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Abstract 

COVID-19 has infected millions over the past year. The virus spreads through close contact 

with those who are infected. This paper discusses the development of the android app Goatvid 

Trace which calculates a user’s risk of exposure to COVID-19. Our study to test the app found that 

the mean risk score of WPI students was 25.6%. The paper also discusses the Machine Learning 

model that estimated distances between two phones with a CV RMSE of 1.587660707.  
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Chapter 1. Introduction 

COVID-19 has proven to be one of the biggest challenges the United States has ever faced. 

This challenge has resulted in more than 30 million infections [13], more than 500 thousand deaths 

[13], and more than 14% unemployment rate [65]. Both governments and institutions are 

struggling to create systems and measures that would allow them to reopen and operate under this 

new normal. 

1.1 Background on COVID-19 

 Coronaviruses are a large diverse group of viruses that get their name from the crown the 

virus seems to have when looked at on a microscope. The virus that causes COVID-19 is called 

SARS-CoV-2. It originated in bats and it is the third Coronavirus to be transferred from animal 

species to humans. SARS stands for Severe Acute Respiratory Syndrome [24]. Signs and 

symptoms for COVID-19 include: fever, tiredness, chills, muscle pains, cough, loss of taste or 

smell, difficulty breathing, headache, and sore throat [24]. 

The disease causes a wide range of signs and symptoms ranging from asymptomatic cases that do 

not show any signs or symptoms to more severe cases that could result in respiratory infections 

that could be mortal and various cases in-between. The incubation period of the virus ranges 

between 2 to 14 days after exposure, with an average of about 5 days. The infectious period starts 

two days before the onset of signs and symptoms and ends close to 10 days after the onset of signs 

and symptoms. Asymptomatic patients are infectious for about 10 to 14 days [24]. 

The peak of signs and symptoms correlate with infectiousness, and the more severe the symptoms, 

the longer the infectious period is. Even though there are several exceptions, age and pre-existing 

conditions determine how severe the disease is on them. Old age, diabetes, immune syndromes 

and respiratory conditions all increase the chance of severe disease [24]. 

Tests for COVID-19 can either be diagnostic tests or an antibody test. Diagnostic tests are PCR 

tests that collect a swab from the patient either from the throat or the nose and check for RNA of 

the virus. The antibody test checks the patient’s blood to look for the immune response to the virus 

[24]. 
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The virus is transmitted by droplets of saliva that are released while talking, sneezing or coughing, 

these droplets can enter the body by landing on surfaces people touch and touch their face 

afterwards or they can be inhaled while they are still in the air. The high rate of infection of the 

virus combined with the ease of transmission, asymptomatic infectious patients, and the infectious 

period starting before giving signs result in a highly contagious virus with possibly mortal results 

[24]. 

High risk behaviors are those that can increase one’s risk of contracting the coronavirus [19]. Some 

examples include:  

● Transportation 

○ Using public transportation 

● Indoor Gatherings 

○ Going to Concerts  

○ Attending Religious services 

○ Attending Indoor Parties 

○ Going to Bars and Nightclubs 

● Eating 

○ Eating at indoor restaurants 

● Exercise 

○ Exercising at the gym 

○ Playing contact sports 

● Work 

○ Working in an office 

● Services 

○ Going to a salon or barbershop  

These behaviors are considered risky because they increase one's exposure to saliva droplets which 

is the method of coronavirus transmission. According to the CDC, behaviors that reduce risk of 

transmission include wearing masks, limiting travel, limiting time indoors outside your home, and 

maintaining 6ft of social distance from others [12]. 
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1.2 Tracking High Risk Behavior 

Knowing how the risk of contracting COVID is impacted by these behaviors can help 

people make better and less risky decisions. For example, after learning that public transportation 

increases one’s risk, a person might opt to carpool with a family member. Similarly, after knowing 

that working in an office can increase your risk, someone might decide to work from home instead. 

One of the most powerful, most widely used tools to track these behaviors are smartphones. 

According to the Pew Research center, 81% of Americans had smartphones in 2019 [53]. Their 

widespread use in addition to the many built-in sensors, make them useful data-collection tools. 

This allows smartphones to sense, perform computations, and predict things such as where a user 

is located, proximity to others, who they are communicating with, and what they are doing. With 

these data, scientists can study behavior, predict outcomes, and gain a better understanding of 

people’s social networks. Because smartphones are already widely used, smartphone sensing 

allows for organic data collection that cannot be replicated in a lab [30]. 

1.3 Introduction to Contact Tracing 

Contact tracing is a public health strategy that aims to stop the spread of an infectious 

disease within a population [24]. It does this by identifying people who may have been exposed 

and asking them to isolate before they possibly spread it to others. Contact tracing is a vital tool in 

helping to control the spread of coronavirus in communities [24].  

Contact tracing was mostly manual and health workers would manually interview infected 

people and discover and call their close contacts to inform them. However, due to the advent of 

coronavirus, public health resources are limited, making it imperative to increase efficiency in 

contact tracing. As a result, technology has had a larger role in carrying out contact tracing. 

According to the World Health Organization, using databases to assist contact tracers 

“[s]treamline[s] the data flow and data management process . . . and improv[es] timeliness of 

analysis and monitoring” [69]. These databases also serve to keep track of cases, their contact 

information, as well as any close contacts they may have [69]. This has led to practices such as 

using central databases to connect contact tracers to cases more quickly and using smartphone apps 

to report symptoms [74], notify people who have been in contact with a positive case, and record 
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a person’s close contacts. Apps such as these make it easier to carry out contact tracing because 

they are able to record and notify contacts that people might forget to report. 

Contact tracing smartphone apps have been increasingly using Bluetooth Low 

Energy(BLE) to record close contacts. This is because BLE can be used to detect contacts in a 

more precise and privacy-preserving way than other technologies such as GPS. BLE contact 

tracing apps are usually implemented by utilizing BLE advertisement packets transmitted by 

smartphones. Upon receiving a Bluetooth signal, the phones transmit anonymous IDs which are 

used to notify their users if they have been in contact with a positive case. 

Close contacts are so important because COVID-19 can be transmitted through saliva 

particles that float through the air and thus a close contact could potentially mean exposure to the 

virus. This means that close contacts are directly related to the risk of contracting the virus and 

thus it is important to monitor them. Keeping track of them can also allow us to weigh them and 

calculate a user’s potential exposure of the virus. 

1.4 Bluetooth Contact Tracing 

Contact tracing relies on making note of which people a person was in close contact with 

in the days prior to becoming symptomatic. Manual contact tracing faces challenges. Often, it is 

difficult for people to remember all their close contacts. In cases of public transportation or large 

schools, a person may be in close contact with strangers. This is problematic as those strangers 

cannot be notified that they may have been exposed. To combat this, Bluetooth has been used to 

link strangers as close contacts through their phone signals. 

1.4.1 How Bluetooth Contact Tracing Works 

 The main goal of Bluetooth Contact Tracing apps is to make contact tracing more efficient 

and avoid mass quarantine [41]. The apps achieve this by compiling a list of close contacts and 

notifying those people if they may have been exposed to the virus.  

 Phones with a contact tracing app installed can communicate with each other using 

Bluetooth Low Energy or BLE [8]. The Bluetooth advertisements help other devices find each 

other. Then, a Central device can begin the connection process. Each phone has an anonymous ID 

it transmits and exchanges with nearby phones periodically. These IDs are randomly generated 
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and updated frequently to ensure that no one’s location or contacts can be traced back to their 

identity. This process is shown in Figure 1.1. 

 

 

Figure 1.1: An illustration depicting the generation and use of anonymous ID’s [41] 

 

 If a person tests positive, they can enter that information into the app. Using their phone’s 

anonymous ID number, the system will reference an anonymous database of contacts and 

determine who may have been exposed. Those who have been exposed will receive a notification 

through their app, asking them to isolate immediately. This is shown in Figure 1.2. 
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Figure 1.2: A diagram of how Bluetooth contact detection and training works[41] 

 

 These apps typically record close contacts and the amount of time spent in close proximity 

to them. A close contact is typically defined as less than 6ft. BLE can estimate the distance between 

two phones based on the strength of the signal between them.  

1.5 MQP Problem Statement 

With millions COVID-19 cases affecting communities worldwide, universities are among the 

many entities facing the biggest health crisis in their existence. Although regular testing allows 

organizations to track the spread of the virus, it often is not enough to help individuals prevent 

their exposure [34]. Students are uninformed about their own risk of exposure to COVID-19 while 

living on college campuses and a solution is needed to address this issue. 

1.6 Challenges 

1. Bluetooth Low Energy: 

 There have been difficulties in implementing approaches to COVID19 contact tracing 

apps. These apps usually use Bluetooth or GPS to detect contacts. GPS can be used to detect 

whether someone was in the same building as a positive case, but it fails to detect close contacts 

because its precision is within a few meters, which is a greater distance than the distance between 
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close contacts. Bluetooth contact tracing apps tend to use the received signal strength (RSSI) from 

BLE signals to determine distances between contacts. However, numerous factors can affect RSSI 

values obtained from BLE signals. A study which evaluated the feasibility of using BLE for contact 

tracing found that BLE signals are often absorbed while a phone is inside a bag or pocket, lowering 

their RSSI values. The study also observed that the human body can absorb BLE signals and 

decrease RSSI values. In addition, it found that BLE signals are not absorbed by walling used to 

separate rooms inside a building, which could potentially lead to false alarms for people who live 

or work in adjacent rooms [38]. According to another study, different phone models can also 

influence RSSI values. Different phone models use different Bluetooth hardware, which affects 

the maximum strength of their signals [39]. BLE contact detection also faces challenges due to 

data availability. Because COVID-19 is a novel virus, there are not many datasets that contain 

Bluetooth data for use in contact detection. As a result, there is a limited amount of research in 

creating predictive models that use BLE signals to accurately detect contacts in real-life 

environments. During our research, we found no models that were able to use BLE signals to 

accurately predict distances between smartphone users in non-controlled environments. This lack 

of prior research makes using BLE to detect contacts a daunting problem to solve. 

2. Smartphone constraints:  

Using BLE to detect contacts also presents challenges to contact tracing apps due to 

smartphone hardware. For BLE contact tracing apps to be able to detect contacts at any time, the 

smartphone has to be constantly transmitting BLE signals. Transmitting Bluetooth signals for 

prolonged amounts of time can drain the smartphone’s battery which makes contact tracing apps 

more difficult for users to adopt. Smartphone operating systems may also limit the amount of time 

that phones can transmit or receive Bluetooth signals for, making it more difficult for developers 

to create contact tracing apps. 

3. Privacy concerns:  

Privacy concerns also make contact tracing apps solutions a difficult task. User information 

such as demographic information, user habits, and location make it easier for apps to carry out 

contact tracing at the expense of user privacy. As a result, a significant number of contact tracing 

apps focus on preserving user privacy by using increased security measures during data 
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transmission and limiting the amount of user information collected. However, using less 

information limits can limit the effectiveness of a contact tracing app. For example, a contact 

tracing app with access to users’ location could potentially inform users about crowded areas and 

assign more risk to users that visit crowded locations. Apps without access to location data would 

not be able to have such a feature. Therefore, the tradeoff between user privacy and functionality 

presents a challenge to contact tracing apps. 

4. Novelty:  

Another challenge is that approaches to estimating the risk of contracting COVID-19 are 

about as novel as the virus itself. Relatively few COVID-19 contact tracing apps estimate their 

users’ risk of being infected. In our research of thirty contact tracing apps, only two of them 

attempted to estimate the user’s risk of being infected with coronavirus. As a result, estimating the 

risk of being infected with COVID19 presents a challenge to this project and to contact tracing 

apps as a whole because its status as a novel and less known problem makes it more difficult to 

solve. There is not much existing information about how COVID-19 risk can be estimated, making 

it harder to create such a feature in contact tracing apps. 

1.7 Overview of Goatvid Trace 

 To address this problem statement, we created Goatvid Trace, an Android mobile 

application aimed towards the WPI student population. Goatvid Trace calculates a risk score for a 

user which indicated their likelihood of being exposed to COVID-19. For example, a higher risk 

score means that the user engaged in risky behaviors and now has a higher risk of being exposed. 

To calculate this, the app records ‘close contacts’ or interactions between two users where they are 

closer than 6 ft for 15 minutes or longer. If these interactions occur at a certain GPS tagged location 

such as a restaurant or bar, the risk associated with that interaction is considered to be higher. The 

risk score also accounts for behavioral data that is inputted by the user through an in-app 

questionnaire. These behaviors are: going to class, getting food, visiting campus, mask wearing, 

social distancing, and transportation. In addition, the app also displayed COVID related statistics 

for their area and provides a messaging service for Health Services to communicate directly with 
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students about COVID updates and reminders. Figure 1.3 below shows an overview of our 

proposed mobile app.  

 

 

Figure 1.3: Overview of the Goatvid Trace mobile app 

 

1.8 Previous COVID Mobile App Approaches 

The worldwide impact of COVID-19 has led to numerous attempts to solve this problem. 

Numerous approaches to COVID-19 consist of a smartphone app that carries out contact tracing. 

Usually, the scope of the contact tracing varies by app. Apps such as Hansel conduct contact 

tracing for the general population, while other apps conduct contact tracing for specific 

communities. For example, the app CoronaWarn carries out contact tracing specifically for people 

in Germany. Regardless of the scope of their contact tracing, all of these apps detect close contacts, 

usually through GPS or BLE. They also allow users to report themselves as a positive case and 

inform users if any of their close contacts were found to be a positive case. 

Some of these apps offer additional features. One such feature is social distancing 

enforcement. Mind the Gap is an app that uses Bluetooth and high frequency audio signals to 

estimate distances between phones. It also reminds users to maintain social distancing when they 
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are within a certain distance of each other. Other apps such as Private Tracer can be used as a 

channel to disseminate public health information so that users are informed about COVID-19. 

