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Abstract

COVID-19 has infected millions over the past year. The virus spreads through close contact
with those who are infected. This paper discusses the development of the android app Goatvid
Trace which calculates a user’s risk of exposure to COVID-19. Our study to test the app found that
the mean risk score of WPI students was 25.6%. The paper also discusses the Machine Learning
model that estimated distances between two phones with a CV RMSE of 1.587660707.
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Chapter 1. Introduction

COVID-19 has proven to be one of the biggest challenges the United States has ever faced.
This challenge has resulted in more than 30 million infections [13], more than 500 thousand deaths
[13], and more than 14% unemployment rate [65]. Both governments and institutions are
struggling to create systems and measures that would allow them to reopen and operate under this

new normal.

1.1 Background on COVID-19

Coronaviruses are a large diverse group of viruses that get their name from the crown the
virus seems to have when looked at on a microscope. The virus that causes COVID-19 is called
SARS-CoV-2. It originated in bats and it is the third Coronavirus to be transferred from animal
species to humans. SARS stands for Severe Acute Respiratory Syndrome [24]. Signs and
symptoms for COVID-19 include: fever, tiredness, chills, muscle pains, cough, loss of taste or

smell, difficulty breathing, headache, and sore throat [24].

The disease causes a wide range of signs and symptoms ranging from asymptomatic cases that do
not show any signs or symptoms to more severe cases that could result in respiratory infections
that could be mortal and various cases in-between. The incubation period of the virus ranges
between 2 to 14 days after exposure, with an average of about 5 days. The infectious period starts
two days before the onset of signs and symptoms and ends close to 10 days after the onset of signs
and symptoms. Asymptomatic patients are infectious for about 10 to 14 days [24].

The peak of signs and symptoms correlate with infectiousness, and the more severe the symptoms,
the longer the infectious period is. Even though there are several exceptions, age and pre-existing
conditions determine how severe the disease is on them. Old age, diabetes, immune syndromes
and respiratory conditions all increase the chance of severe disease [24].

Tests for COVID-19 can either be diagnostic tests or an antibody test. Diagnostic tests are PCR
tests that collect a swab from the patient either from the throat or the nose and check for RNA of
the virus. The antibody test checks the patient’s blood to look for the immune response to the virus
[24].



The virus is transmitted by droplets of saliva that are released while talking, sneezing or coughing,
these droplets can enter the body by landing on surfaces people touch and touch their face
afterwards or they can be inhaled while they are still in the air. The high rate of infection of the
virus combined with the ease of transmission, asymptomatic infectious patients, and the infectious
period starting before giving signs result in a highly contagious virus with possibly mortal results
[24].

High risk behaviors are those that can increase one’s risk of contracting the coronavirus [19]. Some

examples include:

e Transportation

o Using public transportation
e Indoor Gatherings

o Going to Concerts

o Attending Religious services

o Attending Indoor Parties

o Going to Bars and Nightclubs
e Eating

o Eating at indoor restaurants
e Exercise

o Exercising at the gym

o Playing contact sports
e Work

o Working in an office
e Services

o Going to a salon or barbershop

These behaviors are considered risky because they increase one's exposure to saliva droplets which
is the method of coronavirus transmission. According to the CDC, behaviors that reduce risk of
transmission include wearing masks, limiting travel, limiting time indoors outside your home, and

maintaining 6ft of social distance from others [12].
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1.2 Tracking High Risk Behavior

Knowing how the risk of contracting COVID is impacted by these behaviors can help
people make better and less risky decisions. For example, after learning that public transportation
increases one’s risk, a person might opt to carpool with a family member. Similarly, after knowing

that working in an office can increase your risk, someone might decide to work from home instead.

One of the most powerful, most widely used tools to track these behaviors are smartphones.
According to the Pew Research center, 81% of Americans had smartphones in 2019 [53]. Their
widespread use in addition to the many built-in sensors, make them useful data-collection tools.
This allows smartphones to sense, perform computations, and predict things such as where a user
is located, proximity to others, who they are communicating with, and what they are doing. With
these data, scientists can study behavior, predict outcomes, and gain a better understanding of
people’s social networks. Because smartphones are already widely used, smartphone sensing

allows for organic data collection that cannot be replicated in a lab [30].
1.3 Introduction to Contact Tracing

Contact tracing is a public health strategy that aims to stop the spread of an infectious
disease within a population [24]. It does this by identifying people who may have been exposed
and asking them to isolate before they possibly spread it to others. Contact tracing is a vital tool in
helping to control the spread of coronavirus in communities [24].

Contact tracing was mostly manual and health workers would manually interview infected
people and discover and call their close contacts to inform them. However, due to the advent of
coronavirus, public health resources are limited, making it imperative to increase efficiency in
contact tracing. As a result, technology has had a larger role in carrying out contact tracing.
According to the World Health Organization, using databases to assist contact tracers
“[s]treamline[s] the data flow and data management process . . . and improv[es] timeliness of
analysis and monitoring” [69]. These databases also serve to keep track of cases, their contact
information, as well as any close contacts they may have [69]. This has led to practices such as
using central databases to connect contact tracers to cases more quickly and using smartphone apps

to report symptoms [74], notify people who have been in contact with a positive case, and record
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a person’s close contacts. Apps such as these make it easier to carry out contact tracing because
they are able to record and notify contacts that people might forget to report.

Contact tracing smartphone apps have been increasingly using Bluetooth Low
Energy(BLE) to record close contacts. This is because BLE can be used to detect contacts in a
more precise and privacy-preserving way than other technologies such as GPS. BLE contact
tracing apps are usually implemented by utilizing BLE advertisement packets transmitted by
smartphones. Upon receiving a Bluetooth signal, the phones transmit anonymous IDs which are
used to notify their users if they have been in contact with a positive case.

Close contacts are so important because COVID-19 can be transmitted through saliva
particles that float through the air and thus a close contact could potentially mean exposure to the
virus. This means that close contacts are directly related to the risk of contracting the virus and
thus it is important to monitor them. Keeping track of them can also allow us to weigh them and

calculate a user’s potential exposure of the virus.

1.4 Bluetooth Contact Tracing

Contact tracing relies on making note of which people a person was in close contact with
in the days prior to becoming symptomatic. Manual contact tracing faces challenges. Often, it is
difficult for people to remember all their close contacts. In cases of public transportation or large
schools, a person may be in close contact with strangers. This is problematic as those strangers
cannot be notified that they may have been exposed. To combat this, Bluetooth has been used to

link strangers as close contacts through their phone signals.

1.4.1 How Bluetooth Contact Tracing Works

The main goal of Bluetooth Contact Tracing apps is to make contact tracing more efficient
and avoid mass quarantine [41]. The apps achieve this by compiling a list of close contacts and
notifying those people if they may have been exposed to the virus.

Phones with a contact tracing app installed can communicate with each other using
Bluetooth Low Energy or BLE [8]. The Bluetooth advertisements help other devices find each
other. Then, a Central device can begin the connection process. Each phone has an anonymous ID

it transmits and exchanges with nearby phones periodically. These IDs are randomly generated
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identity. This process is shown in Figure 1.1.

3
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and updated frequently to ensure that no one’s location or contacts can be traced back to their

Figure 1.1: An illustration depicting the generation and use of anonymous ID’s [41]

If a person tests positive, they can enter that information into the app. Using their phone’s
anonymous ID number, the system will reference an anonymous database of contacts and
determine who may have been exposed. Those who have been exposed will receive a notification

through their app, asking them to isolate immediately. This is shown in Figure 1.2.
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Figure 1.2: A diagram of how Bluetooth contact detection and training works[41]

These apps typically record close contacts and the amount of time spent in close proximity
to them. A close contact is typically defined as less than 6ft. BLE can estimate the distance between
two phones based on the strength of the signal between them.

1.5 MQP Problem Statement

With millions COVID-19 cases affecting communities worldwide, universities are among the
many entities facing the biggest health crisis in their existence. Although regular testing allows
organizations to track the spread of the virus, it often is not enough to help individuals prevent
their exposure [34]. Students are uninformed about their own risk of exposure to COVID-19 while

living on college campuses and a solution is needed to address this issue.

1.6 Challenges

1. Bluetooth Low Energy:

There have been difficulties in implementing approaches to COVID19 contact tracing
apps. These apps usually use Bluetooth or GPS to detect contacts. GPS can be used to detect
whether someone was in the same building as a positive case, but it fails to detect close contacts

because its precision is within a few meters, which is a greater distance than the distance between

14



close contacts. Bluetooth contact tracing apps tend to use the received signal strength (RSSI) from
BLE signals to determine distances between contacts. However, numerous factors can affect RSSI
values obtained from BLE signals. A study which evaluated the feasibility of using BLE for contact
tracing found that BLE signals are often absorbed while a phone is inside a bag or pocket, lowering
their RSSI values. The study also observed that the human body can absorb BLE signals and
decrease RSSI values. In addition, it found that BLE signals are not absorbed by walling used to
separate rooms inside a building, which could potentially lead to false alarms for people who live
or work in adjacent rooms [38]. According to another study, different phone models can also
influence RSSI values. Different phone models use different Bluetooth hardware, which affects
the maximum strength of their signals [39]. BLE contact detection also faces challenges due to
data availability. Because COVID-19 is a novel virus, there are not many datasets that contain
Bluetooth data for use in contact detection. As a result, there is a limited amount of research in
creating predictive models that use BLE signals to accurately detect contacts in real-life
environments. During our research, we found no models that were able to use BLE signals to
accurately predict distances between smartphone users in non-controlled environments. This lack

of prior research makes using BLE to detect contacts a daunting problem to solve.

2. Smartphone constraints:

Using BLE to detect contacts also presents challenges to contact tracing apps due to
smartphone hardware. For BLE contact tracing apps to be able to detect contacts at any time, the
smartphone has to be constantly transmitting BLE signals. Transmitting Bluetooth signals for
prolonged amounts of time can drain the smartphone’s battery which makes contact tracing apps
more difficult for users to adopt. Smartphone operating systems may also limit the amount of time
that phones can transmit or receive Bluetooth signals for, making it more difficult for developers

to create contact tracing apps.

3. Privacy concerns:

Privacy concerns also make contact tracing apps solutions a difficult task. User information
such as demographic information, user habits, and location make it easier for apps to carry out
contact tracing at the expense of user privacy. As a result, a significant number of contact tracing

apps focus on preserving user privacy by using increased security measures during data
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transmission and limiting the amount of user information collected. However, using less
information limits can limit the effectiveness of a contact tracing app. For example, a contact
tracing app with access to users’ location could potentially inform users about crowded areas and
assign more risk to users that visit crowded locations. Apps without access to location data would
not be able to have such a feature. Therefore, the tradeoff between user privacy and functionality

presents a challenge to contact tracing apps.

4. Novelty:

Another challenge is that approaches to estimating the risk of contracting COVID-19 are
about as novel as the virus itself. Relatively few COVID-19 contact tracing apps estimate their
users’ risk of being infected. In our research of thirty contact tracing apps, only two of them
attempted to estimate the user’s risk of being infected with coronavirus. As a result, estimating the
risk of being infected with COVID19 presents a challenge to this project and to contact tracing
apps as a whole because its status as a novel and less known problem makes it more difficult to
solve. There is not much existing information about how COVID-19 risk can be estimated, making

it harder to create such a feature in contact tracing apps.

1.7 Overview of Goatvid Trace

To address this problem statement, we created Goatvid Trace, an Android mobile
application aimed towards the WPI student population. Goatvid Trace calculates a risk score for a
user which indicated their likelihood of being exposed to COVID-19. For example, a higher risk
score means that the user engaged in risky behaviors and now has a higher risk of being exposed.
To calculate this, the app records ‘close contacts’ or interactions between two users where they are
closer than 6 ft for 15 minutes or longer. If these interactions occur at a certain GPS tagged location
such as a restaurant or bar, the risk associated with that interaction is considered to be higher. The
risk score also accounts for behavioral data that is inputted by the user through an in-app
questionnaire. These behaviors are: going to class, getting food, visiting campus, mask wearing,
social distancing, and transportation. In addition, the app also displayed COVID related statistics

for their area and provides a messaging service for Health Services to communicate directly with
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students about COVID updates and reminders. Figure 1.3 below shows an overview of our

proposed mobile app.

Automatic
Continuous Behavioural
Sensing Classifiers Data Processing
GPS Activity
Bluctooth Contacts B Risk Score

outcomes
Self-REpﬂl‘tS Class Visits Machine
Learning
In-app L Food Access M()de'
Questionnaire Distance
Campus Visits
predictions

Mask Wearing

Social
Distancing

Transportation
Use

Figure 1.3: Overview of the Goatvid Trace mobile app

1.8 Previous COVID Mobile App Approaches

The worldwide impact of COVID-19 has led to numerous attempts to solve this problem.
Numerous approaches to COVID-19 consist of a smartphone app that carries out contact tracing.
Usually, the scope of the contact tracing varies by app. Apps such as Hansel conduct contact
tracing for the general population, while other apps conduct contact tracing for specific
communities. For example, the app CoronaWarn carries out contact tracing specifically for people
in Germany. Regardless of the scope of their contact tracing, all of these apps detect close contacts,
usually through GPS or BLE. They also allow users to report themselves as a positive case and
inform users if any of their close contacts were found to be a positive case.

Some of these apps offer additional features. One such feature is social distancing
enforcement. Mind the Gap is an app that uses Bluetooth and high frequency audio signals to

estimate distances between phones. It also reminds users to maintain social distancing when they
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are within a certain distance of each other. Other apps such as Private Tracer can be used as a
channel to disseminate public health information so that users are informed about COVID-19.
Among these features, COVID-19 risk estimation is relatively uncommon. Only two of the
thirty apps we researched offered COVID-19 risk estimation. One app utilized data from the user’s
contacts to estimate risk, while the other estimated risk by modeling exhaled clouds of the virus.
The small number of apps that offered this feature motivated us to implement this feature in our

own project.

