
Continuing Development of a
Cloud-Based Enterprise Resource
Planning System for Gompei’s Goat

Cheese
A Major Qualifying Project Submitted to the Faculty of WORCESTER POLYTECHNIC
INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of

Science

By:

Gabrielle Acquista
BS in Computer Science

Victoria Buyck
BS in User Experience Design

Benjamin Sakac
BS in Management Information Systems

Sohrob Yaghouti
BS in Management Information Systems

Date: April 26, 2023
Submitted to:

Gompei’s Goat Cheese, Unofficial Sponsor
James E. Ryan, MIS Advisor
Michael Engling, CS Advisor

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion of
a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review.

Abstract

Gompei’s Goat Cheese is a non-profit, student-run business with a mission of supporting global

scholarships, promoting entrepreneurial skills, and allowing members to be part of something

that has real impact. However, their operations would be improved by an enterprise resource

planning (ERP) system. A previous MQP designed and began development on such a system.

The goal of this project was to continue development of a cloud-based ERP system to improve

the efficiency of GGC’s operations. After gaining user feedback on a high-fidelity prototype, the

team iterated on the previous design and continued development work. A functional prototype

brings GGC one step closer to a system that provides them the benefits of a cloud based platform

that will centralize and unify their data.

i

Acknowledgements

We would first like to thank Gompei’s Goat Cheese for sponsoring this MQP. They have

continued to build on this organization for years since the previous MQP groups that started

GGC in 2013 and 2014. We are also excited to congratulate their founders and the current GGC

team as GGC has reached its ten year anniversary on April 18, 2023.

We are incredibly grateful for Jeremy Berman, Danielle Payne, Joseph Botelho and Rodrigo

Calles; these dedicated students created the foundation for this thriving student-run business and

for the future of student-run entrepreneurial endeavors at WPI. Without them, none of this would

have been possible. We would also like to thank the current GGC executive board for their time

and participation in our user study. Their feedback shaped the way we designed our iteration of

this system so we couldn't have done it without their help.

We would also like to thank our advisors Professor Jim Ryan and Professor Michael Engling for

their continued support throughout the course of this project. We couldn't have made it through

without their guidance, kindness, and understanding.

And finally, thank you to the goats. All of them. Without them, we have no goat cheese. At that

point it's just cheese which definitely isn't as cool. Also thanks Gompei, our mascot, we love

you!

ii

Executive Summary

Gompei’s Goat Cheese (GGC) is a

non-profit student-run business that sells

award winning cheese from Westfield Farm

in Hubbardston, Massachusetts. The stated

mission of GGC is “to support Worcester

Polytechnic Institute’s (WPI) global

scholarships, learn entrepreneurial skills,

and interact with the WPI and Worcester

community by selling award-winning goat

cheese so that we can be a part of something

meaningful that impacts our community”

(Gompei’s, 2022). However, GGC is in need

of a new system for order and payment

tracking, as their current system is prone to

inconsistencies.

An enterprise resource planning system

(ERP) centralizes all the information used

for organizing and directing an organization.

While large corporations use ERP systems

that integrate accounting, finance,

production, inventory, order entry, and

logistic operations and more, a

smaller-scale system custom built to address

deficiencies with GGC’s current record

keeping system could help the company to

grow and have a more meaningful impact in

the community. Figure E.1 displays several

characteristics that GGC shares with small

businesses and startup companies that were

considered when deciding how the system

should function.

Last year, two students and members of

GGC proposed a Major Qualifying Project

with the goal of designing a cloud-based

ERP system for order tracking. They began

their project by interviewing several GGC

members and the owner of Westfield Farm

in order to evaluate the current operations

and create a set of requirements for the new

system. This Phase One team then began to

design and then develop the system they

proposed. They started their design phase by

creating a set of use cases for the new

system and then developing data flow

diagrams as well as an entity relationship

diagram (ERD). Then, they created a user

flow diagram depicting a few paths that a

typical user interaction with the system

might follow. Their last step before

beginning development was to design the

system mock-ups on Figma.

The Phase One team used Figma’s flow

features to convert the mockups into a high

iii

fidelity prototype of the system. Finally,

they began development of a functional

prototype on the AWS Amplify Studio

platform using React.js for the front-end and

DynamoDB for the database. This NoSQL

database was the only configuration that

could interface directly into Amplify Studio.

It just required a GraphQL API to connect

the front-end with the database.

Goal and Objectives

The goal of this project was to continue

development of the cloud-based enterprise

resource planning system meant to improve

the efficiency of GGC’s operations. In order

to successfully continue the work of the

Phase One team, it made sense for the

project to continue following the same

system development life cycle (SDLC)

methodology of system prototyping. The

system prototyping methodology aims to

quickly develop a simplified version of the

final product and then continuously refine it

until stakeholders agree it is functional to be

implemented.

p

1. Evaluate Existing Prototype

The team conducted user testing using

the think-aloud methodology to gain

feedback on the Phase One prototype

in order to evaluate it. The think-aloud

method was chosen because it is user

centered, easy to implement, and

allowed the team to directly observe

the user’s reactions. In addition to the

think-aloud testing, the team also

asked participants to fill out a System

Usability Scale (SUS) survey

providing quantitative analysis on the

usability of the system prototype.

2. Iterate on Phase One Design

In order to iterate on the design of

Phase One, our team did the following:

updated the entity relationship

diagram, list of use cases, and data

flow diagrams; incorporated the

feedback from user testing into the

high-fidelity prototype; and overhauled

the software architecture to create a

centralized, predictable, and scalable

system.

3. Develop a Functional Prototype

The team developed a functional

prototype using a MySQL database, a

Node Express.js server, a React.js

iv

front-end with Redux for state

management, and the Axios library to

handle HTTP requests. Additionally,

the team designed a cloud architecture

in Amazon Web Services establishing

the foundation for an implementation

in the future.

4. Create Support Documentation

To encourage the continuation of the

project, the team developed further

support documentation with

information supplemental to the report

that will aid in the continued

development and implementation of

the new system.

User Testing

In order to conduct useful user testing

sessions, the team first modified the

high-fidelity prototype from Phase One.

These modifications were made so that

participants could complete ten tasks in the

prototype. Appendix B contains the full user

testing protocol including the list of tasks.

One of the suggestions for future work from

Phase One was to look at ways to reduce

redundancy by automating order entry for

GGC operations. Through user testing, the

team learned that one of GGC’s standard

operating procedures is to delay sending

orders to the farm in case a customer wants

to make an alteration to their order. Not

wanting to disrupt this process, the team

instead focused on making user experience

improvements to the order form used by

customers.

The team then split observations from

user-testing and the participants’ comments

into three categories: confusing points,

improvement suggestions, and additional

features. The confusing points and some

suggestions were considered when iterating

on the design, but the additional features

suggested could not be included due to time

constraints. Quantitative analysis revealed

that the majority of participants found the

system easy to use. An important

functionality that was missing was the

ability to have users with different roles or

permission levels. Overall, feedback was

that the system would be an improvement

over GGC’s current process, but that it could

be further enhanced with some

v

modifications and additions.

Design Iteration

With this feedback in mind, the team began

to iterate on the design developed in Phase

One. First the process models were updated

to accurately reflect how data flows through

the system. These include slight alterations

to the context and level zero diagrams, as

well as the addition of a level one diagram

that further breaks down the second process

in the level zero diagram.

Also based on the feedback, an additional

use case focused on accessibility was added

to the design. Further, the logical ERD was

reworked to more accurately represent the

system and the adjustments made based on

user feedback.

The team also updated the high-fidelity

prototype to incorporate changes based on

the feedback as a design reference. The team

made changes to the dashboard, reduced the

number of pages, and increased the clarity of

the distinction between the “Order” and

“Invoice” pages. Additionally, the team

developed a design for how the farm users

perspective of the application would look.

Development

The team developed the database, server,

and front-end within one parent directory

hosted in a Github repository named

GGCPortal. The GGCPortal/tables folder

contains scripts to create the database tables,

a Python script to parse the current order

spreadsheet, and the outputted CSV files

from the script. The GGCPortal/app folder

contains the code for the server, and

GGCPortal/client contains the code for the

front-end client. This simple but logical

hierarchy will help future collaborators to

more easily contribute to the project.

The team first created the data model in a

local instance of MySQL in order to test the

proposed relational model. After confirming

the model was acceptable, the team

vi

generated a script that would enable future

developers to easily recreate the database in

a new instance. In order to test the system

with real data, and in the future migrate

historical records into the new system, the

team created a Python script that converts

the current GGC order spreadsheet into

separate CSV files for insertion into the

database.

The team created an Express.js server

running in a Node environment in order to

create a backend to access the data on the

frontend client. For each table in the

database the team created an

Object-Relational Map and accompanying

controller. A data service was then mapped

to each ORM’s create, read, update, & delete

(CRUD) functions for use on the front-end.

This allows the frontend code to interact

with the database as objects and make

changes to the database with the data

service.

The team started frontend development with

refactoring of the components that the Phase

I team created in order to make them

scalable. The team also utilized the Redux

library to create a frontend with centralized

state management and better code

organization. The centralized state

management that Redux provides is

especially beneficial in providing users

access to the same data but with different

views based on permission levels. The

centralized state also makes it clear how

user actions affect the state of the

application. In order to achieve the desired

layout and styling, the team utilized vanilla

CSS in combination with the Bootstrap CSS

framework.

The team also explored a design

configuration for a cloud deployment of the

system. The team continued working within

the AWS environment, albeit with different

services than the Phase One iteration. In a

future implementation, the database would

be hosted in Amazon Relational Database

Services, the Express server and React front

end would be hosted using Amazon Elastic

Beanstalk.

Future Work

The team developed the functional prototype

to meet the minimum system requirements,

but do not recommend that the system is

vii

ready for implementation. First, future

developers should conduct further user

testing to re-evaluate the most needed

additional functionalities. Based on the work

and research the team did in this iteration,

these are the most important steps for future

iterations to complete:

1. Refine database schema based on

updates within GGC’s business

processes.

2. Refactor the Express.js API to better

utilize the relational nature of the

database.

3. Zapier integration with Formsite

(automate entry of custom orders

into database).

4. Iterate on delivery time and company

communication management.

5. Encryption for login.

6. Update Node.js and dependencies

and get solid test code coverage.

Additionally, the Westfield Farm role has

not been fully implemented. While the role

exists within the functional prototype,

neither iteration of this project has

conducted user-testing with anyone from the

farm. This will be a crucial step in

implementing the system into both

organizations.

Gompei’s Goat Cheese has always been a

pillar of the WPI Business School, but its

recent CEO has indicated they want to

increase GGC’s impact campus wide. One

way in which it can do this is to incorporate

other departments in the hiring process for

new positions within GGC such as software

engineers or data scientists. Such students

may also contribute to the continued

development of the system. In this way,

GGC can expand and also provide a

real-business learning experience for even

more WPI students.

viii

Table of Contents

Abstract 2
Acknowledgements 3
Executive Summary 4
Table of Contents 10
List of Tables 12
List of Figures 13
List of Appendices 15
1.0 Introduction 1

1.1 Gompei’s Goat Cheese 1
1.2 Enterprise Resource Planning Systems 2

2.0 Background 4
2.1 Similarities Between GGC, Small Businesses & Startups 4
2.2 Review of Phase 1 5

Interviews & System Requirements 5
Design & Development 7
Next Steps 13

3.0 Methodology 15
Objective 1: Evaluate Existing Prototype 16
Objective 2: Iterate on Phase One Design 17
Objective 3: Develop a Functional Prototype 17
Objective 4: Create Support Documentation 18

4.0 User Testing 19
4.1 Formsite 19
4.2 Prototype Modifications 19
4.3 Study Protocol 20
4.4 Response Analysis 21

Qualitative Analysis 21
Quantitative Analysis 23

4.5 Feedback 24
4.6 System Improvement Suggestions from User Testing 25
4.7 Key Take-Aways 26

5.0 Iterating on the Phase One Design 27
5.1 Process Model Refinement 27
5.3 Additional Use Case 30
5.4 Database Schema Refinement 30

ix

Initial Database Comparisons 30
Logical Entity Relationship Diagram and Data Dictionary 32

5.5 High-Fidelity Prototype Improvements 34
Westfield Farm Perspective 36

6.0 Development 37
6.1 Software Architecture 37
6.2 Back-End Development 40

Schema Generation and DB Configuration 40
Express.js Object Relational Mapping 41

6.3 Front-End Development 42
State Management with React Redux and Redux Toolkit 43
Layout and Styling 45

6.4 Cloud Deployment 45
6.5 Persisting Issues 47
6.6 Functional Prototype 48

7.0 Future Work 54
7.1 Next Steps 54

General Development 55
Westfield Farm Perspective 57

7.2 Final Thoughts 58
References 59
Appendices 61

x

List of Tables

Table 4.1 Displays which interview questions are mapped to the six learning objectives
Table 5.1 Tooltip Use Case
Table 6.1 GGC Portal Technical Stack
Table 6.2 Tools and Technologies Used
Table 7.1 Aspects of the functional system that are complete, in progress, future

implementation, and special features to be added

22
30
39
39
56

xi

List of Figures

Figure 1.1: Context Diagram of Data Flows in as- is system
Figure 2.1: System Requirements Developed by Phase One Team
Figure 2.2: Use Cases Developed by Phase One Team
Figure 2.3: Phase One Context Diagram
Figure 2.4: Phase One Level 0 DFD
Figure 2.5: Phase One User Flow Diagram
Figure 2.6: Dashboard Mockup
Figure 2.7: Active Orders Mockup
Figure 2.8: Active Invoices Mockup
Figure 2.9: Order Example Mockup
Figure 2.10: Order and Invoice Lookup Mockup
Figure 3.1: System Prototyping Methodology and Project Objectives
Figure 4.1: Add New Order Page
Figure 4.2: A bar chart of instances of participant responses in reference to

acceptability of the system
Figure 4.3: A bar chart of instances of participant improvement suggestions

for the system
Figure 4.4: The figure shows where the G.O.A.T.S. prototype lands on the SUS

based on the user data collected. The acceptability ranges and grade
scale are provided for reference.

