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Abstract

This dissertation proposes a vibration-based approach to detect and monitor
structural damage by tracking the instantaneous modal parameters. A change in the
instantaneous modal parameters indicates change in the structural health condition. In
contrast to many existing structural health monitoring schemes, the proposed approach is
less model dependent and works well for both sudden and evolving damage, general loading
conditions and complex structures.

The instantaneous modal parameters, including modal frequency, mode shape vector
and modal damping ratio, are introduced as a bridge between the system properties and time
varying vibration modes. The theoretical background of the time-varying vibration modes is
developed. It has been shown that for slowly time-varying systems such modes exist and the
instantaneous modal parameters have a clear physical interpretation and can be identified
from free and forced vibration responses.

A set of known techniques are used in an innovative way to identify the
instantaneous modal parameters. Applicability of the identification techniques depends on
the nature and availability of measurement data. Wavelet ridge method is used to identify
the instantaneous modal frequencies and normalized instantaneous mode shape vectors from
free vibration data. Wavelet packet sifting technique in conjunction with Hilbert transform
and confidence index is proposed to identify the normalized instantaneous mode shape from
both free and forced vibration data. Time-varying Kalman filter is integrated with the
wavelet packet sifting technique to identify the instantaneous modal frequencies and the
instantaneous modal damping ratios from free and forced vibration data.

The proposed approach has been validated using both simulation and experimental
data. The simulation data is obtained from a multi-degree-of-freedom system with time
varying stiffness under different loading conditions. Experimental data include both impact
testing data from the ASCE benchmark study and shaking-table test data of a full-size two-
story wooden building structure, conducted at DPRI, Kyoto University, Japan. It has been
shown that the proposed approach can successfully detect and monitor damage and,

therefore, has great potential for real applications.
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Chapter 1

INTRODUCTION

1.1  Concept of Structural Health Monitoring

and Damage Identification

Damage is often observed in many engineering systems during their service life. It may be
caused by factors such as material defects, cumulative crack growth, wear-and-tear of
working parts, impact by a foreign object or excessive load. To ensure high system
performance, structural safety and integrity, and low maintenance cost, structural health
monitoring (SHM) has emerged as a reliable, efficient and economical approach to monitor
the system performance, detect damage, asses/diagnose the structural health condition, and
make corresponding maintenance decisions. An effective SHM process may detect structural
damage in its early stage, well before a catastrophic structural failure, provide valuable
information for the post-event damage assessment, and help to develop a condition based
maintenance procedure. As results, the structural performance and safety is significantly
improved. Recent advances and research activities in SHM can be found in the conference
proceedings edited by Chang (1999, 2001, 2003, 2005).

A typical SHM system consists of two major components: a network of sensors for
measurement of response data, and data analysis algorithms for interpretation of the
measurements in terms of the structural physical condition. The algorithms and techniques
used for information processing to provide useful and simple measures of the structure
health condition are seen as one of the main problems in SHM, as mentioned in the

motivation of ASCE SHM benchmark study (Johnson et al., 2004).



The key part of SHM is damage identification. Damage can be defined as changes in
the structure that adversely affect its performance. Rytter (1993) introduced four levels of
damage identification, as follows:

= Level 1: Determine if damage is present in the structure

» Level 2: Locate damage

= Level 3: Quantify the severity of damage

= Level 4: Predict the remaining service life of the structure

Damage identification includes local and global methods. Local methods, often
known under the name of Non-Destructive Evaluation (NDE), include visual inspection,
thermography, stress waves, magnetic field analysis, ultrasonic inspection, radiography and
edyy-current methods (Hellier, 2001). Recently, a new trend in NDE has emerged. It
consists in utilization of structurally integrated sensors to monitor the structural health
condition in real time. A few examples of such systems are: ultrasonic transducers
permanently attached to the structures (Giurgiutiu and Cuc, 2005), fiber optic sensor arrays
embedded in composite structures (Zhou et al., 2002), sensing and actuation piezoelectric
patches attached to the structure (Park et al, 2003.) or hybrid monitoring systems such as
piezoelectric actuators together with fiber optic sensors (Qing et al., 2005). Although local
methods can localize damage with a high precision, they require to know in advance the
vicinity of the damage and to have access to the part of the structure to be inspected.

Global damage identification methods can overcome the shortcomings mentioned
above. They are developed on the premise that commonly measured dynamic quantities such
as displacement/velocity/acceleration time-histories and global vibration characteristics
derived from these measurements are functions of the physical properties of the structure.
However, the global nature of these methods may introduce drawbacks such as insensitivity
to small local damage and poor damage localization and quantification. It is assumed that
changes in the physical properties, such as reductions in stiffness resulting from the onset of
cracks or loosening of a connection, will cause defectable changes in the vibration response
of the structures. A comprehensive literature review of global damage identification

methods based on vibration measurements can be found in Doebling et al. (1996)



Global damage identification can be seen either as an inverse problem or a pattern
recognition problem. In the first approach, damage is regarded as a change of system
parameters which are identified from measurement data. The second approach is based on
the idea that there are damage sensitive features in measurement data which can be
associated to different structural health conditions. The inverse problem approach
encompasses modal based techniques, model updating techniques, and tracking methods

Modal-based techniques employ the modal information identified from vibration
data. Using two sets of measurements recorded before and after damage, the modal
parameters of the system, considered linear time-invariant over each record period, can be
thus identified by well established techniques, such as experimental modal analysis
(Allemang and Brown, 2002). A change in physical parameters of a structure results in
change of its modal parameters; therefore, any change in the modal parameters (natural
frequency, damping ratio, mode shape vector) or related measures (mode shape curvature or
identified flexibility matrix) may indicate damage development in the structure, and the
structural health condition. They address, mainly, damage identification level 1. When a
finite element model is available, using the sensitivity of modal parameters to the change in
the structural parameters, damage identification levels 2 and 3 can also be addressed. For a
comprehensive survey of modal-based techniques the reader is referred to Doebling et al.,
(1998).

The model updating techniques consist in choosing the parameters of an analytical
model to minimize an objective function based on the error between measurement data and
those values predicted by the analytical model. A review of the literature published before
1993 can be found in Mottershead and Friswell (1993) and the more recent advances are
presented in the special issue on model updating of the journal “Mechanical Systems and
Signal Processing” (Mottershead and Friswell, 1998). When detailed physical models, such
as finite element (FE) models are used, the damage location and quantification can be done
with a high accuracy. The technique is applied off line as a batch process and the system is

considered time-invariant during data recording.



Tracking methods, which employ simplified models and a reduced number of
parameters to be updated, have better chances for on line implementation. They include
techniques such as Kalman filter (Hoshiya and Saito, 1984; Shinozuka and Ghanem, 1995;
Maruyama and Hoshiya, 2001), Bayesian model updating algorithms (Ching et al., 2004),
particle filter (Yoshida and Sato, 2002; Masuda et al., 2002 ), or techniques based on
adaptive tracking (Yang and Lin, 2005; Demetriou 2000, 2005). Since simplified physical
models are used, their performance in damage localization and quantification would be
moderate.

The pattern recognition approach associates different health conditions of the
structure with damage features extracted from measurement data. The algorithms which
extract the damage feature can work either in supervised or unsupervised learning models.
Supervised learning applies to level 2 and 3 in damage identification. It deals with data from
both damaged and undamaged structure and includes classification techniques (Lynch, 2004;
Trendafilova and Hetlen, 2003) and regression analysis (Mahmoud and Abu Kiefa, 1999).
Unsupervised learning is used when data from structure with different damage conditions is
not available for comparison. It uses tools such as novelty detection (Worden, 1997, Masri et
al. 1996), multivariate probability density function estimation, statistical process control
(Fugate et al., 2000; Worden et. al, 2002) and addresses level 1 in damage identification.
The SHM research group at the Los Alamos National Laboratory (LANL) (Farrar et al.,
2000; Farrar and Sohn, 2005), describes SHM process as a problem in statistical pattern
recognition, with four stages: (i) operational evaluation; (ii) data acquisition and cleansing;
(ii1) feature selection and data compression; and (iv) statistical model development for
feature discrimination.

While a significant amount of research has been conducted during the last 30 years
in the area of SHM and damage detection, applying in practice of SHM algorithms is still a
challenging task due to measurement noise, nonstationarity of data, uncertainties in the
parameters, modeling errors, time-varying nature of a system, non-linearities in the system,
or inexistence of a detailed physical model. In order to address issues of implementation, a

benchmark problem was proposed by the ASCE Task Group on Health Monitoring.



Different methods, as mentioned, are investigated in this context and the results are
presented in a special issue of J. Eng. Mech. 2004 (Bernal, D., Beck, J., 2004).

As can be seen various damage detection schemes have been developed to extract
information of structural health condition from appropriate vibration measurement data.
However, the problem of health monitoring remains challenging when damage state evolves
during the period when the data are recorded and a detailed physical model is not available.
The aim of this study is to propose global vibration-based damage identification techniques,

for structures with evolving damage, using time-varying (instantaneous) modal parameters.

1.2  Wavelet Analysis in Damage Detection

All SHM approaches require signal processing (SP) techniques to extract the relevant
information from measurement data. The SP techniques span from the well-known Fourier
Transform to newly developed wavelet transform (WT) or Hilbert-Huang transform. During
the last decade, given its capabilities for analyzing the non-stationary response of a damaged
system, time-frequency localization and sensitivity to abrupt changes in a signal, WT with
its different forms: discrete wavelet transform (DWT), continuous wavelet transform (CWT)
and wavelet packet (WP) decomposition, has been employed in many of damage
identification methods mentioned above. In modal-based methods, CWT was used to
separate the vibration modes and enhance the quality of the modal information obtained
from response signals. Many pattern recognition-based techniques employ wavelet
transform to define damage sensitive features. Sensitivity of wavelet transform to abrupt
changes in the signal is exploited by unsupervised damage detection based on
anomaly/novelty detection.

In order to give a flavor of the effervescent research going on in this field a brief
overview of the applications of wavelet theory to damage detection and SHM is given. A
comprehensive literature survey of the earlier applications is referred to Staszewski (1998).

First applications were mainly for rotating machinery where wavelet analysis of the
response data showed certain patterns when a machine runs at a constant operation speed

and a change in the wavelet pattern may indicate structural damage (Staszewski and



Tomlinson, 1994; Wang and McFadden, 1995). Wavelet transform was proposed as
preprocessing tool to supply the input vectors in a neural network to identify the fault in
rotating machinery (Paya, et al., 1997 ) and gearboxes (Staszewski and Worden, 1997).

Sensitivity of the energy of wavelet packet transform components to damage was
proposed to locate damage in a structure ( Law et al., 2005) . The method was validated on
experimental data from a steel beam. The energy of wavelet packet transform of the
response is used as input into a neural network for damage assessment, including identifying
damage occurrence, location, and severity (Sun and Chang, 2002). The network is trained on
data from healthy and damaged structure under impact load. The same authors proposed a
damage detection method based on unsupervised learning, where damage indicators,
calculated using the energy of the wavelet packet transform of the response covariance, are
used in conjunction with statistical process control techniques. The method has been
illustrated for simulation data of ASCE benchmark study.

Sensitivity of the wavelet transform to the singularities in the response data of a
structure with damage has been exploited by different researchers. Spikes in DWT details of
the response signals were utilized to identify and locate sudden damage in mechanical
systems and civil structures (Corbin et al, 2000; Hera and Hou, 2001, 2004). The sudden
change in the spatial variation of the wavelet coefficients was proposed to identify and
locate damage in a beam with a crack under static and dynamic loading conditions (Wang et
Deng, 1999). Lipschitz exponent estimated from the CWT of the fundamental mode shape
of a beam was used to localize and asses the damage extend by Hong et al. (2002).
Singularity analysis through the CWT is applied to bearing defect diagnosis in Sun and Tang
(2002). A drop in Holder (Lipschitz) exponent calculated by CWT is proposed as damage
feature for those types of damage which introduces discontinuity in the signals (Robertson et
al., 2003).

Wavelet-based system identification techniques were also developed to identify
modal parameters such as natural frequencies, damping ratios and mode shape vectors.
Damping identification by wavelet modulus cross section and ridge methods was proposed

by Staszewski (1997). Damping identification and its application to civil engineering



building were investigated by Lamarque et al. (2000) and Hans et al. (2000) using a method
similar to the conventional logarithmic decrement technique. The cross section method was
used by Ruzzene et al. (1997) to identify the natural frequencies and damping ratios using
acceleration measurement data of a real bridge. Later, the method was also extended to the
mode shape estimation (Piombo et al., 2000). The impulse response of a time invariant
system is identified by a DWT deconvolution in (Robertson et al., 1998). The nonlinear
system identification by WT has been addressed by Staszewski (1997), applying the ridge
method to the impulse response to identify the backbone curve.

Although promising results were obtained, most the above-mentioned wavelet-based
system identification methods have a few drawbacks: first, most of them are applied only to
a time invariant system; secondly, those techniques applied to nonlinear systems require the
impulse responses. These facts limit the application of wavelet theory for detection of
cumulative damage for systems in use or subjected to environmental excitation. An attempt
to solve this problem was made by Ghanem and Romeo (2000), who proposed to identify
the physical parameters of a linear time varying dynamic systems by a wavelet-Galerkin
approach. The method has been applied successfully to SDOF and 2DOF systems subjected
to a harmonic excitation and it requires the knowledge of system dynamics equation.
However, for a large-scale system with a big number of physical parameters prone to
damage, or the case when a dynamical model is not available, the method may not be
applicable. As an innovative approach in the application of wavelet theory to system
identification, this dissertation proposes wavelet-based identification techniques for
instantaneous modal parameters of systems with progressive or sudden damage and
subjected to stationary and non-stationary excitations.

Practical aspects related to the applications of WT for analysis of civil engineering
structures are discussed in (Kijewski and Kareem, 2002, 2003). A comparative study of
wavelet packet sifting process, CWT and empirical mode decomposition on their application
for structural health monitoring using the impulse responses, has been conducted by Hera et

al. (2004).



1.3 Motivation and Objective

There are many situations in the engineering practice when damage occurs and evolves
while the structure is in use or is subjected to environmental excitations, for example newly
manufactured mechanical systems at the beginning part of their service life when the failure
rate is high, or civil structures subjected to severe earthquake events. In addition, in many
cases only limited structural information is available and building a physical model of the
structure is a very challenging task.

Current global damage identification techniques based on vibration measurements
have their limitations due to the assumption of time invariance while data is collected, the
availability of the impulse responses, or the requirement for a physical model of the
structure. For example, the modal-based approach is constrained to a time-invariant system;
therefore damage should not occur when data is collected. The damage detection methods
based on parameter updating require the existence of a physical model, but in many cases
such a model is not available. The tracking methods, also, require a physical model of the
structures and a limited number of parameters to be estimated. The unavailability of a
detailed physical model and/or dynamic equations, combined with the lack of data from the
same or similar structure with the same damage condition and subjected to the same
excitation, excludes the use of pattern recognition algorithms which are based on supervised
learning. The techniques based on regression analysis, neural network and novelty/anomaly
detection can be still applied; however, since they are used in unsupervised learning mode,
the obtained results may lack a physical meaning.

All of these given, the objective of this study is to develop global health monitoring
techniques which use the vibration response data and are less model dependant, for
structures with evolving damage while they are in use.

To achieve this goal, the damage identification problem is placed in the following
framework. Starting from the known fact that change in physical parameters of a structure
causes change in the values of modal parameters, damage identification is seen as an inverse
problem, where change in the instantaneous modal parameters is an indication of change in

the structural health condition. The instantaneous modal parameters are extracted from



vibration responses and should coincide with classical modal parameters in the case of a
time-invariant structure. It is assumed that:

1. a structure with gradual stiffness deterioration can be approximately treated as a
linear slowly time-varying system and a structure with sudden damage is treated
as a linear system before and after the damage.

2. the structure considered is lightly damped and has well separated vibration
modes

In addressing this problem, first we need to develop the theoretical basis for time-
varying vibration modes. The concept of instantaneous frequency has been introduced
before as a characteristic of a signal (Boashash, 1992). It has also been used for
identification of nonlinear systems (Staszewski, 1997) and damage detection (Hera et al.,
2004), but the connection between the system physical parameters and instantaneous
frequency of the impulse response was only intuitive. Questions such as: what are the time-
varying vibration modes, when these modes exist, how to define mathematically the
instantaneous modal parameters and how to identify them from forced vibration responses,
have not found an answer till date. In this dissertation, theoretical basis of time-varying
vibration modes and their parameters is developed to address these concerns.

Secondly, we propose identification techniques of instantaneous modal parameters
for real applications where the excitation may be nonstationary and problems related to
observability and measurement noise may arise. The robustness of these techniques in the
presence of measurement noise, incomplete measurements and system nonlinearities will be
addressed. The effectiveness of the SHM based on instantaneous modal parameters is
illustrated via both simulation and experimental data.

Although, some of the examples in the present study originate from the interest in the
health monitoring of civil structures subjected to earthquake excitation, the time varying
modal analysis and most of the discussion and results presented apply for the general field of

structural dynamics.



1.4 Dissertation Overview

The remainder of the dissertation is organized as follows:

Chapter 2 provides the relevant mathematical background for this study. It includes
concepts as time-varying system and dynamic eigenvalue problem, modal analysis, wavelet
theory, and Hilbert Transform.

Chapter 3 develops the theoretical basis for time-varying vibration modes and
instantaneous modal parameters. Concretely, it is shown that a modal decomposition for the
2" order linear time-varying systems is possible by solving the dynamic eigenvalue problem
associated to the corresponding 1*-order system. Then, the discussion focused on a subclass
of time varying systems, which are called slowly-time varying systems. These systems have
real time-varying vibration mode characterized by modal parameters with physical
significance, i.e. positive instantaneous frequency and real instantaneous mode shapes. The
chapter ends with an example which illustrates some of the concepts introduced in this
chapter.

Chapter 4 presents identification methods for instantaneous modal frequency and
normalized instantaneous mode shape from free vibration data. Two approaches are
proposed for identification: the CWT-ridge method and wavelet packet sifting technique in
conjunction with Hilbert transform. First, modal responses are extracted from the measured
response, and then the instantaneous parameters are identified. The approach is tested on
simulation data from a 3DOF with progressive stiffness degradation and nonzero initial
velocity. The identified results are compared to those from solving the dynamic eigen-value
problem, and they are in good agreement.

In Chapter 5, the normalized instantaneous mode shape is identified from the forced
vibration response by using a wavelet packet sifting process. A confidence index, calculated
using the instantaneous frequency of the sifted signals, is introduced to validate the
identified results. It is demonstrated that the identified normalized instantaneous mode
shapes in conjunction with the corresponding confidence indices can be effectively used to
monitor damage development in a structure. The effectiveness of the proposed approach is

illustrated for a three-degree-of-freedom structure subjected to a base excitation. Two
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damage scenarios, sudden stiffness loss and progressive stiffness degradation, and different
base excitations including three real earthquake signals, a random signal and few harmonic
signals are considered. Issues related to robustness of the method in the presence of
measurement noise and sensitivity to damage severity are discussed.

In Chapter 6, a time-varying Kalman filter technique is integrated with the wavelet
approach to identify the instantaneous natural frequencies and the instantaneous modal
damping ratios. The physical significance of the sifted components by wavelet packet sifting
technique is assured by introducing a new sifting criterion based on the confidence index.
The potential of the proposed approach for SHM is demonstrated by a simulation study for a
two-degree-of-freedom system with progressive damage and subjected to two sets of
excitation: one is a sample generated from a filtered Gaussian discrete process and the other
is a true ground acceleration measurement. The effectiveness of the method in the presence
of measurement noise is also addressed.

Chapter 7 presents a preliminary study on the meaning of instantaneous modal
parameters and their use for SHM of systems with nonlinear dynamic behavior. A two-
degree-of-freedom system with bilinear restoring forces, subjected to both impulse and
harmonic excitation, is considered. The instantaneous modal parameters are identified from
the simulated vibration responses by CWT in conjunction with the Hilbert Transform. It is
illustrated that change in the identified instantaneous modal parameters may have different
patterns for the linear system, the system with slow stiffness degradation, and the system
with bilinear restoring forces. The results may help to distinguish change in the
instantaneous modal parameters caused by structural damage or by structural nonlinear
behavior and therefore to improve the accuracy of structural health monitoring.

Chapter 8 evaluates the performance of the proposed approaches for instantaneous
modal parameter identification and SHM using the data from two sets of experiments. The
first set refers to ASCE- SHM benchmark studies, Phase2 of the experiments. The response
data of a hammer test before and after damage is used in analysis. The structure, which is
time invariant during tests, is considered a particular case of a time varying system. Another

experimental data are from a shaking table test of a full-size two-story Japanese wooden
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building structure. The structure was excited by an earthquake ground motion scaled at
several target intensity levels. Damages to various extends were observed during the tests.
The integrated approach consisting in Kalman filter and wavelet packet sifting process is
used to estimate the instantaneous natural frequencies; wavelet packet decomposition in
conjunction with the confidence index is employed to identify the normalized instantaneous
mode shape.

Chapter 9 summarizes the conclusions and contributions made in the dissertation and

suggests some topics for the further research.
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Chapter 2

MATHEMATICAL BACKGROUND

In this dissertation, we intend to develop the theoretical basis for time varying vibration
modes and to propose a SHM approach based on instantaneous modal parameters. The
required mathematical background includes concepts such as time-varying system, modal
analysis, wavelet analysis, and Hilbert Transform. The concept of time varying system is
used to describe mathematically a system with damage. Concepts from traditional modal
analysis, such as vibration mode, modal frequency and mode shape, are extended to describe
the time varying nature of a system with damage. Wavelet analysis is used for graphical
illustration of time-frequency nature of the response data and identification of instantaneous
modal parameters. Hilbert Transform is employed for explanation of the concept and
identification of instantaneous modal frequency. All those relevant mathematical aspects

are presented in this Chapter.

2.1 Linear Time Varying Systems

In this dissertation, the dynamics of a structure with damage is described by a set of second
order differential equations with time varying coefficients. In the state space formulation
such a system of equations is transformed into a first-order differential system whose state
space vector is built by concatenation of the displacement and velocity vectors. Motivated
by this formulation, the theoretical background of the first-order linear time varying systems

is presented.
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2.1.1 System Response Using the State Transition Matrix’

A linear time varying (LTV) system is described by the following state space equation:
y(0) = AQ@)y () + B (2) Q.1.1)
where y(t) is the nx1 state space vector, A(t) is the nxn system matrix, B(t) is the nx p
input matrix and f(t) is the px1 input/force vector. It is assumed that the solution of this
system 1is unique for a given initial condition y(ty) and any input f(t). A sufficient condition
which entitles this assumption is that A(t) is a continuous function of time. To solve the
system (2.1. 1) the definitions of the fundamental matrix and the state transition matrix are
first introduced.
The fundamental matrix Y(t) of the system is a n x n matrix whose columns are a set
of n linearly independent solutions of the homogeneous system (2.1. 2 ). It satisfies the

homogeneous system equation, i.e. Y(¢) = A(¢)Y(¢) and has the form in eq. (2.1. 3 ).
y(@©) =A@)y(@®) 2.1.2)

YO =[y,(®), y,(®),,y, 0] 2.1.3)

The state transition matrix of the system, ®(¢,¢,), 1s a matrix-valued function of t

and to, which is the solution of the eq. (2.1.4 ) and is connected with any fundamental matrix
by expression (2.1.5).

0

E‘D(l‘,fo)=A(l‘)‘D(f,fo), D(¢),1)) =1 (2.1.4)

@(t,1,) = Y)Y ' (t,) 2.15)
A few important properties of the state transition matrix, satisfied for any ¢,¢,,7, are as
follows:
®(t,t)=1;
O(t,7) =D(t,t,)D(¢,,7)
Q' (t,0)=[YOY ' ()] =Y@O)Y ' (¢) = ®(z,1)

(2.1.6)

' The material presented in sections 2.1.1 and 2.1.2.1 is a well established theory which can be found in
textbook on Linear Systems such as Zadeh and Desoer (1963) or Chen (1999).
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Given the transition matrix ®(z,7), the initial state x¢ at 7y and the input f(t) applied for

t 2 t,, the general solution of system (2.1. 1 ) can be expressed as shown in (2.1. 7 ):

¥(t) = ®(1,1,)y(,) + [ @, DB (r)d 7 =

, 2.1.7)
= ®(1, to)[y(to) +| (I)(to,r)B(r)f(r)dr} t> 1,

The response of the system has two components: the first term is the free response for zero
input and the second term is the forced response. The zero-input response is caused by the
nonzero initial values of the states. The second term is the solution for an input force vector

f(t) and zero initial conditions. The state transition matrix ®(z,7,) can be seen as a linear
transformation which maps the state yy at to into the state y(t) at #. Each component ®, (z,7,)

of the state transition matrix, can by interpreted as the response of state i, at time #, due to a
unity value of state j and zero value of all other states at time 7y when no input/excitation is

applied to the system.

2.1.2 Modal Decomposition

In the previous section, the system response has been formulated in terms of state transition
matrix. It is well known that in the case of time invariant systems, the response can be
expressed as a sum of elementary modal responses, which are obtained by solving the
algebraic eigenvalue problem for the system matrix A. Such a formulation is very useful for
a vibration system, where the eigenvectors and eigenvalues are associated with physical
properties of the system. Modal decomposition for time varying systems has been proposed
before; however, according to the author knowledge, it has not yet found a place in the
textbooks. Since it can be seen as an extension of the modal decomposition of linear time
invariant (LTI) systems, for a better understanding, a summary of modal decomposition for

the time invariant case is first presented.
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2.1.2.1 Modal Decomposition of Linear Time Invariant Systems

For a time invariant system, with homogeneous equation (2.1. 8 ), the state transition matrix
is given by expression in eq. (2.1. 9).

y(#) = Ay(?) (2.1.8)

D(t,1,) = D(t —t,) = exp(A(t —1,)) 2.1.9)

O (2)

If there exists an algebraic transformation U = [u u u(")] which diagonalizes

matrix A, i.e. U'AU=A where A =diag(4,), the state transition matrix can be

expressed as in eq. (2.1. 10 ) and the homogeneous response can be written as a weighted

sum of system modes as shown in eq. (2.1. 11).

@t —1,) = Uexp(A(t —1,) U (2.1.10)

y(£) = ®(t —1,)y(t,) = Uexp(A(t —1,))Uy, = iexpmi C—t)uv7y, (2.1.11)

In eq. (2.1. 11), the notation [v?",v?,...v”]" =U™" has been introduced.
A, and u” are known as the i" eigenvalue and the i eigenvector of the system

matrix A, and they can be found by solving algebraic eigenvalue problem defined as
follows:
A is said to be an eigenvalue of A and u is the associate eigenvector of the matrix
A, if for the nxn matrix A, there exists a scalar 4 and a nonzero vector u such that they
satisfy the following condition:
Au=Au (2.1.12)
The eigenvalues are calculated as the solution of the characteristic equation:
det(A — AI)=0. If the system matrix A has real coefficients, as it is the case in the present
study, its eigenvalues are either real or they appear in complex conjugate pairs. The
eigenvalues are important in assessing the stability of a dynamic system. A linear system is
asymptotically stable if and only if all of its eigenvalues have a negative real part. If the
eigenvalues of a matrix are distinct, the corresponding eigenvectors are linear independent

and the transformation matrix U is nonsingular. A system with repeated eigenvalues may not
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necessarily be reduced to a diagonal form; however, they can be represented as a Jordan
canonical form, which has the eigenvalues of A on the main diagonal and zero or one on the
next diagonal. Each Jordan block represents a set of coupled modes/differential equations.
The eigenvectors and eigenvalues have a clear physical meaning. In the case of a
mechanical/structural system they are closely related to the mode-shapes, natural

frequencies and modal damping ratios of the system.