Among these features, COVID-19 risk estimation is relatively uncommon. Only two of the 

thirty apps we researched offered COVID-19 risk estimation. One app utilized data from the user’s 

contacts to estimate risk, while the other estimated risk by modeling exhaled clouds of the virus. 

The small number of apps that offered this feature motivated us to implement this feature in our 

own project. 

1.9 Goal of this MQP 

The overarching goal of this MQP is to determine the effectiveness of using a smartphone 

passively monitoring a user’s behavior to calculate risk of coronavirus infection based on sensed 

and inputted behaviors. This goal was motivated by the lack of apps found that offered this feature. 

COVID-19’s high rate of infection leads to possibly dire consequences for high risk behaviors. As 

a result, it is important for users to know about their personal risk of infection so that they can 

make informed decisions. Because most apps we researched did not calculate risk of infection, we 

desired for our app to do so. We also decided on this goal so that students at WPI are more informed 

about COVID-19 and about behaviors that increase their risk of contracting the virus so that they 

can choose to partake in less risky activities. Therefore, we aim to implement an intelligent 

smartphone application that: 

● Calculates an estimated personal risk score that reflects potential exposure 

● Uses Machine Learning to accurately determine distance between users 

● Facilitates anonymous contact detection using BLE 

● Serves as a tool for WPI Health Services to communicate with the student population about 

COVID related information and updates 

● Displays relevant community COVID statistics 

1.10 MQP Roadmap 

 The rest of the MQP report is as follows: Chapter 2 describes the background information 

required to understand our work. Chapter 3 explores related works including other apps and studies 

to provide context. In Chapter 4, we detail our proposed app design broken down into modules. 
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Chapter 5 describes how we implemented the app design which includes specific technologies and 

tools. Chapter 6 presents our results from our Machine Learning model, the Beacon distance 

library as well as the user study we conducted to test the app. These results and future work are 

discussed in Chapter 7. Finally, Chapter 8 presents our conclusions for the project. 

 

 

  



20 

Chapter 2. Background 

2.1 Contact Tracing 

 Contact tracing is a public health strategy that aims to reduce the spread of an infectious 

disease. By intervening, a contact tracer can stop a person with the infectious disease from passing 

it on to others. In the long run, this has a big impact on the spread of the disease [24]. 

2.1.1 Steps to Investigate Cases and their Contacts 

 When a person’s coronavirus test comes back positive, they will be contacted by a contact 

tracer in their community. A person who tests positive is called a case. The case will be asked to 

go into isolation. Isolation is when a sick person avoids contact with others for the duration of their 

illness to avoid passing it on. A person with coronavirus will have to isolate until they have met 

the following conditions: 10 days have passed since they had symptoms, all of their symptoms are 

improving, and they have been without fever for 3 days without medication. 

 Next, the contact tracer aims to identify all of the people the case has had contact with 

during their infectious period. Because a person with coronavirus can be infectious and spread the 

virus for up to two days before becoming symptomatic, it is imperative for those who have been 

exposed to the case to quarantine before they spread the virus to additional people. 

 To identify those who a case has been in contact with, the contact tracer will conduct an 

informal phone interview. They will ask the case what they did the past couple days, and who they 

saw. Sometimes, they suggest that the case looks through their phone and social media to make 

sure they have remembered all interactions. Using the public health guidelines in their area, the 

contact tracer determines which of those people are considered contacts and have a higher risk of 

being exposed to the coronavirus. 

 Similar to isolation, a contact is asked to quarantine themselves. Although they may not 

have symptoms of illness yet, they are asked to stay home and avoid contact with others to avoid 

transmitting the virus if they have it. A contact will be asked to quarantine for 14 days as long as 

they do not develop symptoms. If they do develop symptoms, they will be considered to be 

isolating. 
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 Throughout this process, the contact tracers will check up with both cases and contacts. 

They monitor the case's symptoms and help arrange for medical attention if they begin to 

experience more severe medical attention. The contact tracers also help to remind both cases and 

contacts why it is important for them to isolate or quarantine. [24]. 

2.1.2 The Ethics of Contact Tracing 

Although contact tracing is a common public health tool, there are a lot of legal issues that 

arise from it regarding the privacy of the cases and the confidentiality of their information. 

A contact tracer can ask for private information only for the purposes of protecting the 

public. Similarly, a contact tracing app can only learn about medical information specific to the 

contact tracing work it is performing. 

A public health intervention is legal if it respects the individuals and their rights. It is 

essential that everyone is treated equally and fairly, regardless of who they are. Additionally, the 

intervention must be a benefit to society. [24]. 

Our application requests only the information that is required to calculate a risk score. This 

ensures that all the information is being collected ethically.  

2.1.3 Use of Technological Tools 

Using technology to run an intervention is useful since public health resources are limited. 

By using technology, public health officials are able to reach people quickly while improving 

efficiency.  

The tools used for contract tracing include a central database that stores a list of people and 

their information. This database can report cases to investigators automatically while reducing the 

time between diagnosis and call. Another tool used is several symptom tracking apps that allow 

users to manually enter information. Also, apps may use text messages in order to remind contacts 

to quarantine in case they have been close to a person that reported that they are ill.  

When identifying contacts, there might be some problems that apps can solve. For example, 

a person might not remember all their contacts or may not want to talk about their contacts because 

of privacy concerns. Also, there is a high possibility that cases may not know the phone numbers 

for contacts or the phone numbers may be incorrect. 



22 

In countries such as China and South Korea, the government can access the smartphones 

of citizens and store their information in a centralized database. The advantage of having this kind 

of database is that all the contact identification and contact tracing are done immediately. However, 

this raises some privacy concerns as people need to share their location with the government in 

order for this solution to work. Finally, GPS technology is not a good approach because a person 

could have been in the same shop with someone, but might not have been exposed to everyone in 

the shop[42]. 

In the US, several apps that use Bluetooth technology (BLE) have been developed in order 

to do contact tracing. Those apps do not collect private or confidential information. They usually 

keep track of which other phones have been in contact with a person and in case that person falls 

sick they notify all their close contacts to quarantine [24]. 

2.1.4 Contact Tracing and Goatvid Trace 

 Although the Goatvid Trace application is inspired by contact tracing for COVID-19, the 

app itself does not perform contact tracing. Instead, the app detects contacts. This means that 

information about a user’s contacts is never shared with anyone. It is only used to estimate their 

risk. 

2.2 Bluetooth Contact Tracing Apps 

In this section, we will discuss common Bluetooth contact tracing systems, their efficacy, 

and challenges currently faced. 

2.2.2 Apple and Google API (ENS) 

 The Exposure Notification System of ENS is an API created in a joint effort between Apple 

and Google to help slow the spread of the coronavirus. This tool is meant to be used when 

developing contact tracing apps for specific communities, it is not a contact tracing app itself. It 

uses Bluetooth to determine a user’s contacts and record them locally. All users are represented by 

an anonymous ID that changes often so a user cannot be tracked to traced by Apple or Google. It 

also allows users to opt-out at any time. Although this seems like an ideal solution, ENS is only 
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available to public health authorities and the local governments associated with them. As an MQP 

group creating a proof-of-concept app, ENS is not the right fit for us as a contact tracing API [27]. 

2.2.3. Do Bluetooth Contract Tracing Apps work? 

 There is much focus on the development of contract tracing mobile apps. However, it is 

important to first determine whether these apps are able to effectively reduce the spread of 

coronavirus. The biggest limitation of contact tracing apps is that an app is only able to record the 

interaction with another person who has downloaded the app. For this reason, the more people who 

download the app, the more interactions that will be recorded, and the more effective the app will 

be. However, Farzad Mostasharia, the former national coordinator for health information 

technology at the U.S. Department of Health and Human Services, notes that “even if 1/3 of the 

population downloads and uses a contact-tracing app, it will still only cover about nine percent of 

close interactions” [41]. A graph explaining the likelihood that a given interaction or contact 

between two people will be captured by these contact tracing apps can be seen below in Figure 

2.1.  
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Figure 2.1: A graph showing how the likelihood of captured contacts changes with the 

percentage of the population that uses a contact tracing app [41] 

 

 For example, TraceTogether is a contact tracing app for Singapore [42]. Although it has 

been downloaded by over 1.1 million people, this only accounts for around 20% of the population. 

As a result, there is only a 4% chance that given an interaction between two people, both will have 

the app on their phones. Additionally, these apps do not account for the portion of the population 

who do not have smartphones. These populations are typically older people or migrant workers, 

two groups who are already at increased risk. In Singapore, migrant workers make up a large 

portion of coronavirus cases due to crowded living conditions. 

 It is important to understand the community that a contact tracing app is being developed 

for and think about whether it will meet the community’s needs.  

2.2.4 Bluetooth Contact Tracing Apps and Goatvid Trace 

 Goatvid Trace, which also used Bluetooth, faced many of the same problems as other 

Bluetooth Contact Tracing apps. Like previously stated, our app was not eligible for ENS so 



25 

Bluetooth contact tracing was implemented manually. In addition, Goatvid Trace aimed to serve 

the population of WPI students. However, unless a majority of students have the app installed, 

most close contact interactions would not be recorded. 

2.3 Machine Learning 

 We utilized machine learning to analyze smartphone Bluetooth signals in order to 

determine subject proximity to determine user contacts. Contact tracing applications can use 

machine learning to facilitate their features. For example, COVI, a contact tracing application that 

was proposed in Canada, used machine learning to estimate risk of infection between contacts [4]. 

It did so by creating a model that used users’ reported symptoms, demographic information, and 

contacts to predict their risk of COVID-19 contagiousness. 

According to Alpaydin’s Introduction to Machine Learning, machine learning is the 

process of “programming computers to optimize a performance criterion using example data or 

past experience” [3]. The result of this process is the creation of a statistical model from a dataset. 

The model can then be used to generalize the solution to a problem. Machine learning creates this 

model by starting with a model structure and finding the best fit of this model to the example data 

it was provided with. It uses a set of inputs called features to determine the qualities of the data it 

will use to find this fit, and the values it will use to solve the problem after the model has been 

created. The process of fitting the model to the example data is called training. While a model is 

being trained, it will adjust itself based on the values in each record in the example data. There are 

two types of machine learning: supervised learning and unsupervised learning. Supervised 

machine learning uses example data such that each data record is labelled with the solution to the 

problem (also known as the target label) the model is intended to solve. Conversely, example data 

for unsupervised learning does not contain these labels. Since this project solely utilizes supervised 

learning, this section will only discuss supervised learning [3]. 

Supervised learning models consist of a hypothesis and a cost function. The hypothesis is 

a mathematical equation used to calculate the model’s output for a certain input. It consists of the 

model’s features and a parameter corresponding to each feature. The model uses the parameters to 

weight each feature. The model adjusts itself during training by changing the values of these 

parameters. The cost function is a function that calculates the amount of error between the model’s 
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predictions and the correct values to be predicted. As a result, algorithms that train supervised 

machine learning models attempt to minimize the value of the cost function [3]. 

There are numerous types of supervised learning models. Different types of models vary 

in the ways that they make predictions and the cost functions that they use. Two common types of 

supervised learning are regression and classification. Regression models predict a continuous 

value that is calculated by their hypothesis. In the case of linear regression, the hypothesis consists 

of a weighted sum of the model’s features and their parameters. However, there are numerous 

types of regression algorithms that use different hypotheses. 

Machine learning classification: models predict a value from a set of discrete values, and 

are used to make classifications about their input. An example of a classification model is a logistic 

regression model. In the case of binary classification, a logistic regression model will use a 

hypothesis similar to one used by a linear regression model. However, it will output a binary value 

by outputting 1 if the value of the hypothesis is above a given threshold, and 0 otherwise [3]. We 

briefly considered using logistic regression in our project, but decided to use linear regression 

instead. 

Machine learning regression: Apart from linear regression, many other machine learning 

algorithms predict a continuous value. We will outline those that apply to our project. One such 

machine learning algorithm is a decision tree model. Like linear regression models, decision tree 

models can be used to predict a continuous value. However, decision tree models do not use the 

weighted sum of the model’s features as a hypothesis. Instead, they use a tree structure to make 

predictions. Each node of the tree has branches based on conditions concerning the input. The 

leaves of the tree represent predictions. A common regression algorithm that uses decision trees is 

the random forests regression algorithm. Random forests models consist of numerous decision tree 

models whose predictions are combined to result in a single prediction. The decision trees in a 

random forests model use random samples of the training data, and are formed using random sets 

of features [15]. Another example of a linear regression algorithm that uses multiple decision trees 

to make a prediction is XGBoost [16].  

Support vector machine (SVM)  regression models use an algorithm to attempt to define a 

plane that separates sets of data points within the dataset so that the distance between the plane 

and any data point is maximised [7]. Machine learning models can also use a K nearest neighbors 

algorithm for regression. The K nearest neighbors algorithm trains a machine learning model so 
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that it can make a prediction about a certain input from a certain number of training data points 

that are most similar to the input [63]. 

Figure 2.2 illustrates the types of machine learning and the algorithms previously outlined. 

 

Figure 2.2: Diagram illustrating of types of machine learning [3] 

2.3.1 Machine Learning and Goatvid Trace 

 Goatvid-Trace also made use of machine learning. The app used it to create a model that 

used BLE signals as input to estimate distances between smartphones. As a result, our research 

about supervised learning and regression models was critical to the development of this model. 

2.4 Privacy preservation and data protection 

Smartphones frequently request access to our personal data. Even though this makes our 

phones powerful tools through which we can do almost anything from financial transactions to 

private communication, this also means that a breach in security could have catastrophic 

consequences for its user. The average cost per cyber-attack is calculated to be about 500 thousand 
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USD [32]. This is why the growth of the mobile application market and its usage has gone hand in 

hand with ensuring security and data privacy.  