1.9 Goal of this MQP

The overarching goal of this MQP is to determine the effectiveness of using a smartphone
passively monitoring a user’s behavior to calculate risk of coronavirus infection based on sensed
and inputted behaviors. This goal was motivated by the lack of apps found that offered this feature.
COVID-19’s high rate of infection leads to possibly dire consequences for high risk behaviors. As
a result, it is important for users to know about their personal risk of infection so that they can
make informed decisions. Because most apps we researched did not calculate risk of infection, we
desired for our app to do so. We also decided on this goal so that students at WPI are more informed
about COVID-19 and about behaviors that increase their risk of contracting the virus so that they
can choose to partake in less risky activities. Therefore, we aim to implement an intelligent

smartphone application that:

° Calculates an estimated personal risk score that reflects potential exposure

° Uses Machine Learning to accurately determine distance between users

° Facilitates anonymous contact detection using BLE

° Serves as a tool for WPI Health Services to communicate with the student population about

COVID related information and updates
° Displays relevant community COVID statistics

1.10 MQP Roadmap

The rest of the MQP report is as follows: Chapter 2 describes the background information
required to understand our work. Chapter 3 explores related works including other apps and studies

to provide context. In Chapter 4, we detail our proposed app design broken down into modules.
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Chapter 5 describes how we implemented the app design which includes specific technologies and
tools. Chapter 6 presents our results from our Machine Learning model, the Beacon distance
library as well as the user study we conducted to test the app. These results and future work are
discussed in Chapter 7. Finally, Chapter 8 presents our conclusions for the project.
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Chapter 2. Background

2.1 Contact Tracing

Contact tracing is a public health strategy that aims to reduce the spread of an infectious
disease. By intervening, a contact tracer can stop a person with the infectious disease from passing

it on to others. In the long run, this has a big impact on the spread of the disease [24].

2.1.1 Steps to Investigate Cases and their Contacts

When a person’s coronavirus test comes back positive, they will be contacted by a contact
tracer in their community. A person who tests positive is called a case. The case will be asked to
go into isolation. Isolation is when a sick person avoids contact with others for the duration of their
illness to avoid passing it on. A person with coronavirus will have to isolate until they have met
the following conditions: 10 days have passed since they had symptoms, all of their symptoms are
improving, and they have been without fever for 3 days without medication.

Next, the contact tracer aims to identify all of the people the case has had contact with
during their infectious period. Because a person with coronavirus can be infectious and spread the
virus for up to two days before becoming symptomatic, it is imperative for those who have been
exposed to the case to quarantine before they spread the virus to additional people.

To identify those who a case has been in contact with, the contact tracer will conduct an
informal phone interview. They will ask the case what they did the past couple days, and who they
saw. Sometimes, they suggest that the case looks through their phone and social media to make
sure they have remembered all interactions. Using the public health guidelines in their area, the
contact tracer determines which of those people are considered contacts and have a higher risk of
being exposed to the coronavirus.

Similar to isolation, a contact is asked to quarantine themselves. Although they may not
have symptoms of illness yet, they are asked to stay home and avoid contact with others to avoid
transmitting the virus if they have it. A contact will be asked to quarantine for 14 days as long as
they do not develop symptoms. If they do develop symptoms, they will be considered to be

isolating.
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Throughout this process, the contact tracers will check up with both cases and contacts.
They monitor the case's symptoms and help arrange for medical attention if they begin to
experience more severe medical attention. The contact tracers also help to remind both cases and
contacts why it is important for them to isolate or quarantine. [24].

2.1.2 The Ethics of Contact Tracing

Although contact tracing is a common public health tool, there are a lot of legal issues that
arise from it regarding the privacy of the cases and the confidentiality of their information.

A contact tracer can ask for private information only for the purposes of protecting the
public. Similarly, a contact tracing app can only learn about medical information specific to the
contact tracing work it is performing.

A public health intervention is legal if it respects the individuals and their rights. It is
essential that everyone is treated equally and fairly, regardless of who they are. Additionally, the
intervention must be a benefit to society. [24].

Our application requests only the information that is required to calculate a risk score. This

ensures that all the information is being collected ethically.

2.1.3 Use of Technological Tools

Using technology to run an intervention is useful since public health resources are limited.
By using technology, public health officials are able to reach people quickly while improving
efficiency.

The tools used for contract tracing include a central database that stores a list of people and
their information. This database can report cases to investigators automatically while reducing the
time between diagnosis and call. Another tool used is several symptom tracking apps that allow
users to manually enter information. Also, apps may use text messages in order to remind contacts
to quarantine in case they have been close to a person that reported that they are ill.

When identifying contacts, there might be some problems that apps can solve. For example,
a person might not remember all their contacts or may not want to talk about their contacts because
of privacy concerns. Also, there is a high possibility that cases may not know the phone numbers

for contacts or the phone numbers may be incorrect.
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In countries such as China and South Korea, the government can access the smartphones
of citizens and store their information in a centralized database. The advantage of having this kind
of database is that all the contact identification and contact tracing are done immediately. However,
this raises some privacy concerns as people need to share their location with the government in
order for this solution to work. Finally, GPS technology is not a good approach because a person
could have been in the same shop with someone, but might not have been exposed to everyone in
the shop[42].

In the US, several apps that use Bluetooth technology (BLE) have been developed in order
to do contact tracing. Those apps do not collect private or confidential information. They usually
keep track of which other phones have been in contact with a person and in case that person falls

sick they notify all their close contacts to quarantine [24].

2.1.4 Contact Tracing and Goatvid Trace

Although the Goatvid Trace application is inspired by contact tracing for COVID-19, the
app itself does not perform contact tracing. Instead, the app detects contacts. This means that
information about a user’s contacts is never shared with anyone. It is only used to estimate their

risk.

2.2 Bluetooth Contact Tracing Apps

In this section, we will discuss common Bluetooth contact tracing systems, their efficacy,

and challenges currently faced.

2.2.2 Apple and Google API (ENS)

The Exposure Notification System of ENS is an API created in a joint effort between Apple
and Google to help slow the spread of the coronavirus. This tool is meant to be used when
developing contact tracing apps for specific communities, it is not a contact tracing app itself. It
uses Bluetooth to determine a user’s contacts and record them locally. All users are represented by
an anonymous ID that changes often so a user cannot be tracked to traced by Apple or Google. It

also allows users to opt-out at any time. Although this seems like an ideal solution, ENS is only
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available to public health authorities and the local governments associated with them. As an MQP

group creating a proof-of-concept app, ENS is not the right fit for us as a contact tracing API [27].

2.2.3. Do Bluetooth Contract Tracing Apps work?

There is much focus on the development of contract tracing mobile apps. However, it is
important to first determine whether these apps are able to effectively reduce the spread of
coronavirus. The biggest limitation of contact tracing apps is that an app is only able to record the
interaction with another person who has downloaded the app. For this reason, the more people who
download the app, the more interactions that will be recorded, and the more effective the app will
be. However, Farzad Mostasharia, the former national coordinator for health information
technology at the U.S. Department of Health and Human Services, notes that “even if 1/3 of the
population downloads and uses a contact-tracing app, it will still only cover about nine percent of
close interactions” [41]. A graph explaining the likelihood that a given interaction or contact
between two people will be captured by these contact tracing apps can be seen below in Figure
2.1.

23



Likelinood of captured contact

Figure 2.1: A graph showing how the likelihood of captured contacts changes with the
percentage of the population that uses a contact tracing app [41]

For example, TraceTogether is a contact tracing app for Singapore [42]. Although it has
been downloaded by over 1.1 million people, this only accounts for around 20% of the population.
As a result, there is only a 4% chance that given an interaction between two people, both will have
the app on their phones. Additionally, these apps do not account for the portion of the population
who do not have smartphones. These populations are typically older people or migrant workers,
two groups who are already at increased risk. In Singapore, migrant workers make up a large
portion of coronavirus cases due to crowded living conditions.

It is important to understand the community that a contact tracing app is being developed

for and think about whether it will meet the community’s needs.

2.2.4 Bluetooth Contact Tracing Apps and Goatvid Trace

Goatvid Trace, which also used Bluetooth, faced many of the same problems as other
Bluetooth Contact Tracing apps. Like previously stated, our app was not eligible for ENS so
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Bluetooth contact tracing was implemented manually. In addition, Goatvid Trace aimed to serve
the population of WPI students. However, unless a majority of students have the app installed,

most close contact interactions would not be recorded.

2.3 Machine Learning

We utilized machine learning to analyze smartphone Bluetooth signals in order to
determine subject proximity to determine user contacts. Contact tracing applications can use
machine learning to facilitate their features. For example, COVI, a contact tracing application that
was proposed in Canada, used machine learning to estimate risk of infection between contacts [4].
It did so by creating a model that used users’ reported symptoms, demographic information, and
contacts to predict their risk of COVID-19 contagiousness.

According to Alpaydin’s Introduction to Machine Learning, machine learning is the
process of “programming computers to optimize a performance criterion using example data or
past experience” [3]. The result of this process is the creation of a statistical model from a dataset.
The model can then be used to generalize the solution to a problem. Machine learning creates this
model by starting with a model structure and finding the best fit of this model to the example data
it was provided with. It uses a set of inputs called features to determine the qualities of the data it
will use to find this fit, and the values it will use to solve the problem after the model has been
created. The process of fitting the model to the example data is called training. While a model is
being trained, it will adjust itself based on the values in each record in the example data. There are
two types of machine learning: supervised learning and unsupervised learning. Supervised
machine learning uses example data such that each data record is labelled with the solution to the
problem (also known as the target label) the model is intended to solve. Conversely, example data
for unsupervised learning does not contain these labels. Since this project solely utilizes supervised
learning, this section will only discuss supervised learning [3].

Supervised learning models consist of a hypothesis and a cost function. The hypothesis is
a mathematical equation used to calculate the model’s output for a certain input. It consists of the
model’s features and a parameter corresponding to each feature. The model uses the parameters to
weight each feature. The model adjusts itself during training by changing the values of these

parameters. The cost function is a function that calculates the amount of error between the model’s
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predictions and the correct values to be predicted. As a result, algorithms that train supervised
machine learning models attempt to minimize the value of the cost function [3].

There are numerous types of supervised learning models. Different types of models vary
in the ways that they make predictions and the cost functions that they use. Two common types of
supervised learning are regression and classification. Regression models predict a continuous
value that is calculated by their hypothesis. In the case of linear regression, the hypothesis consists
of a weighted sum of the model’s features and their parameters. However, there are numerous
types of regression algorithms that use different hypotheses.

Machine learning classification: models predict a value from a set of discrete values, and
are used to make classifications about their input. An example of a classification model is a logistic
regression model. In the case of binary classification, a logistic regression model will use a
hypothesis similar to one used by a linear regression model. However, it will output a binary value
by outputting 1 if the value of the hypothesis is above a given threshold, and 0 otherwise [3]. We
briefly considered using logistic regression in our project, but decided to use linear regression
instead.

Machine learning regression: Apart from linear regression, many other machine learning
algorithms predict a continuous value. We will outline those that apply to our project. One such
machine learning algorithm is a decision tree model. Like linear regression models, decision tree
models can be used to predict a continuous value. However, decision tree models do not use the
weighted sum of the model’s features as a hypothesis. Instead, they use a tree structure to make
predictions. Each node of the tree has branches based on conditions concerning the input. The
leaves of the tree represent predictions. A common regression algorithm that uses decision trees is
the random forests regression algorithm. Random forests models consist of numerous decision tree
models whose predictions are combined to result in a single prediction. The decision trees in a
random forests model use random samples of the training data, and are formed using random sets
of features [15]. Another example of a linear regression algorithm that uses multiple decision trees
to make a prediction is XGBoost [16].

Support vector machine (SVM) regression models use an algorithm to attempt to define a
plane that separates sets of data points within the dataset so that the distance between the plane
and any data point is maximised [7]. Machine learning models can also use a K nearest neighbors

algorithm for regression. The K nearest neighbors algorithm trains a machine learning model so
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that it can make a prediction about a certain input from a certain number of training data points
that are most similar to the input [63].

Figure 2.2 illustrates the types of machine learning and the algorithms previously outlined.

Machine
Learning

Supervised
Learning

Unsupervised
Learning

Regression Classification

Support

Vector 5 Nearest REWEE XGBoost
) Neighbors Forests

Machine

Linear
Regression

Figure 2.2: Diagram illustrating of types of machine learning [3]

2.3.1 Machine Learning and Goatvid Trace

Goatvid-Trace also made use of machine learning. The app used it to create a model that
used BLE signals as input to estimate distances between smartphones. As a result, our research

about supervised learning and regression models was critical to the development of this model.

2.4 Privacy preservation and data protection

Smartphones frequently request access to our personal data. Even though this makes our
phones powerful tools through which we can do almost anything from financial transactions to
private communication, this also means that a breach in security could have catastrophic

consequences for its user. The average cost per cyber-attack is calculated to be about 500 thousand
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USD [32]. This is why the growth of the mobile application market and its usage has gone hand in
hand with ensuring security and data privacy.

However, the fact that this market is growing has proven to be another obstacle, especially
for Android devices. The massive number of apps available and being produced has made it
impractical for app markets to verify every app and qualify them as non-malicious. Adding to this
that there are also third-party app markets, users can never be completely sure what apps could
represent a security breach. Thus, the way each app handles and protects your data has never been
more important [57].

