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Abstract 

Natural Language Processing (NLP) has become increasingly relevant in our data-driven 

world and is being implemented widely today due to the abundance of natural language data. 

However, mastering NLP processes is not a simple task, particularly for those without a 

comprehensive background in the field. Further, the use of neural networks in many commonly 

used NLP approaches makes it difficult to interpret the input-output relationships of these 

models, creating the "black-box" problem in data science. To address these challenges, we 

develop and implement a web-based interactive visual NLP learning platform that enables 

learners to study some fundamental neural network-based NLP techniques, topics, and 

applications. Specifically, the technical contribution of this work is threefold: (1) To present 

popular neural network-based NLP analytics methods in a step-by-step linear format that is easy 

to comprehend. (2) To eliminate the 'black box' problem found in neural network-based NLP 

learning resources by providing continuous real-data examples. (3) To enable users to interpret 

model outputs through interactive visual demos that apply neural network-based NLP method 

outputs. 
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1 Introduction 

 

1.1 Motivation & Background 

 

Natural language processing (NLP) has recently shot up in prominence and its growth 

shows no signs of slowing. This is largely due to the vast amount of available natural language 

data we have access to. Natural language refers to how humans communicate amongst themselves, 

whether through spoken or written words. Natural language can be characterized by various 

patterns and structures, such as grammatical rules, idioms, or cultural references. These underlying 

patterns offer rich insights into human behavior and cognition, presenting a significant amount of 

potential utility for computation [1]. 

However, extracting value from these large swaths of natural language data requires 

effective processing and management. This is where the field of NLP comes into play. Natural 

language processing is a branch of computer science which utilizes processor-intensive 

computational techniques to analyze and interpret human language. By applying computational 

and statistical methods, NLP techniques allow us to perform various tasks with human languages, 

potentially giving insight into observed human language phenomena. The field of NLP spans a 

range of approaches, from statistical methods to complex neural network-based methods, all of 

which can be used to uncover hidden patterns present in natural language data [2]. 

NLP technologies have already significantly contributed to modern life, utilized in a range 

of technologies that many of us use on a daily basis [3]. Digital assistants such as Siri and Alexa 

rely heavily on NLP techniques to parse and interpret user inputs. Analyzing a user's spoken 

commands, NLP algorithms can be applied to determine the user's intent and respond appropriately 

[4]. Another everyday example of NLP in action is the autocorrect feature used in most modern 

implements for text-based communication. For example, the autocorrect software found on devices 

running iOS takes into consideration the context of the conversation, the frequency of words used, 

as well as the user's typing history to maximize the accuracy of given suggestions. This involves 

analyzing and interpreting human language in real-time, a core function of NLP [5]. NLP even 

plays an essential role in spam detection tools used across various email services as well as other 

forms of communication. By examining the contents of an email and identifying patterns that have 

been associated with messages classified as spam, NLP can be used to identify and filter out 

unwanted messages [6]. 

While the field of NLP has already made significant measurable advances in society, the 

industry grows bigger every day. The latest breakthroughs in NLP have led to the development of 

much-discussed technologies such as GPT-3, which is capable of understanding and responding to 

complex natural language queries in real-time [7]. Moreover, advancements in machine learning 

and deep learning techniques have resulted in newer NLP techniques becoming more accurate and 

efficient. As a result, NLP will only become more relevant, especially with the increasing 

availability of natural language data, better processing capabilities, and more advanced techniques. 

The field of machine learning has experienced tremendous growth in recent years, with the market 



   

 

   

 

for machine learning estimated to have grown from $1 billion in 2016 to almost $9 billion in 2022 

[8]. All signs point towards this growth continuing, with Google Trends data indicating that interest 

in machine learning has spiked in 2022 [9]. Given the ever-increasing importance of natural 

language processing, including deep learning neural network-based NLP, ample and accessible 

education of the field is crucial for those who wish to enter the field. 

 

1.2 Research Challenges 

 

While the importance of ample and accessible education of NN-based NLP has been 

identified, learning these subjects can present a significant challenge for many learners. This is 

largely because mastering machine learning and NLP processes is no trivial task, especially for 

novice learners or those without a comprehensive background in the field. Additionally, many 

commonly used NLP approaches are based on neural networks. Due to these models being 

developed to be understood by artificial intelligence systems, rather than humans, it can be 

challenging to interpret the input-output relationships of these models. This is what is referred to 

as the 'black box' problem [10]. Demographics of those potentially facing obstacles while 

attempting to learn about NLP include novice professionals, junior data scientists, and college 

students. To overcome these challenges, it is imperative learners are provided with a solid 

understanding of the linguistics and computation that NLP is based on. 

In order to achieve this goal, we can examine existing approaches used to teach NN-based 

NLP, as to identify the qualities of a successful teaching approach. Some of these approaches 

include self-study, involving reading and learning largely through outside materials. This approach 

suffers from a steep learning curve, often requiring a learner to have both strong self-learning 

capabilities and an existing foundation in the related topics [11]. Many approaches also involve a 

more formal instructional learning environment, courses completed either on campus or remotely 

online. This solution may provide a remedy to the challenges faced in self-learning but suffers due 

to a lack of accessibility for most potential learners, who will not have access to or be able to afford 

professionally taught course materials [12]. 

Several potential solutions have been developed to address these shortcomings. One such 

solution is an ontology-based educational tool created by Zobia and Stefania [13], which presents 

a tree diagram of conceptual class nodes and subclass nodes of NLP, combining the strengths of 

visual connectivity and interactivity. However, this approach lacks the depth necessary to 

effectively combat the black box problem, failing to provide in-depth explanations and 

descriptions of the topics at hand. Another approach is the Word Embedding Visual Inspector 

(wevi) simulation platform, a visual tool that allows users to understand the working mechanisms 

of word2vec, one popular word embedding model, and how different hyperparameters can affect 

its outcome [14]. However, this approach is non-cohesive, arbitrary, and does not pair the NLP 

concepts being applied with in-depth explanations. In short, there is a gap in existing materials for 

a platform that addresses the teaching and learning of neural network-based NLP techniques and 



   

 

   

 

their applications, surpassing the inadequacy of existing learning techniques to meet all necessary 

qualities. 

 

1.3 Summary of Our Approaches and Contributions 
 

To bridge the gap identified in section 1.2, we proposed and developed a visual based 

educational support platform for teaching and learning neural network-based natural language 

processing. This educational support platform is an extension of VisNLP, a similar learning 

platform with its focus set on statistical-based NLP and enables learners to study the core 

processing components of statistical NLP analytics in sequence through interactive visual 

diagrams and charts with a practical example [15]. Our primary objective is to build on the success 

of the original platform and further develop and expand with VisNLP 2.0. This would entail having 

a web-based platform that is easily accessible, user-friendly, and interactive. In VisNLP 2.0 our 

primary focus is on teaching NN-based approaches for NLP in a similar way. The primary 

contributions of this project are threefold: 

(1) Presenting popular neural network-based NLP analytics methods in a step-by-step linear format 

that is easy to comprehend.  

(2) Eliminating the 'black box' problem found in neural network-based NLP learning resources by 

providing continuous real-data examples. 

(3) Enabling users to interpret model outputs through interactive visual demos that apply neural 

network-based NLP method outputs. 

 The VisNLP 2.0 platform is composed of five interconnected modules that cover a variety 

of topics and techniques relevant to neural network-based natural language processing. A platform 

architecture diagram which details the relationships between these modules is shown below, in 

Figure 1: 



   

 

   

 

 

Figure 1: VisNLP 2.0 Platform Architecture Relational Diagram 

 

As shown above in Figure 1, the VisNLP platform breaks down NN-based NLP techniques 

into two categories: (1) Word embedding methods, which generate fixed-size vector 

representations for individual words in the vocabulary and (2) Contextualized embedding methods, 

which capture context-dependent meanings of words by generating embeddings based on the entire 

input sequence.  

For word embedding methods, the platform details word2vec in a step-by-step format that 

is easy to comprehend, with explanations and descriptions relating to the related higher-level 

theory at every step. The word2vec technique produces word embedding vectors with the help of 

an optimizer. The platform then demonstrates how these vectors can be interpreted and used in a 

real example with a song recommendation application using word2vec. For the contextualized 

embedding methods, the platform details three techniques, sen2vec, para2vec, and doc2vec, which 

produce contextualized embedding vectors with the help of an optimizer. These are paired with 

step-by-step explanations relating to the higher-level theory. The platform also showcases a visual 

application using these contextualized embedding vectors produced using doc2vec, which 

demonstrates fake news detection. The platform also contains a detailed step-by-step 



   

 

   

 

demonstration of the Adam optimizer algorithm, utilized in each of the previously mentioned 

techniques. Further, the embedding technique modules and the optimizer are shown on continuous 

real-data examples where the dataflow of real model tensors is displayed. Meanwhile, the 

application modules enable users to interpret model outputs through interactive visual demos 

which apply NN-based NLP method outputs. In the subsequent sections, we will cover the role of 

each module. 

 

1.3.1 Word2vec Module 

 

The first module covered in the VisNLP 2.0 platform is word2vec, one of the foremost NN-

based NLP techniques used for word vectorization. The process of word vectorization is used to 

produce embeddings for each word in an input corpus of text, meant to represent the relations 

between each word. These embeddings are based on each word’s co-occurrence pattern and, when 

word2vec runs enough iterations on an input corpus of scale, begin to resemble semantic meaning. 

There are two models primarily used in word2vec: Continuous Bag Of Words (CBOW) and Skip-

Gram (SG). The word2vec module visually covers 10 iterations’ worth of real output data in a 

visual format both simple enough to be accessible to novice users and thorough enough to remain 

useful to experienced users. This will help all users understand the processes in detail and make 

the word2vec architecture more accessible to anyone who wishes to learn. 

 

1.3.2 Para2vec and Sen2vec Module 

 

Building from the word2vec visual module, the sen2vec visual module can be used to 

visualize the relationship between different sentences. In VisNLP 2.0, the sen2vec visual module 

shows a complete step-by-step analysis of both training models to fully demonstrate the sen2vec 

algorithm. This can help users understand how the algorithm is analyzing and summarizing the 

text. The para2vec visual module can be used to visualize the relationship between words in a 

paragraph. In VisNLP 2.0, the para2vec visual module shows a complete step-by-step analysis of 

both training models to fully demonstrate the para2vec algorithm. This can help users understand 

how the algorithm is identifying and classifying paragraphs based on their context. The doc2vec 

visual module has been omitted from VisNLP 2.0 to reduce redundancy, as a dedicated module 

would share a great number of similarities with the para2vec module. However, the doc2vec 

algorithm can be particularly useful for analyzing larger text documents and for tasks such as 

document classification and topic modeling. Overall, incorporating these visual modules into the 

VisNLP 2.0 platform can provide users with a more intuitive and accessible way to understand the 

workings of NN-based NLP analytics when generating contextualized embeddings, ultimately 

improving their ability to effectively analyze and summarize text data. Understanding how NN-

based NLP analytics work is crucial for optimizing their performance, one key aspect of this being 

the use of effective optimizers to tune a model’s parameters. 



   

 

   

 

 

1.3.3 Adam Optimizer Module 

 

For the NN-based techniques mentioned in the previous modules, the training process 

involves iteratively adjusting the model parameters until a given level of accuracy is achieved for 

producing predictions on new inputs. Here, optimizers are essential for effective and efficient 

parameter tuning during this process, as they dictate these parameter adjustments. Further, a need 

is established to cover this component of NLP in order to help remedy the “black box” problem. 

In VisNLP 2.0 we choose to focus on the Adam optimizer, a popular and fairly ubiquitous 

algorithm used in NLP and machine learning tasks. In short, the Adam optimizer operates as a 

variant of stochastic gradient descent, using adaptive learning rates and momentum to speed up 

convergence and improve performance. In VisNLP 2.0, the purpose of the Adam optimizer module 

is to show how it works, step by step, using a continuous real-data example, to explain exactly 

where and how different hyper-parameters affect the Adam optimization process. It is intended to 

allow learners to understand the connection between the outputs obtained from a forward pass in 

a neural network-based NLP model and the corresponding updates performed on the model’s 

parameters during backpropagation. 

