
Project number: CEW0702 -5/

PRE-COLLEGE CS EDUCATION

An Interactive Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Andrew B. Sutman

Date: December 19, 2006

Approved:

Professor Cr-aig E. Wills, Major Advisor

Table of contents

Abstract. 4

1. Introduction 5

2. Background 6

2.1. Notable languages and environments 7

2.1.1. Karel and Karcl++ 7

2.1.2. JPie 8

2.1.3. DrScheme 10

2.1.4.l\licc 10

2.1.5. LEGO Mindstonns 12

2.1.6. Others 13

2.2. Sumnlary 14

3. What is used in high schools today 15

3.1. Research 15

3.2. Analysis 16

3.3. Summary 16

4. Frontiers computer science program 17

4.1. Languages already in use 17

4.2. Deciding \vhat to use 18

4.3. Sulnmary 19

5. The I\lice lab 20

2

5.1. Creating the lab 20

5.2. Results 20

5.3. Summary 21

6. Conclusions and future work 22

7. Works cited 23

Appendix 26

3

Abstract

The objective of this project is to identify languages and other such tools designed for introductory

programming education, primarily for the purpose of developing new material for use in WPlts

Frontiers computer science program. This report discusses why these tcaching tools are important,

describes some of those available, and explains how one was selected and integrated into the existing

Frontiers material.

4

1. Introduction

The purpose of this project is to identify methods and tools used in introducing young students to

programming. Traditionally, students have been taught using full-nedged programming languages from

the beginning. Until fairly recently, the best known and most widely used such language was Pascal

II J. Although Pascal was designed specifically for educational use. it wa~ powerful enough to be used

in real~\Vorld applications, and gradually became popular among professional programmers. The

situation today is the reverse: the language most commonly used to teach beginners is Java, which was

intended for and is still used in real applications.

The primary motivation for this project was to identify new materials suitable for use in WPIts

Frontiers computer science program. In the Frontiers program, high school students live on campus for

two weeks, doing daily lab work in one ofa varielY of fields. The available fields include computer

science, mathematics, physics, and biology. among others.

The following section of this report discusses tbe reasons that specialized tools are preferable to

professional languages for educational purposes. The next section presents a small survey of what is

actually used to teach programming in high schools in the United States. The remainder of the paper

describes the process of adding a new programming environment to the existing Fronliers curriculum.

5

2. Background

The language most commonly used to introduce students to programming today is Java. C, C++,

and Visual Basic arc less common, but also widely used. The use of these languages for educational

purposes is questionable; they were designed to be used by trained professionals, not rank amateurs.

The difficulty orJearning to program is compounded by the need to learn to work with professional

grade tools. With no prior experience, students are expected to quickly Jearn a complex and seemingly

arbitrary syntax and numerous special keywords, all so that they can disregard the language itself and

learn abstract programming concepts.

A recent study identified a number of problems commonly encountered by beginning programmers.

Among lhese [2]:

• Misusing keywords,

• Omitting keywords or syntactical elements such as braccs,

• Differentiating between similar-looking operators, such as = and ==, or subtly different uses of a

single operator, and

• Misunderstanding class inheritance.

A major cause of these problems is misleading, inadequate, or nonexistent error messages. Because

of the versatility of modern languages, certain errors can cause compilers to misunderstand the

progmmmer's intention and suggest fixing the code in ways that will not produce the desired result. In

some cases. programming errors can result in code that is valid. For example. making a statement

execute unconditionally when it was not meant to can result from forgetting the keyword "else." and

one class can be created inside another if a brace is misplaced. It can be confusing to beginners when

code compiles but does not run as expected.

6

It seems obvious that an introductory programming language should be as easy to learn and use as

possible. There are several possible ways of making them so. One of the most effective is to employ a

graphical interface for writing code, which prevents typographical and most or all syntactical errors.

Some languages are made to be as simple as possible, so that the difficulty of using the language and

the number of possible errors is minimized. One environment I encountered, DrSchcme, is based on a

full-featured language, but restricts its use based on the user's skill level. This allows the interpreter to

more accurately determine the programmer's intention and provide more helpful feedback.

In this project, I researched many educational programming tools. I examined how they work, what

their creators hoped to achieve, and how effectively they aid education in practice. The following

section describes the most interesting ones I encountered.

