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Abstract 

 This paper describes our work pricing options in the binomial model on leveraged 

exchange traded funds (ETFs) with three different approaches.  A leveraged exchange traded 

fund attempts to achieve a similar daily return as the index it follows but at a specified positive 

or negative multiple of the return of the index.  We price options on these funds using the 

leveraged multiple, predetermined by the leveraged ETF, of the volatility of the index.  The 

initial approach is a basic time step approach followed by the standard Cox, Ross, and 

Rubinstein method.  The final approach follows a different format which we will call the 

Trigeorgis pricing model.  We demonstrate the difficulties in pricing these options based off the 

dynamics of the indices the ETFs follow.    
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1. Introduction 

 An exchange traded fund (ETF) is a security that tracks a specified index.  The goal of 

many of these funds is to acquire the same percentage return for the day as the index it 

follows.  Unlike an index, an ETF is traded like a stock in the market.  A leveraged ETF tracks an 

index but has a goal of returning a fixed multiple of the return on the index it follows.   

 Given historical data on the index an ETF follows, we look at different approaches to the 

binomial option pricing model to price options on leveraged ETFs.  This paper demonstrates 

that three common approaches to pricing options on leveraged exchange traded funds using 

the historical data of the index have similar price results.  We will determine the volatility of the 

leveraged ETF by first calculating the volatility of the index and scaling it by the leverage factor.  

We compare these results with the bid and ask prices of the leveraged ETFs along with the 

Black Scholes pricing model and the Cox, Ross, and Rubinstien binomial asset pricing model.  
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2. Binomial Asset Pricing Model 

The binomial asset pricing model is an asset valuation model that allows us to price 

financial derivatives (options) over discrete time periods.  In order to price an option over a 

specific time period, the price dynamics of the underlying asset over that period must first be 

established.  The binomial pricing model assumes that the price of a stock can change by only 

two means at each time step.  The price of the asset can have an upward movement or it can 

have a downward movement.  These movements can be compared to flipping a coin at each 

time step.   

Assume that each upward movement or “heads” coin flip will increase the stock price by 

a multiple of   and each downward movement or “tails” coin flip will decrease the stock price 

by a multiple of   where          .  The upward and downward movements are derived 

using    the underlying asset’s volatility, and  , time until maturity.  We  assume the initial asset 

price is S0.   

After one time step the price will change from S0 to either      or     . To illustrate 

the model we will look at an underlying pricing model with a three period maturity date.  
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A three period binomial underlying stock price tree will be: 

 

Tree 1: Basic Underlying Pricing Tree 
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3. Returns 

In order to begin pricing an option, we must first determine the returns on the 

underlying asset. Returns measure the change in price of an asset as a fraction of the original 

price.  We will be using daily closing prices in order to determine the returns on the assts.  Daily 

data is the most widely available market data.  We will use the adjusted daily close price which 

includes adjustments for splits and dividends.   

a. Net Returns 

Assuming that there are no dividends, the net returns between times     and   are 

determined as follows: 

   
  

    
    

       

    
  where     is the price of the asset at time  . 

The revenue between times     and   is         and therefore the revenue can be positive 

or negative.  The initial investment at time     is     .  The net revenue is therefore 

considered the relative revenue rate.  The gross returns over   periods is the product of the  

returns.  For the period from time      to  , the gross return is as follows (Ruppert 75): 

    ( )  
  

    
 .

  

    
/ .

    

    
/ .
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b. Log Returns 

Continuously compounded returns or log returns between time     and   are defined 

as follows: 

     (    )     .
  

    
/ where   ( ) the natural logarithm of X  

Log returns have an advantage over net returns because a log return for a specified time period 

is only the sum of that periods log returns.  This is a simpler model than the gross net returns. 