Figure 4.5: A Summary of user feedback highlighting confusing points,
improvement suggestions, and additional features

Figure 5.1: Refined Context Diagram
Figure 5.2: Update Level 0 DFD
Figure 5.3: Process 2 Level 1 DFD Fragment
Figure 5.4: MySQL Workbench visual representation of the database
Figure 5.5: GGC ERP - Entity Relationship Diagram
Figure 5.6: GGC ERP - Entity Relationship diagram with Referential Integrity
Figure 5.7: Proposed Mockup of new dashboard
Figure 5.8: Figma Mockups for Orders and Invoices
Figure 5.9: Mockup of the farm facing side
Figure 6.1: Project Directory
Figure 6.2: Diagram of the software architecture and code pipeline
Figure 6.3: Tables Directory
Figure 6.4: Express Directory
Figure 6.5: Axios Data Services
Figure 6.6: React Client Directory
Figure 6.7: Visual example of React Redux data flow
Figure 6.8: Hex numbers of GGC colors

2
6
7
7
9
9

10
11
11
12
12
16
20
23

23

24

25

27
28
29
32
33
34
35
35
36
37
38
40
41
42
42
44
45

xii

Figure 6.9: Software Version Deployed to Elastic Beanstalk Cloud Environment
Figure 6.10: Login Page
Figure 6.11: Dashboard Page
Figure 6.12: Orders Page
Figure 6.13: Order page
Figure 6.14: Editing Order Page
Figure 6.15: Active Orders Tab
Figure 6.16: New Order
Figure 6.17: Search Orders Page
Figure 6.18: Searching in Search Bar
Figure 6.19: Delete Order
Figure 6.20: Navigation Bars by Role from Left to Right (Logout page, GGC role,

Farm role, and Admin role)

47
48
49
49
50
50
51
51
52
52
53
53

xiii

List of Appendices

Appendix A: User Testing Consent 62
Appendix B: User Testing Protocol 65
Appendix C: User Testing Data Analysis Sheet 70
Appendix D: Functional Prototype Images 76
Appendix E: Context Diagram 77
Appendix F: Data Flow Diagrams 78
Appendix G: Entity Relationship Diagrams 80
Appendix H: Use Cases 82
Appendix I: Data Dictionary 89
Appendix J: Package.json 96
Appendix K: MySQL Script 101
Appendix L: Python Script 105
Appendix M: Support Documentation 112

xiv

1.0 Introduction

1.1 Gompei’s Goat Cheese
Gompei’s Goat Cheese (GGC) is a non-profit, student-run goat cheese business at

Worcester Polytechnic Institute (WPI). The company itself started as a Major Qualifying Project

(MQP) for the WPI Business School in 2012, in which students created a brand to sell local goat

cheese. The MQP is the culmination of WPI’s project based curriculum, similar to a capstone

project, giving students the opportunity to work as part of a team to solve a real world problem.

Often sponsored by a company or other external organization, the MQP also allows students to

demonstrate their major specific knowledge. (Major Qualifying Project, n.d.). The founders of

GGC established a partnership with Westfield Farms in Hubbardston, Massachusetts, where the

cheese would be produced and shipped to customers. GGC donates all profits to the WPI Global

Scholarship Program, supporting student Interactive Qualifying Projects (IQP) scholarships. The

IQP is a project before the MQP that gives every WPI student the experience of working in

interdisciplinary teams with students not in their major, to tackle an issue that relates science,

engineering, and technology to society. Sustainability is a common theme among IQPs, many of

which address problems related to energy, environment, sustainable development, education,

cultural preservation, and technology policy (Interactive Qualifying Project, n.d.). These IQPs

can be done locally or through one of WPI’s project centers around the globe, allowing for

students to make a difference in communities across the globe.

Ultimately, GGC’s mission is “to support WPI global scholarships, learn entrepreneurial

skills, and interact with the WPI and Worcester community by selling award-winning goat

cheese so that we can be a part of something meaningful that impacts our community”

(Gompei’s, 2022). Unfortunately, GGC’s current operations are not well kept. All

communications are relayed through Google Sheets or email, and the typical flow of events is as

follows:

1. Collect order details and payment.

2. Forward order information to the farm.

3. Farm confirms order through email.

1

4. Farm Generates an invoice to send to GGC to request payment for the order.

5. Farm ships the order to the customer’s home

Figure 1.1, created by last year’s team, illustrates this flow of information as well as detailing

some of the issues with the current system. The existing operations structure creates harmful

inconsistencies between GGC’s records versus the farm’s records. These issues impact the

fulfillment of orders, further limiting the growth of GGC. Thus, it was clear that the company

“was in need of a new order and invoice management system, along with improved

communication with the farm” (Guerrette & Mohn, 2022).

1.2 Enterprise Resource Planning Systems

Enterprise resource planning (ERP) systems are used to organize and direct the processes

within a company such as accounting, finance, production, inventory, order entry, and logistic

operations. An ERP can integrate all departments into one information system or into a set of

integrated systems that organizations use to make business decisions (Baltzan, 2020). A

cloud-based ERP system performs the same functions as a traditional ERP system but the

hardware and software is managed by a third-party vendor. One of the main aspects of an ERP

system is that information is shared across the organization via a centralized database. This

allows decision makers to have more information about the whole business to utilize.

Cloud-based ERP systems also have the added benefit of being accessible from mobile

2

computing devices. Development and implementation are two critical phases for any business

deploying a new information system. An ERP system consists of core and extended components

(Baltzan, 2020). Core components are focused on internal operations such as accounting or

finance, whereas extended components are “add-ons”, such as customer relationship

management, that meet organizational needs not covered by the core components. The

implementation of a new ERP system requires careful planning as well as support from key

stakeholders. In this project, key stakeholders include both members of GGC as well as operators

of the partner farm.

3

2.0 Background

2.1 Similarities Between GGC, Small Businesses & Startups

The Small Business Administration (SBA) states that a small business is defined as “an

independent business having fewer than 500 employees.” Yet with over 32 million small

businesses all over the United States , these small businesses account for 99.9% of all U.S.

employer firms (Small Business Administration, 2019). Specifically in Massachusetts, there are

718,467 small businesses that make up 99.5% of business within the state, making small

businesses the backbone of their local economies (Small Business Administration, 2022). When

spending money at a small business, a lot of the money spent goes right back into the local

community. The Better Business Bureau stated that “if [a person] spends $100 at a local

business, roughly $68 stays within [the] local economy” whereas $100 spent at a non-local

business would only retain $43 within the local economy (Better Business Bureau, 2019).

Among these businesses, Gompei’s Goat Cheese exemplifies what a small business is like since

everything is supplied locally, and the employees are members of the WPI community. However,

GGC is also much like most startup businesses because of the company’s nature as a student-run

business.

Most startup companies have a higher employee turnover rate, or attrition rate, on

average than the business industry as a whole. The attrition rate for startup companies is 25%,

which is roughly double the overall average attrition rate of 13%. This means that employees

only hold their position for an average of 2 years at a startup company (Sharma, 2022). Since the

GGC workforce is solely made up of students, the attrition rate at the company is very high

because employees often graduate from WPI then leave the company to move on with their

careers. This means as a student-run business, Gompei’s Goat Cheese will always stay in a

startup, small business state since the company is meant as a learning environment for running a

real business. To cater to this style of business, the ERP system must be designed to be intuitive

to use and simple to learn as to avoid confusion to new members of the GGC team. This also

allows the business to spend less time training new members and more time focusing on

4

operating and improving the business. Designing the system to be simple also reduces employee

mistakes as more redundant operations will be automated.

2.2 Review of Phase 1

In the previous academic year, an MQP proposal was submitted by Chris Guerrette and

Natalie Mohn to design a cloud based ERP system that would address many of the pain points

with GGC’s current operations. In order to have a successful Phase Two of the project, the team

first needed to review what the Phase One team had accomplished. The following subsections

examine the work done in Phase One of the Project.

Interviews & System Requirements

After performing their own background research, last year’s team started by conducting a

series of interviews with different GCC members, as well as the owner of the partner farm.

Based on these interviews, they constructed a list of benefits and challenges with the current

system, as well as other relevant information:

● Interaction with the current GGC operations system ranges from a few times a semester

to nearly every day.

● Team members prefer to use their computer, rather than their phone, when using the

current operations system.

● Westfield Farm and GGC use different order numbering systems.

● Inputting information into the current system takes too long, and there's a lot of

redundancy in the work that the operations team does.

● Westfield Farm handles Gompei’s Goat Cheese order’s differently than its normal orders.

From these key findings, as well as their own experience as GGC members, the Phase One team

developed a set of system requirements. Figure 2.1 on the following page contains all the

requirements. Some key requirements include:both GGC members and partner farm employees

can access the system simultaneously; users can view, create, update, and delete orders based on

5

their accounts permission level; the system is both intuitive and accessible; and users can

securely and quickly access the data stored in the system.

6

Design & Development

With an understanding of the system requirements, the Phase One team drafted a list of

use cases for the system shown in Table 2.1. A use case represents a set of actions performed in

the system in order to generate some output. It also includes information like what triggers the

event, and any other conditions that must be met prior to or following the actions in the use case.

7

Next, using the use cases they developed as guidelines, the Phase One Team created

process models, also known as data flow diagrams (DFD), for the planned system. Process

modeling depicts business processes and how data flows between them. The team began with the

context diagram, the top level of any business process model. The context diagram depicts the

entire system within its surrounding environment. Figure 2.2 shows the system, Gompei’s

Operations & Accounting Tracking System (G.O.A.T.S), and the data flowing between it and

external entities such as the partner farm of GGC Operations.

The Phase One team then constructed a level zero DFD of the planned system. The level

zero DFD provides more detail than the context diagram, breaking the system down into its high

level processes. The four high level processes are:

1. Add New Order

2. Process & Ship Order

3. Send Invoice

4. Process Invoice

Additionally, information is stored in three separate data stores.

8

After completing the process models, the Phase One team designed a user flow diagram

depicting some of the common pathways the user, a member of the GCC operations team, might

take through the system. Figure 2.3 depicts a user logging in and first viewing the dashboard.

From there, the user can go to invoices, orders, or the order lookup page. From each page, there

are a series of actions that the user can take, reversing to a previous step if necessary.

9

With the use cases, process models, and user flow diagram as references, the Phase One

team developed a set of system mockups. The team chose to develop them on Figma because it

had the tools to turn high-quality mockups into a high-fidelity prototype. Figma is a tool where

one can make high quality mockups of an application. The user lands on the dashboard page

where they can view quick stats on the current orders, or add an order. The user then continues to

the active orders page where they can view orders that have been placed, processed, and shipped

and invoices are in a similar format. They then move to order details where they can view all of

the information fields for the customer and the order. If they need, they may also edit the order

by clicking the edit button which turns the fields editable. A user may also search for orders by

invoice number, reference number, or name. Images of the proposed prototype can be seen in the

figures below.

Figma Screenshots:

10

11

12

The team began their development by starting the creation of a database using Amazon

Web Services (AWS). They decided to use AWS to host the database and code because of how

easy it would be for future teams to access and make changes to the system. Within AWS,

Amplify Studio is used to hold all the project’s contents (e.g. code and data) all in one place.

Amplify Studio is also what makes it easy to add new users to the project. For the database, the

team in Phase One created a key value store (NoSQL) database using DynamoDB. At the time,

this was the only type of database in AWS that could interface directly into Amplify Studio,

however it does offer its benefits; Key value store databases can read and write data very quickly

and are very flexible to use, which benefited the Phase One team’s original plan to automate

order processes and use real-time order data within the application. To develop the user interface,

the team used React.js to build the front end of the system. React is a highly powerful Javascript

library for building user interfaces, and is considered one of the leading tools in web

development. Yet with the intention of building an ERP system, our Phase Two team must give

the React code a more maintainable structure. To glue the system together, the original team

proposed using a GraphQL API to connect the front-end site to the database. The reasoning

behind this decision is that when building a GraphQL schema, Amplify Studio creates a

DynamoDB table automatically for any object with the @model directive tag, which makes it

very easy to create the database. It also automatically creates a fully functioning API complete

with auto generated resolvers for basic interaction with the database.

Next Steps

The Phase One team concluded their report by outlining what the next steps in the project

might look like if it were to be continued. Their first recommendation was to gather user

feedback on the prototype that they had developed. They then outlined use cases from which

their design had been developed in the functional prototype they began creating. Following that,

the Phase One team proposed one way in which a future team might be able to further reduce the

redundancy of the system: a system that could process order data from the files output by

Formsite. Although the Phase One team’s prototyping focused mainly on the GGC side of the

system, they also considered ways in which the farm’s perspective of the system would have to

differ due to differing requirements. Certain information, like customer info, should not be

accessible to the farm. Finally, the Phase One Team provided several recommendations for

13

improving the accessibility of the system such as adding a high contrast mode or an option to

increase the text size.

14

3.0 Methodology

The goal of this project was to continue development of a cloud-based enterprise resource

planning system to improve the efficiency of GGC’s operations. We accomplished this goal by

fulfilling the following objectives:

1. Evaluate the existing prototype by conducting user testing sessions with members

of GGC.

2. Iterate on Phase One design by applying feedback from user testing.

3. Develop a functional prototype of the ERP system.

4. Create support documentation for future development.

In order to develop a high quality system, it is important to follow a methodology that

implements the four phases of the system development life cycle (SDLC): planning, analysis,

design, and implementation. Each of these phases have steps that produce deliverables and help

to gradually refine the system (Dennis et al., 2019). Since the Phase One Team chose to follow a

system prototyping methodology, it made sense for the project to continue to use the same

methodology. This methodology, “performs the analysis, design, and implementation phases

concurrently in order to quickly develop a simplified version of the proposed system and give it

to the users for evaluation and feedback” (Dennis et al., 2019). Figure 3.1 shows how each

objective fits into each of the phases of the SDLC.

15

Objective 1: Evaluate Existing Prototype

Our team's first objective was to evaluate the prototype designed by the Phase One team.

To accomplish this the team conducted user testing with current GGC members and analyzed the

system's usability as well as how well it met the needs of GGC.

The team chose to use the think-aloud method, "… the single most valuable usability

engineering method" according to Jakob Nielsen, cofounder of the usability consulting company

Nielsen Norman Group (Nielsen, 2012). The think-aloud method entails giving users a set of

tasks to complete on the system being tested, and asking them to speak aloud their thoughts as

they complete each task. The think-aloud method has many advantages that made it an ideal

choice for achieving the team's objective. Some of the most important are that it enforces

user-centered design, allows the team to directly observe the user’s reactions, and that it is easy

to implement.

We also chose to use a System Usability Scale (SUS) survey to evaluate the prototype

using quantitative analysis. SUS is a quick and simple non-diagnostic tool to determine if a

system is usable or unusable. Although the scale is 0-100, the SUS score is not synonymous with

letter grading scores. If a system scores above a 70 it is considered an acceptable system.

16

Evaluating G.O.A.T.S. with SUS is a valid way to assess a system on a small sample size, and is

a good way to establish a baseline of the usability (U.S. General Services Administration, 2023).

During each session with a test user, one member of the team would take notes whenever

a participant had trouble performing a task, noting the task and the problem encountered. The

team then generated a list of confusing points, general improvements, and ideas for new features.

Objective 2: Iterate on Phase One Design

The second objective of the team was to iterate on the design from the Phase One team

by incorporating the feedback from the user testing the team conducted in the first objective. The

team first updated the entity relationship diagram, list of use cases and DFDs. The team then

incorporated the feedback from the testing into the high fidelity prototype to use as a reference

when developing the system. Finally, the planned software architecture of the system was

overhauled in order to create a centralized and predictable system that would be easy to expand

in the future.

