Continuing Development of a
Cloud-Based Enterprise Resource
Planning System for Gompei’s Goat
Cheese

A Major Qualifying Project Submitted to the Faculty of WORCESTER POLYTECHNIC
INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of
Science

By:

Gabrielle Acquista
BS in Computer Science

Victoria Buyck
BS in User Experience Design

Benjamin Sakac
BS in Management Information Systems

Sohrob Yaghouti
BS in Management Information Systems

Date: April 26, 2023
Submitted to:
Gompei’s Goat Cheese, Unofficial Sponsor

James E. Ryan, MIS Advisor
Michael Engling, CS Advisor

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion of
a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review.

Abstract

Gompei’s Goat Cheese is a non-profit, student-run business with a mission of supporting global
scholarships, promoting entrepreneurial skills, and allowing members to be part of something
that has real impact. However, their operations would be improved by an enterprise resource
planning (ERP) system. A previous MQP designed and began development on such a system.
The goal of this project was to continue development of a cloud-based ERP system to improve
the efficiency of GGC’s operations. After gaining user feedback on a high-fidelity prototype, the
team iterated on the previous design and continued development work. A functional prototype
brings GGC one step closer to a system that provides them the benefits of a cloud based platform

that will centralize and unify their data.

Acknowledgements

We would first like to thank Gompei’s Goat Cheese for sponsoring this MQP. They have
continued to build on this organization for years since the previous MQP groups that started
GGC in 2013 and 2014. We are also excited to congratulate their founders and the current GGC

team as GGC has reached its ten year anniversary on April 18, 2023.

We are incredibly grateful for Jeremy Berman, Danielle Payne, Joseph Botelho and Rodrigo
Calles; these dedicated students created the foundation for this thriving student-run business and
for the future of student-run entrepreneurial endeavors at WPI. Without them, none of this would
have been possible. We would also like to thank the current GGC executive board for their time
and participation in our user study. Their feedback shaped the way we designed our iteration of

this system so we couldn't have done it without their help.

We would also like to thank our advisors Professor Jim Ryan and Professor Michael Engling for
their continued support throughout the course of this project. We couldn't have made it through

without their guidance, kindness, and understanding.

And finally, thank you to the goats. All of them. Without them, we have no goat cheese. At that
point it's just cheese which definitely isn't as cool. Also thanks Gompei, our mascot, we love

you!

i

Executive Summary

Gompei’s Goat Cheese (GGC) is a
non-profit student-run business that sells
award winning cheese from Westfield Farm
in Hubbardston, Massachusetts. The stated
mission of GGC is “to support Worcester
Polytechnic Institute’s (WPI) global
scholarships, learn entrepreneurial skills,
and interact with the WPI and Worcester
community by selling award-winning goat
cheese so that we can be a part of something
meaningful that impacts our community”
(Gompei’s, 2022). However, GGC is in need
of a new system for order and payment

tracking, as their current system is prone to

inconsistencies.

An enterprise resource planning system
(ERP) centralizes all the information used
for organizing and directing an organization.
While large corporations use ERP systems
that integrate accounting, finance,
production, inventory, order entry, and
logistic operations and more, a
smaller-scale system custom built to address
deficiencies with GGC’s current record
keeping system could help the company to

OeiC Small Businersas Startupa

e X

Local Cconmomy
Emplayess From EB
Looad Cammunity

High Emjloyes Q
Turnowsr Rais

Figure &1 Comparing GOC fo Small Businesses and Starfups

grow and have a more meaningful impact in
the community. Figure E.1 displays several
characteristics that GGC shares with small
businesses and startup companies that were
considered when deciding how the system

should function.

Last year, two students and members of
GGC proposed a Major Qualifying Project
with the goal of designing a cloud-based
ERP system for order tracking. They began
their project by interviewing several GGC
members and the owner of Westfield Farm
in order to evaluate the current operations
and create a set of requirements for the new
system. This Phase One team then began to
design and then develop the system they
proposed. They started their design phase by
creating a set of use cases for the new
system and then developing data flow
diagrams as well as an entity relationship
diagram (ERD). Then, they created a user
flow diagram depicting a few paths that a
typical user interaction with the system
might follow. Their last step before
beginning development was to design the

system mock-ups on Figma.

The Phase One team used Figma’s flow

features to convert the mockups into a high

il

fidelity prototype of the system. Finally,
they began development of a functional
prototype on the AWS Amplify Studio
platform using React.js for the front-end and
DynamoDB for the database. This NoSQL
database was the only configuration that
could interface directly into Amplify Studio.
It just required a GraphQL API to connect
the front-end with the database.

Goal and Objectives

The goal of this project was to continue
development of the cloud-based enterprise
resource planning system meant to improve
the efficiency of GGC’s operations. In order
to successfully continue the work of the
Phase One team, it made sense for the
project to continue following the same
system development life cycle (SDLC)
methodology of system prototyping. The
system prototyping methodology aims to
quickly develop a simplified version of the
final product and then continuously refine it
until stakeholders agree it is functional to be

implemented.

DOibpectives

1 Evak
2 lievide
e

m 'm
Y

}"J:::'.'r.l'c' EX .‘l:l Fletit P.l'r.l.'r.l.'_l;.'n.l.'l'.; .I|lr|.']'||llt!|'{|rl.l|ll.ll'._"l' adel .I'-"."u.l..ln.'-: i rJ.'-..-.x (I

1. Evaluate Existing Prototype

The team conducted user testing using
the think-aloud methodology to gain
feedback on the Phase One prototype
in order to evaluate it. The think-aloud
method was chosen because it is user
centered, easy to implement, and
allowed the team to directly observe
the user’s reactions. In addition to the
think-aloud testing, the team also
asked participants to fill out a System
Usability ~ Scale (SUS) survey
providing quantitative analysis on the

usability of the system prototype.
2. Iterate on Phase One Design

In order to iterate on the design of
Phase One, our team did the following:
updated the entity relationship
diagram, list of use cases, and data
flow diagrams; incorporated the
feedback from user testing into the
high-fidelity prototype; and overhauled
the software architecture to create a
centralized, predictable, and scalable

system.
3. Develop a Functional Prototype

The team developed a functional
prototype using a MySQL database, a

Node Express.js server, a React.js

v

front-end with Redux for state
management, and the Axios library to
handle HTTP requests. Additionally,
the team designed a cloud architecture
in Amazon Web Services establishing
the foundation for an implementation

in the future.
4. Create Support Documentation

To encourage the continuation of the
project, the team developed further
support documentation with
information supplemental to the report
that will aid in the continued

development and implementation of

the new system.

User Testing

In order to conduct useful user testing
sessions, the team first modified the
high-fidelity prototype from Phase One.
These modifications were made so that
participants could complete ten tasks in the
prototype. Appendix B contains the full user
testing protocol including the list of tasks.
One of the suggestions for future work from
Phase One was to look at ways to reduce
redundancy by automating order entry for
GGC operations. Through user testing, the
team learned that one of GGC’s standard
operating procedures is to delay sending

orders to the farm in case a customer wants

to make an alteration to their order. Not
wanting to disrupt this process, the team
instead focused on making user experience
improvements to the order form used by

customers.

The team then split observations from
user-testing and the participants’ comments
into three categories: confusing points,
improvement suggestions, and additional
features. The confusing points and some
suggestions were considered when iterating
on the design, but the additional features
suggested could not be included due to time

constraints. Quantitative analysis revealed

Canfusing Painls Improvement Suggestions

- Diflsrance hetmsan ® Eoes inln on oider card

T dfal iTTeldlond Cuaber vl sl ckbend

Bicker labal paong
L] Buaict Bad o lem
ACorUA EkTan 5 & ki mom misvant sines e cash

Halelwy oidering L] s e o bwdiei b in an ook

-
-
-
- In person orders
-
-

Tooips a Ralne bulk ordening

Fignre .3 Simmary of User Feediack

that the majority of participants found the
system easy to wuse. An important
functionality that was missing was the
ability to have users with different roles or
permission levels. Overall, feedback was
that the system would be an improvement
over GGC'’s current process, but that it could

be further enhanced with some

modifications and additions.

Design Iteration

With this feedback in mind, the team began
to iterate on the design developed in Phase
One. First the process models were updated
to accurately reflect how data flows through
the system. These include slight alterations

to the context and level zero diagrams, as

Level 1 DFD Fragment: Process 2

e —
Fipwre E4: Process 2 Level 0V INED Fropmend

well as the addition of a level one diagram

that further breaks down the second process

in the level zero diagram.

Also based on the feedback, an additional
use case focused on accessibility was added
to the design. Further, the logical ERD was
reworked to more accurately represent the
system and the adjustments made based on

user feedback.

The team also updated the high-fidelity
prototype to incorporate changes based on
the feedback as a design reference. The team
made changes to the dashboard, reduced the

number of pages, and increased the clarity of

the distinction between the “Order” and

. Dashboard
=i

c.oaTs [l

(%]
-
=]

Figure E.5: Upaated Mocrup of New Dashboard

“Invoice” pages. Additionally, the team
developed a design for how the farm users

perspective of the application would look.

Development

The team developed the database, server,
and front-end within one parent directory
hosted in a Github repository named
GGCPortal. The GGCPortal/tables folder
contains scripts to create the database tables,
a Python script to parse the current order
spreadsheet, and the outputted CSV files
from the script. The GGCPortal/app folder
contains the code for the server, and
GGCPortal/client contains the code for the
front-end client. This simple but logical
hierarchy will help future collaborators to

more easily contribute to the project.

The team first created the data model in a
local instance of MySQL in order to test the
proposed relational model. After confirming

the model was acceptable, the team

vi

generated a script that would enable future
developers to easily recreate the database in
a new instance. In order to test the system
with real data, and in the future migrate
historical records into the new system, the
team created a Python script that converts
the current GGC order spreadsheet into
separate CSV files for insertion into the

database.

The team created an Express.js server
running in a Node environment in order to
create a backend to access the data on the
frontend client. For each table in the
database the team created an
Object-Relational Map and accompanying
controller. A data service was then mapped
to each ORM’s create, read, update, & delete
(CRUD) functions for use on the front-end.
This allows the frontend code to interact
with the database as objects and make
changes to the database with the data

service.

The team started frontend development with
refactoring of the components that the Phase
I team created in order to make them
scalable. The team also utilized the Redux
library to create a frontend with centralized
state management and better code
centralized state

organization. The

management that Redux provides is

especially beneficial in providing users
access to the same data but with different
views based on permission levels. The
centralized state also makes it clear how
user actions affect the state of the
application. In order to achieve the desired

layout and styling, the team utilized vanilla

GitHub
Figire E 6 Sofiware Architecnire gnd Code Pipeline
CSS in combination with the Bootstrap CSS

framework.

The team also explored a design
configuration for a cloud deployment of the
system. The team continued working within
the AWS environment, albeit with different
services than the Phase One iteration. In a
future implementation, the database would
be hosted in Amazon Relational Database
Services, the Express server and React front
end would be hosted using Amazon Elastic

Beanstalk.

Future Work
The team developed the functional prototype
to meet the minimum system requirements,

but do not recommend that the system is

Vil

ready for implementation. First, future
developers should conduct further user
testing to re-evaluate the most needed
additional functionalities. Based on the work
and research the team did in this iteration,
these are the most important steps for future

iterations to complete:

1. Refine database schema based on
updates within GGC’s business

Processes.

2. Refactor the Express.js API to better
utilize the relational nature of the

database.

3. Zapier integration with Formsite
(automate entry of custom orders

into database).

4. Tterate on delivery time and company

communication management.
5. Encryption for login.

6. Update Node.js and dependencies

and get solid test code coverage.

Additionally, the Westfield Farm role has
not been fully implemented. While the role
exists within the functional prototype,
neither iteration of this project has
conducted user-testing with anyone from the
farm. This will be a crucial step in
implementing the system into both

organizations.

Gompei’s Goat Cheese has always been a
pillar of the WPI Business School, but its
recent CEO has indicated they want to
increase GGC’s impact campus wide. One
way in which it can do this is to incorporate
other departments in the hiring process for
new positions within GGC such as software
engineers or data scientists. Such students
may also contribute to the continued
development of the system. In this way,
GGC can expand and also provide a
real-business learning experience for even

more WPI students.

viil

Table of Contents

Abstract
Acknowledgements
Executive Summary
Table of Contents
List of Tables
List of Figures
List of Appendices
1.0 Introduction
1.1 Gompei’s Goat Cheese
1.2 Enterprise Resource Planning Systems
2.0 Background
2.1 Similarities Between GGC, Small Businesses & Startups
2.2 Review of Phase 1
Interviews & System Requirements
Design & Development
Next Steps
3.0 Methodology
Objective 1: Evaluate Existing Prototype
Objective 2: Iterate on Phase One Design
Objective 3: Develop a Functional Prototype
Objective 4: Create Support Documentation
4.0 User Testing
4.1 Formsite
4.2 Prototype Modifications
4.3 Study Protocol
4.4 Response Analysis
Qualitative Analysis
Quantitative Analysis
4.5 Feedback
4.6 System Improvement Suggestions from User Testing
4.7 Key Take-Aways
5.0 Iterating on the Phase One Design
5.1 Process Model Refinement
5.3 Additional Use Case
5.4 Database Schema Refinement

ek d
N W N © & WN

N 0 B RN =

W W NN DN DN N DN /= = = = = = e =
O O N9 NN DN B W= =IO 0 0 0NN W

X

Initial Database Comparisons

Logical Entity Relationship Diagram and Data Dictionary

5.5 High-Fidelity Prototype Improvements
Westfield Farm Perspective
6.0 Development
6.1 Software Architecture
6.2 Back-End Development
Schema Generation and DB Configuration
Express.js Object Relational Mapping
6.3 Front-End Development
State Management with React Redux and Redux Toolkit
Layout and Styling
6.4 Cloud Deployment
6.5 Persisting Issues
6.6 Functional Prototype
7.0 Future Work
7.1 Next Steps
General Development
Westfield Farm Perspective
7.2 Final Thoughts
References
Appendices

30
32
34
36
37
37
40
40
41
42
43
45
45
47
48
54
54
55
57
58
59
61

List of Tables

Table 4.1 Displays which interview questions are mapped to the six learning objectives

Table 5.1 Tooltip Use Case

Table 6.1 GGC Portal Technical Stack

Table 6.2 Tools and Technologies Used

Table 7.1 Aspects of the functional system that are complete, in progress, future
implementation, and special features to be added

22
30
39
39
56

xi

List of Figures

Figure 1.1: Context Diagram of Data Flows in as- is system

Figure 2.1: System Requirements Developed by Phase One Team

Figure 2.2: Use Cases Developed by Phase One Team

Figure 2.3: Phase One Context Diagram

Figure 2.4: Phase One Level 0 DFD

Figure 2.5: Phase One User Flow Diagram

Figure 2.6: Dashboard Mockup

Figure 2.7: Active Orders Mockup

Figure 2.8: Active Invoices Mockup

Figure 2.9: Order Example Mockup

Figure 2.10: Order and Invoice Lookup Mockup

Figure 3.1: System Prototyping Methodology and Project Objectives

Figure 4.1: Add New Order Page

Figure 4.2: A bar chart of instances of participant responses in reference to

acceptability of the system
Figure 4.3: A bar chart of instances of participant improvement suggestions
for the system

Figure 4.4: The figure shows where the G.O.A.T.S. prototype lands on the SUS
based on the user data collected. The acceptability ranges and grade
scale are provided for reference.

Figure 4.5: 4 Summary of user feedback highlighting confusing points,
improvement suggestions, and additional features

Figure 5.1: Refined Context Diagram

Figure 5.2: Update Level 0 DFD

Figure 5.3: Process 2 Level 1 DFD Fragment

Figure 5.4: MySQL Workbench visual representation of the database

Figure 5.5: GGC ERP - Entity Relationship Diagram

Figure 5.6: GGC ERP - Entity Relationship diagram with Referential Integrity

Figure 5.7: Proposed Mockup of new dashboard

Figure 5.8: Figma Mockups for Orders and Invoices

Figure 5.9: Mockup of the farm facing side

Figure 6.1: Project Directory

Figure 6.2: Diagram of the software architecture and code pipeline

Figure 6.3: Tables Directory

Figure 6.4: Express Directory

Figure 6.5: Axios Data Services

Figure 6.6: React Client Directory

Figure 6.7: Visual example of React Redux data flow

Figure 6.8: Hex numbers of GGC colors

Nl B e NS

11
11
12
12
16
20
23

23

24

25

27
28
29
32
33
34
35
35
36
37
38
40
41
42
42
44
45

Xii

Figure 6.9: Software Version Deployed to Elastic Beanstalk Cloud Environment 47

Figure 6.10: Login Page 48
Figure 6.11: Dashboard Page 49
Figure 6.12: Orders Page 49
Figure 6.13: Order page 50
Figure 6.14: Editing Order Page 50
Figure 6.15: Active Orders Tab 51
Figure 6.16: New Order 51
Figure 6.17: Search Orders Page 52
Figure 6.18: Searching in Search Bar 52
Figure 6.19: Delete Order 53
Figure 6.20: Navigation Bars by Role from Left to Right (Logout page, GGC role, 53

Farm role, and Admin role)

xiil

List of Appendices

Appendix A: User Testing Consent
Appendix B: User Testing Protocol
Appendix C: User Testing Data Analysis Sheet
Appendix D: Functional Prototype Images
Appendix E: Context Diagram

Appendix F: Data Flow Diagrams
Appendix G: Entity Relationship Diagrams
Appendix H: Use Cases

Appendix I: Data Dictionary

Appendix J: Package.json

Appendix K: MySQL Script

Appendix L: Python Script

Appendix M: Support Documentation

62
65
70
76
77
78
80
82
89
96
101
105
112

X1V

1.0 Infroduction

1.1 Gompei’s Goat Cheese

Gompei’s Goat Cheese (GGC) is a non-profit, student-run goat cheese business at
Worcester Polytechnic Institute (WPI). The company itself started as a Major Qualifying Project
(MQP) for the WPI Business School in 2012, in which students created a brand to sell local goat
cheese. The MQP is the culmination of WPI’s project based curriculum, similar to a capstone
project, giving students the opportunity to work as part of a team to solve a real world problem.
Often sponsored by a company or other external organization, the MQP also allows students to
demonstrate their major specific knowledge. (Major Qualifying Project, n.d.). The founders of
GGC established a partnership with Westfield Farms in Hubbardston, Massachusetts, where the
cheese would be produced and shipped to customers. GGC donates all profits to the WPI Global
Scholarship Program, supporting student Interactive Qualifying Projects (IQP) scholarships. The
IQP is a project before the MQP that gives every WPI student the experience of working in
interdisciplinary teams with students not in their major, to tackle an issue that relates science,
engineering, and technology to society. Sustainability is a common theme among IQPs, many of
which address problems related to energy, environment, sustainable development, education,
cultural preservation, and technology policy (Interactive Qualifying Project, n.d.). These IQPs
can be done locally or through one of WPI’s project centers around the globe, allowing for

students to make a difference in communities across the globe.