2.1.2.2 Dynamic Eigenvalue Problem

Modal decomposition of time-varying systems has been a topic of interest during the last 25
years. The stability of such systems has been of crucial interest for control community (Wu,
1974, 1980). Some other studies have been also motivated by analysis of electrical and
electronic circuits (Kloet, 2002). Applications to mechanical/civil engineering systems are
not known to the author.

In contrast to the linear time invariant system, whose stability can be determined by
the placement of eigenvalues of system matrix on the complex plane, it has been shown that
the stability or instability of a time varying system described by eq. (2.1. 1 ) cannot be
determined from the algebraic eigenvalues of the matrix A(t) with frozen ¢ (Wu, 1974).

In order to asses the stability of a time varying system by a straightforward criterion,
a new concept of dynamic eigenvalue and eigenvector, called dynamic eigenpair’, has been
defined by (Wu, 1980) as follows:

For a given nxn matrix A(t), if there exists a scalar A(f) and a nonzero
differentiable vector u(t) such that they satisty the following condition:
A(l)U(Z) = /1(1‘)“(1) + fl(f), A4 (21 13 )

then A(¢) is said to be a dynamic eigenvalue of A(t) associated to the eigenvector u(t). >

* In the literature the dynamic eigenvalues/eigenvectors as defined in eq. (2.1.13) have been cited as:
“eigenvalues”/ “eigenvectors” (Wu, 1980), extended eigenvalues/ extended eigenvectors or x-eigenvalues/x-
eigenvalues (Wu, 1984). The name of dynamic eigenvalues/dynamic eigenvectors can be found,
predominantly, in the work of the researchers at Delft University of Technology ( Kloet, 2000).
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The dynamic eigenpair (A(¢),u(t)) reduces to the algebraic one, calculated for

frozen time, when the eigenvectors of A(t) are constant. A few properties specific to the
algebraic eigenvalue problem are preserved: (1) dynamic eigenvalues are invariant under an
algebraic transformation, (2) there exists an algebraic transformation which will transform
A(t) into a diagonal matrix, and (3) the impulse response can be realized by the new
transformed diagonal matrix. It was shown that the stability of a time varying system
requires consideration of both, dynamic eigenvalues and dynamic eigenvectors of matrix
A(t).

According to the definition (2.1. 13 ) the solution of the system y(¢) = A(¢)y(¢) can
be considered as a dynamic eigenvector of A(t) associated with the dynamic eigenvalue
zero, and unity state transition matrix at the initial time. In the same reference (Wu, 1980),
it has been shown that there exists a time varying transformation matrix which diagonalizes

matrix A(t) to any given diagonal matrix.

2.1.2.3 Modal Decomposition of Linear Time Varying Systems

In the following, it is shown that the response of a LTV system in the state space
formulation, can be decomposed into elementary modes similar to the modes of a LTI
system (Kloet,2000; Wu, 1980).
Let’s consider the algebraic transformation (2.1. 14 ), where L(t) is a Lyapunov
transformation®.
y(1) =L(1)q(?) (2.1.14)
By this transformation, the system (2.1. 2 ) is transformed into a new linear time-varying

system in eq. (2.1. 15 ), where matrix R(t) is given by equation (2.1. 16).

? The dynamic eigen problem in eq. (2.1. 13 ) is obtained by making the assumption that the solution of the

homogeneous system has the following form y(7) =u(¢) exp(v(¢)), Where j(z) :div(t), W) = J‘f At)dt »
t t0

and then substituting it in eq. (2.1.2)

* A matrix L(t) is called a Lyapunov transformation if L(t) is nonsingular, L(t) and L(l‘ ) are continuous, and
L(t) and L' (¢) are bounded for all t. (Chen, 1999)
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q(?) = R(1)q(7) 2.1.15)
R(t) =L (HA()L(1) - L ()L(2) (2.1.16)
The dynamic eigenvalue problem for the transformed system (2.1. 15 ) 1is defined in eq.(2.1.

17 ), where the dynamic eigenpair is {/'t, (L‘lu)}.

(AW = AODL™ (Ou(®) = d / de(L™ (u()) (2.1.17)

If L) has columns the dynamic eigenvectors of  A(t), ie.
L) = [u“) ) u?@® u(”)(t)], the matrix R(t) is equal to the diagonal matrix A(¢)

whose diagonal elements are the dynamic eigenvalues of A(t), and equation (2.1. 15 ) is

uncoupled. Once the diagonal matrix A(¢#) and the transformation matrix L(t) are found,

the modal form of the solution. ie. y()=), u(")(t)exp(foii(t)dtj is obvious.

y? @) =u" (1) epr:O A, (t)dtj is called the i elementary mode. Algorithms to calculate

L(t) and A(z) are presented in Section 2.1.2.4.

The state transition matrix can be expressed as shown in eq. (2.1.18) (Wu, 1984):
®(t.1,)=L(1) eXPL— fA(r)a’er’1 () (2.1.18)
0

From its expanded form in eq. (2.1.19), it can be observed that the state transition matrix is a
weighted sum of elementary modes, where the weighting coefficients are constant and

depend on initial conditions.

®(1,1,)= ﬁ: exp[— jzi (r)dr]u”) (v (1,) = Z Yy Ov () 2.1.19)

i=1 10

2.1.3 System Response by Modal Decomposition Approach

With the transformation in eq. (2.1.14) and with the assumption that L(t) is a
Lyapunov transformation whose columns are the dynamic eigenvectors of matrix A(t), the

system (2.1.1) reduces to a set of uncoupled equation as shown in (2.1.20):
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() = [L'AL - L'L]q(r) + L'Bf (1) = Aq(¢) + L'Bf (¢)
q (t,)=L"(@,)y, (2.1.20)

By using the  notation Q()=Bf(t), and the already introduced
L) =[v"@),v?®),..v" (], eq. (2.1.20) can be written in the scalar form as:

G, () = 4, (g, (&) + v (OQ(), k=12,---.n

2.1.21
4, (6) =V 1)y, 2.1.21)

The solution of eq. (2.1. 21 ) is called modal coordinate and is given by:
q,(t,t)=v (1, )y(to)exp[jik (r)drj + jV(k)T (7)Q(7) epr A (é)dfjdr (2.1.22)
t0 t0 T

The modal coordinate has two components. The first term is called homogeneous or zero
input modal coordinate and is due to nonzero initial conditions. With the notation in eq. (2.1.

23 ) it can be expressed as shown in eq. (2.1. 24 ).
A ()= Yk )+ 10, ), Vi, (1) = Re(ﬂ’i,k (1), @, ,(t)=Im(4,(?)) (2.1.23)

Qi (1)) = v (@, )Y(to)exp(jyz,k (T)dTJ exp[i'[ Wk (T)er (2.1.24)

The second term reflects the effect of the excitation/input on the response and is called the

forced modal coordinate. It is given by the formula in eq. (2.1. 25).

t

¢, (0= [V (©Q() exp[ [ 2, (5)d§jdr (2.1.25)

t0

The response of a linear time varying system can be written as a superposition of modal

responses as shown in eq. (2.1. 26 ), and it has homogeneous and forced components.
YO =Yy 0 =>u)q,(.1,) (2.1.26)
k=1 k=1

The homogeneous and forced components of the & modal response vector are given in

egs. (2.1.27) and (2.1.28 ), where C,(¢,)=v""(t,)x(¢,) is a real or complex constant,

which depends on the initial state and the dynamic eigenvector matrix at to.
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Yh(k)(t) =u® (Z)qk,h ()=

- ‘u(k) (Z)Hck (t )| exp(j. Yk (T)dfj ° exp(z’ arg(u<k) (Z)) + ij w,,(t)dr +1i arg(C, (¢, ))j (2.1.27)

v, 0 =u00q,, )= g, 1)) expliarglu® 1))+ 1iarglg, , (1) (2.1.28)

2.1.4 Algorithms for Solving the Dynamic Eigenvalue Problem

It has be shown in Wu (1980), that there exists a time varying transformation matrix which
diagonalizes matrix A(t) to any given diagonal matrix. However, for some systems, an
arbitrary decomposition may not be physically meaningful. Two algorithms to solve the

dynamic eigenvalue problem are presented in the following.

1. Iterative algorithm (Wu, 1984)

An iterative algorithm which gives an unique decomposition and meaningful modes
for assessing the system stability has been proposed by Wu (1984). Later Kloet (2000) came
with a complete convergence proof for this algorithm. Wu’s algorithm used the algebraic
eigenvalues and eigenvectors as starting point in the iteration process. This selection is
based on the fact that if A(t) has distinct eigenvalues, it always can be diagonalized by a
nonsingular matrix formed by the eigenvectors of A(t). The iteration algorithm is described
by:

A, =S]'(A-S, S8, (=12,...), S,=L $,=0 (2.1.29)

Van der Kloet proved that if the (S ;»J =1--+00) is uniform convergent, then the diagonal

matrix A(¢) and transformation matrix L(t) can be obtain as:

A =lmA (r) and  L(»)=1imS (1) (2.1.30)

This algorithm is called by Kloet (2000) "explicit" because the matrix A is presented in the
formulation (2.1. 29 ) at each step. In the same paper a variation of Wu's algorithm, called

"implicit diagonalization" has also been proposed, where instead of matrix A, one may use
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the value A, (¢#) from the previous iteration, and as starting values: S; =1, A, =A

When the convergence criteria is satisfied, both algorithms converge to the same results.

2. Algorithm based on quasistatic eigenvalues

The iterative algorithm proposed by Wu (1984) may fail on numerical
implementation due to the difficulties in satisfying the convergence criterion. Each iteration
step requires solving the algebraic eigenvalue problem keeping the derivative of the
eigenvector matrix continuous. Finding a normalization procedure for the eigenvector matrix
which ensures the continuity condition is a very challenging task.

In the following, we propose an algorithm, referred as “quasistatic algorithm”,
which can be easily implemented and leads to physically meaningful modes in the case of
slow time-varying systems, which will be discussed in Chapter 3. Starting with the fact that
a linear time varying system can be diagonalized to any given diagonal matrix, we impose as
dynamic eigenvalues the quasistatic eigenvalues of matrix A(t), which are calculated by

solving the algebraic eigenvalue problem {/’t(t),u s (t)} at each time instant.

A(t)uqs (1) = ﬂ(t)uqs (t), Vfrozent (2.1.31)
Then, given the dynamic eigenvalue, A(t), the dynamic eigenvector is obtained from eq.
(2.1.13 ) as:
t
u(r) = u(to)eXP[L (A@@) - /I(T)I)dij u(ty) =u,, (%) (2.1.32)

This algorithm can be applied for any matrix A(t)m but a physical meaning of dynamic
eigenpair is ensured only for the case of slowly time-varying systems. Since A(t) has real
coefficients, the dynamic eigenvalues are either real or complex conjugates. The dynamic

eigenvectors have the same nature as the corresponding dynamic eigenvalues.
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2.2 Modal Analysis

In this section, we present a brief review of modal analysis for LTI systems. For simplicity,
only the case of real distinct eigenvalues is presented. A complete discussion including
duplicated eigenvalues, can be found in advanced vibration textbooks (Ginsberg, 2001).

The dynamics of a linear time-invariant multi-degree-of-freedom (MDOF) system is
governed by the following equation:

MXx (1) + C,x(¢) + Kx(1) = f(¢) (22.1)

where x is the N x1 displacement vector and f(t) is the N x1 excitation vector, M, K and
Cq are the N x N mass, stiffness and damping matrices of the system, respectively. By
modal analysis, when damping matrix satisfies certain criteria, the system (2.2. 1 ) can be
transformed into an equivalent system with N uncoupled equations of motion.
Modal analysis involves calculation of eigenvalues and eigenvectors for the
corresponding undamped system:
KX=MXA, X=#0 2.2.2)
where X =[X" X?,....X™] is a matrix NxN whose columns represent the
eigenvectors or the mode shapes, and A is a diagonal matrix whose diagonal elements

represent the eigenvalues or the squared natural frequencies, i.e. 2, =@, i=12,---,N.

To obtain the system response, damping should be defined. Different models are
used to represent the damping in a structure, but the most common are the modal damping
and proportional damping. The modal damping model extends the concept of damping ratio
from SDOF systems to MDOF systems, by introducing the assumption that each vibration
mode has its own damping. The proportional damping model assumes that damping matrix

C, is a linear combination of the mass and stiffness matrices, that is C, = oM + K,
where o and £ are dimensional constants.

With the assumption that X is nonsingular and normalized in respect to the mass

matrix, i.e X 'MX =1, and considering one of the damping models mentioned in the
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previous paragraph, the system (2.2. 1 ) reduces to a set of N uncoupled second order
differential equations, each of them describing the motion of a damped SDOF system as

follows:

ﬁi(t) + 2gia)i77i(t) + a)izﬂi(f) = f,;,-(t) 1= 132> -+ N

17.(0) = X7x(0), 7,(0) = X“"x(0) (2.2.3)

where 7,(¢) represents the modal coordinate, @, is the i" natural frequency, G, 1s the i"

modal damping ratio, and f, stands for the i"" modal force.

£, =X""1(1) (22.4)

For a lightly damped system, when 0 <¢. <1, the solution of eq. (2.2. 3 ) can be expressed

as:

n,(t) =exp(—¢,w,t){ cos w,t + % sinw ¢ 1, (0) + {L exp(—¢,w,t)sin a)d,.t}f][ (0)
l1-g, Wy

+ijfm<r>exp(— g,@,(t~))sin(e, (1 = 7))z

di 0
(22.5)
where @, = w1—-¢, is the /" damped natural frequency.

Moreover, the solution of system can be written as a weighted sum of modal

coordinates as shown as:
N
x(1) = Xn(t) =Y. X"9,(1) (2.2.6)
i=l1

In Chapter 3, concepts as natural frequency, modal damping ratio and mode shape

will be extended to the case of a linear time-varying system.
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2.3 Wavelet Analysis

Applications of wavelet analysis cover many diverse areas, from quantum physics to signal
and image processing. In this study, it is used as a tool to investigate nonstationary signals in
the time-frequency domain. Mathematically, the process of wavelet analysis is represented
by the Wavelet Transform. Major mathematical developments can be found in Chui (1992,

1997) and Daubechies (1992).

2.3.1 Wavelet Function

Wavelet analysis starts with an appropriately selected mother wavelet. A wavelet y(t) is
defined as a square-integrable waveform with an effectively finite support in time domain
and zero time average. The wavelet function must satisfy the admissibility condition given
in eq.(2.3.1 ) where () is the Fourier transform of the wavelet function.
+00; A 2
_ [ly(o)
C, = | o) de < o0 2.3.1)
To guarantee this condition, 7(0) should be zero. This explains the requirement of zero
average over the time domain.
A wavelet family associated to the pre-selected mother wavelet y(?) can be generated

by two operations: scaling and shifting, as expressed in the following equation:

1 t—b
Vo (1) =ﬁw( ; J (23.2)

where a and b are the scaling and shifting parameters, respectively. Both are real numbers

and a must be positive. The normalization factor 1/ Ja in eq. (2.3.2)) introduced such that

the whole wavelet family has the same L, norm for different scales, that is:

+00

J

—00

l//a,b(l)‘zdf =I|'//(f)|2df 2.3.3)
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Expression (2.3.2 ) is the most common definition for the wavelet family. Another definition

(ex. Carmona et al., 1998), is based on L; norm where v, (¢) = lw(ﬂj .
a a

The Fourier Transform of scaled and shifted wavelet w,,(?) is given by:

v, , (@) = Jay (ao)exp(~iob) (2.3.4)
The wavelets may have an explicit formula as Haar, Mexican Hat and Morlet wavelets or
can be generated by a recursion formula using a scaling function, such as Daubechies
wavelets.

The scaling function ¢(t)is obtained by means of a dilation equation and a sequence

of constant coefficients /#, € L*(Z) , which has a form:
7
P(t) = E’;hm(zr —n) (23.5)
In most of the cases, eq. (2.3.5) is not possible to be solved directly to find out the function

#(¢) and, as an alternative, an iterative algorithm is used. The wavelet function y(¢) is
derived from the corresponding scaling function and another sequence of coefficients

g el’ (7).

V(O ==, =n) (23.6)
The coefficients 4, € L*(Z) and g, € L*(Z) must satisfy certain conditions (Newland,
1993). A few wavelets used in this study are described in the following and plotted in
Fig.2.3.1.

e Complex Morlet wavelet is a Gaussian complex modulated function, defined as:

w(t) = \/;T exp(— ;—] exp(i27F,t) (23.7)

b

where F,. and F), are the center frequency and the bandwidth parameter of the wavelet,
respectively, both being real and positive. In the frequency domain, the complex Morlet

wavelet is given by:
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o>0
4/F, (2.3.8)

. w—27F. )
y(w) = eXp[— QJ
The complex Morlet wavelet has been preferred in this study due to its best time-frequency
localization and simple mathematical formula. It does not have a finite support and does not
satisfy exactly the admissibility condition. However, since its modulus decays to zero very

quickly and y(w) is practically zero for F, >0.8 (i.e. ¥(w)=0.00005, if F.=0.8 and

F3=1), it can be used successfully in wavelet analysis.

e Daubechies Wavelets dby , N=1,2, ... (Daubechies,1992)

These wavelets have no explicit expression except for db/, which is also known as the Haar
wavelet. They are determined recursively from their scaling function coefficients. Some
properties of Daubechies wavelets are as follows:

» They have a finite support length of 2N - 1. The number of vanishing moments of

is N. Most dby are not symmetrical.
» The regularity (smoothness) increases with the order.
= They display fractal geometry

» The wavelet analysis is orthogonal.

e Meyer wavelet is defined in the frequency domain, using an auxiliary function, v,
given in eq. (2.3. 9 ). The wavelet function is given by eq. (2.3. 10 ). For more details the
reader is referred to Daubechies (1992). Plots of scaling and wavelet functions are shown in
Fig. 2.3.1.

V(“):{? if a<0

it a1’ (23.9)
via)+v(l—-a)=1, ae(0, 1)
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1 i (7 3
gexp(za)/2)sm(5v(g|w|—ID i 27r£|a)|£4_7Z

3 3
1 . /4 3 . 4 87
y(w) = gexp(m)&)sm(zv(aw—ID if ?$|60|S? (23.10)
0 otherwise

This wavelet, although does not have finite support in time, has an asymptotic decay to zero
when ¢t — o, and there exists a good approximation of the function which leads to finite
impulse response (FIR) filters which make possible orthogonal analysis and discrete wavelet

transform (DWT).

2.3.2 Continuous Wavelet Transform

Using a selected analyzing wavelet function (%), the continuous wavelet transform (CWT)
of a signal x(¢) € L*(R) is defined as its inner product with the shifted and scaled versions

of mother wavelet w(¢) .

W (a,b) = % jx(t)w*(%jdt (23.11)

The inverse wavelet transform of W _(a,b) is given as follows:

1 +00+00 t _ b 1
= H (. )a, )y (—=)— dadby (23.12)
where C,, represents the admissibility coefficient defined in eq. (2.3.1).

Another method to calculate the CWT is based on the inverse Fourier transform as shown in
eq.(2.3. 13 ), where %(w) is the Fourier transform of the analyzed signal and 1" (a®) given

by eq. (2.3.4).
W _(a,b) = AL T)%(a)) 7" (aw)exp(iowb)dw
4 2 4 p (2.3.13)

The result of this process is a set of coefficients which depend on the time shift, b, and the
scale, a. The absolute values of these coefficients show how the energy of the signal is

distributed in the time and frequency domain.
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Since the wavelet function has effectively limited time duration, it acts like a window
function in the time domain. Shifting the wavelet window along the time axis implies
examining the signal in the neighborhood of the current window location. Therefore, the
wavelet transform gives information about the local behavior of the signal. When the scaled
wavelet has a similar frequency content with the truncated data, wavelet transform, in
general, gives a higher value for its coefficients. Properties of the CWT as localization in
time and frequency domains are important for damage detection using  vibration

measurements.

Time-Frequency Localization
The coefficients obtained by CWT are localized in a time-frequency window . The size of

this window is determined by the temporal and frequency variances, o, and o, in eq. (2.3.

14), and its area is limited by the uncertainty principle (Gabor, 1940)

2

(2.3.14)

where:

[ = [ww 0t = [u(rw (Hdf
(2.3.15)

The product between the temporal and the frequency variances is bounded by the
uncertainty principle, i.e eq. (2.3. 15 ). In the literature, the rectangular box whose length
and width are equal to o, and o, respectively, is called the Heisenber box (Mallat, 99).

1
0.0 2~ (2.3.16)

The effective duration Afand effective frequency width Af of the window function y(¢) are
defined as (Gabor, 1940).
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At=«/272'0',, AfI\/27Z'Uf (23 17)

Alternatively, the same measures are defined as: Af =20, Af =20, in (Chui, 1992).

2.3.3 Multiresolution Analysis and Discrete Wavelet Transform

The multiresolution analysis (MRA) decomposes a signal in multiple levels of
approximation and detail, which may reveal valuable signal information not clearly seen in
the original data or in the results from other approaches. Each level of detail corresponds to
a signal component in a certain frequency band.
In DWT the scaling parameter a and the shifting parameter b are discretized by using
the dyatic scale, i.e.
a=2", b=2"k J.keZ (2.3.18)
Thus, by MRA, the signal x(¢) € L*(R)can be decomposed into a tree structure with
wavelet details and approximations at various levels as shown in eq. (2.3. 19).
J
X()=2D;(O)+A4,(1),  A,()=),D, (1) (2.3.19)
J=1 k>J
where D, (#) denotes the detail signal at level j and 4,(¢) stands for the approximation
signal at level J.
Formula (2.3. 19 ) sets the basis for a multiresolution analysis. Defining the

approximations A4,(#) as an orthogonal projection on a subspace V, c L*(R), the

mathematical properties of multiresolution analysis are as follows (Mallat, 1999):
\V(j.k)ez®,  fi)eV,= f(t-2"k)eV,
2NjeZ, f@ eV, < fiE/2)ev,,
3VjeZ, V.,cV,

Jj+l

4limy, = ﬁV, = {o},}gyi = [jVj - I*(R)
Jj=—© Jj=—©

5. It can be shown that there exists a function ¢ €V, (called scale function) such

that the set @,,(¢) =@(t—k),k € Z constitutes an othonormal basis for V. The scaled
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versions of functiong constitute orthonormal bases for all subspaces V. It has been

proved that any scaling function is completely determined by a discrete filter called

conjugate mirror filter.

Property 3, shows that V,, is included in V;. Let W,, be the orthogonal

complement of V., in V,, thatis: V, =V, ®W

i 1~ Therefore the orthogonal projection of
signal x(?) on space V; is decomposed in approximation which is the orthogonal projection of

the signal on ¥, and details given by orthogonal projection on W ,,,. The wavelet function
Viks which is derived from the scale function, constitutes an orthonormal base for space ;.

A relatively fast, recursive algorithm for computing DWT, by using a filter bank has
been discovered by Mallat (1989). It uses a two channel filter bank coupled with a

downsampling technique.

2.3.4 Wavelet Packet Decomposition

The wavelet packet (WP) transform is an extension of discrete wavelet transform in
the sense that the wavelet detail component at each level is also further decomposed into its
own approximation and detail components. Therefore, not only the approximation space 1is
split into new spaces of approximation and detail, but also the detail space. As result, the
signal components will have a better frequency resolution. Each component is identified by
the level of decomposition and node number in the decomposition tree. As an example,
Fig.2.3.2 shows a wavelet packet decomposition tree at level 3 .

For a given orthogonal wavelet, the wavelet packet library can be generated by the

following formula, where A(k) and g(k) are the reversed versions of the low-pass and high-

pass decomposition filter coefficients divided by V2.

s (0= 23 (k) (26 — K)o 1) = 4C0)
e (23.20)
W (0= 23 gk, (21— k) wy (1) =y (1)
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Figure 2.3.2. Wavelet packet decomposition tree at level 3

The wavelet packet function (eq. (2.3.21) has three indices, j,k,n and analyzes a
signal around time k, scale 2’ and a frequency related to the index 7.

W, 0)=2"7"2w 27t-k)neN,jeZkeZ 23.21)

The decomposition of a given signal in multiple components is not unique and there
are more than 27" possibilities of decomposition. In order to select the relevant
decomposition different stopping criteria have been proposed, most of them based on
definition of the entropy indices (Misiti, et al., 1996).

In this dissertation, discrete Meyer wavelet (Misiti et al, 1996) is chosen for wavelet

packet decomposition. The first eight components of the wavelet packet library are plotted

in Fig. 2.3.3.
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Figure 2.3.3. Discrete Meyer wavelet packet library (wows, ..., w7)
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2.4 Hilbert Transform

In the present study, the modal vibration responses are to be decomposed in the form
x(t) = A(t)cos(®(¢)). This decomposition can be uniquely determined by means of the
analytic signal, which is a complex signal having the original signal, x(z), as its real part
and Hilbert transform (Hahn, 1996) of the original signal as its imaginary part. In this
subsection we denote by y(?) the HT of signal x(z).

Hilbert transform (HT) of a real signal x(t), and its inverse (IHT) are defined as:

v = HIG) = P[Py, = TG == P[*Pan (41

where P stands for the Cauchy principal value of the integral.

If the Fourier transforms of x(?) and y(t) are denoted by X(w) and Y (o), respectively, the
relationship between X (w) and Y (w) 1s shown in eq. (2.4.4 ), where sgn(w) stands for the

sign function.
Y (@) = ~isgn(w) X (o) (2.4.2)

The complex signal z(z) which has x(z) as its real part and y(?) as its imaginary part is

called analytic' signal:
2(f) = x(¢) + iHT (x(£)) = x(¢) + iy(¢) (2.4.3)

If the analytic signal is expressed in polar representation as z(z) = A_() exp(i¢z (t)), the
amplitude of an analytic signal expressed in polar coordinates, 4_(¢) and ¢_(¢) are called
analytic amplitude and analytic phase, respectively, and the instantaneous frequency is

defined as the time derivative of the analytic phase angle, as shown in eq. (2.4. 4 ).

' The name of “analytic” comes from complex analysis where a function of complex variables

z=t+it,w= f(z)=u(t,7)+iv(t,r) is called analytic in a domain D, if and only if the first partial

derivatives of u(¢,7) and v(z,7) exist and satisfy the Cauchy-Riemann conditions: ou _av  ou __ov. It can be
o o or o

proved that a Hilbert pair x(#) and y(z) satisfy the Cauchy-Riemann conditions, therefore the signal z(t) is an

analytic function.
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o(t) = %cfﬁz (1) (2.4.4)

The Fourier spectrum of an analytic signal is twice the spectrum of its real part for

positive values of frequency and zero for negative frequencies. It comes from :

FT(z(t)) = FT(x(¢)) + iFT(y(t)) = X (@) + i(~ isgn(@) X (w)) = (1 + sgn(w) )X (@) =
2X(w) >0
=3 X(w) =0
0 ow<0

(2.4.5)

From eq. (2.4. 5), it can be observed that an analytic signal is a complex signal, which is

completely characterized by its real part.

