625-636	

Mills,	R.,	Correia,	L.	(2015)	The	Influence	of	Topology	in	Coordinating	Collective	
Decision-Making	in	Bio-hybrid	Societies.		Progress	in	Artificial	Intelligence	9273:	
250-261	

Muth,	F.	(2015)	The	effects	of	acute	stress	on	learning	and	memory	in	
bumblebees.	Learning	and	motivation	50:	39-43	

Politopoulos,	I.	(2007)	Review	and	Analysis	of	Agent-based	Models	in	Biology.		
University	of	Liverpool	Tech	Reports	07:	2-14	

Pyke,	G.H.	(1984)	Optimal	Foraging	Theory:	A	Critical	Review.	Ann.	Rev.	Ecol.	Syst.	
15:	523-75.		

Qu,	H.,	Seifan,	T.,	Tielborger,	K.,	Seifan,	M.	(2013)	A	spatially	explicit	agent-based	
simulation	platform	for	investigating	effects	of	shared	pollination	service	on	
ecological	communities.		Simulation	Modelling	Practice	and	Theory	37:	107–124		

Sih,	A.	(2013).		Understanding	variation	in	behavioral	responses	to	human-induced	
rapid	environmental	change:	a	conceptual	overview.	Animal	Behavior	85:	1077-
1088.		

Sih,	A.,	Christensen,	B.	(2001)	Optimal	diet	theory:	when	does	it	work,	and	when	and	
why	does	it	fail?	Animal	Behaviour	61:	379–390.		



26	
	

Wilensky,	U.	(1999).	NetLogo.		http://ccl.northwestern.edu/netlogo/.	Center	for	
Connected	Learning	and	Computer-Based	Modeling,	Northwestern	University	

Zhang,	F.,	Cang,	H.	(2014)	Recent	experience-driven	behaviour	optimizes	foraging.	
Animal	Behaviour	88:	13-19.	

 
 
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



27	
	

 
 
 
	 	



28	
	

Appendix	1:	Code	Structure:	
	
Bees	

• Move-bees:	
o If	not	on-flower?	[bees-search-for-flower]	
o If	on-flower?	[bees-collect-nectar]	

• Bees-search-for-flower	
o if	chosen-flower	=	NOBODY	[bees-decide-next-flower]	
o If	no	flowers-in-view	[move	randomly]	
o If	chosen-flower	!=	NOBODY	[face	chosen-flower,	move	towards]	

• Bees-decide-next-flower	
o IF	any	flowers-in-view	[choose	random	flower]	
o Determine	which	prey	type	should	be	accepted	
o If	color	of	chosen-flower	=	next-color	[accept	encounter]	

• Bees-collect-nectar	
o Bees-determine-memory-values	
o Update-memory	
o bee-decide-prey	
o If	time	spent	on	flower	reached,	forage	and	leave	

• Bees-determine-memory-values	
o If	mutually-exclusive	handling	time:	

§ Subtract	handling-time	of	between	encounters	recorded	
o Store	search-time	in	search	memory	
o If	accepting-encounter?	true	

§ Store	energy	and	handling	times	in	memory	
• Update-memory	

o If	memory	list	length	>	bee-memory-length	
§ remove	oldest	memory	value	

o If	sampling	and	all	memory	lists	filled	
§ Set	sampling	false	
§ Reset	nectar	held,	encounter	tracking	variables	

• Bee-decide-prey	
o Calculate	averages	for	memory	lists	

§ Search	times	
§ Handling	times	
§ Energy	contents	

o Determine	prey1	=	greatest	energy	/	handling-time	
o Determine	threshold	

§ ((p1energy		*	p2handling)	/	p2energy)	–	p1handling	
o If	average	p1search-time	>	threshold,	generalize	

§ Accept	any	prey	type	encountered	next	
o If	average	p1search-time	<	threshold,	specialize	

§ Accept	only	prey1	for	next	encounter	
Flowers	

• Regenerate-flower-nectar	



29	
	

o If	nectar	content	<	flower-max-nectar	[refill	nectar]	
• Flowers-track-occupation	

o If	any	bees-here	[set	occupied?	true]	
o Else	[set	occupied?	false]	

 
 
	 	



30	
	

Appendix	2:	Full	SimBee	Code	
	
	
;--------------------------------------------------breeds------------------------------------------------------------------------------	
breed	[flowers	flower]	
breed	[bees	bee]	
breed	[hives	hive]	
	
;-------------------------------------------------variables----------------------------------------------------------------------------	
globals[	
		;	-		
			
		ticks-at-sampling-end															;	-----	output	variable:	time	when	sampling	ended	
		specialized-at-sampling-end?				;	-----	output	variable:	if	bee	specialized	at	sampling	end	
			
		world-name																					;	-----	output	variable:	what	the	world	output	file	is	named	
			
		hive-1																							;	----	ID	of	1st	hive	
		hive-2																				;	----	ID	of	2nd	hive	
			
		switch-count																														;	-----	output	variable:	#	times	flower	color	!=	last	visit	
		total-count																					;	-----	output	variable:	#	flower	visits	total	
		error-visit-count																					;	-----	debug	variable:	if	bee	visits	unintended	flower	
		travel-distances																					;	-----	output	variable:	distances	between	visited	flowers	
		threshold-switch-count															;	-----	output	variable:	#	times	S1	went	above/below	threshold	
	
		NectarGathered																					;	-----	output	variable:	total	nectar	bee	gathered	
			
		current-iteration																					;	-----	behaviorspace	variable:	tracks	current	run	
			
		next-run?																						;	-----	behaviorspace	variable:	if	true,	behaviorspace	deletes	current	world	file,	starts	next	run	
		done-time?																						;	-----	behaviorspace	variable:	also	used	to	end	start	next	run	in	some	cases	
			
						blue-search-mean																						;	-----	OFT	variable:	average	blue	search	time	of	bee	memory	
				yellow-search-mean																						;	-----	OFT	variable:	average	yellow	search	time	of	bee	memory	
					yellow-handling-mean																						;	-----	OFT	variable:	avg	yellow	handling	time	
					blue-handling-mean																						;	-----	OFT	variable:	avg	blue	handling	time	
					yellow-energy-mean																						;	-----	OFT	variable:	avg	yellow	energy	content	
					blue-energy-mean																						;	-----	OFT	variable:	avg	blue	energy	content	
					prey-1																						;	-----	OFT	variable:	defines	which	prey	type	is	most	rewarding	
					next-prey																							;	-----	OFT	variable:	defines	if	next	encounter	will	be	specialized	or	generalized	
					search-threshold																;	-----	OFT	variable:	calculates	what	threshold	is:		(E1*h2)	/	E2)	-	h1	
						