Objective 3: Develop a Functional Prototype

After iterating on the design of the system, the third objective was to develop the system

into a functional prototype incorporating the feedback from user testing. The team went through

the following steps to complete this objective:

1. Create a software architecture with sensible organization

2. Develop a backend:

a. Design a relational database schema and configuration

b. Create a an Express.js server to interface with the database

3. Develop a front-end portal using the React.js and Redux frameworks

4. Connect the portal with the backend using the Axios HTTP client

5. Design a cloud implementation

17

The team developed the code repository on Github so that it can be easily shared with future

collaborators. The repository contains all the code necessary for cloud deployment. The team

chose to revert to a relational database over a key-value store database because it is better suited

to address the issues GGC currently faces such as duplicate records. The MySQL database was

first created in a local environment in order to test the schema. Next, an Expressjs application

was developed to interface with the database. The team created an Object-Relational Mapper

(ORM) for each table in the database. Along with a controller for each table, this allows

interaction with the database through JS objects instead of SQL queries. The application runs in a

Node.js environment and also handles routes requested by the front end. The team developed the

front-end using React.js and Redux for state management. React.js is one of the most popular

front-end JS frameworks and allows for the creation of reusable UI components. Redux is a

popular addition to React.js and is used for managing state within a React application. The

front-end connects to the backend API using the Axios library which manages HTTP requests

from the client and the responses from the server. Finally, the cloud implementation was

designed using Amazon Web Services (AWS). The team created the cloud implementation

design utilizing the following services: Amazon Relational Database Services (RDS), AWS

CodePipeline, and AWS Elastic Beanstalk, When changes are made to the Github repository,

CodePipeline deploys the changes to Elastic Beanstalk which is what hosts the frontend a Node

application, and is connected within a security group to the database in RDS.

Objective 4: Create Support Documentation

In order to encourage its continuation, the fourth objective of this project was to create

support documentation so that future collaborators will be able to quickly start contributing to the

project. In order to complete this objective the team created a support document with important

login credentials and links to helpful resources. Additionally, the team created a document in the

code base, README.md, that includes very technical information regarding the next steps to

take to continue developing the functional prototype.

18

4.0 User Testing

4.1 Formsite

The Phase One team of the GGC MQP gave recommendations to reduce redundancy in

employee operations by automating order entry from Formsite instead of having to manually

input order data into the database. However, the Phase Two team decided not to follow this

recommendation after gaining more information from the user-testing sessions we conducted. It

was found that customers tend to make mistakes when ordering, so the GGC usually waits one to

three days before sending orders to the farm so there’s a grace period to change the order. The

team decided not to alter this business process because an alternative option couldn’t be found in

time. Instead, the group investigated the pitfalls of the current customer order form that leads

customers to make mistakes. To solve this issue, the customer order form was updated to

increase accessibility and reduce customer mistakes. Although a change was submitted, the site

has not been updated since the conclusion of this project.

4.2 Prototype Modifications

Although the prototype was mostly completed by the Phase One team, There were some

minor changes that needed to be added in order to complete user testing and meet all use cases.

These changes included non-visual aspects such as prototype mapping, or linking buttons to

certain pages to ensure the participants were able to complete the tasks in the user study we

conducted. This allows the participants to go through the system as if it were a functional

website, to get them as close to the functional prototype as possible to identify any changes we

would need to reduce the use of resources. The developed prototype was only able to modify an

existing order, not create a new order, so the team added that capability, while still following the

same layout as the others. Additionally, the team expanded more with the search page to

highlight the different options you can search by.

19

4.3 Study Protocol

The team developed the prototype to meet all user requirements for the system. A user

study was conducted with four participants from GGC executives to test the prototype system

and gain an understanding of its strengths and weaknesses. All of the interviewees followed the

same Prototype Testing Protocol where they were asked to complete a number of tasks that

covered the major use cases of this system. This protocol can be found in Appendix B. We

performed a think aloud followed by an interview as well as a System Usability Scale (SUS)

survey, then recorded all of their responses to each question to identify any common themes

20

across responses. This method best allows the team to understand what the user is thinking

during the process and enables participants to speak freely about their thoughts of the system.

Additionally, the team marked whether or not the participant successfully completed each task to

further develop the analysis.

4.4 Response Analysis

After gathering all participant responses, the team transferred the raw data into an Excel

spreadsheet to maintain organization. The responses were then analyzed with respect to

qualitative and qualitative analysis based on the data collected. More information about this sheet

can be found in Appendix C.

Qualitative Analysis

To analyze the feedback qualitatively, the team recorded each participant's answers, and

identified any common themes amongst them. Each of the questions on the interviews were

intended to touch upon six different target points that the team was interested in learning about

for this user study. The team wanted to gather first impressions, identify if the system is

perceived to be useful, identify any comments about the design or layout, highlight any

improvements that needed to be made, and explore what is already acceptable in the system.

Based on these learning objectives, the team developed appropriate questions to ask during the

study. These question responses were then matched up against the target points to identify the

participants' subjective thoughts about the system.

Interview Questions

Q1: What stands out most to you?

Q2: What did you LIKE about the new system?

Q3: What did you DISLIKE about the new system?

Q4: How would you describe the navigation of the system?

Q5: What are your thoughts about the design of the system?

21

Q6: Do you think the information was displayed in an effective way that's easily readable?

(why/why not)

Q7: What do you think about the “dashboard” feature?

Q8: Which system do you prefer? Old (email, google sheets) vs New (cloud-based ERP)

Q9: Are there any features you would like to see implemented?

Q10: Are there any other suggestions for improvement?

The responses display that what is most acceptable is the ease of use of the system.

Additionally, participants stated the proposed system provides less error than the current, and

that it is convenient. Conversely, all participants made suggestions for improvement of the

system. The most improvement suggestion that was given was in aspects of accounting such as

account statements and invoice clarification.

22

Figure 4.2: A bar chart of instances of participant responses in reference to acceptability of the

system

Figure 4.3: A bar chart of instances of participant improvement suggestions for the system

Quantitative Analysis

To analyze the feedback quantitatively, we used a System Usability Scale to identify if

the system is usable. The average SUS score of this group was a 95, which, according to the

SUS, is in the “best imaginable” range in terms of usability. We used a SUS scoring template to

properly calculate the scores while minimizing human error. It is important to note that this score

does not give any insight on the functionality of the system, it is merely a tool used to detect the

perceived usability of the system by the user (U.S. General Services Administration, 2023).

23

Figure 4.4: The figure shows where the G.O.A.T.S. prototype lands on the SUS based on the user

data collected. The acceptability ranges and grade scale are provided for reference.

4.5 Feedback

All participants stated that the system is easy to use, however, they all gave suggestions

for improvement as well. For each prototype system test, all four of the participants’ first

impressions were about the system UI and ease of use. The participants all commented that the

system UI is very clean and professional, as well as the system itself being very easy to use and

intuitive. When asked for improvements, every participant gave a suggestion for improvements

and additions to be made. There was some confusion in some participants between the ‘invoices’

and ‘orders’ tabs, so some suggested bringing more clarity between these tabs. Other

recommendations were to add different information in the order cards, add permissions for

different roles in the company, decrease the amount of information on a given page, and add an

ability for in person orders.

The Chief Operations Officer (COO) of Gompei’s Goat Cheese found the system very

intuitive, and only had a minor concern about the interface. The COO found the interface clean,

organized and convenient. Their only concern was that they didn’t know the information had to

be saved, and so the save function should become more prominent. The COO said they would

prefer this system over the current system as long as it can be integrated with the farm well. The

feedback of the COO is weighed heavier than other participants’ feedback because they use the

current system the most and have the most well-informed insight for a new system.

24

The COO gave valuable ideas and suggested additions that would help both the GGC and

the supplier farm. The suggestion that would help GGC would be to add a section for in-person

orders where pickup details can be inputted as well as a section for sticker label tracking. One

problem currently is that there can be miscommunications between the farm owner and the

student-run company, so a way to help that is to give the farm owner a role to view account

statements, invoice numbers, and order numbers. This allows for the farm owner to see what

orders haven’t been paid for yet directly. Another addition that was suggested was to have a

function for the farm owner to notify GGC missing payments, and for the company to notify the

farm owner of missing invoices. This would make communication easier between GGC and the

farm. The current system also has limits on goat cheese quantity that can be ordered, so it would

be helpful to remove that and allow any amount of cheese logs to be ordered.

4.6 System Improvement Suggestions from User Testing

Figure 4.5: A Summary of user feedback highlighting confusing points, improvement

suggestions, and additional features

25

4.7 Key Take-Aways

Although the system is clean, simple, and easy to use, there are still many improvements

that need to be made with the main functionality and usability of the system. Having different

roles for various GGC positions as well as a role for the farm is an essential part of the system

that was overlooked. The differences between invoices and orders also needed to be more

defined to avoid confusion and optimize functionality and processes. The COO made minor

layout and UI suggestions to the design that would aid in the fluidity and intuitiveness of the

system. With this feedback, The design process starts again and the team brainstormed ideas to

solve these challenges.

26

5.0 Iterating on the Phase One Design

5.1 Process Model Refinement

After getting user feedback, the next step in the system prototyping methodology is to

redesign. One element of the design that the team refined was the process models. These models

were updated to more accurately reflect how the data would flow through the system. The

context diagram in Figure 5.1 shows the overall system and how data flows in and out of it to

three external entities. Although some of the data may flow from an external entity to another

one, such as a customer, this interaction is not part of the system and is not included in the

diagram.

Following the context diagram, a level zero DFD shows all the high level processes of a

system as well as including data stores. The level zero diagram shows how the processes are

related to each other and to the data that is stored. The second iteration of the level zero diagram

27

retains the same number of high level processes as the first, although some have been modified.

The first process of creating a new order in the system remains the same with little change. The

second process, where the farm processes the order, now also contains what was the third process

(the farm sending an invoice to GGC) in the first iteration. The third and fourth processes in the

second iteration are GGC Accounting processing and paying invoices respectively.

Another key change displayed in Figure 5.2 is the change in how data is stored. The

second iteration condensed the four separate data stores from iteration one into a single datastore,

nicknamed “Central Unified Relational Database” or CURD for short. This is representative of

how data is stored in separate tables in one database as opposed to separate storage entities. The

reasoning for this change is further discussed in the Development chapter.

Every system will have a context and level zero diagram, and additional levels can

further break the details in each high-level process. The team developed a level one DFD

28

fragment to provide further detail on Process 2.0 (Process Order) in Figure 5.2. The level one

fragment expands the process into two sub-processes: Process Invoice and Pack and Label Order

for Shipping.

Shown in Figure 5.3, the process begins from order notification that flows out of Process

1.0. The farm then retrieves the order info from the datastore and enters that information in their

accounting system which generates an invoice. As part of the first sub process, this invoice

number is then added to the datastore and notification is sent to GGC Operations that the order is

being processed. Following that the farm packs and then labels the order for shipment. The farm

uses an online tool for managing their shipments that generates shipping labels with tracking

numbers. The second sub process involves adding the tracking number to the datastore with a

link to the associated order and sending an order shipped notification to GGC Operations.

29

5.3 Additional Use Case

Use cases define events that trigger actions within the system. The list of use cases

developed by the Phase One team covered the core functionality that the system needs in order to

be beneficial to both GGC and the farm. These use cases can be found in Appendix G along with

the additional use case below. After user testing, the Phase Two team created one additional use

case with a focus on accessibility:

5.4 Database Schema Refinement

As mentioned in the background section of this paper, the Phase One team chose to

implement a NoSQL MongoDB for simplicity. However, they described an entity relationship

diagram and data dictionary that “reflects the tables that would be expected in a relational

database” (Guerrette & Mohn, 2022). In refining their system, the team took the opportunity to

determine what kind of data management system would best suit the GOATs portal.

Initial Database Comparisons

Typically NoSQL databases are very fast, easy to develop, and straightforward to

understand. They allow developers to control the data structure and quickly create a scalable,

high-performing backend. They were specifically designed to handle high levels of data traffic

with apps that are constantly running. NoSQL became increasingly more popular with the rise in

Big Data analysis because the exponentially larger size of the dataset requires high performance

and flexibility. However, because of the non-relational nature of the data, NoSQL databases do

30

not support ACID: atomicity, consistency, isolation, durability (Bourgeois). This means that

duplicate entries of data are often overlooked, an issue that the GGC operations team currently

struggles with by using Google Sheets.

On the other hand, relational databases were actually created to store transactional data

and support multi-record ACID transactions. Additionally, they have rigid schemas and allow for

the use of joins, making it easy to access data from multiple tables that have relationships

between them. MySQL relational databases are also the most widely used and early taught

database, developed back in the 1970’s for the purpose of reducing data duplication

(mongodb.com). Using a relational database does, however, require setting up an ORM, or

object-relational-map, which requires more development and testing time (Bourgeois).

Ultimately, we determined that despite the ease of NoSQL, GGC’s proposed data

warehouse is most effectively modeled by a relational database. As stated in the previous MQP,

“One of the goals that the project hoped to accomplish was to find a way to reduce redundancy”

(Guerrette & Mohn, 2022). While the speed, scalability, and ease of cloud integration with

NoSQL databases is tempting, GGC’s data is most effectively described as relational. And, with

the help of Amazon Relational Database Services (RDS), creating a cloud instance of a relational

database is not nearly as complicated as it once was.

Although we chose to transition to a relation database, we still had two relational

database providers to compare: PostgreSQL and MySQL. PostgreSQL emphasizes the

extensibility of SQL and was developed to handle transactions at the enterprise level, which

would ultimately make sense to use for an Enterprise Resource Planning system. However,

MySQL is often the first querying language a data designer learns. With the help of MySQL

Workbench, a tool that visualizes the data modeling process, identifies syntax errors in queries,

and performs operations all in one platform, it is clear that managing a MySQL database is very

convenient and easy to learn for beginners. Syntactically, the two are very similar, but MySQL

Workbench is an integrated environment that only supports a MySQL database system.

31

Figure 5.4: MySQL Workbench visual representation of the database

Keeping in mind the system’s unique target audience, we know that a small, student-run

business with constant turnover will not likely reach the magnitude needed to warrant an

enterprise level database. Additionally, GGC volunteers are driven to join by the learning

opportunity, and ultimately, the management of this database will be in the hands of student

volunteers with varying levels of technical experience. Providing the option to use MySQL

workbench is a huge learning advantage for future users, or developers maintaining the system.

Next, we explain the refined data model that would be represented by a MySQL database.

Logical Entity Relationship Diagram and Data Dictionary

First, the team reworked the logical entity relationship diagram (ERD), or visual

representation of the relational database, to more accurately represent the system needs and

adjustments.

32

Figure 5.5: GGC ERP - Entity Relationship Diagram

It is important to note that the best practice for relational databases is for all information

to be related to each other. While the User table does not directly relate to any of the other

information in the warehouse, this entity could be used to grant permissions and roles to different

33

future users. The Phase Two team did not implement any procedures, roles, or groups within this

iteration, however, this idea will be reiterated in the Future Works section of the paper.

Additionally, a data dictionary describing the tables reflected in the relational database,

and defines all of the details for the attributes of every table is located in Appendix I.

5.5 High-Fidelity Prototype Improvements

The team updated the dashboard, changed the flow, and defined differences between the

invoice and dashboard. The user flow of the figma file was cleaned up to increase efficiency and

minimize the amount of pages used. It is divided into three core sections: admin settings,

invoices, and orders.