There is an important property of the analytic signal, which allows a meaningful
decomposition of a real signal as s(¢) = A(t) cos(¢(t)). This property can be expressed either

in time or frequency domain as follows:

o The analytic signal of an asymptotic real signal (Delprat et al, 1992)
Assume that s(t) is a real signal of finite energy, of the form s(z) = A(¢) cos(®(¢)), where

A(t)>0 and ®(¢) [0,272’] . Also, assume that s(t) has a locally mono-frequency content

d¢

ik Then, its corresponding analytic signal is close

dA

A(t) dt

and is asymptotic, that is <<

to the exponential model, i.e.z (f) = A(%) exp(i¢(t)).
e Bedrosian’s Product Theorem

Given a real signal of the form of a product s(¢) = f(¢t)g(t) where f(¢),g(t) e L*(R) and
their Fourier Transform, F(») and é(a)) satisfy the following conditions:
‘ﬁ(a))‘ =0, for o> w,, and ‘é(a))‘ =0,forw<w, (2.4.6)
then the Hilbert Transform of the product is given by:
HT(f(0)g())= f(OHT(g(2). 24.7)
If A4(¢) and cos(¢(t)) satisfy the conditions imposed to f(#) and g(?), then the corresponding
analytic signal is z(t) = A(¢)exp(ig(t)).
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Chapter 3

THEORETICAL BASIS OF TIME-VARYING VIBRATION
MODES AND INSTANTANEOUS MODAL PARAMETERS

3.1 Introduction

As shown in Chapter 1, identification of modal parameters has been a classical technique
employed by damage identification based on vibration data. Any change in physical
parameters of a structure results in change in its modal parameters, i.e. natural frequencies,
modal damping ratios and mode shape vectors. Therefore, any change in the modal
parameters may indicate damage development in the structure, and the structural health
condition. While great successes of the modal based techniques were reported in the
literature, there are some important and challenging issues which still need to be explored.
One of them is related to the assumption of time invariance of the structure, therefore
damage should not occur during the period when data is collected. This chapter addresses
mainly this issue by developing the theoretical basis for time-varying vibration modes
characterized by the instantaneous modal frequency, the instantaneous mode shape and the
instantaneous modal damping ratio.

The concept of instantaneous frequency has been introduced before, as a
characteristic of a signal (Boashash, 1992). It has also been used for identification of
nonlinear systems (Staszewski, 1997) and damage detection (Hera et al., 2004), but the
connection between the system parameters and instantaneous frequency of the impulse

response was only intuitive. In the present study we show that if certain conditions are
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satisfied the instantaneous frequency of free vibrations/impulse responses can be related by
a mathematical relation to the system properties. Moreover, other concepts such as
instantaneous mode shape and instantaneous damping ratio are defined for a time-varying
system. Based on the theory to be developed here, we will be able to give answers to the
questions as: what are the time-varying vibration modes, when these modes exist, how to
identify them, or how to relate the system modal responses to the time-varying system
parameters. The instantaneous modal parameters set the bridge between the free response
characteristics and physical parameters of the system. By tracking the instantaneous modal
parameters, useful information about the structural health condition in the case of evolving
damage can be extracted.

This chapter is organized as follows. We start with the state space formulation of a
system with damage and it is shown that a modal decomposition for the second order time-
varying systems is possible by solving the dynamic eigenvalue problem associated to the
corresponding first-order system in state space. Then, in the next sections, the discussion
concentrates on a subclass of LTV systems, which are called slowly time-varying systems.
These systems have real time-varying vibration modes characterized by modal parameters
with meaningful physical interpretation, i.e. positive instantaneous frequency and real
instantaneous mode shapes. This chapter ends with a numerical example which illustrates
some of the concepts introduced here.

Note: Most of the notations and terminology have been already introduced in Chapter 2. In
order to avoid confusion, part of the terminology is clarified in the following:

e  Elementary modes are the time varying modes of the first order system. They can be
either real or complex and are characterized by a real or complex dynamic eigenpair
(eigenvector and eigenvalue).

o Time-varying vibration modes refer to the real vibration modes which can be obtained
by a combination of two complex conjugate elementary modes. They are characterized by a
positive instantaneous frequency and real mode shapes, which are related to dynamic

eigenpair.
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e A normalized vector is a new vector obtained from the original one divided by one of

. .th . . .
its nonzero component, say the ;j* component, which has been chosen for normalization.

. . T .
For example, the normalized version of the vector V(t):[vl,vz,v3,---vj,---vN] is

vy ()= [vl /vj ,vz/vj ,v3/vj ,"'1,"'VN/Vj].
o As a convention, we will use the symbol x = yto specify that the expression of x is

approximated by y up the order ¢, where ¢ <<1,1i.e. x=y+0(¢).

3.2 State Space Formulation of Damaged Structures

Damage in a system may cause a change in the structure parameters, mainly the stiffness
and damping. In this study the dynamics of a NDOF structure with damage is described by

a set of second order differential equations with time varying coefficients:
Mx(¢) + C, (1)x(t) + K()x(¢) =£(¢) G.1)
where x(z) is the N x1displacement vector and f(¢z) is the N x1 vector of external

excitation. M, K, and Cq . the N x N mass, stiffness and damping matrices of the system.
In the state-space, eq (3. 1 ) can be expressed as:

¥(0) = A@Y(0) + BE (1) (3.2)
where the state space vector y, the system matrix A(t), and input matrix B are defined in eq.

(3.3).

Clx AGF) = 0 I B 0
Y=l .t (1) = MO K@) -MC,0f | M (3.3)

The state space formulation has the advantage of a modal decomposition similar to that of a
time invariant system. This decomposition can reveal important physical properties of the

system.

3.3 Real Modal Responses

Some important properties of the system can be assessed by analyzing the homogeneous part
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of the system dynamics, expressed in eq. (3. 4).

y(@) =A@)y() (3.4)
In Chapter 2, it has been shown that the system (3. 4 ) can be transformed into a set of 2N
uncoupled equations, q(¢) = Aq(¢), by using the Lyapunov transformation y(z) = L(#)q(?).
The columns of L(t) are the dynamic eigenvectors u‘”(¢) of matrix A(t), and the diagonal
matrix A(¢) is defined by the dynamic eigenvalues A, (¢), as shown in eq. (3.5).

L) =[u” @),u? (@), ,u* ()], At)=diag[4, ()], i=12,---2N (3.5)
The dynamic eigenpair {/11. (t),u(i) (t)} was found by solving the dynamic eigenvalues
problem:

A@)u(t) = A(Hu(z) +u(z), vt (3.6)

At this point, we make the assumption that the algorithm which solve the dynamic
eigenvalue problem, gives the complex eigenvalues and eigenvectors in conjugate pairs,
which reduces to the classical eigenvalues and eigenvectors if the system is time invariant. If
this assumption is satisfied, then:

1. the complex modal coordinates exist in complex conjugate pairs;

2. a real modal response is obtained by combining two complex conjugate

elementary modal responses.
As example, the quasistatic algorithm introduced in Chapter 2.1 satisfies the above
assumption. By this algorithm the dynamic eigenvalues are calculated by solving the
algebraic eigenvalue problem at each time instant. Then, given the dynamic eigenvalue,

A(t), the dynamic eigenvector is obtained by integrating the eq. (3. 6).
In the following, let’s order the complex -eigenvalues so that

|Im(/1k )| < |Im(ﬁ“k+1)

, k=1,---2N—1. Without loss of generality, we focus the discussion
on the complex elementary modes (2n—1) and (2n), characterized by the complex
conjugate eigenvalues A4,,, and A,,. The corresponding modal equations have been

presented in eq. (2.1.21), and for convenience are repeated here for modes (2n—1) and

(2n). All notations in eq. (3. 7 ) can be found in Chapter 2.
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C}Zn—l (t) = /1’2;1—1612)1—1 (t)’ q2n—1 (tO) = V(Z”_I)T (tO )yO s
42, () = 4,,4,,(0), ¢,,(t;) = vent (20)¥ o>

By combining two complex conjugate elementary modal responses, a real modal response is

(3.7)

obtained, as shown in eq. (3. 8 ). The notation y*"™*"(¢) is used for the modal response

vector obtained by summing together the (2n—1) and (2n) elementary modal complex

@m) _ gy @n-D

conjugate responses, characterized by: A, =4, ,,u and ¢,,=q,,,. The

symbol “e” denotes the multiplication element by element, and 1 is a vector whose

components are unity and has the same dimension as u(t).

Yy (1) =y O (1) +y O (1) = u D (1), (0 +u (1), (1)
=u® (G2, (D) + u® (1), (1) = (3.8)
= 2Refu™ " (g, ()= 2u"" (1), (1) s coslarg(u™ (1))+ 1arg(q,, ., (1)))

The homogeneous part of the response (3. 8 ) is of interest jn this section, since it reflects the

inherent properties of the system. Its scalar form is presented in eq. (3. 9 ), where A4, , and
A,, were expanded in terms of their imaginary and real parts as

/7’2;1—1 = yl,n + ia)l,n’ ﬂ‘Zn = yﬁ.,n - ia)l,n’ a)l,n > 0’ n< N N
(2n-1),(2n) 2n-1
y, 0 () = 2R (0, (1) =

= 2 (0)C (1) exp(in,n (r)drjcos(arg(u_ﬁz"“ )+ [, (0)dr +arg(C, | <r0>)J

= Ju P O]Ca 1) epr Vau(T )dTJ cos(g” (1))
(3.9)

where ¢;”) () is defined as: ¢J(.") (t)= arg(uj.z”_l) (t))+ .[a)M (r)dr + arg(Czn_l (t, )) .
t0

It can be observed that the real modal response has time varying amplitude and a

phase angle described by a general function of time. For j=L1..N, yj(z")’(z"“)(t)

represents the displacement response, xj.”) (1), and for j=N+1..2N it represents the
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velocity response, v (¢) =x{"(¢). It will be shown that for a specific class of systems,

defined as slowly time-varying systems, the instantaneous frequency of the modal responses

(23]

is practically independent of location/DOF, here denoted by

3.4 Slowly Time-Varying Systems

In Chapter 2, the modal decomposition of a time varying system has been presented in the
general terms, without specifying the algorithm for solving the dynamic eigenvalue problem.
In Section 3.3, important properties of LTV systems have been revealed if the complex
eigenvalues and eigenvectors are in conjugate pairs. Further, it will be shown that if an
assumption of “slowly time-varying eigenvectors” is added to the system, the response can
be decomposed in real time varying vibration modes, characterized by the same

instantaneous frequency at different locations/DOFs.

3.4.1 Slowly Time-Varying Assumption

A linear system is said to be slowly time varying if its dynamic eigenvectors change
slowly in respect to the corresponding dynamic eigenvalues as shown in eq. (3. 10 ), where

u, stands for the K" component of dynamic eigenvector u(t).

i, () i, ) \ 2
)| (|<<|1 m(A(1)), )Iﬁ( weh <Im(2()), ¢) ‘<<\Im(/1(t)1 2N 3.10)

In Section 2.1.2.4, we proposed the quasistatic algorithm to solve the dynamic eigenvalue
problem. The performance of this algorithm in finding the eigenpair which satisfies the

condition in eq. (3. 10 ) is quantified by the slowness index defined in eq. (3. 11).
iy () =y, O]

Sy (1)= max‘ uy, )

Sy, (1) #0 (3.11)

1,2N

where u,,(¢) is the K" component of the dynamic eigenvector u(#) normalized in respect to

its /" component. u,_ () refers to the normalized quasistatic eigenvector, calculated from

a5 k|

the algebraic eigen-value problem with frozen time. The slowness index gives a measure of
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the relative difference between the normalized dynamic eigenvector and normalized

quasistatic eigenvector, and should be calculated for each mode of interest. If Sy, () <<1

for a certain time interval, the system can be considered slowly time-varying on that interval
and the above decomposition leads to real vibration modes with a physical meaning, i.e. the

same frequency at different locations/nodes, as it will be shown in the next sections.

3.4.2 Definition of Instantaneous Modal Parameters

Based on modal components of the free vibration displacement response in eq. (3. 12 ) and
the dynamic eigenpair, the following system parameters are defined:

1. Instantaneous modal frequency

2. Instantaneous mode shape and its normalized version

3. Instantaneous modal damping coefficient

x, (1) = 2u ™ (0 Cp (8) expﬁh (r)df] cos(g”) () j=1--N

t (3.12)
97 (1) = arglu ™ (0)+ [ @, (1)dz +arg(C,,, (1))

Instantaneous modal frequency
The n” instantaneous modal frequency of the system is defined as the imaginary part of the

dynamic eigenvalue (2n—1).

o, () =a,, ) =14, (),j=1,...N (3.13)
This definition has its roots in the instantaneous frequency of the modal displacement

component, which is defined as the time derivative of the phase angle of the free vibration

modal displacement component of the response.

d (m) ¢ (2n-1)
o, (1) = (¢th( )) _ d(arg(udt (t)))+ 0, (1), =1, N G.14)

Employing the assumption of slowly time-varying eigenvector, it is proved in Appendix 1
that d(arg(uﬁ.z”’l) (t)))/ dt << w, () and, therefore, @, (/)= w,,(1). Consequently, the

instantaneous frequency of the modal response is, practically, the same for all components
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of the vibration modal response vector. In the case of a LTI systems, instantaneous modal

frequency coincides with the damped natural frequency.

Instantaneous mode shape vector and its normalized version
The »n™ instantaneous mode shape vector X is defined as the absolute value of the

dynamic eigenvector (2n —1) dynamic eigenvector:

X(n) (t) — Ilu?"-l)(t) : u(ﬁn-l)(t)‘]T (3 15 )

)

Its normalized version represents the absolute value of the complex eigenvector normalized

b 2

by the absolute value of one of its non-zero components; say the j component in eq.(3. 16 ).
‘u(2n—1) (t)‘

(n) — (2n-1)
X ()= ‘u§2n—l) (t) ’ ‘u/’ (t)‘ >0 (3.16)

The presence of instantanecous mode shape is obvious in the amplitude of the modal
displacement response vector in eq. (3. 12 ). For a time invariant system the instantaneous

mode shape vector reduces to the absolute value of the traditional mode shape vector.

Instantaneous modal damping coefficient
Instantaneous modal damping coefficient is defined as the real part of the dynamic

eigenvalues with negative sign.
¢, ()=—Re(4,, () (3.17)
Its time invariant correspondent is ¢, , =¢,®,, where ¢, and o, are the modal damping

ratio and natural frequency for the n” vibration mode. A LTV system is lightly damped if

0<c, ()<<w,(1).

3.4.3 Instantaneous Modal Parameters in Velocity Response

In real applications the recorded signals may not necessarily be the displacement responses.
For the purpose of damage detection other responses such as velocity or acceleration may
also be measured. Therefore, a legitimate question arises: How the instantaneous modal

parameters are related to these response signals?
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First, the case of velocity response is investigated. The expression of the ;"

component of the n” modal response is given in eq. (3. 18 ) and has its origin in eq. (3. 9 ).

t
v, () = Jul ™ (0)C,, (1) exp( [7n (r)er cos(p (1)) j=1-N
t0

. (3.18)
(1) = arglu 0 (0)+ [, ()dr +arg(C,, (1)
t0
The instantaneous frequency of v j(")(t) is calculated ineq. (3. 19) .
dlg\) (1)) dlargu;"" (1) :
@, (t) = # )= erats )+w4,n(t),J=l,~--N (3.19)

dt dt

The amplitude of vj(”)(t) can be divided in two components: ‘ug”’”(t)‘ which depends on

t
position and |C 5t (o )| epr Yin (T)dr) which is independent of position.

t0
In Appendix I, it is shown that if the assumption of slowly time-varying system
holds, d(arg(ug.”_” (t)))/ dt is negligible in respect to @, (r) and u¥™" =u'"V2, .
Based on these observations, the following two conclusions can be drawn for the slowly
time-varying systems:
1. the instantaneous frequency of the velocity modal response is, practically,

independent of the node position and has the same value as instantaneous modal

frequency, i.e. @, ()= @, (7).
2. the amplitude of the signal is proportional to ‘uﬁz”_”‘ which is the / component

of the mode shape vector.

3.4.4 Instantaneous Modal Parameters in Acceleration Response

Accelerometers are the most used vibration measurement devices; therefore, the analysis of
the acceleration response from the perspective of its relationship with instantaneous modal
parameters is necessary. The modal acceleration response can be calculated as the time

derivative of the modal velocity response, as shown in eq. (3. 20 )
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dRelu g, ,()))
dt
= 2Re{(/12n 1”23’1 Y +”§2n g 2;1—1}:

‘ 2
aj'n)(t) = V_E-n) (t) = ZRC{ v l)an 1 ‘Héjn l)qZ"—l }:

t 3.20
= 2‘/12;1 1”22,n D+ uzzn I)HCZn (% )| eXp[IVzn (T)dfj COS(@TIJ) (t)) ( )
10

t
¢ (0 =arg(A,, w2+l ) Iwﬂ,,, ()dz +arg(C,, (1))
In a simplified notation, equation (3. 20 ) can be written as a'” (1) = 4\")(¢) cos(¢(") (t))

. . . . . (7!)
With the assumption of slowly time-varying system, the amplitude 4,”;/(¢)and the

instantaneous frequency of the response can be approximated as shown in eq.(3. 21 ).

AP0 = 2 (0 Ay, (0] [Cay (1) exp( jo Vs (r)dr] N .

w,,O)=dp" ) dt = o, )

From equation (3. 21 ), it can be observed that the instantaneous frequency of the modal
acceleration response, practically, does not depend on the node position - given by index j,
and has the same value as the instantaneous modal frequency of the system (up to order of
€, where €<<1). Also, the instantaneous mode shape component appears explicitly in the
response. These are important findings, which make acceleration responses suitable for

solving the inverse problem of the identification of instantaneous modal parameters.

3.4.5 Instantaneous Modal Parameters in Forced Vibration Response

Practical applications require extraction of the instantaneous modal parameters from forced
vibration responses; therefore, in the following, we will investigate the relationship between
the forced modal responses and the instantaneous modal parameters. Mainly, we are looking
for a simplified form of the amplitude and frequency of the response which may be related
to the instantaneous modal parameters.

Let’s consider a system subjected to a given excitation and zero initial conditions.
Calculation of the n” forced vibration modal response starts by solving the first-order modal

equation (3. 22 ) whose solution is given in eq. (3.23).
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4,0 =4,q9,0)+ 1, 4,t,)=0, n=12,--- 2N (3.22)
9,0=[1,, epr A, (é)déjdr (3.23)
t0 T
For simplicity of the expressions the following notation has been introduced:

£=vr o Ok
an M- (3.24)

The real vibration modal displacement, velocity, and acceleration responses are given in

egs., (3.25),(3.26), (3.27), where j=1---N.

n 2n-1),(2n
X 0=y @)=

= 2‘1,[;2;1-1) (I)HCIZ,H (t)| cos(arg(uﬁzil—l) (1)) +arg(q,, (t))) (3.25)
(n) (t) y;Zn 1),(2n) (t)
= 2‘ i" 1) (t)Han 1(t)| COS(arg(u(zn 1) (t)) + arg(qzn_l (t))) (3 26 )

AW (g, (1)

al" (1) =v" =2 Re{ } 2Rei " (1), , () +ul " (1)d, (1)) =

dt
(2n l)( )
=2Re u(2n K QQn 1(t)+ (2,1 1 q2n- l(t)
i n( ) iy (1)
_2‘ (2n-1) sy 1(t)+W42n () cos[arg(ug” 1))+ arg(‘]zn 1(t)+ u(Zn n - /(1)
2/ 27

(3.27)
Equations (3. 25 ),(3. 26 ) and (3. 27 ) can be written as amplitude multiplied by a cosine

term, as shown in eq. (3. 28).
xM (1) =4 cos(¢x”, j)
V@) = 477 coslg ) (3.28)
af (1) = A} cos ()

Employing the assumption of slowly time-varying system, the simplified expression for

amplitudes are obtained (egs. (3. 29 ) and (3.30)).
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A0 = 2u “(z)uqzn 16!

n - 3.29
AN (0 = 2u L @) (3.29)
il (1)
A (0) = 2 (0 (1) + i 4 (0] =
2/
il (1)
=2 Ol (V2 O+ 20t O+ =55 D0 (1) = (3.30)
2j

~

=~ 2‘14;2/"_1) (Z)H(IZ,H (DA, (@) + fq,Zn—l
= 2 (O A G20 (D Ay s (O + 20

From these equations, it can be observed that the amplitudes of the modal displacement,

velocity,

In respect to the phase angle, if the frequency content of the excitation is in a range
defined by the instantaneous modal frequency, then the instantaneous frequency of the
modal components of the displacement, velocity and acceleration are, practically, insensitive
to the position, here defined by j. Therefore, all components of the modal response vector
have approximately the same instantaneous frequency, which is not the same as the
instantaneous modal frequency of the system, in most of the cases. Note the distinction
between the instantaneous frequency, which is a property of a signal, and instantaneous

modal frequency, which is a property of the system.

3.5 Instantaneous Modal Parameters of a SDOF system

In this section, some of the concepts discussed in this chapter are illustrated for a simple

mass-spring dashpot SDOF system with time varying parameters.

3.5.1 System Dynamics

The dynamics of a SDOF system is described by the following second-order differential

equation with time-varying coefficients:
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M, (O)x(t) + C,()x() + K,)x(1) = f1(1), x(t,) = Xy, %(1y) = X, (3.31)
For simplicity of the formulation, the equation is normalized by M;, and the following

notations are introduced:

Q) =K () M, (1),5()=C () yM (DK, () /2, , f()=f, )/ M (1) (3.32)
With these notations, the system dynamic equation and its state space formulation can be

expressed as shown in egs. (3. 33 ) and (3. 34).
(1) + 2&(OQANK(1) + Q% (W)x(1) = (1) (3.33)

dx) 0 1 X 0
al\i) o2 —26000 )\ o (3.34)

Consistent with the previous notations, let’s denote the state space system matrix by A(t).

0 1
A= [— Q% (1) _25@Q@] (3.35)

3.5.2 Dynamic Eigenvalue Problem

In order to perform the modal decomposition, first, the dynamic eigenvalue problem,
expressed in eq. (3. 36 ) has to be solved.

(A@)-A@O)Hu=1 (3.36)
Using the quasistatic algorithm in Chapter 2.1, the dynamic eigenvalues of the system are
calculated from the algebraic eigenvalue problem with frozen time, as shown in eq. (3. 37).
Given the dynamic eigenvalues, the dynamic eigenvectors are calculated by integrating

eq.(3. 36 ), with initial values equal to the quasistatic eigenvectors at ¢ =¢,. The result is

presented in eq. (3. 39 ). Details can be found in Chapter 2.1.2.4.

A () ==EOQ) QN1 -&(1)*,  0<&(H) <1 (3.37)
u? (@) =u(z,)exp j(A(r) —AODdr, i=12,u"(t,)=u4(t,) (3.38)

(i)
Note that A, () = A (£), u® (&) =u""(t) where u® = {”lm},i ~12.
U,
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3.5.3 Modal Equations and System Response

The system has two first-order modal equations which are shown in eq. (3. 39 ). Their

solutions, called modal coordinates, are complex conjugated, i.e., q,(t) = ¢, ().

q,(t) = 4,q,(2) + v (t)|:f(()l‘):|’ q,(t,) = v (to)[xoaxo]Ta
0 (3.39)
q,() = 4,4, (1) + ver (t)|:f(l‘)j|’ q,(t,) = vr (to)[xosxo]Ts
where:
VOl te w1 [u® —u®
l:V(Z)T(t):| = [u (1) u (t)] = m _ugn ”1(1) (3.40)

The solution of system (3. 33 ) is a weighted superposition of the modal coordinates as

expressed in eq. (3. 41 ), where the notation v(¢) = x(¢) has been introduced for the velocity

response.

[xm} _ {uf” O, (0) +u (1)q, (t)}

) [2u ), )] coslarg(w (1)) + arg(q, (1)
v | ud (0g,(0) +ul” (g, (1)

= lz‘u;) (t)Hq1 )| cos(arg(u (1)) + arg(q, (;))] (3.41)

3.5.4 Free Vibration Response

Of main interest is the free vibrations response in eq. (3. 42 ) because it directly reflects the

inherent properties of the system.

x(0) = Ju O 1)k, %] exp(— joé(r)!l(r)dTJCOS(@ ®)
v(0) = 2 v @)lx % ]T\exp[— ié(r)@(r)dr]cosm )
$,(1) = arglu” (1) + jo(amm Jar +argllv” @) i)
8,0 = arglu" (1) + i(a<r>m Jar v argllver ) i)))

(3.42)
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If the system is slowly time-varying, the displacement and velocity have, practically, the
same instantaneous frequency which coincides with the system instantaneous modal

frequency (up to order of €, where ¢<<1), as shown in eq. (3. 43).

d d 2
i;t(t)z (i;t(t)zﬂ(t) 1-(&(0)) (3.43)

3.5.5 Slowness Index

The normalized dynamic eigenvectors are defined as shown in (3.44):

u’ (=01 u@O/u©O, u’@)#0 i=12 (3. 44)
To check if the system is indeed slowly time-varying, as it was assumed, the values of
slowness index should be calculated. Since the dynamic and quasistatic

eigenvalues/eigenvectors for the above system are in complex conjugate pairs, only the

slowness index for i=1 is calculated in eq. (3. 45).

()1 () —u ), () 1ul), (1) (

Sy ()= a2 ks u ull u )= 0
STV ‘ u (1) u® (1) 1M1 %2 ) (3.45)

3.6 Second Order Formulation for Vibration Modes

In the following we propose to find a second order differential equation to describe the real
time-varying vibration modal responses of a system whose dynamics was given in eq. (3. 1)

which, for the reader’s convenience is repeated here.
Mx(?) +C, (1)x(¢) + K(t)x(¢) = () G.1)
Each modal component of the displacement and velocity free response vectors can be

described by eq. (3. 46 ) and eq. (3. 47 ).

5,0 = Qe O)C, 1) exp[jn,n (r)dr]cos(¢§f’,? ®) j=1-N
; (3. 46)
#) (1) = arglu () + [ @, (2)d7 +arg(C,, (1))
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v, () = Jus ”(r)ucn_](ro)lexpﬁm,n(rwr}os( @) j=1N
; (3.47)
$7)(0) = argul ™ (0))+ [ @, (D)dr +arg(C,, (1))

The parameters in this equations, such as: u®" (1), uy (1), 7,,t), @,,@), and
C,, (t,), are related to the system physical properties by the dynamic eigenvalue problem
ineq. (3.6).

In the previous section, it has been shown that the response of a SDOF governed by

eq. (3. 33 ) can be expressed by eq. (3. 48 ). The subscript “S” has been added to the

notations in order to avoid the confusion.

X5 (1) + 2800 x5 () + Q (Wxg (1) =0, x5 (ty) = x50, 3(ty) = X, (3.33)

1 nr
x5 (1) = Jul OV @)xss o]
t0

exp[ jé(r)@(r)dr]cos(qﬁs,x(t))
v = Jus OV gy o) \exp[ jf(T)Q(f)dT]COS(%,v(I))
b0 = el )+ (T Yo+ ara0 @)t 500) )

. (1) = argluf () + j (o=@ Jarrarelvs el sl)

The similarities between egs. (3. 46 ), (3. 47 ) and (3. 48 ) suggest that each real vibration

(3.48)

modal response can be described by a second order equation as shown in (3. 33 ), with the

following relationship between the parameters:

@,, (1) = Q1= £()*.7,,,(7) = ~QAOED)

xs(t,) =2 Re(u D (1 )T (1, ){).;O}
| X
O (3.49)

kg (1) = 2Reu® ™ (1, )"V (1, ){ }
X,

WO =ugy (1), w7 () =ugy (1)
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Second order formulation in the presence of an excitation

In the following, we will try to find a second order formulation, for a vibration modal
response obtained in the presence of an excitation. Specifically, we are looking for a second
order SDOF system of form in eq. (3. 50 ) whose response is equal to the modal response at

location j. n (3. 48 ).
R (1) +2C, (0% () + Q2 W)xs (1) = [ (8), x5(ty) = x5, 3(ty) = X, (3.50)
In addition to the relationships already presented in eq. (3. 49 ), we are interested in a

relationship between the force f(?) and the system excitation f(¢).

The first elementary modal coordinate of the SDOF system is described by eq. (3. 51).

. mr 0 ar Xs,0
Gs.(8) = A, q5, @O+ Vs (O |fs(@®,  gs,(E) =V (&) . (3.51)

1 Xs.0
The n” real vibration modal response is a weighted sum of two complex conjugate

elementary modal coordinates. The elementary modal coordinate (2n-1) is given in eq.

(3.53).