					last-visit-yellow																						;	-----	graph	variable:	updates	sequence	graph	with	yellow	bar	
					last-visit-blue																						;	-----	graph	variable:	updates	sequence	graph	with	blue	bar	
					same-color-inarow																						;	-----	graph	variable:	tracks	sets	of	same-color	visit	patterns	
					PropNecBlue																						;	-----	graph	variable:	displays	proportion	of	nectar	has	come	from	blue	flowers	
					PropNecYellow																						;	-----	graph	variable:	displays	proportion	of	nectar	has	come	from	yellow	flowers	
		blue-population																						;	-----	graph	variable:	tracks	#	blue	flowers	in	environment	
		yellow-population																						;	-----	graph	variable:	tracks	#	yellow	flowers	in	environment	
		last-flower1																						;	-----	debug	variable:	displays	last	flower	visited	
		this-flower1																							;	-----	debug	variable:	displays	current	flower	visiting	
	
				blue-accepted																						;	-----	graph	variable:	displays	#	blue	flowers	accepted	
		blue-encountered																						;	-----	graph	variable:	displays	#	blue	flowers	encountered	
		yellow-accepted																						;	-----	graph	variable:	displays	#	yellow	flowers	accepted	
		yellow-encountered																						;	-----	graph	variable:	displays	#	yellow	flowers	encountered	
		blue-ratio1																						;	-----	graph	variable:	displays	%	blue	flowers	accepted	/	encountered	
		yellow-ratio1																					;	-----	graph	variable:	displays	%	yellow	flowers	accepted	/	encountered	
		seq-update?																					;	-----	graph	variable:	if	true,	updates	visit	sequence	graph	
			
		sampling-file-name																					;	-----	output	variable:	name	of	separate	export	file	for	sampling	data	if	needed	
		specialized?																					;	-----	output	variable:	indicates	of	bee	specialized	or	not	at	sampling	end	
		landscapeID																					;	-----	output	variable:	unique	#	for	each	generated	environment,	for	multiple	runs	with	same	layout	
	
			
		;	-		
			
			
]	
	
bees-own	[	
		on-flower?																					;	-----	indicates	if	flower	present	
		hive-belongs-to																					;	-----	which	hive	it	belongs	to	
		bee-nectar-collected																					;	-----	amount	of	nectar	collected	
		time-on-flower																					;	-----	how	long	bee	has	been	sitting	on	flower	
		flowers-in-view																					;	-----	agentset	of	all	flowers	detected	in	view	
		last-flower																					;	-----	ID	of	last	flower	visited	
		chosen-flower																					;	-----	ID	of	next	flower	to	visit	
		next-color																					;	-----	color	of	next	flower	
		yellow-handling-memory																					;	-----	list	of	past	yellow	flower	handling	times	
		blue-handling-memory																					;	-----	list	of	past	blue	handling	times	



31	
	

		yellow-energy-memory																					;	-----	list	of	yellow	energy	contents	
		blue-energy-memory																					;	-----	list	of	blue	energy	contents	
		yellow-search-memory																					;	-----	list	of	yellow	search	times	
		blue-search-memory																					;	-----	list	of	blue	search	times	
		last-blue-time																					;	-----	timestamp	of	last	blue	encounter	
		last-yellow-time																					;	-----	timestamp	of	last	yellow	encounter	
		flower-landing-memory																					;	-----	list	of	timestamps	when	past	flowers	visited	
		just-landed?																						;	-----	indicates	if	bee	just	arrived	to	flower	or	not	
		sampling?																					;	-----	indicates	if	bee	is	still	sampling	
		prey1																					;	-----	indicates	the	more	rewarding	prey	type	
		prey2																					;	-----	indicates	the	less	rewarding	prey	type	
		nextprey																					;	-----	equals	"both"	if	bee	is	generalized,	"blue"	if	specialized	
		last-color																					;	-----	color	of	last	flower	visited	
		accept-encounter?																						;	-----	indicates	if	bee	will	accept	the	current	encounter	
	
]	
	
flowers-own	[	
		flower-nectar-content																						;	-----	amount	of	nectar	in	flower	
		flower-handling-time																						;	-----	amount	of	handling	time	for	flower	
		occupied?																						;	-----	indicates	if	a	bee	is	on	the	flower	
		flower-type																						;	-----	indicates	prey	type	
		block-number																						;	-----	indicates	which	region	flower	is	located	in	
			
]	
	
hives-own	[	
		hive-nectar-content																						;	-----	amount	of	nectar	that's	been	returned	to	the	hive	
]	
	
to	generate-worlds		;	------------------------------	create	worlds	for	behaviorspace	
		let	original-number	number-of-worlds																						;	-----	to	offset	world	file	names	
		let	original-handling	yellow-handling-time																						;	-----	saves	original	yellow	handling	time,	to	reset	once	worlds	generated	
	
		set	number-of-worlds	number-of-worlds	+	last-world-offset																						;	-----	offsets	world	file	names	
		while	[number-of-worlds	>	last-world-offset	=	true]	[	
	
				setup	
				set	bee-decision-type	"prey-model"	
				set	bee-memory-length	1000																																																									;	-----	export	world	for	'all-knowing'	bee	
				set	number-of-worlds	number-of-worlds	-	1	
				set	world-name	(word	"g"	number-of-worlds		".csv")	
				export-world	world-name	
				set	bee-memory-length	10																																																										;	-----	adjust	world	name	and	bee	memory	length,	export	world	
				set	number-of-worlds	number-of-worlds	-	1	
				set	world-name	(word	"g"	number-of-worlds		".csv")	
				export-world	world-name	
				set	bee-memory-length	5																																																										;	-----	*	
				set	number-of-worlds	number-of-worlds	-	1	
				set	world-name	(word	"g"	number-of-worlds		".csv")	
				export-world	world-name	
				set	bee-memory-length	3																																																										;	-----	*	
				set	number-of-worlds	number-of-worlds	-	1	
				set	world-name	(word	"g"	number-of-worlds		".csv")	
				export-world	world-name	
				set	bee-memory-length	2																																																										;	-----	*	
				set	number-of-worlds	number-of-worlds	-	1	
				set	world-name	(word	"g"	number-of-worlds		".csv")	
				export-world	world-name	
				set	bee-memory-length	1																																																										;	-----	*	
				set	number-of-worlds	number-of-worlds	-	1	
				set	world-name	(word	"g"	number-of-worlds		".csv")	
				export-world	world-name	
	