The gross log returns from time      to   the gross return is as follows (Ruppert 77):  

    ( )    *    ( )+  

   *(    )(      ) (        )+

   (    )  (      )   (        )

   (    )    (      )      (        )  
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4. Volatility 

 The volatility of an asset is a measure of variation in the price of the daily returns of the 

asset.  Since volatility is a risk measurement, a higher volatility implies a riskier asset. We 

explore two different approaches in determining volatility.   

 

a. Historical Volatility 

The first approach is historical volatility.   In order to use historical data to estimate the 

volatility, we assume that the underlying price has a constant mean and variance.  In other 

words, we assume that the underlying price of the index is a stationary stochastic process.  

Historical volatility uses historical data for the past   time steps, or days in our case, in order to 

estimate the volatility.  The historical volatility of the daily returns is given by: 

   √
 

   
∑ (     )

 
 
     

where    is the log return at time step      is the number of observations and   is the average 

of the daily log returns (Björk 105).   
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b. Implied Volatility 

Another approach to estimate the volatility of the asset is to determine the assets 

implied volatility.  Implied volatility is calculated by estimating the volatility in the near future 

using the market expectation of the volatility.  To calculate implied volatility, one must first 

observe the current price of the asset and the market price of an option on this asset.  Consider 

a European call option with current observed market price of     .  One can determine the 

implied volatility by setting the current price to the Black Scholes European call option pricing 

formula.  The Black-Scholes pricing formula is a one to one function in   and can therefore be 

inverted to estimate the volatility of the underlying asset. The Black-Scholes formula also 

assumes that the asset returns are normally distributed and the returns have a constant 

variance (Ruppert 274).  In this study, historical data is used to estimate the volatility of the 

assets. 
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5. Underlying Price Dynamics 

 The upward and downward underlying price movements in the binomial model are 

proportions the price of an asset is going to move up by a factor of     and move down by a 

factor of    .  We will define the probability of an upward movement as   and a downward 

movement as    .  We explore three different methods that can be used to determine the 

upward and downward movements of the underlying asset price.  Initially we, define   as the 

volatility of the asset,   as the number of time steps before expiry,   as the daily interest rate, 

and    as the time step size.   

a. Basic Time Step Pricing Model 

For the first approach, we assume that the asset price will increase or decrease by a 

factor of 
 

√ 
 (Ruppert 273).  Therefore it follows that the up and down factors are 

     
 

√ 
 , 

     
 

√ 
, 

And    
     

   
  

Let         be the time steps up to expiry and    be the initial price of the asset. Also let    

be the level of the variable   at time   corresponding to number of upward movements plus 

one.   
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Therefore, the price of the asset at the node (   ) is 

       ( 
 )(    )     .   

 

√ 
/
 

.   
 

√ 
/
   

 . 

 

Tree 2: Basic Time Step Pricing Model Underlying Pricing Tree 

b. Cox, Ross, and Rubinstien Pricing Model  

The Cox, Ross, and Rubinstien model is considered a standard approach for selecting the 

upward and downward movements.  These movements are determined as follows: 

    ( √  ) , 

    (  √  ), 
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 (Fusai 78). 

Then let         be the time steps up to expiry,    be the level of the variable   at time    

and    be the initial price of the asset. Therefore, the price of the asset at the node (   ) is 

       ( 
 )(    )    . 

 √  /
 

.   √  /
   

. 

 

Tree 3: Cox, Ross, and Rubinstien Pricing Model Underlying Pricing Tree 
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c. Trigeorgis Pricing Model 

Determining the upward and downward movements in the previous two methods may 

be acceptable for only small time refinements.  The error in the first two approaches can get 

very large if    [
(  

  

 
)

 
]

 

where N is the number of time steps and T is the maturity of the 

option, so this approach is not always stable.  The following formations can be used to 

overcome this problem since this method is consistent and stable at each time step (Trigeorgis 

319).  In other words, the error approaches zero as the time steps get smaller, and two 

independent samples of the data have the same distribution.  Let   be the logarithmic price on 

the asset: 

      . 