. _ (2n-1T 0 o @nDT X,
G2ni (1) = Ay 1G5 (D +V (t){Ml }f(t)o Topa (L)) =V (% )L‘ } (3.52)

0
The equality between the terms in eqgs. (3. 51 ) and (3. 52 ) gives a relationship between

fs(t)and f(¢) as follows:

V(Zn—l)T(t) 0 f(t)= v () vy )] °
1 S,1 S,2 f:g(t) (3 53 )
o

Replacing the vector [v§) () v§%(#)] by expression in eq. (3. 40 ) and (3. 49 ) the following

formulation is obtained for the modal force f(7):

(mT -1 . (2n-1) (2n-1)*
OM £ () 2ilm\u’ Hu,” t
v OMPE@) _ 2itm{u " 0ul "¢ ))VM_UZN(,”T M-

\%
Js0)= Vs (1) —u" V() (3.54)

Note that f (2) is a real function of time. The justification of this statement is as follows:

It is obvious that u* ™" ()v*" ™" (6) +u* " ()v*" " (£) =0, 7 =1,2,---, N, then by simple
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2n-HT
L v (1)
algebra it is shown that (2’—1)*() has zero real part; therefore, the vector
w0 (e
J

20 Tmu " (Ol (1))

v (mT
—1)* N+1,---2N
—u(0) ’

(¢) has real components.

As conclusion, each real vibration modal response of a time-varying system can be
described by a second-order equation (3. 55 ) whose parameters are related to the system by

dynamic eigenpair as shown in eq. (3. 56).

#7028, (0Q,0%," () + Q2 )x, " (6) = £, (¢) (3.55)
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E (1) = ——= Q, = o), +7], (3. 56)

@F, + 75, (0)
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: (mT -1
fn (t) = _ ;(2,,,1)* : VN+1,--~2N (t)M f(t) 4

J

where 7, (1) = Re(4,, , () @, (1) = Re(4,,, (1)) .
In this section (3.6) no assumption of slowly time-varying system has been made. However,
to solve the inverse problem by, first, extracting the vibration modal components from the

response, the assumption of slowly time-varying system is instrumental.

3.7 Numerical Examples: Linear SDOF and 3DOF Systems with

Time-varying Stiffness

In Chapter 2, a quasistatic algorithm has been introduced to solve the dynamic eigenvalue
problem. In Chapter 3.4 it has been explained that if the dynamic eigenvectors are slowly
time-varying in comparison to the eigenvalues, the quasistatic algorithm gives a modal
decomposition with physical meaning. In order to quantify the slowly time-varying

condition, a slowness index has been introduced in Chapter 3.4.1. This index has zero value
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for a time invariant system. , For a time-varying system it should be zero or in the vicinity of
zero in order to have a modal decomposition with physical meaning. In this case the
instantaneous frequency of the free vibration modal components is, practically, the same (up
to the order of €, where €<<1) as the imaginary part of the dynamic eigenvalue, and modal
displacement, velocity and acceleration responses measured at a given location have the
same instantaneous frequency (up to the order of €).

In this section, the above findings are verified numerically for a single degree-of-
freedom (SDOF) system and a three degree-of-freedom (3DOF) system, with time varying
stiffness. The system response is obtained by two methods: time varying modal
decomposition and direct numerical integration and the results are compared. The dynamic
eigenvalues and eigenvectors, and the associated slowness index are calculated. A sensitivity
study which compares the slowness indices and instantaneous modal frequencies for
different stiffness evolution is performed. It is found that the slowly time-varying
assumption can be used for systems with significant change in system physical parameters,
if the change is gradual with a slower rate than the system fundamental frequency. In the
case of a 3DOF system the instantaneous frequency of the free modal responses at different

positions are compared to the calculated modal frequencies.

3.7.1. Case Study I: SDOF System

Simulation setup:

In the present study, first, a SDOF system with time-varying stiffness is considered. The
parameters of the reference system are: M;=1kg, K;= 39.4784 N/m, C;= 0.1257 Ns/m.
These parameters have been chosen so that the natural frequency and damping ratio of the
reference system are: f, =Q/(2z)=1Hzand { =0.01. A sketch of the system is presented
in Fig. 3.1a.

Four scenarios for stiffness variation are proposed. In the first three scenarios,
stiffness reduces linearly with a rate proportional to the parameter « , as shown in Fig. 3.1b,
where « has the following values: Scenario I: & =0.2; Scenario II: & =0.4; Scenario III:

o =0.8. In the Scenario IV a sinusoidal stiffness evolution, K = K, (1+0.2sin(m)) (Fig.
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3.1.c) is proposed. by:. This is considered as a fast evolution of the stiffness, being of the

same order of magnitude as the natural frequency of the reference system.

Results

First, a system subjected to damage Scenario II (a =0.4) is considered. The dynamic
eigenvalues and eigenvectors are calculated by egs. (3. 37 ) and (3. 38 ). The results are
plotted in Figs. 3.2 and 3.3. As expected the values are constant during the first 10 seconds,
when no damage occurs. The dynamic eigenvalue is a complex function of time and in this
example its real part is constant because the damping factor C;was not time dependant. The
values of the second eigenpair are the complex conjugate of the first one and, therefore, only
plots of the first eigenpair are sufficient in this study.

The free response of the system is calculated in two ways: by direct integration of
system (3. 31 ) and by using the time varying modal decomposition described above. The
results are practically the same, the root mean square (rms) error between the results being
of order 107, as compared to the rms value of the response of 0.317.

Figure 3.4(a) shows plots of the system modal frequency (green), displacement
instantaneous frequency (magenta) and velocity instantaneous frequency (blue). A zoom-in
plot of the same data is presented in Fig. 3.4(b). It can be observed that all three frequencies
are very close, which is a good indication that the assumption of slowly time-varying system
holds. A quantitative measure of the slowly time varying nature is given in Fig. 3.4(d),
where it can be seen that the slowness index is smaller then 0.001. Figure 3.4(c) shows the
contribution of the eigenvector to the instantaneous frequency of displacement. Results
similar to those in Fig. 3.4(c) can be seen for the slowness index in Fig. 3.4(d). In this case,
the explanation is based on the fact that the normalized eigenvector component is
approximately equal to the imaginary part of the dynamic eigenvalue due to the insignificant
contribution of the eigenvalue real part which reflects the damping into the system.

For practical purpose, it is useful to know when the condition of slowly time-varying
system is satisfied. Due to the complexity of the dynamic eigenvalue problem, an analytic
answer may not be feasible for the general case; therefore, a sensitivity analysis may be

useful. Figures 3.4-3.7 show the results of this study where figures denoted by (b) show
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zoom-in plots for figures (a), figures (c) show the contribution of the phase angle to the
instantaneous frequency of the modal response, and figures (d) present the slowness index.
From the results in Fig.3.6, we can conclude that the slowly time-varying assumption still

holds when the stiffness change its value linearly by 80% during a time interval of 30s.
Figures 3.7(a) and 3.7 (b) show plots of the instantaneous frequency of the free

vibration responses for a stiffness evolution according to Scenario IV. We can see from
zoom-in plot in Fig. 3.7(b) that there is a significant difference between the system modal
frequency calculated as imaginary part of the dynamic eigenvalue, and the instantaneous
frequency of the displacement and velocity. This difference is quantified in Fig. 3.7(c)
which shows the contribution of the dynamic eigenvector to the instantaneous frequency

(aprox. 10%).
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Figure 3.2 Complex modulus of the 1% dynamic eigenvector.
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3.7.2. Case Study II: 3BDOF system

Simulation setup:

The 3DOF system employed in this simulation study is sketched in Fig. 3.9. The reference
system has the following parameters: M1=M2=M3=300kg, K1=K2=K3=100000N/m and
the damping matrix is proportional to the stiffness matrix by a factor £ =0.0002s. Its
natural frequencies are: 8.1253, 22.7666, 32.8987 rad/s and the modal damping ratios are
0.0008, 0.0023, 0.0033. A progressive degradation of K2 after the first 12 seconds , as
shown in Fig. 3.9(b), is proposed for the damaged system. The system dynamics is given in

eq. (3.58) and the free response is simulated using a nonzero velocity for M3

(x; =0.5m/s).

M5 + Cx + Kx = f(t)
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Figure 3.8. (a) Sketch of the system; (b) Stiffness history (K5)

Results

The quasistatic algorithm is used to solve the dynamic eigenvalue problem for the
corresponding first-order system in state space. The responses obtained by numerical
integration of the governing equation in state space and by using the modal decomposition
are compared. The maximum root mean square (rms) of the error between the responses
calculated by two methods is less than 0.1% of the rms of the response over the time
interval of 0-36 s.

Plots of the first dynamic eigenvalue are presented in Fig. 3.9. The real and
imaginary parts are constant over the time interval of 0-12 seconds when the system is time
invariant, than a gradual change in their values can be observed. The imaginary parts gives
the first instantaneous modal frequency of the system, and the real part is related to the
instantaneous modal damping. Plots of the first three components of the first eigenvector

are shown in Fig. 3.10. These components correspond to the displacements of M1, M2 and
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M3. The other three components, not plotted here, correspond to the velocities at the same
locations. Since the mode shape is a complex function, the complex modulus and the phase
angle are plotted in the figure.

Figure 3.11 shows a comparison of the instantaneous modal frequencies defined as
imaginary part of the eigen-values and instantaneous frequencies of the free vibration
responses (displacements and accelerations). Figure 3.11 (b) shows “zoom in” plots for the
case of displacement at different locations, i.e. M1, M2, M3. Figure 3.11(c) shows zoom in
plots for the case of velocities. Ideally, all the values should be the same. The small
differences between the instantaneous modal frequencies and the instantaneous frequency of
the impulse responses are due to the influence of the time varying and complex nature of the
eigenvector. For the 3DOF system investigated, the contribution of the eigenvector to the
instantaneous frequency of the responses is less than 0.12% . The maximum values of the

slowness index are less than 0.005.

3.7.3 Remarks

A few aspects of time varying modal decomposition have been investigated numerically in
section 3.7.

o It has been observed that the slowly time-varying condition is still satisfied for a
linear degradation of stiffness of 80% during a time interval of 30s. In this case, the
instantaneous frequency of the response is affected less 0.1% by the time varying nature of
the eigenvector.

o In the case of the 3DOF system, the instantaneous frequency of the free vibration
modal components is practically the same (up to the order of €, where ¢ <<I) as the modal
frequency of the system given by the imaginary part of the dynamic eigenvalue. Free modal
displacement, velocity and acceleration responses measured at different locations have the
same instantaneous frequency up to the order of €. These important observations allow the

development of the damage detection techniques proposed in the next chapters.
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3.8 Summary

In this chapter, it has been proved that the vibration response of a linear slowly time-varying
system can be written as a sum of real modal responses characterized by instantaneous
measures such as: the instantaneous mode shape, the instantaneous modal frequency and the
instantaneous damping. A second-order formulation for each modal response has been also
proposed. The instantaneous modal parameters are related to the system physical parameters
by the dynamic eigenvalues/eigenvectors of the associated state space first-order system.
The slowly time-varying condition was introduced as a relationship between dynamic
eigenvectors and dynamic eigenvalues of the first-order system.

The instantaneous modal frequency was defined as the imaginary part of the
eigenvalue. The instantaneous mode shape was defined by the complex modulus of the
dynamic eigenvector. For the purpose of identification its normalized version, instantaneous
normalized mode shape, was introduced. The modal damping was defined as the imaginary
part of the eigenvalue with a negative sign.

It was also shown that the instantaneous modal frequency can be approximated by
the frequency of the modal components of the free responses which is practically
independent (up to the order of €, where €<<1) of the measurement location/DOF and is the
same for displacement, acceleration and velocity response data (also up to the order of €).

In case of the forced vibration, if the frequency content of the excitation is in a range
defined by the instantaneous modal frequency, the instantaneous frequency of the modal
components of the displacement, velocity and acceleration are, practically, insensitive to the
position, j. Therefore, all components of the modal response vector have approximately the
same instantaneous frequency, which is not the same as the instantaneous modal frequency
of the system, in most of the cases.

The instantaneous normalized mode-shape can be calculated from the amplitude of
the displacement or velocity or acceleration modal responses. This applies to the case of free

vibrations and the forced vibrations.
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Although for the numerical example the quasistatic algorithm was used to solve the
dynamic eigenvalue problem, the theory developed in this chapter is valid for any other
algorithm which gives complex conjugate eigenvalue and eigenvectors, and ensure the
slowly time-varying condition.

If a linear time varying system is not slowly time-varying, as defined in the present
chapter, one cannot guaranty that real vibration modes with the same instantaneous
frequency can be identified in the responses at different DOFs.

The instantaneous modal parameters, defined in this chapter, set the bridge between
the free response characteristics and physical parameters of the system. By tracking the
instantaneous modal parameters, useful information about the structural health condition in

case of evolving damage can be extracted.
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Chapter 4

IDENTIFICATION OF INSTANTANEOUS MODAL
PARAMETERS FROM FREE VIBRATION DATA

4.1 Introduction

In Chapter 3, it has been proved that the vibration response of a linear slowly time-varying
system can be decomposed, by using the dynamic eigenvalue problem, in real vibration
modes characterized by instantaneous modal parameters such as modal frequency, mode
shape and modal damping. In this section, we propose to solve the inverse problem of
identification of instantaneous modal frequency and normalized instantaneous mode shape
from free vibration data by using two approaches: CWT-ridge method and wavelet packet
sifting in conjunction with Hilbert transform. The CWT approach is illustrated using the
simulated free vibration responses of a 3DOF with progressive stiffness degradation and
subjected to nonzero initial conditions. The identified results are compared to those obtained

by solving the dynamic eigen-value problem.

4.2 Theoretical Background

4.2.1 Free Vibration Modal Responses

It has been shown in the previous chapter that the response of a linear slowly time-

varying system can be written as a sum of modal responses, i.e. X, ()= Z Xty - The free

vibration modal components of displacement, velocity and acceleration responses were
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presented in Chapter 3, in egs. (3.12), (3.18) and (3.20). They are rewritten in a simplified
form in egs. (4. 1 ) and (4. 2 ), with the notations in eq. (4.3).

x (1) = A7) (O coslp(?), v (1) = A7) (eoslg)), ai”(0)= AT cosld)) 41
A6 = X" (0)B, (to)exp[ [7. (r)drj 800y =0l O+ 0" + [ o,(@)dr
t0 t0

A =X (0B, ()

zn(z)|exp(j mr)dr] B0 =0l O+ + [ o,@dr (4 9)

AP ()= X (0B, (t,)|A, (@) exp[ j 7, (T)drj (D) =l (D) + oy + j o, (r)dr
t0 t0

X0 () =[u® ™ 0] B, (6) = 2/Cs, (1)
o (1) = argu® V@) e, (1) = arg(u (1)) 4.3)

(2n-1)

golEij @) = arg(ﬂz,Huzj )+ L'tg,"’l) (t)) Pl = arg(Cz,F1 (, ));

2

It can be observed that modal components in eq. (4.1), can be uniquely described by

a signal s(¢#) of the form s(¢)= A, (t)cos(P (¢)), where “s” stands for the modal
displacement x!”, velocity v{"’(¢), or acceleration a'" (r). The amplitude and phase angle

of s(¢) are as follows:

4,0 =X"(0B,(t)

li’l

' eXPU%, (r)drj

where k=0ifs=x§."); k=1 if s=v§.”); k=2 if s=a§.”); @.4)

@, = [cos:; Orol+ | o mdrj
t0

With the assumption of a slowly time-varying system, it has been shown in Chapter 3 that
" (t) << w, (), therefore the instantaneous frequency of each response in eq. (4. 1),

practically, does not depend on position “j” and is equal to @, (¢) up to the order of epsilon,

where epsilon <<1. On the same ground, the amplitude changes slowly in respect to the
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1 dA ()

instantaneous modal frequency o, (¢), 1.e. |—————
A () dt

‘<< o, (t). Therefore each modal

component has mono-frequency content and is asymptotic (see Section 2.4).

The normalized instantaneous (NI) mode shape was introduced in Chapter 3. Its
expression is repeated in eq. (4. 5 ), where the p’h mode shape component has been chosen
for normalization.

(n) (n) (n) (n) (n) T

o [S]fa & x a]

P (n) (m) (m) (n) (m) .
Xp Xp Xp Xp Xp

The separation of the modal responses and identification of NI mode shape and
frequency of each modal response can be done by wavelet analysis, either by CWT-ridge
method or WP decomposition in conjunction with Hilbert Transform. The theoretical

background of these two procedures is presented in the following.

4.2.2 Continuous Wavelet Transform — Ridge Method

CWT has the capability to separate mono-frequency components of a signal, each mono-
frequency component being represented on wavelet transform map as a band of high energy.
In the case of free vibration data, if the modes are well separated, each ridge on the CWT
map corresponds to a time varying vibration mode.

In the following, let us assume that the harmonic components of the response are

asymptotic and they do not interact, that means that the vibration modes are well separated.
Then, let us restrict the CWT to the time-scale domainQ  , where the wavelet coefficients of
all but the n™ response component are negligible. We denote this "™ component by s(t).

On the above assumptions s(t) is a narrow band asymptotic signal, which can be written in

the following form:

s(t) = A(t) cos(D(1)) 4.6)
where A(t) and ®(¢) are the time-varying amplitude and phase, respectively, which satisfies
dA (t
the condition |— ()«iw@y
A @) dt dt
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CWT ridge can be defined in two ways:

1. A ridge is defined as the set of points in domain Q characterized by a stationary
phase of CWT coefficients. An estimation procedure based on this definition was proposed
by (Delprat et al., 1992).

2. Alternatively, the ridge can be defined as those points in €2, where the modulus
of the wavelet transform is maximum (Carmona et al, 1997; Mallat, 1999). The estimation
algorithm based on this definition is more robust to noise and it is preferred in the present
study.

To calculate the CWT, the complex Morlet wavelet, defined in eq. (4.7) has been

chosen as mother wavelet.

w(t)= \/;Tb exr{— ;—J exp(i2zt’.1) (4.7)

b

This selection was based on the best time-frequency resolution and the simple analytic
formula which allows a better interpretation of the results. The wavelet transform of the

signal s(t) is given by eq. (4.8) (Mallat, 1999):

W, @b = exp(z'«b(b)){exp(— Q. —a®'(t) J— 8(b, e J] “.8)

4 a

It has been proven that the term g(b, e j in the above equation becomes negligible if 4(z)
a

and ¢ (f) have small variations over the support of the wavelet function v,, () and the

amplitude A(?) is slower varying as compared to the rate of change of @(#). As a result, the

wavelet transform coefficients can be approximated as:

4.9)

W, (a,b) = %\/ZA(b) exp(iCD(b))eXp(_ F,(2F, —a®' (D))’ ]

4

The coefficients are complex numbers, with the phase and modulus given by egs. (4.10) and

(4.11), respectively.
LW, (a,b) = D(b) (4.10)
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4.11)

‘Wf (a,b)‘ = %\/ZA(/)) exp[— ACLE ;acb'(b)) ]

The ridge is the curve a,iqe(b) representing the modulus maxima of the CWT coefficients. It
can be observed that the instantaneous frequency of the signal, can be found by, first,
identifying the ridge a,iqe(b) and, then, using the formula (4.12).

' (b) = 27F, [a,,, (b) 4.12)
The signal amplitude, A(b), can be found by a similar procedure. First, identify the ridge
and then use the formula in eq.(4.13).

A(D) = 2[ (@140, (0),5)] /140, (B) 4.13)
If the corrective term g(b,&) is negligible, by equations (4.12) and (4.13) we can
a

uniquely decompose the signal s(?) as A(¢) cos(P(?)) . It should be noted that A(t) and @'(¥)
are the analytic amplitude and instantaneous frequency of s(z), as obtained from the
corresponding complex analytic signal.

The results summarized in eqs. (4.12) and (4.13) are used in the Section 4.3 for
identifying the instantaneous modal frequencies and normalized instantaneous mode shapes
of a time varying dynamic system. It should be mentioned that the accuracy of the results
depends on the wavelet transform resolution. A discussion on time-frequency wavelet

transform resolution was given in Chapter 2.3.

4.2.3 Wavelet Packet Sifting Process

The wavelet packet sifting process may be used to identify the dominant vibration modes in
the response signal (Shinde and Hou, 2005). The binary wavelet packet decomposition is

performed on data, and a sifting criterion based on entropy index is used to select the signal
modal components. So, the signal can be expressed as a sum of sifted components s (¢)

and a residual signal 7, (7) .

S(f)=zs(i)(f)+rk(f) (4.14)
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Different sifting criteria can be used (Shinde, 2005), for example:

1. the entropy index defined as the difference between the number of zero crossings
and the number of extrema in a signal component corresponding to a particular node of the
wavelet packet tree. Those components which have an entropy index smaller than or equal

to unity are selected as the relevant components of the signal, s" (¢).

2. the energy-entropy which is defined as sum of the square values of the wavelet
packet decomposition coefficients for a given node. Each wavelet packet tree node is split
into two child-nodes if the splitting makes the energy-entropy decrease. If the criterion is not
satisfied anymore, the reconstructed signal corresponding to the given node is sifted as a
relevant component.

Among all wavelet packet components at a level, only those with more than a given
percentage contribution to the total signal energy are viewed as significant components that
are needed to be considered for sifting. Ideally, for the purpose of the present study, each
signal component, s (¢), should represent a vibration mode. However, contamination from
other modes is possible. The new sifting/stopping criterion introduced in Chapter 6,
guarantees that only those components which have a minimum contamination are selected

for identification procedure.

4. 3 Methodology: Identification of Instantaneous Modal Frequency and

Instantaneous Normalized Mode Shape

. Ve .
Given a set of response measurementss(z) = [s1 (0,5, (0), w258, (8), 58 5 (t)] , where s;(t) 1s

the /" component of the response vector s(t) and 1S is the number of measurements, we are
interested in identifying the instantaneous modal parameters of the system. The assumption

of slowly time-varying system is imposed.

4.3.1 Identification by CWT-ridge Method

First, the CWT of the signal s;(z) is performed. Let us denote the transform coefficients by

W, . Since the wavelet parameters are chosen such that the harmonics to be well separated
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on the CWT coefficient map, the n” ridge corresponds, predominantly, to the n” modal
component. Each ridge is analyzed separately and instantaneous modal frequency and
normalized instantaneous mode shapes are estimated. The procedure is summarized as
follows:

1. Start the analysis with a rough estimation of the frequency range of interest, say, from

fi(Hz) to f> (Hz). Choose the scale range (from a; to a;) according to the following

relationships:
Fe Fe (4.15)
a,=——, a,= .
LT A

2. Perform the CWT for the response signal and identify the bands of the higher coefficient
value on the coefficient map. To improve the accuracy and reduce the computational effort,
a zoom-in analysis can be performed with the scale range corresponding to each band.

3. Identify the ridge aigee(?) Which corresponds to the n'" time-varying vibration mode and

then, by using the eq. (4. 12 ), calculate the instantancous frequency ®'(¢). The function
n(t) = D'(¢) represents the n™ instantaneous modal frequency of the response signal. It

should be noted that the ridge aize(?) is the same if the other components of vector s(?) are
analyzed, provided the vibration modes are well separated and the system is slowly varying.

4. Calculate the normalized instantaneous mode shape by taking the ratio of modulus of
the CWT for signal s;(?) and signal s,(z) (which has been choose for normalization) for the

scales corresponding to the ridge @,igee(?), as shown in eq. (4. 16 ).

7, (@, 0),1)
.., (@340, (0,0)

X7 0= 4.16)

4.3.2 Identification by Wavelet Packet Sifting Technique and Hilbert Transform

When HT is used to find the instantaneous frequency and normalized mode shape from
sifted narrow band signals obtained from wavelet packet decomposing, the identification
procedure is as follows:

1. Perform wavelet packet decomposition and sift out the dominant vibration modes. Let us
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concentrate on the n” modal component, extracted from the response measured at location j.

2. Construct the analytic signal
O (0) = s (0)+ HT (s (1)) = A” (0)explig ™ (1)) 4.17)

3. Calculate the modal instantaneous frequency as the time derivative of the analytic phase

angle (zz(”) (z), as shown in eq. (4.12).
4. Calculate the NI mode shape as the ratio of the analytic amplitude of the signal sﬁ”)(t)
and the analytic amplitude of signal s;”) ().

A ()
A ()

XY (1) = =
J>p (n)
A4, (1)

4.18)

4.4 Applications: A 3DOF Mass-spring-dashpot System  with

Time-varying Stiffness

In the following, the identification procedure of instantaneous modal frequencies and NI
mode shapes is illustrated for the case of a 3DOF mass-spring-dashpot system with
progressive stiffness degradation. The CWT-ridge method is applied to free vibration
responses. For applications of WPS technique in conjunction with HT, the reader is referred
to Shinde (2005). A study of the sensitivity of the methods to measurement noise and
damage severity can be found in the author’s previous work (Hera et al, 2004) and in

Chapter 8.2 of this dissertation.

4.4.1 Simulation Setup

In order to validate the methodology, a linear three-degree-of-freedom system in Fig. 3.8, is
employed. All masses, M;, M, and M3, have the same value of 300 kg and all three springs
have an identical initial stiffness of 100,000 N/m. The system-damping matrix is
proportional to the stiffness matrix of the healthy system by a factor of 0.0002s. Damage is

modeled as a time-varying stiffness. It is supposed that it occurs during an impact test,
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simulated by a nonzero velocity at M3, after 12 seconds from impact time. During damage,
the stiffness K, of the spring connecting M; and M, decreases linearly as shown in Fig.

3.8(b). The simulation was run for 36 seconds, with a time increment (df) of 0.01 seconds.

4.4.2 Methodology and Results

The wavelet ridge approach applied to the acceleration responses is used in this example.

As a first step, the complex Morlet function with F, =5/dt=500s" and

F, =dt* =0.0001s* is chosen as the mother wavelet. The CWT is performed on the

acceleration response. Other measurements can also be used. A scale range from 10 to 500
which corresponds to a frequency from 10Hz to 1Hz is used in analysis.

Figure 4.1 plots the absolute value of the wavelet coefficients of the acceleration
response measured at M1. Three bands of high-value coefficients can be identified, which
indicates that in this scale range there are three wavelet ridges. The first band corresponds
to the scales from 350 to 450, the second band is from 125 to 150 and the last band is from
85 to 115. In order to improve the accuracy of the results and, in the same time, to reduce
the computational effort, the CWT will be performed separately, for each of the observed
bands, with a smaller scale increment. The computational noise in the absolute value of the
CWT coefficients is removed by a low-pass filtering technique applied first in the scale
domain and, then, in the time domain. To avoid the edge effect in the wavelet analysis only
the CWT coefficients for the time interval from 2.5seconds to 34seconds are considered in
identification.

Each identified wavelet ridge corresponds to a vibration mode. The corresponding
instantaneous modal frequency, calculated by eq.(4.12), is shown in Fig. 4.2(b). It is
observed that the instantaneous modal frequencies are constant for the first 12 seconds —
when no damage occurs, then slowly decrease as a result of the stiffness degradation. The
observed frequencies are in good agreement with the time varying stiffness history specified
in data generation. For verification, the instantaneous frequencies were also calculated by

solving the associated dynamic eigenvalue problem. The relative error between the
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calculated and identified results for each time instant is less than 1% and, as example, the

results for t=5, 15, 25, 30s are presented in Table 4.1.

Instantaneous modal frequency (rad/s)

1 mode 2 mode 3" mode
: Dynamic Dynamic Dynamic
Time (s) | cwt | 7 CWT | ° CWT n
eig.value eig.value eig.value
problem problem problem

5 8.12 | 8&.12 22.73 22.77 32.86 32.90
15 8.07 | 8.08 22.71 22.74 32.65 32.68
25 795 | 7.96 22.60 22.62 31.90 31.93
30 7.87 | 7.88 22.53 22.55 31.53 31.56

Table 4.1. Comparison of the modal frequencies obtained by CWT and solving the dynamic
eigenvalue problem at specified time instants.