However, the fact that this market is growing has proven to be another obstacle, especially 

for Android devices. The massive number of apps available and being produced has made it 

impractical for app markets to verify every app and qualify them as non-malicious. Adding to this 

that there are also third-party app markets, users can never be completely sure what apps could 

represent a security breach. Thus, the way each app handles and protects your data has never been 

more important [57]. 

2.4.1 Privacy preservation and data protection and Goatvid Trace 

There are numerous privacy preserving protocols and resource managers that allow 

developers to produce privacy preserving applications without compromising much of the 

application’s functionality. However, since we are producing the app from scratch, we have 

decided to implement design strategies to protect the users’ data. 

More specifically we have selected a hide privacy design strategy, which is defined to 

“protect personal data, or make them un-linkable or unobservable”, “[p]revent personal data 

becoming public”, and “[p]revent exposure of personal data by restricting access, or hiding its very 

existence” [25]. To achieve the correct implementation of the strategy and its efficiency we will: 

● Prevent unauthorized access to personal data (Restrict):  

○ User data is stored on the database and is not available to other users. 

● Remove the correlation between pieces of personal data (Dissociate) 

○ Each user was assigned a subjectID during onboarding and the only excel sheet 

containing the match between user and subjectID was deleted 

● Encrypt the data that is posted to the rest API 

○ Each request is protected using cryptographic protocols designed to provide 

communications security  
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Chapter 3. Related Work 

3.1 Existing COVID-19 Contact Tracing Mobile Applications 

While reviewing the existing apps that address the COVID-19 pandemic, we found that many of 

the apps had similar purposes. We grouped these apps into four categories: contact tracing within 

the general population, contact tracing for a specific community, social distance enforcement, and 

public health information dissemination. 

3.1.1 Contact Tracing within the General Population  

Regarding the contact tracing within the regular population, we found 4 applications that aim to 

build a contact tracing system for the general public. Those are: Covid-id, Hansel, C19X, and 

CovidWatch. 

 Covi-id is a privacy-preserving cross platform application (Android, iOS support) which 

does risk management by using QR code scanning. It notifies users if they have come into contact 

with someone with Covid-19. Even if users do not have phones, it still provides the option to 

register and print your unique QR code using a friend’s or relative’s phone [18]. 

 Hansel is another GPS-based solution with a simple interface that gives users the ability to 

report a case, start or stop tracing with the promise of encrypting your location or user data. It 

uploads a hash of your location and time which matches users to other people that have been in 

the same place or have crossed paths with them [1]. 

 C19X is a cross platform app that uses BLE and SHA technologies which enable 

autonomous and secure contact tracing on many devices. Based on their GitHub information, they 

provide an Android and an iOS application which they maintain independently. The app collects 

Bluetooth Beacon Data in order to accomplish its goal [9]. 

 Covid Watch is another application that was implemented at the University of Arizona. It 

claims that if someone comes into contact with a user and chooses to enter their positive test results 

it will alert that user anonymously. Also, the app claims that it is calculating the estimated personal 

risk level of a user, which is a concept that is going to be discussed later [67]. 

 We implemented contact tracing using machine learning in our app. We decided to 

incorporate some of the features of these apps into our project. Some of these apps use BLE, which 



30 

we decided to use for contact detection. These apps also tend to try to protect users’ data through 

increased security and privacy measures. Because of this, we sought for our app to do this as well. 

3.1.2 Contact Tracing for Specific Communities 

Because the coronavirus is spread through close contacts, it spreads throughout a 

community easily. To fight this, many apps have been developed to assist with contact tracing in 

specific communities. Some of these communities include: towns, states, countries, schools, or 

even large office parks. 

For example, in Germany a contract tracing app called CoronaWarn was commissioned. 

This app, and many like it use Bluetooth to identify contacts of a given user. This is done by 

assigning each user a unique and anonymous identifier. The app collects the unique identifiers of 

contacts based on distance calculated and time spent in close proximity. Often, users can input a 

verified positive test result into their app and the app will anonymously notify the contacts of the 

positive user. In other cases, the person who tested positive could upload their contact history to a 

database for contact tracing professionals to act upon [23]. 

Many of these apps are open source to create trust and an assurance of privacy for the 

community it serves. Some other examples of these kinds of apps are Hamagen for Israel, Pan-

European Privacy-Preserving Proximity Tracing (PEPP-PT) for Europe and CovidWatch which 

was implemented at the University of Arizona [33] [51]. These apps are displayed in Figure 3.1. 

Name Maker Goal Functionality 

CoronaWarn 

[23] 

SAP and 

Deutsche 

Telekom 

Slow the spread in 

Germany 

An app that enables you to retrieve test 

results electronically, and it helps to identify 

possible exposures you have had to people 

diagnosed with COVID-19 

Hamagen 

[33] 

Israel's 

Ministry of 

Health 

Slow the spread in 

Israel 

Privacy ensured contact tracing app that 

informs people of possible exposure for Israel 

PEPP-PT 

[51] 

Not Disclosed Not Disclosed Not disclosed 

CovidWatch

[67] 

Covid Watch Have an anonymous 

exposure 

notification app 

Free and Anonymous Exposure Notification 

App (implemented at University of Arizona) 

Figure 3.1: Contact tracing apps aimed at specific communities 
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3.1.3 Social Distance Enforcement 

 In addition to contact tracing, social distancing is an important measure to help stop the 

spread of coronavirus in communities. As a result, there are mobile applications that aim to help 

enforce social distancing guidelines by notifying users when they go too close to each other.  

 One example of this category of apps is: Mind the Gap. This app was developed by 

software developers and sensor experts from HackPartners and Network Rail. Their goal was to 

provide a way for essential workers to work during the pandemic, while still maintaining their 

safety and privacy. The Mind the Gap app uses Bluetooth and high frequency audio signals to 

estimate the distance between two phones with 10cm precision. When two users with the app come 

within a certain predetermined distance of each other, the user is alerted to remind them to remain 

socially distant. The app works between both iOS and Android phones and it is aimed at offices 

and other work environments where all employees can download the app. 1point5 is another app 

that notifies users if people have breached their circle of 6 feet or 1.5 meters [28]. 

 Other apps such as Crowdless focus on informing users of how crowded a location is before 

they go there. This helps users to make decisions on where to go grocery shopping for example 

based on their ability to socially distance at a given location. These apps calculate the crowdedness 

of a location from user input, existing data, and machine learning. This app is not specifically 

aimed at stopping the spread of COVID-19, but it certainly can be used that way [20]. 

 We briefly considered implementing a social distance enforcement in our app, but decided 

it was outside the scope of our project. The social distancing apps covered in this section are shown 

in Figure 3.2. 

 

Name Maker Goal Functionality 

Mind the 

Gap[28] 

Hack 

Partners 

Enforce Social 

Distancing in an 

office 

Monthly subscription based mobile app that 

alerts users in office settings when they are not 

social distancing with a sound. 

Crowdless 

[20] 

Lanterne Inform users to 

take decisions 

when trying to 

avoid crowded 

places 

Uses user data to measure how crowded places 

are and informs the users. 

Figure 3.2: Social distancing apps 
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3.1.4 Public Health Information Dissemination 

There are 4 applications that belong to the category of applications that are disseminating 

information. Those are: Private Tracer, Contact Tracing Covid19, Global Epidemic Prevention 

Platform and CovidSafe.  

 Private Tracer is an app that works in the Netherlands and cooperates with the Ministry of 

Health [45]. Their goal is to find out if an application can be a useful tool in fighting the covid-19 

pandemic. The features of the application include proximity tracking and notifications. The Global 

Epidemic Prevention Platform application is working in a similar way (informs the Ghanian 

government and notifies users at risk). The rest of the applications are using similar technologies 

(BLE, GPS, ENS). 

 After seeing these apps during our research, we decided to incorporate a health information 

dissemination feature into our app. We believed this feature was important to WPI’s needs because 

it would enable WPI Health Services to send out coronavirus-related information more quickly. 

3.1.5 Risk Score Calculation 

 Our COVID-19 contact tracing app calculated a smartphone user’s risk of infection. As a 

result, it was beneficial to our project to look at other apps that have this feature, and how they 

calculated risk. There were 2 apps that attempted to calculate the user’s risk of being infected with 

COVID19. These apps were Corona-Warn-App and Covidwatch. 

 Corona-Warn-App is an app used to facilitate contact tracing in Germany [17]. It attempts 

to let users know whether they have been exposed in a decentralized manner. It uses BLE to 

determine proximity between users and then notifies users if they have been exposed to a positive 

case. What makes this app unique when compared to the others is that it uses a risk score to 

determine whether the user should be notified. Each contact has a risk score that is calculated using 

the number of days since the user has been exposed to a positive case, the duration of the contact, 

and the distance from the contact. These scores are aggregated to create a total risk score. Then, 

for each encounter, their durations are aggregated, weighted by their distances, to create an 

exposure score. After the total risk score is normalized, it is combined with the exposure score to 

create the final risk score. 

 CovidWatch is a contact tracing app being used in the University of Arizona [67]. It carries 

out contact tracing by using BLE to detect contacts, and it notifies users if they have been in contact 
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with a positive case. It instructs the user on what to do based on the risk score of the case the user 

was exposed to. The risk score is calculated using a model of the shape and orientation of an 

exhaled cloud of the virus, and the expected amount of disease the user would inhale, depending 

on the infectiousness of the contact [68]. This risk score decreases based on how long the user has 

been free of symptoms after exposure.  

 CovidWatch uses a risk score to inform how risky an interaction with an infected person 

was, while Goatvid Trace uses a risk score to generate a general risk of exposure based on all 

interactions. Both CovidWatch and Goatvid Trace use Bluetooth signals to estimate distances 

between two users. Because CovidWatch also serves as a contact tracing app, it uses information 

about an infected person's contagiousness at the time of the interaction to further inform the risk 

score. Alternatively, Goatvid Trace incorporates behavioral information like transportation and 

mask wearing habits to further inform its risk score. It also uses past risk scores to create a rolling 

average. 

3.2 Use of Machine Learning in BLE Distance Calculation 

 We used machine learning to calculate the distances for contact tracing. As a result, we 

researched how machine learning has been used to calculate distances from BLE signals, so that 

we could determine how to apply it in our project. This section will outline two studies related to 

distance estimation from BLE signals. It should be noted that both of these studies used data in 

controlled environments. In these environments, there were no physical objects obstructing the 

recorded BLE signals and no other BLE signals that could have interfered with the ones being 

recorded. 

 One study attempted to find a machine learning model that best fitted a dataset containing 

distances and corresponding RSSI values of BLE signals received at those distances [60]. Its 

experimental setup consisted of a smartphone and a Bluetooth beacon. The study collected data at 

distances ranging from 0.5 to 3 meters and at angles ranging from 0 to 180 degrees. After obtaining 

this dataset, the study used it to train linear regression models with a polynomial, power, and 

exponential structure. Each of the models used a linear combination of an RSSI value as input. 

The study concluded that the polynomial model was the best fit for the dataset, with an error rate 

of 25.7%. 
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 A device can send BLE signals with different intensities. The intensity of a BLE signal is 

called the transmission power. BLE signals at higher transmission powers can be detected within 

larger ranges, but use more power to transmit. Another study attempted to observe whether using 

the transmission power improved models for BLE distance estimation. The study collected RSSI 

data for BLE signals between phones at distances ranging from 0.5 to 22 meters and at different 

transmission power levels. Part of this study consisted of comparing two linear regression models 

trained on this data: one which used the transmission power and RSSI as inputs and another which 

only used RSSI. It found that using transmission power in the model lowered the error rates for 

linear regression at all transmission power levels except high [26]. Figure 3.3 displays this actual 

distance against predicted distance for this model. 

 

Figure 3.3: The actual distance versus predicted distance for the model using transmission 

power [26]. 

 

We did not incorporate this research into our project because it would not suit contact 

detection purposes. These experiments took place in controlled environments free of obstacles, 

while contact detection takes place in environments that are potentially filled with obstacles. 

However, these projects motivated us to research whether more complex model structures could 

be used to carry out BLE distance estimation in everyday environments. 
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3.3 Cough Detection 

Cough detection is a field where audio and other sensors are used to detect coughs, often 

to screen for disease. Because cough is a symptom of COVID, this cough detection method could 

be used to sense symptomatic COVID people nearby [14]. We have researched other cough 

detection methods and software to see if cough detection is a viable option for detecting exposure 

or illness from COVID. 

3.3.1 Examples of Cough Detection Software 

Cough detection software has been used to detect the number and frequency of coughs in 

people diagnosed with chronic caught. In a 2018 study from Beihang University, patients were 

fitted with microphones to detect the number of coughs they had per day in order to understand 

the severity of their chronic cough. However, this study was more focused on the number of coughs 

over a period of time, not a single instance of a cough indicating disease like would be in the case 

for COVID [62]. 

Another study from the University of London used smart watches to detect coughs from a 

user. The smart watch would turn on its microphone and record when it sensed the accelerometer 

of the watch moving in a way that indicated a cough. The accelerometer would be triggered when 

the user rapidly pulled their hand up to their face to cover their mouth before a cough. This study 

seems like a great solution to the privacy concerns that audio recording often brings. 

Unfortunately, the intended population of our app, WPI students, do not all have smartwatches, so 

it is not an effective solution for our mobile application [50]. 

3.3.2 MFCC and Scene Classification 

 MFCC or Mel Frequency Cepstral Coefficients have “features [that] represent phonemes 

(distinct units of sound) as the shape of the vocal tract (which is responsible for sound generation) 

is manifest in them” [49].  This allows for sounds to be identified by the ‘shape’ they are. MFCC 

features are often classified using machine learning and neural networks such as Convolutional 

Neural Networks (CNNs) a machine learning network typically used for image analysis. 

One example of MFCC being used successfully in cough detection was in a study to 

diagnose pertussis. Due to the unique nature of pertussis (also known as whooping cough), the 
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researchers were able to diagnose all cases of pertussis in the study without any false positives. 

This study used a relatively low-cost algorithm and suggested its use in smartphone applications.  