2.1. Notable languages and environments

2.1.1. Karel and Karel++

Karel is a method of introducing students to programming using a simulation of a simple robot in a

simple, grid-based world. Each square in the worlds contains either a wall, a beeper, or nothing. The

robot can only move, turn left, and pick up or put down beepers. Karel is intended to teach basic

programming concepts using simple constructs, which are represented visually when programs are run

(3J. Figure I shows an example of a simple Karel world in which the walls arc arranged in a square and

there arc two beepers ncar the robot.

7

Karel J. Robot

I

•

~Control ~13

[~)
0 ,"'""" set Speed

Figure I: A .Java-based implementation ofKarel++ [19].

Karel++ is an object-oriented variant of Karel. It extends the concept of the world by adding

additional robots. Each robot can be seen as an object, having its own data and methods. One

experiment in which two pairs of college-aged students used a lava-based, object-oriented version of

Karel reportcd moderate success. The students involved acquired basic knowledge of object-oriented

principles in a short period of lime. However, their understanding of these principles, especially that of

code reuse, was limited. Also, the two students who had previous experiencc with procedural languages

continued to approach problems in the ways to which they were already accustomed r4l-

8

2.1.2. JPie

Jpie-sl1ort for "Java: Programming is Easy"-is a graphical Java programming environment which

allows users to write code using drag-aod-drop blocks, called "capsules," rather than by typing. This

interface is intended to alleviate the difficulty of remembering keywords and syntax while learning the

language, as well as to illustrate the similarities and relationships between different pieces of code. JPie

uses different icons and colors on its capsules to indicate the nature and use of the code they contain.

The creators of lPic hope that by allowing students to manipulate functional blocks of code rather than

simply writing text, students will be able to learn programming concepts without having to concern

themselves with the language itself[5l

-----_.- _. ----
... £l'!'-.. ".. -. _. _.-- •-,.

i",.1 .
~. ..--.....~ i> . •....---.od'l_ t)"""'....-

'....- j,"::".
gfllllo't'ld.., '?-";d'Y , i I.... !,,-I"nllM >,iT I

"1~rTh:on- .-.
~II-- .JiI

~=
"-'.J',.. h eJ'"- .
~f""< .J~: ... - """'..... - _.

Figure 2: The JPie interface f20/.

JPie is currently not well known or widely used. I was unable to lind any educators who had used

9

JPie or any reports from such people of their experiences, so I ean say nothing as to how well it works

in practice.

2.1.3. DrScheme

DrScheme is a development environment for Scheme which provides different "levels" of the

language for users of different skill levels. By restricting what can be done, DrSchemc allows

students to learn the language gradually, mastering basic concepts before more advanced ones are even

available. This also lets the interpreter give more helpful error messages to beginners, since there are

fewer mistakes that can be made and fewer valid ways of correcting them.

DrScheme is extensible, unlike many other learning environments. One noteworthy extension is

ProfcssorJ. which changes the environment's language to Java. Just as DrScheme does for Scheme,

ProfessorJ allows different subsets of Java to bc used so that students can be introduced to the language

gradually. Currently, however, ProfessorJ is incomplete; it is not fully functional and does not always

accept valid code. It is therefore of limited use in actual education for the time being.

2.1.4. Alice

Alice is an introductory programming environment based on the concept of storytelling. developed

by the Stage3 Research Group at Carnegie-Mellon University. It uses a world containing 3D objects

which can be programmed to move in certain ways and respond to input. Alice uses a unique language

which is input mainly via drag-and-drop blocks and drop-down menus. Figure 3 shows most of the

features of Alice's interface: a hierarehicallisl of objects in the world, a list of methods available for

10

one object, the body of one of the methods, code blocks describing how to respond to various events,

and the viewport in which the world is displayed.

>0""""
9i....
.~~

~"'"
l+o 1fI......

(()sinnJ/Ol<Ol

l~, 'l;t1l$hel..9OlC07

Events ONII.__
9 __

wNIe s.:-I Is preswd

IIe9ft lce5kllet,gOwiI""....

c..~_>

End: lceSk1JlI!'f'" $'"

++3

World.my tint ,nlmltlon NoPM~~':_='---------------11a~.~.~.~_~~~_~_~'(
~~ 1

0
1

'.K
e.--, ser-.!", "'_".e-~z· _.Z.•onds

WM 1.__

c...1 ser,-",__ _ __.,_ot·e--~-
lteSIuIer 11fts.............IL.

lce5kller Rl_~_

1ceSbI._-.,S,...1
1ceSbI.~

bldcwlrM .nd jump

FIKllre 3: Defininf!. (J method in Alice.