 

1.3.4 Songs Recommendations Application Module 

 

In addition to the step-by-step modules demonstrating to a user how embeddings are 

generated, we can compound this learning by demonstrating real-world applications of these 

embeddings. A song curation application is an effective example because of its relative simplicity 

and widespread understanding of its usage. This application uses word2vec to train a dataset of 

10,000 song titles and artist names, forming vectors that show relationships between each song. 

The cosine similarity of each vector is compared to determine which songs are most similar to one 

another, thereby recommending a set of new songs to a potential listener. This application is easily 

visualized, and the outputs use popular songs with the intention of making the results easy to 

understand. 

 

1.3.5 Fake News Detection Application Module 

 

In addition to the song recommendation application, which implements word2vec, the 

VisNLP 2.0 platform contains an application that utilizes contextualized embeddings. Using the 

doc2vec model, the Fake News Detection application covers yet another way to apply generated 

embeddings. This example works well for teaching doc2vec processes because it is simple enough 

for a novice user to follow along. Additionally, it demonstrates the use of support vector machine 

(SVM) technology. This highlights how NN-based NLP techniques can be paired with other 

technologies to complete a desired task. Due to the complicated nature of NLP and SVM 



   

 

   

 

techniques, representing this process with a visual module is imperative for teaching as it allows 

the user to visualize how the vectors are categorized together. These vectors are visualized using 

via SVM plots, a format chosen to easily highlight the decision boundary for the classification. 

  

1.3.6 Platform Evaluation 

 

To evaluate the effectiveness of VisNLP 2.0, user testing was conducted, collecting online 

survey responses from each user. Participants with varying levels of NLP knowledge were given 

time to explore and learn from each module in a self-guided manner. After testing the platform, a 

brief online survey was administered to assess its success and gather feedback on strengths and 

weaknesses. The objectives of this feedback were to (1) evaluate the general effectiveness of the 

VisNLP 2.0 platform in achieving its objectives, and (2) identify the importance and effectiveness 

of each of the various components of the VisNLP 2.0 platform in order to inform future 

development. 

 

1.4 Summary of Included Chapters 
 

This report is organized into six chapters, which are as follows: Chapter 2 provides a 

literature review of the key concepts related to neural network-based Natural Language Processing. 

Chapter 3 covers the development and implementation details of the VisNLP 2.0 platform, 

including detailed block diagrams, and any pertinent figures, formulas, and algorithms. Chapter 4 

provides a comprehensive overview of the finished VisNLP 2.0 platform and its modules, detailing 

the entire teaching and learning process from start to finish. Chapter 5 presents the results of the 

user testing and platform evaluation survey and contains a discussion on this feedback. Chapter 6 

summarizes the findings of the report, draws conclusions, and makes recommendations for future 

work. Chapter 7 serves as an appendix that includes important figures and complete versions of 

materials referenced throughout the report. 

 

2 Literature Review 

 

This section provides a review of literature that is extensively referenced and used 

throughout this paper, covering their contents and theory that serve as the foundation for the 

research presented.  

 

2.1 Word2Vec Module Related Materials 
 



   

 

   

 

Within the category of NN-based NLP analytics, word2vec is one of the best documented 

techniques. Initially developed in 2013 by Tomas Mikolov and others at Google [16], word2vec is 

used to create distributed vector representation of words in a given input text. These vectors, called 

word embeddings, are highly complex and represent relationships between words within a larger 

text sample, which begins to resemble semantic meaning when performed at a high enough scale. 

This model was expanded upon in 2014 by Xin Rong, writing in depth about parameter usage in 

both the Continuous Bag Of Words (CBOW) and Skip Gram (SG) models [17]. This paper was 

written to address the lack of documentation on the parameter learning process in detail, a goal 

similar to that of VisNLP 2.0. 

An existing visual platform for word2vec was created, also by Rong, in 2016. The word 

embedding visual inspector, or wevi, allows a user to step through word embeddings as they 

develop with each iteration of word2vec on a number of pre-determined datasets [14]. 

Additionally, wevi allows users to adjust some parameters and even input their own dataset if they 

so desire. Where wevi falters, however, is that when it runs at a rate high enough to produce 

effective results, it goes far too fast for a user to reasonably be able to make out what’s really 

happening. You can go step by step as well, but still the simulation does not show any of the 

mathematical calculations happening within the model, or even what calculations are really 

happening to produce the embedding vectors on display. As a tool to visualize word2vec it is 

dynamic, interactive, and accessible, but ultimately functions as a highly polished black box. 

   

2.2  Sen2vec/Para2vec Module Related Materials 
 

In NLP, learning distributed vector representation of words is a well-known framework for 

learning word vectors. The goal is to predict a word given the other words in a certain context, 

with every word mapped to a unique vector as represented by a column matrix. This method allows 

for simple and efficient vector operations for natural language understanding, language modeling, 

and statistical machine translation. After training, words with similar meaning are mapped to a 

similar position in the vector space [18]. 

An extension of this method is the paragraph vector, a distributed memory model inspired 

by methods for learning word vectors. In this model, every paragraph is mapped to a unique vector 

represented by a column matrix, and every word is also mapped to a unique vector represented by 

a column matrix. The paragraph vector and word vectors are averaged or concatenated to predict 

the next word in a context. The paragraph token can be thought of as another word, acting as a 

memory that remembers what is missing from the current context or the topic of the paragraph. 

The success of this method can be observed in two document similarity datasets, where the 

paragraph vector method is able to outperform other methods such as Latent Dirichlet Allocation 

(LDA). Additionally, paragraph vectors allow for finding documents of interest through simple 

and intuitive vector operations, making them useful for local and non-local browsing of large 

corpora [18] [19]. 



   

 

   

 

However, the word2vec model does not consider paragraph factors in semantic learning. 

To address this limitation, the para2vec model was proposed. This model introduces a paragraph 

component to predict the current word, either through the Distributed Memory (DM) or Distributed 

Bag of Words (DBOW) models. The DM model predicts the current word through context, adding 

a paragraph ID and generating a paragraph vector. The paragraph vector and context components 

are accumulated and connected together for training. The DBOW model is extended through skip-

gram, taking the paragraph vector based on the paragraph ID as input and predicting the context 

word from within each input paragraph. Both models learn not only semantic information but also 

word order information, improving the accuracy of predictions. The DM model uses word and 

paragraph vectors in semantic learning, while the DBOW model takes paragraph vectors as input 

and predicts context words. These models are useful in NLP for tasks such as document 

classification and topic modeling [20].  

 

2.3  Adam Optimizer Module Related Materials 
 

The Adam optimizer was first introduced by Diederek Kingma and Jimmy Ba in 2014. 

Adam is an optimization technique for stochastic objective functions that combines an adaptive 

learning rate with momentum through lower-order moments. Due to its fast convergence and 

stability, it has become a staple optimization technique in machine learning tasks, including neural 

network-based NLP tasks [21].  

First, we will discuss some advantages of the Adam optimization method. Starting with its 

improvements over regular gradient descent, such as an adaptive learning rate as opposed to a 

fixed learning rate, and the use of momentum through making use of past gradients. A key 

advantage from the adaptive learning rate in Adam is allowing for the learning rate to be adjusted 

based on the estimated gradient variance for each parameter, resulting in a more efficient and stable 

optimization. The incorporation of momentum in the Adam method allows for continued 

movement in a direction based on exponentially decaying influence from the direction taken in 

past iterations, which helps it mitigate oscillations and avoid reaching false loss minima. These 

qualities make Adam especially well-suited for noisy or sparse gradients, consequently making it 

particularly useful for applications such as NLP. Additionally, the Adam optimization method is 

computationally efficient, requiring little memory and making it well-suited for training large-

scale neural networks. This is because it requires minimal variables to be computed as compared 

to standard stochastic gradient descent. Finally, the Adam optimizer provides robust options of 

hyperparameters, which allows for easier tuning compared to other optimization methods. 

Specifically, the learning rate (α), the constant (ε), and the exponent decay rates (β1) and (β2) [22]. 

While the Adam optimizer offers several advantages over standard stochastic gradient 

descent, there are also inherent disadvantages as well as limitations that have been identified 

through further studies. One main disadvantage of the Adam optimization method is poor 

generalization performance for certain data, specifically when there are significant outliers or there 

is overfitting.  Another disadvantage of Adam is that it can converge to suboptimal solutions, 



   

 

   

 

especially in high-dimensional parameter spaces. Further studies have also shown that Adam can 

suffer from instability and erratic behavior, particularly when the learning rate is too high or too 

low [23]. Additionally, while momentum typically would counteract this, it is possible in some 

cases that the adaptive learning rate can cause the optimizer to get stuck at a local minimum or 

experience oscillations near the optimal solution. Further, while Adam can perform exceptionally 

well on a variety of machine learning tasks, it can sometimes hinder the convergence and 

performance for certain types of problems. 

Next, we can examine how the Adam optimization algorithm works. It can efficiently 

optimize the parameters of a model by adapting the learning rate for each parameter based on the 

estimate of the first and second moments of the gradients. The algorithm computes a moving 

average of the gradients, where the momentum term allows it to consider the direction of past 

gradients. The first moment estimate is computed as a running average of the gradients, and the 

second moment estimate is computed as a running average of the squared gradients. The algorithm 

then combines these estimates with hyperparameters (β1) and (β2) to compute the adaptive learning 

rates for each parameter. The main equations used in the Adam optimization algorithm are shown 

as follows in Figure 2: 

𝑚𝑡 =  𝛽1 ∗  𝑚𝑡−1 + (1 −  𝛽1) ∗ 𝑔𝑡 

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔𝑡
2 

�̂�𝑡 = 𝑚𝑡/(1 − 𝛽1
𝑡) 

𝑣𝑡 = 𝑣𝑡/(1 − 𝛽2
𝑡) 

𝜃𝑡 = 𝜃𝑡−1 − 𝛼 ∗ �̂�𝑡/(√𝑣𝑡 + 𝜀) 

Figure 2: Adam Optimizer Equations 

Here, (mt) and (vt) are the first and second moment estimates, respectively. (gt) is the 

gradient at the time step (t), (β1) and (β2) are the decay rates for the first and second moment 

estimates. (�̂�𝑡) and (𝑣𝑡) are the bias-corrected first and second moment estimates, respectively. 

Further, (α) is the learning rate and (ε) is a small value used for avoiding division by zero. Finally, 

(θ t) refers to the parameters which are updated by the optimizer. 

Through performance testing conducted in the Adam paper, it showed superior 

performance compared to other optimization methods like Adagrad, RMSProp, and stochastic 

gradient descent (SGD). Specifically, in terms of convergence speed and accuracy, the Adam 

optimizer has been shown to outperform Adagrad and RMSProp on several benchmark datasets. 

Further studies on Adams performance find similar results [24]. It has also been found that 

RMSProp can sometimes outperform Adam on image classification tasks for example, and that 

similarly there are cases where SGD with momentum can outperform Adam on some deep learning 

tasks [24]. 



   

 

   

 

In summary, while the Adam optimization method may not be superior to other optimizers 

in every task it is still a widely popular choice for many ML tasks due to its convergence speeds 

and stability. Further, it is particularly effective for many NLP tasks, making it vastly popular in 

the field. 

 

2.4  Applications Modules Related Materials 
 

Word2vec for song curation 

Word2vec is a popular natural language processing technique that has found widespread 

applications in the field of music curation [25]. Several studies have explored the use of Word2Vec 

to analyze music lyrics and curate songs based on similarity in lyrics and themes. 

Ribeiro and Brasil (2017) used word2vec to analyze song lyrics and build a 

recommendation system for music playlists. The study demonstrated that word2vec can effectively 

capture the semantic relationships between words in song lyrics and help identify songs with 

similar themes and emotions. He et al. (2017) also used word2vec to analyze the lyrics of popular 

songs and build a recommendation system for music playlists. The study demonstrated that 

word2vec can be used to identify songs with similar lyrics and themes, and that the 

recommendation system built using word2vec outperformed other traditional recommendation 

systems. 