3.3.3 Cough Detection as Future Work 

 Although there is a lot of interesting work that can be done with MFCC’s and cough 

detection with COVID, we felt that this aspect would be a big undertaking and is significantly 

outside of the scope of our proposed application as a contact tracing and risk assessment 

application. Additionally, a psychological study at the University of Michigan found that people 

are inaccurate detectors of whether a cough is caused by illness or environmental factors [44]. For 

future work, we would be interested to see if coughs specific to COVID can be detected and if so, 

is it an accurate indicator of exposure or current illness. 

3.4 Sensing User Health Through Smartphone Sensors 

 Smartphone sensors and the data they can record present an opportunity to make 

observations about users’ behavior. Such sensors include accelerometers, Bluetooth receivers, 

GPS, light sensors, and microphones. User behavior data such as level of physical activity, social 

interaction, and other activities taken by the user can be derived from the signals given by 

smartphone sensors [29]. 

 One of the ways that user behavior data has been used in research is to detect changes in 

the smartphone user’s health. For example, an MIT study was able to find a relationship between 

illness symptoms and user behavior. At the beginning of the study, a group of students were given 

smartphones that continuously recorded Bluetooth interactions between phones, WLAN location 

data, call records and text message records. The participants also reported their symptoms on a 

daily basis. This was used to create a database of symptoms and smartphone sensor data. The study 

found that participants with a runny nose showed a higher amount of calls and text messages in 

total and late at night, and that participants with a sore throat displayed more Bluetooth interactions 

with other members of the dormitory. Participants with influenza also had lower amounts of late-

night phone communications, late-night Bluetooth interactions, and WLAN locations recorded. 

The study was able to use the user behavior and self-reported symptom data to create a Bayesian-

network classifier that used user behavior as input to detect symptoms. It was able to do this with 

an accuracy ranging from 60%-80% [6].  
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Another study used a similar method to find a correlation between mental wellbeing and 

the amount of physical activity and sleep of the user. Participants were given smartphones and 

asked to self-report their energy and mood daily. Throughout the study, the smartphones would 

record accelerometer data to measure the user’s level of physical activity and the amount of time 

the user slept for each day. The study found that participants with greater amounts of sleep and 

daily activity self-reported better moods than other participants. It was also able to use this data to 

create a predictive model that predicted a user’s mood and energy levels based on their physical 

activity and sleep [22]. 

Although this project does not attempt to detect symptoms in users, this research is relevant 

to our project because it gives us insight into how smartphone sensors can be used to assess user 

behavior. Understanding user behavior helps us to estimate users’ risk. 
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Chapter 4. Proposed Goatvid Trace App Design 

 In this section, we will outline our proposed mobile application, Goatvid Trace. Goatvid 

Trace aims to provide users with information about their risk of contracting COVID-19. Currently, 

Goatvid Trace is aimed towards students at Worcester Polytechnic Institute (WPI). Users are able 

to see both their personal risk score as well as stats about COVID-19 transmission within the WPI 

community.  

4.1 Risk Score Calculation 

The app utilizes a formula to calculate each user’s potential exposure to COVID-19, the 

formula is meant to employ a holistic approach by analyzing each user’s behavior and habits and 

using them to estimate how much these increase its chances of contracting the virus.  By breaking 

down how often and why the user leaves their home we are able to provide what we call a risk 

score. This risk score is a measure in percentage of how likely a user is to be in presence of the 

virus and possibly get infected. The user can use this score as an input to change or tweak its 

routine in order to get a lower score and thus lower its chances of catching the disease. This is 

shown in Figure 4.1. 

 

Inputs and Outputs for the Risk Calculation Formula 

Inputs used for Risk Calculation 

Input Rationale 

Questionnaire 

response values 

The questionnaire contains 6 questions each of which provides an insight 

into how the user’s routine looks like. Aspects including but not limited to: 

how they get their food, how they move around(transportation), how they 

attend classes and how often they go out and why. The idea here is that we 

are tracking close contacts and these behaviors are likely to cause a user to 

get close contacts. Thus, we want to give a numeric value to the user’s 

routine so the daily close contacts can be complemented and the calculation 

more accurate. The lowest score a user can get in the questionnaire is 4 and 

the maximum is 37 by choosing the highest or lowest response values 

respectively. 
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Close Contacts 

the user had in 

the last 24 hours 

Close contacts are all given a value of one and then weighted by the tag from 

the place’s API tag values in appendix C. This is meant to give more weight 

to contacts occurring on places that have been recommended to be avoided 

during the pandemic. Under the assumption that in those places there’s a 

higher chance of being exposed to the virus. 

Last calculated 

Risk Score 

The formula uses the last risk score calculated to average the value of the 

new risk score when calculating it. The idea behind this is to avoid having a 

risk score that’s constantly flipping between high and low from one day to 

another. 

Output produced by Risk Calculation 

Output Rationale 

Risk Score The Calculation produces a risk score between 0 and 100 inclusive. Because 

we cannot ensure complete certainty 0 does not mean not infected and 100 

does not mean infected. Rather the score is a percentage of how likely the 

user is to have been exposed to the virus. It’s worth to clear that exposure 

does not necessarily mean infection. 

Figure 4.1: A table showing the inputs and outputs of the risk score 

 

The three inputs of the Risk Score calculation can be further broken down into their 

individual components: 

First, the questionnaire is a complementary method for the passively measured close 

contacts. These questions account for user’s habits that contribute to a higher risk of exposure, as 

shown in Figure 4.2. 

 

Questionnaire questions: 

Question: Rationale: 

Class Value 

This question provides an insight into how the user attends its classes. 

In person classes often mean sitting in a closed space with several 

people thus providing an opportunity for potential exposure. 

Eating Value 

Getting food provides various potential exposure situations, 

including:touching surfaces to grab items at the Grocery store and 

sitting in an indoor restaurant maskless while dining. This question 

allows us to assess how often the user is in these situations. 
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Campus Visits Value 

The wide range of extracurricular activities at WPI makes it possible 

for a user to take all their classes online and still visit campus 

frequently. This question takes such scenarios into account. 

Mask Wearing Value 

This question is a self-assessment of how well each user is following 

the CDC recommendations regarding wearing face coverings while 

outside or in the presence of other people. 

Social Distancing 

Value 

This question is a self-assessment of how well each user is following 

the CDC recommendations regarding social distancing while in the 

presence of other people. 

Transportation Value 

Using transportation could mean sitting in a crowded train for several 

hours or driving with a friend. This question takes those risks of 

exposure into consideration. 

Figure 4.2: A table showing the questionnaire inputs of the risk score 

 

Next, is the close contacts portion of the risk score. They provide specific and continuous 

information about a user’s risk of exposure. Because the app is constantly searching close contacts 

with real users, the data from this input is as accurate as possible. Figure 4.3 describes how close 

contacts are weighted. 

 

Close Contacts and their Weighing: 

Rationale: 

Close contacts are used in contact tracing strategies because of the high likeliness of exposure 

from each of them. However, other factors also play a part on how likely exposure is such as if 

it's a closed environment or a ventilated one or how crowded the surroundings are. This is why 

we will weigh each close contact by the place type where it was recorded. Accounting thus for 

both close contacts and types of places visited. 

Figure 4.3: A diagram showing how close contacts are weighted 

 

The final input, the Rolling average is calculated by using the last calculated risk score and 

averaging it with the new one to connect all the risk scores and avoid drastic changes in daily risk 

scores that would make each calculation more inaccurate.  

In order to calculate one’s personal risk score, the app uses the three inputs as values in a 

formula to produce the output which is the Personal Risk Score. This is a percentage where the 
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higher it is, the higher the user's predicted risk of being exposed to COVID. The algorithm’s design 

is displayed in the pseudocode below: 
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4.2 Machine Learning for Proximity Detection 

The machine learning model was trained using data from the MITRE Range-Angle 

structured dataset [35]. The MITRE Range-Angle structured dataset consists of a series of 

Bluetooth advertisements collected by smartphones according to the MITRE Structured Contact 

Tracing Protocol. The dataset was submitted as part of an effort to enhance contact tracing 

technology by the Private Automated Contact Tracing (PACT) project. PACT is a project whose 

mission is to “enhance contact tracing in pandemic response by designing exposure detection 

functions in personal digital communication devices that have maximal public health utility while 

preserving privacy” [59]. 

The dataset consisted of 69 sessions, each of which followed the MITRE Structured 

Contact Tracing Protocol. During each session, there were two testers: the beacon and the receiver. 

The beacon stays in a single position for the duration of the session and possesses a smartphone 

that sends BLE signals. The receiver uses a smartphone and the BlueProximity app to receive and 

record BLE advertisements at various distances and angles from the beacon. For each session, each 

tester chose a location for their smartphone to be held (choosing from shirt pocket, front pants 

pocket, back pants pocket, in purse/bag, or in hand) and a body orientation (sitting or standing). 

The session took place in one of the following types of environment: a small room, a medium-

sized room, a large room, a hallway, or outdoors [47]. Figure 4.4 illustrates the data contained in 

each BLE advertisement of the dataset. 

 

 

Advertisement Type Variable Description 

Angle Angle The angle between 

smartphones. 

Range Range The distance between 

smartphones. 

Bluetooth Receipt Timestamp A timestamp representing 

when the BLE advertisement 

was received. 

Device ID The ID of the device that 

received the advertisement. 
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RSSI The RSSI of the BLE 

advertisement. 

TX Power Level The transmission power of the 

BLE advertisement. 

Advertisement Timestamp A timestamp representing 

when the BLE advertisement 

was transmitted. 

Figure 4.4: A table displaying the data contained in the MITRE Structured dataset. 

 

The model’s input consisted of features extracted from a series of RSSI readings collected 

within a short duration of time. To obtain training data from this dataset, we transformed a dataset 

of RSSI readings into a dataset of labelled sets of features. Then we split the transformed data set 

into training, testing, and validation sets in the ratio 60%/20%/20% respectively. This dataset’s 

training set was used to train a regression model. After determining the type of model to use, we 

attempted to use overlapping windows and the addition of a simple moving average feature during 

training in order to decrease model error. After determining the amount of window overlap and 

the simple moving average window that led to the lowest amount of validation error, we used those 

parameters to create our final model.  

4.3 Modules 

4.3.1 Module Design Diagram 

 Figure 4.5 illustrates our planned software design by showing each module of Goatvid, 

its interactions with other modules, and its interactions with services such as API’s or servers. 

The app begins with the Subject ID authentication module that checks that the entered Subject 

ID is valid and has been assigned to a user. It also locally stores the SubjectID and password on 

the device and marks the SubjectID as assigned in the database. Next, the Self-Reported Habits 

module allows the user to enter behavioral information about themselves which informs the 

Personal Risk Measurement Module. The values associated with the users answers to each 

question are summed up and later used in the risk score calculation. The Contact Tracing Module 

takes distance calculations from the Linear Regression Model and BLE Distance Estimation in 

order to calculate close contacts. This module then stores the close contacts on the database. 
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These close contacts along with the Self-Reported Behavior module are used in the Personal 

Risk Measurement module which produces a percentage risk score for the user. In addition, the 

Statistics module displays data from the WPI COVID stats dashboard, and the Message Center 

module allows messages to be sent to all users through a Push Notification Manager.  

 

Figure 4.5: Goatvid Module Design Diagram 

 

4.3.2 Personal Risk Measurement 

This module calculates an estimated risk score that quantifies whether a user has been 

exposed to coronavirus. The data used for this calculation comes from both the Contact Tracing 

Module and the Self-Reported Behavior module. From contact tracing, we gain information such 

as number of contacts per day, number of close contacts, and average amount of time spent in close 

contact. We also record contacts with the types of places they were detected. Figure 4.6 shows the 

place types that are weighted by the app. The risk scores assigned to each location were based on 

the COVID-19 Risk Index infographic from COVID-19 RECoVERY CONSULTING [16]. This 

infographic which can be found in Appendix H, classified activities into 5 categories based on 
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their risk of exposure to COVID-19. This information was combined with CDC guidelines and 

recommendations to reduce risk to create a numerical risk score [12]. 

 

Figure 4.6: A table displaying the weighting used for certain place types 

  

This place type data is used to assign higher risk to someone who goes to a bar and a lower 

risk to someone who goes to a park, for example. Data from the Self-Reported Behavior module 

such as number of roommates and number of times a user goes grocery shopping a month is used 

in the calculation as well. This calculation is on a scale of 0 to 1 indicating the probability that a 

given user was exposed. Figure 4.7 shows the algorithmic flow of this module. The data collected 

in each part of the personal risk measurement process is shown in the bulleted lists below. 
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Figure 4.7: Personal Risk Measurement Flow Diagram 

 

The formula is used to give each user a score between 0-100 to reflect how at risk they are 

of getting infected with the virus, where a score of 0 means the user is healthy and a score of 100 

means the user is very likely to have caught COVID-19. The score is calculated by two functions 

using information provided from both a form and beacon library readings and stored in the 

database. The form collects personal information from the user with questions that require an 

integer as response and these values are then sent to the server. The questions cover personal 

information that we cannot measure from the user ranging from daily habits to number of 

roommates. The responses to these questions are weighted based on the table shown in Figure 4.8. 

In the server, the first formula sums up all the form values and times it by a multiplying value. 

This multiplying value is 1 plus the sum of each weighted contact daily. Contacts are measured 

using beacon library values to calculate distance and time stamps to measure time, a close contact 

is defined as being closer than 6ft for more than 15 minutes. The contact is then weighted by the 

value of the location score gained by the Places API. The second function then normalizes this 

result using a min-max normalization formula. Figures 4.8 and 4.9 show how the formula is 

calculated. The exposure is the starting point for determining one’s risk score. It is then adjusted 

up or down using the Multiplying Values (MV) which is calculated from the number of close 

contacts they had and the locations they took place at. The resulting value is then normalized to 

create a digestible risk score percentage ranging from 0% to 100% to display to the user. 
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𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 =  𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∗  𝑀𝑉) 

[43] 

Figure 4.8: Risk Score Formula  

 

Risk Score Breakdown  

Exposure 

The “Exposure” represents the sum of the values collected from the questionnaire listed 

below. We sum the values in order to treat each behavior from the questionnaire 

independently. This gives a holistic estimation of one’s everyday risk by providing a sum of 

one’s actions. 