The dashboard was updated to highlight action items and include the ability to search

orders and add a new order right after login, which can be seen in (Figure 5.7). This reduces the

amount of screens and clicks the user would need to go through to get the information they need.

The “quick stats” were kept from the Phase One Team, because it breaks down what the

orders/invoices pages show in a concise way. These also link to the appropriate pages if clicked.

34

Figure 5.7: Proposed mockup of new dashboard

After meeting with the COO they expressed the need of distinguishing the difference

between invoices and orders. The orders tab allows the COO to edit any of the customer/payment

information. Invoices on the other hand are used by the accountants to track the flow of money

easily, and can only edit whether an order is paid or not. The paid checkmark will be password

protected so that not just anyone can change an order status.

Figures 5.8a & 5.8b: Figma Mockups for Orders and Invoices respectfully.

35

Westfield Farm Perspective

The team also created a mockup of how the farm side would look. Bob would only need

to edit the invoice number and expenses owed. We wanted to ensure the order information was

not accidentally editable by Bob, since he is older and unfamiliar with information systems. He

is only able to view and copy customer information. He then inputs the invoice information and

the COO gets a notification when saves the updated information.

Figure 5.9: Mockup of the farm facing side.

36

6.0 Development

Good software is described as “maintainable, dependable and usable” (Bittner & Pureur). With

good software principles in mind, we chose to give the legacy code a major makeover in our

project iteration. What existed as a small React project with a few components grew into a

crafted codebase and technical stack that we found to best suit GGC’s needs. Thus, establishing a

proper software architecture in the GOATS Portal was a key factor in continuing its

development.

6.1 Software Architecture

The Portal’s main codebase is one parent directory

(GGCPORTAL) containing the active project directory

in addition to the MySQL scripts and backup CSV tables

to easily recreate an instance of the database. Originally,

this directory held the archived code for reference,

stylistic inspiration, and ownership reference to the

original developers. However, it was removed from the

main branch to reduce deprecated dependency issues

once making the transition to a cloud environment.

Many of the components in the client directory are

similarly structured to their counterparts in the archive.

This client folder is its own React project containing the

static files for the frontend components and React Redux

store configuration. The table directory contains the

python script created to traverse through the existing

GGC order spreadsheet, SQL scripts for each database

table, and the starting CSV files for each table. It’s

important to also note the .ebextensions,

.elasticbeanstalk, server.compiled and Procfile in figure

37

6.1 of the folder hierarchy. These are necessary for deployment on AWS Elastic Beanstalk.

Working under the impression that developers will continue to iterate on this codebase in

the future, we aimed to establish a sensible hierarchy so that future collaborators will have an

easy time navigating the codebase and avoiding potential coding conflicts. As seen in figure 6.2,

there are three core components to the overall architecture: the database, the server, and the

pipeline. The MySQL database (Amazon RDS) stores all of the GGC data. The code repository

has an Express.js root server with a React.js frontend (client). The client is managed by a Redux

store and uses the Axios library to form an http connection with the backend data service set up

with Express.

The external softwares used to set up the pipeline were GitHub, AWS CodePipeline, and

Amazon Elastic Beanstalk. Github allows for version control, storage of the codebase, and other

code sharing benefits. The AWS CodePipeline gets the code ready for deployment as it directly

connects the Github repository to the Elastic Beanstalk environment. Upon the most recent push

to the main branch of the repository, AWS Elastic Beanstalk deploys the most recently healthy

version of the software to a URL. One benefit of the pipeline is that it protects the deployed

application by reverting to a healthy build if something goes wrong.

Figure 6.2. Diagram of the software architecture and code pipeline.

38

It is important to note that the figure above provides the overarching architecture and

proposed pipeline, however this was not used for the entirety of development. Due to frequent

testing, it was more sustainable to connect to a local database endpoint with an identical schema

and deploy changes locally.

The table below summarizes the technical stack used the team used to develop the cloud

ERP system:

Software/Technology Version Notes

Express ^4.18.2 Server and routing

React ^17.0.0 Client code framework

Redux ^7.1.0 Redux Toolkit (1.9.1)

Axios ^1.2.2 Forms http connection

Node.js

(Elastic Beanstalk)

16.16.0 Runs the Node.js environment.

MySQL 5.7.41 Hosted through Amazon RDS

Table 6.1: GGC Portal Technical Stack (See Appendix J for more)

Tool: Usage:

Visual Studio Code Major IDE used for development

Intellij IDEA Front end development

MySQL Workbench Data modeling and database development

Amazon Web Services (AWS) Hosted the bulk of the project and used for deployment

Table 6.2: Tools and Technologies Used

39

For more information on the software versions used in the implementation, please see the

package.json file located in Appendix I.

6.2 Back-End Development

The backend development was done in two parts; create the database server and schema

for testing and create an Express.js ORM to allow data to pass to the frontend.

Schema Generation and DB Configuration

In order to test the proposed relational database, the team set up a local server and created

the tables. Though tedious, the actual schema setup was not especially intricate once a server

connection was created. Using MySQL Workbench and the data dictionary described earlier, the

team developed an active MySQL data model with scripts generated

such that it can be easily recreated in a new database instance. This

should help future developers avoid starting from scratch.

GGC’s current order tracking system resides in a Google

Sheets document. In order to test the system being developed as well

as maintain continuity, the team developed a Python script that reads

the data from a CSV file downloaded from the Sheet and outputs

separate CSV files with the data necessary to populate the tables in

the database. Detailed in the script which is located in Appendix K,

some orders were manually transcribed to these tables because they

were few in number and too complex for the script to easily digest.

Additionally, within the code repository is a subfolder

“GGCPortal/tables/sql scripts” which contains the SQL script files

with every table’s Data Definition Language (DDL) - a set of SQL

commands used to create, modify, and delete tables and other

database structures. There is also a script that defines a trigger in the

database which creates a new invoice record with matching order ID. If future iterations of the

project ever need to recreate the database, they create the tables in the following order: User,

40

Product, ShippingAddress, Customer, Order, OrderLine, Invoice. At this point, import any

historical records by importing the appropriate CSV files, which are also located in this subfolder

of the repository. Finally, enable the trigger in the database environment. It is necessary to import

the data prior to enabling the trigger in order to avoid incorrect mapping of the order-invoice

relationship.

Express.js Object Relational Mapping

The Express.js server has been referred to as the “root” of the project repository. This

framework is what helps translate information between the MySQL database and Javascript.

Express servers are a very popular choice for building web applications using Node.js as it

allows developers to easily create robust and scalable software. They have the ability to handle

HTTP requests and responses, which makes it ideal for building

RESTful APIs. This was exactly the next step needed to continue

development of the backend from the Phase One team’s prototype.

These API’s allowed access to the database fetching to occur from

the frontend. As a reminder, the seven tables in the schema are for

address, customer, invoice, order, orderline, product, and user.

As seen in the figure to the left, the parent app directory holds all of

the backend code. There are directories for configurations,

controllers, middleware, models, and routes.

Models define the structure and behavior of the data, controllers

define the behavior of the application, and routes define how the

incoming requests are handled by the server. In order to develop an

API for each table in the database schema, the team first

established a database connection (db.js) using an endpoint

specified in one of the configuration files (config). The models are

JavaScript classes that define the schema of each database table.

These classes are responsible for interacting with and querying

from the database through an ORM. The models developed in this

project iteration include create, read, update, and delete queries for each table, with additional

41

queries for certain tables, depending on what was needed in the frontend (i.e., readAll, deleteAll,

etc…). On the other hand, the controllers are JavaScript functions that handle incoming requests,

process the data, and return the response to the client. The team set up one controller for every

model as controllers make use of one (or more) model(s) to retrieve or update data in the

database. Lastly, the routes are a set of rules defining how incoming requests are handled by the

server, using the HTTP methods GET, POST, PUT, and

DELETE. Each of the routes are associated with a specific

controller that handles the actual request and response data.

Although the Axios library is used in the frontend directory,

the DataService purpose should be discussed with the backend

development. Classes are again separated by database table, but

the data services use an Axios connection to make http requests

from the frontend. These requests are mapped to their specified

ORM’s route, thus allowing CRUD operations to happen across

the stack.

6.3 Front-End Development

To iterate on the existing React prototype, we first refactored

the way screen components were used and how data is managed on

the frontend. Even though the archive contained usable React code,

the way the components managed frontend data was not reasonably

scalable. React typically manages information on the frontend

through the React State, but a project with so much potential for

growth requires a structured pattern. React Redux is a state container

for Javascript applications that provides predictability and

optimization when accessing data in the state. Using the React Redux

modern toolkit, state management becomes a lot simpler.

The figure on the right shows an overview of the frontend (client) directory within the

codebase. Within the source folder (src), there are assets, services (discussed in Chapter 6.2),

42

store, views, and other important files detailed in Appendix M. The store is the directory holding

the Redux Toolkit reducers, and the views directory contains all of the React classes and

components.

State Management with React Redux and Redux Toolkit

React Redux is a popular library for managing state in a React application. The benefits

of using React Redux are centralized state management, predictable state updates, improved

performance, better code organization, and easy integration with React.

Centralized state management means there is a single place that manages the state of the

application, making it much easier to keep track of state with multiple types of users interacting

with it. This also allows for more efficient state updates and gives access to the state from any

component in the application, which is important when different users need access to the same

data, but the software is rendering a completely different component depending on the

permission. State changes are easier to follow, especially since we used Redux Toolkit. This

framework provided the ability to create slices - or pieces of the reducer - for each unique part of

the state. Each of these slices were actually just a representation of the backend tables in the

frontend state. Despite having seven different slices setup, Redux allows developers to get access

to some parts, but handles the change together so nothing is out of sync.

With central state management comes predictable state updates. There is only one way to

update the state and that is to submit changes through the UI. These actions are dispatched

directly to the store, making it easier to understand how the state changes in response to user

actions. Considering accessibility and the desire for a simple experience, this is a significant

benefit for the app. Take a look at the following visual to better understand how the Redux flow

improves the software design (Figure 6.7):

43

Figure 6.7: Visual example of React Redux data flow.

Here, the Store is shown as the container for a single reducer, with three small “R’s” inside,

representing the slices that are managed within its container. The state is populated by the

reducer, the UI loads the state data, and different events dispatch unique actions to the store. This

pattern has a strict unidirectional data flow, only allowing the state to be modified through

predefined actions, thus ensuring that state changes are predictable and easy to debug. This flow

also intends for users to feel more control over their actions.

The Redux solution also reduces the number of times the page re-renders, which helps

avoid unnecessary recalculations and ultimately improves the overall performance.

Lastly, it is important to highlight the benefits Redux and Redux Toolkit provided for

code organization and developer experience. Redux Toolkit encourages the separation of the

presentation logic from the business logic which makes it easier to maintain and test the code.

This made the developer’s on the project much easier as the application state was actually

separate from the components local state, making the code more modular, reusable, and

understandable. Additionally, the set of utilities provided by Redux Toolkit allows for faster

development by reducing boilerplate code typically needed to create a centralized store, which

was critical on the short MQP timeline. Specifically, the team made use of preconfigured

middleware for handling async actions as it allowed them to make API calls to the backend

within the async function of a database table’s respective slice.

44

Because both React and Redux are popular tools, the online developer communities are

vast and provide access to many tools and resources. Redux has incredibly easy integration with

React as it is designed to work seamlessly with it. Overall, React Redux helps simplify the state

management of a React application and improve the overall performance and maintainability of

the project code.

Layout and Styling

In addition to implementing a solid structure

for the frontend with React Redux, the team also

utilized Bootstrap and CSS to create a cohesive

style across each user interface. We kept the same

color scheme and layout that was made by the

Phase One team. The GGC marketing team

identifies these four colors as part of branding so we

continued to design the interface to follow these

patterns. We generally used flexbox to arrange the

objects on screen so that it is adaptable to all screen

sizes.

6.4 Cloud Deployment

Part of this iteration’s development involved a deeper investigation into the “cloud” piece

to “Cloud-Based ERP.” This meant finding an appropriate solution for hosting the web server

and database for multiple users across many networks. The team decided to stick with Amazon

AWS for the cloud services like the Phase One MQP team, but focused on Amazon Relational

Database Services (RDS) for the database and Elastic Beanstalk (EB) to host the Node.js project

itself.

45

Over the course of the project, the team went through trial and error when setting up the

database with RDS. The main takeaways were to set up the appropriate instance configuration,

set up a security group, set up a parameter group, and ultimately just create the database through

the EB environment directly. The team chose a small.t2.instance for the database because it

seemed to be the cheapest option to couple with the EB environment security allowance; the free

tier eligible databases don’t work sustainably with EB because they lack proper configurations

and security tolerance. The security group is used to control inbound and outbound traffic, so it is

important to only specific IP addresses access the database, such as the address from the EB

environment. To allow the correct traffic to the instances without having to reconfigure the

settings every time, the team created a GGC-MQP security group that specified the inbound rules

to allow access to the database instance from the developer’s IP addresses and the EB

environment. The parameter group defines a collection of database engine configuration settings.

Adding this to the RDS instance allowed the team certain actions on the database that were

previously prevented or hidden. Provided there is already a security and parameter group set up,

it is really simple to just create the database instance through the EB environment directly.

Setting up an EB environment was quite simple to do after using the AWS CodePipeline

and configuring the RDS instance within the environment. This process is detailed in Appendix

M.

The following figure shows an earlier version of the software that was deployed to the

Cloud before terminating the environment due to budget cuts.

46

Figure 6.9 Software Version Deployed to Elastic Beanstalk Cloud Environment.

6.5 Persisting Issues

Having very few developers working on a full stack application caused issues such as the

agile methodology not being maintainable and sufficient progress being stunted by backtracking.

Some frequent trouble spots were in the backend maintenance. There was a big learning curve

with maintaining a healthy connection with a backend while working to refactor a consistently

buggy frontend.

Given the scope of the project and varying skill focuses in our group, it was difficult to

work with the front-end database connection while simultaneously trying to define a properly

structured database instance. For example, whenever the data needed to be reset or uploaded into

a new or existing database instance, it was imperative to remove the triggers that had been set or

else the existing orders would not be mapped to their respective invoice. Another improvement

to the database would be including shipping cost and unit values for each product so values can

dynamically update rather than having to update invoice values manually.

47

Due to time and lack of bandwidth, the main priority of this project iteration was to

establish a modular software for future expansion by students. Despite positive intentions using a

1:1:1 ratio of routes/models/controllers for each database entity, this is not a best practice and

prevented the team from completing CRUD actions for all tables. The decision was made for

ease, time constraints, and compatibility with the redux store. Through the progression of this

project, the team found that refactoring the ORM was out of scope for the project time. However,

the ORM should be adjusted to efficiently utilize joins between tables, grant table permissions to

users of the database, and incorporate procedures to reduce logic on the frontend.

6.6 Functional Prototype

This section includes images of the final prototype submitted. More information

regarding its full-fledged functionality are mentioned in Chapter 7.1, further shown in Appendix

D, and detailed in Appendix M. Outlined below is one particular flow that is fully functioning in

the prototype (edit screen not included but viable):

1. Login to the system as a regular GGC User

48

2. Navigate to the Orders tab

49

3. Click add order

4. Fill in the order information

50

5. Save the new order and see it in the Active Orders tab.

6. Click the newly created order.

51

7. Navigate to the Search page and type the reference number in the search bar to

watch as the orders filter.