Just as in JPie, the graphical interface prevents typos and eliminates the difliculty of remembering

keywords and names. Alice differs in that the language is simpler. While JPie can detect and prevent

many errors, Alice lacks many of the features and restrictions that cause these errors in the first place.

For example, Alice does not have different data types for integers and floating point numbers or access

protection for member data.

In addition 10 the simple language and graphical interface, Alice features a 3D world which presents

II

object-oricnted programming concepts in a intuitive way. The entities in the world represent objects,

their aClions represent methods, and thcir properties (position, color, etc.) represent member data.

Although many oflhe more advanced concepts arc absent, Alice makes it easier for students to grasp

basic concepts quickly.

Alice is also remarkable in that it is designed 10 be attractive to girls, who are generally less

receptive to traditional teaching methods. The creators of Alice believe that the concept of storytelling

is more appealing to girls-and often to boys, for that matter-than the more abstract and humdrum

concept of programming computers [6].

The effectiveness of Alice as an educational tool was tested at Saint Joseph's University over a two

year period in a project sponsored by the National Science Foundation. Students who took an optional

Alicc course alongside the standard introductory computer science course performed significantly

better than those who did not, especially among those who were considered to be at high risk of

dropping out of the CS program. Statistical analysis of the project showed that the high-risk students

who took the Alice course averaged a GPA of2.98 in the regular CS course, compared to 1.18 among

Ihose who did not. Of those sludents, 88% of those who took the Alice course and 15% oflhose who

did not continued to the second CS course [7].

What is described above is Alice 2.0. The original Alice was a completely different program.

Version 1.0 was developed by the University of Virginia as a rapid prototyping system for virtual

reality software. It did not have its own language; rather, it ran programs written in Python, the samc

languagc uscd to write Alice itself [8]. After Carnegie Mellon University took over the project. it

bccame Alicc99, it became an environment for scripting and prololyping the bchavior of objects in 3D

worlds. There was also a plug-in for Microsoft Internet Explorer and Netscape Navigator allowing

users to display Alice worlds in these Web browsers [91.

12

2.1.5. LEGO Mindstorms

The LEGO Mindstorrns series of products allows for the building and programming afrobats using

standard LEGO bricks. The robots arc controlled by a special block, called the Programmable Brick,

which houses a processor and a small amount of memory. This block also has a speaker and several

connectors for sensors and motors, which serve as the system's means of input and output. LEGO

makes fOUf different types of sensors: a light sensor, a sound sensor, a touch sensor. and an ultrasonic

distance sensor. In addition to these, there arc several unofficial sensors which allow robots to sense

ultraviolet light, pH, magnetic fields, and more [I OJ. Although the only programming languages

officially supported are simple, graphical languages, it is possible to use many other languages,

including Java, C, Visual Basic, and even Ada [II].

The original Mindstonns system had some constraints which, although not unreasonably strict, do

put some limits on its usefulness in education. For one, the original Programmable Brick only had 32

kilobytes of memory. This is not an exceedingly small amount, considering the programs one might

want to run, but it does prohibit the usc of some particularly complex programs. More importantly, the

block has no floating-point hardware, so third-party libraries are needed in order to perform and

floating point arithmetic [I lJ. The current version alleviates the memory restriction somewhat. It has a

more powerful processor, twice as much RAM, and 256 KB of flash memory [12]. However, there is

still no hardware support for floating-point numbers [13].

Mindstorms was not originally designed specifically for use in formal education. The creators of the

Programmable Brick saw it as a way of presenting computers to children as objects that exist and

perform actions in the real world, as opposed to a way of interacting with intangible, simulated worlds

1141·

13

2.1.6. Others

I encountered a number of other introductory programming languages and environments in addition

to those described above. These are generally less remarkable and not as well known.

A++ is a simple language based on the concepts of abstraction, reference, and synthesis, the three

basic concepts of lambda calculus. It is a minimal programming language, billed by its creator as "the

smallest programming language in the world," By leaving out all but the most fundamental concepts,

A++ is meant to allow students to learn these concepts and gain pattern recognition easily [ISJ.