Similarly, Zhang et al. (2019) used word2vec to analyze song lyrics and build a 

personalized music recommendation system. The study demonstrated that word2vec can be used 

to identify songs with similar themes and emotions, and that the recommendation system built 

using word2vec can provide personalized music recommendations based on the user's listening 

history. 

Overall, these studies demonstrate the potential of word2vec as a tool for curating music 

playlists and providing personalized music recommendations [25]. By analyzing the semantic 

relationships between words in song lyrics, word2vec can help identify songs with similar themes 

and emotions, building recommendation systems to cater to individual user preferences. 

Sentiment analysis in machine learning 

Sentiment analysis is a rapidly growing area of research in machine learning and NLP. With 

the explosive growth of social media, there has been an increasing need to automatically extract 

and analyze opinions expressed in text data. One common approach in sentiment analysis is to use 

supervised machine learning algorithms, such as Support Vector Machines (SVMs) and Naive 

Bayes classifiers. These algorithms learn to classify text data into positive, negative, or neutral 

sentiments based on labeled training data. A study conducted in 2020 compared the performance 

of different machine learning algorithms for sentiment analysis and found that SVMs outperformed 

other algorithms, achieving an accuracy of 93% [26]. 



   

 

   

 

Another trend in sentiment analysis is the use of deep learning algorithms, such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Deep learning 

algorithms have been shown to outperform traditional machine learning algorithms, especially for 

complex text data. In 2019 a hybrid model was proposed that combines CNNs and RNNs for 

sentiment analysis, which achieved higher accuracy compared to other deep learning models [27]. 

Furthermore, some studies have explored the use of sentiment lexicons in sentiment analysis. A 

sentiment lexicon is a collection of words or phrases that are associated with positive or negative 

sentiment. Sentiment lexicons can be used to determine the sentiment of text data by counting the 

occurrence of positive and negative words. A study performed in 2008 proposed a sentiment 

lexicon-based approach for sentiment analysis, which achieved high accuracy compared to other 

approaches [28]. 

In conclusion, sentiment analysis is an active research area in machine learning and NLP. 

Recent studies have shown that machine learning algorithms, such as SVMs and deep learning 

models, can achieve high accuracy in sentiment analysis tasks. Additionally, sentiment lexicons 

can be used to improve the performance of sentiment analysis. Future research in sentiment 

analysis could explore more advanced machine learning models, as well as the use of sentiment 

analysis in different domains, such as healthcare and finance. 

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a popular machine learning algorithm that has been 

extensively used in various fields, such as finance, healthcare, image classification, and text 

classification, for solving classification problems. SVM has been shown to be effective in high-

dimensional spaces, where other algorithms may fail to achieve satisfactory performance. The key 

idea behind SVM is to find the best possible hyperplane that separates classes in high-dimensional 

feature spaces. Recently, many studies have focused on improving SVM classification 

performance by enhancing its accuracy and reducing computational complexity. One approach that 

has gained attention is feature selection, which involves selecting the most relevant features from 

the dataset to improve classification accuracy and reduce computational complexity. Feature 

selection methods are used to identify a subset of features that contribute most to the classification 

task. Many trials have been conducted in order to examine several feature selection methods and 

found that the Recursive Feature Elimination (RFE) algorithm coupled with SVM outperformed 

other methods, such as Principal Component Analysis (PCA) and Correlation-based Feature 

Selection (CFS) [29]. 

Another approach to improve SVM classification accuracy is by using ensemble methods. 

Ensemble methods involve combining multiple models to improve classification performance 

[29]. This method creates a set of SVM models using different hyperparameters and combines 

them using a weighted average of their classification results. Furthermore, some studies have 

proposed hybrid approaches that combine SVM with other machine learning algorithms. Hybrid 

approaches are used to leverage the strengths of different algorithms and improve classification 

accuracy. In 2020 a hybrid SVM and Extreme Learning Machine (ELM) approach for medical 

diagnosis was suggested, which achieved higher accuracy compared to traditional SVM and ELM 



   

 

   

 

methods [30]. The proposed hybrid method uses SVM to handle the classification task and ELM 

to extract relevant features from the dataset. 

In conclusion, SVM classification is a powerful machine learning algorithm that has been 

widely used in many applications. Several approaches have been proposed to improve its 

performance, such as feature selection, ensemble methods, and hybrid approaches. These 

approaches have been shown to enhance classification accuracy and reduce computational 

complexity. Future research in SVM classification could explore more advanced feature selection 

techniques, ensemble methods, and hybrid approaches to further improve its performance. 

 

3 Methodology 

 

This section details the development and implementation of the VisNLP 2.0 web-based 

educational support platform for teaching neural network-based natural language processing. The 

first part of this section covers the process of developing the web-platform, while the subsequent 

parts cover the specifics of each individual module.  

 

3.1  VisNLP 2.0 Development and Implementation Pipeline 
 

 Shown below in Figure 3 is the general development and implementation pipeline for NN-

based NLP methods modules. Specifically, the word2vec module, paragraph2vec and 

sentence2vec module, and the Adam optimizer module. 

To generate our training data, we first run implementations of NN-based NLP on a sample 

corpus to generate outputs, which includes logging all intermediate calculations. Next, we interpret 

this data and categorize it by the sub-step of the technique or algorithm which it corresponds to. 

Utilizing this organized step-related data, we develop a visual and descriptive step-by-step 

representation of the NN-based NLP techniques. Finally, we implement these visuals in our web-

based platform with a step-by-step simulation. 

Generate intermediate 
training data

Interpret and 
categorize data 

outputs

Develop step-
by-step process 

visualizations

Implement web-
based step-by-
step simulation 

Figure 3: VisNLP 2.0 NLP Methods Development Pipeline 



   

 

   

 

 Next, shown below in Figure 4, is the general development and implementation pipeline 

for NN-based NLP application modules. Specifically, the songs recommendations module, and 

the fake news detection module.  

First, the NN-based NLP models are trained on a targeted dataset to generate embedding 

vectors. Then we interpret the embedding vectors through additional computation. Then we 

develop a visual and descriptive way of representing these applied NN-based NLP model outputs. 

Finally, we implement these visuals in our web-based platform with an interactive application. 

Finally, for both NN-based NLP method and application modules, we develop and 

implement an overview to summarize the step-by-step simulation or embeddings application. 

 

3.2  Word2vec Module 

 

This section describes the development and implementation of the word2vec module in the 

VisNLP 2.0 platform. In this section we sought to have a thorough step-by-step demonstration of 

word2vec. This demonstration should be simple enough that it will remain accessible to those not 

already familiar with the concepts on display, but thorough enough that it will still possess useful 

information to more experienced users. 

Generating Real-data Outputs 

In order to step through the full process of word2vec for a user, we needed real data outputs 

to use. Since our parameters would share a dimension with the length of the input text corpus’ 

vocabulary, we opted to use a very short input text “I love data science.” This way our 

demonstration visuals could show the real numbers in use and remain uncluttered and visually 

coherent, avoiding having any excessively complex vectors. 

The real-data outputs used in the word2vec module were generated using the 

implementation provided to us by our advising professor [31]. From here there were a large number 

of console output statements added, so that the variables are tracked at each stage of the training 

process. In this stage we were less concerned with getting accurate outputs where the embeddings 

would reflect semantic meaning and more with being thorough in procuring data that could be 

used to walk a user through the entire training process. 

The next step was to create a JSON schema to organize and store this data for use. The data overall 

is divided into epochs, one for each of the ten being used. The first subcategory is “constants”, for 

data that remains the same across all epochs but may still be useful to access, primarily the 

Generate embedding 
vectors

Interpret model 
output 

embeddings

Develop applied 
embeddings 
visualizations

Implement web-
based 

application

Figure 4: VisNLP 2.0 NLP Applications Development Pipeline 



   

 

   

 

parameters word2vec was run with and the original input text and its vocabulary. The next category 

is “params”, with the straightforward purpose of containing the 3 parameter matrices as they are 

at the start of each epoch. The next category is “batch”, storing the context(s) and center(s) indices 

of words used in the training batch for each epoch. This category also stores the current 

embeddings corresponding to each word in the input training batch. The next category is “calcs”, 

storing calculated values along each step of the training process for display, along with a handful 

of dynamic footer content to be easily accessible and indexed the same way as the values it 

corresponds to. The final thing included is “next_params”, storing the parameter values at the start 

of the next epoch, for comparison in the transition between epochs. This data is stored in MongoDB 

and accessed through the backend. 

Creating the step-by-step simulation 

For the step-by-step simulation, we knew a large number of pages would need to be shown 

to the user in sequence and sought to make this as efficient as possible. For word2vec, there is a 

central loop of each epoch completed, which starts with generating a training batch and ends with 

updating the parameters with the Adam optimizer. This cycle was broken down into a loop of five 

steps: generating the training batch, parameter matrix multiplication, adding bias (parameter 3), 

either the log softmax or sigmoid function (depending on if CBOW or skip-gram), and the 

optimization step, where we link to the Adam module and display how it updates the parameters 

for the following epoch. In addition to each of these we have a handful of introductory slides, being 

the overview page, a page showing the input text which covers how word2vec prepares its text for 

use, and a page showing the input one-hot encoded vectors and explaining how one-hot encoded 

vectors work. This minimizes the amount of original code that needs to be written without 

sacrificing depth or quality, simply cutting out any redundancy where possible. 

In addition to the code itself, we also sought to make the website efficient in terms of 

browser load. The website for VisNLP 1.0 had a separate html file and page on the website for 

every single page. For VisNLP 2.0 we sought to address this by simply having one html file per 

module and switching out elements dynamically using JavaScript. This both solves the issue of 

clogging up a user’s browsing history to an unnecessary degree and also makes it so that the page 

does not have to load each time a user advances.  

For the word2vec module, much of the work went into making the page feel dynamic and 

interactive, rather than just a static slideshow of data. As shown in Figure 5 below, the main way 

in which this is done is through interacting with the user’s cursor. When highlighting over a cell 

of data, that cell will change color responsively and also highlight other cells that correspond to it. 

This can include other cells involved in a given calculation as well as parameters shown in the 

sidebar. These processes (as well as some other objects on the page that do not get highlighted 

when hovered over) also update the footer when the cursor falls on them. This makes the page feel 

more dynamic and also allows the user more information about what exactly they’re looking at. It 

makes the page far more accessible and informative without adding any clutter to the visual design 

whatsoever. 

 



   

 

   

 

 

Figure 5: Word2vec - Add Bias 

Each page in the word2vec module is designed to be responsive, loads instantaneously 

(minus about a quarter second of delay on pages at the start/end of an epoch where new data is 

called in from MongoDB), and dynamically resizes to the size of the user’s screen. 

 

3.3  Para2vec and Sen2vec Module 

 

In addition to the word2vec module, we have the paragraph2vec (para2vec) and 

sentence2vec (sen2vec) modules. This section describes the development and implementation of 

these modules in the VisNLP 2.0 platform. 

Algorithm parameters 

To implement sen2vec, para2vec, and doc2vec, we followed a similar approach based on 

word2vec. We used the Python programming language as well as the Python-based library, 

PyTorch to build and train the models. We utilized the open-source code library, paragraph-vectors, 

available on GitHub [32] for these models. 

The parameters we used for training the models were, num_epochs, batch_size, 

num_noise_words, vec_dim, lr, model_ver, context_size, data_file_name, and 

max_generated_batches. Num_epochs is datatype int and is the number of iterations to train the 

model or in other words, the number of times every example is seen during training. Batch_size is 

of datatype int and is the number of examples per single gradient update. Num_noise_wrds is of 

datatype int and is the number of noise words to sample from the noise distribution. Vec_dim is of 

datatype int and is the dimensionality of vectors to be learned for paragraphs and words. Lr is of 

datatype float and is the learning rate of the Adam Optimizer. Model_ver is of datatype str, the 

input is either dm, for Distributed Memory, or dbow, for Distributed Bag of Words. The model 

versions are of the proposed models by (Le, & Mikolov, T. 2014). Context_size is of datatype int 



   

 

   

 

and is half the size of a neighborhood of target words when the model is dm and context_size must 

be greater than 0. When model_ver is dbow, context_size must be equal to 0. Data_file_name is 

datatype str and is the name of the file in the data directory. Max_generated_batches is of datatype 

int and is the maximum number of pre-generated batches.  