The NI mode shape vectors can also be found from the identified wavelet ridges.
The mode shape component at M1 is chosen for normalization. The results are plotted in
Fig. 4.3. The relative error between the results from the wavelet approach and the dynamic
eigen-solution is smaller than 1%.

Note that a positive or negative sign, can be associated to the NI mode shape, using
the phase shift between the coefficients on the ridge corresponding to the analyzed and

normalization signals. If the phase shift is in the range [—72'/2,72'/2] the sign is positive,

otherwise the sign is negative.

4.5 Summary

In this chapter we proposed two techniques, namely CWT-ridge method and WP sifting
in conjunction with Hilbert Transform, for identification of instantaneous modal frequency

and normalized mode shape from free vibration response data.
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Figure 4.1. CWT spectrum of the acceleration response of M3
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First, it is shown that the free vibration modal responses of a slowly time-varying system are
asymptotic signals. Then, it is observed that the existing methods of identification of
instantaneous frequency of a signal, such as CWT-ridge method and Hilbert transform, are
based on the assumption that the analyzed signals are asymptotic. This assumption makes
the CWT-ridge method and the Hilbert transform-based techniques the perfect candidates
for the identification of instantaneous modal parameters. Both techniques first separate the
vibration modes and then identify the instantaneous modal frequency and instantaneous
normalized mode shape. The CWT-ridge method is illustrated for a 3DOF system with
progressive stiffness degradation. The identified results are very close to the theoretical
ones obtained by means of the dynamic eigen-value problem. For an illustration of the WP
sifting technique in conjunction with Kalman filter the reader is referred to to (Shinde and
Hou, 2005; Shinde, 2005), where a similar numerical example was used. The sensitivity of
the methods to damage severity and the robustness issues in the case of noisy data are

presented in the author’s previous work (Hera et. al., 2004) and in Chapter 8.2.
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Chapter 5

IDENTIFICATION OF INSTANTANEOUS NORMALIZED
MODE SHAPE FROM FORCED VIBRATION DATA
AND APPLICATIONS TO SHM

5.1 Introduction

Using a wavelet based approach, instantaneous modal parameters can be extracted and their
evolution may be monitored to assess the health condition of a structure. The approach has
been successfully applied to the case of impulse response or free-vibration data (Chapter 4).
However, the respective approach would be less accurate for the forced vibration data due to
the interference between the system frequency characteristics and the dominant frequency
content of the excitation. This section presents a health monitoring technique for structures
subjected to stationary and non-stationary excitation using instantaneous mode shape
information. The normalized instantaneous mode shape is estimated from the forced
vibration response by using a wavelet packet sifting technique. In order to validate the
results, a confidence index, calculated using the instantaneous frequency of the sifted
signals, is defined. It is found that the identified normalized instantaneous mode shapes in
conjunction with the corresponding confidence indices can be effectively used to monitor
damage development in the structure. The effectiveness of the proposed approach is
illustrated for an example from civil engineering. It is assumed that the structure is lightly
damped and can be treated as a linear slow time-varying system in the case of progressive

damage or linear before and after damage in the case of sudden damage. A three-degree-of-
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freedom building structure subjected to a ground motion signal is used to simulate the
response at different floors. Two damage scenarios, sudden stiffness loss and progressive
stiffness degradation, and different base excitations including three real earthquake signals, a
random signal and few harmonic signals are considered. Consistently good results were
obtained in all cases. Issues related to robustness of the method in the presence of

measurement noise and sensitivity to damage severity are discussed.

5.2 Methodology

5.2.1 Instantaneous Modal Parameters in Forced Vibration Responses

The concept of instantaneous modal parameters has been explained in Chapter 3. For
completeness, the relevant information for this section is summarized here. It has been
shown that if the following assumptions hold:
1. The system is linear and slowly time varying as defined in eq. (3.10), and a linear
time invariant is considered a particular case. Also, the case of a piecewise linear
system is included here.

2. The excitation does not have components of significant energy, whose frequency
is in the vicinity of or less than d(p",(1))/dr (where s=x, v, ).
the response of a structure with damage can be written as a weighted sum of modal

responses, as expressed in eq. (5.1).

n _ Agj?(t)COS( )EZ-))

M=

X, =

| X

(
J

I‘l

=
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\<A
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A(")(t)cos( (:’/.)) (5.1a)

=
I

n

a; Z A(”)(t)cos(¢("))

Mz

aj =
n=1 n=1
800 = @ () +arg(q,,., (1)) o (1) = arg(u® (1))
B (1) = ol (0) +arg(q,, (1) ol (0) = argul ™ (1) (5. 1b)
8" (t) = g (1) +arg(q,,, (t)) o (1) = arg(A,, w40
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Moreover, the modal amplitudes are proportional to the mode shape components, as can be

seen, in eq. (5. 2 ), and {d (go(”)(t))/ dt, where s =x, v, a}, practically, does not depend on

5.
measurement location/DOF, here specified by .
A0 =2X " (0], ()
A (O =2X 7|4, |2, (1)
A7 (0= 2X [, 1)

The notations in the above equations are as follows: (n) represents the vibration mode,

(5.2)

x;,v;,a; denote the displacement, velocity and acceleration, respectively, measured at = 5

measurement position (DOF), A, | represents the dynamic eigenvalue (2n-7) and ujz"_l) is

the j” component of the dynamic eigenvalue of the elementary mode (2n-1), q,,,(t) 1s the
elementary modal coordinate (2n-1). More details and other notations can be found in
Chapter 3.

The instantaneous modal frequency and instantaneous mode shape have been defined
based on the dynamic eigenvalue problem and the free vibration response, as shown in egs.

(5.3)and (5. 4).
w,t)=0,,() = Im(ﬂ?nfl (t)) (5.3)

X7 = [ O 0

Jug o] (5.4)

The normalized instantaneous (NI) mode shape was defined as the instantaneous mode

shape vector normalized by one of its components which is different of zero, i.e. the p”

component in eq. (5.6). A new notation is introduced, X ﬁ";, which represents the ;”

component of the n”" mode shape vector normalized by the p” component.

(n) ) n (n) m 1"
X(n)(l)_{x }_{Xl at X” Xy _
Ip - (my | (m) (n) (n) m | =
XP XP XP XP XP (5 5 )
_[ym (n) (n) (n) m |
- [Xl,p X2,p o prl,p 1 Xpﬂ,p XN,p
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5.2.2 Identification of the Normalized Instantaneous Mode Shape

In order to identify the instantaneous modal parameters, the modal response x" (¢) needs to
be separated from the vibration data. If the above assumptions are satisfied the normalized
instantaneous (NI) mode shape can be calculated using concepts specific of the analytic
signal. The analytic signal X" (¢) is a complex signal having the original signal x"(¢) as
its real part and Hilbert transform of the original signal as its imaginary part. The normalized
instantaneous mode-shapes can be calculated as the ratio of the analytic amplitude of the
modal response xﬁ”) (¢) and the analytic amplitude of the normalization signal x;”) (t):

o
A" (1)

X =

Jlp (t) =

where A" (t) and A" (t) refer to the analytical amplitudes of the signals x'"(¢)and

(m) :
x," (1), respectively.

5.2.3 Practical Issues in Identification of Instantaneous Modal Parameters

There are two practical issues in calculating the instantaneous mode shape, the first
one is related to the separation of the modal responses, while the second issue is related to
the assumptions we made in the Subsection 5.1.

Modal Separation

As previously mentioned, in order to identify the mode shape, it is necessary to sift out, from

the measured response data, the n” vibration mode of interest, x™ (¢). This can be

accurately done in the case of a free vibration response, where each modal response can be
described as a signal with mono-frequency content and slow time varying amplitude. Thus,
the modal components can be sifted out and the instantaneous natural frequency and
normalized mode shape can be accurately identified and use for SHM (Chapter 3).

When a structure is subjected to other excitations, the separation of each modal
component in the vibration response is not as evident as in the case of the free vibration

response. Moreover, if some damage happened in the system during this excitation period,
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due to the time varying structural properties, the classical Fourier transform based
deconvolution technique cannot be applied to deconvolve the impulse response from the
vibration response. This fact rules out the possibility of obtaining impulse response of a
structure to accurately calculate the instantaneous modal parameters. However, in the case
of a structure subjected to a broadband excitation, the energy of the vibration response is
concentrated in frequency bands corresponding to the instantaneous natural frequencies of
the structure. This property is further used to sift out the signals of interest by a wavelet
packet sifting (WPS) technique explained in details in (Shinde and Hou, 2005).

The methodology can be illustrated in a better way by representing the signal energy in
time-scale (frequency) domain. The signal energy is graphically shown with help of the
continuous wavelet transform (CWT) maps. Here, complex Morlet wavelet with center
frequency of 500 Hz and bandwidth parameter of 0.0001s” has been used as mother wavelet.

Without loss of generalization, the methodology is explained for a linear 3DOF
system sketched in Fig. 5.1, subjected to a nonstationary base excitation, which is the El-
Centro earthquake signal. The structural response is simulated for the case of no stiffness
loss. The CWT map of the excitation is presented in Fig. 5.2, whereas Fig. 5.3 shows the
CWT map of the acceleration response (with respect to ground) at location M1.

Three significant energy bands can be identified in the areas corresponding to the
instantaneous natural frequencies of the structure (Fig. 5.3). Therefore, from point of view
of the energy distribution in the time-frequency domain, the response at location/DOF ”j”

can be expressed as:
x, () =sP@O)+sP @O+ () +r, (1) (5.7)

where sj.”) () 1s the signal component of the response measured at j DOF, whose energy is
localized in a band corresponding to the n” natural frequency, i.e. from /™ to f, and
r; (¢) is a residual signal. The components sﬁ.’” () will be sifted out from the response by
using a wavelet packet sifting process.

Combining eq. (5.7) with the modal decomposition of the response in eq, (5.1a), a

decomposition of the response on frequency bands is obtained, as shown in eq. (5.8).

85



- |

A A A A A A A

%
[

ground acceleration

Figure 5.1. A sketch of the 3DOF mass-spring-damper system used in simulation study
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Figure 5.2. CWT map of the El Centro earthquake signal. NS component recorded at Imperial Valley
Irrigation District substation in El Centro, California, during the Imperial Valley, California earthquake
of May, 18, 1940
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5= 0= O+ n 047 @)+ o 0) 5.8)

3
n=1 n=1

where 77.5.”)”‘ (1) is that part of the modal response xﬁ.”)(t), whose energy lies in the
frequency range from £ to f*), where k=1,2,3, and can be expressed as a product
between X J(.”) (¢),, which is slow varying, and a fast varying term whose frequency is in the
range from £ to £,*) and does not depend on position *” , i.e. 77;.")”‘ =X ;.’” WV (@).

A significant part of the energy is concentrated in the component 7" (¢), and this is
illustrated in Fig. 5.4 which shows the CWT map of the simulated first modal response,

x{" (7). Combining eqgs. (5. 7 ) and (5. 8 ) it results that the sifted component s'”(¢) can be
written as follows:

SO0 =70 0+ 7P 1)+ 7 (1) (5.9)
Therefore, the sifted component s;”)(t) may not necessarily be the desired pure n™ modal

response, but is a combination of the most significant part of n” modal response and the less
significant components corresponding to the modal responses due to other modes. This leads
to small errors in the results for the n” instantaneous mode shape vector. A confidence
index, defined in the next section, can be used as a measure of these errors introduced by the
interference of the modal response of interest with other modal responses in the sifted
components. On the same token, the confidence index covers also the case when the
vibration modes cannot be separated well due to the limited time-frequency resolution of the
wavelet analysis.
Assumption of slowly time-varying system and frequency content of excitation

Another issue is related to the assumptions that the system is slow-time varying and

the excitation does not have components of significant energy whose frequencies are in the

(n)

us,j

vicinity of or less than d ((p (t))/ dt (where s=x, v, a). These two assumptions ensure that

the modal responses at different DOFs have the same instantaneous frequency and the modal
response amplitudes are proportional to the corresponding mode shape components. If these

assumptions are not satisfied, the instantaneous frequency of the sifted modal components
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will not be the same for all DOFs and errors will be introduced in the calculated mode
shape. The deviation of the confidence index from the unity value includes also the

departure from these assumptions.
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Figure 5.3. CWT map of the acceleration response measured at M1.
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Figure 5.4. CWT map of the simulated first modal response, x;” (t)
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5.2.4 Confidence Index (ClI)

™1(¢), and the assumptions in

If the modal separation is perfect, i.e sﬁ.”) =X ;")(t)v
Section 5.2.1 hold, the analytic signal corresponding to the sifted component from the
vibration response measured at DOF j, s;”)(t), can be expressed as shown in eq. (5. 10 ). It

can be observed that there is an amplitude part which depends on measurement location and

a complex exponential part independent of location.

5U() = s () +HT (s (1) = X (1) 4™ (1) explig” (1)) (5.10)
The instantaneous frequency of s'" (¢) is defined as:

" (1) =dﬂ%;(’)) (5.11)

In practical applications there are interferences with other modes and the assumptions in

Section 5.1 are not completely satisfied. All of these will be reflected in the instantaneous

frequencies of the signal s'"(¢), which will loose its independency of location/DOF. Based
on this observation we define a confidence index as the ratio of the instantaneous frequency
of the analytic signals 5" (r) and 5" (¢), as expressed in eq. (5. 12)

(n)
;" ()
®," (1)
When there is an insignificant mode mixture and assumptions in Section 5.1 are practically

satisfied, the frequency content of the two signals Ej(”) (¢) and 'E!f") (t) remains the same and

the ratio of amplitudes gives the correct instantaneous mode shape component, i.e.

7
X5 =§<—)§3 (5.13)
p
In this case, the confidence index shows unit value. For a practical implementation, a
confidence index which validates the corresponding instantaneous mode shape component
needs to be in a range close to 1, generally 0.98 to 1.02, with an ideal value equal to one.

The range [0.98 : 1.02] has been chosen based on a sensitivity study, using different types of
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excitations. The deviation of the CI may also be caused by measurement noise, insignificant
participation of the mode of interest, and nonlinear behavior of the structure. For those time
intervals when the confidence index is beyond this range, the identified normalized mode
shape component may show some deviation from exact values and may not be reliable for

damage monitoring.

5.3 Applications: A 3DOF Mass-spring-dashpot System with

Time-varying Stiffness

5.3.1 Simulation Set-up

In the present study, simulated vibration response of a three degree-of-freedom spring-mass-
damper chain model shown in Fig. 5.1 is analyzed. The system can be considered as a scaled
model of a three story building. All masses have the same value of 300 Kg, initial stiffness
of each spring is 100 KN/m and the system damping is assumed to be a Rayleigh damping,
the damping matrix being proportional to the stiffness matrix with a factor of 0.0005. The
natural frequencies of the healthy structure are 1.29, 3.62 and 5.23 Hz. In order to evaluate
the effectiveness of the proposed method, the structure is base excited with 5 different

excitation signals, namely:

1. Kobe earthquake signal: NS component recorded at Kobe city, Japan during the
Kobe earthquake of Jan 17, 1995.

2. Hachinohe earthquake signal: NS component recorded at Hachinohe City during the
Takochi-oki earthquake of May, 16, 1968

3. El-Centro earthquake signal: NS component recorded at Imperial Valley Irrigation
District substation in El Centro, California, during the Imperial Valley, California
earthquake of May, 18, 1940

4. Random excitation signal modeled as a Gaussian white noise discrete process with
zero mean and RMS value of 0.5 m/s”

5. Harmonic signal of different frequencies and intensity of 5m/s.
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The time history and the Fourier spectrum of the excitation signals 1-4, are shown in Fig.
5.5. The sampling frequency was 100 Hz and only the first 40 seconds of the records are
considered in the present study in all cases except the case of Hachinohe earthquake, where
the signal record has 36 s.

Damage in the structure is simulated by reducing stiffness of one of the springs by a
certain amount. Two damage scenarios, namely sudden damage and gradual stiffness
degradation, are considered here. A sudden damage is simulated by reducing stiffness of
spring K1 at t=12s, whereas the gradual stiffness degradation is simulated by a linear
stiffness reduction of spring K1 from t = 12 to 36s. A damage level of 20% is considered
here. This relatively higher damage level is used for an illustration purpose and a damage
sensitivity study of the method is also performed in the later part.

The performance of the proposed approach in presence of measurement noise is
evaluated for one of the case of Hachinohe earthquake by adding noise to all vibration
acceleration responses. . The measurement noise is simulated using a time step of 0.01s as a
discrete Gaussian white noise process with zero mean and RMS value of 5% of the RMS
value of third floor acceleration signal over a time interval of 36s . The 5% noise level is
justified with the fact that in the case of an earthquake excitation, as the ground acceleration
is very high and the measuring instrumentation is very sturdy, the measurement noise is of a
fairly low level in comparison to the measured signal.

Discrete Meyer wavelet has been chosen as mother wavelet. The confidence index is
used to improve the sifting results. After finding the node which satisfies the energy-
entropy criterion, one more level of decomposition is performed and from these three nodes
we select for the sifting process the node characterized by the best confidence index. Only
the significant signal components, defined as those components whose energy contribution
to the total signal energy is bigger than 5%, are sifted out.

In this study, the effectiveness of the proposed method, effect of measurement noise,
and effect of damage severity is evaluated for a sudden damage scenario and discussed in
detail in Sections 5.3.2, 5.3.3 and 5.3.4. The applicability of the approach for monitoring

progressive damage is illustrated in Section 5.3.5.
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5.3.2 Normalized Instantaneous (NI) Mode Shape and Confidence Index (Cl)

In the case of a multi-story building, modal parameters calculated based on inter-
story acceleration signals are more sensitive to damage as compared to those based on
relative acceleration with respect to ground. Therefore in the present study the normalized
instantaneous mode shape information and the corresponding confidence index is extracted
from the inter-story acceleration data. The relationship between the mode shape components
calculated in this way and those calculated using the relative acceleration with respect to the
ground is as follows:

Xl(") Xyl) _Xl(") X}(") _Xz(ﬂ)
Xl(n) Xl(n) Xl(n)

T
n n n T
X" = } = xv xo (5.14)

where X 5;)1 is the /" component extracted from the relative acceleration between the /” and

the p™ floors, and normalized by the first component of the mode shape vector X ™ The

NI mode shape components along with corresponding confidence indices are used to
monitor the health condition of the structure.

Fig. 5.6 shows the identified NI mode shape components for the first vibration mode
and the corresponding confidence index, when the structure was excited by Kobe earthquake
signal. The theoretical values obtained by solving the system eigen-value problem at each
time step are also plotted as a dotted line for comparison. The NI mode shape value is
changed in the region of t = 12s indicating damage in structure. The results for NI mode
shape components are in quite good agreement with the theoretical results along the whole
time interval except in certain regions where the confidence index is not in a validation
range of 0.98 and 1.02.

The NI mode shape components for the second vibration mode and the
corresponding confidence index plots are shown in Fig. 5.7. The values of the mode shape
components are changed around t=12s. The results for mode shape fluctuate around the
theoretical results when the confidence index is out of the validation range. The confidence
index is very bad in initial region due to the interferences of the first mode components in

the frequency range of interest.
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The NI mode shape results for the third vibration mode are not shown as the
contribution of this mode to the total signal is very low and the confidence index is out of
validation range.

Figure 5.8 shows results obtained for NI mode shape components of the first
vibration mode when the structure was excited by the Hachinohe earthquake signal. The NI
mode shape shows change in the region of t=12 s and the results show deviation from the
exact values when the confidence index deviates from the unity.

The results of the first NI mode shape when the structure was excited by the El-
Centro earthquake signal are shown in Fig. 5.9. The change in value of the NI mode shape at
t=12 sec indicates damage in structure. The confidence index is more fluctuating as
compared to the respective results for Hachinohe earthquake signal. These fluctuations are
also reflected in NI mode shape results.

In order to evaluate the effectiveness of the proposed approach for a random
excitation, the structure was excited by a signal modeled as a Gaussian white noise process
with zero mean and RMS value of 0.5 m/s*>. NI mode shape varies exactly as theoretical
values as shown in Fig. 5.10 and shows change in values when damage was introduced in

the simulation of the response.

Comments

The results of NI mode shape for the first vibration mode have shown good agreement with
the theoretical values for all of the four excitation signals as shown in Figs. 5.6 — 5.9. A
permanent change in NI mode shape corresponding to the first mode clearly indicates
stiffness loss of the structural member. One of the common observations in all these figures
is that at the points where the confidence index values deviates from the ideal value of 1, the
deviation in the NI mode shape value at the corresponding points can be observed. Moreover
the deviation of the NI mode shape results is proportional to the deviation of the confidence
index value at corresponding point. This is evident because the deviation of confidence
index from unit value indicates that either the mode is not excited at that point or there is a

contamination of other mode components. The larger the contamination, higher the
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deviation in mode shape value. The confidence index value thus indicates the reliability of
the results obtained.

It is also observed that the results obtained in case of Kobe earthquake excitation

(Fig. 5.6) are the best among the results, whereas the ones obtained with EIl-Centro
earthquake are more fluctuating when compared with respective theoretical values.
In case of Kobe earthquake, the excitation signal strength after t =12 s is very low which
results in insignificant contribution of the forced vibration response to the total acceleration
response. Since the signal is a nearly free vibration response, the modal components lie only
in the vicinity of the instantaneous natural frequencies of the system and the mode mixture
in the sifted signal is insignificant. Because of very low possibility of mode interference, the
NI mode shape values are accurately identified except at the point of damage where the
values are slightly different from theoretical results. In contrast to the Kobe earthquake, in
the case of the El-Centro signal, relatively higher contribution of forced vibration response
increases the mode mixture, which in turn, affects the mode shape results. This observation
is also supported by the confidence index values. Even if there are some fluctuations in NI
mode shape results, these fluctuations are smaller and can be clearly distinguished from the
permanent change of NI mode shape value due to structural damage.

In the case of Kobe earthquake, the excitation signal intensity after t =12 sec is very
low which results in insignificant contribution of the forced vibration response to the total
acceleration response, or equivalently, the signal becomes a nearly free vibration response
and, in turn, the mode interference due to the presence of excitation is greatly reduced. As a
result, the NI mode shape values can be more accurately identified except at the point of
damage where the values are slightly different from theoretical results. This observation is
also supported by the confidence index values.

In contrast to the Kobe earthquake, the El-Centro earthquake signal is of relatively
high magnitude over the whole time interval. The mode interference resulted from the
strong presence of the excitation over the whole time interval would reduce the accuracy of
the presented approach, as observed. This observation is also supported by the confidence

index values.
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It can be noticed that the change in the first NI mode shape due to damage in case of
Hachinohe earthquake (Fig. 5.8) is smoother as compared to the corresponding results
obtained for remaining excitation signals. This rate of NI mode shape value depends on the

level of decomposition used in the WPS technique (Shinde and Hou, 2004).

5.3.3 Effect of Measurement Noise

The simulation data used in the study so far didn’t consider measurement noise. In order to
evaluate the robustness of this method in presence of a measurement noise, a ‘5%’ random
noise was added to the vibration response obtained for the structure excited by the
Hachinohe earthquake signal. The results in Fig. 5.11 show that the damage can still be
detected and the methodology is robust in presence of a measurement noise.

If the results are compared with corresponding results in the absence of noise (Fig.
5.8), it can be observed that the deviation of the NI mode shape results and corresponding
confidence indices from the exact values in region of t=25sec is further amplified by
inclusion of noise. The significant large deviation of the confidence index indicates that the
NI mode shape results obtained in this region are not reliable. The noise level is specified as
5% RMS value of the acceleration response of the third floor for the total time interval of 0-
40 seconds. However, in the vicinity of t=25s the amplitude of the signal is locally low,
which leads to much severer noise contamination locally, as compared to the overall level of
“5%”. It has been checked for the simulation data that in the time interval of 23s — 28s, the
RMS of the added noise represents approximately 25% of the RMS of the acceleration

response signals in the same time interval.

5.3.4 Effect of Damage Severity

The damage level simulated in the study so far was 20% and was employed to illustrate the
concept of this methodology. In a real life case, damage in structural member may not be so
large. The sensitivity of this method to damage level is analyzed by comparing the NI mode
shape results for first mode, in case of three different stiffness loss values i.e. 5%, 10% and

20%. The results are shown in Fig. 5.12. It can be observed that with the increase in damage
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severity, the change in NI mode shape becomes more recognizable. The change in the NI
mode shape for damage level of 5% is relatively smaller and in order to detect this much

small damage, a very good confidence index is necessary to validate the results.

5.3.5 Monitoring Gradually Developed Damage

There are cases when damage evolves gradually during a seismic event. In order to study the
effectiveness of the method in this situation, a gradual stiffness degradation case with
Hachinohe earthquake signal as a base excitation is considered. Fig. 5.13 shows results
obtained for NI mode shape and the corresponding confidence index. The NI mode shape
components shows a gradual change in their values for the time interval when damage was
introduced in the simulation. For a comparison purpose, the theoretical values are shown by
dotted line on the same plots. Good agreement between the results is observed. The
confidence index is in the validation range for the whole time interval except the end

regions, where due to the end effect the results are unreliable.

5.3.6 Effect of Excitation Frequency

Excitation signals 1-4 can be described, from frequency content point of view, as broad-
band signals. In the following, we will focused on identification of NI mode-shape when the
system is subjected to a harmonic signal with constant frequency, which is considered an
extreme case of a narrow band signal. In order to isolate the effect of a harmonic excitation
on identification results, we change the simulation setup by analyzing, first, the healthy
(time invariant) system. Also, the mode shape is defined using the acceleration responses in
respect to the ground as shown in eq. (5.15), and not the inter-story accelerations, as

previously used.

T
X(ﬂ) X(ﬂ) X(ﬂ)
X\gn) B |: 1(n) %n) 3(n) = [1 Xénl) X3(’i) T’n = 1’2’3 (5 15 )
Xl Xl Xl
In this discussion, we will consider only the first vibration mode; however, the conclusions
can be extended to for the other vibration modes. Figure 5.14, shows the identified mode

shape components and confidence indices for different force excitations.
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A brief description of the plots is given in the following. Each figure, identified by
its title, contains the results obtained from the response of the system excited by a sinusoidal
excitation of constant frequency of value written in the figure title. The upper window shows
the second (green color) and the third (cyan color) components of the identified NI mode
shape. Due to the normalization procedure the first component of the NI mode shape is
unity. The exact values of the mode shape components are plotted on the same window, by a
blue dot line. The confidence indices are plotted in the lower window, by the same color as
the corresponding IN mode shape components, i.e. green and magenta. The validation range
(0.98-1.02) is marked by black dot lines.

Good results are obtained if the excitation frequency is not very close to the natural
frequency of the vibration mode of interest (here, if excitation frequency is bigger than 1.8
Hz and smaller than 1.1 Hz.). If the excitation is close to the natural frequency, due to the
limited time-frequency resolution of wavelet analysis, the forced and free vibration modal
responses cannot be separated completely. In this case the mode shape components and
confidence index show big oscillations (as can be observed in Fig. 5.14 (d,f). However, for
an excitation of 1.30 Hz, which is about the same as the natural frequency of the first
vibration mode, that is 1.29 Hz, the results are in agreement with the theoretical values. The
explanation is based on the fact the first vibration mode is exceedingly excited, and the
forced response due to other vibration modes is insignificant. If the excitation frequency is
not known in advance, the results can be misleading, since the forced component of the
response can be interpreted as another vibration mode, which may appear due to damage in
the structure, since it is known that damage can introduce additional DOFs.