		]	
		set	last-world-offset	last-world-offset	+	original-number																						;	-----	ensures	world	files	aren't	overwritten	
		set	number-of-worlds	original-number																																							;	-----	returns	world	count	
		set	yellow-handling-time	original-handling																																							;	-----	resets	yellow	handling	time	
			
end	
					
					
to	export-lab-world																																									;	----------------	export	specific	environment	for	lab	recreation	
		export-world	export-world-name	
		export-view	(word		"view-"	export-world-name	".png")																																								;	-----	exports	image	of	landscape	generated	
end	
					
					
to	determine-world																																								;	-----;	-----------------	for	behaviorspace:	determine	next	world	to	import	and	run	
		let	num-test	1000																																							;	-----	starts	very	high	to	enure	last	world	generated	is	first	
		let	world-test	(word	"g"	num-test		".csv")	
		while	[file-exists?	world-test	=	false][																																								;	-----	continues	searching	until	filename	exists	
				set	num-test	num-test	-	1	
				set	world-test	(word	"g"	num-test		".csv")	
				if	num-test	<	0	[error	"World	doesn't	exist"]																																							;	-----	indicates	no	world	left	to	import	



32	
	

		]	
		set	world-name	world-test																																							;	-----	sets	world	name	to	import	once	valid	world	name	found	
			
end	
	
to	setup-imported																																								;	-----;	--------------	for	behaviorspace:	import	next	world	and	setup	
		clear-all	
		reset-ticks	
		setup-globals	
		determine-world	
		import-world	world-name																																							;	-----	imports	world	name	determined	from	determine-world	
	
end	
	
	
	
	
	
	
	
	
	
;-----------------------------------------------setting	values	------------------------------------------------------------------------	
	
	
to	fix-flower-count																																								;	-----;	-------------	for	lab	environment:	make	sure	total	flower	count	is	correct	
		set	yellow-flower-count	total-flower-count	-	blue-flower-count	
end	
	
	
	
	
;---------------------------------------------------setup------------------------------------------------------------------------------	
																																							;	-----;initializes	breeds	and	environment	
to	setup	
		clear-all	
		reset-ticks	
	
		setup-globals	
			
		set	travel-distances	[1]																																							;	-----	for	monitoring	distances	travelled	
																																									;	-----;;	call	setup	functions	
			
		setup-patches	
		setup-flowers	
		space-flowers	
		setup-bees	
	;	setup-hives																																							;	-----	hives	not	currently	used	
		space-flowers	
		set-labels	
	
		setup-export	
			
			
end	
	
to	setup-globals																																							;	-----	adds	initial	values	to	variables	that	can't	be	empty	at	initialization	
						set	blue-search-mean	1	
						set	yellow-search-mean	1	
						set	yellow-handling-mean	1	
						set	blue-handling-mean	1	
						set	yellow-energy-mean	1	
						set	blue-energy-mean	1	
						set	search-threshold	1	
						set	threshold-switch-count	0	
						set	done-time?	false	
						set	yellow-encountered	1	
						set	yellow-accepted	1	
						set	blue-encountered	1	
						set	blue-accepted	1	
						set	blue-ratio1	1	
						set	yellow-ratio1	1	
						set	seq-update?	false	
						set	landscapeID	random-float	1						
end	
	
	
	
	
	
;----setup-patches----	
;makes	the	background	green	
to	setup-patches	
			ask	patches	[	set	pcolor	57	]	
end	



33	
	

	
;----setup-flowers----	
;initializes	color,	shape,	size,	and	location	of	flowers	
	
to	space-flowers																																								;	-----;;	-------------	adjust	flowers	into	lab-environment	spacing	grid	
		ask	flowers	[	
					
				ifelse	lab-flower-layout?	=	true	[	
						while	[pxcor	mod	5	!=	3	or	pycor	mod	5	!=	0	or	any?	other	flowers-here][setxy	random-pxcor	random-pycor]							;	-----	if	lab	layout	wanted,	ensures	
flower	placed	in	available	grid	spots	
						]	
				[	
						while	[any?	other	flowers	in-radius	2	=	true	or	any?	hives	in-radius	2	=	true]																																							;	-----	if	random	layout	wanted,	ensures	flowers	don't	
overlap	
					[setxy	random-pxcor	random-pycor]]	
		]	
end	
	
to	setup-flowers																																							;	-----	creates	flower	agents	
		set-default-shape	flowers	"flower"	
		create-flowers	yellow-flower-count	[																																							;	-----	yellow	flowers	
				set	flower-type	"f1"	
				setxy	random-pxcor	random-pycor	
				set	color	yellow	
				set	size	5	
				set	occupied?	true	
				set	flower-nectar-content	yellow-energy	
				set	flower-handling-time	yellow-handling-time	
		]	
		set	yellow-population	yellow-flower-count	
			
				create-flowers	blue-flower-count	[																																							;	-----	blue	flowers	
				set	flower-type	"f2"	
				setxy	random-pxcor	random-pycor	
			;	if	any?	flowers-here	[setxy	random-pxcor	random-pycor]	
				set	color	blue	
				set	size	5	
				set	occupied?	true	
				set	flower-nectar-content	blue-energy	
				set	flower-handling-time	blue-handling-time	
		]	
			set	blue-population	blue-flower-count		
			
end	
			
	
	
	
	
	
	
;----setup-bees----	
;initializes	color,	shape,	size,	location,	and	variables	of	bees	
to	setup-bees	
	