Although not directly related, the languages Turing and Zena can both be seen as successors of

Pascal. They arc designed to be intuitive and use-friendly, so that students do not need to spend much

time learning them or dealing with syntax errors. Each language uses a simple syntax apparently

derived from Pascal. Each minimizes easy-to-overlook elements such as braces, parentheses, and

semicolons, instead relying on more intuitive clements such as words and spaces. In fact, simplc

programs in the two languages often look almost identical. An object-oriented version of Turing is also

available [16.17].

2.2. Summary

The use of professional-quality programming languages to introduce students to programming is

problematic. These languages require knowlcdge and experiencc to use effectively, and beginning

students have neither. The need to learn a language makes the already difficult learning process that

much harder. There arc a number of alternatives available in the form of programming languages and

environments designed to be easy as possible to learn and usc.

14

3. What is used in high schools today

3.1. Research

In addition to finding what programs arc available for introducing students to programming, I

looked into what high schools actually use. To do this, I found as many schools as I could which listed

this information in their online course catalogs. There were, of course, many schools that did not have

course catalogs available on the Internet. In several such cases, I inquired via email as to what, if

anything, was used at these schools. I did not receive replies from some schools; the responses I did

receive indicated that these schools do not offer programming courses at all.

In all, I found information on 147 schools. Listed below are the languages used in introductory

programming courses at lhese schools and the number of these schools that usc each language. Some

schools offered more advanced courses using different languages; lhese were not taken into account.

Some schools offer introductory courses in multiple languages, or use more than one language in a

single course; these schools are counted once for eaeh language.

• Java: 51

• C++: 28

• Visual Basic: 21

• C: 19

• Scheme: 16

• BASIC: 9

• Python: 6

• JavaScripl: 3

15

3.2. Analysis

Clearly, the use of educational programming software in schools is not as common as might be

expected. It appears that a large majority instead use professional languages in introductory

programming courses.

It is possible that the creators of these courses were not fully aware of the other options available to

them. Although it is not hard to find the software itself, infonnation on its effectiveness is generally

more difficult to find.

It seems more likely, however, that specialized educational software was consciously eschewed or

never even considered at these schools. One reason these programs might be avoided is because

courses using them might not be acceptable for advanced placement purposes. After all, students who

learned to use only Karel or Alice might understand basic programming concepts, but they would not

have the practical knowledge expected by colleges.

3.3. Summary

Although there are many educational languages available, at least some of which can be shown to

improve students' performance in CS courses, it seems that most schools today use only full-featured,

often professional languages, most commonly Java, to introduce students to programming. Whether

this is because the alternatives are unknown or purposely avoided is uncertain, but the laner seems to

be more likely.

16

4. Frontiers computer science program

The main rcason this project was undertaken was to find new materials to use in WPI's Frontiers

computer science program, in which students spend two weeks. A unique aspect of the computer

science program, and an important consideration in selecting what would be used, is the Frontiers

Qualifying Project (FQP), Students arc expected to undertake a project demonstrating what they

learned. a capstone of their experience in Frontiers.

4.1. Languages already in use

Before this project, there were five lab assignments in the Frontiers CS project: UNIX

basicslHTML, JavaScript, Pcrl/CGI, Java Applcts, and StarLago.

The lirst of these labs begins by covering basic infonnation on how to use the UNJX~based systems

the students would be using for much of their work. After this, it introduces the students to HTML, the

language used to make web pages. This is used both to teach interface design principles and to provide

the students with a way to view and showcase their later work.

The second lab covers JavaScript, which can be used to make web pages more interactive and

dynamic. This, too, is used to teach interface design principles. In addition to this, it is the first true

programming language used in the program, and so it is the students' introduction to to many basic

concepts such as variables, functions, and flow control.

The third lab covers Perl and CGI. These, like JavaScript, allow morc functionality in web pages.

This lab focuses more on the technical aspects of programming than the previous one, going into more

depth on how the code actually works.

17

The fourth lab introduces Java applets. Although they are displayed in web pages, these are

standalone applications with few limits on their capabilities. The lab assignment walks students through

the creation of a simple tie-tac-toe game.

The final lab features StarLogo, an educational programming environment based on the Logo

programming language. StarLogo features a simple, 20 world populated by "turtles" which can interact

with each other. change colors, and change the colors of the tiles in the world. This lab does not have a

structured assignment like the others; it encourages the students simply to explore the software to see

what it can do, and then to come up with their own uses for it.