Ultimately, GGC’s mission is “to support WPI global scholarships, learn entrepreneurial
skills, and interact with the WPI and Worcester community by selling award-winning goat
cheese so that we can be a part of something meaningful that impacts our community”
(Gompei’s, 2022). Unfortunately, GGC’s current operations are not well kept. All
communications are relayed through Google Sheets or email, and the typical flow of events is as

follows:
1. Collect order details and payment.
2. Forward order information to the farm.

3. Farm confirms order through email.

4. Farm Generates an invoice to send to GGC to request payment for the order.

5. Farm ships the order to the customer’s home

Tracking Mumber Pain Points to Note:
= Mo shared order reference
Chraber Dnelaibs number between GGC and
Westfield Farm
» Communication with the farm

Ermall: ndis Ditalls only accurs through the
operations team
Customer places order with
GGG but gets a tracking

% Ernall: Cirdder Diefalls
Ovcler Dwtalle ' ' mumber from Westfleld Farm

Limadl
S e

Emalls sent to the Farm have
been lost (o emall reply with

{ivokce Detall “oonfirmed™)
mwoloe Detalle

ivnice Details

Inmvoice Detakls m Iewodee Detalls

Figure 1.1: Context Diagram of Data Flows in as-is system

Figure 1.1, created by last year’s team, illustrates this flow of information as well as detailing
some of the issues with the current system. The existing operations structure creates harmful
inconsistencies between GGC’s records versus the farm’s records. These issues impact the
fulfillment of orders, further limiting the growth of GGC. Thus, it was clear that the company
“was in need of a new order and invoice management system, along with improved

communication with the farm” (Guerrette & Mohn, 2022).

1.2 Enterprise Resource Planning Systems

Enterprise resource planning (ERP) systems are used to organize and direct the processes
within a company such as accounting, finance, production, inventory, order entry, and logistic
operations. An ERP can integrate all departments into one information system or into a set of
integrated systems that organizations use to make business decisions (Baltzan, 2020). A
cloud-based ERP system performs the same functions as a traditional ERP system but the
hardware and software is managed by a third-party vendor. One of the main aspects of an ERP
system is that information is shared across the organization via a centralized database. This
allows decision makers to have more information about the whole business to utilize.

Cloud-based ERP systems also have the added benefit of being accessible from mobile

2

computing devices. Development and implementation are two critical phases for any business
deploying a new information system. An ERP system consists of core and extended components
(Baltzan, 2020). Core components are focused on internal operations such as accounting or
finance, whereas extended components are ‘“add-ons”, such as customer relationship
management, that meet organizational needs not covered by the core components. The
implementation of a new ERP system requires careful planning as well as support from key
stakeholders. In this project, key stakeholders include both members of GGC as well as operators

of the partner farm.

2.0 Background

2.1 Similarities Between GGC, Small Businesses & Startups

The Small Business Administration (SBA) states that a small business is defined as “an
independent business having fewer than 500 employees.” Yet with over 32 million small
businesses all over the United States , these small businesses account for 99.9% of all U.S.
employer firms (Small Business Administration, 2019). Specifically in Massachusetts, there are
718,467 small businesses that make up 99.5% of business within the state, making small
businesses the backbone of their local economies (Small Business Administration, 2022). When
spending money at a small business, a lot of the money spent goes right back into the local
community. The Better Business Bureau stated that “if [a person] spends $100 at a local
business, roughly $68 stays within [the] local economy” whereas $100 spent at a non-local
business would only retain $43 within the local economy (Better Business Bureau, 2019).
Among these businesses, Gompei’s Goat Cheese exemplifies what a small business is like since
everything is supplied locally, and the employees are members of the WPI community. However,
GGC is also much like most startup businesses because of the company’s nature as a student-run

business.

Most startup companies have a higher employee turnover rate, or attrition rate, on
average than the business industry as a whole. The attrition rate for startup companies is 25%,
which is roughly double the overall average attrition rate of 13%. This means that employees
only hold their position for an average of 2 years at a startup company (Sharma, 2022). Since the
GGC workforce is solely made up of students, the attrition rate at the company is very high
because employees often graduate from WPI then leave the company to move on with their
careers. This means as a student-run business, Gompei’s Goat Cheese will always stay in a
startup, small business state since the company is meant as a learning environment for running a
real business. To cater to this style of business, the ERP system must be designed to be intuitive
to use and simple to learn as to avoid confusion to new members of the GGC team. This also

allows the business to spend less time training new members and more time focusing on

operating and improving the business. Designing the system to be simple also reduces employee

mistakes as more redundant operations will be automated.

2.2 Review of Phase 1

In the previous academic year, an MQP proposal was submitted by Chris Guerrette and
Natalie Mohn to design a cloud based ERP system that would address many of the pain points
with GGC'’s current operations. In order to have a successful Phase Two of the project, the team
first needed to review what the Phase One team had accomplished. The following subsections

examine the work done in Phase One of the Project.

Interviews & System Requirements

After performing their own background research, last year’s team started by conducting a
series of interviews with different GCC members, as well as the owner of the partner farm.
Based on these interviews, they constructed a list of benefits and challenges with the current

system, as well as other relevant information:

e Interaction with the current GGC operations system ranges from a few times a semester

to nearly every day.

e Team members prefer to use their computer, rather than their phone, when using the

current operations system.
e Westfield Farm and GGC use different order numbering systems.

e Inputting information into the current system takes too long, and there's a lot of

redundancy in the work that the operations team does.

Westfield Farm handles Gompei’s Goat Cheese order’s differently than its normal orders.

From these key findings, as well as their own experience as GGC members, the Phase One team
developed a set of system requirements. Figure 2.1 on the following page contains all the
requirements. Some key requirements include:both GGC members and partner farm employees

can access the system simultaneously; users can view, create, update, and delete orders based on

their accounts permission level; the system is both intuitive and accessible; and users

securely and quickly access the data stored in the system.

Input and madib

s ang placed
Nipped

whisn

Daskin op dalabase using AWS, Amplity
FAuiltl
o ihimns with fuluing

[S[T{[EVE

(el gl

Figure 2.1 System Reguirvements Developed by Phase One Team

can

Design & Development

use cases for the system shown in Table 2.1. A use case represents a set of actions performed in
the system in order to generate some output. It also includes information like what triggers the

event, and any other conditions that must be met prior to or following the actions in the use case.

m Urdtr mla”sm

Involce Detalls
Invisbee Detail
¢ Involce 8 Involoe Details

Use Cases from Phase | Prototype/Report

Add User View Active Orders
Hemove User View Completed Orders
Log In View Order Information
Log Out View Invoice

Record Mew Order View Customers

Delete Order Search Orders

Update Order Information Copy Text Information
Update Invoice Information

Table 2.2: Use Cases Developed by Phase One Team

With an understanding of the system requirements, the Phase One team drafted a list of

Order Details

Order Notification

Order Details
Order Detalls

Order Processed
Motification

= Tracking Number Invoice Numbser

Order Shipped Tracking Mumber

Motification
Payment Notification

Figure 2.3 Phase One Context Diagram

Next, using the use cases they developed as guidelines, the Phase One Team created
process models, also known as data flow diagrams (DFD), for the planned system. Process
modeling depicts business processes and how data flows between them. The team began with the
context diagram, the top level of any business process model. The context diagram depicts the
entire system within its surrounding environment. Figure 2.2 shows the system, Gompei’s
Operations & Accounting Tracking System (G.O.A.T.S), and the data flowing between it and

external entities such as the partner farm of GGC Operations.

The Phase One team then constructed a level zero DFD of the planned system. The level
zero DFD provides more detail than the context diagram, breaking the system down into its high

level processes. The four high level processes are:
1. Add New Order
2. Process & Ship Order
3. Send Invoice
4. Process Invoice

Additionally, information is stored in three separate data stores.

Order Details —

Customer fnfo _) m

LUy [y Shipping Addresses

P— Order Details ——»

Order Motification

(—Ilm:l.rulh-l;lmm Involce # ——>
e Order Processed Notlfication
i
Order Shipped Notlfication

Involce Datalls Payment Processing Notification

m Invoice Details —p

Shipment Tracking #

Invalee Detalls —

Amount bo Pay Farm

Figure 2.4: Phase One Level 0 DFD

After completing the process models, the Phase One team designed a user flow diagram
depicting some of the common pathways the user, a member of the GCC operations team, might
take through the system. Figure 2.3 depicts a user logging in and first viewing the dashboard.
From there, the user can go to invoices, orders, or the order lookup page. From each page, there

are a series of actions that the user can take, reversing to a previous step if necessary.

— . —_— B — = Updsied
..... P —) -
l i 1 - '] L
1|
|
Facaed — S — Cuibe e e Lipadatad Ordai
Jcapel = Dadoad —F s —F“w a0 — B e ETI

Figure 2.5: Phase One User Flow Diagram

With the use cases, process models, and user flow diagram as references, the Phase One
team developed a set of system mockups. The team chose to develop them on Figma because it
had the tools to turn high-quality mockups into a high-fidelity prototype. Figma is a tool where
one can make high quality mockups of an application. The user lands on the dashboard page
where they can view quick stats on the current orders, or add an order. The user then continues to
the active orders page where they can view orders that have been placed, processed, and shipped
and invoices are in a similar format. They then move to order details where they can view all of
the information fields for the customer and the order. If they need, they may also edit the order
by clicking the edit button which turns the fields editable. A user may also search for orders by
invoice number, reference number, or name. Images of the proposed prototype can be seen in the

figures below.

Figma Screenshots:

7y Dashboard

G.0.A.T.S.

2 1 1

S Owoers

; Active ACtrve 2 1
B Irmokces Orders InnDeCes

Figure 2.6: Dashboard Mockup

10

@ Orders

Ky EalyOeders Ondime Orders Labe Ordars

G.0.A.TS.
m Completed Orders
[Dashbaard Placed Pracessed Shipped
=l ... p— -
b
@ Imaloas Ref, 8 173456780 Rul, & 314159285 Rel. & 48645257
£l Search iy sesrenaes Inw. 8 IT1E b & 2344
ol Loga: 4 #odLogs: § ol Loges 3
Mohn, Hatalie
Red, § ZRB4TENIII4
inw, #;
ol Loga: 3
7 Halp
#] Lag Oul

Figure 2.7: Active Orders Mockup

@ Invoices

ey Early Ordars Oeetimae Orders | Labe Drdars

mmm

G.0.A.T.S.

fnl Dashboard

B Grders

0 Search

) Help

] Log Out

Missing Invoice

Gusarratis, Chris

Rel. & 123466789

#ol Loge: 4

Maha, Natalls
Wel, # 234781334
e i

ol Loge: 3

Figure 2.8: Active Invoices Mockup

Unpaid

Goat, Gampel the

Bel, & 3147 59065
Inw. #; ZT18
¥ of Logm: §

Fyan, Jaies

Aol & G4BLAG2ET
Iy @ 2386

FofLegs: 1

11

6 Orders
Key Dotk Orders On-ime Drdes | Lale Orders
G.0.A.T.S.

SO -] o I

M Immis Relerence & 12345678% Recipient Marialie Mohn
L Sesrch roice @ - AR 100 inatiiute Road
WPl Box #5086

Worcasser, M 01600
Date Placed D& 0Re :

s QD

Maima CFia Gusiialle
Of Mlaaniad 4onny Gradumtion
Ensaall Gl] gt e
3 Heo Phone 2037258633
1 Log Oul

Flavar lormstion

Name KLU Casaniiry Al & Glanoe,
Fisin PLE] b Tolnl Hessier of Logs: i
Cranbery Orangs |G 1 o Tl | Hrwibeer ol Plavors: 3

Choeslale [t} 1 S At st Fhawe n

Figure 2.9: Order Example Mockup

6 Order & Invoice Lookup

Lr
LAST MABE w Januazawaki “
) Dashboard
B (uders LAST HAME, FIRST HAME REFEREMCE & INVDICE & DRODER STATUS

& oices Q201 /22 Januszewskl Bsverly m m Completed
_ 06/03/21 Janus pewskl, Lyndsey m 568 Campleled
o2r0as2t Januazsweki, Toe m m Camplataid
T Help
#] Lag D

Figure 2.10: Order and Invoice Lookup Mockup

The team began their development by starting the creation of a database using Amazon
Web Services (AWS). They decided to use AWS to host the database and code because of how
easy it would be for future teams to access and make changes to the system. Within AWS,
Amplify Studio is used to hold all the project’s contents (e.g. code and data) all in one place.
Amplify Studio is also what makes it easy to add new users to the project. For the database, the
team in Phase One created a key value store (NoSQL) database using DynamoDB. At the time,
this was the only type of database in AWS that could interface directly into Amplify Studio,
however it does offer its benefits; Key value store databases can read and write data very quickly
and are very flexible to use, which benefited the Phase One team’s original plan to automate
order processes and use real-time order data within the application. To develop the user interface,
the team used React.js to build the front end of the system. React is a highly powerful Javascript
library for building user interfaces, and is considered one of the leading tools in web
development. Yet with the intention of building an ERP system, our Phase Two team must give
the React code a more maintainable structure. To glue the system together, the original team
proposed using a GraphQL API to connect the front-end site to the database. The reasoning
behind this decision is that when building a GraphQL schema, Amplify Studio creates a
DynamoDB table automatically for any object with the @model directive tag, which makes it
very easy to create the database. It also automatically creates a fully functioning API complete

with auto generated resolvers for basic interaction with the database.

Next Steps

The Phase One team concluded their report by outlining what the next steps in the project
might look like if it were to be continued. Their first recommendation was to gather user
feedback on the prototype that they had developed. They then outlined use cases from which
their design had been developed in the functional prototype they began creating. Following that,
the Phase One team proposed one way in which a future team might be able to further reduce the
redundancy of the system: a system that could process order data from the files output by
Formsite. Although the Phase One team’s prototyping focused mainly on the GGC side of the
system, they also considered ways in which the farm’s perspective of the system would have to
differ due to differing requirements. Certain information, like customer info, should not be

accessible to the farm. Finally, the Phase One Team provided several recommendations for

13

improving the accessibility of the system such as adding a high contrast mode or an option to

increase the text size.

14

3.0 Methodology

The goal of this project was to continue development of a cloud-based enterprise resource
planning system to improve the efficiency of GGC’s operations. We accomplished this goal by

fulfilling the following objectives:

1. Evaluate the existing prototype by conducting user testing sessions with members

of GGC.
2. Tterate on Phase One design by applying feedback from user testing.
3. Develop a functional prototype of the ERP system.
4. Create support documentation for future development.

In order to develop a high quality system, it is important to follow a methodology that
implements the four phases of the system development life cycle (SDLC): planning, analysis,
design, and implementation. Each of these phases have steps that produce deliverables and help
to gradually refine the system (Dennis et al., 2019). Since the Phase One Team chose to follow a
system prototyping methodology, it made sense for the project to continue to use the same
methodology. This methodology, “performs the analysis, design, and implementation phases
concurrently in order to quickly develop a simplified version of the proposed system and give it
to the users for evaluation and feedback” (Dennis et al., 2019). Figure 3.1 shows how each

objective fits into each of the phases of the SDLC.

15

o8

Objectives: Analysis

1. Evaluate the existing prototype o Design System
2. Iterate on Phase One design. Prototype
3. Develop a functional prototype.
4, Create support documentation.

Implameantation

Implemantation 0

System

Figure 3.1 System Prototvping Methodology and Praject Objectives

Objective 1: Evaluate Existing Prototype

Our team's first objective was to evaluate the prototype designed by the Phase One team.
To accomplish this the team conducted user testing with current GGC members and analyzed the

system's usability as well as how well it met the needs of GGC.

The team chose to use the think-aloud method, "... the single most valuable usability
engineering method" according to Jakob Nielsen, cofounder of the usability consulting company
Nielsen Norman Group (Nielsen, 2012). The think-aloud method entails giving users a set of
tasks to complete on the system being tested, and asking them to speak aloud their thoughts as
they complete each task. The think-aloud method has many advantages that made it an ideal
choice for achieving the team's objective. Some of the most important are that it enforces
user-centered design, allows the team to directly observe the user’s reactions, and that it is easy

to implement.

We also chose to use a System Usability Scale (SUS) survey to evaluate the prototype
using quantitative analysis. SUS is a quick and simple non-diagnostic tool to determine if a
system is usable or unusable. Although the scale is 0-100, the SUS score is not synonymous with

letter grading scores. If a system scores above a 70 it is considered an acceptable system.

16

Evaluating G.O.A.T.S. with SUS is a valid way to assess a system on a small sample size, and is

a good way to establish a baseline of the usability (U.S. General Services Administration, 2023).

During each session with a test user, one member of the team would take notes whenever
a participant had trouble performing a task, noting the task and the problem encountered. The

team then generated a list of confusing points, general improvements, and ideas for new features.

Objective 2: Iterate on Phase One Design

The second objective of the team was to iterate on the design from the Phase One team
by incorporating the feedback from the user testing the team conducted in the first objective. The
team first updated the entity relationship diagram, list of use cases and DFDs. The team then
incorporated the feedback from the testing into the high fidelity prototype to use as a reference
when developing the system. Finally, the planned software architecture of the system was
overhauled in order to create a centralized and predictable system that would be easy to expand

in the future.

Objective 3: Develop a Functional Prototype

After iterating on the design of the system, the third objective was to develop the system
into a functional prototype incorporating the feedback from user testing. The team went through

the following steps to complete this objective:
1. Create a software architecture with sensible organization
2. Develop a backend:
a. Design a relational database schema and configuration
b. Create a an Express.js server to interface with the database
3. Develop a front-end portal using the React.js and Redux frameworks
4. Connect the portal with the backend using the Axios HTTP client
5. Design a cloud implementation

17

The team developed the code repository on Github so that it can be easily shared with future
collaborators. The repository contains all the code necessary for cloud deployment. The team
chose to revert to a relational database over a key-value store database because it is better suited
to address the issues GGC currently faces such as duplicate records. The MySQL database was
first created in a local environment in order to test the schema. Next, an Expressjs application
was developed to interface with the database. The team created an Object-Relational Mapper
(ORM) for each table in the database. Along with a controller for each table, this allows
interaction with the database through JS objects instead of SQL queries. The application runs in a
Node.js environment and also handles routes requested by the front end. The team developed the
front-end using React.js and Redux for state management. React.js is one of the most popular
front-end JS frameworks and allows for the creation of reusable Ul components. Redux is a
popular addition to React.js and is used for managing state within a React application. The
front-end connects to the backend API using the Axios library which manages HTTP requests
from the client and the responses from the server. Finally, the cloud implementation was
designed using Amazon Web Services (AWS). The team created the cloud implementation
design utilizing the following services: Amazon Relational Database Services (RDS), AWS
CodePipeline, and AWS Elastic Beanstalk, When changes are made to the Github repository,
CodePipeline deploys the changes to Elastic Beanstalk which is what hosts the frontend a Node

application, and is connected within a security group to the database in RDS.