				create-bees	number-of-bees	
				[	
						set	shape	"bee	2"	
						set	color	45	
						set	size	4	
						setxy	0	-20	
						set	on-flower?	false	
						set	time-on-flower	0																																																										;	-----	indicates	no	time	has	been	spent	on	flower	to	start	
						set	hive-belongs-to	1	
						set	bee-nectar-collected	0	
						set	just-landed?	false	
						set	accept-encounter?	true	
						set	flowers-in-view	flowers	with	[self	!=	[last-flower]	of	myself]	in-cone	view-radius	view-degrees							;	-----	adds	flower	for	initialiation	
						set	last-flower	one-of	flowers																																																															;	-----	chooses	random	flower	as	last-flower	so	variable	isn't	empty	at	start	
						set	chosen-flower	one-of	flowers	with	[self	!=	[last-flower]	of	myself]																																		;	-----	*	chosen-flower	
						set	next-color	[color]	of	chosen-flower	
						set	yellow-search-memory	[10]																																																										;	-----	added	default	number	to	lists	so	variable	isn't	empty	at	start	
						set	blue-search-memory	[10]																																																										;	-----	*	
						set	yellow-handling-memory	[20]																																																										;	-----	*	
						set	blue-handling-memory	[20]																																																										;	-----	*	
						set	yellow-energy-memory	[10]																																																										;	-----	*	
						set	blue-energy-memory	[40]																																																											;	-----	*	
						set	flower-landing-memory	[1]																																																										;	-----	*	
						set	last-blue-time	0																																																										;	-----	*	
						set	last-yellow-time	0																																																										;	-----	*	
						set	sampling?	true																																																										;	-----	indicates	bee	starts	in	sampling	mode	
						set	prey1	blue																																																											;	-----	indicates	bee	considers	blue	as	prey1	to	start	
						set	prey2	yellow																																																										;	-----	indicates	bee	considers	yellow	as	prey2	to	start	
						set	nextprey	"both"																																																											;	-----	indicates	bee	can	visit	both	prey	types	to	start	
						set	PropNecBlue	.5																																																										;	-----	50%	nectar	from	blue	to	start	



34	
	

						set	PropNecYellow	.5																																																										;	-----	50%	nectar	from	yellow	to	start	
						set	blue-accepted	0	
						set	blue-encountered	0	
						set	yellow-accepted	0	
						set	yellow-encountered	0	
						set	yellow-ratio1	1																																																										;	-----	indicates	100%	yellow	encounters	accepted	to	start	
						set	blue-ratio1	1																																																										;	-----	indicates	100%	blue	encounters	accepted	to	start		
				]	
end	
	
;----setup-hives----		
;initializes	color,	shape,	size,	location	...	of	hives	
to	setup-hives																																																									;	-----	not	in	current	use	
		if	number-of-hives	=	1		
		[		
				;initialize	all	values	for	a	single	hive	
				create-hives	1	
				[	
						set	shape	"beehive"	
						set	color	45	
						set	size	10	
						setxy	-50	0	
						set	heading	0	
						set	hive-1	self	
						set	hive-nectar-content	0	
				]	
		]	
			
		if	number-of-hives	=	2	
		[		
				;initialize	all	values	for	hive	1	
				create-hives	1	
				[	
						set	shape	"beehive"	
						set	color	45	
						set	size	10	
						setxy	50	50	
						set	heading	0	
						set	hive-1	self	
						set	hive-nectar-content	0	
				]		
				;initialize	all	values	for	hive	2	
				create-hives	1	
				[	
						set	shape	"beehive"	
						set	color	45	
						set	size	10	
						setxy	-50	-50	
						set	heading	0	
						set	hive-2	self	
						set	hive-nectar-content	0	
				]	
		]	
end	
	
	
	
	
;-------------------------------------------------------go-----------------------------------------------------------------------------------	
;sets	the	simulation	in	motion	
to	go			
		if	show-radius?																																																										;	-----	debug:	redraw	range	of	detect-flowers	each	time	bee	moves	
		[clear-patches	draw-view]	
			
		regenerate-flower-nectar	
		move-bees	
		flowers-track-occupation	
		set-labels	
		tick	
		if	export?	[export-data]																																																										;	-----	for	data	output:	export	data	if	applicable	requirements	met		
end	
	
	
to	draw-view																																																																	;	-----	;	debug	;	draws	the	bee's	view	range	
						ask	bees	[	
								ask	patches	in-cone	view-radius	360	with	[distance	myself	>	(view-radius	-	1)][set	pcolor	green]	
								ask	patches	in-cone	view-radius	view-degrees	with	[distance	myself	>	(1)][set	pcolor	white]]	
end	
	
	
	
to	move-bees																																										;	-----				;	determines	when	bees	execute	certain	behaviors	
		ask	bees		
		[		
				if	on-flower?	=	false	[	bees-search-for-flower	]																																										;	-----	;	while	the	bee	is	not	on	a	flower	collecting	nectar	



35	
	

				if	on-flower?	[	bees-collect-nectar	]																																																						;	-----	;while	the	bee	is	on	a	flower	
			]		
end	
	
	
to	bees-search-for-flower																																																									;	-----																				;	directs	bee	searching	behavior	while	not	on	a	flower	
		set	flowers-in-view	flowers	with	[self	!=	[last-flower]	of	myself]	in-cone	view-radius	view-degrees																						;	-----	updates	detected	flower	agentset	
						if	chosen-flower	=	NOBODY	[	bees-decide-next-flower	]																																																																																														;	-----	;	-----	end	of	"if	chosen-flower	=	NOBODY"		
section	
	
	
						if	any?	flowers-in-view	=	false	or	chosen-flower	=	NOBODY																																		;	-----if	the	bee	sees	no	flowers	it	moves	forward	randomly	
						[	
								forward	1	
								right	random	30	
								left	random	30	
						]	
							
						if	any?	flowers-in-view	and	chosen-flower	!=	NOBODY		;when	the	bee	sees	the	chosen	flower	it	heads	towards	it	
						[	
								set	heading	towards	chosen-flower	
								if	on-flower?	=	false	[	forward	1	]	
						]	
							
						if	any?	flowers-here																																													;	-----	when	the	bee	reaches	the	chosen-flower	it	sets	the	variable	on-flower?	to	true	
						[	
								ifelse	[occupied?]	of	one-of	flowers-here	=	true															;	-----	if	flower	already	occupied,	move	on	
								[forward	1]	
								[	
										ifelse	one-of	flowers-here	=	chosen-flower	[																	;	-----	if	bee	reached	chosen-flower,	start	collect	procedure,	else	continue	towards	chosen-flower	
										set	on-flower?	true	
										forward	0]	
										[forward	1]	
								]	
						]	
end	
	
to	bees-decide-next-flower																																																														;	-----	bee	decides	whether	to	accept	the	next	encounter	
		set	last-color	[color]	of	last-flower	
	
								ifelse	random-flower?	[																																																																														;	-----	if	bee	should	choose	a	random	flower	in	detected	flower	agentset	
												
											if	any?	flowers-in-view	[	
										set	chosen-flower	one-of	flowers-in-view	
											
										if	bee-decision-type	=	"prey-model"	[																																																						;	-----	prey-model:	if	chosen	flower	is	correct	prey	type,	bee	will	accept	encounter	
											
										ifelse	[color]	of	chosen-flower	=	next-color		
													[set	accept-encounter?	true]	
													[set	accept-encounter?	false]	
										if	nextprey	=	"both"	[set	accept-encounter?	true]																																										;	-----	if	bee	is	generalized	/	sampling,	ensures	chosen	flower	will	be	accepted	
											