4.2. Deciding what to use

There were several criteria for evaluating the tools available. Ease of use, intuitiveness, and real

world applications were all taken into account. It was also preferable that it be possible to use these

new tools as part of an FQP. Most important, however, was that they could be used to effectively teach

programming concepts in the short amount of time available.

Although Karel does introduce programming in an interesting way, the concepts it teaches are

extremely basic. It is limited to Boolean data, functions, loops, and conditional statements. Because of

this, it is not well-suited for Frontiers, as it would not teach much in the short amount of time it would

be used. In addition to this, it would be difficult to use Karel in an FQP due to its limited capabilities.

LEGO Mindstonns was a fairly attractive option, as it would allow for the use of any of several

languages, and because robots would likely be more interesting than windows and text. The main

problem with using the Mindstorms system was the price. The current version, Mindstorms NXT, sells

for approximately $250. With an estimated enrollment of 15-20 students, it would be preferable to

18

have at least four sets, which adds up to $1,000. Aside from the price, there would also be the problem

of coming up with a suitable activity. Most possible uses for Mindstorms robots, such as navigating

mazes, following a path, or wandering freely, would require an area of several square feet for each

robot. This would be difficult to provide, due to the limited space available in the laboratory.

Alice seemed to fit allihe criteria quite nicely. Its 3D worlds were versatile and interesting, and it

did a particularly good job of introducing fundamental programming concepts. Alice also had potential

for usc in FQPs. Although intended primarily for making animations, it is capable of responding to

input. It would therefore be possible to use Alice to make some simple games and applications. A

well-made animation might also be a suitable project, even if a fairly simple one.

In the end, seemed to be the most promising prospect by far, and so it was the one and only new

program added to the curriculum. With that decided, it fell to me to create a suitable lab assignment for

the students to complete.

4.3. Summary

Most of the programming languages and environments described earlier in this report were seriously

considered as possible additions to the Frontiers curriculum, But Alice was ultimately the only one

selected.

19

5. The Alice lab

5.1. Creating the lab

Once it was decided that Alice would be used in Frontiers, an appropriate lab assignment had to be

created. It was most important to incorporate Alice's object~oricnted features, but I also wanted to work

in user input as a simple introduction to event-driven programming. The lab would have to be easy

enough to be completed by students with no experience within a few hours, but it would be preferable

for it not to be trivially simple.

I settled on a simple "whack-a-mole" game. It would use penguins instead of moles, though, as the

latter arc not among the models included with the software. The game would necessarily be somewhat

crude, as Alice's ability to display numbers-in this case, the timer and the score-is extremely limited.

There is no way to create text in the 3D world at run time; text is instead displayed in a separate text

area. The timer would instead be represented graphically, in the form ora gradually shrinking bar. As

for the score, it would be acceptable to print it as plain text aller the game cnded.

With the goal set, I went through what would be the assignment myseiC keeping detailed directions

of each step and taking screenshots at key points. From these, I wrote a description of how to complete

each part of the process, going into great detail at first and describing each step more generally later on.

The complete lab assignment is included as the appendix to this report.

5.2. Results

I served as teaching assistant at Frontiers this year. That was in no way a part of this project, but it

20

allowed me to see firsthand the students' how the students responded to Alice.

Most of the students used Alice long enough to complete the work that was designed for it. Of

those. several spent another hour or two afterward doing further work on the assignment or just seeing

how much they could do. Most of the more experienced students used it just long enough to determine

that the were not interested. or did not even open it.

Three of the fourteen students continued using Alice for a significant period of time after finishing

the lab work. One greatly improved upon the design of the whack-a-mole game, adding features to the

interface well beyond what Alice was intended to handle. This student, however. was one of the more

experienced programmers of the group. and explained that he made the improvements mainly due to a

sense of perfectionism. Anolher made a relatively complex movie, which ran for several minutes.

OUI of all the students in attendance. only one used Alice for his FQP. which was a short movie

featuring several objects interacting with each other.

The students had mixed opinions about Alice. Most, especially those with little or no programming

experience, found it a useful and enjoyable learning tool, as hoped. Others would have preferred to

spend more time learning languages with practical applications. Overall, the reception was not as

positive as expected, possibly due to the studenls' average level of prior experience being higher than

anticipated.