 

Exposure = Class_attending_value + Food_source_value + Campus_visits_value + 

Mask_wearing_value + Social_distancing_value + Transportation_value 

Variable Value type Notes 

Class_attending_value Integer (0,5) The higher the value the 

higher the risk. The range of 

values for each is chosen 

based on the number of 

options in the corresponding 

questionnaire question. For 

example, behaviors with more 

variation like transportation 

had more options and 

therefore a larger range of 

values. 

Food_source_value Integer (1,10) 

Campus_visits_value Integer(1,5) 

Mask_wearing_value Integer(1,5) 

Social_distancing_value Integer(1,5) 

Transportation_value Integer(0,7) 

Multiplying Value (MV) 
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The “MV” represents the sum of the weighted close contacts plus 1 

 

                 MV = 1 + c1 + c2 + … +cn (where cn is a value between 0 and 1) 

 

Each contact is originally of value 1 but is then weighted by multiplying it by the tag 

of the 

places API type where it was measured. This is done to place a higher value on close 

contact  

interactions that take place at higher risk locations or during higher risk behaviors according 

to CDC guidelines [12]. This ensures that risky interactions such as going to a bar are given 

more weight in the final risk score than interactions that occur outside at a park.  This 

ensures that risky interactions such as going to a bar are given more weight in the final risk 

score than interactions that occur outside at a park.  For example: 

 

Close contact = 1 

Places API type(tag_value) = grocery store (9) 

 

Weighted contact = C*(tag_value*10−1) 

  

Normalization Factor 

Minmax normalization is calculated on the result of the multiplication between “MV” and 

“Exposure”. 

Risk Score Twice Daily Update 

                            risk_score = (previous_risk_score + new_risk_score) / 2 

 

Figure 4.9: Risk Score Variables breakdown 
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The tag_value for weighting the contact is provided by the places API type using these 

values in Figure 4.10: 

Location Place Type API Labels Risk Scores 

Bar bar 9 

Restaurant restaurant 9 

Night Club night_club 9 

Movie Theater movie_theater 8 

Supermarket supermarket 5 

Shopping Mall shopping_mall 5 

Natural Feature natural_feature 5 

Figure 4.10: Place type tag values 

 

The form includes 6 multiple choice questions to gage the user’s habits, the questions are 

presented using this format in Figure 4.11: 

1. Which of the options below align most closely with the way in which you attend classes? 

(Course related reasons include lectures, labs, office hours, group meetings, project 

work, etc.) 

a.     Never leave the house for course related reasons  

b.     Going to campus < 1x a week for course related reasons 

c.     Going to campus 1x a week for course related reasons 

d.     Going to campus 2-3x a week for course related reasons 

e.    Going to campus 4-5x a week for course related reasons 

f.    Going to campus 6x a week or more for course related reasons 

 

Figure 4.11: Questionnaire sample 

To see the whole questionnaire, check Appendix A. 
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 Each question from the questionnaire matches the response choices with a numeric value 

to attribute as shown in Figure 4.12: 

Questionnaire Value relations 

Question 

1: Class 

attending 

value 

Never leave 

the house for 

course related 

reasons 

Going to 

campus < 1x 

a week for 

course 

related 

reasons 

Going to campus 1x a 

week for course related 

reasons 

Going to campus 2-3x 

a week for course 

related reasons 

Going to campus 

4-5x a week for 

course related 

reasons 

Going to campus 

6x a week or 

more for course 

related reasons 

Value 0 1 2 3 4 5 

Figure 4.12: Questionnaire Values 

 To see the whole questionnaire responses value relations, check Appendix B. 

4.3.3 Subject ID Authentication 

 To accurately track user’s risk data, the app needs to associate each user with a username 

and password. This could be done using the users email and password. However, to provide 

authentication while still retaining the anonymity required for a user's study, the app will use 

randomly assigned SubjectIDs as usernames. This solution allows each user's data to be clearly 

recorded on the backend without their identity being exposed or associated as well as ensuring 

only registered participants can partake in our study. 

4.3.4 Contact Tracing 

For the app to be able to estimate a user’s risk of contracting COVID19, it needs to keep 

track of contacts. Thus, this module is used to detect and record contacts. It uses the BLE Distance 

Estimation module to detect other smartphones. If another phone is closer than 6 feet for more than 

15 minutes, it will be recorded as a close contact. This is called the Too Close for Too Long 

detection [64]. The module records close contacts by storing them in a remote database server 

located at WPI. This solution is accurate because it is based on the CDC’s advice on close contacts. 

In addition, storing the contacts in a database enables our app to retrieve them so they can be used 

to calculate the risk score. Figure 4.13 shows the contact tracing process for our app. 
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Figure 4.13: Contact Tracing Flow Diagram 

4.3.5 Self-Reported Behavior 

This module aims to obtain static data from the user. This includes data that we would be 

unable to obtain through contact tracing or other sensors. To obtain this data, there is a form 

integrated into the app. A user only needs to fill out the form once when they initially install the 

app, but they could fill it out multiple times if their situation has changed. The table below outlines 
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the data collected in the form. The complete survey can be found in Appendix A. The infographics 

used to inform these reasonings can be found in Appendix H. Figure 4.14 shows the behaviors 

tracked by the questionnaire and the rationales for incorporating them. 

 

Behavior Rationale for including this behavior 

Attending class Online class is recommended by the CDC when available to reduce 

risk of exposure [10]. 

Getting Food Food and grocery delivery is recommended by the CDC when possible 

to reduce risk of exposure [12]. 

Going to Campus Increased personal contact increases one’s risk of being exposed [10]. 

Mask Wearing Wearing a mask limits exposure to COVID-19 particles [10]. 

Social Distancing Close personal interaction increases one’s risk of being exposed [10]. 

Use of Transportation Transportation options (walking, rideshare, public transportation) have 

widely different risks of exposure [12]. 

Figure  4.14: Rationale for collecting data in the in-app form for Self-Reported behavior 

4.3.6 BLE Distance Estimation 

To enable the app to estimate distances between smartphones, it needs to be able to record 

BLE signals and use them to estimate the distance. That is the function of BLE distance estimation 

module. The BLE distance estimation module receives BLE signals from other smartphones, 

transforms them into an appropriate input format if the machine learning model is being used, and 

then uses the signals to carry out a distance estimation procedure. We decided to transform RSSI 

data for the machine learning model by formatting them into a time series, separating the time 

series into windows of time, then deriving features such as the mean RSSI from the windows. 

Figure 4.15 illustrates the process of transforming the BLE signal data.  
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Figure 4.15: BLE RSSI Input Transformation 

 

The distance estimation procedure would be either to use the AltBeacon library or to send 

the input to the machine learning model to retrieve a distance prediction. This module makes it 

easier to conduct tests on our app because we can easily edit this module to carry out an arbitrary 

distance prediction method. As a result, it quickens the process of testing the app’s distance 

prediction methods. Figure 4.16 shows the algorithmic flow of this module. 

 

Figure 4.16: BLE Distance Estimation Flow Diagram 

4.3.7 Health Services Communication Channel 

Emerging information on factors or statistics that impact COVID transmission and risk 

scores needs to be disseminated to the WPI community. Currently, these updates are typically 

communicated through email. One example of how we imagine this Health Services 

Communication Channel could be used is when WPI made the announcement that neck gaiters are 

no longer considered valid face coverings. If a mobile application such as this one existed, WPI 

Health Services could have used it to make the announcement. We also implemented a ‘message 

center’ or inbox type feature that stores a history of all these push notifications. This inbox also 

allows for push notifications to be clicked and opened to display more in-depth articles or redirect 
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to an external webpage. This module serves as a way for Health Services to quickly communicate 

COVID and other health related information to the whole WPI student body.  

4.3.8 Statistics 

In order to keep users up to date with the COVID statistics in their area, they need a page 

with recent statistics. Depending on which community the app serves, the source of the statistics 

would be different. This module displays statistics pertaining to both the WPI community and the 

larger Worcester and Massachusetts community because the app is aimed for WPI students. The 

data for this module is taken from the WPI’s COVID Testing Dashboard which is updated daily 

[70]. It shows statistics such as the number of positive cases and positive test rate for WPI and 

Worcester. These statistics are compiled on the UI for the user to know the status of COVID in the 

WPI community. This allows users to easily find all relevant COVID information in one app. 

Figure 4.17 shows the WPI Dashboard and Figure 4.18 displayed the associated definition for each 

statistic referenced within our app .  
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Figure 4.17: Example Data from WPI’s COVID Dashboard 

 

Statistic Definition 

Positive Tests at WPI Past 7 Days The rolling total of all positive test results received in the 

past 7 days. 

Positive Tests at WPI Past 30 

Days  

The rolling total of all positive test results received in the 

past 30 days. 

WPI 7-day Positive Rate The percentage of all valid test results received in the past 

7 days with a positive test result. 

WPI 30-day Positive Rate The percentage of all valid test results received in the past 

30 days with a positive test result. 

Tests performed at WPI Past 7 

Days 

The rolling total of all tests results received in the past 7 

days. 

Tests performed at WPI Past 30 

Days 

The rolling total of all test results received in the past 30 

days. 

Massachusetts 7-day Positive Rate The percentage of all reported tests in the state with a 
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positive test result. 

New Cases in Worcester Past 7 

days 

The rolling total of all new cases reported in the City of 

Worcester in the past seven days. 

New Cases in Worcester Past 30 

days 

The rolling total of all new cases reported in the City of 

Worcester in the past 30 days. 

Figure 4.18: Definition of WPI Dashboard Stats 

4.3.9 Machine Learning Model 

For the app to be able to detect close contacts, it needs a method of estimating distances 

between smartphones. The machine learning model does this by using BLE signals as input to 

predict distances between smartphones. Another approach could be to use a library such as 

AltBeacon to estimate distances. This approach is useful because using machine learning to 

estimate distances from BLE signals is an approach that can be implemented more quickly than 

other approaches such as manually processing BLE signals. An illustration of this process is shown 

in Figure 4.19. 

 

 

Figure 4.19: Machine Learning Model Flow Diagram 

 

We hosted the machine learning model remotely so that the application does not require 

too much computation to predict distance between smartphones. We consider this a priority given 

that the application would be constantly predicting distances in an ideal setting.  
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4.3 User Interface Flow Diagram 

 The basic user interface of this app is tabbed. This allows the user to easily navigate 

between functionalities of the app. Since this is an app that students would be encouraged to 

download by WPI, it is important that it is straightforward and easily usable to avoid frustration. 

 The first page is an authenticated login page. Once logged in, the user is presented with a 

2 page tabbed app. The first tab displays a user’s current risk score. The second tab contains WPI 

and Worcester COVID statistics. The Risk Score page has buttons to allow the user to navigate to 

the Self-Reported Behavior form and the Health Services Message Center. The flow of our app’s 

user interface is illustrated in Figure 4.20. 

 

Figure 4.20: Goatvid Trace Mobile App User Interface Flow Diagram 
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Chapter 5. Implementation 

 Our implementation of the design was an Android mobile application created in Android 

Studio. Specifically, the compile and target SDK version we programmed for was version 29 with 

a minimum SDK version of 21. When testing our application, we used the Moto G5 Plus 

smartphone. 

5.1 System Architecture Diagram 

 The app is based on activities and the ViewModel class. The ViewModel is a UI wrapper 

to manage UI-related data in a lifecycle conscious way. The app also uses a repository to pull data 

from. This repository includes a database model and a remote data source. The database model is 

created using the Room API and connects to an SQLite database. The remote data source uses an 

HTTP API to pull data from both our web service and the WPI COVID dashboard. Figure 5.1 

shows this architecture and the connections between its components. 
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Figure 5.1: System Architecture Diagram 

5.2 Risk Score Formula 

 The formula was coded in java in the front end and from there was connected to the 

database through endpoints. The formula runs twice a day using the AlarmManager class. 

 The Formula.java class is doing all the necessary calculations and it is included in the 

model as part of the Repository. 

 First, we have the alarm manager which in turn calls the update function: 
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 The update function includes this if statement that calls the calculating function: 

 

 The calculating function returns the risk score by calling the normalization function on the 

calculated value: 
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 The normalization function runs a minimax normalization on the value it takes as a 

parameter: 
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5.3 Push Notifications 

 Push notifications are used in our app as a channel for WPI’s HealthServices to quickly 

communicate with the WPI community about COVID related updates. Specifically, we used 

Airship, a user engagement platform for mobile devices. Airship provides push notification 

services, in-app messaging, as well as an inbox style message center. We followed the Airship 

‘Getting Started’ page and used Airship SDK 14.0.0. We chose FCM as our Push Notification 

Provider [2]. 

5.3.1 Using Firebase Cloud Messaging 

In order to communicate with users about COVID related announcements, we began 

implementing push notifications using Firebase Cloud Messaging (FCM). We were able to easily 

integrate FCM with our app and begin drafting and sending out push notifications from the online 

console almost immediately. However, FCM did not come with a pre-made inbox UI. This 

required all notifications to be created programmatically in order to achieve our desired 

experience. We want WPI administrators from Health Services to quickly and easily send out 

notifications. Requiring the notifications to be created programmatically does not achieve this.  