2.4.1 Privacy preservation and data protection and Goatvid Trace

There are numerous privacy preserving protocols and resource managers that allow
developers to produce privacy preserving applications without compromising much of the
application’s functionality. However, since we are producing the app from scratch, we have
decided to implement design strategies to protect the users’ data.

More specifically we have selected a hide privacy design strategy, which is defined to
“protect personal data, or make them un-linkable or unobservable”, “[p]revent personal data
becoming public”, and “[p]revent exposure of personal data by restricting access, or hiding its very
existence” [25]. To achieve the correct implementation of the strategy and its efficiency we will:

e Prevent unauthorized access to personal data (Restrict):
o User data is stored on the database and is not available to other users.
e Remove the correlation between pieces of personal data (Dissociate)
o Each user was assigned a subjectlD during onboarding and the only excel sheet
containing the match between user and subjectID was deleted
e Encrypt the data that is posted to the rest API
o Each request is protected using cryptographic protocols designed to provide

communications security
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Chapter 3. Related Work

3.1 Existing COVID-19 Contact Tracing Mobile Applications

While reviewing the existing apps that address the COVID-19 pandemic, we found that many of
the apps had similar purposes. We grouped these apps into four categories: contact tracing within
the general population, contact tracing for a specific community, social distance enforcement, and

public health information dissemination.

3.1.1 Contact Tracing within the General Population

Regarding the contact tracing within the regular population, we found 4 applications that aim to
build a contact tracing system for the general public. Those are: Covid-id, Hansel, C19X, and
CovidWatch.

Covi-id is a privacy-preserving cross platform application (Android, i0S support) which
does risk management by using QR code scanning. It notifies users if they have come into contact
with someone with Covid-19. Even if users do not have phones, it still provides the option to
register and print your unique QR code using a friend’s or relative’s phone [18].

Hansel is another GPS-based solution with a simple interface that gives users the ability to
report a case, start or stop tracing with the promise of encrypting your location or user data. It
uploads a hash of your location and time which matches users to other people that have been in
the same place or have crossed paths with them [1].

C19X is a cross platform app that uses BLE and SHA technologies which enable
autonomous and secure contact tracing on many devices. Based on their GitHub information, they
provide an Android and an i0S application which they maintain independently. The app collects
Bluetooth Beacon Data in order to accomplish its goal [9].

Covid Watch is another application that was implemented at the University of Arizona. It
claims that if someone comes into contact with a user and chooses to enter their positive test results
it will alert that user anonymously. Also, the app claims that it is calculating the estimated personal
risk level of a user, which is a concept that is going to be discussed later [67].

We implemented contact tracing using machine learning in our app. We decided to
incorporate some of the features of these apps into our project. Some of these apps use BLE, which
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we decided to use for contact detection. These apps also tend to try to protect users’ data through

increased security and privacy measures. Because of this, we sought for our app to do this as well.

3.1.2 Contact Tracing for Specific Communities

Because the coronavirus is spread through close contacts, it spreads throughout a
community easily. To fight this, many apps have been developed to assist with contact tracing in
specific communities. Some of these communities include: towns, states, countries, schools, or
even large office parks.

For example, in Germany a contract tracing app called CoronaWarn was commissioned.
This app, and many like it use Bluetooth to identify contacts of a given user. This is done by
assigning each user a unique and anonymous identifier. The app collects the unique identifiers of
contacts based on distance calculated and time spent in close proximity. Often, users can input a
verified positive test result into their app and the app will anonymously notify the contacts of the
positive user. In other cases, the person who tested positive could upload their contact history to a
database for contact tracing professionals to act upon [23].

Many of these apps are open source to create trust and an assurance of privacy for the
community it serves. Some other examples of these kinds of apps are Hamagen for Israel, Pan-
European Privacy-Preserving Proximity Tracing (PEPP-PT) for Europe and CovidWatch which
was implemented at the University of Arizona [33] [51]. These apps are displayed in Figure 3.1.

Name Maker Goal Functionality

CoronaWarn|SAP and Slow the spread in |An app that enables you to retrieve test

[23] Deutsche Germany results electronically, and it helps to identify
Telekom possible exposures you have had to people

diagnosed with COVID-19

Hamagen  |Israel's Slow the spread in  [Privacy ensured contact tracing app that

[33] Ministry of  |lIsrael informs people of possible exposure for Israel
Health

PEPP-PT  [Not Disclosed |Not Disclosed Not disclosed

[51]

CovidWatch |Covid Watch |[Have an anonymous |Free and Anonymous Exposure Notification

[67] exposure App (implemented at University of Arizona)

notification app

Figure 3.1: Contact tracing apps aimed at specific communities
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3.1.3 Social Distance Enforcement

In addition to contact tracing, social distancing is an important measure to help stop the
spread of coronavirus in communities. As a result, there are mobile applications that aim to help
enforce social distancing guidelines by notifying users when they go too close to each other.

One example of this category of apps is: Mind the Gap. This app was developed by
software developers and sensor experts from HackPartners and Network Rail. Their goal was to
provide a way for essential workers to work during the pandemic, while still maintaining their
safety and privacy. The Mind the Gap app uses Bluetooth and high frequency audio signals to
estimate the distance between two phones with 10cm precision. When two users with the app come
within a certain predetermined distance of each other, the user is alerted to remind them to remain
socially distant. The app works between both iOS and Android phones and it is aimed at offices
and other work environments where all employees can download the app. 1point5 is another app
that notifies users if people have breached their circle of 6 feet or 1.5 meters [28].

Other apps such as Crowdless focus on informing users of how crowded a location is before
they go there. This helps users to make decisions on where to go grocery shopping for example
based on their ability to socially distance at a given location. These apps calculate the crowdedness
of a location from user input, existing data, and machine learning. This app is not specifically
aimed at stopping the spread of COVID-19, but it certainly can be used that way [20].

We briefly considered implementing a social distance enforcement in our app, but decided
it was outside the scope of our project. The social distancing apps covered in this section are shown

in Figure 3.2.
Name Maker Goal Functionality
Mind the Hack Enforce Social  [Monthly subscription based mobile app that
Gap[28] Partners Distancing in an |alerts users in office settings when they are not
office social distancing with a sound.
Crowdless |Lanterne Inform users to  [Uses user data to measure how crowded places
[20] take decisions  |are and informs the users.
when trying to
avoid crowded
places

Figure 3.2: Social distancing apps
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3.1.4 Public Health Information Dissemination

There are 4 applications that belong to the category of applications that are disseminating
information. Those are: Private Tracer, Contact Tracing Covid19, Global Epidemic Prevention
Platform and CovidSafe.

Private Tracer is an app that works in the Netherlands and cooperates with the Ministry of
Health [45]. Their goal is to find out if an application can be a useful tool in fighting the covid-19
pandemic. The features of the application include proximity tracking and notifications. The Global
Epidemic Prevention Platform application is working in a similar way (informs the Ghanian
government and notifies users at risk). The rest of the applications are using similar technologies
(BLE, GPS, ENS).

After seeing these apps during our research, we decided to incorporate a health information
dissemination feature into our app. We believed this feature was important to WPI’s needs because

it would enable WPI Health Services to send out coronavirus-related information more quickly.

3.1.5 Risk Score Calculation

Our COVID-19 contact tracing app calculated a smartphone user’s risk of infection. As a
result, it was beneficial to our project to look at other apps that have this feature, and how they
calculated risk. There were 2 apps that attempted to calculate the user’s risk of being infected with
COVID19. These apps were Corona-Warn-App and Covidwatch.

Corona-Warn-App is an app used to facilitate contact tracing in Germany [17]. It attempts
to let users know whether they have been exposed in a decentralized manner. It uses BLE to
determine proximity between users and then notifies users if they have been exposed to a positive
case. What makes this app unique when compared to the others is that it uses a risk score to
determine whether the user should be notified. Each contact has a risk score that is calculated using
the number of days since the user has been exposed to a positive case, the duration of the contact,
and the distance from the contact. These scores are aggregated to create a total risk score. Then,
for each encounter, their durations are aggregated, weighted by their distances, to create an
exposure score. After the total risk score is normalized, it is combined with the exposure score to
create the final risk score.

CovidWatch is a contact tracing app being used in the University of Arizona [67]. It carries

out contact tracing by using BLE to detect contacts, and it notifies users if they have been in contact
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with a positive case. It instructs the user on what to do based on the risk score of the case the user
was exposed to. The risk score is calculated using a model of the shape and orientation of an
exhaled cloud of the virus, and the expected amount of disease the user would inhale, depending
on the infectiousness of the contact [68]. This risk score decreases based on how long the user has
been free of symptoms after exposure.

CovidWatch uses a risk score to inform how risky an interaction with an infected person
was, while Goatvid Trace uses a risk score to generate a general risk of exposure based on all
interactions. Both CovidWatch and Goatvid Trace use Bluetooth signals to estimate distances
between two users. Because CovidWatch also serves as a contact tracing app, it uses information
about an infected person's contagiousness at the time of the interaction to further inform the risk
score. Alternatively, Goatvid Trace incorporates behavioral information like transportation and
mask wearing habits to further inform its risk score. It also uses past risk scores to create a rolling

average.

3.2 Use of Machine Learning in BLE Distance Calculation

We used machine learning to calculate the distances for contact tracing. As a result, we
researched how machine learning has been used to calculate distances from BLE signals, so that
we could determine how to apply it in our project. This section will outline two studies related to
distance estimation from BLE signals. It should be noted that both of these studies used data in
controlled environments. In these environments, there were no physical objects obstructing the
recorded BLE signals and no other BLE signals that could have interfered with the ones being
recorded.

One study attempted to find a machine learning model that best fitted a dataset containing
distances and corresponding RSSI values of BLE signals received at those distances [60]. Its
experimental setup consisted of a smartphone and a Bluetooth beacon. The study collected data at
distances ranging from 0.5 to 3 meters and at angles ranging from 0 to 180 degrees. After obtaining
this dataset, the study used it to train linear regression models with a polynomial, power, and
exponential structure. Each of the models used a linear combination of an RSSI value as input.
The study concluded that the polynomial model was the best fit for the dataset, with an error rate
of 25.7%.
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A device can send BLE signals with different intensities. The intensity of a BLE signal is
called the transmission power. BLE signals at higher transmission powers can be detected within
larger ranges, but use more power to transmit. Another study attempted to observe whether using
the transmission power improved models for BLE distance estimation. The study collected RSSI
data for BLE signals between phones at distances ranging from 0.5 to 22 meters and at different
transmission power levels. Part of this study consisted of comparing two linear regression models
trained on this data: one which used the transmission power and RSSI as inputs and another which
only used RSSI. It found that using transmission power in the model lowered the error rates for
linear regression at all transmission power levels except high [26]. Figure 3.3 displays this actual

distance against predicted distance for this model.
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Figure 3.3: The actual distance versus predicted distance for the model using transmission

power [26].

We did not incorporate this research into our project because it would not suit contact
detection purposes. These experiments took place in controlled environments free of obstacles,
while contact detection takes place in environments that are potentially filled with obstacles.
However, these projects motivated us to research whether more complex model structures could

be used to carry out BLE distance estimation in everyday environments.
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3.3 Cough Detection

Cough detection is a field where audio and other sensors are used to detect coughs, often
to screen for disease. Because cough is a symptom of COVID, this cough detection method could
be used to sense symptomatic COVID people nearby [14]. We have researched other cough
detection methods and software to see if cough detection is a viable option for detecting exposure
or illness from COVID.

3.3.1 Examples of Cough Detection Software

Cough detection software has been used to detect the number and frequency of coughs in
people diagnosed with chronic caught. In a 2018 study from Beihang University, patients were
fitted with microphones to detect the number of coughs they had per day in order to understand
the severity of their chronic cough. However, this study was more focused on the number of coughs
over a period of time, not a single instance of a cough indicating disease like would be in the case
for COVID [62].

Another study from the University of London used smart watches to detect coughs from a
user. The smart watch would turn on its microphone and record when it sensed the accelerometer
of the watch moving in a way that indicated a cough. The accelerometer would be triggered when
the user rapidly pulled their hand up to their face to cover their mouth before a cough. This study
seems like a great solution to the privacy concerns that audio recording often brings.
Unfortunately, the intended population of our app, WPI students, do not all have smartwatches, so

it is not an effective solution for our mobile application [50].

3.3.2 MFCC and Scene Classification

MFCC or Mel Frequency Cepstral Coefficients have “features [that] represent phonemes
(distinct units of sound) as the shape of the vocal tract (which is responsible for sound generation)
is manifest in them” [49]. This allows for sounds to be identified by the ‘shape’ they are. MFCC
features are often classified using machine learning and neural networks such as Convolutional
Neural Networks (CNNs) a machine learning network typically used for image analysis.

One example of MFCC being used successfully in cough detection was in a study to

diagnose pertussis. Due to the unique nature of pertussis (also known as whooping cough), the
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researchers were able to diagnose all cases of pertussis in the study without any false positives.

This study used a relatively low-cost algorithm and suggested its use in smartphone applications.

3.3.3 Cough Detection as Future Work

Although there is a lot of interesting work that can be done with MFCC’s and cough
detection with COVID, we felt that this aspect would be a big undertaking and is significantly
outside of the scope of our proposed application as a contact tracing and risk assessment
application. Additionally, a psychological study at the University of Michigan found that people
are inaccurate detectors of whether a cough is caused by illness or environmental factors [44]. For
future work, we would be interested to see if coughs specific to COVID can be detected and if so,

is it an accurate indicator of exposure or current illness.