52

8. Go to your order and delete it.

9. Confirm delete and verify it was removed from the Active Orders page.

Additionally, because the framework for user permissions was implemented, the

following figures highlight the dynamic navigation bar for different views.

53

7.0 Future Work

Although this is a functional prototype, it is not recommended the software is integrated

into the company until proper user testing is conducted.

7.1 Next Steps

The most critical next step is to conduct a UX evaluation of the software and determine

the most important next steps for future functionality. Several important steps based on the

findings in this paper are as follow:

1. Refine the database schema based on updates within GGC’s business processes.

GGC is a very dynamic, growing company, recently under new leadership. It may

be necessary to modify the schema model defined in this project iteration, or even design

a data warehouse for further development.

2. Refactor the Express.js API to better utilize the relational nature of the database.

While the team put a lot of research into choosing the most efficient database for

the system, the time constraint of the project prevented the ability to implement joins.

This fix would allow future developers to take better advantage of querying on the

backend, and state management on the frontend. Redux Toolkit would allow developers

to work with an entire order in one slice by fetching data from a joined table, rather than

joining the customer, shipping, and order information through their respective slices in

each component that an order is needed.

3. Zapier integration with Formsite.

Cheese orders are placed by customers directly through Formsite and sent to the

GGC operations team, where it is looked over before being sent to the farm. Upon

investigation, Zapier is a tool that can be used to scrape order data from Formsite and

insert it into a specified database. Upon investigation, the team found that Formsite

occasionally writes order data to the site's spreadsheet before there is a payment filled,

54

thus it was decided to forego the Zapier route until a more formal investigation takes

place. As long as the payment is fulfilled, Formsite orders should be written to the

database schema with default status “Placed.”

4. Iterate on delivery time and company communication management.

Despite including On Time/Early/Late tags in both mockup phases of this project,

this feature is strictly a proof of concept and was not informed by any specific findings.

However, given the inconsistencies and lack of proper communication between the farm,

GGC, and customers about order placement and arrivals, this is an important feature to

iterate on.

5. Encryption for login.

The functional login for this prototype is strictly proof of concept that user

permissions should affect the app navigation. User passwords are stored as plain text and

there are no tokens involved in authorization. This is an extreme security vulnerability

and any future collaborators must correct it before implementation.

6. Update Node.js version and dependencies and get solid test code coverage.

Like many prototypes, this code is prone to mysterious bugs and behaviors, so it would be

beneficial to investigate the quality before adding additional functionality.

In addition to the steps outlined above, the README.md included in Appendix M further details

bugs that need attention and future steps to take in order to integrate this software for GGC’s use.

General Development

The development of the platform is just beginning. The list below outlines what

functionality was completed, the functionality currently in progress, and what is left to be

implemented for increased usage for GGC and partners. Additionally, there is a list of potential

features noted in the user study that were outside the scope of the team’s prototype

implementation, but would incredibly increase the value of the portal. Please note that many of

55

the unfinished features should be documented as additional use cases in future iterations, as the

modularity of the software presented benefits that were previously overlooked.

Functionality

Completed

Functionality in

Progress

Functionality to

Implement
Special Features

● View

Completed

Orders

● View Active

Orders

● View Order

Information

● Update

Order

Information

● Add User

● Remove

User

● Record

New Order

● Delete

Order

● Log In

● View

Customers

● View

Shipping

Addresses

● Update

Products

Ordered

● Tooltip

● Update

OrderLines

● Copy Text

Information

● Automate Status

Updates with

Early/Late/On-Time

Tracking

● Automate emails

between Customers,

Farm, GGC

● Autofill for Existing

Information

● Encryption on Login

● Autofill Existing DB

Information in New

Orders

● Cross Component

Search

● Data

visualization

● Specialized

roles

● Inventory

tracking

● Inventory

machine

● Upload

Invoice as

PDF

56

● Log Out

● Update

Invoice

Information

● Search

Orders by

Reference

Number

● View

Invoice

Table 7.1: Aspects of the functional system that are complete, in progress, future implementation,

and special features to be added.

Westfield Farm Perspective

The Westfield Farm role has not been fully implemented and will need further

investigation and development to be complete. Currently, the design for the farm perspective is

set in place, however, a prototype of this design has not been user-tested with the farm owner.

Without user-testing, there wouldn’t be an understanding of the usability of the design and the

specific needs of the user. The farm owner is also elderly, so it is important to have a

mistake-proof, simple, and accessible design. The farm owner has expressed a willingness to try

new technology as long as it integrates with his own system well, however, it isn’t known how

well he can interact with a new system. To aid this, a future team would need to investigate what

he is comfortable handling electronically to aid in forming the farm role requirements.

57

7.2 Final Thoughts
Gompei’s Goat Cheese is a great pillar of the WPI Business School as it is the first

student-run, non-profit business at WPI. However, the new CEO of GGC in 2023 wants to make

some big changes to help grow Gompei’s Goat Cheese to a new level. As of now, GGC remains

mainly known to people surrounding the WPI Business School and not the rest of the

community, so the CEO wants to expand GGC to be a pillar of the whole WPI community. This

can be done by reaching out to the other schools of science and engineering to hire students for

new positions like software engineers, data analysts, and project managers. This can introduce a

learning experience for STEM students to work in teams within a real business, as well as help

GGC grow to become a great asset to the science and engineering community at WPI. A goal for

a future software development team would be to use an agile methodology to set up the software

architecture to allow incremental changes without disturbing any part of the system. This would

allow Gompei’s Goat Cheese to progress and grow progressively larger over time.

58

References

Baltzan, P. (2020). Integrating the Organization from End to End--Enterprise Resource Planning.
In Business Driven Technology (8th ed., pp. 208–224). chapter, McGraw-Hill
Education.

Bangor, A., Kortum, P.T., & Miller, J.T. (2009). Determining what individual SUS scores mean:
adding an adjective rating scale. Journal of Usability Studies archive, 4, 114-123.

Better Business Bureau (2019). 10 Ways Small Businesses Benefit Their Local Communities.
Medium.com.
https://medium.com/@BBBNWP/10-ways-small-businesses-benefit-their-local-communi
ties-7273380c90a9

Bezkoder. (2021, July 12). Redux-Toolkit example with CRUD Application - BezKoder.
BezKoder; https://www.facebook.com/bezkoder.
https://www.bezkoder.com/redux-toolkit-example-crud/

Bittner, K., & Pureur, P. (2022, June 8). A Minimum Viable Product Needs a Minimum Viable
Architecture. InfoQ; InfoQ. https://www.infoq.com/articles/minimum-viable-architecture/

Bourgeois, Dave. “Chapter 4: Data and Databases – Information Systems for Business and
Beyond.” Pressbooks Create – Your Partner in Open Publishing, Published through the
Open Textbook Challenge by the Saylor Academy, 28 Feb. 2014,
https://pressbooks.pub/bus206/chapter/chapter-4-data-and-databases/#:~:text=All%20info
rmation%20in%20a%20database,created%20to%20manage%20unrelated%20informatio
n.

Dennis, A., Wixom, B. H., & Roth, R. M. (2019). Systems analysis and design / Alan
Dennis, Indiana University, Barbara Haley Wixom, Massachusetts Institute of
Technology, Roberta M. Roth, University of Northern Iowa. (7th ed.). John Wiley &
Sons, Inc.

Fisher, K. (2022, February 8). What is Cloud ERP and How Does It Work? Oracle NetSuite.
https://www.netsuite.com/portal/resource/articles/erp/cloud-erp.shtm

Guerrette C.& Mohn, N. (2022). Development of Cloud-Based Enterprise Resource Planning
Software for Gompei's Goat Cheese [Major Qualifying Project]. Worcester Polytechnic
Institute https://digital.wpi.edu/concern/student_works/jq085p23d?locale=en

Interactive Qualifying Project, (n.d.). Retrieved December 11, 2022, from
https://www.wpi.edu/academics/undergraduate/interactive-qualifying-project

59

Nielsen, J. (2012, January 15). Thinking aloud: The #1 usability tool. Nielsen Norman Group.
Retrieved February 27, 2023, from
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/Major Qualifying
Project, (n.d.). Retrieved December 11, 2022, from https://www.wpi.edu/academics
/undergraduate/major-qualifying-project

Kamthan, P. (n.d.). Using Patterns for Engineering High-Quality Web Applications. In Software
Engineering for Modern Web Applications (pp. 100–122). IGI Global.
http://dx.doi.org/10.4018/978-1-59904-492-7.ch006

mongodb.com. (n.d.). NoSQL vs SQL databases. MongoDB. Retrieved April 26, 2023, from
https://www.mongodb.com/nosql-explained/nosql-vs-sql#:~:text=and%20fewer%20bugs.
-,What%20are%20the%20drawbacks%20of%20NoSQL%20databases%3F,acceptable%2
0for%20lots%20of%20applications

Moore, L. (2018, July 31). What is MySQL? | Definition from TechTarget. SearchOracle;
TechTarget. https://www.techtarget.com/searchoracle/definition/MySQL

React Redux | React Redux. (n.d.). React Redux | React Redux. Retrieved February 21, 2023,
from https://react-redux.js.org/

Style Guide | Redux. (n.d.). Redux - A Predictable State Container for JavaScript Apps. | Redux.
Retrieved February 21, 2023, from https://redux.js.org/style-guide/

Small Business Administration. (2021) Frequently Asked Questions.
https://cdn.advocacy.sba.gov/wp-content/uploads/2021/12/06095731/Small-Business-FA
Q-Revised-December-2021.pdf

Small Business Administration. (2022) Massachusetts Small Business Profile.
https://cdn.advocacy.sba.gov/wp-content/uploads/2022/08/30121319/Small-Business-Eco
nomic-Profile-MA.pdf

Sharma, A. (2022, September 8). The challenge of high turnover at Startups: Founders Circle.
Founders Circle Capital. Retrieved March 3, 2023, from
https://www.founderscircle.com/high-startup-turnover-rate/

U.S. General Services Administration. (2023). System Usability Scale (SUS) | Usability.gov.
Usability.gov.
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

Y. Li and S. Manoharan, "A performance comparison of SQL and NoSQL databases," 2013
IEEE Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM), Victoria, BC, Canada, 2013, pp. 15-19, doi:
10.1109/PACRIM.2013.6625441.

60

Appendices

Appendices 73
Appendix A: User Testing Consent 62
Appendix B: User Testing Protocol 65
Appendix C: User Testing Data Analysis Sheet 70
Appendix D: Functional Prototype Images 76
Appendix E: Context Diagram 77
Appendix F: Data Flow Diagrams 78
Appendix G: Entity Relationship Diagrams 80
Appendix H: Use Cases 82
Appendix I: Data Dictionary 89
Appendix J: Package.json 96
Appendix K: MySQL Script 101
Appendix L: Python Script 105
Appendix M: Support Documentation 112

61

Appendix A: User Testing Consent

Informed Consent Agreement

For Participation in a Research Study: Software Testing

Project Team: Gabrielle Acquista, Victoria Buyck, Benjamin Sakac, Sohrob Yaghouti

Contact Information: gr-ggcmqp-team@wpi.edu

Title of Research Study

Implementation of Cloud-Based Enterprise Resource Planning Software for Gompei’s Goat

Cheese

Introduction

You are being asked to participate in a study researching the effectiveness of a prototype ERP

system for Gompei’s Goat Cheese. Before you agree, however, you must be fully informed about

the purpose of the study, the procedures to be followed, and any benefits, risks or discomfort that

you may experience as a result of your participation. This form presents information about the

study so that you may make a fully informed decision regarding your participation.

Study Purpose

The purpose of the study is to assess the usability and accessibility of a prototype ERP system

for Gompei’s Goat Cheese, how well it handles needed functionality, and if there are any missing

features. The information gained from this study will inform decisions made during the

implementation of the ERP system.

62

mailto:gr-ggcmqp-team@wpi.edu

Study Procedure

You will participate in a 20-30 minute talk-aloud session in which you will interact with a

prototype system with the goal of completing a list of tasks.. As you interact with the system we

ask that you try to speak out loud your thoughts as you navigate through the application. Once all

the tasks have been completed, a member of the team will ask you a few additional questions

about your thoughts on the prototype.

Risks to Study Participants

There are no foreseeable risks or discomfort to you.

Benefits to Research Participants and Others

This study will inform the development of a system that will greatly benefit the operations of

Gompei’s Goat Cheese. This system will improve the internal operations of GGC and

communication with its supplier, Westfield Farm.

Confidentiality

No participants will be identified by name in this study, only by title in relation to GGC if we

have your permission. Your comments will not be shared with anyone other than our project

team. Constructive criticism is encouraged and will not negatively affect your relationship with

GGC or Westfield Farm.

Voluntary Nature of Study

Your refusal to participate will not result in any penalty to you. If you feel uncomfortable once

you begin the study, you may stop participating at any time.

63

By signing below, you acknowledge that you have been informed about and consent to be a

participant in the study described above. Make sure that your questions are answered to your

satisfaction before signing. You are entitled to retain a copy of this consent agreement.

Study Participant Signature Date

Study Participant Name (Please print)

Signature of Person who explained this study

64

Appendix B: User Testing Protocol

Introduction
Hi, my name is [name]. I will be walking you through the test of our proposed operations system

for GGC. This testing session will be in a think-aloud format today, which you will learn more

about shortly. My group members [names] are also on the line and will be taking notes during

our session.

Study Purpose

The purpose of this study is to identify the areas where the proposed operations system for GGC

performs well, and where there is room for improvement. This information will be used to

inform the revisions of the cloud-based enterprise resource planning system.

Consent Form and Incentive

Before we start, we would like to go through important parts of the interview information

document (Software Test Consent) that was sent to you via email earlier.

This session will be recorded and transcribed for the purpose of analysis only. We would like to

have the option to use your responses in our final report. Again, this would mean that we would

identify you by your title in relation to Gompei’s Goat Cheese. Are you comfortable with this?

(Participant gives oral consent)

Do you have any questions about the testing session today?

(Participant asks questions if they have any)

Are you comfortable with the study procedures and ready to move forward?

(Participant gives oral consent)

65

https://docs.google.com/document/d/1ek5DNgvIKGDtaHaFrKtbBIQ19lLJT4hsjEb3wSVZMJs/edit?usp=sharing

Interview Time

The testing and follow up questions will last about 30 minutes. Despite us calling this a testing

session, there are no right or wrong answers. We are testing the system, not you. In this

think-aloud session, you will be asked to complete a series of tasks within this new system.

These tasks will be given to you one by one for you to complete in your own time. We

recommend you voice your thought process verbally as you complete the tasks. We would like to

see how you naturally navigate and use the system and will not give any guidance unless asked.

We ask that you please give your best attempt at the task before asking for help. If at any time

you feel uncomfortable and wish to stop the interview, please let us know. After the testing

session, you will be asked a few questions and to fill out a quick post-testing form.

Are you ready to start?