5.3. Summary

To create the Alice lab assignment, I chose a simple game which would take advantage of most of

Alice's interesting features and documented the process of creating it. The students' reactions to Alice

were mixed, but generally positive.

21

6. Conclusions and future work

In this report. I have described the need for specialized educational software for introducing students

for programming, as well as several such tools that are already available. I have looked at what is

actually used for these purposes in high schools and found that the usc of educational software is quite

rare, despite its demonstrable advantages.

Existing educational software is being improved and new software is being developed. However,

this work amounts to little jfthe software is never used in the real world. More efTort needs to be put

into its promotion. It seems this may be done in the future; The next version of Alice is being

underwritten by EleClronic Arts, the company that developed the popular Sims franchise. EA is

expected to do much to to promote the use of Alicc, possibly to the extcnt that it will become the new

standard for teaching programming [18]. For the timc being, however. the development of educational

programming tools is largely an academic pursuit.

22

7. Works cited

[I JGupta, Diwaker. 2004. What is a Good First Proil:rammim~ Laneuage? 9 Dec. 2006

<http://www.acm.org/crossroads/xrdslO-4/firstlang.html>.

[21 Gray, Kathryn E. Towards CustQrnjzable Peda~Qeic Programming Languages. Aug. 2006. 9

October, 2006 <http://www.cs.utah.edu/-kathyg/thcsis.pdf>.

[3] Untch, Roland H. "Karel: Fundamentals," 18 Oct. 2006

<http://www.mtsu.cdu/-untchlkarellfundamentals.html>.

[4] Borge, Richard, Arne-Kristian Groven, and AUDita Fjuk. "Using Karel J coJlaborativcly to facilitate

object-oriented learning." Proceedjngs of the IEEE International Cooference on Adyanced Learnio~

Technologics 30 Aug.-I Scpo 2004: 580-584.

[5] Goldman, Kenneth J. "An Interactive Environment for Beginning Java Programmers." Science of

Computcr P[Qgrammin~ 53(1) (Oct. 2004): 3-24.

[6] What is Alice? 2006. Carnegie Mellon University. 7 Dec. 2006

<hltp://www.alicc.orglwhatlsAlice.htm>.

23

[7J Moskal, Bob, Deborah Lurie, and Stephen Cooper. "Evaluating the Effectiveness ofa New

Instructional Approach." Proceedings of tile 35th SIGCSE technical symposium on Computer science

education. 2004; 75-79.

[8] Pausch, Randy, et al. "A Brief Architectural Overview of Alice, a Rapid Prototyping System for

Virtual Reality." May 1995. IEEE Computer Graphics and Applications. 12 Nov. 2006

<http j /www.cs.cmu.edu/-stage3/publications/95/journalsIIEEEcomputer/CGandNpaper.html>.

[9] What is Alice? 2000. Carnegie Mellon University. 26 Oct. 2006

<httpj/web.archive.org/web/200002291 52245/hup;//www.alice.org/about.htm>.

[10] (,EGO® NXT Projects. Vernier Software & Technology. 30 Oct. 2006

<http://www.vernier.com/nxtI>.

fll] Klassner, frank, and Scott D. Anderson. "LEGG MindStorms: Not Just for K-12 Anymore." lE..E.E..

Robotics and Automalion Magazine Summer 2003.

[121 Lecture notes. Duke University. 7 Nov. 2006

<http://www.cs.duke. edu/courses!fa II06/cps097s/notes/Iect02-4up.pd f> .

[131 ARM7. ARM Ltd. 7 Nov. 2006

<hltp://www.arm.com/products/CPUs/families/ARM7Family.html>.

24

f14] Resnick, M., F. Martin, R. Sargent. and B. ilverrnan. "Programmable Bricks: Toys to think with."

IBM Svstems Journal. Sept.-Dec. 1996.

[151 Loczcwski, Georg P. 2005. "A++ An Educational Programming Language Based on the Lambda

Calculus." 22 Oct. 2006. <htlp://www.aplusplus.netl>.

[161 Turin~ Proerammjne Laneyai:e Home Paee. Holt Software Associates Inc. 11 Nov. 2006

<http://vNAy.hol15ofi.com/turing/>.

[17] Schmitt, Stephen R. 2006. Programmer's Guide to the Zena Interpreter. 12 Nov. 2006

<http://home.att.netl-srschmittlzenogyidelzeno_gu ide.htm I>.