Objective 4: Create Support Documentation

In order to encourage its continuation, the fourth objective of this project was to create
support documentation so that future collaborators will be able to quickly start contributing to the
project. In order to complete this objective the team created a support document with important
login credentials and links to helpful resources. Additionally, the team created a document in the
code base, README.md, that includes very technical information regarding the next steps to

take to continue developing the functional prototype.

18

4.0 User Testing

4.1 Formsite

The Phase One team of the GGC MQP gave recommendations to reduce redundancy in
employee operations by automating order entry from Formsite instead of having to manually
input order data into the database. However, the Phase Two team decided not to follow this
recommendation after gaining more information from the user-testing sessions we conducted. It
was found that customers tend to make mistakes when ordering, so the GGC usually waits one to
three days before sending orders to the farm so there’s a grace period to change the order. The
team decided not to alter this business process because an alternative option couldn’t be found in
time. Instead, the group investigated the pitfalls of the current customer order form that leads
customers to make mistakes. To solve this issue, the customer order form was updated to
increase accessibility and reduce customer mistakes. Although a change was submitted, the site

has not been updated since the conclusion of this project.

4.2 Prototype Modifications

Although the prototype was mostly completed by the Phase One team, There were some
minor changes that needed to be added in order to complete user testing and meet all use cases.
These changes included non-visual aspects such as prototype mapping, or linking buttons to
certain pages to ensure the participants were able to complete the tasks in the user study we
conducted. This allows the participants to go through the system as if it were a functional
website, to get them as close to the functional prototype as possible to identify any changes we
would need to reduce the use of resources. The developed prototype was only able to modify an
existing order, not create a new order, so the team added that capability, while still following the
same layout as the others. Additionally, the team expanded more with the search page to

highlight the different options you can search by.

19

i Orders
J oy EafyOrders OsSreOrdes | LaleGrdee

G.0.A.T.S.
Active Orders Completed Orders m

Relarsisd P 335458010 Hrcpiant WiCHoig Bk
Addrana
1 tewct lwaice ¢ 1060 atiute Ried
W Bos #SHEG

Wercedtad, kA 01600
Dabar Fac wd MR

Tracking &
Hase Wi Bupck
il Mussags
Emadi sl Erani adu
- Pl SOBSHE) 4
y il
Plavai Irdersatin

Manie (hsardty Al g Gisnee

(LTS 3 Toisd lumdier af Logs

Haiti Glailic i Totsd Humbies af e

Pick, Prppeicom
Calabain 0

Chivaod st

Figure 4.1 Add New Order Page

4.3 Study Protocol

The team developed the prototype to meet all user requirements for the system. A user
study was conducted with four participants from GGC executives to test the prototype system
and gain an understanding of its strengths and weaknesses. All of the interviewees followed the
same Prototype Testing Protocol where they were asked to complete a number of tasks that
covered the major use cases of this system. This protocol can be found in Appendix B. We
performed a think aloud followed by an interview as well as a System Usability Scale (SUS)

survey, then recorded all of their responses to each question to identify any common themes

20

across responses. This method best allows the team to understand what the user is thinking
during the process and enables participants to speak freely about their thoughts of the system.
Additionally, the team marked whether or not the participant successfully completed each task to
further develop the analysis.

4.4 Response Analysis

After gathering all participant responses, the team transferred the raw data into an Excel
spreadsheet to maintain organization. The responses were then analyzed with respect to
qualitative and qualitative analysis based on the data collected. More information about this sheet

can be found in Appendix C.

Qualitative Analysis

To analyze the feedback qualitatively, the team recorded each participant's answers, and
identified any common themes amongst them. Each of the questions on the interviews were
intended to touch upon six different target points that the team was interested in learning about
for this user study. The team wanted to gather first impressions, identify if the system is
perceived to be useful, identify any comments about the design or layout, highlight any
improvements that needed to be made, and explore what is already acceptable in the system.
Based on these learning objectives, the team developed appropriate questions to ask during the
study. These question responses were then matched up against the target points to identify the

participants' subjective thoughts about the system.
Interview Questions

Q1: What stands out most to you?

Q2: What did you LIKE about the new system?

Q3: What did you DISLIKE about the new system?

Q4: How would you describe the navigation of the system?

Q5: What are your thoughts about the design of the system?

21

Q6: Do you think the information was displayed in an effective way that's easily readable?

(why/why not)
Q7: What do you think about the “dashboard” feature?
Q8: Which system do you prefer? Old (email, google sheets) vs New (cloud-based ERP)
Q9: Are there any features you would like to see implemented?

Q10: Are there any other suggestions for improvement?

Impressions: What is the main takeaway from this
systen® Q1, Q2, Q3, Q8

Useful: Does the system meet all of the user's needs? Q3, Q7, Q8
Design: Is the design clear and effective or does it

distract the user? Q5

Layout: Is the flow of the system and displaying of Q4, 96, Q7
information intuitive for the user? e
Improvements: What additions or features can be added

to the system? 03,09, Q10
Acceptable: What does the system already do well? Q2

Table 4.1 Displavs which interview questions ave mapped to the six learning objectives

The responses display that what is most acceptable is the ease of use of the system.
Additionally, participants stated the proposed system provides less error than the current, and
that it is convenient. Conversely, all participants made suggestions for improvement of the
system. The most improvement suggestion that was given was in aspects of accounting such as

account statements and invoice clarification.

22

Acceptability

Instances

Easy to use Provides Less Error Convenient

Participant Responses

Figure 4.2: A bar chart of instances of participant responses in reference to acceptability of the

system

Improvements Needed

Instances

Order Accounting Statistics Format
Functionality Changes

Participant Suggestions

Figure 4.3: A bar chart of instances of participant improvement suggestions for the system

Quantitative Analysis

To analyze the feedback quantitatively, we used a System Usability Scale to identify if
the system is usable. The average SUS score of this group was a 95, which, according to the
SUS, is in the “best imaginable” range in terms of usability. We used a SUS scoring template to
properly calculate the scores while minimizing human error. It is important to note that this score
does not give any insight on the functionality of the system, it is merely a tool used to detect the

perceived usability of the system by the user (U.S. General Services Administration, 2023).

23

ACCEPTABILITY NOT ACCEPTABLE ~ MARGINAL ACCEPTABLE
N Y LT Low | toh SIS

GRADE - =

scalE | E [D T €T B 1
ADJECTIVE WORST BEST
RATINGS MAGINABLE ~ POOR OK G000 EMCELLENY GINABLE

-
&

RPN N TS B 1 I S P
0 10 20 30 40 50 e0 70 80 90

SUS Score

EREREEE

Figure 4.4: The figure shows where the G.O.A.T.S. prototype lands on the SUS based on the user

data collected. The acceptability ranges and grade scale are provided for reference.

4.5 Feedback

All participants stated that the system is easy to use, however, they all gave suggestions
for improvement as well. For each prototype system test, all four of the participants’ first
impressions were about the system Ul and ease of use. The participants all commented that the
system Ul is very clean and professional, as well as the system itself being very easy to use and
intuitive. When asked for improvements, every participant gave a suggestion for improvements
and additions to be made. There was some confusion in some participants between the ‘invoices’
and ‘orders’ tabs, so some suggested bringing more clarity between these tabs. Other
recommendations were to add different information in the order cards, add permissions for
different roles in the company, decrease the amount of information on a given page, and add an

ability for in person orders.

The Chief Operations Officer (COO) of Gompei’s Goat Cheese found the system very
intuitive, and only had a minor concern about the interface. The COO found the interface clean,
organized and convenient. Their only concern was that they didn’t know the information had to
be saved, and so the save function should become more prominent. The COO said they would
prefer this system over the current system as long as it can be integrated with the farm well. The
feedback of the COO is weighed heavier than other participants’ feedback because they use the

current system the most and have the most well-informed insight for a new system.

24

The COO gave valuable ideas and suggested additions that would help both the GGC and
the supplier farm. The suggestion that would help GGC would be to add a section for in-person
orders where pickup details can be inputted as well as a section for sticker label tracking. One
problem currently is that there can be miscommunications between the farm owner and the
student-run company, so a way to help that is to give the farm owner a role to view account
statements, invoice numbers, and order numbers. This allows for the farm owner to see what
orders haven’t been paid for yet directly. Another addition that was suggested was to have a
function for the farm owner to notify GGC missing payments, and for the company to notify the
farm owner of missing invoices. This would make communication easier between GGC and the
farm. The current system also has limits on goat cheese quantity that can be ordered, so it would

be helpful to remove that and allow any amount of cheese logs to be ordered.

4.6 System Improvement Suggestions from User Testing

Confusing Points Improvement Suggestions

e Difference between e More info on order card
orders and invoices o Date and last edited
. Button placement e Permissions for roles
e Too many fields o Finance
o Accounting
.
o View Only
e Data visualization o Farm Owner
° Notification center o Data Person
e Sticker label tracking o Admin
e [n person orders e Search Bar updates
e Account statements e Add more relevant stats for dash
e Holiday ordering e No max cheese log in an order
e Tooltips e Refine bulk ordering

Figure 4.5: A Summary of user feedback highlighting confusing points, improvement

suggestions, and additional features

25

4.7 Key Take-Aways

Although the system is clean, simple, and easy to use, there are still many improvements
that need to be made with the main functionality and usability of the system. Having different
roles for various GGC positions as well as a role for the farm is an essential part of the system
that was overlooked. The differences between invoices and orders also needed to be more
defined to avoid confusion and optimize functionality and processes. The COO made minor
layout and UI suggestions to the design that would aid in the fluidity and intuitiveness of the
system. With this feedback, The design process starts again and the team brainstormed ideas to

solve these challenges.

26

5.0 Iterating on the Phase One Design

5.1 Process Model Refinement

After getting user feedback, the next step in the system prototyping methodology is to
redesign. One element of the design that the team refined was the process models. These models

were updated to more accurately reflect how the data would flow through the system. The

Context Diagram

Using DeMarco and Yourdon Symbols

GGC Accounting Entity '::-F'IGEESE::I' D1 Datastore

Data flow

Figure 5.1: Refined Context Diagram

context diagram in Figure 5.1 shows the overall system and how data flows in and out of it to
three external entities. Although some of the data may flow from an external entity to another
one, such as a customer, this interaction is not part of the system and is not included in the

diagram.

Following the context diagram, a level zero DFD shows all the high level processes of a
system as well as including data stores. The level zero diagram shows how the processes are

related to each other and to the data that is stored. The second iteration of the level zero diagram

27

retains the same number of high level processes as the first, although some have been modified.
The first process of creating a new order in the system remains the same with little change. The
second process, where the farm processes the order, now also contains what was the third process
(the farm sending an invoice to GGC) in the first iteration. The third and fourth processes in the

second iteration are GGC Accounting processing and paying invoices respectively.

Level 0 Data Flow Diagram

D L
SO -
Oeser Dt i B
oty aon ‘ J \m_\mm
e P ; Cuntemmer Detuls

ot aton

|~ |
LI

Srwpmerd Trackirsg Massbar

[Shappng Adress Amount 1o pany

Figure 5.2: Updated Level) DFD

Another key change displayed in Figure 5.2 is the change in how data is stored. The
second iteration condensed the four separate data stores from iteration one into a single datastore,
nicknamed “Central Unified Relational Database” or CURD for short. This is representative of
how data is stored in separate tables in one database as opposed to separate storage entities. The

reasoning for this change is further discussed in the Development chapter.

Every system will have a context and level zero diagram, and additional levels can

further break the details in each high-level process. The team developed a level one DFD

28

fragment to provide further detail on Process 2.0 (Process Order) in Figure 5.2. The level one
fragment expands the process into two sub-processes: Process Invoice and Pack and Label Order

for Shipping.

Shown in Figure 5.3, the process begins from order notification that flows out of Process
1.0. The farm then retrieves the order info from the datastore and enters that information in their
accounting system which generates an invoice. As part of the first sub process, this invoice
number is then added to the datastore and notification is sent to GGC Operations that the order is
being processed. Following that the farm packs and then labels the order for shipment. The farm
uses an online tool for managing their shipments that generates shipping labels with tracking
numbers. The second sub process involves adding the tracking number to the datastore with a

link to the associated order and sending an order shipped notification to GGC Operations.

Level 1 DFD Fragment: Process 2

From Process 1.0

‘L rder

=3

Order
Processed
Notification

Hew Ovrder Shigment I
OrderiD Defials Tracking Nusber _F'auz.k_ -a_m?_.l_abel
Invoice Number l Order For Shipping

D1 Ceniral Unified Relalional Dalastore

GGC Operations

Order Shapped Notific stk

Figure 3.3: Process 2 Level 1 DFD Fragment

29

5.3 Additional Use Case

Use cases define events that trigger actions within the system. The list of use cases
developed by the Phase One team covered the core functionality that the system needs in order to
be beneficial to both GGC and the farm. These use cases can be found in Appendix G along with
the additional use case below. After user testing, the Phase Two team created one additional use

case with a focus on accessibility:

Information lcon

Participating Actors | User

Entry Conditions 1. Hover mouse over information icon next to site function
Exit Criteria Brief explanation of function and its uses
Flow of Events 1. User hovers over or clicks information icon

2. Small popup shows explanation of site function and its uses

Table 5.1: Tooltip Use Case

5.4 Database Schema Refinement

As mentioned in the background section of this paper, the Phase One team chose to
implement a NoSQL MongoDB for simplicity. However, they described an entity relationship
diagram and data dictionary that “reflects the tables that would be expected in a relational
database” (Guerrette & Mohn, 2022). In refining their system, the team took the opportunity to

determine what kind of data management system would best suit the GOATs portal.

Initial Database Comparisons

Typically NoSQL databases are very fast, easy to develop, and straightforward to
understand. They allow developers to control the data structure and quickly create a scalable,
high-performing backend. They were specifically designed to handle high levels of data traffic
with apps that are constantly running. NoSQL became increasingly more popular with the rise in
Big Data analysis because the exponentially larger size of the dataset requires high performance

and flexibility. However, because of the non-relational nature of the data, NoSQL databases do

30

not support ACID: atomicity, consistency, isolation, durability (Bourgeois). This means that
duplicate entries of data are often overlooked, an issue that the GGC operations team currently

struggles with by using Google Sheets.

On the other hand, relational databases were actually created to store transactional data
and support multi-record ACID transactions. Additionally, they have rigid schemas and allow for
the use of joins, making it easy to access data from multiple tables that have relationships
between them. MySQL relational databases are also the most widely used and early taught
database, developed back in the 1970’s for the purpose of reducing data duplication
(mongodb.com). Using a relational database does, however, require setting up an ORM, or

object-relational-map, which requires more development and testing time (Bourgeois).

Ultimately, we determined that despite the ease of NoSQL, GGC’s proposed data
warehouse is most effectively modeled by a relational database. As stated in the previous MQP,
“One of the goals that the project hoped to accomplish was to find a way to reduce redundancy”
(Guerrette & Mohn, 2022). While the speed, scalability, and ease of cloud integration with
NoSQL databases is tempting, GGC’s data is most effectively described as relational. And, with
the help of Amazon Relational Database Services (RDS), creating a cloud instance of a relational

database is not nearly as complicated as it once was.

Although we chose to transition to a relation database, we still had two relational
database providers to compare: PostgreSQL and MySQL. PostgreSQL emphasizes the
extensibility of SQL and was developed to handle transactions at the enterprise level, which
would ultimately make sense to use for an Enterprise Resource Planning system. However,
MySQL is often the first querying language a data designer learns. With the help of MySQL
Workbench, a tool that visualizes the data modeling process, identifies syntax errors in queries,
and performs operations all in one platform, it is clear that managing a MySQL database is very
convenient and easy to learn for beginners. Syntactically, the two are very similar, but MySQL

Workbench is an integrated environment that only supports a MySQL database system.

31

o [] MySQL Workbench

a GGC_Connect_One
o &EEEL o e D=0
Administration Schemas # Query1 # Order # Order # Customer # Invoice # Order # Invoice >
o -~ N p 5 - " =
SCC:EMAS mE ¥4 & @ Limitto 1000 rows 8 % sQl®
1 e BELECT % FROM OrderWarehouseGGC.Order;
. |- OrderWarehouseGGC
« @5 Tables
> [=] Customer (1)
> B Invoice 100% & 1
> =] Order
» B OrderLine Result Grid 4 4% FilterRows: Q Edit: @4 B B Export/import: B B a
> [E Product orderlD datePlaced isGift giftFor giftMessage trackingNumby
> [ShippingAddress 1 2018-08-10 00:00:00 1 This is a fake gift message!
- 2 2023-01-17 00:00:00 1 Jane Miliotis & John McQuade Happy New Year! We miss having you two acro... [M
2 3 2018-09-12 00:00:00 1 This is a fake gift message!
5 1 Views 4 2018-09-15 00:00:00 1 This is a fake gift message!
7 2018-10-12 00:00:00 1 This is a fake gift message!
[P Stored Procedures 9 2018-11-03 00:00:00 1 This is a fake gift message!
&5 Functions 10 2018-11-08 00:00:00 1 This is a fake gift message!
1 2018-11-12 00:00:00 1 This is a fake gift message!
> sys 14 2018-11-18 00:00:00 1 This is a fake gift message!
15 2018-11-19 00:00:00 1 This is a fake gift message!
16 2018-12-04 00:00:00 1 This is a fake gift message!
17 2018-12-06 00:00:00 1 This is a fake gift message!
18 2018-12-10 00:00:00 1 This is a fake gift message!
20 2018-12-20 00:00:00 1 This is a fake gift message!
21 2018-12-31 00:00:00 0O This is a fake gift message!
22 2018-12-31 00:00:00 0 This is a fake gift message!
23 2019-02-03 00:00:00 0 This is a fake gift message!
Object Info Session 24 2023-01-17 00:00:00 0 1o oy o
26 2023-01-17 00:00:00 1 mom ily o]
Table: Order 27 2019-04-16 00:00:00 1 This is a fake gift message!
Columns: 28 2019-04-17 00:00:00 1 This is a fake gift message!
- MG 30 2023-01-17 00:00:00 1 brianna ily o]
int Al a1 2002:01-17.00:00:00_0 o] Lo]]
datePlaced datetime Order 1
isGift tinyint
giftFor varchar(108))
giftMessage varchar(1024) P
trackingNumber varchar(45) Time Action Response Duration / Fetch Time
orderStatus varchar(45)
shinninald int @ 1 15:20:02 SELECT * FROM OrderWarehouse... 452 row(s) returned 0.015 sec / 0.00031s...