The results for a system with progressive damage, after the scenario specified in
Simulation Setup, and an excitation frequency of 1Hz, are presented in Fig. 5.15. Fig.
5.15(a) shows the mode shape components, Fig. 5.15(b) presents the confidence index, and
Fig. 5.15(c) plots the instantaneous frequency of the sifted component from the response at
the first floor. The waving shape of the instantaneous frequency of the sifted signal is an
indication that the sifted signal has some traces of the forced component. Good results for

the confidence indices and mode shape components are obtained. The quality of the results
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will be affected if the excitation frequency is close to the natural instantaneous frequency of

the system and the sifting process cannot separate the free modal response from forced

response. This separation can be possible if we go to higher decomposition level, but in that

case the time localization will be very poor.
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Figure 5.5. The excitation signals used in the study
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5.4 Summary

The normalized instantaneous (NI) mode shape vectors in conjunction with respective
confidence indices can be effectively used to monitor health condition of structures
subjected to earthquake excitation. Irrespective of base excitation signal, the NI mode shape
value changes with subsequent structural stiffness loss and the change is in proportion with
damage severity. Both damage types, i.e. sudden as well as progressive stiffness
degradation, can be monitored and the trend of NI mode shape values can be used to identify
the nature of damage in structure. The measurement noise does not significantly affect the
results. The identified NI mode shapes are reliable for SHM when the corresponding
confidence index lies between 0.98 and 1.02. The acceptable range of the confidence index
was selected mainly by a sensitivity study. A further investigation on guidelines for

selection of an appropriate CI range for a given application is needed in the future.
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The method is proposed to be used as a preliminary structural damage identification
technique in the aftermath of an earthquake event, when a quick decision regarding
structural safety and management of the inspection resources has to be taken. In case of an
observed change in the NI mode shape, further investigations are recommended in order to
quantify and localize damage.

Few assumptions are made in this section. The structure considered is lightly and
classically damped and has well separated vibration modes. It is assumed that a system with
slow stiffness deterioration is approximately treated as a linear slow time-varying system
and a system with a sudden damage is treated as linear before and after the damage and the
excitation is broadband in comparison to the system natural frequencies. The approach
works also for a narrow-banded excitation provided that the dominant frequency content of
the excitation is either in the range of resonance or well separated from the system
frequencies. In this case, knowledge of the excitation frequency is important in order to
differentiate between forced and modal components of the response.

Several issues need to be further investigated. For example, the proposed approach
needs to be tested for real vibration measurements from either experiments or true seismic
events. In contrast to the stationary case, a time misalignment of the measurement records
may introduce significant errors in identification of the instantaneous mode shape vectors.
A change in the instantaneous modal parameters reflects structural nonlinearity that may not
only be associated with structural damage and certain criteria need to be developed to
identify the changes associated with damage. A preliminary study addressing the presence
of a bilinear component in a 2DOF system can be found in Chapter 7. Further studies for

other types of nonlinearities and complex systems are required.

105



Chapter 6

WAVELET PACKET AND KALMAN FILTER FOR
IDENTIFICATION OF INSTANTANEOUS NATURAL
FREQUENCY AND DAMPING RATIO

6.1 Introduction

Since change in structural health condition has as effect change in the natural frequency and
mode shape, the instantaneous values of these parameters are of great importance in SHM.
In Chapter 5, the normalized instantaneous mode shape was identified by the WPS
technique and HT. A confidence index, defined as the ratio of the instantaneous frequency
of the sifted signals from two different measurement locations, was proposed to ensure
quality of the results. While the identified instantaneous frequencies of the sifted
components of the measured responses may be used for SHM, in most of the cases they are
not the instantaneous natural frequencies, and they may be related to the frequency content
of the excitation.

In this section, a time-varying Kalman filter technique is integrated with the wavelet
approach to identify the instantaneous natural frequencies and, also, the instantaneous modal
damping ratios. The physical significance of the sifted components is assured by introducing
a new sifting criterion based on the confidence index.

The potential of the proposed approach is demonstrated by a simulation study for a
two-degree-of-freedom system with progressive damage and subjected to two sets of

excitation: one is a sample generated from a filtered Gaussian discrete process and the other
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is a true ground acceleration measurement. Good estimates for instantaneous modal
parameters are obtained. The effectiveness of the method in the presence of measurement

noise is also addressed.

6. 2 Theoretical Background

In order to identify the instantaneous modal parameters the following concepts are
employed: time varying modal decomposition and the second order system formulation for
time varying vibration modes, instantaneous frequency, wavelet packet decomposition and
Kalman filter. Since most of these concepts have been already presented in the previous
chapters, this section will only briefly describe the discrete Kalman filter; more details can
be found in (Brown, 1983).

Discrete Kalman filter is employed to estimate the instantaneous modal parameters
of time varying vibration modes identified by the sifting process. The discrete Kalman filter
is a well established algorithm for estimation of the state vector x € R" of a discrete-time
process that is governed by the linear stochastic difference eq. (6.1)

x[k+1]= A[k]x[k]+w[k], (k=12,--) 6.1)
with a measurement y[k] described by:

yIk] = CIKIx{K] + VK] 6.2)
where [k] refers to the discrete values at time step #[k].

The random variables w[k] and v[k] represent the process and measurement noise,
respectively. They are assumed to be independent, zero mean Gaussian white processes,
with the variances as:
Q[k]=E < w[k]w[k]" >
R[K] = E < V[kV[K] > 6.3)
where E < > stands for the mean value of the variable in the parentheses.
Adding the assumption that the prior state has a Gaussian distribution, Kalman filter gives

the best state estimate in the sense that the square norm of the estimation error is minimum.

Kalman filter works in a predictor-corrector manner by first predicting the values of
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the state variables using the dynamic model, and then correcting them based on the new
measurement and the measurement equation. With following notations:
X[k | k—1] - the estimate of x[k] given the past measurements up to y[k];
X[k | k] - the updated estimate of x[k] given the last measurement y[k];
Pk | k]=E <[x[k]— X[k | k]][x[k]— X[k | kK]]" > - the error covariance matrix
Plk|k—1]=E <[x[k]-X[k | k—1]][x[k]- X[k | k-1]]" >
the two stages of the Kalman filter algorithm can be summarized as shown in egs. (6.4) and
(6.5).
Prediction (time update) equations:
X[k|k—1]1=Alk—-1]X[k—-1|k—1]
Plk |k —1]= A[k —1]P[k —1| k —1]A[k —1]" + Q[k —1] (6.4)
Correction (measurement update) equations:
K[k]=P[k |k -1]C[k]" (C[k]P[k | k—11C[k]" + R[k])_1

K[k | k)= K[k | k —1]+ K[K](y[k] - C[kIX[k | k —1]) 6.5)
P[k | k]= (1 - K[K]C[K])P[k | k1]

The Kalman gain, K[k], in eq. (6.5) was obtained by minimizing the square norm of the

estimation error, that is: atmce(P[k L ]) -
oKk | k]

6.3 Methodology

6.3.1 Instantaneous Natural Frequency and Modal Damping Ratio

In this chapter, we use the second order formulation for real time-varying vibration mode,
since here the natural frequency of the system appears explicitly.
The dynamics of a system with damage can be described by a set of differential

equation with time varying coefficients, as shown in eq. (6. 6 ).

Mx(¢) + C, (1)x(2) + K(#)x(¢) = £(1) 6.6)
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If the slow varying criterion is satisfied, the response of the system, x(z), can be

decomposed in a sum of vibration modal responses, x""(¢), characterized by the same

instantaneous frequency for different measurement locations.

x(1) =2 x" (1) (6.7)

n=l

It has been proved in Chapter 3, that each time-varying vibration mode can be

described by a second order equation with time-varying coefficients, as shown in eq. (6.8).

i 7(0+28, 0Q,0%," O+ Q0x, " (1) = £ (0,5 (1) = x¢" i (ty) = & 6.8)
where f")(t) represents the modal force and is given in eq. (3.54), and x\" (), %" (¢,) are
the initial conditions expressed in eq. (3.49). Q (¢) and & (¢) are called the n™
instantaneous natural frequency and instantaneous modal damping ratio. f j(”)(t) is a time

varying weighted sum of forces which are applied to the structure. For example, in the case

of a base excitation, i.e. ground acceleration denoted by a, (), the modal force, f’ ].(i)(t), can
@D gy — () - . . (n) . .
be expressed as f;"(1) = F;"' (t)a, , where the load participation factor F;"(¢) is a function

of time and location j, as shown in eq. (6. 9 ).

-1
. (2n-1)_  (2n-1)*
FO) () = 2zIm(uj uy; ) ot | ..
j ( ) - _u(z,,_l)* vN-%—l,~-'2N ( ) (6 9 )
j -1

Without loss of generality and just for simplicity of the explanations, the base excitation is
considered in the following.
Since Kalman filter which gives an optimal solution for linear systems, the time

varying modal stiffness and modal damping are introduced as shown in eq. (6.10) .

k, =Q.c, =25, (09,1 (6.10)

With these notations, eq. (6. 8 ) gets linear in the unknown ¢, ,k, and Fj(”)(t) . This equation

can be written in vector form as:
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X0+, O W)+ k,(Ox"() = F (Da, (@) (6.11)

The identification of instantaneous modal parameters can be summarized as follows:

first, the modal responses Xig")(t), x;")(t),x;")(t) are extracted by a wavelet packet sifting

technique and then k,, ¢, and F ].(”)(t) are estimated by a Kalman filter technique. In case

multiple excitation forces are applied to the structure, the RHS of equation (6.11) should be
reformulated and some other unknowns are added to the estimation set.

The instantaneous natural frequency and instantaneous modal damping ratio will be
calculated using the following formula:

¢, (®)

Q, (1) =k, (0).¢,(6) =7 o (6.12)

6.3.2 Extraction of Modal Responses by Wavelet Packet Sifting Technique.
New Sifting Criterion

A wavelet packet sifting technique is used to extract the relevant parts of the modal
responses, X' (¢), x\"(¢),x\" (¢). The technique consisting in wavelet packet decomposition

in conjunction with the entropy index as sifting criterion has been described in (Shinde et
Hou, 2005). In this section, the confidence index, defined in Chapter 5, is proposed to be
used as sifting criterion. So that, two response signals measured at two different
locations/DOFs are simultaneously decomposed until their components at the same
decomposition node have a close instantaneous frequency, which means a confidence index
close to unity.

This sifting criterion guarantees the minimum contamination from other vibration
modes and that the assumption of slowly time-varying system (Chapter 3) is satisfied. In the
sifting process, an energy threshold is, also, imposed. Any signal component whose energy
is smaller than 1% of the original signal energy is ignored, because it does not carry enough

information to be used in identification. Using the above two criteria, signal components
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relevant to the vibration modes are selected for identification of instantaneous modal
parameters.

The sifting procedure can be summarized as follows:
Setup:

Let us consider the signals x,(¢) and x,(#) , which represent the system response at
two measurement locations, and the node (m,q) in the wavelet packet tree. By WP

decomposition the following detail signals are obtained: D,  (x,(¢)) and D, (x;(?)).

Sifting Procedure:
1. Verify if the energy of D, (x;(t)) and D, (x;(?)) is bigger than the threshold
value. If not, stop the decomposition for this node here, without sifting any signal,
and go to the next wavelet packet node.

(t) and o

2. Identify the instantaneous frequency, @ (), of the signals

J-mq p.mq

D, (x;(1)) and D,  (x;(r)) by using the analytic signal concept and HT, as

explained in Chapter 3.
3. Calculate the confidence index by eq. (6.13).
o, (1)
o @, () (6.13)

4. If the confidence index is close to unity (i.e. range 0.98-1.02, but this range may
depend also on application) over most of the time domain, select these two signals as
relevant vibration modal responses for location “/” and “p”. If not, continue the

decomposition and repeat this procedure.

6.3.3 Implementation Issues

One of the difficulties in extracting the modal responses from the vibration measurements is

. (l’l) . . . . .
that the energy of a signal x;”(#) can be distributed over a wide frequency range, as it is

the case of a broadband excitation. However, a significant part of the energy is in the

vicinity of the n” instantaneous natural frequency, therefore from energy content point of

view the signal xﬁ") (¢) can be written as:
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x;n) (t) _ xﬁﬂ),n (f) + x;n),r (t) (6 14 )

(m),n

. . . th
where x;""(7) represents the signal component whose energy is in a band around the n

(n),r

instantaneous natural frequency and x"' (¢) is the residual component equal to the rest of

the n” modal response.

(n),n . . . .
If x;""(¢) can be identified as the signal component at node (m,q) in the wavelet

packet decomposition tree, i.e. x{""(¢) = D,,  (x{"(¢)) . With the assumption that k,, c,, F"

are slowly varying in comparison to the frequency content of the modal response and
excitation, eq. (6. 8 ) can be re-written as:

D, ,&"®)+c, (0D, (& ) +k, (D, ®)=F" D, (a, () (6.15)
Equation (6. 15 ) shows that the parameters to be identified remain the same in case only the
dominant part of the n” modal response is considered.

There is, also, another difficulty due to the fact that in the frequency range of interest
corresponding to the #n” mode there are some residual components of other vibration modes.
By WPS technique with the sifting criterion based on the confidence index, we adequately
select the decomposition level and node (m,q) to minimize the contamination with other

vibration modes.

6.3.4 Identification of Modal Parameters

Once the signals D,, (¥\" (1)), D, ,(x'"(¢)), D,,,(x'!"(t)) are identified, a discrete

time-varying Kalman filter technique is used to estimate the modal stiffness and modal

damping for the n™ vibration mode, i.e, k, and ¢, in eq. (6. 15 ). The unknown state vector

is [ku cn, Fl(”),---,Fj(”),---,F Af[”) ], where M represents the number of measurements. In the

present study, the unknown dynamics of state variables is modeled as a random walk

process. In the discrete form, the state space dynamics can be formulated as:
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There are M measurement equations expressed in a discrete form as:
2 (n) _ () (n)
D, ,(X;")k]=~c,(k)D,  (x;")k]=k,(k)D,, , (x;")[k]+

+EOD,, (a k] +v, k], j=1--M (6.17)

The components of the process and measurement noise vector w[k] and v[k], respectively,

are assumed to be independent and Gaussian white noise discrete processes. The

measurement noise vector v[k] represents, in a broad sense, the actual measurement noise

and other errors due to the sifting process, as well as the modeling. After the estimation of
the state space vector, the n” instantaneous natural frequency and instantaneous modal
damping ratio are calculated by eq. (6. 12).

The variances of measurement and process noise vectors, can be identified using
adaptive techniques, Monte Carlo simulations or by experience. In this study a Monte Carlo
simulation is performed, and those values which ensure a minimum measurement innovation
have been chosen. The measurement innovation reflects the discrepancy between predicted
measurement and actual measurement.

The n™ normalized instantaneous mode shape vector is calculated from the

corresponding sifted component of the acceleration responses, as the ratio of the analytic

amplitude of the vector D, , (x(”)(t)) and the analytic amplitude of the component chosen for

normalization, as explained in Chapter 5.
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6.4 Applications: A 2DOF Mass-spring-dashpot System  with

Time-varying Stiffness

6.4.1 Simulation Setup

In the present study, the simulated vibration responses of a two degree-of-freedom spring-

mass-damper system with a damageable spring, are analyzed. A sketch of the system is

presented in Fig. 6.1. The mass M; is 2800kg and the mass M; is 3000kg. The initial value

of the stiffness of each spring is 500 KN/m and the system damping is assumed to be a

Rayleigh damping. The damping matrix is proportional to the initial stiffness matrix with a

factor of 0.005. The natural frequencies of the healthy structure are 1.278 and 3.387 Hz. In

order to test the effectiveness of the wavelet packet sifting technique in identification of
instantaneous modal parameters, the structure is base excited by two different excitation
signals, namely:

e the NS component of El-Centro earthquake signal, recorded at the Imperial Valley
Irrigation District substation in El Centro, CA, on May 18, 1940.

e a random excitation signal, sampled by a Gaussian white noise discrete process with
zero mean and RMS value of 2.5 m/s” and filtered by a low-pass filter with a cut-off
frequency of 20 Hz. The sampling frequency is 100Hz.

The relative responses in respect to the ground are simulated with a sampling frequency of

100 Hz. The method is validated for a system without damage and then is applied to a

system with progressive degradation of the stiffness K1 as shown in Fig. 6.1(b). Discrete

Meyer wavelet is chosen for the wavelet packet analysis. Since the system is subjected to a

base excitation and the first vibration mode is excited predominantly, only the modal

parameters for this mode are identified.

The variances of measurement and process noise vectors in the Kalman filter
estimation are chosen after Monte Carlo simulation so that to ensure a minimum
measurement innovation, which reflects the discrepancy between predicted measurement

and actual measurement.
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Figure 6.1. (a) Sketch of system; (b) Stiffness history in case of progressive damage

6.4.2 Results and Discussion

In order to validate the method, first a time invariant structure subjected to a filtered white
noise excitation is considered. The wavelet packet sifting process is performed on
acceleration responses measured at M; and M,, and the decomposed signals at node (6,1)
are selected as relevant for the first vibration mode. Figure 6.2.(a) shows the instantaneous
frequency and the confidence index for the acceleration components at this node. It can be
seen that the confidence index is very close to the ideal value of unity. This indicates a
minimum contamination with the second mode components. In contrast, a component in the
previous levels of decomposition, say the component at node (4,0) demonstrates significant
contamination, as observed in Fig. 6.2.(b).

Figure 6.3 shows the estimated values for the natural frequency, the modal damping
ratio and the mode shape component of M2, for the first vibration mode. They are
compared with the theoretical values obtained by modal analysis. It can be seen that the
estimates for instantaneous natural frequency and the damping ratio are in good agreement
with the theoretical values. The estimate for the normalized instantaneous mode shape

component at mass M2 is very close to the theoretical value. Since the mode shape values
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are more sensitive to the contamination of extracted signals with the second vibration mode,
the confidence index should be used for validation, as explained in details in Chapter 5. Note
that the normalized instantaneous mode shape component at mass M1 is unity because the
mode shape component at M1 has been used for normalization.

Figure 6.4 shows the estimates of modal parameters for the case of progressive

damage scenario, as described in the simulation setup.

Decomposition level [6-1]

w
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Figure 6.2. Instantaneous frequency and confidence index of the decomposed acceleration

responses at: (a) level 6, node 1 and (b) and level 4, node 0.; xa1 and xa2 represents the
acceleration responses in respect to the ground at M1 and M2, respectively.
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Figure 6.3. Estimated values for instantaneous modal parameters in case of healthy system, first
vibration mode

Since the system stiffness changes slowly, the results from the dynamic eigenvalue problem
can be used as a reference. Figure 6.4(a) shows the estimated results in the case of a filtered
Gaussian white noise excitation, and Fig. 6.4(b) presents the results in the case of a real
earthquake signal, i.e. the El Centro earthquake ground motion data. The estimated
instantaneous frequency values are in very good agreement with the reference values. The
instantaneous modal damping ratio shows small deviation from the reference. In the case of
an earthquake excitation, the intensity of the signals during the first 5 seconds of the record
is very small, i.e. at the level of measurement noise; therefore the estimated results on this
time interval should be disregarded.

Figure 6.5 presents the effect of measurement noise and incomplete measurements
on the estimated results. A complete measurement here is referred to the fact that all
displacements, velocities, and accelerations are directly measured. In Fig. 6.5, only the

acceleration responses are measured and the velocity and displacement responses are

obtained by numerical integration of the signal D, (X;”()). To investigate the noise

effects, the acceleration measurements are contaminated by noises, modeled as a Gaussian
white noise discrete process with a RMS value being 10% of the RMS value of the

acceleration response at M2. The first 40 seconds of the records are considered for RMS
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calculation. It can be observed that the estimated natural frequency is less sensitivity to the
measurement noise and incomplete measurements and the modal damping ratio and

normalized mode shape component exhibit oscillations around the theoretical values.

6.4 Summary

This Chapter presents an identification technique for instantaneous natural frequency,
damping ratio from forced vibration data. In the proposed methodology, structural
responses are first decomposed in relevant vibration modal components by wavelet packet
sifting technique. Based on a new sifting criterion, two response signals, measured at two
different locations/DOFs, are simultaneously decomposed until the their components at the
same WP decomposition node have a close instantaneous frequency. The instantaneous
frequencies are identified by the Hilbert transform and their closeness can be measured by
the confidence index. For each identified vibration mode, a time varying Kalman filter
approach was utilized to estimate the instantaneous natural frequency and the modal
damping ratio. The instantaneous mode shape is calculated using the amplitudes of
analytical functions associated with the Hilbert transform of the modal responses.

The proposed approach was implemented for a two-degree-of-freedom mass-spring
system with a damageable spring subjected to two sets of random excitation: one is a sample
generated from a filtered Gaussian white noise process and the other is a true ground
acceleration measurement. The estimated instantaneous frequency values are in very good
agreement with the reference values, but instantaneous modal damping ratio shows small
deviation from the reference. The estimated natural frequency is less sensitive to the
measurement noise. In contrast, the estimated modal damping ratio and normalized mode
shape component show oscillations around the theoretical values. Although the
mathematical proof is presented for a system with slowly-time varying parameters in respect
to the fundamental frequency of the healthy system, the method can be easily extended to

linear systems with sudden damage.
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Figure 6.4. Estimated values for instantaneous modal parameters in case of a system with
progressive stiffness degradation after t=15s, subjected to a base excitation: (a) filtered
Gaussian white noise, (b) El Centro earthquake signal
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Figure 6.5.

Estimated values for instantaneous modal parameters in case of a system with

progressive stiffness degradation after t=15s. The acceleration measurements are contaminated by
“10%” measurement noise. The based excitation is: (a) filtered Gaussian white noise, (b) EI Centro

earthquake signal
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Chapter 7

INSTANTANEOUS MODAL PARAMETERS FOR
STRUCTURAL HEALTH MONITORING
OF NONLINEAR SYSTEMS

7.1 Introduction

In the previous sections, a structure with damage was seen as a linear time varying system
with instantaneous modal parameters which change their trend according to damage
evolution.

However, due to a possible dynamic nonlinear behavior of the structure, change in
the instantaneous modal parameters may not necessarily indicate structural damage.
Ignoring the structural nonlinear behavior may lead to false-alarm of damage in structural
health monitoring. This chapter presents a preliminary study on the meaning of
instantaneous modal parameters and their use for SHM of systems with nonlinear dynamic
behavior.

A two-degree-of-freedom system with bilinear components, subjected to both
impulse and harmonic excitation, is considered. The instantaneous modal parameters are
identified from the simulated vibration responses by continuous wavelet transform (CWT) in
conjunction with the Hilbert Transform (HT). It is illustrated that change in the identified
instantaneous modal parameters may have different patterns for the linear system, the
system with slow stiffness degradation, and the system with bilinear restoring forces. The

results may help to distinguish change in the instantaneous modal parameters caused by
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structural damage or by structural nonlinear behavior and therefore to improve the accuracy

of structural health monitoring.

7.1 Theoretical Background

7.21 Linear Slowly Time-varying Systems

Here, we present the instantaneous modal parameters from the inverse problem point of
view. Therefore, given a signal, in the absence of any other information, we make the
assumption of a linear slowly time-varying system. The correctness of this assumption can
further be verified by using the confidence indices, previously introduced. It has been
shown in Chapter 3 that the free vibration response of such a system can be written as a

superposition of modal responses. Equation (7.1) shows the response measured at

t
position/DOF j; the notation C 1) = 2|C2n_1 (t, )| exp[_[ Y (z')er has been used.
t0

£, (0= 25 =3 X0 (C, (eos@ (1) o

The component x;") =X ;.") ®C,, @) cos(CD (j”) (t)) was called as the n” modal response.
It was shown that the instantaneous modal frequency does not depend, practically, on
measurement location, here denoted by 7, and can be calculated as:

o, (1) = %q)(jn) ) (7.2)

The normalized mode shape vector is given in eq.(7. 3 ) , where the p™ component has been
chosen for normalization.

oy (7.3)

7
X" (@#)=| ——=| where X " =|X," x,"” . x,"”
lp Xp(n)(t) [ 1 2 N

7.2.2 Bilinear Systems

In the case of a bilinear system, the instantaneous frequency and amplitude of the response
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change very fast. However, a decomposition of the response similar to the modal
decomposition is still possible. The meaning of the identified instantaneous modal
frequency and normalized mode shape needs be discussed here. Without loss of generality,
this discussion will be focused on a bilinear single degree-of freedom (SDOF) system
subjected to impulse excitation. The SDOF was selected because of its simple mathematical
form of the response. The dynamics of such a system is given by:

MO+ C (Ol + Bf (x.0) = F(1) (7.4)

where Rf'(x,t) is the restoring force, shown in Fig. 7.1.

RFfa

s k2

k1
- xd % ¥

—

Figure 7.1. Bilinear restoring force

The bilinear system can be treated as a piecewise linear system with two natural

frequencies in different ranges of the displacement response, as expressed in eq. (7. 5).

A =127k /m |x|£xd
f_{fz =12k, /m 4> x, 7-5)

It is intuitive that the duration of the response with a constant frequency, f,, could be less
than a period, i.e. 1/(2f;) . Because each CWT coefficient reflects the energy of the signal in

a window whose size is governed by uncertainty principle, the fast changes in the signal
frequency are locally averaged on CWT map. By CWT, the response is mapped to few
components of slower varying frequency and it can be represented as a sum of few vibration

modes :
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x(t) = 4" (1) cos(g™ (1)) (7.6)
Note that for a bilinear system, tl:e instantaneous modal frequency is not necessary the same
as instantaneous frequency of the response, but it reflects the time varying nature of the
system in a time-frequency window. For a SDOF bilinear system, the instantaneous modal
frequency of the highest energy component is a function of excitation and its value lies

between f, and f,.

7.3 Methodology

The first step in identification of instantaneous modal parameters is to sift out the modal
responses, procedure which has been explained in details in the previous chapters. Because
we are interested in the nature of instantaneous modal parameters of a system with possible
nonlinearities, instead of wavelet packet sifting technique we prefer CWT and its inverse,
which give a better visual representation. Details regarding CWT have been given in
Chapter 2; therefore, only the mathematical formula and the issues relevant for the study in
this chapter are included herein.
The CWT of a signal x(t) is given by:

+o 0 _ 7.7
W(a,b) = [x(OW us (1)t = %_ij(t)w*(%)dt ,xel? 77

The CWT coefticients, W _(a,b), are localized in a time-frequency window, whose size is

characterized by the temporal variance o, and frequency variance o .. The complex Morlet

wavelet, defined in eq. (7.8), is chosen as the mother wavelet in the present study, because

it gives an optimal window for time and frequency localization, i.e. 0,0, =1/4r .

b

1 t?
(1) = ——==exp| — — |exp(2i7F 1) 7.8
F. and F} are the center frequency and the bandwidth parameter, respectively, and are real

and positive. The temporal and frequency variances of this wavelet function are given in eq.
(7.9).
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o NFb o = 1 -
T Y T nlm 72
The effective duration (Af¢) and effective frequency width (Af') are calculated by the

expressions Af=+27c, and Af =+27zc,. With complex Morlet wavelet as mother

wavelet, the CWT coefficients W _(a,b) reflects the energy of the signal x(t) in a time

frequency window defined by:

[b—aéi,b+aéq X {FC Y E£+1££} (7.10)

a a2’ a a?
In this study, the wavelet parameters, Fb and Fc, are chosen so that they guaranty a good

time localization, as well as a clear separation of the vibration modes on the CWT map.
Fe=200Hz and Fb= 0.0005s are considered. The time increment used in simulation is
dt=0.01s.