3.4 Sensing User Health Through Smartphone Sensors

Smartphone sensors and the data they can record present an opportunity to make
observations about users’ behavior. Such sensors include accelerometers, Bluetooth receivers,
GPS, light sensors, and microphones. User behavior data such as level of physical activity, social
interaction, and other activities taken by the user can be derived from the signals given by
smartphone sensors [29].

One of the ways that user behavior data has been used in research is to detect changes in
the smartphone user’s health. For example, an MIT study was able to find a relationship between
illness symptoms and user behavior. At the beginning of the study, a group of students were given
smartphones that continuously recorded Bluetooth interactions between phones, WLAN location
data, call records and text message records. The participants also reported their symptoms on a
daily basis. This was used to create a database of symptoms and smartphone sensor data. The study
found that participants with a runny nose showed a higher amount of calls and text messages in
total and late at night, and that participants with a sore throat displayed more Bluetooth interactions
with other members of the dormitory. Participants with influenza also had lower amounts of late-
night phone communications, late-night Bluetooth interactions, and WLAN locations recorded.
The study was able to use the user behavior and self-reported symptom data to create a Bayesian-
network classifier that used user behavior as input to detect symptoms. It was able to do this with

an accuracy ranging from 60%-80% [6].
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Another study used a similar method to find a correlation between mental wellbeing and
the amount of physical activity and sleep of the user. Participants were given smartphones and
asked to self-report their energy and mood daily. Throughout the study, the smartphones would
record accelerometer data to measure the user’s level of physical activity and the amount of time
the user slept for each day. The study found that participants with greater amounts of sleep and
daily activity self-reported better moods than other participants. It was also able to use this data to
create a predictive model that predicted a user’s mood and energy levels based on their physical
activity and sleep [22].

Although this project does not attempt to detect symptoms in users, this research is relevant
to our project because it gives us insight into how smartphone sensors can be used to assess user

behavior. Understanding user behavior helps us to estimate users’ risk.
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Chapter 4. Proposed Goatvid Trace App Design

In this section, we will outline our proposed mobile application, Goatvid Trace. Goatvid
Trace aims to provide users with information about their risk of contracting COVID-19. Currently,
Goatvid Trace is aimed towards students at Worcester Polytechnic Institute (WPI). Users are able
to see both their personal risk score as well as stats about COVID-19 transmission within the WPI

community.

4.1 Risk Score Calculation

The app utilizes a formula to calculate each user’s potential exposure to COVID-19, the
formula is meant to employ a holistic approach by analyzing each user’s behavior and habits and
using them to estimate how much these increase its chances of contracting the virus. By breaking
down how often and why the user leaves their home we are able to provide what we call a risk
score. This risk score is a measure in percentage of how likely a user is to be in presence of the
virus and possibly get infected. The user can use this score as an input to change or tweak its
routine in order to get a lower score and thus lower its chances of catching the disease. This is

shown in Figure 4.1.

Inputs and Outputs for the Risk Calculation Formula

Inputs used for Risk Calculation

Input Rationale

Questionnaire The questionnaire contains 6 questions each of which provides an insight
response values | into how the user’s routine looks like. Aspects including but not limited to:
how they get their food, how they move around(transportation), how they
attend classes and how often they go out and why. The idea here is that we
are tracking close contacts and these behaviors are likely to cause a user to
get close contacts. Thus, we want to give a numeric value to the user’s
routine so the daily close contacts can be complemented and the calculation
more accurate. The lowest score a user can get in the questionnaire is 4 and
the maximum is 37 by choosing the highest or lowest response values
respectively.
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Close Contacts
the user had in
the last 24 hours

Close contacts are all given a value of one and then weighted by the tag from
the place’s API tag values in appendix C. This is meant to give more weight
to contacts occurring on places that have been recommended to be avoided
during the pandemic. Under the assumption that in those places there’s a
higher chance of being exposed to the virus.

Last calculated

The formula uses the last risk score calculated to average the value of the

Risk Score new risk score when calculating it. The idea behind this is to avoid having a
risk score that’s constantly flipping between high and low from one day to
another.
Output produced by Risk Calculation
Output Rationale
Risk Score

The Calculation produces a risk score between 0 and 100 inclusive. Because

we cannot ensure complete certainty 0 does not mean not infected and 100

does not mean infected. Rather the score is a percentage of how likely the

user is to have been exposed to the virus. It’s worth to clear that exposure
does not necessarily mean infection.

Figure 4.1: A table showing the inputs and outputs of the risk score

The three inputs of the Risk Score calculation can be further broken down into their
individual components:

First, the

questionnaire is a complementary method for the passively measured close

contacts. These questions account for user’s habits that contribute to a higher risk of exposure, as
shown in Figure 4.2.

Questionnaire questions:

Question: Rationale:
This question provides an insight into how the user attends its classes.
Class Value In person classes often mean sitting in a closed space with several
people thus providing an opportunity for potential exposure.
Getting food provides various potential exposure situations,
. including:touching surfaces to grab items at the Grocery store and
Eating Value g g g y

sitting in an indoor restaurant maskless while dining. This question
allows us to assess how often the user is in these situations.
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The wide range of extracurricular activities at WPI makes it possible
Campus Visits Value for a user to take all their classes online and still visit campus
frequently. This question takes such scenarios into account.

This question is a self-assessment of how well each user is following
Mask Wearing Value | the CDC recommendations regarding wearing face coverings while
outside or in the presence of other people.

This question is a self-assessment of how well each user is following
the CDC recommendations regarding social distancing while in the
presence of other people.

Social Distancing
Value

Using transportation could mean sitting in a crowded train for several
Transportation Value hours or driving with a friend. This question takes those risks of
exposure into consideration.

Figure 4.2: A table showing the questionnaire inputs of the risk score

Next, is the close contacts portion of the risk score. They provide specific and continuous
information about a user’s risk of exposure. Because the app is constantly searching close contacts
with real users, the data from this input is as accurate as possible. Figure 4.3 describes how close

contacts are weighted.

Close Contacts and their Weighing:

Rationale:

Close contacts are used in contact tracing strategies because of the high likeliness of exposure

from each of them. However, other factors also play a part on how likely exposure is such as if

it's a closed environment or a ventilated one or how crowded the surroundings are. This is why

we will weigh each close contact by the place type where it was recorded. Accounting thus for
both close contacts and types of places visited.

Figure 4.3: A diagram showing how close contacts are weighted

The final input, the Rolling average is calculated by using the last calculated risk score and
averaging it with the new one to connect all the risk scores and avoid drastic changes in daily risk
scores that would make each calculation more inaccurate.

In order to calculate one’s personal risk score, the app uses the three inputs as values in a

formula to produce the output which is the Personal Risk Score. This is a percentage where the
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higher it is, the higher the user's predicted risk of being exposed to COVID. The algorithm’s design
is displayed in the pseudocode below:

Function Get Questionnaire Value(SubjectID):

qResponse = GET questionnaire entry from Database with
SubjectID;

/* This get request takes the SubjectID as input and
returns the questionnaire response values stored with
that SubjectID from the database in a response */

questionnaireSum = 0;

questionnaireSum += gResponse.getClassesValue();

questionnaireSum += gqResponse.getEatingValue();

questionnaireSum += gResponse.getCampusVisitsValue();
questionnaireSum += gResponse.getMaskWearingValue();
questionnaireSum += gResponse.getSocialDistancingValue();
questionnaireSum += qResponse.get TransportationValue();
return questionnaireSum;

Function Get Contacts Value(SubjectID):

cResponse = GET contactValue from Database with SubjectlD;

/* This get request takes the SubjectID as input and
returns the sum of all contactValues that SujectID has
within a 24 hour period as a response */

contactsValue = cResponse.getContactsValue();

return contactsValue;

Function Get Lask Risk Score(SubjectiD):

rsResponse = GET last risk score from Database with SubjectID;

/* This get request takes the SubjectID as input and
returns the most recent risk score for that SujectID
as a response */

lastRiskScore = rsResponse.getLastRiskScore();

return lastRiskScore;

Function Normalize (RiskScore):
normalizedRiskScore = minimaxNormalization(RiskScore);
return normalizedRiskScore;

Function Calculate Risk Score(questionnaireV alue,
contactsV alue):
| return Normalize(questionnaireValue, contactsValue);

Function Main():
/* SubjectID is stored locally in each user’s app once
they log in */

questionnaireValue = Get Questionnaire Value(SubjectID):

contactsValue = Get Contacts Value(SubjectID);

lastRiskScore = Get Last Risk Score(SubjectlD);

newRiskScore = (Calculate Risk Score (questionnaireValue,
contactsValue) + lastRiskScore) /2;
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4.2 Machine Learning for Proximity Detection

The machine learning model was trained using data from the MITRE Range-Angle
structured dataset [35]. The MITRE Range-Angle structured dataset consists of a series of
Bluetooth advertisements collected by smartphones according to the MITRE Structured Contact
Tracing Protocol. The dataset was submitted as part of an effort to enhance contact tracing
technology by the Private Automated Contact Tracing (PACT) project. PACT is a project whose
mission is to “enhance contact tracing in pandemic response by designing exposure detection
functions in personal digital communication devices that have maximal public health utility while
preserving privacy” [59].

The dataset consisted of 69 sessions, each of which followed the MITRE Structured
Contact Tracing Protocol. During each session, there were two testers: the beacon and the receiver.
The beacon stays in a single position for the duration of the session and possesses a smartphone
that sends BLE signals. The receiver uses a smartphone and the BlueProximity app to receive and
record BLE advertisements at various distances and angles from the beacon. For each session, each
tester chose a location for their smartphone to be held (choosing from shirt pocket, front pants
pocket, back pants pocket, in purse/bag, or in hand) and a body orientation (sitting or standing).
The session took place in one of the following types of environment: a small room, a medium-
sized room, a large room, a hallway, or outdoors [47]. Figure 4.4 illustrates the data contained in

each BLE advertisement of the dataset.

Advertisement Type Variable Description

Angle Angle The angle between
smartphones.

Range Range The distance between
smartphones.

Bluetooth Receipt Timestamp A timestamp representing

when the BLE advertisement
was received.

Device ID The ID of the device that
received the advertisement.
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RSSI The RSSI of the BLE
advertisement.

TX Power Level The transmission power of the
BLE advertisement.

Advertisement Timestamp A timestamp representing
when the BLE advertisement
was transmitted.

Figure 4.4: A table displaying the data contained in the MITRE Structured dataset.

The model’s input consisted of features extracted from a series of RSSI readings collected
within a short duration of time. To obtain training data from this dataset, we transformed a dataset
of RSSI readings into a dataset of labelled sets of features. Then we split the transformed data set
into training, testing, and validation sets in the ratio 60%/20%/20% respectively. This dataset’s
training set was used to train a regression model. After determining the type of model to use, we
attempted to use overlapping windows and the addition of a simple moving average feature during
training in order to decrease model error. After determining the amount of window overlap and
the simple moving average window that led to the lowest amount of validation error, we used those

parameters to create our final model.

4.3 Modules

4.3.1 Module Design Diagram

Figure 4.5 illustrates our planned software design by showing each module of Goatvid,
its interactions with other modules, and its interactions with services such as API’s or servers.
The app begins with the Subject ID authentication module that checks that the entered Subject
ID is valid and has been assigned to a user. It also locally stores the SubjectID and password on
the device and marks the SubjectID as assigned in the database. Next, the Self-Reported Habits
module allows the user to enter behavioral information about themselves which informs the
Personal Risk Measurement Module. The values associated with the users answers to each
guestion are summed up and later used in the risk score calculation. The Contact Tracing Module
takes distance calculations from the Linear Regression Model and BLE Distance Estimation in

order to calculate close contacts. This module then stores the close contacts on the database.
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These close contacts along with the Self-Reported Behavior module are used in the Personal
Risk Measurement module which produces a percentage risk score for the user. In addition, the
Statistics module displays data from the WP1 COVID stats dashboard, and the Message Center
module allows messages to be sent to all users through a Push Notification Manager.

Firebase Auth

Personal Risk | Self-Reported
| Behavior
Goatvid ! Measurement
Trace App | |_»
i Subject ID ! T

Entry Point !

ry—“ Authentication !
|
! v Contact WPI Database

Authentication i Tracing Server

Goatvid Risk Measurement

BLE Distance |_—|

Estimation
WPI COVID Statistics Message Push Notification
Dashboard Center Manager
Linear
Regression
Model Goatvid Key
oatvi -
Statistics Goatvid Health Goatvid
Goatvid Distance Messaging Channel e
Estimation

Figure 4.5: Goatvid Module Design Diagram

4.3.2 Personal Risk Measurement

This module calculates an estimated risk score that quantifies whether a user has been
exposed to coronavirus. The data used for this calculation comes from both the Contact Tracing
Module and the Self-Reported Behavior module. From contact tracing, we gain information such
as number of contacts per day, number of close contacts, and average amount of time spent in close
contact. We also record contacts with the types of places they were detected. Figure 4.6 shows the
place types that are weighted by the app. The risk scores assigned to each location were based on
the COVID-19 Risk Index infographic from COVID-19 RECoVERY CONSULTING [16]. This

infographic which can be found in Appendix H, classified activities into 5 categories based on
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their risk of exposure to COVID-19. This information was combined with CDC guidelines and

recommendations to reduce risk to create a numerical risk score [12].

Location

Bar

Buffet

Music concert
Movie theater

Grocery store

Restaurant (outdoors)

Shopping (mall}

Small dinner party

Beach

Swimming (public pool)

Hair cut

Take-out

Exercise (outside)

Pumping gas

Place Type API Labels

bar

restaurant
night_club
movie_theater

supermarket
restaurant
shopping_mall
BLE advertising
natural_feature
establishment

establishment

restaurant
use activity API

gas_station

Running, walking or biking with others wse activity AF!