Query Completed

Figure 5.4: MySQL Workbench visual representation of the database

Keeping in mind the system’s unique target audience, we know that a small, student-run
business with constant turnover will not likely reach the magnitude needed to warrant an
enterprise level database. Additionally, GGC volunteers are driven to join by the learning
opportunity, and ultimately, the management of this database will be in the hands of student
volunteers with varying levels of technical experience. Providing the option to use MySQL
workbench is a huge learning advantage for future users, or developers maintaining the system.

Next, we explain the refined data model that would be represented by a MySQL database.

Logical Entity Relationship Diagram and Data Dictionary

First, the team reworked the logical entity relationship diagram (ERD), or visual
representation of the relational database, to more accurately represent the system needs and

adjustments.

32

OrderStatus Enum

Placed
Processed
Shipped
Complete

Archive

ShippingAddress

___—1PK

 shippinglD

steetAddressOne

steetAddressTwo
state
city

Zip

Customer

PK

customerlD

firstName

lastName
phoneNumber
email

customerShippingld

User

PK

UserlD

email

password
nickname

permissionType

R

Lomw B R B E B R OB R EE B G B G EE R EEEEEEEEE

Order

PK

orderlD

Invoice

FK

referenceNumber

datePlaced
isGift

aiftFor
giftMessage
trackingMumber
orderStatus
shippingld
customerld

isSelfOrder

InvolceStatus Enum

Missing
Waiting
PaymentSent

PaymentRecieved

Users should be granted
access to different procedures
in the database by the ADMIN.

PermissionType Enum

ADMIN
GGC

FARM

R

R

orderiD

PK, FK

invoiceNumber

customerPaid

expense

revenue

invoiceStatus

e ssssa

OrderLine

PK,FK1

PK,FK2

lineOrderlD

lineProductiD

qtyOrdered

Product

PK | sku

name

description

B I I T I I R R

Figure 5.5: GGC ERP - Entity Relationship Diagram

I

It is important to note that the best practice for relational databases is for all information

to be related to each other. While the User table does not directly relate to any of the other

information in the warehouse, this entity could be used to grant permissions and roles to different

33

future users. The Phase Two team did not implement any procedures, roles, or groups within this

iteration, however, this idea will be reiterated in the Future Works section of the paper.

Rederenieal lategriey
| P Bokd ad Unadertimed . FE Bodd anad laaboered'

-

oo a S s Te n - gt &
Shappy \idros | Shappamgll oo Tl Mo s Cly. S Sy
A A e
‘r:r_a-.r Urderill Rodtosos cMemier Deniaced oot (ashor (atMosugs Toaimg™ambur
Bln e Vgt Tl Chapymgldl 15 5T e
o —

Lrder | e | Lasntbralond (V[osnlfrecucly (e et

¥ o
_

W) Frotec She Sems Deergess

%,

o,
bvv s dipalavilEl Exs o s ™ameer L pilmrfaet Bovdiesd bijeke s o it

Figire 5.6: GGC ERP - Entity Relationship Diagram with Refevential fntegriny

Additionally, a data dictionary describing the tables reflected in the relational database,

and defines all of the details for the attributes of every table is located in Appendix I.

5.5 High-Fidelity Prototype Improvements

The team updated the dashboard, changed the flow, and defined differences between the
invoice and dashboard. The user flow of the figma file was cleaned up to increase efficiency and
minimize the amount of pages used. It is divided into three core sections: admin settings,

invoices, and orders.

The dashboard was updated to highlight action items and include the ability to search
orders and add a new order right after login, which can be seen in (Figure 5.7). This reduces the
amount of screens and clicks the user would need to go through to get the information they need.
The “quick stats” were kept from the Phase One Team, because it breaks down what the

orders/invoices pages show in a concise way. These also link to the appropriate pages if clicked.

34

G.

(@ Dashboard 4

Active Orders

S ® W P

<)

f‘?’v'mr«
id

OATS. ACTION ITEMS

Notifications

Active Orders

Invoices 2

Completed Missing Invoices
Analytics
1
Unpaid Invoice
Admin
Help
Log Out

Dashboard
Search Orders Q

2 1 6

Orders

Orders Placed Processed

Orders Shipped

—+ Add New Order

Figure 5.7: Proposed mockup of new dashboard

After meeting with the COO they expressed the need of distinguishing the difference

between invoices and orders. The orders tab allows the COO to edit any of the customer/payment

information. Invoices on the other hand are used by the accountants to track the flow of money

easily, and can only edit whether an order is paid or not. The paid checkmark will be password

protected so that not just anyone can change an order status.

f‘:j Orders

G.0.A.T.S.
Active Orders Guenene, Chris X

@ Dashboard

Order Status:

ORDER INFORMATION CUSTOMER INFORMATION
Reference # 123456789 Name Chiis Guerrette
Date Placed 04/07/2022 — pre——
@ completed
Bhone 2037256633
~ Analytics 2 Plain JpLs
Ix Cranberry joRA
1x Chocolate jcHos
SHIPPING INFORMATION
Recipient Natalie Mohn
Add
@ Help INVOICE ress 100 Institute Road
§ WP Box #5886
4 Logout Expense: $50.00 Invoice #: 2718 Worcester, MA 11609

ﬁﬁ Invoices
G.0.A.TS.
Active Invoices . iﬁl ..

evenue: $5.00 Status: UNPAID

Tracking #

GiftMessage 400 Graduation!

Stpped Time et @ prons Orfertets [Shippe e S G-

Q Notifications

B Active Orders i INVOICE i ORDER INFORMATION
Invoice #2718 ! Reference # 123456789
& Completed f e Date Placed 04/07/2022

Sold For: $37.48

~ Analytics @ $5.00
- ! 2 Plain LS
| I Cranberry ICRA
Ix Chocolate ICHOS
@ Help
) Log Out CUSTOMER INFORMATION
Name Chris Guerrette
Email ciguerrette@wpi.edu

Phone 2037256633

Figures 5.8a & 5.8b: Figma Mockups for Orders and Invoices respectfully.

35

Westfield Farm Perspective

The team also created a mockup of how the farm side would look. Bob would only need
to edit the invoice number and expenses owed. We wanted to ensure the order information was
not accidentally editable by Bob, since he is older and unfamiliar with information systems. He
is only able to view and copy customer information. He then inputs the invoice information and

the COO gets a notification when saves the updated information.

@ Orders

G.0.A.T.S.
Active Orders Guerrette, Chris X
(A Dashboard
_ Order Status: Unpaid ~ Time Status.

(A Orders
CUSTOMER INFORMATION
Q Search ORDER INFORMATION
Name Chris Guerrette
Reference # 123456789
Date Placed 04/07/2022 Email cjguerrette@wpi.edu
21 Pl LS Phone 2037256633
1x Cranberry jCRA
1x Chocolate JCHOS | |
: SHIPPING INFORMATION }
I |
Sold For: $37.48 ' Recipient Natalie Mohn |
1 I
| Address |
@ Help T OTCCCRSs - 100 Institute Road i
i INVOICE (. WPI Box #5886 !
<] Log Out : : : Worcester, MA 01609 :
! Invoice # | |
1 (] Gift Messaga Happy Graduation! |
| Expense [I
1 | |

Figure 5.9: Mockup of the farm facing side.

36

6.0 Development

Good software is described as “maintainable, dependable and usable” (Bittner & Pureur). With

good software principles in mind, we chose to give the legacy code a major makeover in our

project iteration. What existed as a small React project with a few components grew into a

crafted codebase and technical stack that we found to best suit GGC’s needs. Thus, establishing a

proper software architecture in the GOATS Portal was a key factor in continuing its

development.

6.1 Software Architecture

The Portal’s main codebase is one parent directory
(GGCPORTAL) containing the active project directory
in addition to the MySQL scripts and backup CSV tables
to easily recreate an instance of the database. Originally,
this directory held the archived code for reference,
stylistic inspiration, and ownership reference to the
original developers. However, it was removed from the
main branch to reduce deprecated dependency issues
once making the transition to a cloud environment.
Many of the components in the client directory are
similarly structured to their counterparts in the archive.
This client folder is its own React project containing the
static files for the frontend components and React Redux
store configuration. The table directory contains the
python script created to traverse through the existing
GGC order spreadsheet, SQL scripts for each database
table, and the starting CSV files for each table. It’s
important to also note the .ebextensions,

.elasticbeanstalk, server.compiled and Procfile in figure

v GGCPORTAL

» .ebextensions

» .elasticbeanstalk

> tables
gitignore
babel.config.js
package-lock.json
} package.json
Procfile

README.md

5 server.compiled.js

IS server.|s

» ODUTLINE

* TIMELINE

? main®* *

Figure 6.1: Project Directory

37

6.1 of the folder hierarchy. These are necessary for deployment on AWS Elastic Beanstalk.

Working under the impression that developers will continue to iterate on this codebase in
the future, we aimed to establish a sensible hierarchy so that future collaborators will have an
easy time navigating the codebase and avoiding potential coding conflicts. As seen in figure 6.2,
there are three core components to the overall architecture: the database, the server, and the
pipeline. The MySQL database (Amazon RDS) stores all of the GGC data. The code repository
has an Express.js root server with a React.js frontend (client). The client is managed by a Redux
store and uses the Axios library to form an http connection with the backend data service set up

with Express.

The external softwares used to set up the pipeline were GitHub, AWS CodePipeline, and
Amazon Elastic Beanstalk. Github allows for version control, storage of the codebase, and other
code sharing benefits. The AWS CodePipeline gets the code ready for deployment as it directly
connects the Github repository to the Elastic Beanstalk environment. Upon the most recent push
to the main branch of the repository, AWS Elastic Beanstalk deploys the most recently healthy
version of the software to a URL. One benefit of the pipeline is that it protects the deployed
application by reverting to a healthy build if something goes wrong.

GGC Portal - Repository

MNode.js Express Server React.js Client (Static)

Router -~ - HTTP reguest € DataService J

Amazon RDS l
MySaL DB [Controllers J
" Gac Socurty Group ¢

[ORM J

", GGC_WAREHOUSE CLOUD '

Pushed to

‘ GGC Security Graup
Er—— . EC2 Instance - :
Initializes v Deploys to : Web App Server :
itHub | |
Glt u AWS CodePipeline ST

AWS ElasticBeanstalk

Figure 6.2. Diagram of the software architecture and code pipeline.

38

It is important to note that the figure above provides the overarching architecture and
proposed pipeline, however this was not used for the entirety of development. Due to frequent
testing, it was more sustainable to connect to a local database endpoint with an identical schema

and deploy changes locally.

The table below summarizes the technical stack used the team used to develop the cloud

ERP system:

Software/Technology Version Notes

Express 4.18.2 Server and routing

React ~17.0.0 Client code framework

Redux A.1.0 Redux Toolkit (1.9.1)

Axios .22 Forms http connection

Node.js 16.16.0 Runs the Node.js environment.

(Elastic Beanstalk)

MySQL 5.7.41 Hosted through Amazon RDS
Table 6.1: GGC Portal Technical Stack (See Appendix J for more)

Tool: Usage:

Visual Studio Code Major IDE used for development

Intellij IDEA Front end development

MySQL Workbench Data modeling and database development

Amazon Web Services (AWS) Hosted the bulk of the project and used for deployment

Table 6.2: Tools and Technologies Used

39

For more information on the software versions used in the implementation, please see the

package.json file located in Appendix I.

6.2 Back-End Development

The backend development was done in two parts; create the database server and schema

for testing and create an Express.js ORM to allow data to pass to the frontend.

Schema Generation and DB Configuration

In order to test the proposed relational database, the team set up a local server and created
the tables. Though tedious, the actual schema setup was not especially intricate once a server
connection was created. Using MySQL Workbench and the data dictionary described earlier, the
team developed an active MySQL data model with scripts generated
such that it can be easily recreated in a new database instance. This [EEEES

should help future developers avoid starting from scratch.

GGC’s current order tracking system resides in a Google
Sheets document. In order to test the system being developed as well
as maintain continuity, the team developed a Python script that reads
the data from a CSV file downloaded from the Sheet and outputs _
separate CSV files with the data necessary to populate the tables in 1 tables_INORDER
the database. Detailed in the script which is located in Appendix K, |
some orders were manually transcribed to these tables because they order

order_trigger

were few in number and too complex for the script to easily digest.

Additionally, within the code repository is a subfolder shipping

“GGCPortal/tables/sql scripts” which contains the SQL script files
with every table’s Data Definition Language (DDL) - a set of SQL F fg”“'fl 6.3 Tables
commands used to create, modify, and delete tables and other Directory
database structures. There is also a script that defines a trigger in the

database which creates a new invoice record with matching order ID. If future iterations of the

project ever need to recreate the database, they create the tables in the following order: User,

40

Product, ShippingAddress, Customer, Order, OrderLine, Invoice. At this point, import any
historical records by importing the appropriate CSV files, which are also located in this subfolder
of the repository. Finally, enable the trigger in the database environment. It is necessary to import
the data prior to enabling the trigger in order to avoid incorrect mapping of the order-invoice

relationship.

Express.js Object Relational Mapping

The Express.js server has been referred to as the “root” of the project repository. This
framework is what helps translate information between the MySQL database and Javascript.
Express servers are a very popular choice for building web applications using Node.js as it
allows developers to easily create robust and scalable software. They have the ability to handle

HTTP requests and responses, which makes it ideal for building

~ app RESTful APIs. This was exactly the next step needed to continue
< config

development of the backend from the Phase One team’s prototype.
S auth.config.js

i _ _ These API’s allowed access to the database fetching to occur from
s db.cnfg.t2small.js

local.cnfig.js the frontend. As a reminder, the seven tables in the schema are for

s secured.cnfg.js address, customer, invoice, order, orderline, product, and user.
controllers

. middleware As seen in the figure to the left, the parent app directory holds all of

+ models the backend code. There are directories for configurations,

address.model s controllers, middleware, models, and routes.

customer.model.|s
s db.js Models define the structure and behavior of the data, controllers

5 Fwoice.model s define the behavior of the application, and routes define how the
order.model.js . .

R S incoming requests are handled by the server. In order to develop an
» Qraaring. mooea |

product.model.js API for each table in the database schema, the team first

established a database connection (db.js) using an endpoint

routes specified in one of the configuration files (config). The models are
Figure 6.4: Express JavaScript classes that define the schema of each database table.
Directory These classes are responsible for interacting with and querying
from the database through an ORM. The models developed in this
project iteration include create, read, update, and delete queries for each table, with additional

41

queries for certain tables, depending on what was needed in the frontend (i.e., readAll, deleteAll,

etc...). On the other hand, the controllers are JavaScript functions that handle incoming requests,

process the data, and return the response to the client. The team set up one controller for every

model as controllers make use of one (or more) model(s) to retrieve or update data in the

database. Lastly, the routes are a set of rules defining how incoming requests are handled by the
server, using the HTTP methods GET, POST, PUT, and

v services : DELETE. Each of the routes are associated with a specific

controller that handles the actual request and response data.

Although the Axios library is used in the frontend directory,
the DataService purpose should be discussed with the backend
development. Classes are again separated by database table, but
the data services use an Axios connection to make http requests

from the frontend. These requests are mapped to their specified

ORM’s route, thus allowing CRUD operations to happen across

Flgure 6.5 Axios Data Services

the stack.

6.3 Front-End Development

To iterate on the existing React prototype, we first refactored
the way screen components were used and how data is managed on
the frontend. Even though the archive contained usable React code,
the way the components managed frontend data was not reasonably
scalable. React typically manages information on the frontend
through the React State, but a project with so much potential for
growth requires a structured pattern. React Redux is a state container
for Javascript applications that provides predictability and
optimization when accessing data in the state. Using the React Redux

modern toolkit, state management becomes a lot simpler.

Figare 6.6 React Client Directory

The figure on the right shows an overview of the frontend (client) directory within the

codebase. Within the source folder (src), there are assets, services (discussed in Chapter 6.2),

42

store, views, and other important files detailed in Appendix M. The store is the directory holding
the Redux Toolkit reducers, and the views directory contains all of the React classes and

components.

State Management with React Redux and Redux Toolkit

React Redux is a popular library for managing state in a React application. The benefits
of using React Redux are centralized state management, predictable state updates, improved

performance, better code organization, and easy integration with React.

Centralized state management means there is a single place that manages the state of the
application, making it much easier to keep track of state with multiple types of users interacting
with it. This also allows for more efficient state updates and gives access to the state from any
component in the application, which is important when different users need access to the same
data, but the software is rendering a completely different component depending on the
permission. State changes are easier to follow, especially since we used Redux Toolkit. This
framework provided the ability to create slices - or pieces of the reducer - for each unique part of
the state. Each of these slices were actually just a representation of the backend tables in the
frontend state. Despite having seven different slices setup, Redux allows developers to get access

to some parts, but handles the change together so nothing is out of sync.

With central state management comes predictable state updates. There is only one way to
update the state and that is to submit changes through the UI. These actions are dispatched
directly to the store, making it easier to understand how the state changes in response to user
actions. Considering accessibility and the desire for a simple experience, this is a significant
benefit for the app. Take a look at the following visual to better understand how the Redux flow

improves the software design (Figure 6.7):

43

~ 4 N\
Store
Dispatch v
£ t Handl Reducer
vent Handler .

. a®
Jl \—_[State]—/

Deposit $10 SO

Withdraw $10

Figure 6.7: Visual example of React Redux data flow.

Here, the Store is shown as the container for a single reducer, with three small “R’s” inside,
representing the slices that are managed within its container. The state is populated by the
reducer, the Ul loads the state data, and different events dispatch unique actions to the store. This
pattern has a strict unidirectional data flow, only allowing the state to be modified through
predefined actions, thus ensuring that state changes are predictable and easy to debug. This flow

also intends for users to feel more control over their actions.

The Redux solution also reduces the number of times the page re-renders, which helps

avoid unnecessary recalculations and ultimately improves the overall performance.

Lastly, it is important to highlight the benefits Redux and Redux Toolkit provided for
code organization and developer experience. Redux Toolkit encourages the separation of the
presentation logic from the business logic which makes it easier to maintain and test the code.
This made the developer’s on the project much easier as the application state was actually
separate from the components local state, making the code more modular, reusable, and
understandable. Additionally, the set of utilities provided by Redux Toolkit allows for faster
development by reducing boilerplate code typically needed to create a centralized store, which
was critical on the short MQP timeline. Specifically, the team made use of preconfigured
middleware for handling async actions as it allowed them to make API calls to the backend

within the async function of a database table’s respective slice.

44

Because both React and Redux are popular tools, the online developer communities are

vast and provide access to many tools and resources. Redux has incredibly easy integration with

React as it is designed to work seamlessly with it. Overall, React Redux helps simplify the state

management of a React application and improve the overall performance and maintainability of

the project code.

Layout and Styling

#911034 #(62032

#C9C9Co

Figure 6.8: Hex numbers of
GGC colors

6.4 Cloud Deployment

In addition to implementing a solid structure
for the frontend with React Redux, the team also
utilized Bootstrap and CSS to create a cohesive
style across each user interface. We kept the same
color scheme and layout that was made by the
Phase One team. The GGC marketing team
identifies these four colors as part of branding so we
continued to design the interface to follow these
patterns. We generally used flexbox to arrange the
objects on screen so that it is adaptable to all screen

sizes.