The significant vibration modes are identified as high-energy bands on CWT map.
The modal components of the vibration response are reconstructed by inverse continuous
wavelet transform calculated for each selected scale range as:

avo i—b (7.11)

K00 = [ [ @b (=)~ dadb

v a —o
where a, and a, are scales which delimit the n™ band of high energy on the CWT map of
the signal x(¢).
The instantaneous frequency of the component x"’(#), and its analytic amplitude

are obtained from the polar representation of the corresponding analytic signal obtained by

HT.
() = x () + HT (x ()= A% (1) Explig ™ (1)) (7.12)
The instantaneous frequency is defined as the rate of change of the phase angle

¢7 ],(")(t). The instantaneous normalized mode shape is calculated as ratio of analytic

amplitudes: X" (1) = ZJ(»") (l)/Z,(,n)(f) :
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7.4 Applications: A 2DOF Mass-spring-dashpot System

7.4.1 Simulation Set-up

A two degree-of-freedom spring-mass-dashpot system with spring elements of different
nature is considered. The baseline (S1) is a time invariant linear system, sketched in Fig.
7.2(a), with M;=M,=200kg and K;=K,=100000N/m. The system is assumed undamped or
with Rayleigh damping. In the case of Rayleigh damping, the damping matrix is
proportional to the stiffness matrix with a factor of 0.0005s. The natural frequencies of this
system are 2.2 Hz and 5.7 Hz. By changing the evolution of the spring stiffness or restoring
forces, three more study cases are developed as follows:
¢(S2) a linear system with damage where the stiffness K2 degrades progressively as
illustrated in Fig. 7.3(b). Damage develops after 5 seconds from the initial time.
¢ (S3) a system with a bilinear restoring force for the spring K1, as illustrated in Fig. 7.3(a).
¢ (S4) a bilinear system with damage, composed by a bilinear spring K1, as shown in Fig.
7.3(a) and a spring K2 with progressive stiffness degradation, as shown in Fig. 7.3(b).
Two types of excitations are considered: (1) impulse excitation, simulated by a nonzero
initial velocity at M2 and (2) a base harmonic excitation of frequency 1Hz.
The responses are simulated using the Runge-Kutta method with an integration step

of 0.01 seconds.

N
N

K Pl Ko 2

I_’}ﬂ I_’ ¥

RACCURURRRANAY

Figure 7.2. Sketch of the system
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Figure 7.3. (a) Restoring force; (b) Stiffness history in the case of progressive damage

7.4.2 Results - Impulse Excitation

First, the response due to an impulse excitation is simulated for each type of system,
considering the zero damping case. For the linear system and the system with progressive
stiffness degradation, two bands of high energy can be identified on the CWT maps. For
illustration, CWT maps of the displacement response measured at M1 are shown in Fig.
7.4(a) for the linear system (S1) and Fig. 7.4(b) for the system with progressive damage
(S2). Each high-energy band corresponds to a vibration mode. The identified instantaneous
modal frequency and normalized mode shape are plotted in Figs. 7.5(a) and 7.5(b). As
expected, the instantaneous modal parameters are constant for the case of a linear healthy
system. In the case of progressive damage, the frequency decays slowly starting at t=S5s,
when damage has been introduced in the simulation. The normalized instantaneous mode
shape at mass M2 increases for the first vibration mode and decreases for the second
vibration mode. A continuous change in the normalized instantaneous mode shape is an
indication of progressive change in the system parameters.

Figures 7.4(c) and 7.4(d) show the CWT map of a healthy bilinear system (S3) and
of a bilinear system with damage (S4). Here, three bands of high energy can be observed.
By examining only this CWT map, it is difficult to make a difference between a 2DOF

bilinear system and a multi-degree of freedom linear system with a low excited first mode.
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The wavy appearance of the band corresponding to scales around 35-40 is a result of
interference between signal components with closely spaced modal frequencies. It can be
observed that the bilinear healthy system (S3) presents an evolution of its instantaneous
modal parameters similar to that of the healthy system (S1), as long as the instantaneous
modal parameters of the bilinear damaged system (S4) is similar to that of damaged linear
system (S2). The average effective duration and frequency width of the wavelet window is:
0.2Hz x 2.52s for the first vibration mode and 0.5Hz x 0.98s for the second vibration mode.
A damped bilinear system has a behavior similar to that of system with progressive
increase of stiffness as illustrated in Figs. 7.6 and 7.7. The bilinear behavior can be observed
over the first 15 seconds of the response. Then, due to the small amplitude of the response,
the systems remains in the first linear regime and the instantaneous modal parameters are
constant. The increase of instantaneous modal frequency is an indication of nonlinear
elastic behavior, since damage consists, in most of the cases, in reducing of the
instantaneous modal frequency. However, in the case of systems with other type of
nonlinearities a conclusion based only on the evolution of modal parameters could be

misleading.

7.4.3 Results - Harmonic Excitation

Another study case is when a harmonic excitation of frequency of 1Hz is applied as a base
excitation. In this case, as can be seen from the CWT maps in Fig. 7.8, there are two bands
of high energy. The band around scale of 200 corresponds to the forced response and that
around scale of 100 corresponds to the first vibration mode, which is predominantly excited.

If the system has a bilinear spring (S3 and S4) some other harmonics of low energy
can be observed on the CWT map, for example around scale of 70. Also, the second mode,
placed around scale 35, is excited for the whole time period and it does not decay to zero
due to damping as in the case of linear system. However, its energy is very low, which
makes the identification difficult. Plots of identified modal parameters of the first vibration

mode are shown in Fig. 7.9. It can be observed that, if damage is present, there is a clear
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trend in their evolution for both, linear as well as bilinear systems; the instantaneous modal

frequency decreases and the normalized instantaneous mode shape increases.

7.5 Summary

This chapter presents a preliminary study on the meaning of instantaneous modal parameters
and their use for SHM of systems with nonlinear dynamic behavior.

Systems of different natures of the restoring forces are discussed, including linear invariant
systems, a linear system with slow stiffness degradation and/or a bilinear restoring force.
Both, the impulsive and harmonic loading is considered. In this study, the displacement
responses are used for analysis, but the results remain the same for the acceleration data.

For a linear healthy structural system, the instantaneous modal parameters remain
constant whereas, for a system with slowly varying stiffness degradation, they demonstrate
an evolution from their healthy status. A bilinear healthy system under a harmonic
excitation has an evolution of its instantaneous modal frequency and normalized
instantaneous mode shape similar to that of the healthy system, as long as the instantaneous
modal parameters of the bilinear damaged system behave similar to those of a linear
damaged system. For a damped bilinear system subjected to an impulsive force, the modal
instantaneous frequency might increase with time due to the decaying amplitude of the
vibration, in contrast to the decreasing trend of the instantaneous modal frequency in the
case of a damaged system.

Also, it should be reemphasized that the identified instantaneous modal frequency of
a bilinear system is not necessary the same as instantaneous frequency of the response;
however its trend reflects the permanent change in the system stiffness and therefore can be
used for structural health monitoring. For a correct interpretation of the identified results,
especially in case of bilinear systems, one should take into account the effective duration
and effective frequency width of the analyzing wavelet.

A more elaborated study which includes different types of nonlinearities in a real

system and nonstationary excitations is proposed for the future work.
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Figure 7.4. CWT map of the displacement response measured at M1, zero damping, impulse
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(S3); (d) bilinear system with damage (S4)
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131



Scale

20 25
Time (s}

(@)

30

35

25

Frequency (Hz)
%]

15 1 L L L L L L

& 10 15 20 25 30 35
Time (s)

(b)

Figure 7.7. Normalized Instantaneous mode shape and instantaneous frequency for the first

vibration mode in case of a bilinear system

CWT Coefficients - xd1 (L)

with damping, subjected to impulse excitation

CWT Coefficients xd1 -BL

Scale

5 10 15 20 25 30 35 5 10 15 20 25 30 35
Time(s) Time(s)
(a) (b)
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Chapter 8

APPLICATIONS TO EXPERIMENTAL DATA

8.1 Introduction

In Chapters 4, 5 and 6, instantaneous modal parameters, identified by wavelet approach,
have been proposed to be used for SHM and damage detection. The methods have been
tested on simulation data and good results were obtained. However, various factors such as
modeling errors, signal contamination by noise, insufficient measurement data, structural
nonlinearities, insensitivity to local damage etc. might have significant impact on practical
applications of the approaches. The purpose of this study is to evaluate the performance of

the proposed approaches using the experimental data from:

1. ASCE- SHM benchmark studies, Phase 2 of the experiments performed on
August 4-7, 2002, at the University of British Columbia. Various loadings were applied to
the prototype structure and data of two hammer tests, before and after damage, are analyzed
in present study. Damage was introduced between tests by removing some braces between
floors.

2. a shaking table test of a full-size two-story wooden building structure, conducted
at the Disaster Prevention Research Institute, Kyoto University, Japan, on June 22, 2000.
The structure was excited by the 1940 El Centro Earthquake ground motion (NS component)
scaled at several target levels and the tests were run step by step from small scales up to
large ones until the structure lost its load-carrying capacity. Damages to various extents

were observed during the tests.
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8.2 ASCE SHM Benchmark Study

To coordinate research activities in the area of system identification and damage detection a
benchmark study was proposed by the ASCE Task Group on Health Monitoring (Johnson et
al., 2004). The CWT ridge method, proposed in Chapter 4 to identify the instantaneous
modal parameters, is applied for simulation and experimental data from this benchmark
study. Change in the identified instantaneous modal parameters may indicate damage into

the structure.

8.2.1 Description of the Structure

This section provides a brief description of the structure used in the benchmark study. For
detailed information, the reader is referred to Johnson, et al (2004) and the SHM Group's
web page (http://wusceel.cive.wustl.edu/asce.shm/).

The structure is a scaled model of a 4 story building, consisting of a two-bay by two-
bay steel-frame with a total height of 3.6m and a plan of 2.5m x 2.5 m, as shown in Fig.
8.2.1. Each story is composed by 9 columns of 0.9 m in height, 12 beams of 1.25m in
length, 8 lateral braces and 4 floor weights (one per bay). The weights of the first floor are
800 kg and those on the second and the third floors are 600 kg. On the fourth floor, there are
either four identical weights of 400 kg for a symmetric model or three weights of 400 kg and
the fourth one of 550 kg in order to create some asymmetry in the structure; the symmetric
model is employed in this study. All members are hot rolled steel with nominal yield stress

of 300 MPa.

8.2.2 Simulation Data Results

The methodology proposed in Chapter 4, for the case of impulse or free vibration
responses, is validated, first, for simulation data. In the present study, the response of the
structure during a hammer test is simulated. was considered and damping was ignored. The
hit was applied at the first floor in the x direction (Fig.8.2.1b). No damage occurred during
the first 10 seconds. A gradual damage was introduced in the time interval from 10 to 30

seconds. Damage consists in a linear degradation of the material properties represented by
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the Young’s modulus of the braces of the fourth floor. During a time interval of 20 seconds,
the Young’s modulus is reduced linearly by 25%. Afterwards, for the next 10 seconds, no
new damage occurred. The time increment used in simulation is dt=0.005 seconds. The
response is obtained based on the FEM model for 12DOF system, provided by the Task
Group for Phase II study. Since the model used in this simulation describes a symmetrical
structure about both x and y directions, only the acceleration response in the x-direction, i.e.
the direction of the excitation, is of interest. The CWT ridge method is then applied to find
the instantaneous modal frequencies and the normalized instantaneous mode shapes. The
results are in good agreement with the stiffness degradation assumed in the simulation of the

response data.

Figure 8.2.1 presents a map of the modulus of CWT coefficients. The CWT is
performed on the acceleration response of the fourth floor with a scale range from 1 to 150,
which corresponds to a frequency range from 100Hz to 6.6Hz. The complex Morlet wavelet
with Fc=5/dt=1000, and Fb=dt* =2.5-107°, is chosen as mother wavelet. The computational
noise in CWT results is removed by a filtering technique applied, first, in scale domain and
then in time domain. Three bands of high value coefficients can be identified, therefore in
this scale range there are three dominant wavelet ridges. The first band corresponds to the
scales from 100 to 130, the second band is from 35 to 50, and the last band is from 20 to 30.

In order to improve the accuracy of the results, and in the same time to reduce the
computational effort, the CWT is performed separately for each of the observed bands with
a smaller scale increment. After identifying the ridges, the relevant instantaneous modal
frequencies are calculated by formula 4.14. The results are plotted in Fig.8.2.3 and Fig.8.2.4.
It can be observed that the instantaneous modal frequencies are constant for the first 10s,
then slowly decrease as a result of the stiffness degradation, and are again constant after time
equals to 30s. This observed behavior describes exactly the damage scenario used in the
data simulation. Since damage evolves slowly, the obtained results should be comparable to
those calculated by modal analysis if the system parameters at the each specific time instant
are frozen. More accurate results for comparison can be obtained by solving the dynamic
eigen-value problem for this time-varying system. Due to the computational burden in

solving the dynamic eigenvalue problem, the first approach was preferred.
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Table(8.2.1) shows the comparison for the modal frequencies. Good agreement is
obtained, the relative errors between the modal frequencies obtained by these two methods

are between -0.5% and 0.5%.
The normalized instantaneous mode shapes are calculated for the first three

identified vibration modes. The instantaneous mode shape is normalized by the mode shape
component corresponding to the fourth floor, therefore the IN mode shape vector can be
expressed as: X} = [1 x5 Xy Xifl)]T, where i=1,2,3.

The results are plotted in Fig.8.2.5. A comparison of the results by CWT and modal
analysis is presented in Table(8.2,2). The relative error between normalized mode shapes
calculated by CWT ridge and those obtained by modal analyses is smaller than 5%.

It should be noted that in Fig.8.2.3(b) the component corresponding to the third floor
of the modal shape vector of the second mode is broken between t = 14 and 23 seconds. An
interpretation may be given based on Fig.8.2.5 that plots the wavelet coefficient map of the
acceleration response of the third floor zoomed in the scale range corresponding to the
second vibration mode. The low amplitude of the CWT coefficients in the time interval
mentioned above indicates that participation of the second modal component in the third
floor response is insignificant in this transition stage when its value changes from positive to
negative. The contribution of the second vibration mode to the response is in fact of the
order of computational noise, therefore the second mode shape component becomes very
difficult to identify. Similarly, on the CWT coefficient map of the second floor response
plotted in Fig.8.2.6, the ridge cannot be identified in the scale range of 22 to 30 and time

interval from 25s to 40s.

Time Vibration Mode / frequency (Hz)
(sec) | 1® mode 2" mode 3" mode
CWT | Modal | CWT Modal | CWT Modal
analysis analysis analysis
5 8.85 8.8655 | 25.12 25.1488 | 40.98 41.1072
20 8.77 8.7842 | 23.81 23.8330 | 38.53 38.5617
35 8.58 8.604 21.27 21.315 | 35.84 35.853

Table 8.2.1. Comparison of the modal frequency results obtained by CWT and modal analysis
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Time Vibration mode
(sec) 1* mode 2" mode 3" mode
CWT | Modal CWT Modal CWT Modal
analysis analysis analysis
5 1* floor 0.28 0.284 -0.79 -0.797 0.93 0.933
2" floor 0.62 0.618 -0.79 -0.792 -0.48 -0.485
3" floor 0.86 0.864 0.12 0.120 -0.84 -0.842
4™ floor 1 1 1 1 1 1
20 1* floor 0.27 0.270 -0.66 -0.662 1.07 1.072
2" floor 0.59 0.588 -0.73 -0.739 -0.30 -0.300
3" floor 0.83 0.829 N/A 0.018 -1.06 -1.064
4™ floor 1 1 1 1 1 1
35 1* floor 0.24 0.241 -0.51 -0.514 1.51 1.516
2" floor 0.52 0.527 -0.69 -0.690 N/A -3.544
3" floor 0.75 0.759 -0.20 -0.206 -1.50 -1.502
4™ floor 1 1 1 1 1 1

Table 8.2.2. Comparison of the normalized instantaneous mode shapes results obtained by CWT
and modal analysis

8.2.3 Experimental Data Results

The validation in the previous subsection, was performed in conditions of zero
measurement noise and undamped structure. In order to test the efficiency of the method for
practical applications, the methodology presented in Chapter 4 is also applied for
experimental data from the ASCE benchmark studies
(http://wusceel.cive.wustl.edu/asce.shm/benchmarks.htm). The structure wused in the
experiment is shown in fig. 1(a). Damage was introduced by removing some braces between
tests. Various loadings were applied to the prototype structure and the acceleration
responses at all four floors were recorded during tests. In the present study only data of two
hammer tests, before and after damage, are analyzed. Since damage was introduced between
two runs, the structure is in fact piecewise invariant. To investigate the performance of the
proposed methodology in experimental conditions, the approach is applied to these data by

considering the time invariant structure as a special case of time varying systems.
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Instantaneous modal frequencies and normalized instantaneous mode shapes are identified,
by CWT ridge method. A change in their value is an indication that damage occurred.

During the first test, the hammer hit was applied at the first floor on east face, south side
column, inside flange, in north direction. First the undamaged structure, configuration no. 1
in the benchmark study, is subjected to the test. The sampling frequency is 1000Hz. In the
paper are analyzed the responses measured in north direction on west side at each floor.
CWT with Complex Morlet wavelet as mother wavelet is performed on the measured
responses. The parameters of the mother wavelet are: F. =5/dt=5000 and F, =dt*> =10°.
Few high value coefticient bands are observed on the CWT coefficient map, as can be seen
in Fig. 8.2.7, which plots the CWT of the acceleration response measured at the 1st floor.
We concentrate the attention on the last ridge corresponding to the scale interval between
300 and 400, which represents a vibration mode with the lowest identified modal frequency.

The instantaneous frequency determined by analyzing the response measured at each
floor is presented in Fig.8.2.8. As it can be seen, the results are in good agreement with each
other. Small differences can be due to the measurement noise and wavelet transform end
effects at the beginning and end of the time interval. The frequency is approximately
constant, 14.44Hz, which is an indication that damage does not occur during test. Also, the
normalized instantaneous mode shape is constant, as can be seen from Fig.8.2.9.

During the second test, a damaged structure is considered. Damage was simulated by
removing all east side braces (configuration no. 2), immediately after the first test. A
comparison between instantaneous frequency for damaged and undamaged structure is
presented in Fig. 8.2.10. It can be observed that the modal frequency decreased to 12.69 Hz.
The same comparison is performed for the normalized instantaneous mode shape, as shown
in Fig.8.2.11. It can be observed a change in the second and the third component of the NI

mode shape vector.
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8.3 Shaking Table Test of a Wooden Building Structure

The approaches presented in Chapter 5 and 6 are applied for data from a shaking
table test of a full-size wooden building frame conducted at the Disaster Prevention

Research Institute (DPRI), Kyoto University, on September 22, 2000.

The integrated Kalman filter and wavelet packet sifting process is used to estimate
the instantaneous natural frequencies; wavelet packet decomposition in conjunction with the
confidence index is employed to identify the normalized instantaneous mode shape. The
results obtained from the evaluation of the instantaneous natural frequency agree quite well
with the qualitative description of damage from the filed observation, however the
normalized instantaneous mode shape presents high oscillation which makes it less reliable

for SHM.

8.3.1. Experimental Setup

This section includes a brief description of the testing structure, facilities, test procedure,
and some related results. For details of the shaking table test the reader is referred to
Shimizu, et al (2004).

The specimen has the dimensions of a typical two-story small wooden house in the
Kyoto area, that are: 5.46m long, 3.64m wide, and 5.88m high. The frame consists of four
120 mm x 120mm corner-columns erecting from the base through the first floor to the
second floor; 105 mm x 105 mm inter-story columns; 105 mm x 240 mm beams; 45 mm x
105 mm wood braces of British-Columbia pine; and 27 mm x 105 mm studs. Steel bars of
2850 kg were added to the first floor to simulate to dead load and steel bars of 3000 kg were
added to the second floor to simulate weight of a house above the second floor. Figure 8.3.1
provides an overview of the testing site and the wooden frame specimen on the shaking
table.

The shaking table is provided with the ground acceleration signal recorded on NS
direction during the 1940 El Centro Earthquake. To observe the seismic behavior of the

wooden frame under seismic loading of various intensities, several runs of the test were
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conducted. In each test run the frame was excited by the original ground motion record
scaled at a nominal load level targeted at certain load intensity. The test was run step-by-
step from the target level of 1 m/s* with 0.5m/s” increments until the frame lost its load-
carrying capacity. The frame was mainly excited in its longitudinal direction. To study the
dynamic behavior of the frame under damage, a few bi-directional loading cases were also
conducted, but this uses only data from a single-direction loading cases. It should be
pointed out that a target level, say, 1 m/s* was set to the input to the shaking table and the
output of the shaking table to the frame may not necessarily as the target level due to the
shaking table dynamics. The absolute displacement and acceleration responses are recorded
during tests.

Before the seismic loading has been applied, several tests using sweeping harmonic
and step loading and ambient vibration tests were performed to estimate dynamic
characteristics of the wooden frame such as its natural frequencies and modal damping

ratios. The results are listed in Table 8.3.1.

Natural frequencies (Hz) decay
Directi 1* mode 2™ mode
1rection - - constant
ambient step ambient step
Longitudinal 2.3 2.0 7.7 7.3 3.8
Lateral 2.3 2.0 6/8 6/2 3.6

Table 8.3.1 Estimates of the natural frequencies and the modal damping ratio of the wooden frame

using ambient vibration and step-loading test (Shimizu et al., 2000)

Damage was developed within the wooden frame during different test runs. When
the loading exceeded the target level of 1 m/s®, squeezing sound started near brace
connections. Hair cracks occurred for braces at their junctions with studs and both ends
when the loading exceeded the target level of 2m/s>. During the test run with the excitation
level of 3.50 m/s” a first-story brace was damaged, as shown in Fig. 8.3.2. Then, one brace
was damaged during each run of the test at levels of 4m/s’, 6m/sz, and 8m/s>, respectively.

When the loading level achieved 10 m/s®, cracks occurred on all four corner-columns at
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almost the same height, just below the first floor. The structure was viewed loosing its

loading-carrying capacity and the test stopped at this stage.

8.3.2. Simulation results

Dynamics of real structures subjected to transient loading, as seismic excitation, has
complex nature, therefore many practical issues such as measurement noise, structural
modeling errors, effects of damage severity and localization of damages, incomplete
measurements and observability issues etc, must be properly addressed. A part of these
issues has been addressed in Chapter 6, where a two-degree-of-freedom spring-mass-
dashpot system has been used to study the applicability of integrated Kalman filter and
wavelet packet sifting process for SHM. The excitation was the same as that applied to the
wooden house, i.e. 1940 El Centro Earthquake ground motion (NS component) scaled at
maximum value of 2m/s>. In order to describe the notations used in this chapter, the

dynamics of this system is repeated here:

M1 0 i, ] [Co+C,, —C, T, | [K1+K2 —K2Tu,] [M1 0 -1
e e = a, (83.1)
0 M2|i, -c,, C, |u -K2 K2 |u,| |0 M2|-1

where:
u,, u, are the relative displacements in respect to the ground, measured at the first floor
and second floor, respectively.

a, - is the ground excitation, i.e scaled acceleration signal from 1940 EI Centro Earthquake

ground motion (NS component)
Other notations in this section are x,, x, for the absolute displacements measured at the
first and second floor, respectively.

The parameters of this model have been chosen so that the system has a similar
dynamic behavior with the wooden house after it has been subjected to the excitation of
level 2m/s>. The mass M; is 2800kg and the mass M, is 3000kg. The initial value of the
stiffness of each spring is 500 KN/m and the system damping is assumed to be a Rayleigh
damping. The damping matrix was chosen proportional to the initial stiffness matrix with a

factor of 0.005. The natural frequencies of this system are f;=1.278 Hz and />=3.387 Hz. In
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order to study the applicability of the method for SHM, a damage scenario, consisting of a
gradual degradation of inter-story stiffness K1, was considered. In Chapter 6, it has been
shown that the instantaneous frequency can be identified in condition of measurement noise
and partial measurements. The instantaneous mode shape shows some oscillations which
can make this quantity not reliable for SHM in case its change due to damage is not big
enough in comparison to the oscillation due to measurement noise, non-stationarity of
excitation or other existing conditions. It was also found that damping is difficult to identify.
For a detailed discussion, the reader is referred to Chapter 6, and especially to those
comments related to Fig. 6.5(b).

In addition to the studies presented in Chapter 6, one more study which analyzes the
sensitivity of the natural frequency and normalized mode shape to the change of stiffness K;
and K is presented in Figs. 8.3.3-8.3.4.  The stiffness is decreased linearly in steps by a
certain percent and the system is considered time invariant for that step. The changes in the
natural frequency and mode shape vector are reported to the initial values, as shown in eq.

(8.3.2). The first mode shape component is used for normalization, therefore the i
normalized mode shape vector is [1 x5 ]T. Notation (0) and (n) refers to the initial

(reference) values and modified values.

[(1 Change(n) = w %k 100, K2 Change — Kz (0) - Kz (7’1) % 100
K, (0) K, (0)
£i(0) - fi(n)
f,change(n) = ——————=+100,
1:(0) (8.3.2)
A X900 = Xx9
Xéfl)change(n): 2,1( )(,-) 2,1 (n) £100, =12
X5,(0)

From Figs. 8.3.3-8.3.4 we can see that a decrease in the values of K1 and/or K2 has
as effect reduction in the natural frequency, for both vibration modes. The change in the

stiffness affects the mode shape in a more complex way. As example, for the first vibration

mode a decrease of stiffness K, at constant K,, has as effect an increase of X é’l) (negative

change), and a decrease of stiffness K, at constant K; has as effect a decrease of X 5’}
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(positive change). Also, a reduction with the same percent of K; and K, will not

significantly affects the mode shape.

8.3.3. Experimental Data Results

8.3.3.1 Identification of Normalized Instantaneous Mode Shape and

Instantaneous Frequency

Practical aspects of identification of instantaneous modal parameters (natural frequency,
modal damping ratio and normalized mode shape) are studied using data recorded while the
wooden house structure was subjected to the excitation of level 3.5m/s2. According to field
observation a brace in the first story has been damaged, during this test run.

During the experiments absolute displacements and accelerations, 1.e x,,x, X,,X,

have been measured and they are shown in Fig 8.3.5(a),(c). Maximum ground acceleration is
4.75m/s2 at t= 6.sec. The maximum acceleration at the first and second floor is 5.35m/s” at
6.9s and 6.74m/s2 at t= 6.37, respectively. The inter-story drift, defined as the difference
between the displacements at two consecutive floors, is plotted in Fig. 8.3.5(b). The
structure experiences a maximum inter-story drift of 0.095 m at the level of the first story
and 0.040 at the level of the second story, both localized in the first 10 seconds of the
recording. The time resolution of the recording is dt=0.01s.

The frequency content of the responses is illustrated by the Fourier spectrum and
CWT map in Figs. 8.3.6-8.3.7. The FFT of the response shows that the energy of the signals
is distributed mainly in the range 0-10Hz. Multiple peaks localized around 1 Hz, in the
structural response spectrum, may indicate a non-stationary signal. The nonstationary nature
of the excitation and responses can be clearly observed on the CWT maps in Fig. 8.3.7. On
the CWT map of the relative acceleration responses at the first and the second floors, two
high energy bands can be observed: one in the scale range of 10- 75 and the other one in the
scale range of 75-300. This indicates two vibration modes whose natural frequencies

correspond to these regions. The complex Morlet function, with the central frequency and

bandwidth parameters given by Fc=2/dt=200 and Fb=2dt’=2-10"*, was chosen as mother
wavelet for CWT.
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In order to apply the Kalman filter, using the procedure explained in Chapter 6, the
velocity signals should be, also, available. In this study, these signals are obtained by time
integration of the acceleration responses. The first 5 seconds of the record are excluded from
integration, because the signal magnitude is at the level of measurement noise. Velocity
plots are shown in Fig. 8.3.8. To verify the integration procedure, the displacement results
obtained by integration of the velocities are compared to the measured displacements.
Results are shown in Fig. 8.3 9, and only minor differences are observed.

Wavelet packet decomposition is performed simultaneously on relative accelerations

of the first and second floors, i.e. i, and ii,, respectively. Discrete Mayer wavelet was

chosen as mother wavelet. The decomposition process is illustrated in Fig. 8.3.10. The
decomposition node number and the corresponding energy of each node are written on Fig.
8.3.10, by colors yellow and magenta, respectively. The confidence index (CI) is calculated
for each pear of the reconstructed components whose energy is greater than 5% of total
corresponding signal energy. If most of the CI values are in the validation range of 0.98 -
1.02 the decomposition stops for that branch and the reconstructed component is sifted out
as a dominant vibration modal response.