(Participant gives oral consent)

Great. Let’s get started. We will start screen and voice recording now.

remind participant to keep talking aloud as needed during the tasks

Tasks:

1. Log into the portal

2. View orders

3. View order information for customer Chris

4. Edit Chris’s order information by updating the gift message

5. View invoices

6. Notify farm of orders missing invoice number

7. Search Orders using one of the available search fields

8. Add a new order

9. Delete the order you just created

66

10. Logout

*Section I will be asked verbally to the participant after their interaction with the new system.

All other sections will be recorded using a Google Form*

Section I: System Reflection

1. What stands out most to you?

2. What did you LIKE about the new system?

3. What did you DISLIKE about the new system?

4. How would you describe the navigation of the system?

5. What are your thoughts about the design of the system?

6. Do you think the information was displayed in an effective way that's easily readable?

(why/why not)

7. What do you think about the “dashboard” feature?

8. Which system do you prefer?

a. Old (email, google sheets)

b. New (cloud-based ERP)

2. Are there any features you would like to see implemented?

3. Are there any other suggestions for improvement?

Section II: Demographics / Other info (our use only)

1. Name, age

2. Title in relationship to GGC

67

3. On a scale of 1-5 how comfortable are you with using technology? (1 being not

comfortable at all and 5 being very comfortable)

4. On a scale of 1-5 how comfortable are you with adapting to new systems? (1 being not

comfortable at all and 5 being very comfortable)

Section III: System Usability Scale (SUS) Statements About The New System

Respond to each statement below selecting from a range of Strongly Disagree to Strongly Agree

(with 5 = Strongly Agree and 1 = Strongly Disagree).

1. I think that I would like to use G.O.A.T.S. frequently.

2. I found G.O.A.T.S. unnecessarily complex.

3. I thought G.O.A.T.S. was easy to use.

4. I think that I would need the support of a technical person to be able to use G.O.A.T.S.

5. I found the various functions in G.O.A.T.S. were well integrated.

6. I thought there was too much inconsistency in G.O.A.T.S.

7. I imagine that most people would learn to use G.O.A.T.S. very quickly.

8. I found G.O.A.T.S. very awkward to use.

9. I felt very confident using G.O.A.T.S.

10. I needed to learn a lot of things before I could get going with G.O.A.T.S.

Section IV: Conclusion

68

1. Please write any other comments you have (about the systems, the study, or anything on

your mind from this testing process!)

a. Long answer response

69

Appendix C: User Testing Data Analysis Sheet
For our user testing analysis, the team gathered all of the participant data in an Excel sheet to

analyze any common themes and trends both quantitatively and qualitatively.

The ReadMe file of this document outlines the purpose of this study, and identifies the codes we

used in the subsequent sheets of this analysis. The SUS questions are standard system usability

questions to identify the usability of a general system. This alone does not give us information

about whether the system is functional or not.

70

The ReadMe also identifies the questions asked in the interview as well as learning objectives we

hoped to reach by asking these questions. The individual questions are mapped to one or more

target points.

71

This sheet shows the calculation of SUS scores by participant as well as the SUS score average

of all participants. Additionally we included the average score by each of the SUS questions. To

calculate this score we used a SUS data template to ensure no mistakes were made.

72

For each participant during the completion of each task, the participant identified whether the

task was completed successfully, if the participant had any trouble with the tasks, and jotted

down any comments the participant made during each task. The green boxes identify successful

completion of the task with no issues or redirections while the yellow boxes identify successfully

completed tasks with minor mistakes or if the participant got stock. The team also recorded

participant responses to the interview questions in this sheet and shows the mapping of target

points to questions.

73

From there, the team identified the general thoughts and feelings of each participant in regards to

the target points. These conclusions were made based on the responses to the respective

questions. For example, to understand participant one’s impressions of the system (target point

1), the team looked at the participants responses for questions 1, 2, 3, and 8. We also identified

any positive or negative comments that the user made on the system.

74

Finally, we identified the insights we got from this analysis. The SUS Items by Average Score

chart shows the average score by question. Since the odd numbered questions were positively

phrased (best being 5), and the even numbered questions were negatively phrased (best being 1),

by the participant responses we can conclude the system is acceptable in terms of usability.

Additionally the responses to what the system does well (acceptability) and what needs

improvement are shown in a bar chart.

75

Appendix D: Functional Prototype Images

76

Appendix E: Context Diagram

77

Appendix F: Data Flow Diagrams
Each of these diagrams are the updated data flow diagrams our team developed

78

79

Appendix G: Entity Relationship Diagrams

80

81

Appendix H: Use Cases

Add User

Participating
Actors

GGC User

Entry Conditions 1. User is a GGC User.

2. Email is a real email.

Exit Criteria The email is verified for system login. User has a role (GGC or
Westfield Farm)

Flow of Events 1. GGC User requests to add a user.

2. GGC User types in a new User’s email and submits a
request.

3. System adds email to a list of verified login emails,
refreshes display.

Remove User

Participating
Actors

GGC User

Entry Conditions ● User is selected.

Exit Criteria The email is no longer verified for system login.

Flow of Events 1. GGC User requests to remove a verified email.

2. System prompts GGC User to confirm removal.

3. GGC User confirms removal.

4. System removed email from the list of verified email
logins, refreshes display.

82

Log In

Participating
Actors

User

Entry Conditions User’s email is in the system.

Exit Criteria User is logged in.

Flow of Events 1. User requests to log in.

2. System verifies user email and displays GGC’s dashboard.

Log Out

Participating
Actors

User

Entry Conditions User is logged in.

Exit Criteria User is logged out.

Flow of Events 1. User requests to log out.

2. System logs out User and shows the login screen.

Record New Order

Participating
Actors

GGC User

Entry Conditions All required order information has been put in.

Exit Criteria Order has been recorded and an email is sent about the new
order.

83

Flow of Events 1. GGC requests to add an order.

2. System adds order to the system and refreshes the
display.

3. System sends an email to GGC and the Partner Farm that
a new order has been added.

Delete Order

Participating
Actors

GGC User

Entry Conditions An order is selected.

Exit Criteria The selected order and associated invoice is deleted.

Flow of Events 1. GGC requests to delete an order.

2. System prompts GGC to confirm that they want to delete
the order.

3. GGC responds to prompt on screen.

4. System deletes the order if GGC confirms the prompt and
refreshes the screen.

Update Order Information

Participating
Actors

User

Entry Conditions Order Information is being viewed and new information has been
put in.

Exit Criteria Order Information is updated.

84

Flow of Events 1. User requests to update order information.

2. The system updates the order information and refreshes
the screen.

Update Invoice Information

Participating
Actors

User

Entry Conditions Invoice Information is being viewed and new information has
been put in.

Exit Criteria Order Information is updated.

Flow of Events 3. User requests to update order information.

4. The system updates the order information and refreshes
the screen.

View Active Orders

Participating
Actors

User

Entry Conditions None

Exit Criteria The current orders are displayed.

Flow of Events 1. User requests to view the current active orders.

2. The system displays the current active orders.

View Completed Orders

85

Participating
Actors

User

Entry Conditions None

Exit Criteria All the orders are displayed.

Flow of Events 1. User requests to view completed orders.

2. The system displays the completed orders.

View Order Information

Participating
Actors

User

Entry Conditions Order is selected.

Exit Criteria The order information is displayed.

Flow of Events 1. User requests that the order information be displayed.

2. The system displays the order information.

View Invoice

Participating
Actors

User

Entry Conditions Order is selected and has an invoice.

Exit Criteria Invoice PDF is displayed.

Flow of Events 1. Userrequests to view invoice.

86

2. System displays Invoice PDF in a new window.

Search Orders

Participating
Actors

User

Entry Conditions Search parameters are specified.

Exit Criteria Orders matching search parameters are displayed.

Flow of Events 1. User requests to search for orders matching a set of
parameters.

2. The system displays all orders matching the search
parameters.

View Customers

Participating
Actors

GGC User

Entry Conditions None

Exit Criteria List of customers is displayed

Flow of Events 1. GGC requests to view the list of customers

2. The system displays all orders matching the search
parameters.

Copy Text Information

87

Participating
Actors

User

Entry Conditions None

Exit Criteria Text is copied to clipboard

Flow of Events 1. User requests to copy nearby text.

2. The system copies that text to the users clipboard.

Information Icon

Participating
Actors

User

Entry Conditions 1. Hover mouse over information icon next to site function

Exit Criteria Brief explanation of function and its uses

Flow of Events 1. User hovers over or clicks information icon

2. Small popup shows explanation of site function and its
uses

88

Appendix I: Data Dictionary

CUSTOMER

Attribute Type Constraint Description

CustomerID ID Primary Key Automatically
generated ID

FirstName String Not Null Customer’s first
name

LastName String Not Null Customer’s last
name

PhoneNumber String Customer’s primary
phone number

Email String Not Null Customer’s primary
email

ShippingID Foreign Key,
References
SHIPPING
ADDRESS

Associated
ShippingID if the
order is not a gift,
default NULL

SHIPPING ADDRESS

Attribute Type Constraint Description

ShippingID ID Primary Key Automatically
generated ID

StreetAddressOne String Not Null

89

StreetAddressTwo String

City String Not Null

State String Not Null

Zip String Not Null

ORDER

Attribute Type Constraint Description

OrderID ID Primary Key Automatically
generated ID

ReferenceNumber String Reference Number
(generated by GGC
Formsite)

DatePlaced Datetime Not Null Date the order was
placed on.

IsGift TinyInt True if the order is a
gift.

GiftFor String Name of the
recipient of the gift
(Full name / title to
address the order)

GiftMessage String Optional gift
message that
customers can
choose to send
with their order.

90

TrackingNumber String When shipping the
order, the farm
receives a
shipment tracking
number from
Stamps.com. This
attribute tracks that
number. When
filled out, the order
status changes to
shipped.

OrderStatus Enum Current order
status [Placed,
Processed,
Shipped,
Complete, Archive]

ShippingID Foreign Key,
References
SHIPPING
ADDRESS

Associated
shipping address
(where to send the
order)

CustomerID Foreign Key,
References
CUSTOMER

ID of the customer
who placed an
order.

IsSelfOrder TinyInt True if the order is
placed by GGC for
pickup at the farm.

ORDER_STATUS ENUM

String Context

Placed Order is placed on Formsite or by GGC.

91

Processed Order is sent to the farm.

Shipped Order is shipped from the farm.

Complete Order is received by the customer.

Archive Order is over 3 months old.

ORDERLINE

Attribute Type Constraint Description

LineOrderID ID Primary Key,
References ORDER
OrderID

Associated Order’s
ID

LineProductID ID Foreign Key,
References
PRODUCT Sku

Associated ID of
one product in an
order.

QtyOrdered Int Quantity ordered of
the associated
product.

PRODUCT

Attribute Type Constraint Description

Sku ID Primary Key Westfield Farm
SKU Value or
determined by
ADMIN.

Name String Name of the
cheese flavor or

92

item.

Description String Description of the
item.

INVOICE

Attribute Type Constraint Description

OrderID ID Primary Key,
References ORDER

Associated Order
ID

InvoiceNumber String Westfield Farm
invoice number.

Revenue Float Amount GGC made
from the order

(Revenue =
CustomerPaid -
Expense)

*Note: this should
be changed to
“Profit”*

Expense Float Amount GGC owes
the farm.

CustomerPaid Float Amount customer
paid for the order (0
if its a selfOrder)

InvoiceStatus Enum Status of the
invoice.

INVOICE_STATUS ENUM

93

String Context

Missing Invoice is missing an invoice number (default).

Waiting Invoice number and expense is sent to GGC. This is the status
when an InvoiceNumber is input to the database.

PaymentSent Invoice payment has been sent by GGC Accounting.

PaymentRecieved Invoice payment has been received by the farm.

USER

Attribute Type Constraint Description

UserID ID Associated User ID,
automatically
incremented.

Nickname String Nickname for
welcome message.

Email String User email

Password String User password

PermissionType Enum Users’ permission
for
accessing/updating
data.

PERMISSION_TYPE ENUM

94

String Context

ADMIN Users have administrator privileges.

GGC Users can read/add/edit/delete orders and update invoice
status to PaymentSent.

FARM Users can read order information but ONLY edit the
InvoiceNumber, Expense, and change InvoiceStatus to
PaymentRecieved.

95

Appendix J: Package.json

(root)
{

"name": "ggcportal",

"version": "1.0.0",

"description": "",

"main": "server.js",

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1",

"server": "nodemon --quiet server",

"start": "nodemon --exec babel-node server.js",

"client": "npm start --prefix client",

"build": "babel server.js --out-file server.compiled.js"

},

"repository": {

"type": "git",

"url": "git+https://github.com/geacquista/GGCPortal.git"

},

"keywords": [

"nodejs",

"express",

"mysql",

"restapi"

],

"author": "niniacquista",

96

"license": "ISC",

"dependencies": {

"@babel/preset-react": "^7.18.6",

"aws-chime": "git+ssh://git@github.com:aws/amazon-chime-sdk-js.git",

"aws-sdk": "https://github.com/aws/aws-sdk-js.git",

"bootstrap": "^5.2.3",

"cors": "^2.8.5",

"express": "^4.18.2",

"mysql": "latest",

"mysql2": "^3.2.0"

},

"bugs": {

"url": "https://github.com/geacquista/GGCPortal/issues"

},

"homepage": "https://github.com/geacquista/GGCPortal",

"devDependencies": {

"@babel/cli": "^7.21.0",

"@babel/core": "^7.21.3",

"@babel/node": "^7.20.7",

"@babel/plugin-syntax-jsx": "^7.21.4",

"@babel/preset-env": "^7.20.2",

"nodemon": "^2.0.22"

},

"engines": {

"node": "16.17.0"

97

}

}

(client)
{

"name": "frontend_goats_portal",

"version": "0.1.0",

"private": true,

"dependencies": {

"@reduxjs/toolkit": "^1.9.1",

"@testing-library/jest-dom": "^5.16.5",

"@testing-library/react": "^13.4.0",

"@testing-library/user-event": "^14.4.3",

"axios": "^1.2.2",

"bootstrap": "^5.2.3",

"connected-react-router": "^6.9.3",

"date-fns": "^2.29.3",

"formik": "^2.2.9",

"history": "^5.3.0",

"moment": "^2.29.4",

"react": "^17.0.0",

"react-datepicker": "^4.8.0",

"react-dom": "^17.0.0",

"react-redux": "^7.1.0",

"react-router-dom": "^6.4.5",

98

"react-scripts": "^2.1.3",

"react-switch": "^7.0.0",

"redux": "^4.2.0",

"redux-thunk": "^2.4.2",

"web-vitals": "^2.1.4",

"yup": "^1.0.2"

},

"scripts": {

"start": "react-scripts start",

"build": "react-scripts build",

"test": "react-scripts test",

"eject": "react-scripts eject"

},

"eslintConfig": {

"extends": [

"react-app",

"react-app/jest"

]

},

"browserslist": {

"production": [

">0.2%",

"not dead",

"not op_mini all"

],

"development": [

99

"last 1 chrome version",

"last 1 firefox version",

"last 1 safari version"

]