Then   will increase by    to      with a probability of      Likewise   will decrease by     

to       with a probability of           Assuming that each movement is of equal size, 

we obtain: 

   √     .  
  

 
/
 

   , 

    
 

 
 
(  
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(  
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Let         be the time steps up to expire and    be the level of the variable   at time  .  

Then the price of the asset at the node (   ) is 

      
(    )   (       (   )   )     

(     (   )   ) (Fusai 2008:78). 

 

Tree 4: Trigeorgis Pricing Model Underlying Pricing Tree 
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6. European Options 

 A stock option is a contract between a buyer and seller of an asset in a specific time 

period.   A European call option is a financial contract where at expiry the buyer of the option 

has the choice to purchase the agreed upon asset, the underlying asset, for an agreed upon 

amount, the strike price. A European put option is a financial contract equivalent to a European 

call option with one major difference.  The buyer of the option has the right to sell the 

underlying asset to the writer for the strike price at expiry instead of buying the asset at expiry 

(Blais).  The strike price   is designated during the writing of the contract.  Let the price at 

expiry be   . The payoffs of European options at maturity T are as follows: 

Chart 1: European Call Option Payoff:    (   –     )  
 

 
 

Chart 2: European Put Option Payoff:    (  –     ) 
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7. American Options 

 An American option is equivalent to a European option with one major difference; an 

American option can be exercised any time before the maturity date of the option.  At expiry, 

the payoff of an American option is equivalent to that of the corresponding European option 

with the same expiry, underlying asset, and strike price.  We will discuss the difference in 

pricing an American option and a European option in the next section. 
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8. Pricing Options 

Now that we have the value of the option at maturity date, we can price back the 

option.  The price of the option is calculated in a backwards manner using the following 

theorem: 

Theorem: (Replication in the Multi-Period Binomial Model) 

Consider an N-period binomial asset pricing model, with          , and with risk 

neutral measures   and       determined earlier. Then “let    be a random variable that 

depends on the first   coin tosses        .  Define recursively backward in the time 

sequence of random variables                 by 

  (       )   
 

   
[     (        )       (        )], 

so that each    depends on the first   coin tosses         , where   ranges between     

and 0” (Shreve 12). 

a. European Option Pricing 

To price an option we start by looking at the payoff at maturity.  Consider a European 

put option where the payoff is    =    (    (        )  )     is the strike price of the 

option, and  (        ) are the first     coin flips.  Then the 2 period put option pricing tree 

will be: 
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Tree 5: European Call Option Pricing Tree 

Therefore the initial price of the put option is  

    (
 

   
)
 

,     (        )        (        )   
    (        )-  

 Similarly a two period European Call option pricing tree with payoff    = 

   (  (        )     ) will be: 

 

Tree 6: European Put Option Pricing Tree 
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Therefore, the initial price of the put option is  

    (
 

   
)
 

,     (        )        (        )   
    (        )-  

In a general n-period model, the price of a European put option over n periods is 

   .
 

   
/
 

∑ ( 
 
)      

 

   
,   (            )-, 

and the price of a European call option is 

   .
 

   
/
 

∑ ( 
 
)      

 

   
,   (            )-. 

 

b. American Option Pricing 

 Since an American option is exactly the same as a European option with the addition of 

the privilege to exercise the option at any time, an American option is at least as valuable as a 

European option on the same underlying asset with the same strike price and maturity. An 

American call option should never be exercised early because it is in the best interest of the 

holder of an American call option to wait until expiry to exercise the option (Ruppert 277).  

Therefore, “American calls are equal in price to European calls with the same exercise price and 

expiration date” (Ruppert 278).   An American put option, however, should not necessarily be 

exercised only at maturity.  Therefore, an American put option price is generally different from 

the price of the corresponding European put option.   
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 An American put option can be priced as follows, the option value at each node is the 

greater of the value of holding the option until the next time period and the early exercise 

value.   