										]	
											
										if	bee-decision-type	=	"PropNec"	[																			;	-----	PropNec:	if	chosen-flower	color	has	higher	%nectar,	ensure	acceptance.	If	lower	%nectar,	P(visit)	=	
f1/f2	%	chance			
												ifelse	PropNecBlue	>=	PropNecYellow	[	
												ifelse	[color]	of	chosen-flower	=	blue		
												[set	accept-encounter?	true]	
												[	
														ifelse	random-float	1	<	(PropNecYellow	/	PropNecBlue)		
														[set	accept-encounter?	true]	
														[set	accept-encounter?	false]	
												]	
												]	
												[		
												ifelse	[color]	of	chosen-flower	=	yellow		
												[set	accept-encounter?	true]	
												[	
														ifelse	random-float	1	<	(PropNecBlue	/	PropNecYellow)		
														[set	accept-encounter?	true]	
														[set	accept-encounter?	false]	
												]	
												]	
												]	
										if	sampling?	[set	accept-encounter?	true]																																												;	-----	if	bee	in	sampling	mode,	ensures	acceptance	
										]	
								]	
								[	
										set	chosen-flower	min-one-of	flowers-in-view	with																																															;	-----	random-flower?	is	false:	bee	selects	closest	flower	in	detected	
agentset	
										[color	=	[next-color]	of	myself	and	self	!=	[last-flower]	of	myself][distance	myself]	
								]	
			
			



36	
	

end	
	
	
	
to	bees-collect-nectar																																																;	-----		directs	bee	collection	behavior	while	on	a	flower	
	let	this-flower	one-of	flowers-here	
		
		
		bees-determine-memory-values																																								;	-----	calculate	search	times	for	memory	storage	
		update-memory																																																									;	-----	adjust	memory	lists	if	applicable	
		set	NectarGathered	bee-nectar-collected																															;	-----	update	monitor	with	new	nectar	amount	held	
		bee-decide-prey																																																							;	-----	bee	updates	prey	decisions	
		set	seq-update?	true																																																		;	-----	graph:	update	sequence	graph	
			
			
		set	just-landed?	false																																																																		;	-----	ends	one-time-only	portion	of	calculations	when	bee	is	landed	
			
		if	not	accept-encounter?	[set	time-on-flower	[flower-handling-time]	of	this-flower	+	1]					;	-----	if	bee	accepted	encounter,	it	must	wait	at	this	location	for	
(handling-time)	ticks	
		set	time-on-flower	(time-on-flower	+	1)	
		if	this-flower	!=	chosen-flower	[set	error-visit-count	error-visit-count	+	1]													;	-----	debug:	if	this	flower	wasn't	the	chosen-flower,	track	error	
			
		if	last-flower	!=	nobody	[ifelse	[color]	of	last-flower	!=	[color]	of	this-flower		
		[	
				if	time-on-flower	>=	[flower-handling-time]	of	this-flower	+	SwitchCostPenalty										;	-----	switch	cost:	if	last	visited	was	different	color,	increased	bee	
pause	time	required	
				[	
						ask	this-flower	[set	flower-nectar-content	0]																																									;	-----	ask	flower	to	deplete	nectar	held	
								let	this-distance	distance	last-flower	
		set	travel-distances	lput	this-distance	travel-distances																																																						;	-----	update	list	of	distances	travelled	
						set	last-flower	this-flower	
						set	last-flower1	last-flower	
						set	on-flower?	false	
						set	chosen-flower	NOBODY	
						bees-choose-color	
						set	switch-count	switch-count	+	1	
						set	total-count	total-count	+	1	
						set	time-on-flower	0	
						forward	2	
				]	
		]	
		[	
					if	time-on-flower	>=	[flower-handling-time]	of	this-flower																												;	-----	switch	cost:	if	last	visited	was	same	color,	less	pause	time	was	required	
				[	
						ask	this-flower	[set	flower-nectar-content	0]	
								let	this-distance	distance	last-flower	
		set	travel-distances	lput	this-distance	travel-distances	
						set	last-flower	this-flower	
						set	on-flower?	false	
						set	chosen-flower	NOBODY	
						bees-choose-color	
						set	total-count	total-count	+	1	
						set	time-on-flower	0	
						forward	2	
				]	
		]	
		]				
end	
	
to	bees-determine-memory-values	
			let	this-flower	one-of	flowers-here		
		set	this-flower1	this-flower	
	
		set	just-landed?	true																																															;	-----	ensures	certain	tasks	only	occur	once,	at	landing	(adding	to	memory	lists,	etc)	
			
		if	time-on-flower	=	0	and	last-flower	!=	nobody[	
		ifelse	[color]	of	this-flower	=	[color]	of	last-flower																														;	-----	adjusts	color	streak	monitor	variables	
		[set	same-color-inarow	same-color-inarow	+	1][set	same-color-inarow	0]	
			
		if	[color]	of	this-flower	=	yellow	[	
				let	last-search	(ticks	-	last-yellow-time)																																															;	-----	calculates	time	since	last	yellow	flower	visit	
			
				if	handling-time-mode	=	"mutually-exclusive"	[									;	-----	if	mutually-exclusive	prey-model:	subtract	handling	times	of	visited	flowers	of	other	prey	type	
from	search	time	
						let	yellow-temp	flower-landing-memory	
				while	[length	yellow-temp	>	1	=	true]	[	
					ifelse	first	yellow-temp	<	last-yellow-time	[set	yellow-temp	but-first	yellow-temp]																		;	-----	if	timestamp	earlier	than	last-yellow,	remove	from	list	
	[	
							set	last-search	last-search	-	blue-handling-time																																		;	-----	if	timestamp	between	last-yellow	and	current,	subtract	from	search	time,	remove	
from	list	
							set	yellow-temp	but-first	yellow-temp]	
				]	
				]	
				set	yellow-search-memory	lput	last-search	yellow-search-memory																							;	-----	add	search	time	to	yellow	search	memory	
				set	last-yellow-time	(ticks	+	yellow-handling-time)																																		;	-----	set	new	last-yellow-time,	adjust	for	handling	time	