Fig. 8.3.11, shows the confidence indices for nodes (5,0), (6, 1) and (7,3). The WP
node (7,3) is chosen to give the sifted signal. It can be observed that the confidence index
for decomposition level (7,3) is most of the time in the validation range (0.98-1.02) marked
by dot lines on the plots. From time resolution point of view, as well as component energy,
a lower decomposition level is preferred. For example, level (7,3) is preferred to the level
(8, 6), which also has a good confidence index.

In the present study, only the first vibration mode can be identified, because the
confidence index for the second vibration mode is out of the validation range for component
energy greater that 5%. Once the decomposition level is selected, the normalized
instantaneous mode shape and the instantaneous natural frequency can be identified using
the procedures described in Chapters 5 and 6.

Figure 8.3.12 plots the confidence index, instantaneous frequency of the sifted

signals and normalized mode shape component X é'l’ The instantaneous frequency of the
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sifted signals, although is in the range of the first instantaneous natural frequency, is not
necessary the first instantaneous natural frequency of the system. The regions where the
confidence index is out of validation range are marked by semi-transparent rectangles in

Figs. 8.3.12-8.3.13. It can be observed that a confidence index out of validation range is

associated to big oscillations in the X}. Note that X} is calculated as the ratio of the

analytical amplitudes of the sifted signals, at node (7,3) i.e X ;ll) =4 /4; ., where

iy (ny " iy ()
(m,n) =(7,3). From analytic amplitude plots in Fig. 8.3.13.b, we can point out that when the
signal intensity is very small, the analytic amplitude is more affected by factors as mode
mixture and noise in the signal. A correction should be applied to the NI mode shape in
these regions. The estimate of the NI mode shape can be improved by different techniques;
Kalman smoother has been used in this study. The NI mode shape was simulated as a
random walk process, as shown in eq. (8.3.3). The Kalman smoother measurement equations

is described in (8.3.4) and it employs the calculated analytical amplitudes of sifted signals.
Xk +1]1= X[k]+w [k] (8.3.3)

ino LK1= XNIK1A, - [k]+V[k] (8.3.4)

w[k] and v[k] represent the process and measurement noise, respectively, and they are
assumed to be independent, zero mean Gaussian white processes, with the variances as Q[£]
and R[k]. In this study after multiple simulations with different values for Q[k] and R[k],
we found that R[k]=1; Q[k]=0.001 gives a small measurement innovation values.

Figure 8.3.13(c) represents the estimate of NI mode shape component by Kalman smoother,
plotted on top of that calculated directly as the ratio of the analytic amplitudes.

In order to estimate the instantaneous natural frequency and instantaneous modal
damping ratio, a Kalman filter procedure as explained in the Chapter 6.1 is used.
Performing a numerical sensitivity study consisting in measurement innovation vs. process
noise and measurement noise covariances, the following values for Q[k] and R[k] have

been chosen for simulation:
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1 0 0 0

Q_o 001 0 0 R_10 11
1o 0 001 o0 a (3.3.3)

0 0 0 0.01
Figure 8.3.14(a),(b) shows the estimated results for instantaneous natural frequency and
estimated modal damping ratio. The success of the Kalman filter estimation is quantified by
the measurement innovation, which reflects the discrepancy between predicted measurement
and actual measurement. Measurement innovation is plotted in Fig. 8.3.15(a). For a
quantitative evaluation of the prediction errors, the measurements are plotted in Fig.
8.3.15(b). It can be observed that the measurement innovation is less than 10% from the
relative accelerations obtained from actual measurements. Estimated values for the
instantaneous damping ratio presents high oscillations and therefore it may not reliable for
SHM. The oscillations are due to factors as:
- the contribution of the damping term to the measured response is small
- the method used to estimate damping ratio. Because we wanted to take advantage of
the optimality of the Kalman filter for linear systems, modal damping is not
estimated directly. It is calculated by using the ratio between two estimated
measures, and therefore the error in each term may highly affect the obtained result.
For better results, filtering techniques for nonlinear systems, as particle filter, are

recommended.

8.3.3.2 Damage Detection in the Structure

In the following, damage assessment is done by comparing the results from three
consecutive runs of the test at excitation level of 3, 3.50 and 4m/s2. According to the field

observations, damage occurred as follows:

Excitation level (m/s°) Damage reported
3 no significant damage
3.5 a brace in the first story damaged
4 another brace damaged
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Damage observed during the test run with the excitation of level 3.5m/s” is illustrated in

Fig.8.3.2.
First, CWT of the relative acceleration responses at the first floor, i, , are performed.

Maps of absolute values of the CWT coefficients are presented in Fig.8.3.16. By visual
inspection, it can be observed that there is a shift in the distribution of the signal energy
along scale axis from level 3 to level 4, which is equivalent to a reduction of system natural
frequency. This may indicate damage into the system.

The instantaneous natural frequency, estimated by the integrated Kalman filtering
technique and wavelet packet sifting process is presented in Fig. 8.3.17. Results obtained
during the first 3 sec. of the estimation procedure are considered irrelevant, due to the
wavelet end effects and the errors due to Kalman filter accommodation, and they are marked
by a semitransparent rectangle. For the load level of 3m/s’, the instantaneous frequency is
about constant, i.e. 1Hz. This observation corresponds to the field observation, when no
significant damage has been reported. For load level of 3.5m/s* and 4m/s” there is a decrease
of the instantaneous frequency, from 0.96 Hz at the end of run with excitation intensity of
3m/s2 to 0.89Hz at the end of the run with excitation intensity of 3.5m/s2 and then 0.79 Hz
at the end of run with excitation intensity of 4m/s2. From figure 8.3.17(b), which presents
the results for excitation level =3.5m/s2, we can draw the conclusion that important damage
occurred in the time interval 10-15 sec, around 12 seconds. The IN mode shape component
is not plotted since its trend cannot be isolated from high oscillations due to different causes,

as it was explained.

The results from all available test runs are summarized in Figs. 8.3.18 - 20. Figure
8.3.18 shows the estimated instantaneous natural frequencies, Fig. 8.3.19 shows the
estimated instantaneous modal damping ratio and Fig. 8.3.20 illustrates the identified IN
mode shape component X ;11), as well as its estimated value by Kalman smoother. Starting
with excitation level of 3m/s2 there is a decreasing trend in the instantaneous natural
frequency, which indicates structural damage into the structure and it corresponds to the
field observations. However, the results for excitation level 1, 1.5, 2, 2.5 are somewhat

confusing. For excitation of level 1m/s2, we found an increase in the first natural frequency.
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This increase is also seen on CWT map of #, , in Fig. 8.3.21, where the high energy band
which indicates the first mode has been marked by a orange lines. The increase in the
natural frequency is also confirmed by Fourier spectra in Fig. 8.3.22. The relative
acceleration response, i, , was divided in two signals. The first signal contains the record
from 5s to 20s and the second signal consists of the record from 20s to 40s. Fourier
transform of each signal has been performed and the spectra, normalized by the maxim
value for convenience of the comparison, are plotted in Fig. 8.3.22. There is a clear shift of
the peak from 1.73 Hz to 1.95 Hz. As an explanation: during the first run of the test, while
the excitation has a low magnitude (max amplitude is 1.4m/s2) , due to the nature of the
wooden frame, the healthy structure increases its stiffness due to a process of strengthening
of the joints. A normalized instantaneous mode-shape, which is about constant, points out a
similar change in the stiffness of each floor. There is a discontinuity in the instantaneous
natural frequency values, from excitation level 1m/s2 to 3m/s2. Since no significant damage
was reported during these test runs, it is supposed that the structure was subjected to other
experiments which damaged the structure between these test runs. This assumption is also
supported by plot of FFT in Fig. 8.3.23. We can see a clear shift in the dominant peaks of
the spectrum without any significant damage reported. The author is aware that this wooden
house structure has been also subjected to the ground excitation recorded during the 1995
Kobe earthquake and, also, to few bi-directional excitations, but information regarding the
time when these tests were performed was not available.

The trend in the normalized instantaneous mode shape is difficult to be identified
during a test run. However, a decrease in the mode shape can be seen if the results from the
runs are plotted together, from low to high excitation intensity, as shown in Fig. 8.3.20.

The instantaneous modal damping ratio, identified by methods presented in this
dissertation, is not reliable for SHM due to the difficulties in identification , which have

been mentioned before.
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Figure 8.3.3 First vibration mode. (a) Change in the natural frequency and (b)
mode shape component X' ;‘1) with the change in system stiffness (K1 and K2)
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acceleration of the 1%t floor (2) relative acceleration of the 2nd floor; (b) Zoom in plots for
frequency range 0.5 — 2 Hz.

160



500 (0.40)
450 (0.44)
400 (0.50) R ground
350 (0.57) .

Scale (Frequency -Hz)

50 (4.00)

500 (0.40)
450 (0.44)

Scale (Frequency -Hz)

100 (2.00)
50 (4.00)

500 (V.
450 (0.
400 (0.
350 (0.
300 (.
250 (0.
.00)
.33)

200 (1
150 (1

Scale (Frequency -Hz)

100 (2.
50 (4.

300 (0.67)
250 (0.80)
200 (1.00)
150 (1.33)
100 (2.00)

400 (0.50)
350 (0.57)
300 {(0.67)

250 (0.80) .
200 (1.00) _

150 (1.33)

(a)

1# floor

(b)

Time (s)

40)
44)
50)
57)
67)
80)

27 floor

(©)

00)
00)

5 10 15 20 25 30 35 40
Time (s)

Figure 8.3.7. CWT maps of: (a) the ground acceleration, (b) the relative acceleration of the

first floor

and (¢) the relative acceleration of the second floor.

“Relative” — means in respect to the ground.

161



Excition level=350

] [
L

LR f I
ﬁ ﬂ m SR B ﬁ Jb MW AL AT oz A, P it AL Moo= e ]
by y\ RRvsss aget| qﬁ (o Yty P andaa b s
i %‘J [/ 1‘[ ! Lﬂ VY
| ( ground
\J i first floor
second floor

_1 | | | | | |
5 10 15 20 25 30 35 40

Time (s)

velocity (m/s)
o

Figure 8.3.8 Plots of the absolute velocity obtained by integration:
first floor (magenta) , second floor (green) , basement (blue);

= 0.1 ‘
% ground
% 0 REATARS AN \\/// AN N - A\V/‘W\WL'\/\ TN T
8
< -0.1

5 10 15 20 25 30 35 40
= 0.2
% : first floor
% 0 \ 1 ,Lr y (\‘\/N/ A o~ N J J"\L/\/\—/\L/V\,I vf‘u\/»\//\y N - —_—
8
< _0 X 2 | | | | | |

5 10 15 20 25 30 35 40
’é‘ 0.2 N ‘
= hoA . second floor
._U(_; 0 S “‘ : W‘ f\z ; i »’ ‘w‘/,*\// /\\\/ /,\/\;\‘\ ;"/\\‘\/,’f\wy/\\//\\r PN /N—/\L, \/’“\ = / /frm\jﬁ\‘/ D
8 N Y
< -0.2

5 10 15 20 25 30 35 40

Time (s)
measurement
integration

Figure 8.3.9. Comparison between the measured displacement signals and those
obtained by time integration of the measured acceleration responses.

162



Figure 8.3.10. Decomposition tree for a) relative acceleration of the first floor ;
b) relative acceleration measured at the second floor
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Figure 8.3.23. Fourier spectrum of iil normalized by its maximum value, for
different excitation levels

8.4 Summary

This study presents applications to experimental data of the instantaneous modal
parameters—based approach for SHM and damage detection. Any change in these quantities
may well indicate occurrence and evolution of damage. The method was applied for two
sets of experimental data: one from experimental Phase 2 of ASCE- SHM benchmark
studies and the other one from shaking table test of a full-size two-story wooden building
structure.

In the ASCE- SHM benchmark studies, the test structure was a scaled prototype of a
4 story steel-frame. Damage was introduced between two runs of the test. Data collected
during few hammer tests before and after damage have been analyzed. Considering the
invariant structure as a particular case of a time varying one, the instantaneous modal
frequencies and normalized instantaneous mode shapes are identified by CWT — ridge

method. Their values are constant during each test run (an indication of no-damage in each
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individual run) and different from one run to the other (an indication that damage occurred
between two runs), which is in agreement with the damage scenario specified in the testing
procedure.

In the second set of experiments the nature of the loading is more complex. The
shaking table was provided with the ground acceleration signal recorded on NS direction
during the 1940 El Centro Earthquake, scaled at various intensities. Several runs of the test
were conducted; in each test run the frame was excited by the original ground motion record
scaled at a nominal load level targeted at certain load intensity.

The integrated approach consisting in Kalman filter and wavelet packet sifting
process is used to estimate the instantaneous natural frequencies; wavelet packet
decomposition in conjunction with the confidence index is employed to identify the
normalized instantaneous mode shape.

The results obtained from the evaluation of the instantaneous natural frequency agree
quite well with the qualitative description of damage from the field observation. Starting
with excitation level of 3m/s2 there is a decreasing trend in the instantaneous natural
frequency, which indicates structural damage into the structure and it corresponds to the
field observations. The trend in the normalized instantaneous mode shape is difficult to be
identified during a test run, due to high oscillations. However, a decrease in the mode shape
can be seen if the results from the test runs are plotted together, from low to high excitation
intensity. The instantaneous modal damping ratio, identified by methods presented in this
dissertation, is not reliable for SHM due to the difficulties in identification. Nonlinear

estimation techniques, such as particle filter, are recommended to improve the results.
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Chapter 9

CONCLUDING REMARKS

9.1 Summary and Main Contributions

Current global damage identification techniques based on vibration measurements have
limitations such as the assumption of time invariance while data is collected, the availability
of the impulse responses, or the requirement for a physical model of the structure. These
limitations make many of the methods inapplicable for damage detection and SHM of a
structure with evolving damage while the structure is in use and its physical model is not
available.

This dissertation proposes a vibration-based approach to detect and monitor
structural damage by tracking the instantaneous modal parameters. Any change in the
instantaneous modal parameters may well indicate occurrence and evolution of damage.
Abrupt and gradually developed damage can be thus identified. It is assumed that the
structure with gradual deterioration can be treated as a linear slowly time-varying system
and a structure with sudden damage is treated as a linear system before and after damage. It
is, also, assumed that the structure is lightly damped and has well separated vibration modes.

1. A required step in achieving this objective was to develop the theoretical basis of
time varying vibration modes and instantaneous modal parameters. It has been proved that
using the dynamic eigenvalue problem the response of a linear time varying system can be
decomposed in a sum of time varying vibration modes characterized by modal parameters

which have physical significance, i.e. positive instantaneous modal frequency, real
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instantaneous mode shapes and real modal damping. These instantaneous modal parameters
are related to the system physical properties by the dynamic eigenvalues/eigenvectors of the
associated first-order system in state space. For identification purpose, a normalized
instantaneous mode shape vector has been defined as the instantaneous mode shape vector
normalized by one of its components which is different of zero; therefore, the normalized
instantaneous mode shape has a component which is equal to unity along time record, while
all other components may show time dependence.

The instantaneous frequency of the modal responses is practically independent of the
measurement location/DOF and is the same for displacement, velocity and acceleration
vectors up to a term of the order of epsilon (much less than 1), if the assumption of slow
varying system holds. A second order formulation for each modal response, where the
instantaneous natural frequency and instantaneous modal damping ratio appear explicitly,
has also been proposed. If the linear system is not slowly time-varying, one cannot guaranty
that real vibration modes with the same instantaneous frequency for different DOFs can be
identified in the responses. By a numerical simulation study it is shown that the assumption
of slow varying is not so restrictive for damage detection and it could cover many real cases.

2. Methods of identification of instantaneous frequency of the free vibration
responses previously proposed by other authors, such as CWT — ridge method and WPS
technique in conjunction with Hilbert transform, are employed for identification of
instantaneous modal frequency and normalized instantaneous mode shape vector. The
approach is tested on simulation data from a 3DOF with progressive stiffness degradation
and nonzero initial conditions. The identified results are in good agreement with those
obtained by solving the dynamic eigenvalue problem.

3. Since free vibration responses of a time varying system are not available in the
case of real applications, the identification techniques using forced vibration responses were
proposed in Chapters 5 and 6. The normalized instantaneous mode shape is identified from
the forced vibration response by using a wavelet packet sifting process in conjunction with

Hilbert transform. A confidence index, calculated using the instantaneous frequency of the
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sifted signals, is introduced to validate the identified results. This method may not require
the measurement of the excitation.

The time-varying Kalman filter is integrated with the wavelet packet sifting
technique and the second order formulation of the time-varying vibration modal responses to
identify the instantaneous natural frequencies and the instantaneous modal damping ratios.
The physical significance of the sifted components by wavelet packet sifting technique is
ensured by introducing a new sifting criterion based on the confidence index.

The effectiveness of the proposed approaches is illustrated for simulation responses
of a multi-degree-of-freedom system subjected to a base excitation. Two damage scenarios,
sudden stiffness loss and progressive stiffness degradation, and different base excitations
including real earthquake signals and stationary signals simulated as discrete Gaussian white
noise processes are considered. The robustness of the methods in the presence of
measurement noise and incomplete measurements is addressed.

5. To identify the instantaneous modal parameters from the measurement data it was
assumed that the structure can be approximated by a linear slowly time varying system in
the case of progressive damage or a linear system before and after damage in case of sudden
damage. To address the nonlinear nature of the structure, a preliminary study on the
meaning of instantaneous modal parameters and their use for SHM of systems with bylinear
restoring forces has been performed. It was illustrated that change in the identified
instantaneous modal parameters may have different patterns for the linear system, the
system with slow stiffness degradation, and the system with bilinear restoring forces.

6. The performance of the proposed approach has been evaluated on two sets of
experimental data: one from experimental Phase 2 of ASCE- SHM benchmark studies and
the other one from a shaking table test of a full-size two-story wooden building structure. It
was found that the instantaneous natural frequency agrees quite well with the qualitative
description of damage from the field observation. The normalized instantaneous mode shape
presents some oscillations in the case of forced vibration data, but its trend is clear as

damage level increases. The instantaneous modal damping ratio, identified by methods
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presented in this dissertation, is not reliable for SHM due to the difficulties in identification.

Nonlinear estimation techniques are recommended for improving the results.

9.2 Future Work

The work in this dissertation can be extended in few directions:

1. In this dissertation we made the assumptions that the structure can be approximated by
linear slowly time varying or piecewise linear time invariant system and that its vibration
modes are well separated. The future work may address these two issues.

a) Considering that a structure with damage can have a nonlinear behavior, the
preliminary study on the meaning of instantaneous modal parameters for bilinear systems
should be extended for systems with other types of nonlinearities and plastic hysteretic
behavior.

b) The separation of vibration modes is a common assumption in many of the
existing time-frequency identification methods, even in the case of a time invariant system.
In the present study, the idea was to use those response signal components with a minimum
mode mixture and not to address the mode mixture. A confidence index out of validation
range may indicate that the mode mixture is significant and in that case the results are not
reliable for SHM. The approach can be improved in two ways:

e developing identification techniques for systems with closely spaced time varying
vibration modes for the case of free vibration as well as forced vibration. The
approaches from classical modal analysis may constitute a source of inspiration for
further development.

e investigating the effect of mode mixture on the confidence index and its departure
from unity value.

2. We found that very good results for modal instantaneous frequency and
normalized instantaneous mode shape are obtained from free vibration data. Developing a
deconvolution technique to obtain the free response of a time varying system subjected to

stationary or nonstationary excitations may constitute a further research topic.
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3. In the dissertation the instantaneous modal frequency and damping ratio have
been calculated from modal stiffness and modal damping estimated by a linear Kalman
filtering technique. The results can be improved if they are estimated directly by using a
nonlinear filtering techniques; particle filter is a suggestion.

4. The instantaneous modal parameters have been defined based on the dynamic
eigenvalue and eigenvectors. In developing the time varying vibration modes the only
assumptions were that the eigenvectors satisfy certain slow varying criteria and the complex
eigenvalues come in the conjugate pairs. No assumption on the algorithm required to solve
this problem has been made. To give a physical interpretation of the results and to test the
time varying vibration mode concept we propose the quasistatic algorithm. However, we
consider that there is room to improve the algorithm of solving the dynamic eigenvalue
problem.

4. In this dissertation the methodology is tested on numerical simulation and
experimental data. More experiments are recommended, and we propose to alternate the
high level excitations, which are most likely to damage the structure and reveal the nonlinear
behavior, with low-level ambient excitation when the structure is in its linear regime. Also,
it is recommended to perform the experiments on structures which have a physical model
and to compare damage identification results obtained by instantaneous modal parameters
with those results obtained by using tracking methods. Validation of the approach using real

data should be also addressed.
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APPENDIX

In this Appendix we justify the few approximations used in Chapter 3. If not mentioned, the
notations are the same as those in Chapter3.

Theorem

Consider the following equation as the state space representation of a linear time varying
second order dynamic system whose solution is x(t).

. x(?)
YO =AWy@®), y@)= L ( t)}

Let A(t) be a 2N x 2N matrix whose elements are continuous real functions of time on the
time interval 7' = [to,t fJ.

Let u(?) ={u,(t) u,(t) ---u,(t) o uyy 1", and A(f) = w(t) +iy(t) be the solution of
the dynamic eigenvalue problem' associated to matrix A(t).

If:
Al , k=1---2N, VteT
Then:
Q) _
1. <A@, k=1---2N, VieT
|uk (t)|
2. %ﬁ"m))%rw(t);a)(t)  k=1.2N, VieT
PA(Hu(t) = A(Ou(@) +ua(), VteT
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3. | =

k=1--N, VteT

4. iy + Aty | =

k=1--N, VteT

If, in addition,

i)
A2 <o), VteT
[A(0)
A3 M<<w(r), k=1.--2N, YteT
ju, (D] A(2)]
Then:
5. d(arg(ti,, (f)d: ADuy 0)) ot)=o(t), k=1-N, VieT
Note:

1. For the easiness of the reading the following notations are introduced:
up(t) =real(u, (1)), u,(t)=imag(u,(t))

2. Expression in A1, A2, and A3 can be reformulated as:

u, (t
Al There exists ¢, <<1 so that & <

<¢g,k=1-2N, VteT
ju, (Do)

. @)
A2 There exists ¢, <<1 so that ————<<¢,, VieT
[A@O)e(t)
A3 There exists ¢, <<1 sothat¢< <&, k=1-2N, VteT
ju, ()] A(0)|ew
Proof 1: | k()| 2N, VteT
e |

Using assumption (A1) and triangle inequality, it results that:

where g, <<1 = | i, )| |/1(t)|

|“k| |”k( |
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d(arg(u, (1))
dt

Proof 2: +ot)zw(t) , k=1---2N, VteT

d d u Upll, —U U

oy (argu, () = E[atan[i ] = ﬁ (A2.1)
Using the triangle inequality for complex numbers, it results:

|uRa1 — Uyl | =<| Ul | Ui, |= |uR||L'£1| |L'£R||u1| SM @

‘ ”12 N “R2 ‘ ‘“12 N uRz ‘ u12 N uRz ‘ |u|2 |u|2 |u| |u| (A2.2)

Employing assumption A1 , eq. (A2.2) can be written as:
| | Jia] _
W + W < go(t)+ g 0(t) =28 0(t) (A2.3)
Combining A2.1, A2.2, and A2.3 it results that:
dlargw)
dt

<2ew = w-2ew<

d
oy (arg(y) So+2e0 (A2.4)

> w +w(t)=w(t)+0(&)

Comment:
Equation (A2.4) gives a bound for the eigenvector contribution to the instantaneous
frequency of the modal component.

Proof 3 |u2k|5|/1||uk, k=1.--N, VteT

Since the state space vector component y,, (t) = y, (¢), the eigenvector component u, (¢) is
related to u,, (¢) as follows:

uy, = Au, +1,, for k=1.--N (A3.1)
Using the triangle inequality and assumption A1, |u,,| is bounded as follows:
”’mk | =t ” <oy | <[ |+ i | (A3.2)
A | =i, | 2 A | = | A0, | = [ | (1= ) (A33)
A, |+ i | < [Auy |+ &) Au, | = A [+ &, ) (A34)

Combining (A4.2), (A4.3) and (A4.4), it results:
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|/1uk|(1—81)£|u2k|S|/1uk|(l+81) = |u2k|: |i||uk|+0(81)
-)|u2k|;|/1uk| for (g, <<1)

Proofd. |iy +Auy|=|A |, k=1--N, VieT

Aty | = | < [ Aty + 1y, | <[ A0ty |+ iy,

(A3.5)

(A4.1)

Employing the assumption 41, the lower and upper bounds for |Au,, +1,,| can be expressed

as:
H’luzk| - |u2k ” 2 H/lu2k| - 31|/1”2k ” = |i”2k |(1 —& );

|ﬂu2k| + |L22k| < |/1u2k| + 81|/1u2k| = |ﬂu2k|(1 + ¢ );

Combining (A4.2), (A4.3) and (A4.4), it results that:
|ﬂu2k|(1 - & ) < |/1u2k + L't2k| < |/1u2k|(1 + ¢ )

Using the expression (A4.4), the terms in the above inequality can be written as:

ay, (1= &) 2|2 [u, (1= &, )
Ay, |1+ &) < |2 Ju, J(1+ &, )

Therefore |/”tu2k +L22k| is bounded as:
|ﬂ|2|uk|(1 —g) < |/1u2k + u2k| < |ﬂ|2|uk|(1 +g )
A, |0 = 2,) < Aty + 1y | < A g1+ 22, + 2,2

> [Auy, +iiy | = |4 u |+ OCe))

4 |L22k +/?,u2k| = |/1|2|uk

k=1-N

d(arg(it,, (£) + A(Ou,, (1))
dt

Proof 5 +o(t)zo(t), k=1---N, VteT
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(A4.6)

(A4.7)
(A4.8)

(A4.9)



For simplicity, let denote u_(¢) =u,, () + A(H)u,, (¢) and u,, =real(u,(t)),
u,, (t) =imag(u,(t)). With these notation the first term of the above expression is written as:
d(arg(iiy, (1) + A0y, (1)) _ dlarg(u, ))

dt = dt (AS5.1)
d d u Ul —U U
_(arg(ua (f)) = | atan al — _aR azl aR2 al (AS 2)
dt dt U,z u, +u, )
Using the triangle inequality for complex numbers, it results:
UpgUay —URU _ | uaRL‘ta[ | | L‘laRua[ | _ Uar u“] L't“R Ua aal u“R (A5'3)
2 2 =< 2 2|t 2 2| 2 2 =
‘ ual + uaR ‘ ual + uaR ‘ ual + uaR ‘ ua ua ua ua
U, u, ‘iiu + Auy, + /1”2/(‘ |1;i2k| ‘ﬂ“zk‘ |ﬂ’1’22k|

< - < . .
|/1u2"|( _51) |’1u2k|(l_‘91) |/1“2k|(1_51) |/1”2k|(1_51) |/1uzk|(1—€1) (AS4)

ua
Using the assumption 43 , the first term of eq. (A5.4) can be expressed as:

|ii2k| < &0
|/1”2k|(1_‘91) - (1_‘91) (AS.5)

Using the assumption 42, the second term of eq. (A5.4) can be expressed as:

il e

|/1”2k|(1_51) |/1|(1_51)_(1_51) (A5.6)
With the assumption A1, the last term of eq. (A5.4) is given as:

|’m2k| _ |”2k| < &

|;W2k|(1_51) |”2k|(1_51) (1_51) (A5.7)
Combining eqgs. (AS5.1) and (AS5.5-5.7), it results:

|d(arg(a2k () + A(Du,, (Z)))| < 2(‘91 +é&,+é&; ) o

| dt - (-e) (A3.8)

5 dlarg(iy, (t); 2w ®O) | ot 006) A58)

> dlarg(iy, <r>; Auy @),
t
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