5.3.2 Using Airship Customer Engagement Platform 

 In order to provide an effective channel for WPI administrators to communicate COVID 

related announcements, we decided to switch to the Airship Customer Engagement Platform for 

push notifications. Airship for android used FCM as a backend and was very easy to install 

following the guide online. We installed Airship version 14.0.0 for our implementation.  Like 

FCM, Airship has a console type website called a dashboard that allows someone to craft their 

notification online before sending it. Airship also comes with a pre-build inbox type page called 

the Message Center. Together, this allows a push notification to open directly to the Message 

Center on click as we intended. Additionally, the Airship Dashboard has lots of options for 

designing push notifications and the pages the pages that they link to. This allows for a lot of 

flexibility for how WPI admin can choose to communicate their message. The figures below show 

the process a WPI administrator might take to create their message in the Airship Dashboard. 

Figures 5.2 and 5.3 shows the Airship Dashboard page where the push notification content can be 
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configured. This page also allows the message creator to link their push notification to the in-app 

Message Center [2].  

 

  

Figure 5.2: The main Airship Dashboard page used to create push notifications (Airship) 

 

Figure 5.3: Screenshot of customizing a message through the Airship Dashboard (Airship) 

 

 Figure 5.4 demonstrates the use case of using Airship to send out information about the 

Gaiters update. From left to right, the images show the flow that the user can follow. The first 

image shows the users mobile device receiving a push notification from their Goatvid Trace app. 

On click, they are taken to the second image, a multimedia page providing more information about 

the update. The user can click on the link which automatically navigates to WPI’s official 
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announcement in their web browser as seen in the third image. Finally, the last image shows how 

this message is saved in the user’s message center inbox so they can refer to it later on (Airship). 

 

Figure 5.4: Flow chart of a user receiving a push notification from the Airship console (Airship) 

5.4 Server 

We created a WPI hosted server for this project. The server runs Ubuntu 18.04.5 LTS. It holds our 

database, HTTP endpoints, and other scripts needed for the app. The server also offers an API used 

by the app to carry out distance estimation, contact tracing, and retrieving local COVID statistics. 

A client-server diagram is shown in Figure 5.5. 
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Figure 5.5: Client Server Diagram 

5.4.1 Database 

 We decided to use MySQL as our main database to store close contacts, questionnaire 

values, subject IDs, risk scores, and WPI COVID dashboard statistics. The database consists of a 

few tables (contacts, wpi_stats) in which we are storing contact tracing data collected from the 

mobile application and other data such as the most recent number of cases at WPI. We are also 

using a PHP-based framework that supports writing database models [37] and object-relational 

mapping (ORM). Each database table has a corresponding model which is used to interact with it. 

In order to write queries, a built-in query builder [36] is used for convenience. The built-in query 

builder also provides protection against SQL injection attacks by default. Figure 5.6 shows the 

schema for our database. 

 

 



66 

 

Figure 5.6: Database schema 

  

We stored the SubjectIDs in a table with the following attributes. Figure 5.7 illustrates this table: 

Attribute Name Type Description 

id integer ID of entry within the table 

subject_id integer Subject ID of the user 

is_assigned boolean If the subject_id has already been assigned 

during registration 

timestamp datetime Time at which the entry was updated 

Figure 5.7: Attributes in subject_users table  
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The results from the in-app questionnaire [Appendix A] are stored in a table with the following 

attributes. Figure 5.8 illustrates this table: 

Attribute Name Type Description 

id integer ID of entry within the table 

subjectID integer SubjectID of the user 

classValue integer Integer 1-10 according to user’s response to 

question 1 

eatingValue integer Integer 0-5 according to user’s response to 

question 2 

campusVisitsValue integer Integer 1-5 according to user’s response to 

question 3 

maskValue integer Integer 1-5 according to user’s response to 

question 4 

socialDistancingValue integer Integer 1-5 according to user’s response to 

question 5 

transportationValue integer Integer 1-11 according to user’s response to 

question 6 

timestamp datetime Timestamp when questionnaire entry was 

submitted to database 

Figure 5.8: Attributes in questionnaire table  

 

For the beacon_close_contacts table, we used the following attributes. Figure 5.9 illustrates this 

table:  

Attribute Name Type Description 

id integer ID of entry within the table 

subjectID integer Subject ID of the user 

contactMacAddress string MacAddress of device that the user made 

contact with 

contactDate date Date that the contact was made 
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timeSpent integer Duration of time where devices are considered 

in close contact of each other 

distance_beacon double Distanced estimated between the two users 

using beacon library 

timestamp datetime Timestamp when initial contact was made 

Figure 5.9: Attributes in beacon_close_contacts table  

 

For the modelv1_close_contacts table, we used the following attributes. Figure 5.10 shows this 

table:  

Attribute Name Type Description 

id integer ID of entry within the table 

subjectID integer Subject ID of the user 

contactMacAddress string MacAddress of device that the user made 

contact with 

contactDate date Date that the contact was made 

timeSpent integer Duration of time where devices are considered 

in close contact of each other 

distance_model_v1 double Distanced estimated between the two users 

using machine learning model 1 

timestamp datetime Timestamp when initial contact was made 

Figure 5.10: Attributes in modelv1_ close_contacts table  

 

For the modelv2_close_contacts table, we used the following attributes. Figure 5.11 shows this 

table:  

Attribute Name Type Description 

id integer ID of entry within the table 

subjectID integer Subject ID of the user 

contactMacAddress string MacAddress of device that the user made 

contact with 
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contactDate date Date that the contact was made 

timeSpent integer Duration of time where devices are considered 

in close contact of each other 

distance_model_v1 double Distanced estimated between the two users 

using machine learning model 2 

timestamp datetime Timestamp when initial contact was made 

Figure 5.11: Attributes in modelv2_close_contacts table  

 

For the wpi_stats table, we used the following attributes. Figure 5.12 illustrates this table:  

Attribute Name Type Description 

id integer ID of entry within the table 

day date Date statistic entry was created 

MA_7Day_PosRate  double The percentage of all reported tests in the state with 

a positive test result. 

WORC_30Day_Cases  integer The rolling total of all new cases reported in the 

City of Worcester in the past 30 days. 

WORC_7Day_Cases  integer The rolling total of all new cases reported in the 

City of Worcester in the past seven days. 

WPI_30Day_PosTests  integer The rolling total of all positive test results received 

in the past 30 days. 

WPI_7Day_PosTests  integer The rolling total of all positive test results received 

in the past 7 days. 

WPI_Isolation  integer The number of students currently in WPI’s 

dedicated isolation space.  

WPI_Quarantine  integer The number of students currently quarantining in 

residence halls, fraternities and sororities, or WPI 

dedicated quarantine space. 

WPI_30Day_TestPerformed integer The rolling total of all test results received in the 

past 30 days. 

WPI_7Day_TestPerformed  integer The rolling total of all tests results received in the 
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past 7 days. 

WPI_30Day_PosRate  double The rolling total of all positive test results received 

in the past 30 days. 

WPI_7Day_PosRate   double The percentage of all valid test results received in 

the past 7 days with a positive test result. 

OffCampus_Isolation  integer The number of students isolating in their off-

campus apartments/homes, and those who have 

returned to their permanent residence. 

OffCampus_Quarantine  integer The number of students currently quarantining in 

their off-campus apartments/homes, and those that 

have returned to their permanent residence. 

timestamp datetime Timestamp when stats entry was submitted to 

database 

Figure 5.12: Attributes in wpi_stats table [70] 

5.4.2 COVID Dashboard Data Processing  

 The WPI COVID Dashboard is a website hosted by WPI that displays COVID related 

statistics for the WPI community. The data is a combination of both WPI, Worcester, and 

Massachusetts COVID statistics and is updated at 4pm on weekdays. Unfortunately, the data on 

this dashboard is held within a Tableau Frame and we are unable to either download or scrape the 

data using Javascript.  

As a temporary solution for this MQP, we accessed data from an unofficial google sheet 

created by the user u/ollien on the WPI subreddit. The first tab of the google sheet, seen in Figure 

5.13 below, is an exact copy of the dashboard data and is updated once a day [66]. Unfortunately, 

this google sheet was only collecting data between 8/26/20 and 12/10/20. As a result, the mobile 

app was only able to show statistics as of 12/10/20.  
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Figure 5.13: Raw Data from the COVID Dashboard stored on u/ollien’s Google Sheet 

 

To get the data from this google sheet, our python script uses the GoogleSheets API which 

directly accesses the live data on the sheet. The script is run daily by a CRON job on the server 

and the data is used to update our database. This database is queried by the app to get the most 

recent set of data to be displayed on the Stats Tab. The specific libraries used in the script can be 

found in Appendix G. 

5.4.3 Goatvid Server 

The API is written in a PHP framework called Laravel (Version 8.36.2 

https://laravel.com/docs/8.x). This framework is providing scaffolding which makes it easier to 

add controllers and write components. We decided to use it as it is a framework that favors 

convention over configuration making the development of our REST API more efficient. The 

REST API that we built communicates using HTTP verbs as actions (GET, POST, PUT, 

DELETE). Requests can be performed by the mobile application which uses the API’s endpoints 

to retrieve, create, update and delete resources. 

https://laravel.com/docs/8.x
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5.5 Machine Learning Model 

 We created our machine learning model using Python. We chose to use Python’s Scikit-

learn library to facilitate machine learning, since its features shorten the amount of time needed to 

carry out tasks related to machine learning. The versions of Python and Scikit-learn used for 

machine learning were 3.7.3 and 0.23.2 respectively. To train our model, we used the MITRE 

Range-Angle structured dataset. It consisted of Bluetooth Low Energy advertisements transmitted 

between smartphones at distances between 3 to 15 feet and at different angles. The smartphones 

were also at different orientations. We conducted tests using the following model types provided 

by Scikit-learn: Lasso Linear Regressor, Random Forests, LinearSVR, K Nearest Neighbors, and 

XGBoost. 

5.5.1 Deployment and Hosting 

 To deploy our final model to a binary file, we used Python’s pickle library. We used Google 

Cloud Platform’s AI Platform service to remotely deploy and host the machine learning model. 

This was done firstly by uploading the model file to a Google Cloud storage bucket. Then, we used 

Google AI Platform to remotely host the uploaded model. This allowed the application to request 

distance predictions by sending HTTP requests to a Google Cloud Platform API. 

5.6 Subject ID Authentication 

The user authentication process begins when a user creates a signs up for an account in the 

app. They enter a Subject ID number and password to register. The registration is valid if the 

Subject ID number entered by the user is in the list of assigned subject IDs in the database and has 

not already been registered. An API endpoint checks for these two things the user can create his/her 

profile. 

5.7 Beacon Library 

 In addition to the various methods we used for contact tracing, we discovered that there is 

a library called AltBeacon (version 2.17.1) [54] which can be used to do distance measuring out 

of the box. We used the AltBeacon library to estimate distances between phones in order to 
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calculate close contacts. A beacon is a “packet” containing unique identifiers. One of those 

identifiers is RSSI which is then used to do distance measurement. According to the library, 97 

percent of the devices currently support this functionality. We integrated this library into the 

mobile application and set up an Android foreground service in order to run its beacon 

broadcasting and detection functions in the background. We had to use a foreground service to 

keep the service running in the background since we are working with newer Android versions 

(Android 10).  

 Using RSSI values, the library is able to provide estimates for beacon distances in meters. 

For example, when the two devices are about 1 meter the estimated distance is between 0.5 and 2 

meters. As the distance between the devices is increased, the measurements tend to be less accurate 

because of the noise on the signal measurement. [55] 

 We configured the library to be used within an Android foreground service. The difference 

between a regular service is that a notification is constantly appearing while the service is running. 

The reasoning is that devices that run Android 8 or a greater version are restricting the services’ 

runtime to only 10 minutes. [56] 

 According to a blog post [72], it is easy to create an Android application that broadcasts 

and detects beacons. However, recent changes in the iOS operating system will prevent iOS 

devices from doing that.   
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Chapter 6. Results 

6.1 Machine Learning 

The aim of this app’s machine learning model was to accurately predict the distance 

between smartphones in order to determine a user’s close contacts. For training data, the model 

used BLE RSSI readings from the MITRE Range-Angle structured dataset labelled with distances 

between smartphones. To test the effectiveness of our machine learning model, we firstly collected 

the Root Mean Squared Error (RMSE) gained from the training, test and cross-validation dataset 

for numerous feature sets. For each feature set, we collected the training, test, and validation RMSE 

gained from model type tested. 

The MITRE Range-Angle structured dataset consists of a series of Bluetooth 

advertisements collected by smartphones according to the MITRE Structured Contact Tracing 

Protocol. The dataset was submitted as part of an effort to enhance contact tracing technology by 

the Private Automated Contact Tracing (PACT) project. PACT is a project whose mission is to “ 

enhance contact tracing in pandemic response by designing exposure detection functions in 

personal digital communication devices that have maximal public health utility while preserving 

privacy” [59]. 

The dataset consisted of 69 sessions, each of which followed the MITRE Structured 

Contact Tracing Protocol. During each session, there were two testers: the beacon and the receiver. 

The beacon stays in a single position for the duration of the session and possesses a smartphone 

that sends BLE signals. The receiver uses a smartphone and the BlueProximity app to receive and 

record BLE advertisements at various distances and angles from the beacon. For each session, each 

tester chose a location for their smartphone to be held (choosing from shirt pocket, front pants 

pocket, back pants pocket, in purse/bag, or in hand) and a body orientation (sitting or standing). 

The session took place in one of the following types of environment: a small room, a medium-

sized room, a large room, a hallway, or outdoors [47]. We preprocessed the MITRE dataset for 

training by extracting timestamps and RSSI data from the advertisements, separating them by 

windows of time, converting each window into a series of features, and splitting the sets of features 

into training, validation and test datasets. Figure 6.1 illustrates this process. 
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Figure 6.1: Machine Learning Preprocessing Procedure 

 

Extracting the RSSI and timestamps was required because the dataset was in the form of 

unstructured files containing BLE advertisements. To obtain the RSSI data and the times of the 

advertisements in a usable format, we had to parse the files and extract the data from them. We 

separated the pairs of RSSI data and timestamps into windows of time to enable us to create 

machine learning models that used features based on windows of RSSI data rather than singular 

RSSI readings. This was done by iterating through the RSSI readings in order and adding them to 

the current window until the advertisements’ timestamps indicated that a given amount of time 

had elapsed, and then creating a new window. To obtain the training data for the machine learning 

model, we computed the features of each window that would be used as input by the machine 

learning model. Finally, we split the dataset into training, validation, and test sets by randomly 

distributing them into a ratio of 60/20/20 respectively. 