[181 Aljce press release. 10 March, 2006. Carnegie Mellon University. 17 Dec. 2006

<http://aljce.ore/simsannoyncc.btml>

[19] 20 OCI. 2006 <http://csis.pace.cdul-bergin/KarelJava2cdlKarcl++JavaEdilion.html>.

[20]28 Oct. 2006 <http;//jpie.cse.wustl.edu>.

25

Appendix

Objective

Learn some fundamental object-oriented programming concepts using the Alice
programming environment.

Activities

Before beginning this project, complete the included tutorials to learn to usc Alice's
interface, and look at some of the example worlds to see what it can do.

Pan J: The first method

Part 2: Makin~ tbe penguins appear

Part 3: Multiple peOl:yjns and score

Part 4: Stanjne world,ruo...eamc

Part 5: The main eame loeic

Part 6: Respondinr: IQ events

Examples

Several example worlds are included with the Alice software. They can be found by
clicking the Examples tab in the startup dialog. File -> New will display this dialog
again after it's closed.

Related Links

Alice Ilome Paee

Alice Community

Frontiers Home Page

26

Part 1: The first method
In this lab, you'll usc Alice to create a simple "whack-a-mole" type game with penguins. If you're not
familiar with whack-a-molc. you can try a Java version~. To begin, download warn initial.a2w
below and open it in Alice. -

wap-i n jtjal,a2w

After opening it, the viewport should show something like this:

This world contains onc of the penguins, a hole for it to hide in, and a carefully-placed cylinder which
will serve as a timer. No methods are ever called, so ifyou fun the world, nothing will happen.

The other penguins will be copied from the existing one. Therefore, it is preferable to make in advance
any changes which will be common to all of them; othen.vise. they'll have to be made to each penguin
individually.

The penguins should begin the game below the ground; if they are moved there now, however, working
with them will become more difficult, especially making copies. Instead, you'll tell the penguins to
disappear into their holes instantly when the game begins.

Select the penguin and create a new method named hide. Drag the penguin's move method into
definition of hide. Select down, then 1 meter. This method will now cause the penguin to move
below the ground, but it will take a full second. To make the method run instantly, click more ... in
the move block, select dura tion, then other ... , and enter O.

The finished method should look like 1h.is..

To test this method, tell it to run when the world starts. Do this by clicking the create new event
box. selecting When the world st.arts, and dragging hide from the penguin's list of methods
to the new event's do field. Now when you run the world, the penguin should disappear into the ground
(you might see the penguin for an instant beforehand; this is not a problem). Delete the event afterward.

27

.ItJ.d - Part 6: Responding to events

~ - Part 2: Making the penguins appear

Part 2: Making the penguins appear
Now the penguin needs to be able to move up and down. With the penguin selected, create another new
method called pop_up. We wam this to make the penguin move up one meter, pause, and then move
back down over the course of one second.

Much like before, use a penguin. move block to make the penguin move up 1 meter. Then click
more .. " then dura t ion, and select 0 . 25 seconds. Place a Wai t block after that, set to O. 5
seconds. Finally, add another penguin .move block which will make the penguin move down 1
meter over a period of 0 . 25 seconds.

The finished method should look like lhis..

B..a&k - Part 1: The first method

bIsxt - Part 3: Multiple penguins and score

Part 3: Multiple penguins and score
The penguin has all the methods it needs now, so it's time to fill in the board. Click Add Objects,
then use the Copy Objects tool to make three copies of the hole and thee copies of the penguin, so
there arc four of each in all. Click done to return to the programming interface.

28

Value: 0

Ifyou select the other penguins, you'll notice they have the hide and pop up methods you created
~fure. -

One marc thing is needed before the game logic can be created: a way of keeping score. With the
wor.! d selected, click the properties tab and then the create new variable bulton. Name
the variable score, make its type number, and set its value to O.

~) creale new variable Ef

Name: !score_______--J

Type: @ Number

o Boolean

o Object

o Other... ~strlng G
Dmakea lUst 1

01 Cancel I

Back - Part 2: Making the penguins appear

~ - Part 4: Starting wOrld.run_game

Part 4: Starting world.run_game
Finally, it's time to creatc the game logic. Sclect the world, click the methods tab, and edit the
run game method.

The first thing that needs to be done is to hide all the penguins underground. Drag a Do together
block into the method from below. Select the first penguin and drag its pop up method IOto the Do
together block. Repeat this for penguins 2. 3, and 4.