Part of this iteration’s development involved a deeper investigation into the “cloud” piece

to “Cloud-Based ERP.” This meant finding an appropriate solution for hosting the web server

and database for multiple users across many networks. The team decided to stick with Amazon

AWS for the cloud services like the Phase One MQP team, but focused on Amazon Relational

Database Services (RDS) for the database and Elastic Beanstalk (EB) to host the Node.js project

itself.

45

Over the course of the project, the team went through trial and error when setting up the
database with RDS. The main takeaways were to set up the appropriate instance configuration,
set up a security group, set up a parameter group, and ultimately just create the database through
the EB environment directly. The team chose a small.t2.instance for the database because it
seemed to be the cheapest option to couple with the EB environment security allowance; the free
tier eligible databases don’t work sustainably with EB because they lack proper configurations
and security tolerance. The security group is used to control inbound and outbound traffic, so it is
important to only specific IP addresses access the database, such as the address from the EB
environment. To allow the correct traffic to the instances without having to reconfigure the
settings every time, the team created a GGC-MQP security group that specified the inbound rules
to allow access to the database instance from the developer’s IP addresses and the EB
environment. The parameter group defines a collection of database engine configuration settings.
Adding this to the RDS instance allowed the team certain actions on the database that were
previously prevented or hidden. Provided there is already a security and parameter group set up,

it is really simple to just create the database instance through the EB environment directly.

Setting up an EB environment was quite simple to do after using the AWS CodePipeline
and configuring the RDS instance within the environment. This process is detailed in Appendix

M.

The following figure shows an earlier version of the software that was deployed to the

Cloud before terminating the environment due to budget cuts.

46

~ A NotSecire | goatsportalversion3-env.eba-86ripgd3.us-east-1.elasticbeanstalk.com/Orders h % » 00O :
Click to go back, hold to see history

R Outiook & Drive [Tech Suites | Spac... workday [l Who is Watching .. Jupyter Notebook 2> OOP Book [E5 map
w £

Orders
Completed Orders

Placed Processed Shipped
Acquista, Nini
G.0O.ATS.
Reference: 697185142
(A Dashboard Invoice: 00052239

Logs Ordered: 7
Daie Placed: 01 /1 7/2023

Q Order Search

@ Test

Figure 6.9 Software Version Deployed to Elastic Beanstalk Cloud Environment.

6.5 Persisting Issues

Having very few developers working on a full stack application caused issues such as the
agile methodology not being maintainable and sufficient progress being stunted by backtracking.
Some frequent trouble spots were in the backend maintenance. There was a big learning curve
with maintaining a healthy connection with a backend while working to refactor a consistently

buggy frontend.

Given the scope of the project and varying skill focuses in our group, it was difficult to
work with the front-end database connection while simultaneously trying to define a properly
structured database instance. For example, whenever the data needed to be reset or uploaded into
a new or existing database instance, it was imperative to remove the triggers that had been set or
else the existing orders would not be mapped to their respective invoice. Another improvement
to the database would be including shipping cost and unit values for each product so values can

dynamically update rather than having to update invoice values manually.

47

Due to time and lack of bandwidth, the main priority of this project iteration was to
establish a modular software for future expansion by students. Despite positive intentions using a
1:1:1 ratio of routes/models/controllers for each database entity, this is not a best practice and
prevented the team from completing CRUD actions for all tables. The decision was made for
ease, time constraints, and compatibility with the redux store. Through the progression of this
project, the team found that refactoring the ORM was out of scope for the project time. However,
the ORM should be adjusted to efficiently utilize joins between tables, grant table permissions to

users of the database, and incorporate procedures to reduce logic on the frontend.

6.6 Functional Prototype

This section includes images of the final prototype submitted. More information
regarding its full-fledged functionality are mentioned in Chapter 7.1, further shown in Appendix
D, and detailed in Appendix M. Outlined below is one particular flow that is fully functioning in

the prototype (edit screen not included but viable):

1. Login to the system as a regular GGC User

fy ‘Loun

G.O.AT.S.

Figure 6,10 Login Page

48

£ basvmaara

Dashboard

3 3 S r——

holive Grders Aotre Inwnices 3

Frgure . 1T Dashboard Page

2. Navigate to the Orders tab

Cvoses Srapgsd

Macwd Frocesssd

P
WS e——
o R
L g
Falmur L b b
.......
N —
g P we (i

Figure 6.2 Orders Page

SPpped

49

3. Click add order

G.OATS.

Sevr Onoen i 1s G D) Rk et

G Damhbagd

B tedem
[ra— .
e Piacd™
i Hap
T
@] L B

Dien pe I FORMATION

CUSTOMER |NFORMATION
i L

e

CRRER DETAILS

1| P e

SHIPPING IRF DBAAT DN

Fi—
M Aknin S
o |
e Aruia we
IicE - — -
i o b e o
s am
el IFT INFOREATICH

4. Fill in the order information

viuel o
ﬂ Actton Orrs ol Ordera
)
G.O.ATS. Sii DibEn 1% Gir? n
OEOER INFORMATION
i Daviimmad
e]
B o
ey [
LS T
Trnskag §
i el
Onopn DEfAILE
T
[6[5] v | ek e« [
[1[5] P oo = | —
. |

N E

[T

e L Oy
ikt P

[

Figure 6.03 Cvder Page

Ry

mnm L -

CUSTOMER INFORMATION
™ L
Bl g

[—T T

HHIPPING WP ORBATION

e Akrman Drw () g 5
e Ak P W
h Ll k]

Wi M e o

T |RFORBATION

o P+

Figure 6,104 Editing New Order

M

50

5. Save the new order and see it in the Active Orders tab.

2 Orders &=
@ m Gt b o

G.’D-.A.T.s. Pl ed Processed Shipgeed
1 Davsimsed i
Relmen teieghaal
B Osders v ik
Ligs Gubnm §
— Dt Paoed 04
L]
b
L e e
. [
L Dl B
]
Dt Faoed 04
o,
WET—
ik
ST
Dian Flaawi 04

Figure 6.15 Active Orders Tab

6. Click the newly created order.

Active Orders Completed Orders Fyan -
Shar Flaced [Deleie Order | -

ORDER INFORMATION CUSTOMER INFORMATION
Hutarerce wrwibder fesl Hame M
Drte Moad T a0 Emal [ropr
Tracking ¥ (LT PErrrariT]
At [
SHIPPING ADDRESS
Inmlc[| ;’:IFUIWII'II
i
pa—— eoroeate, WARLAL UL TFR
B1dir
Irrnion Mumbar WA,
Customes Pai: §17 GIFT INFORMATION
Irvios Hates Massng
am Far e
.
e e 1 v
FLavom INFORMATION - o
Hame Bl ity
P _— : Qnper |5 GiFT
Pord Pegassam P |

Fignre 616 New Ovder

7. Navigate to the Search page and type the reference number in the search bar to

watch as the orders filter.

Search Orders

Srarching Reference Numier

Kapiasas, Muis

P lerdivli T345800
Ireisca: NA
Ligs Ciddaresdt 1)

Dusim Pimced DR 20TH

Cratiomens, Foman
Faleance MMIIGLL
liretie WA

Lisgs inglarmd ()

il Plmesd 000 B2000

Tagos Lty

Pwlerence THIRIT]
Imetice: NA
Lign Credared 1)

Date Pissed: TOOTER0TA

Coapar, Liza

Rusleraneic 341079
Ireddia. WA
Ligqge Crdared:

Daie Plsced 08062010

Moliride, Thomas

Prlgranci 24T 6D
iremion WA
Ligs Crdasnd (1

Cale Placed 0002582000

Amibwigen, Ingitd

Tilerance J9M T4
irresden WA
Lixgn Crdased 1)

Dale Plesed 1170272000

Brasnahan, Kells

Ritaiadasi 2438045
Iiredidn WA
Lisgs Ordeesd: 0

Puenl, Helana

Netararaa I3
imiee WA
Lsgn Drdeesd 1

Canirg, Las
Tiedsrmease JHEINTT
Irrvice Wl

Logs Ordeeed: 0

Figure 6,17 Search Ovders Page

Search Orders

Kby RIS da TR }.

dezipibna. Dabriale Ry, i

Blgnmncn newlndeiEd e lEEbnghpe | Ralenmcn salimancabumis
spire M - A, wenice MA

s Dvebsreal 0 ederad 1] Logs Drdsiesd D

Date Plaed: D/ 203021 Maced D4/2073023 Date Placed: D4/ 2002021

A MRl

Baleioniie Aewilie laal
eaiiE M
8 Diksied O

Figure .18 Searching in Search Bar

52

8. Go to your order and delete it.

Are you BUre you want 1o
dalate?

Dt | Concl

Fignre 6.19 Delete Ovder

9. Confirm delete and verify it was removed from the Active Orders page.

Additionally, because the framework for user permissions was implemented, the

following figures highlight the dynamic navigation bar for different views.

G-lﬂlA!-TlE! B_U_A_T_S. G'O.A.T's‘ G.0.ATS.
@ by (a Bashoasd G Dashiscand B andes R Dekbied
¥ Login B owen O Sesrch]
& admin Board
01 Sawmh @ Heip
R O Sewth
D ¥ Log Gut Bab
& iy
ol L Gun G00
] Log Out kn

Figure 6.20: Navigation Bars by Role from Lejt to Right
{Logout page, GGC role, Farm role, and Admin role)

53

/.0 Future Work

Although this is a functional prototype, it is not recommended the software is integrated

into the company until proper user testing is conducted.

7.1 Next Steps

The most critical next step is to conduct a UX evaluation of the software and determine
the most important next steps for future functionality. Several important steps based on the

findings in this paper are as follow:
1. Refine the database schema based on updates within GGC’s business processes.

GGC is a very dynamic, growing company, recently under new leadership. It may
be necessary to modify the schema model defined in this project iteration, or even design

a data warehouse for further development.
2. Refactor the Express.js API to better utilize the relational nature of the database.

While the team put a lot of research into choosing the most efficient database for
the system, the time constraint of the project prevented the ability to implement joins.
This fix would allow future developers to take better advantage of querying on the
backend, and state management on the frontend. Redux Toolkit would allow developers
to work with an entire order in one slice by fetching data from a joined table, rather than
joining the customer, shipping, and order information through their respective slices in

each component that an order is needed.
3. Zapier integration with Formsite.

Cheese orders are placed by customers directly through Formsite and sent to the
GGC operations team, where it is looked over before being sent to the farm. Upon
investigation, Zapier is a tool that can be used to scrape order data from Formsite and
insert it into a specified database. Upon investigation, the team found that Formsite

occasionally writes order data to the site's spreadsheet before there is a payment filled,

54

thus it was decided to forego the Zapier route until a more formal investigation takes
place. As long as the payment is fulfilled, Formsite orders should be written to the

database schema with default status “Placed.”
4. Tterate on delivery time and company communication management.

Despite including On Time/Early/Late tags in both mockup phases of this project,
this feature is strictly a proof of concept and was not informed by any specific findings.
However, given the inconsistencies and lack of proper communication between the farm,
GGC, and customers about order placement and arrivals, this is an important feature to

iterate on.
5. Encryption for login.

The functional login for this prototype is strictly proof of concept that user
permissions should affect the app navigation. User passwords are stored as plain text and
there are no tokens involved in authorization. This is an extreme security vulnerability

and any future collaborators must correct it before implementation.
6. Update Node.js version and dependencies and get solid test code coverage.

Like many prototypes, this code is prone to mysterious bugs and behaviors, so it would be

beneficial to investigate the quality before adding additional functionality.

In addition to the steps outlined above, the README.md included in Appendix M further details

bugs that need attention and future steps to take in order to integrate this software for GGC’s use.

General Development

The development of the platform is just beginning. The list below outlines what
functionality was completed, the functionality currently in progress, and what is left to be
implemented for increased usage for GGC and partners. Additionally, there is a list of potential
features noted in the user study that were outside the scope of the team’s prototype

implementation, but would incredibly increase the value of the portal. Please note that many of

55

the unfinished features should be documented as additional use cases in future iterations, as the

modularity of the software presented benefits that were previously overlooked.

Functionality

Functionality in

Functionality to

Special Features

Completed Progress Implement
e View o \View Copy Text Data
Completed Customers Information visualization
Orders Specialized
e View Automate Status
_ . o) roles
e View Active Shipping Updates with
Orders Addresses Early/Late/On-Time Inventory
. Tracking tracking
e View Order e Update
Information Products Automate emails Inventory
Ordered between Customers, machine
e Update
_ Farm, GGC
Order e Tooltip Upload
Information Autofill for Existing Invoice as
e Update
Information PDF
e Add User OrderLines
Encryption on Login
e Remove
User Autofill Existing DB
Information in New
e Record
Orders
New Order
Cross Component
e Delete
Search
Order
e Logln

56

e Log Out

e Update
Invoice

Information

e Search
Orders by
Reference

Number

o \View

Invoice

Table 7.1: Aspects of the functional system that are complete, in progress, future implementation,

and special features to be added.

Westfield Farm Perspective

The Westfield Farm role has not been fully implemented and will need further
investigation and development to be complete. Currently, the design for the farm perspective is
set in place, however, a prototype of this design has not been user-tested with the farm owner.
Without user-testing, there wouldn’t be an understanding of the usability of the design and the
specific needs of the user. The farm owner is also elderly, so it is important to have a
mistake-proof, simple, and accessible design. The farm owner has expressed a willingness to try
new technology as long as it integrates with his own system well, however, it isn’t known how
well he can interact with a new system. To aid this, a future team would need to investigate what

he is comfortable handling electronically to aid in forming the farm role requirements.

57

/.2 Final Thoughts

Gompei’s Goat Cheese is a great pillar of the WPI Business School as it is the first
student-run, non-profit business at WPI. However, the new CEO of GGC in 2023 wants to make
some big changes to help grow Gompei’s Goat Cheese to a new level. As of now, GGC remains
mainly known to people surrounding the WPI Business School and not the rest of the
community, so the CEO wants to expand GGC to be a pillar of the whole WPI community. This
can be done by reaching out to the other schools of science and engineering to hire students for
new positions like software engineers, data analysts, and project managers. This can introduce a
learning experience for STEM students to work in teams within a real business, as well as help
GGC grow to become a great asset to the science and engineering community at WPI. A goal for
a future software development team would be to use an agile methodology to set up the software
architecture to allow incremental changes without disturbing any part of the system. This would

allow Gompei’s Goat Cheese to progress and grow progressively larger over time.

58

References

Baltzan, P. (2020). Integrating the Organization from End to End--Enterprise Resource Planning.
In Business Driven Technology (8th ed., pp. 208-224). chapter, McGraw-Hill
Education.

Bangor, A., Kortum, P.T., & Miller, J.T. (2009). Determining what individual SUS scores mean:
adding an adjective rating scale. Journal of Usability Studies archive, 4, 114-123.

Better Business Bureau (2019). 10 Ways Small Businesses Benefit Their Local Communities.
Medium.com.
https://medium.com/@BBBNWP/10-ways-small-businesses-benefit-their-local-communi
ties-7273380c90a9

Bezkoder. (2021, July 12). Redux-Toolkit example with CRUD Application - BezKoder-.
BezKoder; https://www.facebook.com/bezkoder.
https://www.bezkoder.com/redux-toolkit-example-crud/

Bittner, K., & Pureur, P. (2022, June 8). A Minimum Viable Product Needs a Minimum Viable
Architecture. InfoQ; InfoQ. https://www.infoq.com/articles/minimum-viable-architecture/

Bourgeois, Dave. “Chapter 4: Data and Databases — Information Systems for Business and
Beyond.” Pressbooks Create — Your Partner in Open Publishing, Published through the
Open Textbook Challenge by the Saylor Academy, 28 Feb. 2014,
https://pressbooks.pub/bus206/chapter/chapter-4-data-and-databases/#:~:text=Al1%20info
rmation%20in%20a%?20database,created%20t0%20manage%?20unrelated%20informatio
n.

Dennis, A., Wixom, B. H., & Roth, R. M. (2019). Systems analysis and design / Alan
Dennis, Indiana University, Barbara Haley Wixom, Massachusetts Institute of
Technology, Roberta M. Roth, University of Northern lowa. (7th ed.). John Wiley &
Sons, Inc.

Fisher, K. (2022, February 8). What is Cloud ERP and How Does It Work? Oracle NetSuite.
https://www.netsuite.com/portal/resource/articles/erp/cloud-erp.shtm

Guerrette C.& Mohn, N. (2022). Development of Cloud-Based Enterprise Resource Planning
Software for Gompei's Goat Cheese [Major Qualifying Project]. Worcester Polytechnic
Institute https://digital.wpi.edu/concern/student works/jq085p23d?locale=en

Interactive Qualifying Project, (n.d.). Retrieved December 11, 2022, from
https://www.wpi.edu/academics/undergraduate/interactive-qualifying-project

59

Nielsen, J. (2012, January 15). Thinking aloud: The #1 usability tool. Nielsen Norman Group.
Retrieved February 27, 2023, from
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/Major Qualifying
Project, (n.d.). Retrieved December 11, 2022, from https://www.wpi.edu/academics
/undergraduate/major-qualifying-project

Kamthan, P. (n.d.). Using Patterns for Engineering High-Quality Web Applications. In Software
Engineering for Modern Web Applications (pp. 100—122). IGI Global.
http://dx.doi.org/10.4018/978-1-59904-492-7.ch006

mongodb.com. (n.d.). NoSQL vs SQL databases. MongoDB. Retrieved April 26, 2023, from
https://www.mongodb.com/nosql-explained/nosql-vs-sql#:~:text=and%20fewer%20bugs.
-,What%?20are%?20the%20drawbacks%200f%20NoSQL%20databases%3F,acceptable%2
0for%20lots%200f%?20applications

Moore, L. (2018, July 31). What is MySQL? | Definition from TechTarget. SearchOracle;
TechTarget. https://www.techtarget.com/searchoracle/definition/MySQL

React Redux | React Redux. (n.d.). React Redux | React Redux. Retrieved February 21, 2023,
from https://react-redux.js.org/

Style Guide | Redux. (n.d.). Redux - A Predictable State Container for JavaScript Apps. | Redux.
Retrieved February 21, 2023, from https://redux.js.org/style-guide/

Small Business Administration. (2021) Frequently Asked Questions.
https://cdn.advocacy.sba.gov/wp-content/uploads/2021/12/0609573 1/Small-Business-FA
Q-Revised-December-2021.pdf

Small Business Administration. (2022) Massachusetts Small Business Profile.
https://cdn.advocacy.sba.gov/wp-content/uploads/2022/08/30121319/Small-Business-Eco
nomic-Profile-MA.pdf

Sharma, A. (2022, September 8). The challenge of high turnover at Startups: Founders Circle.
Founders Circle Capital. Retrieved March 3, 2023, from
https://www.founderscircle.com/high-startup-turnover-rate/

U.S. General Services Administration. (2023). System Usability Scale (SUS) | Usability.gov.
Usability.gov.
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

Y. Li and S. Manoharan, "A performance comparison of SQL and NoSQL databases," 2013
IEEE Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM), Victoria, BC, Canada, 2013, pp. 15-19, doi:
10.1109/PACRIM.2013.6625441.