Algorithm data handling 

The algorithms are powerful NN-based NLP techniques that have gained popularity due to 

their ability to learn continuous distributed representations of sentences and paragraphs. These 

techniques require large amounts of textual data to be trained effectively. However, handling such 

data can be challenging due to its volume, variety, and complexity. To overcome these challenges, 

it is important to carefully preprocess and organize the data before feeding it into the algorithm. In 

this way, data handling plays a crucial role in the success of this algorithm.  

The data we used for training is stored in the data directory in the library. The data file 

format is that of an excel csv file. When the parameter data_file_name is called, it can be either 

the data path to the file or the data file name. In the individual excel csv file there must be a header 

in the file as the algorithm takes the first row as a header and not as data. The next rows can be 

filled with data and only data is entered into the first column.  

Before feeding the data to the algorithm, it is essential to preprocess it. This involves 

converting the raw text data into a numerical format that can be easily processed by the algorithm. 

Some of the common preprocessing steps include tokenization, stemming, and stop word removal. 

Tokenization involves splitting the text data into individual words or tokens, while stemming 

involves reducing each word to its base form (e.g., “running” to “run”). Stop word removal 

involves removing common words that do not carry much meaning, such as “the”, “a”, and “an”. 

Proper preprocessing can significantly improve the performance of the algorithm by reducing 

noise and focusing on the most important features of the data. Once the data has been preprocessed, 

it is ready for the algorithm to begin training. 

Algorithm Training 

To train the models, we need to create a vocabulary of all the unique words/phrases in the 

dataset. The resulting words/phrases after preprocessing, form our vocabulary, which we assign a 

unique index. The index is used to represent each word/phrase as an embedding vector.  For 

sen2vec, we do not create vocabulary on periods since it is operating on sentences. For para2vec 

and doc2vec, we do create vocabulary on periods as it considers the start and end of a new sentence 

within a paragraph or document. The vocabulary creation process is crucial as it helps to reduce 

the dimensionality of the input space and enable efficient training of the models.  

Once the vocabulary is created, the algorithm creates paragraph IDs and initializes word 

vectors. Paragraph IDs are created to differentiate between different paragraphs in the dataset. 

Word vectors can be initialized randomly or with pre-trained embeddings, which can lead to better 

performance in some cases. Once the paragraph IDs, and word vectors are in place, an input matrix 

is created based on the paragraph ID, context words, and center words. This input matrix is then 

used to train the model. 



   

 

   

 

The next step involves initializing the word and paragraph weight matrices along with a 

bias matrix. These weight matrices as well as the bias matrix are used to compute the predicted 

center word matrix, which is then passed through a softmax function. This softmax function 

generates a probability distribution over all the words in the vocabulary.  

After the predicted center word matrix is generated, negative log likelihood loss is 

calculated using both the predicted center word matrix and the true word matrix. This loss function 

measures the difference between the predicted and actual probabilities of the center word given 

the paragraph ID and context words. 

The Adam optimizer is then used to update the word and paragraph weight matrices along 

with the bias matrices based on the calculated loss. This optimization process is repeated multiple 

times (i.e., epochs) until convergence is met. The corresponding updated matrices are used in the 

next epoch, resulting in an improved performance. 

By repeating this process, the model learns to generate more accurate paragraph vectors, 

which can be used for tasks such as text classification and sentiment analysis. 

Creating the step-by-step simulation 

The step-by-step simulation was created by using the inputs and outputs of each step during 

algorithm training. To simulate the algorithm, we first show the data that we want to train the 

model on. We then create paragraph IDs and vocabulary, which we use to initialize the word 

vectors. After that, we create an input matrix based on the paragraph ID, context words, and center 

words. This input matrix is then used to initialize the word and paragraph weight matrices, along 

with a bias matrix. 

Next, we compute the predicted center word matrix by applying a weight matrix to the 

input matrix, followed by a softmax function. We then calculate the negative log likelihood loss 

using both the predicted center word matrix and the true word matrix.  

Using the Adam optimizer, we show the updated word and paragraph weight matrices, 

along with the bias matrices, to minimize the loss function. The corresponding updated matrices 

are used in the next epochs, and this process is repeated until optimization is met, resulting in the 

final paragraph vectors. 

By following these steps, we can simulate the algorithm and use it to train models for 

various NLP tasks, such as text classification and sentiment analysis. This step-by-step approach 

helps users understand the inner workings of the algorithm and enables them to apply it effectively 

to their own projects.  

Main content 

The main content in the step-by-step approach shows the generation of various matrices 

such as creation of paragraph IDs and vocabulary. It shows the algorithm architecture and the 

current state of the architecture during all the training steps. It shows the computation of various 

matrices and the results, such as how the input vectors are input through the weight matrix to 

generate a predicted center word matrix. It also shows the initial word and paragraph weight 



   

 

   

 

matrices and their corresponding updated matrices which are color coded for an increase or 

decrease in value. Overall, the main content provides a comprehensive and visual understanding 

of the algorithm and the training process. 

Description footer 

The footer begins by welcoming the user to the algorithm and step-by-step approach. Once 

a model is selected the footer changes display. For each step the footer will change to describe the 

current step in detail, explaining every matrix, calculation, and output of the main content. The 

footer displays the information for all steps of the step-by-step approach. In conclusion, the footer 

provides detailed information about each step of the step-by-step approach, guiding the user 

through the algorithm and providing a deeper understanding of the matrices, calculations, and 

outputs involved. 

User sidebar 

The sidebar contains various information on key parameters, architecture, and vocabulary 

of the input data. The sidebar initializes with an image of the algorithm architecture, which is 

shown in Figure 6 below. 



   

 

   

 

 

Figure 6: Sen2vec/Para2vec/Doc2vec Neural Network Architecture 

This allows the user to understand what the initial architecture looks like. The next instance 

of the sidebar shows the parameters that were run to obtain the step-by-step approach information. 

It also contains a copy of the input data and a copy of the entire vocabulary used in the step-by-

step approach. The next instance contains the same information as the previous, but with the 

addition of a copy of the model’s input matrix with the words in place of the values. The rest of 

the sidebar instances show the previous instance’s information allowing the user to always see it 

if needed. In conclusion, the sidebar in the step-by-step approach provides valuable information 

on key parameters, architecture, and vocabulary of the input data, as well as copies of the input 

data and matrices for reference. 

Overview creation 

The overview of the algorithm was created to introduce readers to the concept of sentence 

or paragraph embedding and their application in NLP. It explains how the algorithm works by 

training a neural network to learn the contextual relationships between words in a sentence or 

paragraph, allowing for the conversion of sentences and paragraphs into a vector representation. 



   

 

   

 

The overview also highlights the advantages of using the algorithm over traditional NLP 

techniques and their widespread adoption in various NLP applications. Additionally, the overview 

provides a brief overview of the step-by-step process for performing sen2vec or para2vec, which 

can be used as a reference for users to understand the individual components of the algorithm. 

Overall, the goal of creating this overview is to provide a clear and concise explanation of the 

algorithm and its significance in the field of NLP. After discussing the overview of the sen2vec 

algorithm, the next section will go over the implementation and development of the Adam 

optimizer module. 

 

3.4  Adam Optimizer Module 

 

This section describes the development and implementation of the Adam optimizer module 

on the VisNLP 2.0 platform. 

Generating real-data outputs 

In order to create a step-by-step simulation of the Adam optimization process we first 

needed to generate the intermediate vectors and values from a given training process using Adam 

optimization. To do this we trained real example models using Adam and reported intermediate 

outputs and calculations that occur in the optimization process.  

The objective function used in the Adam optimization module was a continuous bag of 

words (CBOW) word2vec model. We utilized an open-source implementation of word2vec which 

could be configured to use the Adam optimizer. This Python implementation utilized the PyTorch 

framework for building deep learning models [31].  

In order to obtain meaningful outputs, it was necessary to tune the word2vec model for a 

given example corpus. For simplicity, we chose the corpus: “I love data science.” Further when 

accounting for unique words and adding the additional “unk” (unknown) embedding, the 

vocabulary in this word2vec model was: “unk”, “I”, “love”, “data”, “science”. Each of these word 

embeddings were then represented in an embedding dimension of three. Subsequently, the 

resulting parameters obtained from this configuration are as follows: the embeddings parameter-1 

(3x5 2d tensor), the weights parameter-2 (5x3 2d tensor), and the bias parameter-3 (1x5 tensor). 

Next, the hyper-parameters of the word2vec training were tuned. The final hyper-parameters for 

the word2vec CBOW stochastic objective function are listed in Table 1 as follows: 

 

 

 

 

 



   

 

   

 

 

Model Architecture:  CBOW 

Mini-Batch Size:  2 

Embedding dimensions:  3 

Epochs:  40 

Table 1: Adam Module word2vec Training Description 

Next, it was necessary to tune the hyper-parameters of the optimizer. While running 

through 40 epochs of word2vec on such a short corpus is impractical for obtaining meaningful 

model outputs, we are still able to extract insight on the Adam optimization process for tuning the 

parameters. Further, we found that using the suggested hyper-parameters for the Adam optimizer 

produced satisfactory results on this word2vec model and sample corpus. These default 

hyperparameters for Adam optimizer were determined empirically by its creators in the original 

Adam paper "Adam: a method for stochastic optimization", and are listed in Table 2 below: 

 

Optimizer:  Adam 

Learning Rate:  0.05 

Beta 1:  0.9 

Beta 2:  0.999 

Epsilon:  1e-08 

Table 2: Adam Optimization Runtime Description 

After choosing our sample corpus and tuning the hyper-parameters for both the CBOW 

word2vec model and the Adam optimizer, we trained our model for forty epochs. The following 

plot in Figure 7 shows the resulting average loss measures (shown as the blue line) obtained over 

iterations of the Adam optimization. The line of best fit (shown as the orange line) shows the 

downward trend of the model’s average loss. 



   

 

   

 

 

Figure 7: Adam Optimizer Average Loss Over Iteration Plot 

 

After implementing a model that could be used for the step-by-step simulation it was 

necessary to align intermediate tensors and data to the corresponding parts of the overarching 

Adam optimization algorithm. This process required writing and filing data as corresponding 

Adam optimization steps in an organized JSON output file. While some intermediate values and 

tensors were easily obtainable, others were not explicitly accessible using the PyTorch library and 

needed to be backward computed before being written to the output file. The schema of the output 

file detailing the intermediate values and tensors that were collected can be seen in Appendix B.  

The values and tensors obtained in the output file were then used to show the following 

twenty-two steps displayed in Table 3 below. These steps were intended to detail the Adam 

optimization process on an “atomic” level, such that necessary operations within the algorithm are 

broken down as much as possible. 

Step 1 Perform New Optimization Step 

Step 2 Perform Forward Pass: Contexts 

Step 3 Perform Forward Pass: Linear Transform pt.1/2 

Step 4 Perform Forward Pass: Linear Transform pt.2/2 

Step 5 Compute the Loss: Take SoftMax 

Step 6 Compute the Loss: Take Log 

Step 7 Compute the Loss: Iteration Loss Measure 

Step 8 Get Gradients with Respect to Stochastic Objective:  

Step 9 Update Biased First Moment Vector: pt. 1/3 

Step 10 Update Biased First Moment Vector: pt. 2/3 



   

 

   

 

 

   

Creating the step-by-step simulation 

In order to create the step-by-step Adam optimizer simulation, it was necessary to create 

the web-platform framework for allowing a user to step through many unique iterations of many 

sub-steps. To do this, we tracked iteration states and step states. This way we were able to create 

generic visual step frames for all twenty-two of our Adam optimization sub-steps, which were able 

to dynamically load vector data onto that frame which corresponded to the current iteration state. 