Figure 4.6: A table displaying the weighting used for certain place types

Risk Scores

[=]

n nononotnonon

Pd L P

This place type data is used to assign higher risk to someone who goes to a bar and a lower

risk to someone who goes to a park, for example. Data from the Self-Reported Behavior module

such as number of roommates and number of times a user goes grocery shopping a month is used

in the calculation as well. This calculation is on a scale of 0 to 1 indicating the probability that a

given user was exposed. Figure 4.7 shows the algorithmic flow of this module. The data collected

in each part of the personal risk measurement process is shown in the bulleted lists below.
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Module receives

/ Retrieve the user’'s \

( Formula

a request for a questionnaire L 'j:;rr',‘: v;;l;: combines Ser?sdkt;a;c(:)l:he
user’s risk score responses - questionnaire
day data, number
e Class of contacts,
Atte;ndance e Number of and the place
e Eating contacts type into a risk
e Campus Visits score
¢ Mask Wearing
e Social \ e Placetype )
Distancing

\_e Transportation /

Figure 4.7: Personal Risk Measurement Flow Diagram

The formula is used to give each user a score between 0-100 to reflect how at risk they are
of getting infected with the virus, where a score of 0 means the user is healthy and a score of 100
means the user is very likely to have caught COVID-19. The score is calculated by two functions
using information provided from both a form and beacon library readings and stored in the
database. The form collects personal information from the user with questions that require an
integer as response and these values are then sent to the server. The questions cover personal
information that we cannot measure from the user ranging from daily habits to number of
roommates. The responses to these questions are weighted based on the table shown in Figure 4.8.
In the server, the first formula sums up all the form values and times it by a multiplying value.
This multiplying value is 1 plus the sum of each weighted contact daily. Contacts are measured
using beacon library values to calculate distance and time stamps to measure time, a close contact
is defined as being closer than 6ft for more than 15 minutes. The contact is then weighted by the
value of the location score gained by the Places API. The second function then normalizes this
result using a min-max normalization formula. Figures 4.8 and 4.9 show how the formula is
calculated. The exposure is the starting point for determining one’s risk score. It is then adjusted
up or down using the Multiplying Values (MV) which is calculated from the number of close
contacts they had and the locations they took place at. The resulting value is then normalized to

create a digestible risk score percentage ranging from 0% to 100% to display to the user.
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Risk Score = Normalization(Exposure * MV)

[43]

Figure 4.8: Risk Score Formula

Risk Score Breakdown

Exposure

one’s actions.

The “Exposure” represents the sum of the values collected from the questionnaire listed
below. We sum the values in order to treat each behavior from the questionnaire

independently. This gives a holistic estimation of one’s everyday risk by providing a sum of

Exposure = Class_attending_value + Food_source_value + Campus_visits_value +

Mask_wearing_value + Social_distancing_value + Transportation_value

Variable

Value type

Notes

Class_attending_value

Integer (0,5)

Food_source_value

Integer (1,10)

The higher the value the

higher the risk. The range of

values for each is chosen

based on the number of

Campus_visits_value Integer(1,5)
options in the corresponding
Mask_wearing_value Integer(L,5) questionnaire question. For
example, behaviors with more
Social_distancing_value Integer(1,5) variation like transportation
had more options and
Transportation_value Integer(0,7) therefore a larger range of
values.
Multiplying Value (MV)
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The “MV” represents the sum of the weighted close contacts plus 1
MV =1+cl +¢c2+ ... +cn (where cn is a value between 0 and 1)

Each contact is originally of value 1 but is then weighted by multiplying it by the tag
of the
places API type where it was measured. This is done to place a higher value on close
contact
interactions that take place at higher risk locations or during higher risk behaviors according
to CDC guidelines [12]. This ensures that risky interactions such as going to a bar are given
more weight in the final risk score than interactions that occur outside at a park. This
ensures that risky interactions such as going to a bar are given more weight in the final risk

score than interactions that occur outside at a park. For example:

Close contact =1
Places API type(tag_value) = grocery store (9)

Weighted contact = C*(tag_value*1071)

Normalization Factor

Minmax normalization is calculated on the result of the multiplication between “MV” and

“Exposure”.

Risk Score Twice Daily Update

risk_score = (previous_risk_score + new_risk_score) / 2

Figure 4.9: Risk Score Variables breakdown
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The tag_value for weighting the contact is provided by the places API type using these

values in Figure 4.10:

Location Place Type API Labels Risk Scores
Bar bar 9
Restaurant restaurant 9
Night Club night_club 9
Movie Theater movie_theater 8
Supermarket supermarket 5
Shopping Mall shopping_mall 5
Natural Feature natural_feature 5

Figure 4.10: Place type tag values

The form includes 6 multiple choice questions to gage the user’s habits, the questions are

presented using this format in Figure 4.11.:

1. Which of the options below align most closely with the way in which you attend classes?
(Course related reasons include lectures, labs, office hours, group meetings, project
work, etc.)

a.

b.

Never leave the house for course related reasons

Going to campus < 1x a week for course related reasons
Going to campus 1x a week for course related reasons
Going to campus 2-3x a week for course related reasons
Going to campus 4-5x a week for course related reasons

Going to campus 6x a week or more for course related reasons

Figure 4.11: Questionnaire sample

To see the whole questionnaire, check Appendix A.
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Each question from the questionnaire matches the response choices with a numeric value
to attribute as shown in Figure 4.12:

Questionnaire Value relations
Going to
campus < 1x
Never leave a week for Going to campus | Going to campus
Question | the house for course Going to campus 1x a Going to campus 2-3x | 4-5x a week for 6x a week or
alﬁecr:gisg course related related week for course related a week for course course related more for course
value reasons reasons reasons related reasons reasons related reasons
Value 0 1 2 3 4 5

Figure 4.12: Questionnaire Values

To see the whole questionnaire responses value relations, check Appendix B.

4.3.3 Subject ID Authentication

To accurately track user’s risk data, the app needs to associate each user with a username
and password. This could be done using the users email and password. However, to provide
authentication while still retaining the anonymity required for a user's study, the app will use
randomly assigned SubjectIDs as usernames. This solution allows each user's data to be clearly
recorded on the backend without their identity being exposed or associated as well as ensuring
only registered participants can partake in our study.

4.3.4 Contact Tracing

For the app to be able to estimate a user’s risk of contracting COVID19, it needs to keep
track of contacts. Thus, this module is used to detect and record contacts. It uses the BLE Distance
Estimation module to detect other smartphones. If another phone is closer than 6 feet for more than
15 minutes, it will be recorded as a close contact. This is called the Too Close for Too Long
detection [64]. The module records close contacts by storing them in a remote database server
located at WPI. This solution is accurate because it is based on the CDC’s advice on close contacts.
In addition, storing the contacts in a database enables our app to retrieve them so they can be used
to calculate the risk score. Figure 4.13 shows the contact tracing process for our app.
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ACCEPTED?
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UPLOAD DATA TO
THE API

Figure 4.13: Contact Tracing Flow Diagram

4.3.5 Self-Reported Behavior

This module aims to obtain static data from the user. This includes data that we would be
unable to obtain through contact tracing or other sensors. To obtain this data, there is a form
integrated into the app. A user only needs to fill out the form once when they initially install the

app, but they could fill it out multiple times if their situation has changed. The table below outlines
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the data collected in the form. The complete survey can be found in Appendix A. The infographics
used to inform these reasonings can be found in Appendix H. Figure 4.14 shows the behaviors

tracked by the questionnaire and the rationales for incorporating them.

Behavior Rationale for including this behavior

Attending class Online class is recommended by the CDC when available to reduce
risk of exposure [10].

Getting Food Food and grocery delivery is recommended by the CDC when possible
to reduce risk of exposure [12].

Going to Campus Increased personal contact increases one’s risk of being exposed [10].

Mask Wearing Wearing a mask limits exposure to COVID-19 particles [10].

Social Distancing Close personal interaction increases one’s risk of being exposed [10].

Use of Transportation | Transportation options (walking, rideshare, public transportation) have
widely different risks of exposure [12].

Figure 4.14: Rationale for collecting data in the in-app form for Self-Reported behavior

4.3.6 BLE Distance Estimation

To enable the app to estimate distances between smartphones, it needs to be able to record
BLE signals and use them to estimate the distance. That is the function of BLE distance estimation
module. The BLE distance estimation module receives BLE signals from other smartphones,
transforms them into an appropriate input format if the machine learning model is being used, and
then uses the signals to carry out a distance estimation procedure. We decided to transform RSSI
data for the machine learning model by formatting them into a time series, separating the time
series into windows of time, then deriving features such as the mean RSSI from the windows.

Figure 4.15 illustrates the process of transforming the BLE signal data.
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Bluetooth Low Energy Input for Machine Learning

Advertisements Model
2020-06-02T710:12:41.746Z,Bluetooth,9
64EA1EE-8E9F-3680-F1CC-2D47BC3B [1! 5! 05! 0! 9, 85 5]

9F99,-52 BlueProxTx,-999.0,61280356 1
744914

2020-06-02T10:12:41.746Z,Bluetooth,9 [1,9,0.7,... 3,4, 2, 5]
64EA1EE-8E9F-3680-F1CC-2D47BC3B Feature

9F99,-52,BlueProxTx,-999.0,612803561 .
744914 Calculation

2020-06-02T710:12:41.746Z,Bluetooth,9 > [31 21 011 11 4: 8a 0]
64EA1EE-8E9F-3680-F1CC-2D47BC3B
9F99,-52,BlueProxTx,-999.0,612803561
744914 [1,5,1.5,... 2,4, 8, 3]
2020-06-02T710:12:41.746Z,Bluetooth,9
64EA1EE-8E9F-3680-F1CC-2D47BC3B

9F99,-52,BlueProxTx,-999.0,612803561
744914 [2,6,9.5,...1, 2,6, 4]

Figure 4.15: BLE RSSI Input Transformation

The distance estimation procedure would be either to use the AltBeacon library or to send
the input to the machine learning model to retrieve a distance prediction. This module makes it
easier to conduct tests on our app because we can easily edit this module to carry out an arbitrary
distance prediction method. As a result, it quickens the process of testing the app’s distance
prediction methods. Figure 4.16 shows the algorithmic flow of this module.

Module receives (?onvert Feizll . ez Fgl ez ligis 13 Output the result obtained
. . readings to features if execute AltBeacon )
distance prediction : . . : from AltBeacon library or
using machine library or machine X h
request . . machine learning model
learning model learning model

Figure 4.16: BLE Distance Estimation Flow Diagram

4.3.7 Health Services Communication Channel

Emerging information on factors or statistics that impact COVID transmission and risk
scores needs to be disseminated to the WPI community. Currently, these updates are typically
communicated through email. One example of how we imagine this Health Services
Communication Channel could be used is when WPI made the announcement that neck gaiters are
no longer considered valid face coverings. If a mobile application such as this one existed, WPI
Health Services could have used it to make the announcement. We also implemented a ‘message
center’ or inbox type feature that stores a history of all these push notifications. This inbox also

allows for push notifications to be clicked and opened to display more in-depth articles or redirect
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to an external webpage. This module serves as a way for Health Services to quickly communicate
COVID and other health related information to the whole WPI student body.

4.3.8 Statistics

In order to keep users up to date with the COVID statistics in their area, they need a page
with recent statistics. Depending on which community the app serves, the source of the statistics
would be different. This module displays statistics pertaining to both the WPI community and the
larger Worcester and Massachusetts community because the app is aimed for WPI students. The
data for this module is taken from the WPI’s COVID Testing Dashboard which is updated daily
[70]. It shows statistics such as the number of positive cases and positive test rate for WPI and
Worcester. These statistics are compiled on the Ul for the user to know the status of COVID in the
WPI community. This allows users to easily find all relevant COVID information in one app.
Figure 4.17 shows the WPI Dashboard and Figure 4.18 displayed the associated definition for each
statistic referenced within our app .
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Figure 4.17: Example Data from WPI’s COVID Dashboard

Statistic

Definition

Positive Tests at WPI Past 7 Days

The rolling total of all positive test results received in the
past 7 days.

Positive Tests at WPI Past 30
Days

The rolling total of all positive test results received in the
past 30 days.

WPI 7-day Positive Rate

The percentage of all valid test results received in the past
7 days with a positive test result.

WPI 30-day Positive Rate

The percentage of all valid test results received in the past
30 days with a positive test result.

Tests performed at WPI Past 7
Days

The rolling total of all tests results received in the past 7
days.

Tests performed at WPI Past 30
Days

The rolling total of all test results received in the past 30
days.

Massachusetts 7-day Positive Rate

The percentage of all reported tests in the state with a
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positive test result.

New Cases in Worcester Past 7
days

The rolling total of all new cases reported in the City of
Worcester in the past seven days.

New Cases in Worcester Past 30
days

The rolling total of all new cases reported in the City of
Worcester in the past 30 days.

Figure 4.18: Definition of WPI Dashboard Stats

4.3.9 Machine Learning Model

For the app to be able to detect close contacts, it needs a method of estimating distances

between smartphones. The machine learning model does this by using BLE signals as input to

predict distances between smartphones. Another approach could be to use a library such as

AltBeacon to estimate distances. This approach is useful because using machine learning to

estimate distances from BLE signals is an approach that can be implemented more quickly than

other approaches such as manually processing BLE signals. An illustration of this process is shown

in Figure 4.19.