37	
	

				set	yellow-encountered	yellow-encountered	+	1	
				set	yellow-ratio1	yellow-accepted	/	yellow-encountered	
				if	accept-encounter?	=	true	[																																																								;	-----	if	accepting	encounter:	also	add	current	flower's	handling	time	/	energy	to	memory	lists	
				set	flower-landing-memory	lput	ticks	flower-landing-memory	
				set	yellow-energy-memory	lput	[flower-nectar-content]	of	this-flower	yellow-energy-memory	
				set	yellow-handling-memory	lput	[flower-handling-time]	of	this-flower	yellow-handling-memory	
				set	yellow-accepted	yellow-accepted	+	1	
				set	yellow-ratio1	yellow-accepted	/	yellow-encountered																																						;	-----	update	accepted/encountered	ratio	after	memory	update	
				set	bee-nectar-collected	(bee-nectar-collected	+	[flower-nectar-content]	of	this-flower)				;	-----	add	flower's	nectar	content	to	nectar-held	
				]	
		]	
		if	[color]	of	this-flower	=	blue	[																																																		;	-----	repeats	time	since	last	flower	visit	calculations,	but	for	blue	flowers	
				let	last-search	(ticks	-	last-blue-time)	
			if	handling-time-mode	=	"mutually-exclusive"	[											;	-----	if	mutually-exclusive	prey-model:	subtract	handling	times	of	visited	flowers	of	other	prey	type	
from	search	time						
				let	blue-temp	flower-landing-memory	
				while	[length	blue-temp	>	1	=	true]	[	
						ifelse	first	blue-temp	<	last-blue-time	[set	blue-temp	but-first	blue-temp]																		;	-----	if	timestamp	earlier	than	last-blue,	remove	from	list	
	[	
							set	last-search	last-search	-	yellow-handling-time																														;	-----	if	timestamp	between	last-blue	and	current,	subtract	from	search	time,	remove	
from	list	
							set	blue-temp	but-first	blue-temp]	
				]	
			]	
				set	blue-search-memory	lput	last-search	blue-search-memory	
				set	last-blue-time	(ticks	+	blue-handling-time)	
				set	blue-encountered	blue-encountered	+	1	
				set	blue-ratio1	blue-accepted	/	blue-encountered	
				if	accept-encounter?	=	true	[																																																						;	-----	if	accepting	encounter:	also	add	current	flower's	handling	time	/	energy	to	memory	lists	
				set	flower-landing-memory	lput	ticks	flower-landing-memory	
				set	blue-energy-memory	lput	[flower-nectar-content]	of	this-flower	blue-energy-memory	
				set	blue-handling-memory	lput	[flower-handling-time]	of	this-flower	blue-handling-memory	
				set	blue-accepted	blue-accepted	+	1	
				set	blue-ratio1	blue-accepted	/	blue-encountered	
				set	bee-nectar-collected	(bee-nectar-collected	+	[flower-nectar-content]	of	this-flower)				;	-----	add	flower's	nectar	content	to	nectar-held	
				]	
				if	accept-encounter?	=	false	[																																																												;	-----	debug:	blue	flowers	should	always	be	accepted,	if	not	then	error	is	logged	
						ask	this-flower	[set	color	red	set	size	10]	
						export-interface	(word		"blue-not-accepted	"	bee-memory-length	"	-	"	bee-decision-type	"	-	"		random-float	1.0	".png")	
						ask	this-flower	[set	color	blue	set	size	5]			
		]	
		]																																																																					;	-----	end	of	search	time	adjustment	/	memory	list	additions	
		]	
			
end	
	
to	bees-choose-color	
	
		if	nextprey	=	"yellow"	[	
				ifelse	random	100	<	resample-threshold	[set	next-color	yellow][set	next-color	blue]	
		]	
		if	nextprey	=	"blue"	[	
				ifelse	random	100	<	resample-threshold	[set	next-color	blue][set	next-color	yellow]	
		]	
		if	nextprey	=	"both"	[	
				ifelse	random	100	<	50	[set	next-color	blue][set	next-color	yellow]	
		]	
			
			
end	
	
	
	
	
	
	
	
	
	
to	bees-deliver-nectar-to-hive																																																						;	-----	if	nectar-held	reaches	bee-nectar-max,	return	to	hive	and	empty	nectar-held	into	hive	
(inactive)	
		if	any?	hives-here	
		[ask	one-of	hives-here	[	
						set	hive-nectar-content	(hive-nectar-content	+	[bee-nectar-collected]	of	myself)	
						set	NectarGathered	NectarGathered	+	[bee-nectar-collected]	of	myself]	
		set	bee-nectar-collected	0	
		]	
		if	hive-belongs-to	=	1	
		[set	heading	towards	hive-1	if	any?	hives-here	=	false	[forward	1]]	
		if	hive-belongs-to	=	2	
		[set	heading	towards	hive-2	if	any?	hives-here	=	false	[forward	1]]	
end	
	
to	regenerate-flower-nectar																																																						;	-----	if	flower	unoccupied	and	nectar	less	than	max,	refill	nectar	
		ask	flowers	



38	
	

		[	
			if	color	=	blue	[	
			if	flower-nectar-content	<	blue-energy	[set	flower-nectar-content	blue-energy]	
			if	flower-nectar-content	>	blue-energy	[set	flower-nectar-content	blue-energy]	
			set	flower-handling-time		blue-handling-time	
			]	
			if	color	=	yellow	[	
			if	flower-nectar-content	<	yellow-energy	[set	flower-nectar-content		yellow-energy]	
			if	flower-nectar-content	<	yellow-energy	[set	flower-nectar-content		yellow-energy]	
			set	flower-handling-time	yellow-handling-time	
			]		
			]	
end	
	
to	flowers-track-occupation																																																						;	-----	if	any	bees	on	flower,	set	occupied?	true	
		ask	flowers	
		[	
				ifelse	any?	bees-here	
				[set	occupied?	true]	
				[set	occupied?	false]	
		]	
end	
	
	
to	set-labels																																																						;	-----	debug:	change	agent	labels	
		ifelse	bee-nectar-label?	
		[ask	bees	[set	label	precision	bee-nectar-collected	3]]	
		[ask	bees	[set	label	""]]	
		ifelse	flower-nectar-label?	
		[ask	flowers	[set	label	precision	flower-nectar-content	3]]	
		[ask	flowers	[set	label	""]]	
		ifelse	hive-nectar-label?	
		[ask	hives	[set	label	precision	hive-nectar-content	3]]	
		[ask	hives	[set	label	""]]	
		if	bee-label?	[	
				if	bee-label-as	=	"blue-search-times"	[ask	bees	[set	label	blue-search-memory]]	
				if	bee-label-as	=	"yellow-search-times"	[ask	bees	[set	label	yellow-search-memory]]	
		]		
end	
	