  (       )      (
 

   
[     (        )       (        )]     )  

Therefore, the two period binomial option pricing tree for an American put is as follows: 

 

Tree 7: American Put Option Pricing Tree 
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9. Leveraged Exchange Traded Funds 

 An exchange traded fund (ETF) is a traded investment consisting of different assets such 

as stocks, bonds, or commodities. Many ETFs follow indices on the market such as the Standard 

and Poor’s 500 or the Dow Transportation Average.  A standard ETF attempts to achieve the 

same daily return of the index specified by that ETF.  We will, however, be analyzing leveraged 

exchange traded funds.  A leveraged exchange traded fund is more sensitive to the market than 

a standard ETF.  A leveraged exchange traded fund, like a standard ETF, attempts to achieve a 

similar daily return but at a specified positive or negative multiple of that return.  For example, 

if an index has a return of 2% and the leveraged ETF is a three times leverage (300%), the 

positive, or bull, ETF will attempt to have a 6% return and the negative, or bear, ETF will 

attempt to achieve a -6% return.   

 We will be analyzing daily leveraged ETFs from two different companies: Direxion and 

ProShare.  The exchange traded options on these leveraged ETFs are American options.  

Therefore, we use our binomial pricing model for American options.  The following are the 

twelve leveraged ETFs we price American options on. 
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Table 1: Direxion Leveraged Exchange Traded Funds1 

Fund Ticker Bull/Bear Index Index Ticker  

Large Cap Bull 3X Shares BGU 300% Bull Russell 1000 ^RUI 

Large Cap Bear3X Shares BGZ 300% Bear Russell 1000 ^RUI 

Technology Bull 3X Shares TYH 300% Bull Russell 1000 Technology ^R1RGSTEC 

Technology Bear 3X Shares TYP 300% Bear Russell 1000 Technology ^R1RGSTEC 

Small Cap Bull 3X Shares TNA 300% Bull Russell 2000 ^RUT 

Small Cap Bear 3X Shares TZA 300% Bear Russell 2000 ^RUT 

 

Table 2: ProShare Leveraged Exchange Traded Funds2 

Fund Ticker Bull/Bear Index Index Ticker  

UltraPro Dow30 UDOW 300% Bull Dow Jones Industrial Average ^DJI 

UltraPro Short Dow30 SDOW 300% Bear Dow Jones Industrial Average ^DJI 

UltraPro S&P500 UPRO 300% Bull S&P 500 ^GSPC 

UltraPro Short S&P500 SPXU 300% Bear S&P 500 ^ GSPC 

UltraPro QQQ TQQQ 300% Bull NASDAQ-100 ^NDX 

UltraPro Short QQQ SQQQ 300% Bear NASDAQ-100 ^NDX 

 

  

                                                           
1
 http://www.direxionfunds.com 

2
 http://www.proshares.com 
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10. Leveraged Asset Pricing Model 

 For pricing the leveraged asset, we use the underlying index’s volatility to determine the 

volatility of the leveraged fund.  If the index increases by 2% on one day and the leveraged 

amount is 300%, the leveraged fund will increase by 6%.  If we continue this process for every 

daily return, we notice that the volatility of the leveraged fund is the leveraged multiple of the 

volatility of the underlying index: 

    √
 

   
∑ (     )

 
 
    . 

 Therefore the leveraged volatility for a leveraged fund is    where   is the leverage factor and 

  is the index’s volatility. 

a. Basic Time Step Pricing Model  

 To price an option on a leveraged asset, we can use a model similar to that of a single 

asset or stock. We now define the upward and downward movements for the leveraged ETF’s 

underlying index as      
 

√ 
 and      

 

√ 
 where   is the asset’s volatility and   is the 

number of periods before the maturity date.  After the transformation of the binomial asset 

pricing volatility of   to (  ), 

     
 

√ 
  and      

 

√ 
.. 
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Define the leveraged ETF, our option’s underlying asset, at time   as   
 .   