}

}

100

Appendix K: MySQL Script
CREATE TABLE `GGC_WAREHOUSE_CLOUD`.`User` (

`userID` int NOT NULL AUTO_INCREMENT,

`email` varchar(45) NOT NULL,

`password` varchar(45) NOT NULL DEFAULT 'ggc@wpi',

`nickname` varchar(45) DEFAULT NULL,

`permissionType` enum('ADMIN','GGC','FARM') NOT NULL,

PRIMARY KEY (`userID`)

) ;

CREATE TABLE `GGC_WAREHOUSE_CLOUD`.`Product` (

`sku` varchar(15) NOT NULL,

`name` varchar(45) NOT NULL,

`description` varchar(1024) DEFAULT NULL,

PRIMARY KEY (`sku`),

UNIQUE KEY `sku_UNIQUE` (`sku`)

) ;

CREATE TABLE `GGC_WAREHOUSE_CLOUD`.`ShippingAddress` (

`shippingID` int(11) NOT NULL AUTO_INCREMENT,

`streetAddressOne` varchar(255) NOT NULL,

`streetAddressTwo` varchar(45) DEFAULT NULL,

`city` varchar(255) NOT NULL,

`state` varchar(45) NOT NULL,

`zip` char(5) NOT NULL,

PRIMARY KEY (`shippingID`)

101

) ;

CREATE TABLE `GGC_WAREHOUSE_CLOUD`.`Customer` (

`customerID` int NOT NULL AUTO_INCREMENT,

`firstName` varchar(45) NOT NULL,

`lastName` varchar(45) NOT NULL,

`phoneNumber` varchar(45) DEFAULT 'NA',

`email` varchar(255) NOT NULL,

`customerShippingId` int DEFAULT NULL,

PRIMARY KEY (`customerID`),

UNIQUE KEY `customerID_UNIQUE` (`customerID`),

KEY `ShippingID_idx` (`customerShippingId`),

CONSTRAINT `CustomerAddressID` FOREIGN KEY (`customerShippingId`) REFERENCES

`ShippingAddress` (`shippingID`)

);

CREATE TABLE `GGC_WAREHOUSE_CLOUD`.`Order` (

`orderID` int NOT NULL AUTO_INCREMENT,

`referenceNumber` varchar(45) DEFAULT NULL,

`datePlaced` datetime NOT NULL,

`isGift` tinyint NOT NULL DEFAULT '0',

`giftFor` varchar(108) DEFAULT NULL,

`giftMessage` varchar(1024) DEFAULT NULL,

`trackingNumber` varchar(45) DEFAULT NULL,

`orderStatus` enum('Placed','Proccessed','Shipped','Complete','Archive') NOT NULL

DEFAULT 'Placed',

`shippingId` int NOT NULL,

102

`customerId` int NOT NULL,

`isSelfOrder` tinyint DEFAULT '0',

PRIMARY KEY (`orderID`),

KEY `ShippingID_idx` (`shippingId`),

KEY `CustomerID_idx` (`customerId`),

KEY `OrderStatusID_idx` (`orderStatus`),

CONSTRAINT `CustomerID_Order_FK` FOREIGN KEY (`customerId`) REFERENCES `Customer`

(`customerID`) ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT `ShippingID_Order_FK` FOREIGN KEY (`shippingId`) REFERENCES

`ShippingAddress` (`shippingID`) ON DELETE CASCADE ON UPDATE CASCADE

) ;

CREATE TABLE `GGC_WAREHOUSE_CLOUD`.`Invoice` (

`orderID` int NOT NULL,

`invoiceNumber` varchar(45) DEFAULT NULL,

`customerPaid` float DEFAULT '0',

`revenue` float DEFAULT '0',

`expense` float DEFAULT '0',

`invoiceStatus` enum('Missing','Waiting','PaymentSent','PaymentRecieved') DEFAULT

'Missing',

PRIMARY KEY (`orderID`),

UNIQUE KEY `OrderID_UNIQUE` (`orderID`),

CONSTRAINT `ORDER_ID_INVOICE_FK` FOREIGN KEY (`orderID`) REFERENCES `Order`

(`orderID`) ON DELETE CASCADE ON UPDATE CASCADE

) ;

CREATE TABLE `GGC_WAREHOUSE_CLOUD`.`OrderLine` (

103

`lineOrderID` int NOT NULL,

`lineProductID` varchar(15) NOT NULL,

`qtyOrdered` int DEFAULT '0',

PRIMARY KEY (`lineOrderID`,`lineProductID`),

KEY `sku_idx` (`lineProductID`),

CONSTRAINT `LineOrderID_FK` FOREIGN KEY (`lineOrderID`) REFERENCES `Order`

(`orderID`) ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT `SKU_FK_LINE` FOREIGN KEY (`lineProductID`) REFERENCES `Product` (`sku`)

ON UPDATE CASCADE

) ;

-- AFTER IMPORTING ANY DATA IN CSV FILES, ADD THE TRIGGER TO AFTER INSERT ORDER

CREATE DEFINER = CURRENT_USER TRIGGER

`GGC_WAREHOUSE_CLOUD`.`Order_AFTER_INSERT_GENERATE_INVOICE` AFTER INSERT ON `Order`

FOR EACH ROW

BEGIN

insert into `GGC_WAREHOUSE_CLOUD`.`Invoice`(`orderID`) values (new.orderID);

END

104

Appendix L: Python Script

Script to transform sample GGC order data from one csv into several

csv files

representing tables in a database

Author: Ben Sakac

Field names of sample data:

Date Received,Reference Number,"Name (last, first)",Email,Phone,

Town/City,State,Zip,Quantity (logs),Gift?,Gift For,Sold For,

Bought For,Flavor 1,Flavor 2,Flavor 3,Flavor 4,Flavor 5,Flavor

6,Flavor 7,

Flavor 8,Flavor 9,Flavor 10,Flavor 11,Flavor 12,Flavor 13,Flavor

14,

Flavor 15,Flavor 16,Flavor 17,Flavor 18,Flavor 19,Flavor 20,Flavor

21,

Flavor 22,Flavor 23,Flavor 24,Flavor 25,Flavor 26,Flavor 27,Flavor

28,

Flavor 29,Flavor 30,Flavor 31,Flavor 32

Self Orders/Orders made by campus orgs or other external

organizations were removed from

input csv and added into output CSVs manually with exception of

order reference # 5838657

which needed first and last name to be manually corrected post

script running

Gift? column also needs manual cleaning to ensure script will run

Changing Gift? column to ensure Ys and Ns are all capitalized

Module imports

import random

import pandas as pd

final db tables column names

SHIPPING_FIELDS = ["shippingID", "streetAddressOne",

"streetAddressTwo", "city", "state", "zip"]

CUSTOMER_FIELDS = ["customerID", "firstName", "lastName",

"phoneNumber", "email", "customerShippingID"]

ORDER_FIELDS = ["orderID", "datePlaced", "isGift", "giftFor",

105

"giftMessage", "trackingNumber",

"orderStatus", "shippingID", "customerID",

"referenceNumber"]

INVOICE_FIELDS = ["orderID", "invoiceNumber", "customerPaid",

"expense", "revenue", "invoiceStatus"]

ORDERLINE_FIELDS = ["lineOrderID", "lineProductID", "qtyOrdered"]

products dictionary {Name: ID}

PRODUCTS = {

"Plain": "jPL5",

"Herb Garlic": "jHG5",

"Hickory Smoked": "jSM4",

"Blueberry Lemon": "jBL6",

"Cranberry Orange": "jCRA",

"Pink Peppercorn": "jPI5",

"Fiery Fig": "jFF6",

"Chive": "jCHI",

"Calabrini": "jCA6",

"Chocolate": "jCHO",

"3LB Calabrini": "jCA3",

"3LB Herb Garlic": "jHGB",

"3LB Plain": "jPLB3",

"Chive Capri": "jCHI",

"Herb Capri": "jHE5",

"Pepper Capri": "jPE5",

"Wasabi": "jWA6",

"Herb Garlic (8oz)": "jHG8"

}

Input filename

raw_data = "ggc_sample.csv"

Number of rows in csv

SRC_ROWS = 559

Filenames for output files

SHIPPING = "output/shipping.csv"

CUSTOMER = "output/customer.csv"

ORDER = "output/order.csv"

INVOICE = "output/invoice.csv"

106

ORDERLINE = "output/orderline.csv"

Create data frame from sample data

df_sample_data = pd.read_csv(raw_data)

rename columns to match what they will be in DB tables

df_sample_data = df_sample_data.rename(columns={'Town/City': 'city',

'State': 'state',

'Zip': 'zip',

'Email': 'email',

'Phone':

'phoneNumber',

'Gift?': 'isGift',

"Gift For":

"giftFor",

"Date Received":

"datePlaced",

"Reference Number":

"referenceNumber",

"Bought For":

"expense",

"Sold For":

"revenue"})

Create shipping table with default of address as WPI,

All historical customers will have this as their address,

A new order by that customer entered into the system will update

their address

shipping_cols = ["city", "state", "zip",

"streetAddressOne", "streetAddressTwo",

"shippingID"]

df_shipping_table = pd.DataFrame(columns=shipping_cols)

default_address = {"city": "Worcester",

"state": "MA",

"zip": "01609",

"streetAddressOne": "100 Institute Rd.",

"streetAddressTwo": "",

"shippingID": "1"}

df_shipping_table.loc[len(df_shipping_table)] = default_address

107

Split Last and First name into separate columns

customer_cols = ["Name (last, first)", "phone", "email"]

name_field = "Name (last, first)"

df_name_split = pd.DataFrame(df_sample_data[name_field].str.split(

", ").to_list(), columns=["Last", "First"])

df_sample_data['firstName'] = df_name_split['First']

df_sample_data['lastName'] = df_name_split['Last']

df_sample_data = df_sample_data.drop(name_field, axis=1)

CUST_FIELDS_NO_IDs = ["firstName", "lastName", "phoneNumber",

"email"]

Create DF of only rows where gift is no

df_not_gift_orders = df_sample_data[df_sample_data['isGift'] == "N"]

Drop duplicate based on email, keep last

df_not_gift_orders_customers = df_not_gift_orders.drop_duplicates(

['email'], ignore_index=True, keep="last")

Left join to get shippingID for each customer

df_NGOC_shipID = df_not_gift_orders_customers.loc[:,

CUST_FIELDS_NO_IDs].copy()

df_NGOC_shipID['customerShippingID'] = 1

Create DF of only rows where gift is yes

df_gift_orders = df_sample_data[df_sample_data['isGift'] == "Y"]

Drop duplicate based on email, keep last

df_gift_orders_customers = df_gift_orders.drop_duplicates(

['email'], ignore_index=True, keep="last")

Left join to get shippingID for each customer

df_GO_shipID = df_gift_orders.loc[:, CUST_FIELDS_NO_IDs].copy()

df_GO_shipID["customerShippingID"] = ""

Isolate customers who have only placed gift orders

df_gift_only_customers =

df_gift_orders_customers[~df_gift_orders_customers['email'].isin(

df_NGOC_shipID['email'])]

Combine non gift with gift orders removing duplicates and keeping

shipping info from non gift

df_combine_NGOCSID_GOC =

df_NGOC_shipID.combine_first(df_gift_orders_customers)

108

Concat that with gift only customers to get final unique customer

list

df_uniq_cust = pd.concat(

[df_combine_NGOCSID_GOC, df_gift_only_customers],

ignore_index=True)

Strip phone numbers of spaces and dashes

df_uniq_cust['phoneNumber'] =

df_uniq_cust["phoneNumber"].str.replace(

r'\D', '')

Create customerID

df_uniq_cust['customerID'] = pd.RangeIndex(1, len(df_uniq_cust) + 1)

Swap isGift Y to 1 and N to 0

df_uniq_cust["isGift"] = df_uniq_cust["isGift"].replace({"Y": 1, "N":

0})

Final unique customers data frame

df_unique_customers = df_uniq_cust.loc[:, CUSTOMER_FIELDS].copy()

Order

order_cols = ["orderID", "datePlaced", "isGift", "giftFor",

"giftMessage",

"trackingNumber", "orderStatus", "shippingID",

"customerID", "referenceNumber"]

Merge sample data with unique customers on email

merged_df_orders_shipping_customers = df_sample_data.merge(

df_unique_customers, on=["email"], how='left')

Create orderID

merged_df_orders_shipping_customers["orderID"] = pd.RangeIndex(

1, len(merged_df_orders_shipping_customers) + 1)

merged_df_orders_shipping_customers["trackingNumber"] = ""

merged_df_orders_shipping_customers["orderStatus"] = ""

merged_df_orders_shipping_customers["shippingID"] = 1

df_orders = merged_df_orders_shipping_customers

Add gift message if order was gift

df_orders.loc[df_orders["isGift"] == "Y",

"giftMessage"] = "This is a fake gift message!"

Convert dates to datetime

df_orders["datePlaced"] = pd.to_datetime(df_orders['datePlaced'])

Invoice

df_invoice = df_orders.copy()

109

df_invoice['invoiceNumber'] = ""

df_invoice['isPaid'] = 0

df_invoice['customerPaid'] = "PaymentRecieved"

df_invoice["invoiceStatus"] = "PaymentSent"

Orderline

LIST_FLAVOR_FIELDS = ["Flavor 1", "Flavor 2", "Flavor 3", "Flavor 4",

"Flavor 5", "Flavor 6", "Flavor 7",

"Flavor 8", "Flavor 9", "Flavor 10", "Flavor

11", "Flavor 12", "Flavor 13", "Flavor 14",

"Flavor 15", "Flavor 16", "Flavor 17", "Flavor

18", "Flavor 19", "Flavor 20", "Flavor 21",

"Flavor 22", "Flavor 23", "Flavor 24", "Flavor

25", "Flavor 26", "Flavor 27", "Flavor 28",

"Flavor 29", "Flavor 30", "Flavor 31", "Flavor

32"]

Create dictionary where key is orderID and value is list of

products ordered

dict_orders: dict[int, list[str]] = {k: [] for k in

df_orders["orderID"]}

for field in LIST_FLAVOR_FIELDS:

for index, row in df_sample_data.iterrows():

if type(row[field]) != float:

dict_orders[index +

1].append(PRODUCTS[row[field].strip().title().replace("Lb", "LB")])

Also mess around with sample data and make sure there

are no typos

dict_product_qtys = {}

dict_order_line = {}

Looping through orders

for (orderID, products_ordered) in dict_orders.items():

Looping through each item in list of products ordered

for item in products_ordered:

Create dictionary where key is item and val is quantity

ordered

dict_product_qtys[item] = products_ordered.count(item)

110

Set orderline key orderID to value dict product keys

dict_order_line[orderID] = dict_product_qtys

df_orderline = pd.DataFrame(columns=ORDERLINE_FIELDS)

Create final dataframe from orderline dictionary

for (orderID, prod_qtys) in dict_order_line.items():

for prodID, prodQty in prod_qtys.items():

df_orderline.loc[len(df_orderline)] = [orderID, prodID,

prodQty]

Output files

df_shipping_table[SHIPPING_FIELDS].to_csv(SHIPPING, index=False)

df_unique_customers[CUSTOMER_FIELDS].to_csv(CUSTOMER, index=False)

df_orders[ORDER_FIELDS].to_csv(ORDER, index=False)

df_invoice[INVOICE_FIELDS].to_csv(INVOICE, index=False)

df_orderline[ORDERLINE_FIELDS].to_csv(ORDERLINE, index=False)

print("DONE")

111

Appendix M: Support Documentation

Where can everything be found?
We created a Github project setup with an AWS CodePipeline used to build and deploy the app
in an Elastic Beanstalk environment. The backend of the environment was configured to an
Amazon RDS MySQL instance so the app could make use of environment variables. There is a
cloned version of the codebase in Gompei’s GitHub Organization and a new Amazon AWS
account set up for the future team. There will be instructions and links to resources on how to
set up the AWS CodePipeline and Elastic Beanstalk Environment in the README.md.