	
to	update-memory		;;	--------	memory-length	based	update-memory	-	Active	
		ask	bees	[		;	if	bee's	memory	lists	have	a	new	nectar	added	to	1st	list	index	and	it's	longer	than	allowed,	last	value	removed	(independent	from	each	other)	
						if	length	yellow-energy-memory	>	bee-memory-length	[set	yellow-energy-memory	but-first	yellow-energy-memory]	
						if	length	blue-energy-memory	>	bee-memory-length	[set	blue-energy-memory	but-first	blue-energy-memory]	
						if	length	yellow-handling-memory	>	bee-memory-length	[set	yellow-handling-memory	but-first	yellow-handling-memory]	
						if	length	blue-handling-memory	>	bee-memory-length	[set	blue-handling-memory	but-first	blue-handling-memory]	
						if	length	yellow-search-memory	>	bee-memory-length	[set	yellow-search-memory	but-first	yellow-search-memory]	
						if	length	blue-search-memory	>	bee-memory-length	[set	blue-search-memory	but-first	blue-search-memory]	
						if	length	flower-landing-memory	>	50	[set	flower-landing-memory	but-first	flower-landing-memory]	
							
	
						if	not	empty?	blue-search-memory	[set	blue-search-mean	mean	blue-search-memory]																												;	-----	update	list	averages	for	OFT	threshold	
						if	empty?	yellow-search-memory	=	false	[set	yellow-search-mean	mean	yellow-search-memory]	
						if	empty?	yellow-handling-memory	=	false	[set	yellow-handling-mean	mean	yellow-handling-memory]	
						if	empty?	blue-handling-memory	=	false	[set	blue-handling-mean	mean	blue-handling-memory]	
						if	empty?	yellow-energy-memory	=	false	[set	yellow-energy-mean	mean	yellow-energy-memory]	
						if	empty?	blue-energy-memory	=	false	[set	blue-energy-mean	mean	blue-energy-memory]	
						set	search-threshold	((blue-energy-mean	*	yellow-handling-mean	)/	yellow-energy-mean	)-	blue-handling-mean	
							
						if	sampling?	and	length	blue-energy-memory	>=	bee-memory-length	and	length	yellow-energy-memory	>=	bee-memory-length	[		;	-----	if	both	memory	
lists	full,	end	sampling	mode	
								export-sampling-files	
								set	ticks-at-sampling-end	ticks	
								ifelse	blue-search-mean	>=	search-threshold		
								[set	specialized-at-sampling-end?	false]	
								[set	specialized-at-sampling-end?	true]	
								set	sampling?	false	
								set	threshold-switch-count	0																																																										;	-----	reset	accepted	/	encountered	monitors	now	that	sampling	ended	
								set	total-count	0	
								set	blue-encountered	0	
								set	blue-accepted	0	
								set	yellow-encountered	0	
								set	yellow-accepted	0	
								set	NectarGathered	0	
								ask	bees	[set	bee-nectar-collected	0]	
								]			;	if	bee	visited	enough	flowers	to	fill	it's	list,	no	longer	sampling	
							
						set	search-threshold	((blue-energy-mean	*	yellow-handling-mean	)/	yellow-energy-mean	)-	blue-handling-mean												;	-----	update	search-threshold	
with	new	memory	values	
							
					if	not	empty?	yellow-energy-memory	and	not	empty?	blue-energy-memory	[																																																	;	-----	PropNec:	update	%	values	with	new	memory	
values	
							let	yes	mean	yellow-energy-memory	
							let	bes	mean	blue-energy-memory	



39	
	

						set	PropNecYellow	precision	(yes	/	(yes	+	bes))	3	
						set	PropNecBlue	precision	(bes	/	(yes	+	bes))	3	
						if	seq-update?	=	true	[																																																										;	-----	graph:	update	sequence	graphs	
								ifelse	[color]	of	last-flower	=	yellow	[	
								set	last-visit-yellow	1	
								set	last-visit-blue	0	
								set	seq-update?	false	
						]	
						[	
								set	last-visit-blue	1	
								set	last-visit-yellow	0	
								set	seq-update?	false	
						]			
				]	
		]	
		]			
end	
			
			
to	bee-decide-prey	
		if	bee-decision-type	=	"prey-model"	[					
				let	yem	yellow-energy-mean	
				let	yhm	yellow-handling-mean	
				let	bem	blue-energy-mean	
				let	bhm	blue-handling-mean	
				let	lastprey	nextprey	
				ifelse	(yem	/	yhm)	>	(bem	/	bhm)																																																			;	-----	determine	which	flower	color	is	prey1	(best	choice)	
				[	
						set	prey1	"yellow"																																																		;	-----	if	yellow	is	prey1:	
						set	prey2	"blue"	
						ifelse	yellow-search-mean	>	((yem	*	bhm	/	bem	)	-	yhm)																											;	-----	determine	if	bee	should	generalize	or	specialize	
						[	
								set	nextprey	"both"	
						]	
						[	
								set	nextprey	"yellow"	
						]	
				]		
				[	
						set	prey1	"blue"																																																				;	-----	if	blue	is	prey1:	
						set	prey2	"yellow"	
						ifelse	blue-search-mean	>	((bem	*	yhm	/	yem)	-	bhm)																													;	-----	determine	if	bee	should	generalize	or	specialize	
						[	
								set	nextprey	"both"	
						]	
						[	
								set	nextprey	"blue"	
						]	
				]	
				if	lastprey	!=	nextprey	[set	threshold-switch-count	threshold-switch-count	+	1]																													;	-----	if	generalize/specialize	changed,	increase	threshold-
switch-count	
				set	prey-1	prey1	
				set	next-prey	nextprey		
		]	
		if	bee-decision-type	=	"PropNec"	[																												;	-----	for	PropNec:	determine	which	prey	type	has	higher	%	nectar	in	memory,	set	as	prey1	
				let	yes	mean	yellow-energy-memory	
				let	bes	mean	blue-energy-memory	
				ifelse	bes	>=	yes	[	
						set	prey1	"blue"	
						set	prey2	"yellow"	
				]	
				[	
						set	prey1	"yellow"	
						set	prey2	"blue"	
				]	
				set	prey-1	prey1	
				set	next-prey	"NA"	
		]	
end	
					
			
			