We firstly attempted to train the models using a single feature: the individual RSSI reading 

from each BLE signal. Of the feature sets tested, models that used this one had the highest error 

rates. This feature set will be further referred to as the Raw Set. Figure 6.2 shows the data collected 

for models using this feature set. 

 

Regressor Type Lasso Linear Regression Random Forests 

Best RMSE 

Hyperparameters alpha = 0.0001 min_samples_leaf': 6 

Best RMSE Gained 3.3018 3.2752 

Test RMSE of best 

estimator 3.3194 3.2926 

CV RMSE of best estimator 3.3282 3.2992 

Test MAE of best estimator 2.7239 2.6585 
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CV MAE of best estimator 2.7262 2.6587 

Best MAE Hyperparameters alpha = 0.0001 min_samples_leaf': 4 

Best MAE Gained 2.7011 2.6340 

R^2 Score 0.2819 0.2945 

 

Regressor Type LinearSVR (degree=2) LinearSVR (degree=1) 

Best RMSE Hyperparameters 

C': 3, 'loss': 

'squared_epsilon_insensitive' 

C': 1, 'loss': 

'squared_epsilon_insensitive' 

Best RMSE Gained 3.3021 3.3382 

Test RMSE of best estimator 3.3194 3.3610 

CV RMSE of best estimator 3.3282 3.3649 

Test MAE of best estimator 2.7239 2.7330 

CV MAE of best estimator 2.7261 2.7363 

Best MAE Hyperparameters 

C': 0.1, 'loss': 

'epsilon_insensitive' 

C': 10, 'loss': 

'epsilon_insensitive' 

Best MAE Gained 2.6423 2.6415 

R^2 Score 0.2819 0.2659 

 

Regressor Type 

K Nearest Neighbors 

Regressor Radius Neighbors Regressor 

Best RMSE Hyperparameters 

{'n_neighbors': 20, 'weights': 

'distance'} 

{'radius': 4, 'weights': 

'distance'} 

Best RMSE Gained 3.3484 3.2751 

Test RMSE of best estimator 3.4099 3.2932 

CV RMSE of best estimator 3.4063 3.2990 

Test MAE of best estimator 2.7097 2.6595 

CV MAE of best estimator 2.7059 2.6590 

Best MAE Hyperparameters 

{'n_neighbors': 20, 'weights': 

'distance'} 

{'radius': 8, 'weights': 

'distance'} 

Best MAE Gained 2.6802 2.6341 

R^2 Score 0.2478 0.2944 

Figure 6.2: Data collected using the raw set. 
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To lower error metrics, we then attempted to collect features by extracting them from a 

window of RSSI readings rather than from individual ones. These windows would contain signals 

received at intervals of a certain amount of seconds. For feature sets that used these windows, we 

tested them with window sizes of 0.5, 1.0, 1.5, and 2.0 seconds. The first feature set to use features 

extracted from these windows used the features in Figure 6.3. 

 

Feature Name Feature Description Formula 

Average The average of all RSSI 

readings in the window. 

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤
 

Minimum The minimum RSSI reading 

in the window. 

 𝑚𝑖𝑛(𝑎𝑙𝑙 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤) 

Maximum The maximum RSSI reading 

in the window. 

𝑚𝑎𝑥(𝑎𝑙𝑙 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤) 

Standard Deviation The standard deviation of all 

RSSI readings in the 

window. 

 

√
𝛴 (𝑥𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤
, 

where xi refers to each RSSI reading 

 

Figure 6.3: A table displaying the features in Feature Set 1. 

 

This feature set will be referred to as Feature Set 1. Models that used Feature Set 1 had 

lower validation RMSE values than models that used the Raw Set. After collecting error data from 

models that used Feature Set 1, we attempted to add more features to further decrease the models’ 

error. This resulted in another feature set, which will be referred to as Feature Set 2. It used the 

features shown in Figure 6.4. 

 

Feature Name Feature Description Formula 

Average The average of all RSSI 

readings in the window. 

 

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤
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Minimum The minimum RSSI 

reading in the window. 

 

 𝑚𝑖𝑛(𝑎𝑙𝑙 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤) 

Maximum The maximum RSSI 

reading in the window. 

𝑚𝑎𝑥(𝑎𝑙𝑙 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤) 

Standard Deviation The standard deviation of 

all RSSI readings in the 

window. 

 

 

√
𝛴 (𝑥𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

, 

where xi refers to each RSSI 

reading 

Median The median RSSI reading 

in the window. 

The (n+1)/2 th RSSI reading in the 

window when the RSSI readings 

are sorted. 

Variance The variance of all RSSI 

readings in the window. 

 

𝛴 (𝑥𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

, 

where xi refers to each RSSI 

reading 

Skewness The skewness of all RSSI 

readings in the window. 

 

𝑚3

𝑚2
3/2, 

where 𝑚𝑖 =
1

𝑁
∑𝑁

𝑛=1 (𝑥𝑖  −  𝑎𝑣𝑒𝑟𝑎𝑔𝑒)𝑖, 

N = number of readings in the window, 

and xi refers to each RSSI reading. 

First Quartile The first quartile RSSI 

reading. 

 

The (n+1)/4 th RSSI reading in the 

window when the RSSI readings 

are sorted. 

Third Quartile The third quartile RSSI 

reading. 

 

The 3(n+1)/4 th RSSI reading in 

the window when the RSSI 

readings are sorted. 
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Mean Absolute Difference The mean absolute 

difference of all RSSI 

readings in the window. 

 

 

𝛴 | 𝑥𝑖−𝑎𝑣𝑒𝑟𝑎𝑔𝑒 |

𝑁
, 

where x_i refers to each RSSI 

reading and N = number of RSSI 

readings in the window. 

Kurtosis The kurtosis of all RSSI 

readings in the window. 

 

𝑐

(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)4, 

where𝑐 =
𝛴 (𝑥𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒)4

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑆𝑆𝐼 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤
 

Range Maximum - Minimum Maximum - Minimum 

Interquartile Range Third Quartile - First 

Quartile 

Third Quartile - First Quartile 

Simple Moving Average The simple moving average 

of the RSSI readings 

received. 

𝑎1+𝑎2+𝑎3+...+𝑎𝑛

𝑛
, 

where a_1, a_2, …, a_n are the 

last n values of the average, and n 

is the number of values in the 

simple moving average window. 

Figure 6.4: A table displaying the features in Feature Set 2. 

 

Using Feature Set 2 also decreased models’ validation RMSE. Figure 6.5 compares the 

best cross-validation(CV) RMSE obtained from using each combination of window size and 

feature set. K-fold cross-validation was used, with 10 folds. 
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Figure 6.5: A chart illustrating the lowest CV RMSE gained from using each feature set and 

window size. 

 

The chart shows that the lowest CV RMSE was obtained by using Feature Set 2 with a 

window size of 0.5 seconds. The model type that produced this RMSE was a random forests 

regressor. After identifying the feature set, window size, and model type that resulted in the lowest 

cross-validation RMSE, we attempted two methods to further optimize this model. The first of 

these was to add a simple moving average to the feature set. We did this to a random forests model 

trained using Feature Set 2 with a 0.5 second window size. We used that specific model because 

it produced the lowest CV RMSE and because random forests models tended to have the lowest 

validation RMSE values in other feature sets. To observe the impact of a simple moving average 

on CV RMSE, we collected CV RMSE when simple moving average windows ranging from 3 to 

100 were used, and also when a cumulative moving average was used. Figure 6.6 displays how 

the simple moving average windows size affected CV RMSE. 
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Figure 6.6: A chart displaying how simple moving average window size affected CV RMSE 

 

Figure 6.6 shows that CV RMSE generally decreases as the simple moving average’s 

window size increases. It also shows that the CV RMSE is at its lowest when a cumulative moving 

average is used. Therefore, using a simple moving average decreases the error rate of the model. 

The second optimization method was to train the data using overlapping windows of BLE signals, 

as the models had been previously trained using windows that did not overlap. We attempted to 

observe the impact of using overlapping windows during training by collecting RMSE when 

overlapping windows with amounts of overlap ranging from 10% to 50% were used. Overlapping 

windows is a method of creating windows such that the next window uses a percentage of the 

previous window. Figure 6.7 illustrates this concept. Figure 6.8 displays the result of training 

models with overlapping windows. 
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Figure 6.7: An illustration depicting overlapping windows. 

 

Figure 6.8: A chart showing how CV RMSE changes when the model is trained using different 

overlapping windows. 

We finally attempted to improve the Feature Set 2 random forests model by modifying it 

to use both the simple moving average window and overlapping window amount that lead to the 
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lowest CV RMSE readings. Figure 6.9 compares the best model that used Feature Set 2 to models 

that used simple moving average and overlapping windows. 

 

Figure 6.9: A chart showing how using simple moving average and overlapping windows 

impacts CV RMSE. 

 

 Using both simple moving average and overlapping windows resulted in the lowest CV 

RMSE. Before using these, the CV RMSE was 3.07433239 and the R squared score was -0.45458. 

Using simple moving average and overlapping windows decreased CV RMSE to 1.587660707, 

which was approximately a 50% decrease. The R squared score of the final model was -0.5933. 

 Figure 6.10 displays a graph of the actual distance versus the final model’s predicted 

distances for data points in the test set. In addition, Figure 6.11 shows a chart of the final model’s 

feature importances. 
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Figure 6.10: A scatter plot of actual distance against the final model’s predicted test distances. 

 

 

Figure 6.11: A chart displaying the feature importances of the final model. 
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6.2 Beacon Library Approach 

We evaluated the beacons library functionality using two devices that were both 

broadcasting and scanning for beacons on a custom region. While experimenting, we kept some 

measurements of the actual distance of the two devices and the distance that was calculated by the 

library to find out whether it is giving accurate results. The results show an inconsistency between 

RSSI values and distance (in meters). As explained earlier, the beacon distance calculation is 

estimated, and the accuracy depends on the signal strength. The distance calculation is based on 

RSSI values and transmit power. Sometimes the calculation is not accurate and based on 

experimentation, setting the transmit power value to -59 dBm is optimal. Figure 6.12 shows how 

the distance, actual distance and RSSI are correlated. 

 

Figure 6.12: A diagram comparing distances from the AltBeacon library to actual distances. 

 

This diagram shows that the distance that we are measuring is not close to the actual 

distance between the two phones. This indicates that the beacon library that we are using is not 

accurate when used with the specified parameters. The parameter “tx power” was set to -59 and 

we left it as is in order to perform the study. 
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6.3 App Evaluation Study 

 In order to gauge the effectiveness of our app’s functionality and how accurately it 

estimated risk of contracting COVID19, we conducted a study so that the app would collect data 

in a real-world environment. In this study, 9 WPI students that were currently on campus were 

allowed to install the app on their Android smartphones. The study took place in two rounds in 

order to collect as much data as possible. In the first round, 5 students downloaded the app for a 5 

day period from April 11, 2021 to April 16, 2021. In the second round, 4 students downloaded the 

app for 2 days from April 16, 2021. After downloading the app, the participants would answer the 

in-app questionnaire once. Once installed, the app would record the users’ close contacts, in-app 

questionnaire responses, and risk scores for the duration of their study period. This data was then 

used to determine whether the app and the risk score calculation were working as intended. 

 We will now cover the results of this study. We firstly attempted to visualize the overall 

demographics of our study participants. Figure 6.13 shows the distribution of participants by 

gender and by class year. 5 of 9 (56%) of participants were Male. The remaining participants were 

evenly split between Female and Third Gender/Non Binary. In terms of class years, 6 of 9(67%) 

of all participants were Seniors. Freshman made up the next largest portion of participants, 

followed by Juniors. There were no sophomores in the study. 
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Figure 6.13: Charts showing how study participants were distributed by gender and class year. 

 

 We also analyzed all data collected from participants to gain a better understanding of it. 

We visualized participants’ responses to specific questions from the in app questionnaire as shown 

below. First, we have the results for the question that asked users about their eating habits. We 

found that this question had the most variety in responses from participants although the most 

frequent answer was the participant ‘Leaves the house to get groceries or take out 3-4x a month.’ 

This variation was likely due to the different housing and food options for students from freshman 

dorms with full meal plans, upperclassmen dorms with kitchens and optional meal plans, and off 

campus apartments with full kitchens. Figure 6.14 shows the distribution for this questionnaire 

question. 
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Figure 6.14: The frequency that participants left the house for groceries and takeout 

 

Next, we have results about how frequently participants visited campus for course-related 

reasons. The results for this question are interesting because they have results on the highest end 

‘6x a week or more’ and the lowest end ‘Never.’ This is likely due to the variety of course 

offerings this semester - some students had a completely virtual course load and others may have 

all classes in-person. The most common response that 5 out of 9 participants choose was ‘Going 

to campus  2-3x a week for course related reasons.’ Figure 6.15 displays the distribution of 

responses for going on campus. 
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Figure 6.15: The frequency that participants when to campus for course related reasons 

 

 Finally, below is the histogram displaying the results for the question regarding 

participants' mask wearing habits. The responses to this question were very low among all 

participants with the largest number of participants choosing ‘Wears a mask 100% of the time.’ 

These results are similar for the Social Distancing question and the Transportation Use question. 

This indicates that participants had very safe behaviors in these three areas. Figure 6.16 shows 

the distribution of responses to the questionnaire question about mask wearing. 

 

 

Figure 6.16: The frequency with which participants wore masks 
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Another crucial part of the data collection during the study was the number of contacts 

each participant had. Unfortunately, there were no close contacts recorded by the application 

during either one round in the study, therefore, there are no results. 