How to access information and accounts?
This is filler text for black highlighter

This section is removed for security reasons.

What now? Running the Codebase
In order to access the codebase, a developer needs a computer that can access GitHub and

any preferred IDE to run the code. A user is able to access the codebase by following these

steps. Further information can be found in the README.md.
1. Add a personal Github account to Gompei’s Github (Organization)

a. Log into the GGC Admin Github account and add the account as a collaborator

on the organization.

2. Clone the GGCPortal repository to the local machine.

3. Delete the .node_modules folders and package-lock.json files in root and client

directories.

4. Run ‘npm install’ in the terminal of the client AND root directories

5. Run ‘npm run build’ in the terminal of the client AND root directories

a. This command creates the production build directory of the app, which is the

code actually being deployed.

b. Running ‘npm run build’ in the root directory updates the server.compiled.js file,

which creates a build of the app that can run on the Node.js version expected by

Elastic Beanstalk.

6. Run ‘npm run start’ on root directory

7. Open browser to local http://localhost:3001/

a. Note: If you run ‘npm run start’ in the client directory, localhost:3000 will open the

client app, but the root (Express server) needs to be running in order to see

112

http://localhost:3001/

information from the database. This is a good way to see your frontend changes

automatically deployed, because you need to run ‘npm run build’ every time you

want to see frontend changes running the root directory.

8. Success! You should see the G.O.A.T.S. login page.

What has been done?

Paper Documentation

In our paper, there are a lot of helpful diagrams and other documentation, including:
System Use-Cases, Data Flow Diagrams, an Entity Relationship Diagram, a Data
Dictionary, a User Flow Diagram, System Mockups, and a Software Architecture
Overview.

Database Schema: GGC_WAREHOUSE_CLOUD

The database that this project uses is Amazon RDS MySQL database. This was chosen
for various reasons outlined earlier in the paper.

To continue with using this type of database and API, a new instance must be created,
connect to that endpoint, create schema ‘GGC_WAREHOUSE_CLOUD’ and run the
MySQL script to create the backend tables. Import refresh csv files to their respective
tables and then add the trigger into the order table.

The IAM account should have access to read the following database snapshot in the
Phase 2 AWS account:

Snapshot Name:
ggc-mqp-2-snapshot

DB Instance:

ID removed for security reasons

Front-end Development:

The status of front-end development can be found in the README.

Looking for resources to begin understanding the frameworks used in this
software?
There are many great resources out there but here’s a list of some of the things that helped the
team get started. If you’re interested in an academic reading that involves Redux and React, I
recommend this one :)

113

https://us-east-1.console.aws.amazon.com/rds/home?region=us-east-1#db-snapshot:engine=mysql;id=ggc-mqp-2-snapshot
https://jyx.jyu.fi/bitstream/handle/123456789/54129/URN%3aNBN%3afi%3ajyu-201705272524.pdf?sequence=1&isAllowed=y

Figma:

Figma Tutorial: Prototyping
Figma Tutorial: Interactive Components

Front End:

React.js Crash Course
Crash Course Github
Intro to React Tutorial

React Functional Components
React Class Components

Conditional Rendering
Conditional Rendering with Enum

Redux Toolkit
Toolkit Fundamentals Tutorial
CRUD with Redux Toolkit

Back End:

What is Express.js?
Express Routing
Axios Documentation
Rest API with Express and MySQL

Version Control:

Beginner’s Guide to npm
Gitting Started
Git Cheat Sheet

Amazon AWS:

Getting Started
MySQL to Amazon RDS
AWS RDS Setup Example
Full Stack with Elastic Beanstalk
Elastic Beanstalk Deployment Tutorial

The README.md
Hello! You are likely feeling incredibly overwhelmed looking at so much code. Take a

deep breath!

114

https://www.youtube.com/watch?v=-sAAa-CCOcg&t=11s
https://www.youtube.com/watch?v=ReNbXhaL3Xk&t=8s
https://www.youtube.com/watch?v=w7ejDZ8SWv8&list=WL&index=5&t=28s
https://github.com/bradtraversy/react-crash-2021
https://reactjs.org/tutorial/tutorial.html
https://www.freecodecamp.org/news/react-components-jsx-props-for-beginners/
https://www.w3schools.com/react/react_class.asp
https://reactjs.org/docs/conditional-rendering.html
https://reactpatterns.js.org/docs/conditional-rendering-with-enum/
https://redux-toolkit.js.org/
https://redux.js.org/tutorials/quick-start
https://www.bezkoder.com/redux-toolkit-example-crud/
https://www.codecademy.com/article/what-is-express-js
https://expressjs.com/en/guide/routing.html
https://axios-http.com/docs/intro
https://www.bezkoder.com/node-js-rest-api-express-mysql/
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/
https://docs.github.com/en/get-started/using-git/about-git
https://ohshitgit.com/
https://aws.amazon.com/free/webapps/?trk=0859629e-29af-428f-ab68-152ecf240a0b&sc_channel=ps&s_kwcid=AL!4422!3!531871356647!e!!g!!aws%20web%20hosting&ef_id=Cj0KCQiAtvSdBhD0ARIsAPf8oNmXV8vo9sX6rcDAfFOQlIu02_5xy03n7ROI-9gNh8llH0BrbSc7iccaApEaEALw_wcB:G:s&s_kwcid=AL!4422!3!531871356647!e!!g!!aws%20web%20hosting
https://aws.amazon.com/getting-started/hands-on/move-to-managed/migrate-my-sql-to-amazon-rds/
https://www.youtube.com/watch?v=zOsO996Esck
https://www.youtube.com/watch?v=L2UQnPb5Pho
https://medium.com/@wlto/how-to-deploy-an-express-application-with-react-front-end-on-aws-elastic-beanstalk-880ff7245008

There are quite a few bugs in the code that just weren't resolved when the time was

up, so this README will try and point you where to start.

To login, use any of the email/password combinations in the user.csv file (or however

you've configured the database).

1. Overview of the mess, (and what I learned throughout MQP):

- There are a mix of React classes and React functional components in the codebase,

but going forward I would consider making everything components (Chat GPT is your

friend).

- The reason I didn't do this was because of using mapStateToProps with Redux

Toolkit, to investigate the alternative with functional components.

- The tab system in MainOrderCards_Tabs is buggy. It's essentially the remnants of

the Phase One Prototype, so consider revamping the code or scratching it altogether

with a new tab/windowing solution.

- Check the rendering of the OrderCards, it doesn't seem to be working quite right

for the Search component

- You can probably see this in the screenshots in the final paper, but the

Search Page shows 0 logs for every order card, which is obviously wrong.

- Also... the onclick function for those cards was never fixed, but don't focus

on that until the tab system works

- Check on OrderLines, in ExistingOrder_Tab I disabled editing an orderline because

it was deemed to be a bit more complicated than anticipated.

- An orderline has a dual primary key (the order id, and the product id), but

we only create an order line for the products ordered.

- When a user then goes to edit the products ordered on an existing order, the

front-end arraylist of ProductsOrdered doesn't care that a primary key changed.

- So, going to update the orderliness with the new list of products doesn't

work.

- The solution was to delete each orderline of that order, and add the new

ones, but it's getting a duplicate primary key error.

- All in all, consider just creating an integer PK to avoid any more issues

with the dual key.

- The AdminPanel was the first thing that worked. I swear. It was the first thing

that connected the front and backend. But at some point... one day... the users

stopped appearing. I didn't look into it... Presentation day passed and I have quite

literally run out of time.

115

- I think it'll be a good place to start and debug to understand:

1. how the components get information from the store -->

2. how the store gets information from the API -->

3. how the API calls the backend.

- App.js contains the Navbar actually being used: Navbar.js has the correct styling

-- it's from Phase One, but App.js provides the structure for user permissions and

login authorization.

- It does not currently handle access tokens or password security but that

should be fixed before put into production.

- The Routes are the possible pages of the application with their respective

components.

- Above the list of routes is the navbar rendering. Depending on the type of

user logged in will control which buttons are shown. The farm side routes are set up

but the components are not made (literally copy and paste once you've made your edits

to the order state)

- An Admin user has access to the Admin panel but they should also have their

own order page to be able to update EVERY field.

- Finalizing the admin flow will allow the software to be integrated for

company use.

- Rework the Redux Toolkit slices, they were inherently based on the tables in the

backend but that's not necessarily the best approach. The order slice should hold ALL

of the information on an order, rather than holding the shippingId, customerId, etc

(like the backend table would). The local state in the OrderCard and ExistingOrder_Tab

should be populated much more simply than it is now -- fixing this will probably save

you the trouble I went through and solve the frontend issues explained earlier (I

started with populating the order cards, then add order, then existing, and... I could

have avoided a lot of problems, hopefully this is something that can be fixed quickly

if you are at all familiar with React)

- Keep the other slices available (customers, shipping addresses, etc. even

keep a copy of the order_slice around while you work a new solution, it's gonna be

tricky manipulating the data as its passed directly from the backend, but that's where

most of the work needs to be done), but it's not necessary to be joining arrays and

objects in the frontend business logic -- just create the frontend state EXACTLY how

it'll be useful for you populating the UI... then go back and rework your queries or

data services.

- Also, research best practices for having business logic in the slices, I

think you can do more with them than I am currently doing. That might help with a lot

of the frontend calculations.

- Speaking of queries and data services, the API's need quite a bit of work.

116

- If you find it to be too much work, you can consider Amazon AWS REST API

Gateway, but developing the Express server and APIs yourself is a great way to

strengthen backend software engineering skills, and will help you feel a greater

amount of control over how data is passed across the server.

- You may need to wrap the order form in a form element, because right now it

functions as a form but the required conditions aren't enforced by anything.

- One flow that does work and should be used to conduct a user test is as follows:

(it doesn't really matter that not all the information shows up/can be edited yet)

1. Login to the system as a regular GGC User

- email: gr-ggc@wpi.edu

- password: company

2. Navigate to the Orders tab

3. Click add order

4. Fill in the order information

- The user has the option to clear the fields if they mess up

5. Save the new order.

6. Navigate to the Active Orders tab and click the newly created order.

7. In the existing order tab, click edit and change the reference number to

something easy to remember.

8. Navigate to the Search page.

9. Type the reference number in the search bar and watch as your order appears.

10. Go back to the Orders screen (it would be convenient if the onclick worked

for the card)

11. In the Active Orders tab, click your order and delete it.

12. Confirm delete and verify it was removed from the active orders page (this

might not work, it might look like a different order was deleted... but if you refresh

the screen the correct order was deleted... sorry but that's probably another bug to

go fix :)

2. How do I navigate the codebase? (GGCPortal is the root directory) It's gonna take

some time to get comfortable. Here's a cheat sheet:

- Configurations:

1. (.ebextensions/) & (.elasticbeanstalk/) are directories for elastic

beanstalk environment configurations. They probably won't need to change unless you're

modifying how the app is being deployed to eb.

2. (babel.config.js) has the babel configuration for the server. Look at Babel

documentation for more clarification on what it does.

3. (Procfile) is similar to a makefile, it allows the web app know which file

to run the server on (which is server.compiled.js because it is the compiled version

of our app)

117

4. (package.json) manages root project dependencies, configuration, and scripts

- includes express and mysql configurations

4. (client/package.json) manages client project dependencies, configuration,

and scripts - includes all of the React stuff irrelevant to server itself

- Notable "Entry" Files:

1. (server.js) The main entry point of the Express.js server that defines and

configures the server, middleware, routes, and any other setup.

- (server.compiled.js) is generated by running 'npm run build', this is

what the Procfile points to

2. (client/src/index.js) this is the main entry point for the React app

- imports necessary dependencies: react, react-dom, the main app component,

and provides the *store* to the component!

- renders the app component into the DOM using the ReactDOM.render()

method.

3. (client/src/App.js) START HERE!!!

- the main app component! This is where I have login authorization

happening and create the routes for the navigation bar.

4. (app/models/db.js) gets path to db configuration and exports the database

connection

5. (client/src/http-common.js) this defines the Axios connection to fetch from

API

6. (client/src/store_cfg.js) this is where the slices (from app/src/store) and

any middleware are combined into one reducer.

- (app/): home of the Express API stuff

1. (config/) each file in here is configured its own db endpoint

- for best practice with EB, use environment variables (secured.cnfg.js)

2. (controllers/)

- handle incoming requests, process the data, and return the response to

the client

- one controller for each db model in addition to an auth controller

(verifying user) and a board controller (this is unused right now but you should play

with the routing based on user permission)

3. (middleware/)

- I don't use any of the middleware but this is where it should be defined.

4. (models/)

- These define the schema of the database table

- They are the ORM representation in JS

- This is where the queries are -- look into creating join queries (you'd

probably put it in the order model, but look into how to handle that)

5. (routes/) Map the API requests to the correct place

118

- (client/src/): home of the React App

1. (services/) Think of them as your routes from the frontend.

- These are the Axios calls to your APIs depending on which service

2. (assets/) fonts, images, style, util

3. (store/) is where all of our slices are configured.

- Go here to learn about the state of the application and how the framework

works.

4. (views/) All of the JS components and classes for the frontend

- (tables/):

1. (sql scripts) all of the table creation scripts in MySQL including one

master script and an order trigger after add.

2. (csv files) backup from CSV files to use if necessary and to reference the

data model in a real order.

3. You might have a few thoughts. One will be to completely start over, another will

be to try and fix each thing at a time. Hopefully you don't start over, I tried to

make this as modular as possible. My advice:

- Please before anything else update the dependencies and versions. It might be

beneficial to do more research into what is compatible with what but the big ones to

look at are MySQL (used 5.7.41 in RDS) Node.js, React, Redux, etc (see the

package.json file)

4. What the heck do I do about Elastic Beanstalk? Once you are able to use the AWS

account created for you (and hopefully be a permanent account), set up a codepipeline

from Github to an Elastic Beanstalk environment.

- Create the EB Environment

- Setup the CodePipeline from Github to the EB Environment

Follow the steps here to guide you with EB and CodePipeline:

https://www.honeybadger.io/blog/node-elastic-beanstalk/

- Setup the database through the environment

Follow the steps here to guide you with setting up a database in EB:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.db.html

Follow the steps here

Author: Nini Acquista

119

Still confused and neeeeed to bug an alumni with questions? geacquista@wpi.edu

120