60/20/20 Split Dataset
into Test/Train/Validation
Sets

Choose Window Overlap and
Simple Moving Average
Window with the Lowest

Validation RMSE

Figure 4.19:

Collect Test/Train/Validation Choose Feature Set and
RMSE For Each Combination of Window Size with the
Feature Set and Window Size Lowest Validation RMSE
Collect Test/Train/Validation Collect Test/Train/Validation
RMSE For Various Simple RMSE For Various Amounts of
Moving Average Windows Window Overlap

Machine Learning Model Flow Diagram

We hosted the machine learning model remotely so that the application does not require

too much computation to predict distance between smartphones. We consider this a priority given

that the application would be constantly predicting distances in an ideal setting.
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4.3 User Interface Flow Diagram

The basic user interface of this app is tabbed. This allows the user to easily navigate
between functionalities of the app. Since this is an app that students would be encouraged to
download by WPI, it is important that it is straightforward and easily usable to avoid frustration.

The first page is an authenticated login page. Once logged in, the user is presented with a
2 page tabbed app. The first tab displays a user’s current risk score. The second tab contains WPI
and Worcester COVID statistics. The Risk Score page has buttons to allow the user to navigate to
the Self-Reported Behavior form and the Health Services Message Center. The flow of our app’s

user interface is illustrated in Figure 4.20.

WPI Stats Page Worcester Stats Page
s Stats Flel Stats
Score Score
Log In Page
17%
Enter Password — < + u—)
WPI or Worcester WPI or Worcester
Alternate
Risk Score Page between
m\ pages using
switch button

New user?
{ Click Here

In App Form Q1 In App Form Q6

,,,,,,,,,,,,

‘[LOQ In Page / Q1. How often do “;’Eﬁe—\* Q6. What is your
Fill Out | | you go to campus? mode
Form

between of tranportation?
a)...... tabbed | 7)

pages

Enter Subject ID b) """"" b) .......
Message Center Page v (o) O
Enter Password d) ....... d) .......
\ Message 1 €)oo [ B

‘ Submit
Message 2 -

Message 3

1

-

Figure 4.20: Goatvid Trace Mobile App User Interface Flow Diagram
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Chapter 5. Implementation

Our implementation of the design was an Android mobile application created in Android
Studio. Specifically, the compile and target SDK version we programmed for was version 29 with
a minimum SDK version of 21. When testing our application, we used the Moto G5 Plus

smartphone.

5.1 System Architecture Diagram

The app is based on activities and the ViewModel class. The ViewModel is a Ul wrapper
to manage Ul-related data in a lifecycle conscious way. The app also uses a repository to pull data
from. This repository includes a database model and a remote data source. The database model is
created using the Room API and connects to an SQL.ite database. The remote data source uses an
HTTP API to pull data from both our web service and the WPI COVID dashboard. Figure 5.1

shows this architecture and the connections between its components.
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Figure 5.1: System Architecture Diagram

5.2 Risk Score Formula

The formula was coded in java in the front end and from there was connected to the
database through endpoints. The formula runs twice a day using the AlarmManager class.

The Formula.java class is doing all the necessary calculations and it is included in the
model as part of the Repository.

First, we have the alarm manager which in turn calls the update function:
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* This function sets the alarm and creates the broadcast receiver that runs when the alarm
* runs, which in turn sets the next alarm. It also has permissions set to schedule an alarm
* whenever the device restarts.

*/
static public void setAlarm()
{
String subjectID = RegistrationActivity.credentials.getSubjectID();
int id = Integer.valueOf(subjectID);
BroadcastReceiver receiver = new BroadcastReceiver() {
@0verride public void onReceive(Context context, Intent _ )
{
flag = false;
dayPassed = true;
//updateRiskScore();
getQuestionnaireValue(id);
context.unregisterReceiver( this );
System.out.println("$$$$$$$$$ ALARM HAS BEEN RUN");
}
};
flag = true;
getApplicationContext().registerReceiver( receiver, new IntentFilter( action: "update formula value") );
PendingIntent pintent = PendingIntent.getBroadcast( getApplicationContext(), requestCode: @,
new Intent( action: "update formula value"), flags: @ );
AlarmManager manager = (AlarmManager) (getApplicationContext().getSystemService( Context.ALARM_SERVICE ));
// set alarm to fire in 24 hours (1000%60+60%24) from now (SystemClock.elapsedRealtime())
manager.set( AlarmManager.ELAPSED_REALTIME_WAKEUP, triggerAtMillis: SystemClock.elapsedRealtime() + 1000%60%60%24, pintent );
The update function includes this if statement that calls the calculating function:
/*

* This if statement calls the calcRS which calculates the risk score and implements

* the rolling average when appropriate before updating the variable.
*/
if(respArrayl2] == -1){
double temp = 2.0 + respArray[l];
newRS = (calcRS(respArrayl[0], temp));
System.out.println("MV " + temp);
System.out.println("QUESTIONNAIRE" + respArrayl[0]);
System.out.println("NOT AVERAGED RISK SCORE AMOUNT " + newRS);
} else {
double temp = 1.0 + respArrayl[l];
newRS = (calcRS(respArrayl[0], temp) + respArrayl[2]) / 2;
System.ouvt.println("AVERAGED RISK SCORE AMOUNT " + newRS);

The calculating function returns the risk score by calling the normalization function on the

calculated value:
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/*

* This function is called by the update function and calculates the current risk score
* addi = the sum of the questionnaire response values, provided by the server

* mv = sum of the close contacts recorded in the last 24 hours; provided by the server

* returns: the risk score before the rolling average

*/

public static double calcRS(double addi, double mv){
double g = addi;
System.out.println("The value of the g " + g + "\n\n\n");
double mval = mv;
System.out.println("The value of the mval " + mval + "\n\n\n");
double mul = g * mval;
System.out.println("The value of the mul " + mul + "\n\n\n");
double resu = normalizeSTAD(mul);
System.ouvt.println("The value of the resu " + resu + "\n\n\n");
return resu;

¥

The normalization function runs a minimax normalization on the value it takes as a
parameter:
/*

* This function is called by calcRS and it runs minmax normalization on the input
*# X = value to normalize
*
* return: Normalized value
*/
public static double normalizeSTAD(double x){
double vton = x;
System.out.println("The value of the vton " + vton + "\n\n\n");
double rest = vton -4.0;
System.out.println("The value of the resta " + rest + "\n\n\n");
double div = rest / 87.0;
System.out.println("The value of the div " + div + "\n\n\n");
double res = div * 100;
System.out.println("The value of the resNOrm " + res + "\n\n\n");
return res;
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5.3 Push Notifications

Push notifications are used in our app as a channel for WPI’s HealthServices to quickly
communicate with the WPl community about COVID related updates. Specifically, we used
Airship, a user engagement platform for mobile devices. Airship provides push notification
services, in-app messaging, as well as an inbox style message center. We followed the Airship
‘Getting Started’ page and used Airship SDK 14.0.0. We chose FCM as our Push Notification
Provider [2].

5.3.1 Using Firebase Cloud Messaging

In order to communicate with users about COVID related announcements, we began
implementing push notifications using Firebase Cloud Messaging (FCM). We were able to easily
integrate FCM with our app and begin drafting and sending out push notifications from the online
console almost immediately. However, FCM did not come with a pre-made inbox Ul. This
required all notifications to be created programmatically in order to achieve our desired
experience. We want WPI administrators from Health Services to quickly and easily send out

notifications. Requiring the notifications to be created programmatically does not achieve this.

5.3.2 Using Airship Customer Engagement Platform

In order to provide an effective channel for WPI administrators to communicate COVID
related announcements, we decided to switch to the Airship Customer Engagement Platform for
push notifications. Airship for android used FCM as a backend and was very easy to install
following the guide online. We installed Airship version 14.0.0 for our implementation. Like
FCM, Airship has a console type website called a dashboard that allows someone to craft their
notification online before sending it. Airship also comes with a pre-build inbox type page called
the Message Center. Together, this allows a push notification to open directly to the Message
Center on click as we intended. Additionally, the Airship Dashboard has lots of options for
designing push notifications and the pages the pages that they link to. This allows for a lot of
flexibility for how WPI admin can choose to communicate their message. The figures below show
the process a WPI administrator might take to create their message in the Airship Dashboard.
Figures 5.2 and 5.3 shows the Airship Dashboard page where the push notification content can be
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configured. This page also allows the message creator to link their push notification to the in-app

Message Center [2].
Goatvid Trace
A ® TEST & () Audience NEGNLITL 1) Delivery Review v Exit | w
¢ | Android Notification Collapsed v | » Message type:  Push Notification + Message Center # €

Text

Push Notification text

Mask Upclate: Gaiters are no longer recommended by the CDC and wont be approved for use by WPI c members

B vour App Name + now Massage may ba shortenad on soma devices @ @

Actions
— Message Center
= v
= Send users to the following message in your Message Center
Edit Content Switch editor

Setatag

Figure 5.2: The main Airship Dashboard page used to create push notifications (Airship)

& x
G pe a
@
1on
CDC No Longer Rec
As a result, Gaiters wi jer be cc O No Action &

Figure 5.3: Screenshot of customizing a message through the Airship Dashboard (Airship)

Figure 5.4 demonstrates the use case of using Airship to send out information about the
Gaiters update. From left to right, the images show the flow that the user can follow. The first
image shows the users mobile device receiving a push notification from their Goatvid Trace app.
On click, they are taken to the second image, a multimedia page providing more information about

the update. The user can click on the link which automatically navigates to WPI’s official
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announcement in their web browser as seen in the third image. Finally, the last image shows how

this message is saved in the user’s message center inbox so they can refer to it later on (Airship).

2:01PM

N Android System
USB debugging connected
Tap to disable USB debugging

N Android Syster
USB charging this device
Tap for more options.

CLEAR ALL

CDC No Longer
Recommends Gaiters

As a result, Gaiters will no longer be considered an
acceptable face covering at WPL. For more
information, please visit Health Services's official
announcement here,

BN bR 4 i 20

Mask Update:
Gaiters are no

12/13/20

{3 @& wpiedu/news/announce (@

Heightened Restrictions on Campus Through B-
Term/Fall Semester. Learn More >

= ©WPI Q

> NEW RULES ON FACE COVERINGS

New Rules on Face
Coverings

DEPARTMENT(S): Health Services
September 21, 2020

This message was recently sent to all students and all

employees.

Figure 5.4: Flow chart of a user receiving a push notification from the Airship console (Airship)

5.4 Server

We created a WPI hosted server for this project. The server runs Ubuntu 18.04.5 LTS. It holds our

database, HTTP endpoints, and other scripts needed for the app. The server also offers an API used

by the app to carry out distance estimation, contact tracing, and retrieving local COVID statistics.

A client-server diagram is shown in Figure 5.5.
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Figure 5.5: Client Server Diagram

5.4.1 Database

We decided to use MySQL as our main database to store close contacts, questionnaire
values, subject IDs, risk scores, and WPI COVID dashboard statistics. The database consists of a
few tables (contacts, wpi_stats) in which we are storing contact tracing data collected from the
mobile application and other data such as the most recent number of cases at WPI. We are also
using a PHP-based framework that supports writing database models [37] and object-relational
mapping (ORM). Each database table has a corresponding model which is used to interact with it.
In order to write queries, a built-in query builder [36] is used for convenience. The built-in query
builder also provides protection against SQL injection attacks by default. Figure 5.6 shows the

schema for our database.
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gquestionnaire
id
subjectiD —
classValue
eatingValue
campusVisitsValue wpi_stats
maskValue id
sacialDistancingValue day
transportationValue MA_7Day_PosRate
timestamp WORC_30Day_Cases
- - WORC_7Day_Cases
riskScores subjects - Y-
i i MA_30Day PosTests
I I
) . MA_7Day_PosTests
subjectlD : subjectlD )
. . . WPI_lsolation
riskScore is_assigned )
WPI_Quarantine
calculated_at timestamp
. WPI_30Day_TestPerformed
timestamp
WPI_7Day_TestPerformed
WPI_30Day_PosRate
beacon_close_contacts WPI_7Day PosRate
id OffCampus_Isolation
subjectiD model vl OffCampus_Quarantine
contactMacAddress id timestamp
contactDate subjectiD T
timeSpent contactMacAddress model_v2
distance_beacons contactDate id
timestamp timeSpent subjectiD
distance model v1 contactMacAddress
time_stamp - contactDate
timeSpent
distance_model_v2
timestamp

Figure 5.6: Database schema

We stored the SubjectIDs in a table with the following attributes. Figure 5.7 illustrates this table:

Attribute Name Type Description

id integer ID of entry within the table

subject _id integer Subject ID of the user

is_assigned boolean If the subject_id has already been assigned
during registration

timestamp datetime Time at which the entry was updated

Figure 5.7: Attributes in subject_users table
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The results from the in-app questionnaire [Appendix A] are stored in a table with the following

attributes. Figure 5.8 illustrates this table:

Attribute Name Type Description

id integer ID of entry within the table

subjectID integer SubjectlD of the user

classValue integer Integer 1-10 according to user’s response to
question 1

eatingValue integer Integer 0-5 according to user’s response to
question 2

campusVisitsValue integer Integer 1-5 according to user’s response to
question 3

maskValue integer Integer 1-5 according to user’s response to
question 4

socialDistancingValue integer Integer 1-5 according to user’s response to
question 5

transportationValue integer Integer 1-11 according to user’s response to
question 6

timestamp datetime Timestamp when questionnaire entry was
submitted to database

Figure 5.8: Attributes in questionnaire table

For the beacon_close_contacts table, we used the following attributes. Figure 5.9 illustrates this

table:
Attribute Name Type Description
id integer ID of entry within the table
subjectID integer Subject ID of the user
contactMacAddress string MacAddress of device that the user made
contact with
contactDate date Date that the contact was made
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timeSpent integer Duration of time where devices are considered
in close contact of each other

distance_beacon double Distanced estimated between the two users
using beacon library

timestamp datetime Timestamp when initial contact was made

Figure 5.9:

Attributes in beacon_close_contacts table

For the modelvl_close_contacts table, we used the following attributes. Figure 5.10 shows this

table:

Attribute Name Type Description

id integer ID of entry within the table

subjectID integer Subject ID of the user

contactMacAddress string MacAddress of device that the user made
contact with

contactDate date Date that the contact was made

timeSpent integer Duration of time where devices are considered
in close contact of each other

distance_model_v1 double Distanced estimated between the two users
using machine learning model 1

timestamp datetime Timestamp when initial contact was made

Figure 5.10: Attributes in modelvl close_contacts table

For the modelv2_close_contacts table, we used the following attributes. Figure 5.11 shows this

table:
Attribute Name Type Description
id integer ID of entry within the table
subjectID integer Subject ID of the user
contactMacAddress string MacAddress of device that the user made

contact with
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contactDate date Date that the contact was made

timeSpent integer Duration of time where devices are considered
in close contact of each other

distance_model_v1 double Distanced estimated between the two users
using machine learning model 2

timestamp datetime Timestamp when initial contact was made

Figure 5.11:

Attributes in modelv2_close contacts table

For the wpi_stats table, we used the following attributes. Figure 5.12 illustrates this table:

Attribute Name Type Description

id integer ID of entry within the table

day date Date statistic entry was created

MA _7Day_PosRate double The percentage of all reported tests in the state with
a positive test result.