60

Appendices

Appendices 73
Appendix A: User Testing Consent 62
Appendix B: User Testing Protocol 65
Appendix C: User Testing Data Analysis Sheet 70
Appendix D: Functional Prototype Images 76
Appendix E: Context Diagram 77
Appendix F: Data Flow Diagrams 78
Appendix G: Entity Relationship Diagrams 80
Appendix H: Use Cases 82
Appendix I: Data Dictionary 89
Appendix J: Package.json 96
Appendix K: MySQL Script 101
Appendix L: Python Script 105
Appendix M: Support Documentation 112

61

Appendix A: User Testing Consent
Informed Consent Agreement
For Participation in a Research Study: Software Testing

Project Team: Gabrielle Acquista, Victoria Buyck, Benjamin Sakac, Sohrob Yaghouti

Contact Information: gr-gecmgp-team@wpi.edu

Title of Research Study

Implementation of Cloud-Based Enterprise Resource Planning Software for Gompei’s Goat

Cheese

Introduction

You are being asked to participate in a study researching the effectiveness of a prototype ERP
system for Gompei’s Goat Cheese. Before you agree, however, you must be fully informed about
the purpose of the study, the procedures to be followed, and any benefits, risks or discomfort that
you may experience as a result of your participation. This form presents information about the

study so that you may make a fully informed decision regarding your participation.

Study Purpose

The purpose of the study is to assess the usability and accessibility of a prototype ERP system
for Gompei’s Goat Cheese, how well it handles needed functionality, and if there are any missing
features. The information gained from this study will inform decisions made during the

implementation of the ERP system.

62

mailto:gr-ggcmqp-team@wpi.edu

Study Procedure

You will participate in a 20-30 minute talk-aloud session in which you will interact with a
prototype system with the goal of completing a list of tasks.. As you interact with the system we
ask that you try to speak out loud your thoughts as you navigate through the application. Once all
the tasks have been completed, a member of the team will ask you a few additional questions

about your thoughts on the prototype.

Risks to Study Participants

There are no foreseeable risks or discomfort to you.

Benefits to Research Participants and Others

This study will inform the development of a system that will greatly benefit the operations of
Gompei’s Goat Cheese. This system will improve the internal operations of GGC and

communication with its supplier, Westfield Farm.

Confidentiality

No participants will be identified by name in this study, only by title in relation to GGC if we
have your permission. Your comments will not be shared with anyone other than our project
team. Constructive criticism is encouraged and will not negatively affect your relationship with

GGC or Westfield Farm.

Voluntary Nature of Study

Your refusal to participate will not result in any penalty to you. If you feel uncomfortable once

you begin the study, you may stop participating at any time.

63

By signing below, you acknowledge that you have been informed about and consent to be a
participant in the study described above. Make sure that your questions are answered to your

satisfaction before signing. You are entitled to retain a copy of this consent agreement.

Study Participant Signature Date

Study Participant Name (Please print)

Signature of Person who explained this study

64

Appendix B: User Testing Protocol

Introduction

Hi, my name is [name]. I will be walking you through the test of our proposed operations system
for GGC. This testing session will be in a think-aloud format today, which you will learn more
about shortly. My group members [names] are also on the line and will be taking notes during

our session.

Study Purpose

The purpose of this study is to identify the areas where the proposed operations system for GGC
performs well, and where there is room for improvement. This information will be used to

inform the revisions of the cloud-based enterprise resource planning system.

Consent Form and Incentive

Before we start, we would like to go through important parts of the interview information

document (Software Test Consent) that was sent to you via email earlier.

This session will be recorded and transcribed for the purpose of analysis only. We would like to
have the option to use your responses in our final report. Again, this would mean that we would

identify you by your title in relation to Gompei’s Goat Cheese. Are you comfortable with this?
(Participant gives oral consent)

Do you have any questions about the testing session today?

(Participant asks questions if they have any)

Are you comfortable with the study procedures and ready to move forward?

(Participant gives oral consent)

65

https://docs.google.com/document/d/1ek5DNgvIKGDtaHaFrKtbBIQ19lLJT4hsjEb3wSVZMJs/edit?usp=sharing

Interview Time

The testing and follow up questions will last about 30 minutes. Despite us calling this a testing
session, there are no right or wrong answers. We are testing the system, not you. In this
think-aloud session, you will be asked to complete a series of tasks within this new system.
These tasks will be given to you one by one for you to complete in your own time. We
recommend you voice your thought process verbally as you complete the tasks. We would like to
see how you naturally navigate and use the system and will not give any guidance unless asked.
We ask that you please give your best attempt at the task before asking for help. If at any time
you feel uncomfortable and wish to stop the interview, please let us know. After the testing

session, you will be asked a few questions and to fill out a quick post-testing form.
Are you ready to start?
(Participant gives oral consent)
Great. Let’s get started. We will start screen and voice recording now.
remind participant to keep talking aloud as needed during the tasks
Tasks:

1. Log into the portal

2. View orders

3. View order information for customer Chris

4. Edit Chris’s order information by updating the gift message

5. View invoices

6. Notify farm of orders missing invoice number

7. Search Orders using one of the available search fields

8. Add anew order

9. Delete the order you just created

66

10. Logout

*Section I will be asked verbally to the participant after their interaction with the new system.

All other sections will be recorded using a Google Form*

Section I: System Reflection

1.

What stands out most to you?

What did you LIKE about the new system?

What did you DISLIKE about the new system?

How would you describe the navigation of the system?
What are your thoughts about the design of the system?

Do you think the information was displayed in an effective way that's easily readable?

(why/why not)
What do you think about the “dashboard” feature?
Which system do you prefer?
a. Old (email, google sheets)
b. New (cloud-based ERP)
Are there any features you would like to see implemented?

Are there any other suggestions for improvement?

Section II: Demographics / Other info (our use only)

1.

2.

Name, age

Title in relationship to GGC

67

On a scale of 1-5 how comfortable are you with using technology? (1 being not

comfortable at all and 5 being very comfortable)

On a scale of 1-5 how comfortable are you with adapting to new systems? (1 being not

comfortable at all and 5 being very comfortable)

Section III: System Usability Scale (SUS) Statements About The New System

Respond to each statement below selecting from a range of Strongly Disagree to Strongly Agree

(with 5 = Strongly Agree and 1 = Strongly Disagree).

1.

I think that I would like to use G.O.A.T.S. frequently.
I found G.O.A.T.S. unnecessarily complex.
I thought G.O.A.T.S. was easy to use.

I think that I would need the support of a technical person to be able to use G.O.A.T.S.

. I found the various functions in G.O.A.T.S. were well integrated.

I thought there was too much inconsistency in G.O.A.T.S.

I imagine that most people would learn to use G.O.A.T.S. very quickly.

. I found G.O.A.T.S. very awkward to use.

I felt very confident using G.O.A.T.S.

10. I needed to learn a lot of things before I could get going with G.O.A.T.S.

Section IV: Conclusion

68

1.

Please write any other comments you have (about the systems, the study, or anything on

your mind from this testing process!)

a. Long answer response

69

Appendix C: User Testing Data Analysis Sheet

For our user testing analysis, the team gathered all of the participant data in an Excel sheet to

analyze any common themes and trends both quantitatively and qualitatively.

The ReadMe file of this document outlines the purpose of this study, and identifies the codes we
used in the subsequent sheets of this analysis. The SUS questions are standard system usability
questions to identify the usability of a general system. This alone does not give us information

about whether the system is functional or not.

Objective:

Identify the areas where the proposed operations system for GGC performs well, and where there is room for improvement.

Researchers: Nini Acquista, Victoria Buyck, Ben Sakac, Sohrob Yaghouti
Conducted via Zoom from 11/10/22 - 11/20/22

Description for Raw Quantatative Data

SUS (System Usability Score, 0-100, obtained from the following items on a 5-point scale)

5 point likert scale, 1= strongly disagree, 5 =strongly agree

Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3), 114-123.
https://uxpajournal.org/determining-what-individual-sus-scores-mean-adding-an-adiective-rating-scale/

SuUs1 I think that I would like to use G.0.A.T.S. ODD # questions: Positively Phrased
sus2 I found G.0.A.T.S. unnecessarily complex. EVEN # questions: Negatively Phrased
Sus3 I thought G.0.A.T.S. was easy to use.

sus4 I think that I would need the support of a technical person to be able to use G.0.A.T.S.

SUS5 I found the various functions in G.0O.A.T.S. were well integrated.

Suse I thought there was too much inconsistency in G.0.A.T.S.

SUs7 I would image that most people would learn to use G.0.A.T.S. very quickly.

suss I found G.0.A.T.S. very awkward to use.

SUs9 I felt very confident using the G.0.A.T.S.

SUs10 I needed to learn a lot of things before I could get going with G.0.A.T.S.

70

The ReadMe also identifies the questions asked in the interview as well as learning objectives we

hoped to reach by asking these questions. The individual questions are mapped to one or more

target points.

Description for Raw Qualitative Data

PID Participants ID
™ Target Points
Task 1D Task

T1 Log into the portal

T2 View orders

T3 View order information for customer Chris

T4 Edit Chris's order information by updating the gift message
T5 View invoices

Té Motify farm of orders missing invoice number

T Search Orders using one of the available search felds

T8 Add a new order

T Delete the order you just created

Ti0 Logout

o1 What stands out mast to you?

Q2 What did you LIKE about the new system?

Q3 ‘What did you DISLIKE about the new system?

04 How would you describe the navigation of the system?
Qs What are your thoughts about the design of the system?

Do you think the information was displayed in an effective way that's easily readable?
Q6 (why/why not)

P15
TP1S, TPGA
TP1S, TP2U, TSV
TR4L

P30

TRaL
TR2U, TP4L
TP1S TP2U
TPV
TRSY

Q1,QZ, Q3, Q8
3, 7, QB

05

Q4, 06, Q7
03, 08, 010

Q7 What do you think about the “dashboard” feature?

Q8 Which system do you prefer? Old (email, google sheets) vs New (cloud-based ERF)
(o}] Are there any features you would like to see implemented?

Q10 Are there any other suggesbons for improvement?

v LeamingObjectives Questions
TP1S Impressions: What is the main takeway from this system?

TR2U Useful: Does the system meet all of the user's needs?

TP3D Design: Is the design clear and effective or does it distract the user?

TR4L Layout: Is the fiow of the system and displaying of information intuitive for the user?
TPSY Improvements: What additions or features can be added to the system?

TPEA Acceptable: What does the system already do well?

Q2

71

This sheet shows the calculation of SUS scores by participant as well as the SUS score average
of all participants. Additionally we included the average score by each of the SUS questions. To
calculate this score we used a SUS data template to ensure no mistakes were made.

Participant ID SUS1 sus2 sus3 sus4 SUss susé SuUs7 suss SsuUs9 SUS10 SUS Score

pl 5 1 4 1 4 1 5 1 5 1 95.0
p2 5 1 5 1 5 1 4 1 5 1 97.5
p3 4 1 5 1 5 1 4 1 5 1 95.0
p4 4 1 5 1 5 1 4 1 5 2 92.5
Mean 4.50 1.00 4.75 1.00 4.75 1.00 4.25 1.00 5.00 1.25 95.00
sD 0.58 0.00 0.50 0.00 0.50 0.00 0.50 0.00 0.00 0.50 2.04
SUS ID question mean by question

Sus1 I think th 4.5

SUS3 I thought 4.8

SuUs5 I found tl 4.8

SUSs7 I would il 4.3

SuUs9 I felt ver 5.0

Sus2 I found C 1.0

Sus4 I think th 1.0

SUS6 I thought 1.0

suUs8 I found C 1.0

SuUs10 I needed 1.3

72

For each participant during the completion of each task, the participant identified whether the

task was completed successfully, if the participant had any trouble with the tasks, and jotted

down any comments the participant made during each task. The green boxes identify successful

completion of the task with no issues or redirections while the yellow boxes identify successfully

completed tasks with minor mistakes or if the participant got stock. The team also recorded

participant responses to the interview questions in this sheet and shows the mapping of target

points to questions.

Task Notes
Participant ID T1 T2 T3 T5 T6 T7 T8 T9 T10
Used dash What's the first went t Used dashl
pl Confused i Confused z Confused & Save shoul No date of
p2 "looks like searched b
p3 used dash
Trouble fin
p4 used dash -make butt
Question Responses
Participant ID Qi Q2 Qa3 Qs Q6 Q7 Qs Q9 Qlo
Accounting Different p
pl Visually ap Allows for More info | Straightfor Simple, att Easily read | like it, it v The new sy Statistics a Tutorial foi
It doesnt w
p2 Simplicity ¢ Ease of use References Pretty goou Its very flui Yes, the qu Pretty goot NEWWWV Data visual
-Sticker lak - Notify for
-in person - no max Ic
- bob View - Invoice ai
- Account < - bob conti
p3 The interfa clear, orgai easy, self e liked the d yes, easy tinon-memc Its hard to - Holiday C - bulk orde
-It was effe
pa clean feel, good visua Wish the c easy, flowe Likes it, like-Once you Nice and b New - Easy - Better wz

p5

Q1, Q2, Q3, Q8
Q3,Q7, Q8

Q5

Q4, Q6, Q7

Q3, Q9, Q10

Q2

73

From there, the team identified the general thoughts and feelings of each participant in regards to

the target points. These conclusions were made based on the responses to the respective

questions. For example, to understand participant one’s impressions of the system (target point

1), the team looked at the participants responses for questions 1, 2, 3, and 8. We also identified

any positive or negative comments that the user made on the system.

Participant ID TP1S TP2U

_ Impressions Useful

pl UI Design/Positive No
p2 UI Design No
p3 UI Design/Positive =~ Somewhat
p4 UI Design Yes

100% first impression UI Design

Q1, Q2, Q3, Q8
Q3, Q7, Q8

Q5

Q4, Q6, Q7
Q3,Q9, Q10

Q2

Participant ID Positive Negative
Easy, Simple,
pl Attractive info displayed

Lacking order
Clean, Easy, fluid, stats/ data

p2 useful visualization
Info displayed,
Clean, Easy, lacking
p3 convenient, useful features
Clean, Easy,
p4 Convenient

TP3D
Design

Positive

Positive

Neutral
Positive

TP4L
Layout

Neutral

Neutral

Neutral
Positive

TP5V
Improvements

Yes; Format,
Accounting,
Statistics

Yes;
Accounting,
Statistics
Yes; Orders,
Format,
Accounting
Yes; Orders

100%
suggeted
improvements

TP6A OTHER
Acceptable

Easy; Less Error

Easy; Convenient

Easy;
Convenient; Less
Error

Easy; Convenient

100% stated the
current system is
easy to use

74

Finally, we identified the insights we got from this analysis. The SUS Items by Average Score
chart shows the average score by question. Since the odd numbered questions were positively
phrased (best being 5), and the even numbered questions were negatively phrased (best being 1),
by the participant responses we can conclude the system is acceptable in terms of usability.
Additionally the responses to what the system does well (acceptability) and what needs

improvement are shown in a bar chart.

Acceptability

SUS Items Average Score

SUs1

5Us3

Instances

SUs5

SuUs? Easy to use Provides Less Error Convenient

sSuUs9 Participant Responses

Susz2
Improvements Needed

Question Code

5Us4

SuUs6

5Us8

Instances

5US10

0.0 1.0 2.0 3.0 4.0 5.0 Order Accounting Statistics Format
Functionality Changes

Average Question Score Participant Suggestions

This study had 5 participants
Sus:
e Positively phrased questions received average scores ranging from 4 - 5 E—
e Negatively phrased questions received average scores ranging from 1 - 1.3

Positive Feedback:
e 100% of participants stated this system is easy to use
e 100% of participants first impressions were about the systems Ul

Improvements:

100% of participants gave improvement suggestions

There was confusion about the difference between invoices and orders
Order cards need more information

Add permissions for different roles (Bob, GGC, admin, read-only)

Add ability for in person orders

75

Appendix D: Functional Prototype Images

Dashboard

7

4 0

Login

¢

| poteance s+ nese

| omepiceds w0LOsta00n

| Tacnge

i - Lants e

T ——

Prone* s12s2am

ORDER DETAILS

el —r——
[E———

SHIPPING INFORMATION

‘St Adroes O+

O g ST [guue < 2P ovion

e

DutePaces OB1072018

Gutres,Roman

DatePaced 081572018

Topor ity
Retoence: 2519423
Logs Ot 0
DatePacat 1071272018

Oute Pacet 0910872018

MeBice Thomes
DutePaced 032572018

Ambecguc ot
Reteence: 2579774
Logs Ot
OotePace 1/0272018

G.OATS. - —
A 4 e e coATS, L= N =
@ et . ORDER INFORMATION CusTOMER INFoRMATION
& o [ERTONY | p— 4 0 0 o _ »
® aamnows [ram— [e—— @ wep - B . .
e e o — L=
FLAVOR INFORMATION e o
Orders &= Search Orders
Active Orders Completed Orders e I
e i i =
« : e souseyonvan o . .
| ORDER INFORMATION i CUSTOMER INFORMATION 1 delete? Logs Ordered 0 Logs Odered 0 Logs Ondred 0

pevcrt, Heens

s Lo
Refeenc: 2582017
Logs Ot 0
DatePaca 1/0372018

8 oo n

ORDER INFORMATION

Reference s fe—
DotePlaced o
Tcking#

stas paces

INvoICE

Masng

FLAVOR INFORMATION

Nome. sw ay
[r— s 2
| AtaGince:

CUSTOMER INFORMATION

Name. N
Emal few——
Phone sz

SHIPPING ADDRESS
22 ighiand st

)
Worcester MASSACHUSETTS
01609

GIFT INFORMATION

ot For (.
GiftMessage Lowyou
ORDER I GIFT

Orders

Active Orders Completed Orders Ryan x

Orders

Active Orders

Completed Orders

Placed Processed

Al
Reference: testingpp
Logs Ordered 5
OatePlaced 0472072023

Rnm
A

Refeence:newbroertest

OatePlacec 0472072023

Shipped

SELF ORDER

Is GiFrr? @D

ORDER INFORMATION

Reterence #°

Oate placed

Tracking &

ORDER DETAILS

1[5] Fiwor | pan

B (]

+ Addrimer

INvoice

e Gt ton S

termaluse Only- g
Customer Pod

CUSTOMER INFORMATION

Emaie
Phone -
SHIPPING INFORMATION

‘Street Address One *

Street Addess Two,

oy swe . 7

GIFT INFORMATION

76

Appendix E: Context Diagram

Context Diagram

Order
Order Processed
Nofification _‘
Order Shipped
Nofification
Order
Information
E:E Using DeMarco i&ﬂi‘murdﬂn Symbols
Amount to Pay Entity Fr_m-_m D1 Datastore
Authorize Payment ___Dataflow,

77

Appendix F: Data Flow Diagrams

Each of these diagrams are the updated data flow diagrams our team developed

Level 0 Data Flow Diagram

78

Level 1 DFD Fragment: Process 2

From Process 1.0

Pack and Labeal
Order For Shipping

GGC Operations g3 Order Shipped Notificabon

79

Appendix G: Entity Relationship Diagrams

OrderStatus Enum

Placed
Processed
Shipped
Complete

Archive

ShippingAddress

 shippinglD

steetAddressOne

steetAddressTwo
state
city

Zip

Customer

PK

customerlD

firstName

lastName
phoneNumber
email

customerShippingld

User

PK

UserlD

email

password
nickname

permissionType

R

Lomw B R B E B R OB R EE B G B G EE R EEEEEEEEE

Order

PK

orderlD

Invoice

FK

referenceNumber

datePlaced
isGift

aiftFor
giftMessage
trackingMumber
orderStatus
shippingld
customerld

isSelfOrder

InvolceStatus Enum

Missing
Waiting
PaymentSent

PaymentRecieved

Users should be granted
access to different procedures
in the database by the ADMIN.