With this configuration the user can step through forty continuous real-data iterations of all our 22 

Adam optimizer sub-steps. A current iteration counter was included as well as a progress bar which 

indicates how far along the sub-steps the user is for that given iteration. Further, controls were 

added to allow users to step one sub-step forward or one sub-step backward. Additionally, a fast-

forward button was added to allow users to increment forward an iteration rather than a single sub-

step. Lastly a reset button allows the user to reset the simulation to its initial state. 

For retrieving tensor and other sub-step data from our previously created JSON outputs file 

we dynamically queried the data using MongoDB. As the JSON data was organized by iteration, 

we were able to load the current iteration data, and use the desired parts of each record to populate 

our data visuals for each step. 

As previously mentioned, the simulation modules in the VisNLP 2.0 web-platform assume 

a general layout of having a main content section, a description footer, and a sidebar dashboard. 

The implementation details for those three layout components in the Adam optimizer simulation 

module are detailed as follows: 

 

 

Step 11 Update Biased First Moment Vector: pt. 3/3 

Step 12 Update Biased Second Raw Moment Vector: pt. 1/4 

Step 13 Update Biased Second Raw Moment Vector: pt. 2/4 

Step 14 Update Biased Second Raw Moment Vector: pt. 3/4 

Step 15 Update Biased Second Raw Moment Vector: pt. 4/4 

Step 16 Compute Bias-Corrected First Moment Estimate 

Step 17 Compute Bias-Corrected Second Raw Moment Estimate 

Step 18 Update Parameters with Adam: pt. 1/5 

Step 19 Update Parameters with Adam: pt. 2/5 

Step 20 Update Parameters with Adam: pt. 3/5 

Step 21 Update Parameters with Adam: pt. 4/5 

Step 22 Update Parameters with Adam: pt. 5/5 

Table 3: Adam Optimizer Simulation Sub-Step List 



   

 

   

 

Main Content 

The main content section for each step of the Adam simulation requires a title, the real-data 

vector visuals, and the corresponding data visual labels. Both the step’s titles and data visuals 

labels were specifically implemented for each of the twenty-two optimization sub-steps and were 

made to be generic among iterations. To show the sub-step being applied to the real-data tensors, 

each main content section includes data visuals showing how the data changed before and after 

applying the step. To create the 2d tensor data visuals D3 JavaScript library was utilized. Here, the 

vector data specific to that current iteration and sub-step was dynamically queried and populated 

into the D3 visuals. 

Description Footer 

The footer section for each step of the Adam simulation requires a step description and 

explanation, and the equation used in that step. The step explanation was specifically implemented 

for each of the twenty-two optimization sub-steps and was made to be generic among iterations. 

The step equation was intended to bring the most relevant equation to the forefront of the user's 

attention. These equations were either sections of the Adam algorithm or calculations specific to 

the objective function. Additionally, the parts of these equations that relate to the step being 

performed in the main content section are highlighted in red to represent the left side of the 

operation, and in blue to represent the right side of the operation. This same color coding is also 

reflected in the data visuals to allow users to see the connection. Finally, an equation title was 

added for each equation to highlight its significance. The step equation was specifically 

implemented for each of the twenty-two optimization sub-steps and was also made to be generic 

among iterations. 

User Sidebar 

The user sidebar section for each step of the Adam simulation requires a current model 

parameters dashboard, an Adam algorithm dashboard, and an average model loss measure over 

iterations dashboard. For the user to be able to see the model parameters that are always being 

optimized in the simulation, a current model parameter dashboard was implemented. Depending 

on the current iteration, data visuals showing these parameters were implemented using the D3 

JavaScript library. Here, the vector data specific to that current iteration was dynamically queried 

and populated into the D3 visuals. Next, to provide clarity on what part of the Adam optimization 

algorithm was being executed at that point in the simulation, the Adam algorithm dashboard was 

implemented. Here, the current segment of the Adam algorithm in relation to the current sub-step 

was highlighted in red. Additionally, specific parts were highlighted to indicate the start and finish 

of the algorithm on the first sub-step of the first iteration as well as the last sub-step of the final 

iteration. Finally, to give the user insight into the overall optimization performance, a dashboard 

showing the average model loss measure over iterations was implemented. To create the line graph 

visuals plotting the progression of the loss over iterations the Plotly.js JavaScript library was 

utilized. Here, the loss array data specific to that current iteration and sub-step was dynamically 

queried and populated into the Plotly graph visuals. 

Overview Creation 



   

 

   

 

Lastly, we implemented an overview page intended to preface the Adam optimizer step-

by-step simulation. The overview page first provides background for the simulation by introducing 

the Adam optimizer. Next, we cover how the Adam optimizer works at a high level, to give an 

overview of the theory involved as per the Adam paper. Additionally, we provide a summary of 

the Adam optimization. Finally, we preface what happens in the Adam optimizer step-by-step 

simulation, from where the user can enter and begin the step-by-step simulation. 

 

3.5  Songs Recommendations Application Module 

 

This section describes the development and implementation of the Song Curation 

application module on the VisNLP 2.0 platform. 

Generating real-data outputs 

The song curation application was developed based on the inspiration of two Github 

repositories [33] [34]. The main goal of the application is to generate personalized song 

recommendations based on the user's input. To achieve this, the data was trained using the 

word2vec model. The application is a direct extension of the word2vec model with some slight 

alterations. 

The first step in creating the song curation application was to find an appropriate dataset. 

This dataset was obtained from one of the previously mentioned Github repositories. The dataset 

contained 10,000 song titles and artist names. To train the dataset, the CSV file containing the song 

titles and artist names was fed into the word2vec model to create vector embeddings. This process 

was carried out through supervised training as the vector embeddings needed to be correlated to 

their respective songs. Once the training was completed, a CSV of the song titles, artist names, 

and vector embeddings were saved as outputs, as well as a plot of the embeddings shown in Figure 

8. 



   

 

   

 

 

Figure 8: T-SNE Plot of Song Embeddings 

After creating and saving the embedding vectors, the next step was to compare them 

amongst each other using cosine similarity. Cosine similarity is a commonly used metric in natural 

language processing that measures the similarity between two vectors. The cosine similarity was 

effective in finding similar vectors because it takes into account the angle between the vectors 

rather than just the magnitude. This means that even if two vectors have different magnitudes, they 

can still be considered similar if they have a small angle between them [35]. The cosine similarity 

formula is shown below in Figure 9. The cosine similarity scores were then used to identify the 

most similar embeddings and song titles. A plot was created to show the cosine similarity outputs, 

which helped to visualize the similarities between the embeddings. 

 

Figure 9: Cosine Similarity Formula 

 

The last step of the application is to print the ten most similar songs in relation to a given 

input. The target song and recommended songs, along with their location, are plotted on a T-SNE 

plot. T-SNE is a dimensionality reduction algorithm that can visualize high-dimensional data in 

two or three dimensions. The T-SNE plot helped to visually show the relationships between the 



   

 

   

 

songs and their embeddings [36]. An example of a generated T-SNE plot is shown below in Figure 

10. 

 

Figure 10: Song Curation Cosine Similarity T-SNE Plot 

Overall, the song curation application is an effective example for showing how machine 

learning and natural language processing can be used to create personalized recommendations for 

users. This application takes the complex word embedding vectors generated by word2vec and 

shows their utility in an easily understandable format like song recommendations. 

 

Creating application simulation 

The sidebar of the song curation web module serves as the search bar for possible song 

recommendations. There is a drop-down menu where a user can select a song title that they would 

like recommendations for. Following this selection, there is a “Generate Recommendations” 

button to generate recommendations for the given song title. The main content of the web platform 

displays a table of the ten most similar songs to the input song, as well as each song’s cosine 

similarity. Accompanying this table is a corresponding T-SNE plot, shown in figure __, that 

displays the input song title as a red “x” and the recommended songs as points plotted in the color 

cyan. 

 



   

 

   

 

3.6  Fake News Detection Application Module 

This section describes the development and implementation of the Fake News Detection 

Application module on the VisNLP 2.0 platform. 

Generating real-data outputs 

The Fake News Detection application was developed from two GitHub repositories. The 

first repository contained code relating to using doc2vec technology for binary text classification, 

while the second repository was a fake news dataset [37] [38]. The code that was used in this 

project was pulled from these repositories, and it handled the Doc2vec model and the Support 

Vector Machine (SVM) model. These repositories also included the ground truth training datasets, 

as well as the testing datasets of news articles. Both of these datasets were obtained from the 

website GossipCop, which is a website that fact-checks if celebrity news articles are truthful or 

not. 

As mentioned before, the first step in the process of predicting whether a news article is 

fake or not is to pass the training datasets into the model, allowing the Doc2vec model to extract 

word features of the articles. These features include different aspects of the article, such as the tone 

of the article, word usage, and the location of various words. After extracting the feature vectors, 

the classification model was trained. For this project, the classification model that was used was 

an SVM model that utilized a linear kernel. The reason for selecting a linear kernel for this project 

is because there are only two distinct classes, which necessitates binary classification which linear 

SVM is most suitable for. Linear SVM works by finding the best hyperplane that can separate the 

data points into different classes. The hyperplane is a line that maximizes the margin between the 

closest points of those different classes. The margin is the distance between the hyperplane and 

the closest data points of each class. The end goal of Linear SVM is to find the hyperplane that 

maximizes the margin while minimizing the classification error. 

Once the feature vectors were created and the SVM model was trained, the model was 

ready to be tested. However, additional Python code was needed to ensure that the model's output 

was meaningful and easy to understand. The first aspect that was added to the code was a method 

that outputted the model's prediction for the news article in words. To achieve this, a few additional 

Python libraries, such as NumPy and Pandas, were imported to allow for the results to be stored in 

a dataframe that assists in printing the prediction one by one. This output can be seen in Figure 11 

below.  



   

 

   

 

 

Figure 11: Example output of model prediction 

The next addition to the code was the output of the classification plot. This was a simple 

feature to add since the SVM model had already clustered the articles and all that remained was to 

create a visual representation of the model's findings. In order to achieve this, the mathplotlib 

python library was imported which facilitated the creation of a scatter plot. To ensure that the 

graph was as informative as possible for the end user, additional code was integrated to display 

the separating hyperplane of the SVM classification. Figure 12 below shows what the classification 

plot for the articles looks like. 

 

Figure 12: Classification plot outputted by model 

 

 



   

 

   

 

Creating the application module main content 

 This section of the Fake News Detection module requires for there to be an article title, as 

well as the classification plot that contains the SVM classification clusters of the news article titles. 

Each plot is unique in order to highlight where the current article falls on the classification plot. 

Another note about the plots that are shown is when the webpage is asking the user to make their 

prediction of whether or not the article is real or fake, all points on the graph are gray in order to 

not give any hints as to which cluster is which.  

Description footer 

  The footer section for each page within the Fake News Detection application simply 

requires an explanation of if the user’s guess was correct or incorrect, what the model’s prediction 

was and then finally whether the article is actually real or fake. An example of the footer content 

after a user has made an incorrect guess can be seen in Figure 13 below. 

 

Figure 13: Example of footer content 

User sidebar 

 The user sidebar never changes in this module of the website. For each step in the Fake 

News module, the sidebar contains the user controls for navigating through the module. This is 

where the buttons are located that the user presses in order to make their guess about if the article 

is real or fake. 

 

4 VisNLP 2.0 Educational Support Platform 
 

This section presents the results of the development and implementation of the VisNLP 2.0 

web-based educational support platform for teaching neural network-based natural language 

processing. This chapter will provide a detailed overview of the finished product, including its 

individual modules, and explain how learners navigate through the platform. The goal is to 

demonstrate the final version of the VisNLP 2.0 web-platform and how it supports the teaching 

and learning process of neural network-based NLP. 