WORC _30Day_Cases integer The rolling total of all new cases reported in the
City of Worcester in the past 30 days.

WORC_7Day_Cases integer The rolling total of all new cases reported in the
City of Worcester in the past seven days.

WPI_30Day_PosTests integer The rolling total of all positive test results received
in the past 30 days.

WPI_7Day_PosTests integer The rolling total of all positive test results received
in the past 7 days.

WPI_Isolation integer The number of students currently in WPI’s
dedicated isolation space.

WPI_Quarantine integer The number of students currently quarantining in
residence halls, fraternities and sororities, or WPI
dedicated quarantine space.

WPI_30Day_TestPerformed | integer The rolling total of all test results received in the
past 30 days.

WPI_7Day_TestPerformed | integer The rolling total of all tests results received in the
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past 7 days.

WPI1_30Day_PosRate double The rolling total of all positive test results received
in the past 30 days.

WPI_7Day_PosRate double The percentage of all valid test results received in
the past 7 days with a positive test result.

OffCampus_Isolation integer The number of students isolating in their off-
campus apartments/homes, and those who have
returned to their permanent residence.

OffCampus_Quarantine integer The number of students currently quarantining in
their off-campus apartments/homes, and those that
have returned to their permanent residence.

timestamp datetime | Timestamp when stats entry was submitted to

database

Figure 5.12: Attributes in wpi_stats table [70]

5.4.2 COVID Dashboard Data Processing

The WPI COVID Dashboard is a website hosted by WPI that displays COVID related

statistics for the WPl community. The data is a combination of both WPI, Worcester, and

Massachusetts COVID statistics and is updated at 4pm on weekdays. Unfortunately, the data on

this dashboard is held within a Tableau Frame and we are unable to either download or scrape the

data using Javascript.

As a temporary solution for this MQP, we accessed data from an unofficial google sheet

created by the user u/ollien on the WPI subreddit. The first tab of the google sheet, seen in Figure

5.13 below, is an exact copy of the dashboard data and is updated once a day [66]. Unfortunately,

this google sheet was only collecting data between 8/26/20 and 12/10/20. As a result, the mobile

app was only able to show statistics as of 12/10/20.
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Tests Tests

Massachusett New Casesin New Casesin Positive Tests Positive Tests Students in Students in Performed at  Performed at Students In Students In

s 7-day Waorcester Worcester at WPl Past 30 at WPl Past7 Isolation at Quarantine at WPIPast30 WPl Past7 WPI 30-day WPI 7-day Isolation Quarantine

Date Fetched Positive Rate  Past 30 days  Past 7 days days days WPI WPI days days Positive Rate  Positive Rate Off-Campus Off -Campus
10/27/2020 22:00:00 1.60% 610 191 6 1 0 7 32004 7948 0.02% 0.01% 4
10/29/2020 13:48:00 1.80% 610 191 7 2 0 6 32939 8054 0.02% 0.03% 2
10/30/2020 18:00:00 1.90% 705 236 7 1 0 6 33066 6699 0.02% 0.01% 0
117212020 15:02:00 1.80% 705 236 10 4 1 2 30852 7849 0.03% 0.05% 3
11/3/2020 22:07:00 1.80% 705 236 10 4 1 ] 31670 7184 0.03% 0.06% 6
11/4/2020 21:25:00 1.80% 705 236 10 4 4 0 32071 7391 0.03% 0.06% 7
11/5/2020 23:56:00 1.90% 705 236 10 3 4 0 33248 7710 0.03% 0.04% 2
11/9/2020 18:00:00 230% 830 266 13 5 2 18 29982 6556 0.04% 0.08% 8
11/10/2020 16:23:00 230% 830 266 15 7 6 19 31122 6949 0.05% 0.10% 5
1141172020 14:35:00 2.60% 830 266 15 7 8 21 32252 7532 0.05% 0.09% 8
11/12/2020 15:30:00 2.90% 830 266 19 n 8 21 32120 7190 0.06% 0.16% 13
11/13/2020 21:41:00 2.90% 1211 518 18 10 8 23 32549 7555 0.06% 0.13% 10
11/16/2020 14:54:00 3.10% 121 518 24 14 1 20 30226 7864 0.08% 0.18% 6
11/17/2020 16:35:00 320% 121 518 34 22 1 38 31076 7503 0.11% 0.30% 13
11/18/2020 17:16:00 3.20% 1211 518 38 26 11 39 32263 7596 0.12% 0.35% 13
11/19/2020 22:49:00 3.30% 121 518 44 28 17 48 32653 7658 0.14% 0.37% 128
11/20/2020 16:42:00 320% 1687 667 44 28 16 49 31931 6221 0.14% 0.46% 18
11/23/2020 18:00:00 3.20% 1687 667 52 29 18 44 30640 777 0.17% 0.38% 17
11/24/2020 18:00:00 3.10% 1687 667 53 20 19 39 31373 7658 0.17% 0.27% 16
11/25/2020 15:40:00 3.00% 1687 667 56 19 18 37 32875 8041 0.17% 0.24% 20
11/30/2020 18:00:00 3.90% 2001 550 58 8 9 1 28358 5161 0.21% 0.16% 4
12/1/2020 17:58:00 3.90% 2001 550 61 10 12 17 28946 5015 022% 0.20% 6
12/2/2020 18:00:00 3.90% 2001 550 60 8 7 14 29580 4518 021% 0.18% 5
12/3/2020 15:41:00 490% 2001 550 63 7 4 7 29758 3320 0.22% 0.21% 7
12/4/2020 18:00:00 530% 2747 1012 63 7 4 T 28758 3413 022% 0.21% 9
12/7/2020 18:00:00 530% 2747 1012 63 n 6 12 25738 4887 0.25% 0.23% 7
12/8/2020 18:00:00 5.30% 2747 1012 62 8 5 9 25731 4319 0.25% 0.19% 1
12/9/2020 15:39:00 5.80% 2747 1012 70 15 5 15 27596 4538 0.26% 0.34% 1
12/10/2020 17:22:00 590% 2747 1012 70 14 5 14 26931 4087 027% 0.35% 12

Temporarily down for maintenence, given the dashboard update. Updates may be delayed.

Figure 5.13: Raw Data from the COVID Dashboard stored on u/ollien’s Google Sheet

To get the data from this google sheet, our python script uses the GoogleSheets API which
directly accesses the live data on the sheet. The script is run daily by a CRON job on the server
and the data is used to update our database. This database is queried by the app to get the most
recent set of data to be displayed on the Stats Tab. The specific libraries used in the script can be

found in Appendix G.

5.4.3 Goatvid Server

The APl is written in a PHP framework called Laravel (Version 8.36.2

https://laravel.com/docs/8.x). This framework is providing scaffolding which makes it easier to

add controllers and write components. We decided to use it as it is a framework that favors
convention over configuration making the development of our REST API more efficient. The
REST API that we built communicates using HTTP verbs as actions (GET, POST, PUT,
DELETE). Requests can be performed by the mobile application which uses the API’s endpoints

to retrieve, create, update and delete resources.
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5.5 Machine Learning Model

We created our machine learning model using Python. We chose to use Python’s Scikit-
learn library to facilitate machine learning, since its features shorten the amount of time needed to
carry out tasks related to machine learning. The versions of Python and Scikit-learn used for
machine learning were 3.7.3 and 0.23.2 respectively. To train our model, we used the MITRE
Range-Angle structured dataset. It consisted of Bluetooth Low Energy advertisements transmitted
between smartphones at distances between 3 to 15 feet and at different angles. The smartphones
were also at different orientations. We conducted tests using the following model types provided
by Scikit-learn: Lasso Linear Regressor, Random Forests, LinearSVR, K Nearest Neighbors, and
XGBoost.

5.5.1 Deployment and Hosting

To deploy our final model to a binary file, we used Python’s pickle library. We used Google
Cloud Platform’s Al Platform service to remotely deploy and host the machine learning model.
This was done firstly by uploading the model file to a Google Cloud storage bucket. Then, we used
Google Al Platform to remotely host the uploaded model. This allowed the application to request

distance predictions by sending HTTP requests to a Google Cloud Platform API.

5.6 Subject ID Authentication

The user authentication process begins when a user creates a signs up for an account in the
app. They enter a Subject ID number and password to register. The registration is valid if the
Subject ID number entered by the user is in the list of assigned subject IDs in the database and has
not already been registered. An APl endpoint checks for these two things the user can create his/her

profile.

5.7 Beacon Library

In addition to the various methods we used for contact tracing, we discovered that there is
a library called AltBeacon (version 2.17.1) [54] which can be used to do distance measuring out

of the box. We used the AltBeacon library to estimate distances between phones in order to
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calculate close contacts. A beacon is a “packet” containing unique identifiers. One of those
identifiers is RSSI which is then used to do distance measurement. According to the library, 97
percent of the devices currently support this functionality. We integrated this library into the
mobile application and set up an Android foreground service in order to run its beacon
broadcasting and detection functions in the background. We had to use a foreground service to
keep the service running in the background since we are working with newer Android versions
(Android 10).

Using RSSI values, the library is able to provide estimates for beacon distances in meters.
For example, when the two devices are about 1 meter the estimated distance is between 0.5 and 2
meters. As the distance between the devices is increased, the measurements tend to be less accurate
because of the noise on the signal measurement. [55]

We configured the library to be used within an Android foreground service. The difference
between a regular service is that a notification is constantly appearing while the service is running.
The reasoning is that devices that run Android 8 or a greater version are restricting the services’
runtime to only 10 minutes. [56]

According to a blog post [72], it is easy to create an Android application that broadcasts
and detects beacons. However, recent changes in the iOS operating system will prevent i0OS

devices from doing that.
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Chapter 6. Results

6.1 Machine Learning

The aim of this app’s machine learning model was to accurately predict the distance
between smartphones in order to determine a user’s close contacts. For training data, the model
used BLE RSSI readings from the MITRE Range-Angle structured dataset labelled with distances
between smartphones. To test the effectiveness of our machine learning model, we firstly collected
the Root Mean Squared Error (RMSE) gained from the training, test and cross-validation dataset
for numerous feature sets. For each feature set, we collected the training, test, and validation RMSE
gained from model type tested.

The MITRE Range-Angle structured dataset consists of a series of Bluetooth
advertisements collected by smartphones according to the MITRE Structured Contact Tracing
Protocol. The dataset was submitted as part of an effort to enhance contact tracing technology by
the Private Automated Contact Tracing (PACT) project. PACT is a project whose mission is to “
enhance contact tracing in pandemic response by designing exposure detection functions in
personal digital communication devices that have maximal public health utility while preserving
privacy” [59].

The dataset consisted of 69 sessions, each of which followed the MITRE Structured
Contact Tracing Protocol. During each session, there were two testers: the beacon and the receiver.
The beacon stays in a single position for the duration of the session and possesses a smartphone
that sends BLE signals. The receiver uses a smartphone and the BlueProximity app to receive and
record BLE advertisements at various distances and angles from the beacon. For each session, each
tester chose a location for their smartphone to be held (choosing from shirt pocket, front pants
pocket, back pants pocket, in purse/bag, or in hand) and a body orientation (sitting or standing).
The session took place in one of the following types of environment: a small room, a medium-
sized room, a large room, a hallway, or outdoors [47]. We preprocessed the MITRE dataset for
training by extracting timestamps and RSSI data from the advertisements, separating them by
windows of time, converting each window into a series of features, and splitting the sets of features

into training, validation and test datasets. Figure 6.1 illustrates this process.
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SEREIEDLAE FEL 5 Split the features
Parse dataset to of RSSI readings Convert each P =
. . . into training,
extract RSSI and and timestamps window into a set of o
: . . validation and test
timestamps into windows of features sets
time

Figure 6.1: Machine Learning Preprocessing Procedure

Extracting the RSSI and timestamps was required because the dataset was in the form of
unstructured files containing BLE advertisements. To obtain the RSSI data and the times of the
advertisements in a usable format, we had to parse the files and extract the data from them. We
separated the pairs of RSSI data and timestamps into windows of time to enable us to create
machine learning models that used features based on windows of RSSI data rather than singular
RSSI readings. This was done by iterating through the RSSI readings in order and adding them to
the current window until the advertisements’ timestamps indicated that a given amount of time
had elapsed, and then creating a new window. To obtain the training data for the machine learning
model, we computed the features of each window that would be used as input by the machine
learning model. Finally, we split the dataset into training, validation, and test sets by randomly
distributing them into a ratio of 60/20/20 respectively.