To ensure that the risk scores given by the app accurately represented our participants' level 

of risk and were in line with our vision for the risk scores, we also visualized the distribution of 

risk scores. In general, there is a trend towards lower risk scores. They ranged between 14%-36% 

and the average risk score was 25.6% Figure 6.17 displays this.   

 

 

Figure 6.17: The distribution of risk scores among participants 
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In Figure 6.18, we can observe that the risk score of the male category has the largest 

range while the female category has the smallest one. We can conclude that the subjects 

belonging to the male and non-binary / third gender categories had higher risk scores. 

 

Figure 6.18: The distribution of risk scores by gender 

 

 Figure 6.19 shows the distribution of risk scores divided by class year. The most 

significant one being the one for seniors since two thirds of the subjects were seniors, as a result 

the graph for seniors is very similar to the graph for the whole study. The graph confirms most 

users had a risk score between 20%-30%. 
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Figure 6.19: The distribution of risk scores by class year 

 

 In conclusion, we found that the sum of all questionnaire values most closely correlated 

with a user’s calculated risk score. As one’s questionnaire sum increases, the risk score tends to 

increase as well. This relationship applied to all groups of students that participated in the study. 

Figure 6.20 displays this relationship in a plot of risk score against the sum of questionnaire 

values. The data points that fall outside of this pattern have lower risk scores because they were 

calculated over a multi-day period and were subjected to the rolling average function of our risk 

score formula. A linear regression line was fitted to the data with an R^2 value of 0.6166. The 

Root Mean Squared Error (RSME) between the data points and the trendline is 0.0409. 
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Figure 6.20: Scatter plot showing relationship between sum of questionnaire values and risk 

score 
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Chapter 7. Discussion 

7.1 Successes 

● All participants displayed a trend towards lower risk scores, with all risk scores ranging 

from 14% to 36%. 

● There are two factors that could have caused this: the participants’ questionnaire values 

and the number of contacts each participant had. As discussed in Chapter 6, most 

participants gave answers with low values for three of the five questionnaire questions, 

which would significantly decrease their total questionnaire sum. Therefore, the 

participants’ low risk scores correlate with their questionnaire values. 

● There are two factors that could have caused this: the participants’ questionnaire values 

and the number of contacts each participant had. As discussed in Chapter 6, most 

participants gave answers with low values for three of the five questionnaire questions, 

which would significantly decrease their total questionnaire sum. Therefore, the 

participants’ low risk scores correlate with their questionnaire values. As for contacts, there 

were none recorded during the study. 

7.2 Challenges 

● No contacts were recorded during the study, which prevents us from determining whether 

the risk scores correlate with participants’ numbers of contacts. This could have been 

caused by participants not being in contact with each other or by a lack of BLE scanning 

by their smartphones. 

● We observed during the study that specific phone models with Android 11 installed had 

battery optimization features that would aggressively close background apps. Numerous 

participants owned such phones, and the features prevented the app from running. This 

problem caused phones to not scan for close contacts at all and prevented them from 

recording risk scores. 

● According to the plot of distances against the machine learning model’s predicted 

distances, the model predicts long distances, even when the actual distance is short. This 
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may have been caused by an imbalance between longer distances and shorter distances in 

the dataset. The model’s feature set or model type could have also led to this. 

7.3 Limitations 

● We were not able to find whether the risk score correlated with numbers of contacts 

because there were no contacts recorded during the study. 

● There was a small number of participants during the study, which may have led to the trend 

of low questionnaire values. 

● A close contact between two people will only be measured if both have the Goatvid app on 

their phones. Since both studies only had a small amount of subjects, the likelihood of two 

users being less than 6 feet away for more than 15 minutes was very low. 

● The Android 11 problem prevented the smartphones from regularly recording risk scores 

and scanning for contacts.  

7.4 Future Work 

● As stated in Chapter 7, the battery optimization settings on Android 11 phones caused 

significant obstacles when testing the effectiveness of our app. Our next steps would be 

researching the Android 11 issue and finding a solution that allows the app to run 

continuously in the background. Next, we would test the app on a wide variety of phones 

from different brands and models as well as all Android versions. Finally, we would re-run 

the study with a much larger number of participants to ensure that close contacts could be 

detected. 

● However, future Android versions may have even stronger battery optimization features 

which would cause the same issues to arise. An alternative solution could be to create a 

hardware device that can connect to the user’s cellphone and the device can measure close 

contacts. The device would allow us to work around the battery optimization issue and 

allow users to have constant close contact detection. In turn this would also allow the risk 

score algorithm to work as intended and improve its accuracy. The next iteration of the 

project could then focus on improving the algorithm if necessary, with the complete results. 
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● In addition, we could display the server database contents within the mobile application. 

For example, using the current subjectID, a list of past risk scores could be displayed. We 

could also create a places table in the server and populate it with user data in order to have 

a better understanding of where close contacts occur. Additionally, we could further test 

the Beacon service that is running in the background in order to figure out what happens if 

there are more than one device in the area. 
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Chapter 8. Conclusion 

 Our work explores the idea of predicting one’s risk of exposure to COVID-19 using 

smartphones. This establishes the feasibility of such a project as well as serves as a baseline for 

future projects in this area. The best achievement in the project was the development of the risk 

score formula which took into account a user’s behaviors, contacts, location and past risk score to 

produce a singular score estimating their risk of exposure to COVID-19. In addition, we 

implemented passive close contact detection using the AltBeacon library. Using these beacons, we 

created a Machine Learning model that could estimate distances between two phones with a CV 

RMSE of 1.587660707. The final model’s R squared score was  -0.5933. During the study, the 

risk score seemed to adequately measure risk of COVID-19 exposure. However, due to the 

challenges facing the study, further testing is needed to confirm this. 
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Appendices: 

A.  In-App Questionnaire 

1. Which of the options below align most closely with the way in which you attend classes? 

(Course related reasons include lectures, labs, office hours, group meetings, project work, 

etc.) 

a.     Never leave the house for course related reasons  

b.     Going to campus < 1x a week for course related reasons 

c.     Going to campus 1x a week for course related reasons 

d.     Going to campus 2-3x a week for course related reasons 

e.    Going to campus 4-5x a week for course related reasons 

f.    Going to campus 6x a week or more for course related reasons 

 

2.     Which of the options below align most closely with the way in which you get food? 

a. Never leave the house to pick up groceries or take out out  

b. Leaves the house to get groceries or take out  < 1x a month 

c. Leaves the house to get groceries or take out  1-2x a month 

d. Leaves the house to get groceries or take out  3-4x a month 

e. Leaves the house to get groceries or take out  1x a week 

f. Leaves the house to get groceries or take out  2x a week  

g. Leaves the house to get groceries or take out  3x a week  

h. Leaves the house to get groceries or take out  4x a week  

i. Leaves the house to get groceries or take out  5x a week  

j. Leaves the house to get groceries or take out  6x a week or more 

3.     Which of the options below align most closely with the frequency that you attend campus for 

non-course work related reasons? (Non course related reasons include work, food, seeing friends, 

etc. ) 

a.     Only going to campus for COVID testing 

b.     Going to campus 1x a week (other than for testing) 
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c.     Going to campus 2-3x a week (other than for testing) 

d.     Going to campus 4-5x a week (other than for testing) 

e.     Going to campus 6x a week or more  (other than for testing) 

4.     Which of the options below most closely aligns with your mask wearing behavior? 

a.     Wears a mask 100% of the time  

b.     Wears a mask 80% of the time  

c.     Wears a mask 60% of the time  

d.  Wears a mask 40% of the time  

e.     Only wearing a mask when required or < 20% of the time 

5.     Which of the following options most closely relates to your social distancing behavior?  

a.     Practices social distancing 100% of the time  

b.     Practices social distancing 80% of the time 

c.     Practices social distancing 60% of the time 

d.     Practices social distancing 40% of the time 

e.     Only practices social distancing when required or < 20% of the time  

6.     Which of the options below align most closely with how you use public transportation? This 

includes buses, trains, planes, rideshares (Uber), taxis or any method other than a personal vehicle. 

a.     Never using public transportation 

b.     Using public transportation < 1x a month 

c.     Using public transportation 2-3x a month 

d.     Using public transportation < 1x a week 

e.     Using public transportation 1x a week 

f.      Using public transportation 2-3x a week 

g.    Using public transportation 4-5x a week 
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h.     Using public transportation 6x a week or more 
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B. Behavior Risk Score Values 

The table below presents the associated value of each multiple choice of each question  

from the questionnaire. 

Questionnaire Value relations 

Question 

1: Class 

attending 

value 

Never leave 

the house for 

course related 

reasons 

Going to 

campus < 1x 

a week for 

course 

related 

reasons 

Going to campus 1x a 

week for course related 

reasons 

Going to campus 2-3x 

a week for course 

related reasons 

Going to campus 

4-5x a week for 

course related 

reasons 

Going to campus 

6x a week or 

more for course 

related reasons 

Value 0 1 2 3 4 5 

Question 

2: Food 

source 

value 

Never leave the 

house to pick up 

groceries or take 

out out 

Leaves the 

house to get 

groceries or take 

out < 1x a month 

Leaves the 

house to get 

groceries or 

take out 1-2x a 

month 

Leaves the house 

to get groceries or 

take out 3-4x a 

month 

Leaves the 

house to get 

groceries or 

take out 1x a 

week 

Leaves the 

house to get 

groceries or 

take out 2x a 

week 

Leaves the 

house to 

get 

groceries 

or take out 

3x a week 

Leaves the 

house to 

get 

groceries 

or take out 

4x a week 

Leaves the 

house to 

get 

groceries 

or take out 

5x a week 

Leaves the 

house to 

get 

groceries 

or take out 

6x a week 

or more 

Value 1 2 3 4 5 6 7 8 9 10 

Question 

3: Campus 

visit value 

Only going to campus for 

COVID testing 

Going to campus 1x a 

week (other than for 

testing) 

Going to campus 2-3x 

a week (other than for 

testing) 

Going to campus 

4-5x a week 

(other than for 

testing) 

Going to campus 

6x a week or 

more (other than 

for testing) 

Value 1 2 3 4 5 

Question 

4: Mask 

value 

Wears a mask 100% of the 

time 

Wears a mask 80% of the 

time 

Wears a mask 60% of 

the time 

Wears a mask 

40% of the time 

Only wearing a 

mask when 

required or < 20% 

of the time 

Value 1 2 3 4 5 

Question 

5: Social 

distance 

value 

Practices social distancing 

100% of the time 

Practices social distancing 

80% of the time 

Practices social 

distancing 60% of the 

time 

Practices social 

distancing 40% of 

the time 

Only practices 

social distancing 

when required or 

< 20% of the time 

Value 1 2 3 4 5 

Question 

6: 

Transporta

tion value 

Never using 

public 

transportation 

Using public 

transportatio

n < 1x a 

month 

Using 

public 

transportati

on 2-3x a 

month 

Using public 

transportation 

< 1x a week 

Using 

public 

transportati

on 1x a 

week 

Using 

public 

transport

ation 2-3x 

a week 

Using public 

transportation 4-

5x a week 

Using public 

transportation 6x 

a week or more 

Value 0 1 2 3 4 5 6 7 
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 The table below illustrates where the Risk score gets the raw data from 

Raw Data to be Used As Partial Risk Score Source 

Number of close contacts (15 minutes within 6ft) Beacons/ML model 

Time spent in close contact (number of minutes) Beacons/ML model 

Questionnaire input Input from User 
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C. Place Type Risk Score Values 

The location categories below are describing what each location label represents. Those 

labels are pre-defined by Google’s API. We are receiving those from the Places API. 

 

Location Place Type API Labels Risk Scores 

Bar bar 9 

Restaurant restaurant 9 

Night Club night_club 9 

Movie Theater movie_theater 8 

Supermarket supermarket 5 

Shopping Mall shopping_mall 5 

Natural Feature natural_feature 5 
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D. Contact Tracing App Research (link here) 

 As part of the literature review for this project, we researched numerous contact tracing 

apps to find potential features for our app, and ways of implementing those features. The apps that 

we found during our research and documented are displayed in the following tables. 

 

 

 

  

https://docs.google.com/spreadsheets/d/1gwc-ZsYSmQBeM5r1eLbdynu8SOYR3tDePwx_8yNebi8/edit?usp=sharing
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E. Beacon Library (RSSI vs. Distance in meters) 

 When we found the AltBeacon library during our research, we initially tested it to 

determine how accurately it could estimate distances. We tested the library by using it between 

smartphones at various distances between each other and collecting the actual distance, predicted 

distance, and RSSI. The graph below shows a plot of RSSI against actual distance. 
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F. Beacon Library (Distance in meters vs. RSSI vs. Actual Distance 

in meters) 

The plot below shows the ‘Distance’ which is the value predicted by the AltBeacon library. 

This distance (in meters) is predicted by the model that the AltBeacon library includes. 
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G.  Google Sheets Python Parser Library Requirements 

This is the list of Python packages used for the google sheets parser program. 

google-api-core==1.22.3 

google-api-python-client==1.12.5 

google-auth==1.22.0 

google-auth-httplib2==0.0.4 

google-auth-oauthlib==0.4.1 

google-pasta==0.2.0 

googleapis-common-protos==1.52.0 

oauth2client==4.1.3 

oauthlib==3.1.0 

mysql==0.0.2 

mysqlclient==2.0.1 
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H.  COVID-19 Infographics  

I. Back to College Tips [10] 

Infographic produced by the CDC with tips for reducing exposure to COVID-19 in a 

college setting. 

 

 

J. COVID-19 Risk Index [16] 

Infographic from COVID-19 RECoVERY CONSULTING showing the risk factors for 

different activities. 
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K. What you should know about COVID-19 to protect yourself and others  [12] 

Infographic from the CDC with tips and info about protecting yourself and others from 

COVID-19 

 

 