 

4.1  VisNLP 2.0 Web Platform 

 

The development of VisNLP 2.0 as a web platform is fairly straightforward. The website 

is coded primarily in JavaScript with HTML files for each module and one master CSS stylesheet. 



   

 

   

 

The backend of the site is set up with Node.js with inter-page navigation made simple with a basic 

navbar implementation. There is minimal use of middleware or additional libraries, with the 

primary exception being the d3 library for visualization purposes. For data management, we used 

MongoDB to store our data for easy access through the backend. 

As shown below in Figure 14, each module opens to a simple overview page explaining 

the module itself and giving the user any additional information they may need before accessing 

the primary content. This overview page also includes a button to the previous and next modules 

of the platform and a diagram of the website highlighting which section you are currently viewing. 

 

Figure 14: Adam Optimizer - Overview Screen Capture 

 

On the main pages of each module, the screen is divided into 4 sections. This is shown 

below in Figure 15. The first is the previously mentioned navbar located at the top of the screen. 

The second is the sidebar, displaying the current simulation parameters or, for the applications, 

holding the interface for the user to interact with the application. Third, we have the footer, 

containing additional information that pertains to the user’s current view of the site. On many 

pages, the footer is dynamic, displaying information corresponding to where the user’s cursor falls. 

Finally, we have the main canvas view of the site, containing the primary content of each module. 

In each step-by-step simulation, this view also contains arrow buttons to move between pages 

within the modules, as well as a labeled progress bar above the footer to display their position 

within each epoch of the simulation. This page setup is intended to be as straightforward as 

possible, consistent across various modules, and allow the user to know where to look for 

information regardless of which module they find themselves in. 

 



   

 

   

 

 

Figure 15: Word2vec – Multiply Matrices Screen Capture 

 

4.2  VisNLP 2.0 Homepage 
 

The VisNLP 2.0 web-platform homepage is intended to preface the following web-platform 

modules by introducing the platform objectives and providing background information. Here the 

user gets introduced to our platform objectives where our aim is threefold: (1) To present some 

popular neural network-based NLP methods in a step-by-step linear format that is easy to 

comprehend. (2) To address the 'black box' problem present in neural network-based NLP learning 

resources through continuous real-data examples. (3) To enable users to interpret model outputs 

through interactive visual demos that apply neural network-based NLP model outputs. Further, the 

user gets introduced to the web-platform framework through a diagram describing the relationships 

between the various modules of our web-platform as described in Section 4.1. Additionally, the 

learner is provided with a brief project background outlining the significance of NLP. Finally, on 

the user sidebar the learner can access the platform evaluation survey. A screen capture of the 

VisNLP 2.0 homepage is shown below in Figure 16: 

 



   

 

   

 

 

Figure 16: VisNLP 2.0 Web Platform Home Page 

4.3  Word2vec Module 

 

The word2vec module for the VisNLP 2.0 web platform begins with an overview of the 

material, followed by 10 epochs’ worth of real step-by-step output data. This data is pulled in the 

backend code from MongoDB and is used to produce dynamic visuals based on the data being 

displayed. The overview page is quite simple, primarily consisting of text with the platform’s 

architecture diagram and two buttons to select which word2vec model the user would like to view. 

The word2vec module overview page is shown in Figure 17 below: 

 

Figure 17: Word2vec - Overview 



   

 

   

 

Following the overview are two simple and straightforward introductory pages – Figure 18 

and Figure 19. The first covers the text preparation process in word2vec, showing the user how 

the program takes a simple input text, removes non-alphanumeric characters, changing any 

uppercase character to lowercase, and splitting into an array. It also shows how this array is broken 

up into a key/value map, being the model’s dictionary, with each word having its corresponding 

key number. The following page displays this dictionary as well as each word’s one-hot encoded 

vector. This page covers the basics of what a one-hot encoded means and how to interpret it, as 

well as what the “UNK” token means and why it is included in calculations. 

 

 

Figure 18: Word2vec – Text Preparation 

 

 

Figure 19: Word2vec – One-Hot Encoding 



   

 

   

 

The next page is the first in the primary loop each word2vec epoch consists of – Figure 20. 

To begin, we will cover the common traits across each epoch. At the bottom of the screen, just 

above the footer, is a progress bar showing where the user is within the epoch at all times. In the 

sidebar at all times, we show all 3 parameters, explaining where the numbers are initialized from 

when the user hovers over the table. We also display the architecture of the model showing how 

the different parameters relate to each other at a macro level. When highlighting cells in either of 

these it highlights other cells onscreen that correspond to give the user more contextual information 

regarding how these values relate to each other. This first page of the cycle covers the training 

batch generated for this epoch. It shows each one-hot encoded vector, highlighting the one(s) 

selected as input for the model as purple and the one(s) selected as the target for the model as 

green. The highlighted vectors also display their current corresponding embeddings from 

parameter 1, showing the numbers we will be working with going forward. The visuals on display, 

as with the ones that follow, are color-coded when appropriate, to show which numbers come from 

where. 

 

 

Figure 20: Word2vec - Generate Training Batch 

The next three pages of the cycle are all very simple, to keep things so that a novice user 

can easily follow along with the math as it occurs. The first shows the process of matrix 

multiplication between the input embeddings and the weights in parameter 2 – Figure 21. The next 

page takes the output from this and adds the linear bias from parameter 3 – Figure 22. The third 

page varies based on the model being shown – Figure 23. If the simulation uses the CBOW model, 

it shows the log SoftMax function. If the simulation uses the skip-gram model, it shows the sigmoid 

function. 

 



   

 

   

 

 

Figure 21: Word2vec – Multiply Matrices 

 

 

Figure 22: Word2vec – Add Bias 



   

 

   

 

 

Figure 23: Word2vec – Log SoftMax 

Next is the final screen of the epoch loop – Figure 24. This shows the final outputs from 

the previous screen and links to the Adam Optimizer module for further information. It removes 

the parameters from the sidebar and puts them on main display here, showing the direct comparison 

between the current and next epoch’s parameters. This shows how the parameters are tuned in each 

epoch and functions as a transition to the next epoch. From here, we return to the “word2vec - 

generate training batch” slide and loop for each epoch, for a total of 10 epochs. 

 

 

Figure 24: Word2vec – End of Epoch 



   

 

   

 

4.4  Paragraph2vec and Sentence2vec Module 

 

The next two modules on the VisNLP 2.0 web-platform cover the pargraph2vec (para2vec) 

and sentence2vec (sen2vec) algorithms. The finished sen2vec/para2vec module for the VisNLP 

2.0 web-platform consists of two components:(1) An overview page intended to preface and 

provide background for the step-by-step sen2vec/para2vec simulation. (2) A step-by-step 

simulation showing a continuous real-data example of sentence and paragraph vectors being 

generated by the sen2vec/para2vec algorithm over an epoch. When learning on the VisNLP 2.0 

sen2vec/para2vec module, a learner would first be taken to the sen2vec/para2vec overview page.  

Sen2vec/para2vec overview 

To navigate the overview page for the sen2vec/para2vec algorithm on the VisNLP 2.0 web-

platform, a user would start by reading the introductory paragraph, which provides an overview of 

the algorithm and its applications. The user would then proceed to the next section, which explains 

how the algorithm works, including its advantages over traditional NLP techniques. 

After understanding the basics of the algorithm, the user can proceed to the section on the 

process of performing sen2vec/para2vec, which outlines the steps involved in converting input 

data into a vector representation. This section describes the different matrices and parameters used 

in the algorithm and how they are updated using the Adam optimizer. 

Finally, the user can explore the step-by-step simulation of the algorithm, which provides 

a more detailed explanation of the individual components of the algorithm. Below in Figure 25 is 

a screen capture of the sentence2vec overview page: 

 

Figure 25: Sen2vec Overview Page 

Throughout the overview page, the user can also find helpful visual aids and buttons, such 

as diagrams and buttons to the previous or next algorithm overview, to help them better understand 

the algorithm and its workings. 



   

 

   

 

Sen2vec/Para2vec simulation 

The step-by-step simulation of the sen2vec algorithm is a demonstration of how the 

algorithm works in practice. This simulation takes you through each step of the algorithm, showing 

you how the input data is processed and how the neural network is trained to generate sentence 

embeddings. By following along with the simulation, you can gain a deeper understanding of how 

sen2vec works and how it can be applied to a variety of natural language processing tasks.  

The first step of the sen2vec step-by-step simulation for the VisNLP 2.0 education support 

platform is shown in Figure 26 below: 

 

Figure 26: Sen2vec Simulation Step 1 

Data is used as input for the sen2vec algorithm. Sen2vec creates paragraph IDs based on 

the input data with zero-based indexing. Text processing occurs to create a vocabulary based on 

the unique words in the data. Each word in the vocabulary is then initialized as a vector based on 

the vector dimensions in the sen2vec parameters. 

In the second step, the paragraph ID, context word vectors, and center word vectors are 

concatenated to form an input matrix to be used in sen2vec training. Context word size is 

determined in the parameters, in this example context size is one, therefore it takes one word from 

the left and right of the center word as context. The size of the input matrix is based on the amount 

of pre-generated batches, in this example we have two. 

In the third step, sen2vec initializes the word and paragraph weight matrices along with the 

bias matrix. The size of the word weight matrix is based on the vocabulary size of the data, in this 

case, the vocabulary is 12. The size of the paragraph weight matrix is based on the number of 

paragraphs in the data, which is five. The size of the bias matrix is based on the input matrix and 

is initialized as a zero matrix. All these matrices have the same dimensions as the vector 

dimensions in the parameters. 



   

 

   

 

In the fourth step, input vectors are created by the concatenation of paragraph IDs and 

context words. The values for the paragraphs are taken by the paragraph weight matrix associated 

with each paragraph. Since batch size is two in the parameters, a batch of two input vectors is 

randomly selected and multiplied by the initial word weight matrix. This results in the predicted 

value for the center words of the given training vectors. 

In the fifth step, the bias matrix is added to the predicted center word matrix to introduce 

another parameter that improves the accuracy of the model. The hyperbolic tangent function is 

then applied to the result matrix to introduce nonlinearity to the model. This allows the model to 

capture more complex relationships between words and paragraphs. 

In the sixth step, the hyperbolic tangent matrix is transformed by the SoftMax function to 

get the probability distribution of the vocabulary. The result matrix then uses the true center word 

matrix, which was gathered from the input matrix, to calculate the negative log likelihood loss of 

the predicted center word matrix. The negative log likelihood loss is a measure of how well the 

model predicts the true center word. 

In the last step, negative log-likelihood loss values are sent to the Adam optimizer to update 

the weights. The weights will be updated for the word and paragraph matrices along with the bias 

matrix. The updated matrices are used in the next batch of training vectors. Once all training 

vectors have been trained, that is the end of one epoch. Once the number of epochs set in the 

parameter is met, the paragraph weight matrix is returned and is now ready to be used in other 

applications. Red indicates a decrease in value and green indicates an increase. 

Summary of Contributions 

In conclusion, the step-by-step simulation of the sen2vec algorithm provides a clear 

understanding of how this algorithm works. Sen2vec is a powerful algorithm that is widely used 

in NLP and machine learning. By converting text data into a numerical format, it allows for the 

processing of substantial amounts of data with ease. The simulation highlights the importance of 

each step in the process, from data input to the optimization of weights. Understanding the inner 

workings of sen2vec can help researchers and developers create better models that can accurately 

capture complex relationships between words and paragraphs. Overall, sen2vec is a valuable tool 

in the field of NLP, and this simulation provides a comprehensive overview of how it works. The 

para2vec module also has a step-by-step simulation, however, it is like the sen2vec step-by-step 

approach. The main difference is that para2vec extends the approach to operate on paragraphs, and 

hence the input data will be paragraphs, but the step-by-step simulation will be carried out in a 

similar way. On top of para2vec, there is also doc2vec, which extends the approach to operating 

on documents to capture the semantic meaning of an entire document, allowing for the processing 

of large volumes of text data at once. With doc2vec, entire documents can be represented as a 

vector, which can then be used for various NLP tasks such as document classification and 

sentiment analysis. Due to its similarity with sen2vec and para2vec, the visual module has been 

omitted from the 2.0 web-support platform. Moving on to the Adam optimizer module in VisNLP 

2.0 web-platform, it consists of two components that provide an overview and a step-by-step 

simulation, respectively. 