 

Tree 8: Basic Time Step Pricing Model Underlying Pricing Tree 

The option pricing tree for an American call with this approach is as follows. 

 

Tree 9: Basic Time Step Pricing Model American Call Option Pricing Tree 
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Similarly, the option pricing tree for an American put is as follows. 

 

Tree 10: Basic Time Step Pricing Model American Put Option Pricing Tree 
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b. Cox, Ross, and Rubinstein Pricing Model 

Similarly, if we define the upward and downward movements as     ( √  ) 

and     (  √  ) for the non-leveraged asset, the leveraged asset’s upward and downward 

movements will become 

    (  √  ), 

     (   √  ). 

The underlying tree for this model is as follows. 

 

Tree 11: Cox, Ross, and Rubinstein Pricing Model Underlying Pricing Tree 
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Therefore the two period call and put options would be priced as shown below. 

 

Tree 12: Cox, Ross, and Rubinstein Pricing Model American Call Option Pricing Tree 

 

Tree 13: Cox, Ross, and Rubinstein Pricing Model American Put Option Pricing Tree 
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c. Trigeorgis Pricing Model 

 For the last approach, the upward and downward movements are determined by an 

increase or decrease in   by a factor of   .  For the leveraged funds, define    and the 

probability of each movement as 

   √(  )    0  
(  ) 

 
1
 

   , 

    
 

 
 
[  

(  ) 

 ]   

   
  

    
 

 
 
[  

(  ) 

 ]   

   
  

Let         be the time steps up to expire and    be the level of the variable   at time  . 

Then the price of the asset at the node (   ) is 

      
(    )   (       (   )   )     

(     (   )   )  
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11. Results 

a. Basic Time Step Pricing Model 

 The initial approach of pricing American options on leveraged exchange traded funds 

where the upward and downward movements are defined as      
 

√ 
  and      

 

√ 
 

resulted in prices significantly lower than the market bid and ask prices.  The bid price of an 

option is the highest price a buyer is willing to purchase the option in the market.  The ask price 

of an option is the lowest price a seller is willing to accept for the option. The calculated prices 

right at the money3 tend to be quite lower than the bid ask prices while the prices of the 

options deep in the money4 and deep out of the money5 tend to be within the bid ask spread. 

 We can also compare our estimated option prices with prices calculated using the 

binprice and blsprice functions in MATLAB.  The binprice function prices American call and put 

options in the binomial model while the blsprice function prices European call options using the 

Black-Scholes pricing model. The built in binomial pricing function in MATLAB resulted in the 

same prices calculated using the simplified approach of pricing American options on leveraged 

ETFs, which verifies that our method is giving reasonable results.  In the plots below, the 

binprice prices overlap the calculated option prices.  The Black- Scholes prices tended to be 

higher than the bid and ask prices or within the bid and ask prices.  The Black- Scholes pricing 

                                                           
3
 An option is at the money if the current market price of the underlying is equal to the strike price. 

4
 An option is in the money for a call if the market price of the underlying is higher than the strike price. An option 

is in the money for a put if the strike price is above the market price. 
5
 An option is out of the money for a call if the market price of the underlying is lower than the strike price. An 

option is out of the money for a put if the strike price is below the market price. 
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model requires    , so we only price bull leveraged ETFs with this model.  Below are four 

plots demonstrating the relationship between the bid, ask, Black Scholes, binprice, and the 

calculated option prices. More charts demonstrating these relationships can be seen in 

Appendix A. 

 

Chart 3: UltraPro Short S&P500 300% bear call option with a September expiry. 
The life of the option is 176 days. 

 
 
 

 

Chart 4: UltraPro Short S&P500 300% bear put option with a September expiry. 
The life of the option is 176 days. 
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Chart 5: UltraPro S&P500 300% bull call option with a September expiry. 
The life of the option is 176 days. 