	
	
	
to	setup-export																																																											;	-----	create	export	file	if	one	doesn't	exist	
		set	sampling-file-name	(word	export-file-name	"-sampling.csv")	
		if	file-exists?	sampling-file-name	=	false	[create-sampling-files]	
		if	file-exists?	export-file-name	=	false	[create-files]	
		if	file-exists?	export-file-name2	=	false	[create-files2]	
		if	file-exists?	sampling-file-name	=	false	[create-sampling-files]	
end	
	
	
to	export-data	;	export-specific	'forever	loop'	procedure	



40	
	

	;	if	ticks	=	1	and	current-iteration	=	1	[create-files]	;	create	output	spreadsheet,	add	variable	names	and	definition	once	per	experiment	trial	
		;if	ticks	mod	(sim-iteration-length	-	1)	=	0	[export-files]	;	output	total	variables	at	the	end	of	each	iteration	(total	nectar	gathered	by	hive1	,	etc)	
		if	(ticks	-	ticks-at-sampling-end)	mod	(sim-iteration-length	-	1)	=	0	[export-files]	
end	
	
to	create-files	;	initial	output	headers	and	relevant	variable	settings	at	the	start	of	each	trial	
		let	spacer	","	
		file-open	export-file-name	
		file-print(list	spacer	"Output	name:	"	spacer	export-file-name	spacer	"Date+Time	Started:	"	spacer	date-and-time	spacer)	
				file-print(list	spacer	"NectarGathered"	spacer	"total-count"	spacer	"bee-decision-type"	spacer	"threshold-switch-count"	spacer		
						"yellow-energy"	spacer	"blue-energy"	spacer	"yellow-handling-time"	spacer	"blue-handling-time"	spacer	"yellow-flower-count"	spacer		
						"blue-flower-count"	spacer	"bee-memory-length"	spacer	"yellow-encountered"	spacer	"yellow-accepted"	spacer	"blue-encountered"	spacer		
						"blue-accepted"	spacer	"handling-time-mode"	spacer	"search-threshold"	spacer	"specialized-at-sampling-end?"	spacer	"world-name"	spacer		
						"landscapeID"	spacer	"ticks"	spacer	"ticks-at-sampling-end"	spacer)	
		file-close	
end	
	
to	create-files2	;	initial	output	headers	and	relevant	variable	settings	at	the	start	of	each	trial	
		let	spacer	","	
		file-open	export-file-name2	
		file-print(list	spacer	"Output	name:	"	spacer	export-file-name	spacer	"Date+Time	Started:	"	spacer	date-and-time	spacer)	
		file-print(list	spacer	"blue-handling-time:	"	spacer	blue-handling-time	spacer	"yellow-handling-time:	"	spacer		
				yellow-handling-time	spacer	"blue-energy:	"	spacer	blue-energy	spacer	"yellow-energy:	"	spacer		
				yellow-energy	"yellow-flower-count:	"	spacer	yellow-flower-count	spacer	"bee-memory-length:	"	spacer	bee-memory-length	spacer)	
		file-print(list	spacer	"Blue-flower-count"	spacer	"Blue-search-mean"	spacer	"inequality"	spacer	)	
		file-close	
end	
	
	
	
	
to	export-files2	
		let	spacer	","	
		let	inequality	(((blue-energy-mean	*	yellow-handling-mean	)/	yellow-energy-mean	)-	blue-handling-mean)	
		file-open	export-file-name2	
		file-print(list	spacer	blue-flower-count	spacer	blue-search-mean	spacer	inequality	spacer	)	
file-close	
end	
	
to	export-files																																																										;	-----	at	trial	end,	export	listed	variables	into	a	new	spreadsheet	row,	set	next-run?	true		
		if	next-run?	!=	true	[	
		let	spacer	","	
		let	ActualPVL	(total-count	-	switch-count)	/		(total-count	+	1)	
		let	MeanTD	mean	travel-distances	
		ifelse	[sampling?]	of	bees	=	false	[file-open	(word	"sampling-"	export-file-name)][file-open	export-file-name]	
		file-print(list	spacer	NectarGathered	spacer	total-count	spacer	bee-decision-type	spacer	threshold-switch-count	spacer		
				yellow-energy	spacer	blue-energy	spacer	yellow-handling-time	spacer	blue-handling-time	spacer	yellow-flower-count	spacer		
				blue-flower-count	spacer	bee-memory-length	spacer	yellow-encountered	spacer	yellow-accepted	spacer	blue-encountered	spacer	
					blue-accepted	spacer	handling-time-mode	spacer	search-threshold	spacer	specialized-at-sampling-end?	spacer		
					world-name	spacer	landscapeID	spacer	ticks	spacer	ticks-at-sampling-end	spacer)	
		file-close	
		export-interface	(word		"results	"	bee-memory-length	"	-	"	bee-decision-type	"	-	"		random-float	1.0	".png")	
		if	export-memory-lists?	=	true	[export-lists]	
		set	next-run?	true	
		]	
end	
	
to	export-lists																																																										;	-----	export	entire	memory	lists	in	seperate	spreadsheet,	if	needed	
		if	next-run?	!=	true	[	
		let	spacer	","	
		file-open	(word	export-file-name	"-lists.csv")	
		file-print	(list	spacer	bee-decision-type	spacer	bee-memory-length	spacer	yellow-handling-time	spacer		
				landscapeID	spacer	world-name	spacer	([blue-search-memory]	of	bees)	spacer)	
			file-close	
		]	
end	
	
to	create-sampling-files	
		let	spacer	","	
		file-open	sampling-file-name	
end					
					
	
to	export-sampling-files																																																										;	-----	export	variables	at	sampling	end	to	seperate	spreadsheet,	if	needed	
		if	next-run?	!=	true	[	
		let	spacer	","	
		file-open	sampling-file-name	
		file-print(list	spacer	sampling?	spacer	bee-memory-length	spacer	bee-decision-type	spacer	NectarGathered	spacer	total-count	spacer		
				yellow-encountered	spacer	yellow-accepted	spacer	blue-encountered	spacer	blue-accepted	spacer	threshold-switch-count	spacer		
				yellow-energy-mean	spacer	blue-energy-mean	spacer	yellow-search-mean	spacer	blue-search-mean	spacer	search-threshold	spacer	specialized?	spacer	
landscapeID	spacer	world-name	spacer	)	
		]	
end	
	
	



41	
	

to	update-label	;	change	the	bee's	label	during	the	simulation	with	the	drop-down	menu	'bee-label-as'	,	allows	real-time	diagnosing	
		ifelse	bee-label?	[	
				if	bee-label-as	=	"blue-search-times"	[ask	bees	[set	label	blue-search-memory]]	
				if	bee-label-as	=	"yellow-search-times"	[ask	bees	[set	label	yellow-search-memory]]	
		]	
		[	
				ask	bees	[	set	label	""]	
		]	
	
end	

	