   

 

   

 

 

4.5  Adam Optimizer Module 

 

The finished Adam optimizer module for the VisNLP 2.0 web-platform consists of two 

components: (1) An overview page intended to preface and provide background for the step-by-

step Adam optimizer simulation, and (2) A step-by-step simulation showing a continuous real-data 

example of model parameters being optimized by the Adam optimization method over 40 

iterations. When learning on the VisNLP 2.0 Adam module a learner would first be taken to the 

Adam optimizer overview page. 

Adam optimizer overview 

In the Adam optimizer overview page, a learner will get a preface to the Adam optimizer 

step-by-step simulation as well as background to the Adam optimizer. A screen capture from the 

Adam optimizer overview is shown below in Figure 27. 

 

 

Figure 27: Adam Optimizer Overview Page 

The learning process begins with a written introduction to the Adam optimizer. This guide 

covers the basics of what an optimizer is and how it relates to other modules in the platform. This 

module's relation to the rest of VisNLP 2.0 can also be visualized on the page’s sidebar through a 

highlighted diagram. The user can then learn about the significance of the Adam optimizer in NLP 

tasks, including its popularity and pros and cons compared to other optimization methods. 

Additionally, a high-level overview of how the Adam optimizer works is provided. To aid in the 

user's understanding of the algorithm, a summary of the Adam optimization algorithm is also 

given. Finally, we preface what happens in the Adam optimizer step-by-step simulation, where 

from the user can enter and begin the simulation. 



   

 

   

 

Adam optimizer simulation 

In the Adam optimizer simulation, a learner can step through the step-by-step simulation 

showing a continuous real-data example of an NLP model’s parameters being optimized by the 

Adam optimization method over 40 iterations. A screen capture from the Adam optimizer 

simulation is shown below in Figure 28. 

 

 

Figure 28: Adam Optimizer Simulation - Step 16 

 

The learning process continues once a learner enters the initial point of the Adam 

simulation. Here, the sub-steps of the simulation are designed to directly correlate with the 

overview covered earlier. This helps learners make connections between what is happening in the 

simulation and how it fits into the overarching Adam optimization method. 

The purpose of the Adam optimizers is to tune and adjust the parameters of a stochastic 

objective function. Due to this an example objective function to perform the optimization on is 

necessary. In our simulation, we start with randomly generated model parameters for an example 

CBOW word2vec model for the corpus "I love data science" with a vocabulary size of 5 and an 

embedding dimension of 3. These three example parameters include embeddings, weights, and 

biases. The simulation allows the user to step through 22 sub-steps of the Adam optimization 

method continuously for 40 iterations. 

The learning process in the simulation begins by passing the adjusted parameters back to 

the objective function (unless it is the first iteration). The learner then performs the forward pass 

in the example CBOW word2vec model and computes the negative log-likelihood loss of the 

model. An average loss measure is also computed to gauge the model's performance at a given 

iteration. The gradients with respect to the stochastic objective are obtained, followed by updating 

the biased first moment vector and the biased second raw moment vector. The learner then 



   

 

   

 

computes the bias-corrected first moment estimate and bias-corrected second raw moment 

estimate. Finally, the parameters are updated with Adam and the user advances to the next iteration 

where the process repeats on the updated parameters. The workflow of the step-by-step process is 

summarized below in Table 4: 

 

1 Pass the adjusted parameters back to the objective function (unless the 

first iteration). 

2 Perform the forward pass in the example CBOW word2vec model. 

3 Compute the negative log likelihood loss of the model. 

4 Compute an average loss measure of the model for the purpose of gauging 

model performance at a given iteration. 

5 Get gradients with respect to stochastic objective. 

6 Update biased first moment vector. 

7 Update biased second raw moment vector. 

8 Compute bias-corrected first moment estimate. 

9 Compute bias-corrected second raw moment estimate. 

10 Update parameters with Adam. 

Table 4: Adam Step-by-step Learning Process Summary 

In order to achieve a step-by-step process that adequately tackles the black-box problem, 

this workflow is further broken down in 22 steps that the user steps through at each iteration. The 

steps aim to illustrate the Adam optimization process in a detailed and atomic manner. This 

involves breaking down necessary operations within the algorithm as much as possible for the 

learner, ideally displaying only one operation per step. To navigate the steps the user can either 

step forward one sub-step or backwards one sub-step. Additionally, the learner is able to fast-

forward an iteration allowing the learner to visualize how the optimization process works over 

time, especially with the help of the simulation dashboards which are covered later in this section. 

Lastly, the user can reset the simulation back to its original state.  

At each step, various components on the platform aid in helping the user understand 

optimization in neural network-based NLP. As seen below in Figure 29, the view for the Adam 

simulation is broken into three sections: a main content section, a description footer, and a sidebar 

dashboard. The contents of these three components aim to give comprehensive insight at what is 

happening at each step of the Adam optimization simulation. 



   

 

   

 

 

Figure 29: Adam Optimizer Simulation - Step 22 

At the forefront of each step view, is a visual of the sub-step being applied on the real data 

vectors. The learner can see the 2d visualization of the tensors before the step, what is applied to 

those tensors, and the resulting tensors. Additionally, the learner can see the labels of each of these 

tensor groups allowing them to understand the variable or other components of the process that 

they represent. Further, the title provided above the visuals gives the user a brief insight into what 

step is being executed. The user is also able to get further insight of what is occurring in that given 

step in the footer. The footer provides the user an explanation of the given step, which details the 

operation being done, the components of the algorithm that the operations are being performed on, 

and a brief technical inference that ties back to the theory behind the Adam optimization method. 

Also included in the footer is an equation section intended to bring the equation most relevant to 

that step to the forefront of the learner’s attention. These equations directly correlate with the sub-

step visuals, in such a way that the left side of the operation is highlighted in red, and the right side 

of the operation is highlighted in blue, both in the visual tensors and the footer equations. 

To add further insight to the Adam optimization step-by-step simulation for the learner, the 

sidebar houses three dashboards that track the optimization process. The first dashboard in the 

sidebar is the model parameters dashboard. This dashboard allows the learner to see each of the 

three parameters that are being optimized in the simulation throughout the step-by-step process. 

The next dashboard is the Adam algorithm dashboard. This dashboard provides the learner with a 

visual representation of the specific section(s) of the Adam optimization algorithm that is being 

executed at the current step of the simulation. This is achieved through highlighting the relevant 

section(s) of interest, allowing for a clear understanding of the algorithm's flow and progression. 

The final dashboard in the sidebar is the average model loss measure over iterations dashboard. 

By displaying the average model loss over the course of the simulation, learners can visualize the 

performance of the model as it undergoes optimization. This allows learners to gain a macro-level 

understanding of how the Adam optimizer affects the performance of the model over time, which 

can aid in their comprehension of the overall optimization process. 



   

 

   

 

Summary of contributions 

In summary, the Adam optimizer module on the VisNLP 2.0 web-platform provides a step-

by-step simulation of the Adam optimization algorithm, which is widely used in neural network-

based natural language processing. This module offers a clear and concise explanation of the Adam 

optimizer, its significance, and how it works. Through a series of step-by-step real-data visuals 

paired with pertinent equations, the learner can easily follow the simulation process and understand 

how the optimizer tunes and adjusts model parameters. Additionally, the module offers a macro-

level understanding of model performance and flow through various dashboards, including a 

measure of the average model loss over iterations. Overall, the Adam optimizer learning module 

aids in tackling the black-box problem in neural network-based natural language processing by 

providing a transparent and accessible way for learners to understand the optimization of 

parameters that occurs during the training of NN-based NLP models. 

 

4.6  Songs Recommendations Application Module 
 

Song recommendation application overview 

The Song Recs App module on the web platform first opens to a comprehensive overview 

section that provides the user with detailed information about the application. This section aims to 

help users understand the goal of the application, its purpose, and how it was developed. The main 

components of the overview section are displayed in Figure 30. 

 

 

Figure 30: Song Recommendation Overview 



   

 

   

 

Song recommendation simulation 

In the song recommendation simulation, the cover page displays a T-SNE plot of the vector 

embeddings that are used in generating song recommendations. In the sidebar, the user can select 

a song from a drop-down list that will serve as input for the song recommendation app, as shown 

in Figure 31. 

 

Figure 31: Song Recommendation Application Home 

 

Once the user selects a song, they must press the "generate recommendations" button to 

generate recommendations. This action prompts the loading of a recommendation table, including 

the input song with ten listed recommendations and their cosine similarity to the input song. 

Accompanying the recommendation table is a T-SNE plot that shows the input song as a red "x" 

and the recommended songs as cyan plotted points. The table and plot are displayed in Figure 32 

below. 

 



   

 

   

 

 

 

 

Figure 32: Song Recommendation Application Example 

This plot helps users visualize how the recommendations relate to the input song and 

provides a quick overview of the similarity between the input song and the recommended songs. 

Finally, the footer of the website updates with the input song's title, which helps users keep 

track of the selected song and provides a quick reference point for future recommendations. 

Overall, this process is a vital component of the Song Recs App's functionality, and it provides 

users with a personalized and user-friendly experience. The app's recommendation simulation is a 

fitting example of how advanced technology can be used to generate personalized song 

recommendations for users. 

 

4.7  Fake News Detection Application Module 

The VisNLP 2.0 web-platform's fake news application module is composed of two 

principal components. The first is an overview page designed to introduce and provide context for 

the fake news application. The second component provides a visual representation of a 

classification plot generated after feature vectors have been clustered. To begin learning on the 

VisNLP 2.0 fake news application module, learners will be directed to the fake news application 

overview page. 

Fake new application overview 



   

 

   

 

 In the fake news application overview page, a user will read about the workings of how the 

fake news detection model works. The overview gives a quick background about para2vec 

technology and how it has emerged as a useful tool for many real-world applications. A screen 

capture from the fake news application overview is shown in figure 33 below: 

 

Figure 33: Fake News Application Overview Page 

Fake news application simulation  

After providing an overview of the NLP application, the subsequent web pages on the 

platform aim to showcase examples of the application in action. Rather than burdening the user 

with the intricate details of the process involved in detecting fake news via doc2vec and SVM 

models, the platform's primary objective is to demonstrate how feature vectors can be clustered 

using classification through visualization. Each page exhibits a unique article title, for example, 

"Did Miley Cyrus get mad at Liam Hemsworth for refusing to wear his promise ring," and prompts 

users to guess whether the article is real or fake through the sidebar. Once the user submits their 

guess, the page updates to display a classification plot, depicting if the article falls on the real or 

fake side of the SVM hyperplane. Furthermore, the footer refreshes to inform user whether their 

guess was correct or incorrect, along with the model's prediction and the article's original source. 

There are ten articles in total for users to predict whether they are genuine or fake, and the process 

remains consistent for each article. Once users finish making their predictions, they can restart the 

simulation should they wish to repeat the process. The photos below in Figure 34 and Figure 35 

depict when the page is asking the user for their prediction as well as the webpage once the user 

has made their prediction. 



   

 

   

 

 

Figure 34: Fake News Application Pre-User Prediction Page 

 

 

Figure 35: Fake News Application Post-User Prediction Page 

In the example above the user predicted that the article was real which was incorrect. So, 

as you can see the article was plotted in the fake cluster of the classification plot as well as the 

footer notified the user that they were incorrect and that the SVM model was accurate. This 

approach proves useful for users as it not only presents an example of a real-world application 

utilizing NLP techniques but also facilitates an enhanced understanding of how articles can be 

clustered based on their feature vectors. 

 



   

 

   

 

5 Platform Evaluation and Discussion 

 

To evaluate the VisNLP 2.0 educational web-platform for teaching NN-based NLP, we 

conducted user trials followed by platform evaluation surveys. The objective of these trials was 

for users to self-learn NN-based NLP by navigating through the web-platform independently. The 

user trials were completed by college-level students from varying disciplinary backgrounds. 