 
 

 

Chart 6: UltraPro S&P500 300% bull put option with a September expiry. 
The life of the option is 176 days. 
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b. Cox, Ross, and Rubinstein Pricing Model 

 Pricing American options with upward and downward movements defined as 

    (  √  ) and     (   √  ) resulted in equivalent prices as those calculated with the first 

approach and the binprice function in MATLAB.  Therefore, these prices are also significantly 

lower than the bid and ask prices when the option is right at the money.  When the options are 

significantly out of the money and significantly in the money, the calculated option prices are 

within or close to those of the bid and ask prices.  It was also possible to compare the 

calculated option prices to that of the Black -Scholes option pricing model for the bull leveraged 

ETFs.  The estimated prices tended to be slightly higher or right between the bid and ask prices.  

More charts demonstrating these relationships can be seem in Appendix B. 

 

 
Chart 7: Small Cap Bear 3X Shares call option with a July expiry. 

The life of the option is 113 days. 
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Chart 8: Small Cap Bear 3X Shares put option with a July expiry. 

The life of the option is 113 days. 
 
 

 
Chart 9: Small Cap Bull 3X Shares call option with a July expiry. 

The life of the option is 113 days. 
 
 

 
Chart 10: Small Cap Bull 3X Shares put option with a July expiry. 

The life of the option is 113 days. 
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c. Trigeorgis Pricing Model 

 Similarly to the other two approaches, the pricing model with upward and downward 

movements determined by an increase or decrease in   by a factor of    results in prices below 

the bid and ask prices for options right at the money and above or within the bid ask prices for 

options far in the money or far out of the money.  The call option prices are equivalent to the 

option prices calculated with the binprice function in MATLAB and below the Black Scholes 

model prices.  The estimated put option prices differ from those in the first two approaches.  

The put prices tended to be higher than the bid, ask, and binprice prices when the option is out 

of the money.  The priced options still tend to be lower than the bid, ask, and Black-Scholes 

prices right at the money.  More charts that demonstrate these relationships can be seen in 

Appendix C. 

 

 

Chart 11: UltraPro Short Dow30 Bear call option with a May expiry. 
The life of the option is 57 days. 
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Chart 12: UltraPro Short Dow30 Bear put option with a May expiry. 
The life of the option is 57 days. 

 

 

Chart 13: UltraPro Dow30 Bull call option with a May expiry. 
The life of the option is 57 days. 

 

 

Chart 14: UltraPro Dow30 Bull put option with a May expiry. 
The life of the option is 57 days. 
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12. Conclusion and Possible Future Work 

 In order to be able to price options on leveraged exchange traded funds based on the 

volatility of the index tracked by the ETF, there must be a relationship between the volatility of 

the index and the leveraged ETF.  Future work could involve option pricing with pricing 

dynamics estimates using the leveraged ETFs daily data instead of the index’s daily data to see if 

this pricing has similar results. 

However, the binomial asset pricing model applied to leveraged exchange traded funds 

is not the most accurate way to price options in the market.  In theory, pricing an option using 

the binomial pricing model and the Black-Scholes model yield similar results (Shreve 20).  With 

resulting prices that differ between the Black-Scholes model and the binomial model, one can 

conclude that these options must be traded very differently than other options on the market.  

Using only daily data to estimate returns and volatility may also result in inaccurate pricing.  All 

three approaches used to calculate prices in the binomial model were precise, but not accurate 

to market prices.  For options at the money all three approaches to the binomial model resulted 

in call prices below the bid and ask prices of these options in the market.  The out of the money 

and in the money prices tended to be close to or in between the bid and ask prices.  On the 

other hand, the Black-Scholes pricing model resulted in prices higher than the bid and ask 

prices.    