PermissionType Enum

ADMIN
GGC

FARM

R

R

PK, FK

orderiD

invoiceNumber

customerPaid

expense

revenue

invoiceStatus

OrderLine

PK,FK1

PK,FK2

lineOrderlD

lineProductiD

e ssssa

¥

qtyOrdered

Product

PK | sku

name

description

B I I T I I R R

I

80

Shipping Address

las
1 ™
Live at renerites Invoice
| A
Flaces I
Contains,
*gryCAndered™

Referential Integrity

{PK Bold and Underlined . FK Bold and Itali

Customer (Costomerll¥, FirstMame, LasiName. PhoneMumber, Email. shippingA darerold)

ShippingAddress (ShippingID}, StreetAddressOne, StreetAddressTwa, City, State, Zip)

e {QrderlDy, ReferenceMumber, DatePlaced, [sGift, GiftFor, GiftMessage, TrckingMumber,
rderfStabus, Cusiemerdd, Shippingld, 1sSelfQrder)

.-""'_‘—-\.._‘__
OrderLine (Linetdrderll}, LineProductfTy, QtyOrdered)

¥

Product (Sku. Name, Description)

Invaoice (OrderdD. InvoiceMumber, CustomerPaid, Revenue, Expense, InvoiceStatus)

81

Appendix H: Use Cases

Add User
Participating GGC User
Actors
Entry Conditions 1. Useris a GGC User.
2. Email is a real email.
Exit Criteria The email is verified for system login. User has a role (GGC or

Westfield Farm)

Flow of Events

1. GGC User requests to add a user.

2. GGC User types in a new User’s email and submits a
request.

3. System adds email to a list of verified login emails,
refreshes display.

Remove User

Participating GGC User

Actors

Entry Conditions e User is selected.

Exit Criteria The email is no longer verified for system login.

Flow of Events

1. GGC User requests to remove a verified email.
System prompts GGC User to confirm removal.

GGC User confirms removal.

> w0 DN

System removed email from the list of verified email
logins, refreshes display.

82

Log In

Participating User

Actors

Entry Conditions | User’s email is in the system.
Exit Criteria User is logged in.

Flow of Events

1. User requests to log in.

2. System verifies user email and displays GGC’s dashboard.

Log Out

Participating User

Actors

Entry Conditions | User is logged in.
Exit Criteria User is logged out.

Flow of Events

1. User requests to log out.

2. System logs out User and shows the login screen.

Record New Order

Participating GGC User

Actors

Entry Conditions | All required order information has been put in.

Exit Criteria Order has been recorded and an email is sent about the new

order.

83

Flow of Events

1. GGC requests to add an order.

2. System adds order to the system and refreshes the
display.

3. System sends an email to GGC and the Partner Farm that

a new order has been added.

Delete Order

Participating GGC User

Actors

Entry Conditions | An order is selected.

Exit Criteria The selected order and associated invoice is deleted.

Flow of Events

1. GGC requests to delete an order.

2. System prompts GGC to confirm that they want to delete
the order.

3. GGC responds to prompt on screen.

4. System deletes the order if GGC confirms the prompt and
refreshes the screen.

Update Order Information

Participating User

Actors

Entry Conditions | Order Information is being viewed and new information has been
put in.

Exit Criteria Order Information is updated.

84

Flow of Events

1. User requests to update order information.

2. The system updates the order information and refreshes
the screen.

Update Invoice Information

Participating
Actors

User

Entry Conditions

Invoice Information is being viewed and new information has
been put in.

Exit Criteria

Order Information is updated.

Flow of Events

3. User requests to update order information.

4. The system updates the order information and refreshes
the screen.

View Active Orders

Participating User

Actors

Entry Conditions | None

Exit Criteria The current orders are displayed.

Flow of Events

1. User requests to view the current active orders.

2. The system displays the current active orders.

View Completed Orders

85

Participating User

Actors

Entry Conditions | None

Exit Criteria All the orders are displayed.

Flow of Events

1. User requests to view completed orders.

2. The system displays the completed orders.

View Order Information

Participating User

Actors

Entry Conditions | Order is selected.

Exit Criteria The order information is displayed.

Flow of Events

1. User requests that the order information be displayed.

2. The system displays the order information.

View Invoice

Participating User

Actors

Entry Conditions | Order is selected and has an invoice.
Exit Criteria Invoice PDF is displayed.

Flow of Events

1. Userrequests to view invoice.

86

2. System displays Invoice PDF in a new window.

Search Orders

Participating User

Actors

Entry Conditions | Search parameters are specified.

Exit Criteria Orders matching search parameters are displayed.

Flow of Events

1. User requests to search for orders matching a set of

parameters.
2. The system displays all orders matching the search
parameters.
View Customers
Participating GGC User
Actors
Entry Conditions | None
Exit Criteria List of customers is displayed

Flow of Events

1. GGC requests to view the list of customers

2. The system displays all orders matching the search
parameters.

Copy Text Information

Participating User

Actors

Entry Conditions | None

Exit Criteria Text is copied to clipboard

Flow of Events

1. User requests to copy nearby text.

2. The system copies that text to the users clipboard.

Information Icon

Participating User

Actors

Entry Conditions 1. Hover mouse over information icon next to site function
Exit Criteria Brief explanation of function and its uses

Flow of Events

1. User hovers over or clicks information icon

2. Small popup shows explanation of site function and its
uses

88

Appendix I: Data Dictionary

CUSTOMER
Attribute Type Constraint Description
CustomerID ID Primary Key Automatically
generated ID
FirstName String Not Null Customer’s first
name
LastName String Not Null Customer’s last
name
PhoneNumber String Customer’s primary
phone number
Email String Not Null Customer’s primary
email
ShippingID Foreign Key, Associated
References ShippinglID if the
SHIPPING order is not a gift,
ADDRESS default NULL
SHIPPING ADDRESS
Attribute Type Constraint Description
ShippingID ID Primary Key Automatically
generated ID
StreetAddressOne | String Not Null

&9

StreetAddressTwo | String

City String Not Null

State String Not Null

Zip String Not Null

ORDER

Attribute Type Constraint Description

OrderlD ID Primary Key Automatically
generated ID

ReferenceNumber | String Reference Number
(generated by GGC
Formsite)

DatePlaced Datetime Not Null Date the order was
placed on.

IsGift TinyInt True if the order is a
gift.

GiftFor String Name of the
recipient of the gift
(Full name / title to
address the order)

GiftMessage String Optional gift

message that

customers can
choose to send
with their order.

90

TrackingNumber

String

When shipping the
order, the farm
receives a
shipment tracking
number from
Stamps.com. This
attribute tracks that
number. When
filled out, the order
status changes to
shipped.

OrderStatus Enum Current order
status [Placed,
Processed,
Shipped,
Complete, Archive]
ShippingID Foreign Key, Associated
References shipping address
SHIPPING (where to send the
ADDRESS order)
CustomerID Foreign Key, ID of the customer
References who placed an
CUSTOMER order.
IsSelfOrder TinyInt True if the order is

placed by GGC for
pickup at the farm.

ORDER_STATUS ENUM

String

Context

Placed

Order is placed on Formsite or by GGC.

91

Processed

Order is sent to the farm.

Shipped Order is shipped from the farm.
Complete Order is received by the customer.
Archive Order is over 3 months old.
ORDERLINE
Attribute Type Constraint Description
LineOrderID ID Primary Key, Associated Order’s
References ORDER | ID
OrderIlD
LineProductID ID Foreign Key, Associated ID of
References one product in an
PRODUCT Sku order.
QtyOrdered Int Quantity ordered of
the associated
product.
PRODUCT
Attribute Type Constraint Description
Sku ID Primary Key Westfield Farm
SKU Value or
determined by
ADMIN.
Name String Name of the
cheese flavor or

92

item.

Description String Description of the

item.
INVOICE
Attribute Type Constraint Description
OrderlD ID Primary Key, Associated Order
References ORDER | ID

InvoiceNumber String Westfield Farm
invoice number.

Revenue Float Amount GGC made
from the order
(Revenue =
CustomerPaid -
Expense)
*Note: this should
be changed to
“Profit”*

Expense Float Amount GGC owes
the farm.

CustomerPaid Float Amount customer
paid for the order (0
if its a selfOrder)

InvoiceStatus Enum Status of the

invoice.

INVOICE_STATUS ENUM

93

String

Context

Missing Invoice is missing an invoice number (default).

Waiting Invoice number and expense is sent to GGC. This is the status
when an InvoiceNumber is input to the database.

PaymentSent Invoice payment has been sent by GGC Accounting.

PaymentRecieved

Invoice payment has been received by the farm.

USER

Attribute Type Constraint Description

UserlD ID Associated User ID,
automatically
incremented.

Nickname String Nickname for
welcome message.

Email String User email

Password String User password

PermissionType Enum Users’ permission

for
accessing/updating
data.

PERMISSION_TYPE ENUM

94

String

Context

ADMIN Users have administrator privileges.

GGC Users can read/add/edit/delete orders and update invoice
status to PaymentSent.

FARM Users can read order information but ONLY edit the

InvoiceNumber, Expense, and change InvoiceStatus to
PaymentRecieved.

95

Appendix J: Package.json

(root)

"name": "ggcportal",
"version": "1.0.0",
"description": "",
"main": "server.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"server": "nodemon --quiet server",
"start": "nodemon --exec babel-node server.js",
"client": "npm start --prefix client",
"build": "babel server.js --out-file server.compiled.js"
}y
"repository": {
"type": "git",
"url": "git+https://github.com/geacquista/GGCPortal.git"
Hy
"keywords": [
"nodejs",
"express",
"mysql",
"restapi"
1y

"author": "niniacquista'",

"IsC"

"license": §CW,

"dependencies": {

"@babel /preset-react": "77.18.6",

"aws-chime": "git+ssh://git@github.com:aws/amazon-chime-sdk-js.git",

"aws-sdk": "https://github.com/aws/aws-sdk-js.git",

"bootstrap": "”5.

"cors": "72.8.5",

"express": ""~4.18.2",

"mysqgl": "latest",

"mysqgl2": "*3.2.0"

by

"bugs": {

"url"™: "https://github.com/geacquista/GGCPortal/issues"

by

"homepage": "https://github.com/geacquista/GGCPortal",

"devDependencies": {

"@babel/cli": "~7.21.0",

"@babel/core": "~7.21.3",

"@babel/node": "~7.20.7",

"@babel/plugin-syntax-jsx": "*7.21.

"@babel/preset-env": "*7.20.2",

"nodemon": "72.0.22"

} 14

"engines": {

"node": "16.17.0"

(client)

"name": "frontend goats portal",

"version": "0.1.0",

"private":

"dependencies": {
"Qreduxjs/toolkit": "~1.9.1",
"Qtesting-library/jest-dom": ""5.
"Qtesting-library/react": "713.4
"Qtesting-library/user-event": "~14.4.3",
"axios": "*1.2.2",
"bootstrap": "”5.
"connected-react-router": ""6.9.3",
"date-fns": "72.29.3",
"formik": "*2.2.9",
"history": "~5.3.0",
"moment": ""2.29.4",
"react": "~17.0.0",
"react-datepicker": ""4.8.0",
"react-dom": "~17.0.0",
"react-redux": "~7.1.0",

"react-router-dom": ""6.4.5",

"react-scripts": ""2.
"react-switch": "77.0
"redux": ""4.2.0",
"redux-thunk": "72.4.2",
"web-vitals": "72.1.4",
"yup": ""~1.0.2"
y
"scripts": {
"start": "react-scripts start",
"build": act-s ipts build",
"test": "react-scripts test",
"eject": eact-scripts eject"
}y
"eslintConfig": {
"extends": [

"react-app",

"react-app/jest"

} r

"browserslist": {

"production": [

">0.22 u’

"not dead",

"not op mini all"

i

"development": [

100

Appendix K: MySQL Script
"GGC_WAREHOUSE CLOUD' . User®
‘userID’ AUTO_INCREMENT,
“email’ (45)
‘password’ (45) 'ggc@wpi',
‘nickname’ (45)
‘permissionType’ enum('ADMIN','GGC', 'FARM')

(TuserID")

"GGC_WAREHOUSE CLOUD' . Product
“sku’ (15)
‘name (45)

"description’

"sku UNIQUE ™ (sku’)

"GGC_WAREHOUSE CLOUD' . ShippingAddress®

“shippingID® (11) AUTO_INCREMENT,

‘streetAddressOne” (255)

(45)

("shippingID’)

"GGC_WAREHOUSE CLOUD' . Customer (
‘customerID® AUTO_INCREMENT,
"firstName"

“lastName"
"phoneNumber "
“email’ (255)
‘customerShippingId"

("customerID’),

‘customerID UNIQUE® (customerID’),

"ShippingID idx" (customerShippingId’),

"CustomerAddressID® ("customerShippingId’)

"ShippingAddress” (shippingID)

)

"GGC_WAREHOUSE CLOUD' . Order
‘orderID® AUTO_INCREMENT,
‘referenceNumber" (45)
‘datePlaced’
“isGift®
‘giftFor" (108)
‘giftMessage’ (1024)
“trackingNumber (45)

‘orderStatus’ enum('Placed', 'Proccessed', 'Shipped', 'Complete', 'Archive')

'Placed’,

"shippingId"®

‘customerId’
"isSelfOrder”
(TorderID")
"ShippingID idx® (" shippingId’),
"CustomerID idx" ‘customerId’),
‘OrderStatusID idx" (orderStatus’),

"CustomerID Order FK° (“customerId’) “Customer”

(“customerID’) CASCADE,

"ShippingID Order FK° (" shippingId’)

"ShippingAddress” (shippingID’) CASCADE

"GGC_WAREHOUSE CLOUD' . Invoice (
‘orderID®
‘invoiceNumber®
‘customerPaid’
‘revenue
‘expense’

invoiceStatus® enum('Missing', 'Waiting', 'PaymentSent'’'

, 'PaymentRecieved')

'Missing',

(TorderID"),

"OrderID UNIQUE' (orderID'),

"ORDER ID INVOICE FK' (*orderID")

(TorderID’) CASCADE

"GGC_WAREHOUSE CLOUD' . OrderLine’ (

("1
CASCADE,

"SKU _FK LINE" ("lineProductID"

CASCADE

DEFINER = CURRENT USER TRIGGER

TER INSERT

(new.orderID) ;

104

Appendix L: Python Script

import random
import pandas as pd
SHIPPING_FIELDS
CUSTOMER_FIELDS

ORDER_FIELDS

"giftMessage", "trackingNumber",
"orderStatus"”, "shippingID", "customerID",

"referenceNumber"]

INVOICE FIELDS = ["orderID", "invoiceNumber", "customerPaid",
"expense", "revenue", "invoiceStatus"]

ORDERLINE_FIELDS = ["lineOrderID", "lineProductID", "qtyOrdered"]

PRODUCTS = {
"Plain": "jPL5",
"Herb Garlic": "jHG5",
"Hickory Smoked": "jSM4",
"Blueberry Lemon": "jBL6",
"Cranberry Orange": "jCRA",
"Pink Peppercorn": "jPI5",
"Fiery Fig": "jFF6",
"Chive": "jCHI",
"Calabrini": "jCA6",
"Chocolate": "jCHO",
"3LB Calabrini": "jCA3",
"3LB Herb Garlic": "jHGB",
"3LB Plain": "jPLB3",
"Chive Capri": "jCHI",
"Herb Capri": "jHES5",
"Pepper Capri": "jPE5",
"Wasabi": "jWA6",
"Herb Garlic (8o0z)": "jHG8"

raw_data "ggc_sample.csv"

SRC_ROWS 559

SHIPPING "output/shipping.csv"
CUSTOMER "output/customer.csv"
ORDER = "output/order.csv"
INVOICE = "output/invoice.csv"

ORDERLINE = "output/orderline.csv"

df sample data = pd.read csv(raw_data)

df sample data = df_sample_data.rename(columns={'Town/City"': ‘city’,

'State': 'state',

'Zip': 'zip',

"Email': ‘email’,

"Phone"’ :
"phoneNumber’,

'Gift?': 'isGift',

"Gift For":
"giftFor",

"Date Received":
"datePlaced”,

"Reference Number":
"referenceNumber",

"Bought For":
"expense",

"Sold For":
"revenue"})

shipping cols = ["city", "state", "zip",
"streetAddressOne", "streetAddressTwo",

"shippingID"]
df_shipping table = pd.DataFrame(columns=shipping cols)
default_address = {"city": "Worcester",
"state": "MA",
"zip": "01609",
"streetAddressOne": "100 Institute Rd.",
"streetAddressTwo": "",
"shippingID": "1"}
df_shipping_table.loc[len(df_shipping_table)] = default_address

customer_cols = ["Name (last, first)", "phone", "email"]

name_field = "Name (last, first)"

df name_split = pd.DataFrame(df_sample data[name_field].str.split(
", ").to_list(), columns=["Last", "First"])

df_sample_data['firstName'] = df_name_split['First']

df_sample_data['lastName'] = df_name_split['Last']

df_sample_data = df_sample_data.drop(name_field, axis=1)