Directly following the user trials, the user was asked to answer a brief questionnaire regarding 

their experience. A total of 8 questions were included in this survey where respondents were asked 

to assign a rating of 1 to 5 for each question. A rating of 1 indicated “poor”, a rating of 2 indicated 

“fair”, a rating of 3 indicated “satisfactory”, a rating of 4 indicated “very good”, and a rating of 5 

indicated “excellent”. Table 5 below shows all 8 questions asked to the respondents during the 

platform evaluation survey: 

 

Q1 On a scale of 1-5, how would you rate your level of statistical and neural network-

based NLP knowledge before using the VisNLP 2.0 platform? 

Q2 On a scale of 1-5, how easy was it to understand and navigate the website platform? 

Q3 On a scale of 1-5, how clear and understandable were the statistical and neural 

network-based NLP concepts demonstrated by VisNLP 2.0? 

Q4 On a scale of 1-5, how helpful do you think the step-by-step process is in breaking 

down neural network-based NLP methods? 

Q5 How well did VisNLP 2.0 help you comprehend the NLP pipeline to real-world 

applications: Song Curation & Fake News Detection 

Q6 On a scale of 1-5, how would you rate this style of teaching NLP versus a lecture 

style format or assigned readings? 

Q7 On a scale of 1-5, how much has your knowledge of neural network-based NLP 

improved since using the VisNLP 2.0 platform? 

Q8 On a scale of 1-5, how likely are you to recommend the VisNLP 2.0 platform as a 

resource for someone trying to self-learn neural network-based NLP? 

Table 5: Platform Evaluation Survey Questions 

Survey results and findings 

A total of 32 platform evaluation surveys were collected from users after they partook in 

user trials. A condensed report of these results can be viewed below in Figure 36: 



   

 

   

 

 

Figure 36: Platform Evaluation Survey Results Report (Visual Summary) 

 The demographic of our response pool was 32 college students with varying disciplinary 

backgrounds. To further understand the background of our respondents, the survey included a poll 

assessing their prior background of NN-based NLP (Question 1). Shown in Figure 37 below, we 

found that over 80% of respondents claimed to have limited prior knowledge of NN-based NLP. 

Correspondingly, less than 20% rated their prior knowledge of NN-Based NLP as a 4 (Very Good) 

or 5 (Excellent). 

 

Figure 37: Respondent NN-Based NLP Background - Survey Results Visualized 

 Next, we look at responses which assess the VisNLP 2.0 platform’s clarity of content and 

quality (Questions 2 and 3). Shown in Figure 38 below, we found that respondents found the clarity 

of the NN-based NLP concepts that were demonstrated to be generally good, with the vast majority 
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rating this at least a 3 (Satisfactory). Similarly, we found that most respondents also found the 

clarity and ease of navigation within the VisNLP 2.0 platform to be at least a 3 (Satisfactory). 

 

Figure 38: Platform and Content Quality - Survey Results Visualized 

Next, we discuss survey responses which assess the effectiveness of various qualities and 

components of the VisNLP 2.0 platform (Questions 4, 5, and 6). As shown in Figure 39 below, we 

learned that around 78% of respondents found the step-by-step process to be significantly helpful 

in breaking down NN-based NLP methods. Note here, ratings of 4 (Very Good) and 5 (Excellent) 

are interpreted as significantly helpful, and ratings of 1 (Poor), 2 (Fair), and 3 (Satisfactory) are 

interpreted as not significantly helpful. Furthermore, we learned that around 71% of respondents 

found that the song curation & fake news detection applications significantly helped with 

understanding the NLP pipeline to real-world applications. The last quality we assessed was the 

style of teaching NN-based NLP in the VisNLP platform versus other conventional teaching 

approaches. We found that around 75% of respondents found this style of teaching to be 

significantly helpful. 
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Figure 39: Effectiveness of Platform Qualities - Survey Results Visualized 

Lastly, we assessed the respondent’s consensus of the VisNLP 2.0 platform (Questions 7 

and 8). As shown in Figure 40 below, we learned most respondents left a positive rating of their 

likelihood of recommending the VisNLP 2.0 platform as a resource for someone trying to self-

learn neural network-based NLP. Last, we assessed the respondent’s improvement in knowledge 

of neural network-based NLP after using the VisNLP 2.0 platform. Here, we found that well over 

90% of respondents claimed to have learned and improved their knowledge of NN-based NLP to 

at least some extent, rating their improvement of NN-based NLP knowledge as a 3 (Satisfactory) 

or above. 

 

Figure 40: Respondent Consensus - Survey Results Visualized 
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6 Conclusions and Recommendations 
 

This section first makes inference on the finding presented and analyzed in Section 5, 

which includes the web-platform evaluation survey results and discussion. Lastly, we provide 

some recommendations for potential future work which could expand upon our work done on the 

VisNLP 2.0 educational web-platform for teaching and learning NN-based NLP. 

 

6.1  Conclusion 

 

The survey results indicate that the NLP learning platform is an effective and valuable tool 

for learners seeking to develop their skills in this field. Most participants reported that the platform 

was easy to use and provided a comprehensive and engaging learning experience. Many 

participants also highlighted the value of the platform's interactive features, such as real-world 

applications and step-by-step examples. 

The survey results also suggest that the NLP learning platform has a positive impact on the 

learner’s knowledge and understanding of the subject matter. A considerable proportion of 

participants reported that the platform helped them to achieve a deeper understanding of key 

concepts and techniques, which is essential in mastering the complex field of NLP.  

The findings of this survey highlight the importance of digital learning tools in supporting 

learners' development in highly technical fields such as NLP. By providing a comprehensive and 

engaging learning experience, the NLP learning platform can help learners of all skill levels to 

develop their understanding and expertise in this critical area of study. As such, it is an essential 

resource for individuals, educators, and institutions seeking to advance their knowledge and skills 

in NLP and related fields. 

 

6.2  Recommendations and Future Work 

 

While the VisNLP 2.0 platform provides a comprehensive and engaging learning 

experience for NN-based NLP, there is still room for future work and expansion. One direction for 

future work could be to include more widely used technologies like Glove (Stanford) and FastText 

(Facebook), as well as newer methods like transformer-based models. Additionally, the platform 

could be extended to cover other applications of NLP, such as topic modeling, sentiment analysis 

and text classification, with corresponding interactive visual demos. Overall, we recommend that 

future work continues to focus on providing granular and comprehensive step-by-step instruction, 

using real examples when applicable, and showing the user how these concepts can be applied. 

These additions in combination with the VisNLP framework could further enhance learners' access 



   

 

   

 

to effective NLP education and continue to aid in providing a deeper understanding of the highly 

relevant field of NLP.  



   

 

   

 

7 Appendix A: Step-by-Step Simulation Training Output Data 

 

  



   

 

   

 

This JSON schema plays a summarizes the data extracted, categorized, and written to a 

file from training a word2vec model on a sample corpus. The schema represents the intermediate 

steps of training a CBOW word2vec model organized by epoch. The continuous output data from 

this schema was then used by our team to develop a step-by-step word2vec simulation. 

 

Word2vec Training Data - JSON Schema 

 
 

epoch 
"constants": 

"mode": string 

“input”: string 

“vocabulary”: array of strings 

“dictionary”: key/value map of strings to ints 

“one_hots”: key/value map of strings to arrays of ints 

“vocab_size”: int 

“embedding_dim”: int 

“params”: 

“param 1”: matrix of doubles 

“param 2”: matrix of doubles 

“param 3”: array of doubles 

“batch”: 

“centers”: array of ints 

“contexts”: array of ints 

“context_embed”: matrix of doubles 

“calcs”: 

“mat_mult”: matrix of doubles 

“mat_mult_footer”: matrix of strings 

“plus_bias”: matrix of doubles 

“plus_bias_footer”: matrix of strings 

“softmax”: matrix of doubles 

“log_softmax”: matrix of doubles 

“log_softmax_footer”: matrix of strings 

“next_params”: 

“param 1”: matrix of doubles 

“param 2”: matrix of doubles 

“param 3”: array of doubles 

 

 

 

This JSON schema represents the data extracted, categorized, and written to a file from 

training a word2vec model using the Adam optimizer. The schema captures the intermediate 

steps of Adam optimization performed over forty iterations on a CBOW word2vec objective 



   

 

   

 

function, organized by epoch. The continuous output data from this schema was then used by our 

team to develop a step-by-step Adam optimization simulation. 

 

Adam Optimizer Run on Word2vec Model Training Data - JSON Schema 

 
 

epoch  

“curr_model_params”: 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

“cbow_steps”: 

“center_context_pair_indexes”: matrix of floats 

“context_one_hots”: matrix of ints 

“param_1”: matrix of floats 

“context_matrix”: matrix of floats 

“param_2”: matrix of floats 

“dot_prod”: matrix of floats 

“param_3”: matrix of floats 

“dot_prod_bias_sum”: matrix of floats 

“loss_steps”: 

"dot_prod_bias_sum": matrix of floats 

“softmax”: matrix of floats 

“log_softmax”: matrix of floats 

“log_softmax_vertical_avg”: matrix of floats 

“center_one_hot”: matrix of floats 

“avg_epoch_loss”: int 

“avg_loss_vals”: arr of floats 

“adam_optim_hyperparams”: 

“learning_rate”: float 

“beta_1”: float 

“beta_2”: float 

“eps”: float 

“t”: int 

“first_moment_calculations”: 

“grad_beta_1_products” 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

“prev_m_beta_1_products” 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

“second_moment_calculations”: 



   

 

   

 

“grads_sq”: 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

“grad_sq_beta_2_products”: 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

“prev_v_beta_2_products”: 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

“gradient_states”: 

“grads”: 

“param_1_grad”: matrix of floats 

“param_2_grad”: matrix of floats 

“param_3_grad”: matrix of floats 

“prev_first_moments_raw”: 

“prev_param_1_m”: matrix of floats 

“prev_param_2_m”: matrix of floats 

“prev_param_3_m”: matrix of floats 

“prev_second_moments_raw”: 

“prev_param_1_v”: matrix of floats 

“prev_param_2_v”: matrix of floats 

“prev_param_3_v”: matrix of floats 

“first_moments_raw”: 

“param_1_m”: matrix of floats 

“param_2_m”: matrix of floats 

“param_3_m”: matrix of floats 

“second_moments_raw”: 

“param_1_v”: matrix of floats 

“param_2_v”: matrix of floats 

“param_3_v”: matrix of floats 

“first_moments_bc”: 

“param_1_m_hat”: matrix of floats 

“param_2_m_hat”: matrix of floats 

“param_3_m_hat”: matrix of floats 

“second_moments_bc”: 

“param_1_v_hat”: matrix of floats 

“param_2_v_hat”: matrix of floats 

“param_3_v_hat”: matrix of floats 

“param_update_steps”: 

“sqrt_v_hat”: 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 



   

 

   

 

“ans_eps_sum”: 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

“m_hat_ans_quotient”: 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

“alpha_ans_product”: 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

“updated_params”: 

“param_1”: matrix of floats 

“param_2”: matrix of floats 

“param_3”: matrix of floats 

 

 
 

 

 

  



   

 

   

 

8 Appendix B: Platform Evaluation Survey Full Results Report 

 

  



   

 

   

 

This results report provides the unabridged results of our platform evaluation surveys 

used to evaluate the VisNLP 2.0 educational web-platform for teaching neural network-based 

NLP. The demographic of our response pool was 32 college-level students with varying 

disciplinary backgrounds. The respondents first partook in the self-guided learning of neural 

network-based NLP by navigating through the web-platform independently. Directly after, the 

respondents took the platform evaluation survey. The survey consisted of 8 questions, where 

respondents were asked to rate their experience on a scale of 1 to 5, with 1 being “poor” and 5 

being “excellent”. The objective of the survey was to evaluate the effectiveness of the platform 

and gather feedback for further improvements. 
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