Future work could involve Monte Carlo pricing of American options on leveraged 

exchange traded funds. This approach generates several thousand pricing paths for the 

underlying, calculates and averages the payoffs for each path while also discounting back the 
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prices.  It is a very common pricing model used in practice today called the Longstaff-Schwartz 

model. 

Looking at different ways to hedge the cost of an option on a leveraged ETF could be 

involved in future work.  One main leverage technique that could be looked at is a bear put 

spread.  A bear put spread involves purchasing a put option on a specific underlying while 

simultaneously writing a put on the same underlying with a lower strike price.  This option 

strategy is a way to decrease the risk of purchasing a put option on risky funds like leveraged 

ETFs.    Similarly, future work could include pricing bull call spreads on leveraged ETFs which 

involves purchasing a call option while simultaneously writing a call option on the same 

underlying with a higher strike price. 
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13. Appendix A – Basic Time Step Pricing Model 
 

 
Chart 15: UltraPro Short QQQ 300% bear call option with a May expiry. 

The life of the option is 57 days. 
 
 

 
Chart 16: UltraPro Short QQQ 300% bear put option with a May expiry. 

The life of the option is 57 days. 

 
 

 
Chart 17: UltraPro QQQ 300% bull call option with a May expiry. 

The life of the option is 57 days. 
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Chart 18: UltraPro QQQ 300% bull put option with a May expiry. 

The life of the option is 57 days. 

 
 

 
Chart 19: Large Cap Bull 3X Shares call option with a July expiry. 

The life of the option is 113 days. 
 

 

 
Chart 20: Large Cap Bull 3X Shares put option with a July expiry. 

The life of the option is 113 days. 
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Chart 21: Large Cap Bear 3X Shares call option with a July expiry. 

The life of the option is 113 days. 
 
 

 
Chart 22: Large Cap Bear 3X Shares put option with a July expiry. 

The life of the option is 113 days. 
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14. Appendix B – Cox, Ross, and Rubinstein Pricing Model 

 
Chart 23: UltraPro Short Dow30 300% Bear call option with a June expiry. 

The life of the option is 85 days. 

 
 

 
Chart 24: UltraPro Short Dow30 300% Bear put option with a June expiry. 

The life of the option is 85 days. 

 
 

 
Chart 25: UltraPro Dow30 300% Bull call option with a June expiry. 

The life of the option is 85 days. 
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Chart 26: UltraPro Dow30 300% Bull put option with a June expiry. 

The life of the option is 85 days. 
 
 

 
Chart 27: Technology Bear 3X Shares call option with a July expiry. 

The life of the option is 113 days. 
 
 

 
Chart 28: Technology Bear 3X Shares put option with a July expiry. 

The life of the option is 113 days. 
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Chart 29: Technology Bull 3X Shares call option with a July expiry. 

The life of the option is 113 days. 
 

 
Chart 30: Technology Bear 3X Shares put option with a July expiry. 

The life of the option is 113 days. 
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15. Appendix C – Trigeorgis Pricing Model 

 
Chart 31: UPRO Short S&P500 300% Bear call option with a January 2012 expiry. 

The life of the option is 302 days. 

 
 

 
Chart 32: UPRO Short S&P500 300% Bear put option with a January 2012 expiry. 

The life of the option is 302 days. 
 
 

 
Chart 33: UPRO S&P500 300% Bull call option with a September expiry. 

The life of the option is 176 days. 
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Chart 34: UPRO S&P500 300% Bull put option with a September expiry. 

The life of the option is 176 days. 
 
 

 
Chart 35: Large Cap Bear 3X Shares call option with an October expiry. 

The life of the option is 211days. 
 
 

 
Chart 36: Large Cap Bear 3X Shares put option with an October expiry. 

The life of the option is 211days. 
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Chart 37: Large Cap Bull 3X Shares call option with an October expiry. 

The life of the option is 211 days. 
 
 

 
Chart 38: Large Cap Bull 3X Shares put option with an October expiry. 

The life of the option is 211 days. 
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