Next, the timer needs to run down, and at lhe same time the penguins need to pop out of the ground.
Add another Do together block underneath the first one. Select the timer and drag its move
method into the second Do together block. Sct it to move down 1 meter over a period of 30
seconds. It should also be set to start and stop suddenly rather than gradually. This is done similarly
to setting the duration: click more .. " then select style, then abrupt.ly.

29

Value: 1

B..ad. Part 3: Multiple penguins and score

~ - I'art 5: The main game logic

Part 5: The main game logic
The most complicated part of this method is the logic to select a penguin. Click create new
va r iable at the top right of the method definition. This will create a local variable ratherthan an
instance variable. Name this variable \.,rhichyenguin and set its type to Number. The value doesn't
matter; it will be set later.

_Creelle New LocalVauable EI

Name: I\YhiChJ)efl(JUin

Type: @ Number

o Boolean

o Object

o other._ IString 0
Dmakea lUst ... 1

01 Cancel I
The block representing the variable will appear in the top-left corner of the method.

Drag a Loop block into the Do together,just under timer. move. Set the loop to run 30
times. Drag the which_penguin variable into the loop and select set value, and then any
number. Select the world, click the functions tab, and drag over random number to replace the
value you chose to set which_penguin to. You'll need to set the values this random number might
be. The way this is done is slightly misleading; the number will be equal to or greater than the
minimum, bUI it will always be less than the maximum. Click more ... on the random number
block (not the set value to block), then minimum, and then 1. Set the maximum to 5 the same
way. You'll also need to set integerOnly to true so that fractional numbers aren't selected.

Now the mcthod will pick a number from I to 4 thirty times. We need a way to use this to choose a
penguin. This can be done using nested if statements.

Drag an If/Else block into the loop under the set_value block. Choose either true or false; it
doesn't mailer which, as it will be replaced soon. Drag a second If/Else block into the £1 se part of
the block. and a third into the Else part or the second block. At this point. the loop should look about
like lhili.

30

To determine which statement will be executed, we'll test whether which penguin is equal to 1,2,
or 3. It's not necessary to tcst for 4, since that's what it must be if it isn't anything else.

Select the wor Id and click the functions tab. Find a==b under math. and drag it into the first If
statement so that it replaces the true or false chosen earlier. Select expressions, then
which penguin, and then 1. Repeat this for the next two I f blocks, but with 2 and 3 instead of 1.

The If/Else blocks should now look like~.

The If/Else blocks can now choose what to do based on the value of which pengu~n, but so far
it doesn't actually do anything. There arc four slots which say Do Nothing; these arc where the
possible actions to take will go.

Select the first penguin and drag its pop_up method into the first Do Nothing slot. Do the same for
penguins 2, 3, and 4 in the next three slots. The result should look like tbll.
The run_game method now chooses a penguin at random and tells it to pop up.

There is one more thing the method needs to do: print the score after the game is over. Place a print
block underneath the Do Together blocks. Select expressions, and then world. score.

Finally, this method is complete. It should look something like.th.is..

The methods are all finished now. All that's left is to put them to use.

~ - Part 4: Starting world.run_game

Next - Part 6: Responding to events

Part 6: Responding to events
All the methods the game needs are in place, but none of them arc ever actually called. The world
needs to respond to some events.

Click create new event and select When the world starts. This will create a new event
block In that block, click the word Noth~ng and select run game.

Now the game will run, but it won't respond to input. This will require a few more events.

Create another new event, this time of the type When the mouse is clicked on
something. Click anything to select which object should respond to clicks. Choose penguin,
and then the entire penguin, To telllhe world what it should do when the penguin is clicked,
select the war ld and drag the score variable over the word Nothi ng in the evcnt block. Alice will
ask you what to do with the score; choose to increment it by I.

This will allow you to score points, but only when you click on penguin I. Create three more events in
the same way for penguins 2, 3. and 4.

When you're finished. the event list should look about like this.

31

Finally, the game is complete. Click the Play button to try it out. Note that Alice's timing is a little
odd. so don't be surprised if a couple of penguins show up after the timer has disappeared.

You can also download a finished version of the world below.

wal' final.a2w

Back - Part 5: The main game logic

~ - Part 1: The first method

32

	019I
	019I_5CC