CUST_FIELDS_NO_IDs ["firstName", "lastName", "phoneNumber",
"email"]

df_not_gift_orders df sample data[df_sample data['isGift'] == "N"]

df not_gift orders_customers = df_not gift orders.drop duplicates(
["email'], ignore_index=True, keep="last")

df NGOC_shipID = df not _gift orders_customers.loc[:,

CUST_FIELDS_NO_IDs].copy()
df _NGOC_shipID['customerShippingID'] = 1

df _gift orders = df_sample_data[df_sample_data['isGift'] == "Y"]

df_gift_orders_customers = df_gift_orders.drop_duplicates(
["email'], ignore_index=True, keep="last")

df_GO_shipID = df_gift_orders.loc[:, CUST_FIELDS_NO_IDs].copy()
df_GO_shipID["customerShippingID"] = ""

df _gift only customers =
df gift orders_customers[~df_gift orders_customers['email'].isin(
df_NGOC_shipID['email'])]

df _combine NGOCSID GOC =
df NGOC_shipID.combine first(df gift orders_customers)

df uniq _cust = pd.concat(
[df _combine_NGOCSID GOC, df_gift only customers],
ignore_index=True)

df_uniq_cust['phoneNumber'] =
df_uniq_cust["phoneNumber"].str.replace(
r‘I\D', Il)

df _uniq_cust['customerID'] = pd.RangeIndex(1l, len(df_uniqg_cust) + 1)

df uniq cust["isGift"] = df_uniq_cust["isGift"].replace({"Y": 1, "N":
0})

df_unique_customers = df_uniq_cust.loc[:, CUSTOMER_FIELDS].copy()

order_cols = ["orderID", "datePlaced", "isGift", "giftFor",
"giftMessage",

"trackingNumber", "orderStatus", "shippingID",
"customerID", "referenceNumber"]

merged_df orders_shipping customers = df_sample data.merge(
df unique_customers, on=["email"], how="'left")

merged_df orders_shipping customers["orderID"] = pd.RangeIndex(
1, len(merged_df_orders_shipping customers) + 1)

merged_df_orders_shipping customers|["trackingNumber"] = ""

merged_df orders_shipping customers["orderStatus™] = ""

merged_df_orders_shipping_customers["shippingID"] = 1

df _orders = merged_df_orders_shipping_ customers

df orders.loc[df orders["isGift"] == "Y",
"giftMessage"] = "This is a fake gift message!"

df_orders["datePlaced"] = pd.to_datetime(df_orders['datePlaced'])

df _invoice = df_orders.copy()

df_invoice['invoiceNumber'] =
df _invoice['isPaid'] = @
df_invoice['customerPaid'] = "PaymentRecieved"
df_invoice["invoiceStatus"] = "PaymentSent"

LIST FLAVOR_FIELDS = ["Flavor 1", "Flavor 2", "Flavor 3", "Flavor 4",

"Flavor 5", "Flavor 6", "Flavor 7",

"Flavor 8", "Flavor 9", "Flavor 10", "Flavor

11", "Flavor 12", "Flavor 13", "Flavor 14",

"Flavor 15", "Flavor 16", "Flavor 17",
18", "Flavor 19", "Flavor 20", "Flavor 21",

"Flavor 22", "Flavor 23", "Flavor 24",
25", "Flavor 26", "Flavor 27", "Flavor 28",

"Flavor 29", "Flavor 30", "Flavor 31",
32"]

dict_orders: dict[int, list[str]] = {k: [] for k in
df orders["orderID"]}
for field in LIST _FLAVOR FIELDS:
for index, row in df_sample_data.iterrows():
if type(row[field]) != float:
dict_orders[index +

"Flavor

"Flavor

"Flavor

1].append(PRODUCTS[row[field].strip().title().replace("Lb", "LB")])

dict_product gtys = {}
dict_order_line =

for (orderID, products ordered) in dict orders.items():

for item in products_ordered:

dict _product_qgtys[item] = products_ordered.count(item)

dict_order_line[orderID] = dict_product_qtys
df_orderline = pd.DataFrame(columns=ORDERLINE_FIELDS)

for (orderID, prod_gtys) in dict_order_line.items():
for prodID, prodQty in prod_qgtys.items():
df_orderline.loc[len(df_orderline)] = [orderID, prodID,
prodQty]

df_shipping_ table[SHIPPING_FIELDS].to_csv(SHIPPING, index=False)
df unique_customers[CUSTOMER _FIELDS].to csv(CUSTOMER, index=False)
df_orders[ORDER_FIELDS].to_csv(ORDER, index=False)
df_invoice[INVOICE_FIELDS].to_csv(INVOICE, index=False)
df_orderline[ORDERLINE_FIELDS].to_csv(ORDERLINE, index=False)
print("DONE")

111

Appendix M: Support Documentation

Where can everything be found?

We created a Github project setup with an AWS CodePipeline used to build and deploy the app
in an Elastic Beanstalk environment. The backend of the environment was configured to an
Amazon RDS MySQL instance so the app could make use of environment variables. There is a
cloned version of the codebase in Gompei's GitHub Organization and a new Amazon AWS
account set up for the future team. There will be instructions and links to resources on how to
set up the AWS CodePipeline and Elastic Beanstalk Environment in the README.md.

How to access information and accounts?

This section is removed for security reasons.

What now? Running the Codebase
In order to access the codebase, a developer needs a computer that can access GitHub and
any preferred IDE to run the code. A user is able to access the codebase by following these
steps. Further information can be found in the README.md.
1. Add a personal Github account to Gompei’s Github (Organization)
a. Log into the GGC Admin Github account and add the account as a collaborator
on the organization.
Clone the GGCPortal repository to the local machine.
Delete the .node_modules folders and package-lock.json files in root and client
directories.
Run ‘npm install’ in the terminal of the client AND root directories
Run ‘npm run build’ in the terminal of the client AND root directories
a. This command creates the production build directory of the app, which is the
code actually being deployed.
b. Running ‘npm run build’ in the root directory updates the server.compiled.js file,
which creates a build of the app that can run on the Node.js version expected by
Elastic Beanstalk.
6. Run ‘npm run start’ on root directory

7. Open browser to local http://localhost:3001/

a. Note: If you run ‘npm run start’ in the client directory, localhost:3000 will open the

client app, but the root (Express server) needs to be running in order to see

112

http://localhost:3001/

information from the database. This is a good way to see your frontend changes
automatically deployed, because you need to run ‘npm run build’ every time you
want to see frontend changes running the root directory.

8. Success! You should see the G.O.A.T.S. login page.

What has been done?

Paper Documentation

In our paper, there are a lot of helpful diagrams and other documentation, including:
System Use-Cases, Data Flow Diagrams, an Entity Relationship Diagram, a Data
Dictionary, a User Flow Diagram, System Mockups, and a Software Architecture
Overview.

Database Schema: GGC_WAREHOUSE_CLOUD

The database that this project uses is Amazon RDS MySQL database. This was chosen
for various reasons outlined earlier in the paper.

To continue with using this type of database and API, a new instance must be created,
connect to that endpoint, create schema ‘GGC_WAREHOUSE_CLOUD’ and run the
MySQL script to create the backend tables. Import refresh csv files to their respective
tables and then add the trigger into the order table.

The IAM account should have access to read the following database snapshot in the
Phase 2 AWS account:

Snapshot Name: DB Instance:

ggc-mgp-2-snapshot
ID removed for security reasons

Front-end Development:

The status of front-end development can be found in the README.

Looking for resources to begin understanding the frameworks used in this
software?

There are many great resources out there but here’s a list of some of the things that helped the
team get started. If you're interested in an academic reading that involves Redux and React, |
recommend this one :)

113

https://us-east-1.console.aws.amazon.com/rds/home?region=us-east-1#db-snapshot:engine=mysql;id=ggc-mqp-2-snapshot
https://jyx.jyu.fi/bitstream/handle/123456789/54129/URN%3aNBN%3afi%3ajyu-201705272524.pdf?sequence=1&isAllowed=y

Figma:

Figma Tutorial: Prototyping
Figma Tutorial: Interactiv mponen

Front End:

R g rash r
Crash Course Github
Intro to React Tutorial

React Functional Components
React Class Components

Conditional Rendering
Conditional Rendering with Enum

Redux Toolkit
Toolkit Fundamentals Tutorial
CRUD with Redux Toolkit

Back End:

What is Express.js?

Express Routing

Axios Documentation

Rest API with Express and MySQL

Version Control:

Beginner’s Guide to npm
Gitting Started
Git Cheat Sheet

Amazon AWS:

Getting Started

MySQL to Amazon RDS
AWS RD Exampl

Full Stack with Elastic Beanstalk
Elastic Beanstalk Deployment Tutorial

The README.md

Hello! You are likely feeling incredibly overwhelmed looking at so much code.

deep breath!

https://www.youtube.com/watch?v=-sAAa-CCOcg&t=11s
https://www.youtube.com/watch?v=ReNbXhaL3Xk&t=8s
https://www.youtube.com/watch?v=w7ejDZ8SWv8&list=WL&index=5&t=28s
https://github.com/bradtraversy/react-crash-2021
https://reactjs.org/tutorial/tutorial.html
https://www.freecodecamp.org/news/react-components-jsx-props-for-beginners/
https://www.w3schools.com/react/react_class.asp
https://reactjs.org/docs/conditional-rendering.html
https://reactpatterns.js.org/docs/conditional-rendering-with-enum/
https://redux-toolkit.js.org/
https://redux.js.org/tutorials/quick-start
https://www.bezkoder.com/redux-toolkit-example-crud/
https://www.codecademy.com/article/what-is-express-js
https://expressjs.com/en/guide/routing.html
https://axios-http.com/docs/intro
https://www.bezkoder.com/node-js-rest-api-express-mysql/
https://nodesource.com/blog/an-absolute-beginners-guide-to-using-npm/
https://docs.github.com/en/get-started/using-git/about-git
https://ohshitgit.com/
https://aws.amazon.com/free/webapps/?trk=0859629e-29af-428f-ab68-152ecf240a0b&sc_channel=ps&s_kwcid=AL!4422!3!531871356647!e!!g!!aws%20web%20hosting&ef_id=Cj0KCQiAtvSdBhD0ARIsAPf8oNmXV8vo9sX6rcDAfFOQlIu02_5xy03n7ROI-9gNh8llH0BrbSc7iccaApEaEALw_wcB:G:s&s_kwcid=AL!4422!3!531871356647!e!!g!!aws%20web%20hosting
https://aws.amazon.com/getting-started/hands-on/move-to-managed/migrate-my-sql-to-amazon-rds/
https://www.youtube.com/watch?v=zOsO996Esck
https://www.youtube.com/watch?v=L2UQnPb5Pho
https://medium.com/@wlto/how-to-deploy-an-express-application-with-react-front-end-on-aws-elastic-beanstalk-880ff7245008

There are quite a few bugs in the code that just weren't resolved when the time was

up, so this README will try and point you where to start.

To login, use any of the email/password combinations in the user.csv file (or however

you've configured the database).

1. Overview of the mess, (and what I learned throughout MQP) :

- There are a mix of React classes and React functional components in the codebase,
but going forward I would consider making everything components (Chat GPT is your
friend).

- The reason I didn't do this was because of using mapStateToProps with Redux

Toolkit, to investigate the alternative with functional components.

- The tab system in MainOrderCards Tabs is buggy. It's essentially the remnants of
the Phase One Prototype, so consider revamping the code or scratching it altogether

with a new tab/windowing solution.

- Check the rendering of the OrderCards, it doesn't seem to be working quite right
for the Search component
- You can probably see this in the screenshots in the final paper, but the
Search Page shows 0 logs for every order card, which is obviously wrong.
- Also... the onclick function for those cards was never fixed, but don't focus

on that until the tab system works

- Check on OrderLines, in ExistingOrder Tab I disabled editing an orderline because

it was deemed to be a bit more complicated than anticipated.

- An orderline has a dual primary key (the order id, and the product id), but
we only create an order line for the products ordered.

- When a user then goes to edit the products ordered on an existing order, the
front-end arraylist of ProductsOrdered doesn't care that a primary key changed.

- So, going to update the orderliness with the new list of products doesn't

- The solution was to delete each orderline of that order, and add the new
ones, but it's getting a duplicate primary key error.
- All in all, consider just creating an integer PK to avoid any more issues

with the dual key.

- The AdminPanel was the first thing that worked. I swear. It was the first thing
that connected the front and backend. But at some point... one day... the users
stopped appearing. I didn't look into it... Presentation day passed and I have quite

literally run out of time.

- I think it'll be a good place to start and debug to understand:
1. how the components get information from the store -->

how the store gets information from the API -->

3. how the API calls the backend.

- App.js contains the Navbar actually being used: Navbar.js has the correct styling
-- it's from Phase One, but App.js provides the structure for user permissions and
login authorization.

- It does not currently handle access tokens or password security but that
should be fixed before put into production.

- The Routes are the possible pages of the application with their respective
components.

- Above the list of routes is the navbar rendering. Depending on the type of
user logged in will control which buttons are shown. The farm side routes are set up
but the components are not made (literally copy and paste once you've made your edits
to the order state)

- An Admin user has access to the Admin panel but they should also have their
own order page to be able to update EVERY field.

- Finalizing the admin flow will allow the software to be integrated for

company use.

- Rework the Redux Toolkit slices, they were inherently based on the tables in the
backend but that's not necessarily the best approach. The order slice should hold ALL
of the information on an order, rather than holding the shippingId, customerId, etc
(like the backend table would). The local state in the OrderCard and ExistingOrder Tab
should be populated much more simply than it is now -- fixing this will probably save
you the trouble I went through and solve the frontend issues explained earlier (I
started with populating the order cards, then add order, then existing, and... I could
have avoided a lot of problems, hopefully this is something that can be fixed quickly
if you are at all familiar with React)

- Keep the other slices available (customers, shipping addresses, etc. even

keep a copy of the order slice around while you work a new solution, it's gonna be

tricky manipulating the data as its passed directly from the backend, but that's where
most of the work needs to be done), but it's not necessary to be joining arrays and
objects in the frontend business logic -- just create the frontend state EXACTLY how
it'1ll be useful for you populating the UI... then go back and rework your queries or
data services.

- Also, research best practices for having business logic in the slices, I
think you can do more with them than I am currently doing. That might help with a lot

of the frontend calculations.

- Speaking of queries and data services, the API's need quite a bit of work.

- If you find it to be too much work, you can consider Amazon AWS REST API
Gateway, but developing the Express server and APIs yourself is a great way to
strengthen backend software engineering skills, and will help you feel a greater

amount of control over how data is passed across the server.

- You may need to wrap the order form in a form element, because right now it

functions as a form but the required conditions aren't enforced by anything.

- One flow that does work and should be used to conduct a user test is as follows:

(it doesn't really matter that not all the information shows up/can be edited yet)

1. Login to the system as a regular GGC User
- email: gr-ggc@wpi.edu
- password: company
Navigate to the Orders tab
Click add order
Fill in the order information
- The user has the option to clear the fields if they mess up
Save the new order.
Navigate to the Active Orders tab and click the newly created order.
In the existing order tab, click edit and change the reference number to
easy to remember.
Navigate to the Search page.
Type the reference number in the search bar and watch as your order appears.
0. Go back to the Orders screen (it would be convenient if the onclick worked
for the card)
11. In the Active Orders tab, click your order and delete it.
12. Confirm delete and verify it was removed from the active orders page (this
might not work, it might look like a different order was deleted... but if you refresh
the screen the correct order was deleted... sorry but that's probably another bug to

go fix :)

2. How do I navigate the codebase? (GGCPortal is the root directory) It's gonna
some time to get comfortable. Here's a cheat sheet:
- Configurations:

. (.ebextensions/) & (.elasticbeanstalk/) are directories for elastic
beanstalk environment configurations. They probably won't need to change unless
modifying how the app is being deployed to eb.

2. (babel.config.js) has the babel configuration for the server. Look at
documentation for more clarification on what it does.

3. (Procfile) is similar to a makefile, it allows the web app know which file
to run the server on (which is server.compiled.js because it is the compiled version

of our app)

4. (package.json) manages root project dependencies, configuration, and scripts
- includes express and mysqgl configurations
4. (client/package.json) manages client project dependencies, configuration,

and scripts - includes all of the React stuff irrelevant to server itself

- Notable "Entry" Files:
1. (server.js) The main entry point of the Express.js server that defines and
configures the server, middleware, routes, and any other setup.
- (server.compiled.js) is generated by running 'npm run build', this is
what the Procfile points to
2. (client/src/index.js) this is the main entry point for the React app
- imports necessary dependencies: react, react-dom, the main app component,
and provides the *store* to the component!

- renders the app component into the DOM using the ReactDOM.render ()

(client/src/App.js) START HERE!!!
- the main app component! This is where I have login authorization
happening and create the routes for the navigation bar.
4. (app/models/db.js) gets path to db configuration and exports the database
connection

5. (client/src/http-common.js) this defines the Axios connection to fetch from

6. (client/src/store cfg.js) this is where the slices (from app/src/store) and

any middleware are combined into one reducer.

- (app/): home of the Express API stuff
1. (config/) each file in here is configured its own db endpoint

- for best practice with EB, use environment variables (secured.cnfg.js)

(controllers/)

- handle incoming requests, process the data, and return the response to
the client

- one controller for each db model in addition to an auth controller
(verifying user) and a board controller (this is unused right now but you should play
with the routing based on user permission)

(middleware/)

- I don't use any of the middleware but this is where it should be defined.

(models/)

- These define the schema of the database table

- They are the ORM representation in JS

- This is where the queries are -- look into creating join queries (you'd
probably put it in the order model, but look into how to handle that)

5. (routes/) Map the API requests to the correct place

(client/src/): home of the React App
l. (services/) Think of them as your routes from the frontend.
- These are the Axios calls to your APIs depending on which service
(assets/) fonts, images, style, util
(store/) is where all of our slices are configured.

- Go here to learn about the state of the application and how the framework

(views/) All of the JS components and classes for the frontend

- (tables/):
1. (sgl scripts) all of the table creation scripts in MySQL including one
master script and an order trigger after add.

(csv files) backup from CSV files to use if necessary and to reference the

data model in a real order.

You might have a few thoughts. One will be to completely start over, another will
be to try and fix each thing at a time. Hopefully you don't start over, I tried to
make this as modular as possible. My advice:

- Please before anything else update the dependencies and versions. It might be
beneficial to do more research into what is compatible with what but the big ones to
look at are MySQL (used 5.7.41 in RDS) Node.js, React, Redux, etc (see the

package.json file)

4. What the heck do I do about Elastic Beanstalk? Once you are able to use the AWS
account created for you (and hopefully be a permanent account), set up a codepipeline
from Github to an Elastic Beanstalk environment.

- Create the EB Environment

- Setup the CodePipeline from Github to the EB Environment

Follow the steps here to guide you with EB and CodePipeline:

https://www.honeybadger.io/blog/node-elastic-beanstalk/

- Setup the database through the environment

Follow the steps here to guide you with setting up a database in EB:

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.db.html

Follow the steps here

Author: Nini Acquista

Still confused and neeeeed to bug an alumni with questions? geacquista@wpi.edu

120