We firstly attempted to train the models using a single feature: the individual RSSI reading
from each BLE signal. Of the feature sets tested, models that used this one had the highest error
rates. This feature set will be further referred to as the Raw Set. Figure 6.2 shows the data collected

for models using this feature set.

Regressor Type Lasso Linear Regression Random Forests
Best RMSE

Hyperparameters alpha = 0.0001 min_samples_leaf": 6
Best RMSE Gained 3.3018 3.2752

Test RMSE of best

estimator 3.3194 3.2926

CV RMSE of best estimator |3.3282 3.2992

Test MAE of best estimator |2.7239 2.6585
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CV MAE of best estimator |2.7262 2.6587
Best MAE Hyperparameters |alpha = 0.0001 min_samples_leaf": 4
Best MAE Gained 2.7011 2.6340
R"2 Score 0.2819 0.2945
Regressor Type LinearSVR (degree=2) LinearSVR (degree=1)
C" 3, 'loss" C" 1, loss"
Best RMSE Hyperparameters |'squared_epsilon_insensitive'  |'squared_epsilon_insensitive'
Best RMSE Gained 3.3021 3.3382
Test RMSE of best estimator |3.3194 3.3610
CV RMSE of best estimator  |3.3282 3.3649
Test MAE of best estimator ~ |2.7239 2.7330
CV MAE of best estimator 2.7261 2.7363
C 0.1, 'loss" C" 10, 'loss":
Best MAE Hyperparameters |'epsilon_insensitive' ‘epsilon_insensitive'
Best MAE Gained 2.6423 2.6415
R"2 Score 0.2819 0.2659
K Nearest Neighbors
Regressor Type Regressor Radius Neighbors Regressor
{'n_neighbors": 20, ‘weights'": {'radius": 4, 'weights'":
Best RMSE Hyperparameters |'distance'} 'distance'}
Best RMSE Gained 3.3484 3.2751
Test RMSE of best estimator |3.4099 3.2932
CV RMSE of best estimator  |3.4063 3.2990
Test MAE of best estimator ~ |2.7097 2.6595
CV MAE of best estimator 2.7059 2.6590
{'n_neighbors": 20, 'weights": {'radius": 8, 'weights'":
Best MAE Hyperparameters  |'distance’} 'distance'}
Best MAE Gained 2.6802 2.6341
R”2 Score 0.2478 0.2944

Figure 6.2: Data collected using the raw set.

76




To lower error metrics, we then attempted to collect features by extracting them from a

window of RSSI readings rather than from individual ones. These windows would contain signals

received at intervals of a certain amount of seconds. For feature sets that used these windows, we

tested them with window sizes of 0.5, 1.0, 1.5, and 2.0 seconds. The first feature set to use features

extracted from these windows used the features in Figure 6.3.

Feature Name

Feature Description

Formula

Average

The average of all RSSI
readings in the window.

sum of all RSSI readings in the w

number of RSSI readings in the w

Minimum

The minimum RSSI reading
in the window.

min(all RSSI readings in the window)

Maximum

The maximum RSSI reading
in the window.

max(all RSSI readings in the window)

Standard Deviation

The standard deviation of all
RSSI readings in the
window.

\/ X (x; — average)?

number of RSSI readings in the window'
where Xx; refers to each RSSI reading

Figure 6.3: A table displaying the features in Feature Set 1.

This feature set will be referred to as Feature Set 1. Models that used Feature Set 1 had

lower validation RMSE values than models that used the Raw Set. After collecting error data from

models that used Feature Set 1, we attempted to add more features to further decrease the models’

error. This resulted in another feature set, which will be referred to as Feature Set 2. It used the

features shown in Figure 6.4.

Feature Name

Feature Description

Formula

Average

The average of all RSSI
readings in the window.

sum of all RSSI readings in the

number of RSSI readings in the
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Minimum

The minimum RSSI
reading in the window.

min(all RSSI readings in the window)

Maximum

The maximum RSSI
reading in the window.

max(all RSSI readings in the window)

Standard Deviation

The standard deviation of

all RSSI readings in the £ (x; — average)?
window. number of RSSI readings in the window
where Xx; refers to each RSSI
reading
Median The median RSSI reading | The (n+1)/2 th RSSI reading in the
in the window. window when the RSSI readings
are sorted.
Variance The variance of all RSSI F (x; — average)®
readings in the window. number of RSSI readings in the window
where X; refers to each RSSI
reading
Skewness The skewness of all RSSI _m3_
m,3/2’

readings in the window.

1 .
where m; = — N, (x; — average),

N = number of readings in the window,
and x; refers to each RSSI reading.

First Quartile

The first quartile RSSI
reading.

The (n+1)/4 th RSSI reading in the
window when the RSSI readings
are sorted.

Third Quartile

The third quartile RSSI
reading.

The 3(n+1)/4 th RSSI reading in
the window when the RSSI
readings are sorted.
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Mean Absolute Difference

The mean absolute
difference of all RSSI
readings in the window.

X | xj—average |
H

N
where x_i refers to each RSSI
reading and N = number of RSSI
readings in the window.

Kurtosis The kurtosis of all RSSI C—
readings in the window. (standard deviation)*
wherec =
X (x; — average)*
number of RSSI readings in the window
Range Maximum - Minimum Maximum - Minimum

Interquartile Range

Third Quartile - First
Quiartile

Third Quartile - First Quartile

Simple Moving Average

The simple moving average
of the RSSI readings
received.

aitaz+asz+..tan
'

n
wherea 1,a 2,...,a nare the

last n values of the average, and n
is the number of values in the
simple moving average window.

Figure 6.4: A table displaying the features in Feature Set 2.

Using Feature Set 2 also decreased models’ validation RMSE. Figure 6.5 compares the

best cross-validation(CVV) RMSE obtained from using each combination of window size and

feature set. K-fold cross-validation was used, with 10 folds.
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Figure 6.5: A chart illustrating the lowest CV RMSE gained from using each feature set and

window size.

The chart shows that the lowest CV RMSE was obtained by using Feature Set 2 with a
window size of 0.5 seconds. The model type that produced this RMSE was a random forests
regressor. After identifying the feature set, window size, and model type that resulted in the lowest
cross-validation RMSE, we attempted two methods to further optimize this model. The first of
these was to add a simple moving average to the feature set. We did this to a random forests model
trained using Feature Set 2 with a 0.5 second window size. We used that specific model because
it produced the lowest CV RMSE and because random forests models tended to have the lowest
validation RMSE values in other feature sets. To observe the impact of a simple moving average
on CV RMSE, we collected CV RMSE when simple moving average windows ranging from 3 to
100 were used, and also when a cumulative moving average was used. Figure 6.6 displays how
the simple moving average windows size affected CV RMSE.
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Figure 6.6: A chart displaying how simple moving average window size affected CV RMSE

Figure 6.6 shows that CV RMSE generally decreases as the simple moving average’s
window size increases. It also shows that the CV RMSE is at its lowest when a cumulative moving
average is used. Therefore, using a simple moving average decreases the error rate of the model.
The second optimization method was to train the data using overlapping windows of BLE signals,
as the models had been previously trained using windows that did not overlap. We attempted to
observe the impact of using overlapping windows during training by collecting RMSE when
overlapping windows with amounts of overlap ranging from 10% to 50% were used. Overlapping
windows is a method of creating windows such that the next window uses a percentage of the
previous window. Figure 6.7 illustrates this concept. Figure 6.8 displays the result of training

models with overlapping windows.
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Figure 6.7: An illustration depicting overlapping windows.

CV RMSE of different window overlap amounts
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Figure 6.8: A chart showing how CV RMSE changes when the model is trained using different
overlapping windows.
We finally attempted to improve the Feature Set 2 random forests model by modifying it

to use both the simple moving average window and overlapping window amount that lead to the
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lowest CV RMSE readings. Figure 6.9 compares the best model that used Feature Set 2 to models

that used simple moving average and overlapping windows.
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Figure 6.9: A chart showing how using simple moving average and overlapping windows

SMA

impacts CV RMSE.

Overlap and SMA

Using both simple moving average and overlapping windows resulted in the lowest CV
RMSE. Before using these, the CV RMSE was 3.07433239 and the R squared score was -0.45458.

Using simple moving average and overlapping windows decreased CV RMSE to 1.587660707,

which was approximately a 50% decrease. The R squared score of the final model was -0.5933.

Figure 6.10 displays a graph of the actual distance versus the final model’s predicted

distances for data points in the test set. In addition, Figure 6.11 shows a chart of the final model’s

feature importances.

83



14
12 A

10 1

Predicted Distance

6 8 10
Actual Distance

o
N
~

Figure 6.10: A scatter plot of actual distance against the final model’s predicted test distances.
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Figure 6.11: A chart displaying the feature importances of the final model.
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6.2 Beacon Library Approach

We evaluated the beacons library functionality using two devices that were both
broadcasting and scanning for beacons on a custom region. While experimenting, we kept some
measurements of the actual distance of the two devices and the distance that was calculated by the
library to find out whether it is giving accurate results. The results show an inconsistency between
RSSI values and distance (in meters). As explained earlier, the beacon distance calculation is
estimated, and the accuracy depends on the signal strength. The distance calculation is based on
RSSI values and transmit power. Sometimes the calculation is not accurate and based on
experimentation, setting the transmit power value to -59 dBm is optimal. Figure 6.12 shows how

the distance, actual distance and RSSI are correlated.

Distance Measured (m) and Actual Distance (m)

5 [ Actual Distance (m)
Trendline for Actual
Distance (m)

4 [ Distance Measured (m)

Trendline for Distance
Measured (m)

- - - — —

Time (minutes)

Figure 6.12: A diagram comparing distances from the AltBeacon library to actual distances.

This diagram shows that the distance that we are measuring is not close to the actual
distance between the two phones. This indicates that the beacon library that we are using is not
accurate when used with the specified parameters. The parameter “tx power” was set to -59 and

we left it as is in order to perform the study.
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6.3 App Evaluation Study

In order to gauge the effectiveness of our app’s functionality and how accurately it
estimated risk of contracting COVID19, we conducted a study so that the app would collect data
in a real-world environment. In this study, 9 WPI students that were currently on campus were
allowed to install the app on their Android smartphones. The study took place in two rounds in
order to collect as much data as possible. In the first round, 5 students downloaded the app for a5
day period from April 11, 2021 to April 16, 2021. In the second round, 4 students downloaded the
app for 2 days from April 16, 2021. After downloading the app, the participants would answer the
in-app questionnaire once. Once installed, the app would record the users’ close contacts, in-app
questionnaire responses, and risk scores for the duration of their study period. This data was then
used to determine whether the app and the risk score calculation were working as intended.

We will now cover the results of this study. We firstly attempted to visualize the overall
demographics of our study participants. Figure 6.13 shows the distribution of participants by
gender and by class year. 5 of 9 (56%) of participants were Male. The remaining participants were
evenly split between Female and Third Gender/Non Binary. In terms of class years, 6 of 9(67%)
of all participants were Seniors. Freshman made up the next largest portion of participants,
followed by Juniors. There were no sophomores in the study.

Gender of Participants

= Male = Female = Third Gender/Non Binary Prefer to Not Say
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Class Year of Participants

m Freshman = Sophomore Junior Senior

Figure 6.13: Charts showing how study participants were distributed by gender and class year.

We also analyzed all data collected from participants to gain a better understanding of it.
We visualized participants’ responses to specific questions from the in app questionnaire as shown
below. First, we have the results for the question that asked users about their eating habits. We
found that this question had the most variety in responses from participants although the most
frequent answer was the participant ‘Leaves the house to get groceries or take out 3-4x a month.’
This variation was likely due to the different housing and food options for students from freshman
dorms with full meal plans, upperclassmen dorms with kitchens and optional meal plans, and off
campus apartments with full kitchens. Figure 6.14 shows the distribution for this questionnaire

question.
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How frequently participants left the house for
groceries and takeout

3.5

2.5

15

0.5

Figure 6.14: The frequency that participants left the house for groceries and takeout

Next, we have results about how frequently participants visited campus for course-related
reasons. The results for this question are interesting because they have results on the highest end
‘6x a week or more’ and the lowest end ‘Never.” This is likely due to the variety of course
offerings this semester - some students had a completely virtual course load and others may have
all classes in-person. The most common response that 5 out of 9 participants choose was ‘Going
to campus 2-3x a week for course related reasons.’ Figure 6.15 displays the distribution of

responses for going on campus.
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How frequently participants went to campus for course
related reasons

| - -
0
<1x a month 2-3x a week 6x a week or more

Never <1x a week 4-5x a week

Figure 6.15: The frequency that participants when to campus for course related reasons

Finally, below is the histogram displaying the results for the question regarding
participants' mask wearing habits. The responses to this question were very low among all
participants with the largest number of participants choosing ‘Wears a mask 100% of the time.’
These results are similar for the Social Distancing question and the Transportation Use question.
This indicates that participants had very safe behaviors in these three areas. Figure 6.16 shows

the distribution of responses to the questionnaire question about mask wearing.

Frequency of Mask Wearing

80% of the time 40% of the time
100% of the time 60% of the time <20% or when required

Figure 6.16: The frequency with which participants wore masks
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Another crucial part of the data collection during the study was the number of contacts
each participant had. Unfortunately, there were no close contacts recorded by the application
during either one round in the study, therefore, there are no results.

To ensure that the risk scores given by the app accurately represented our participants' level
of risk and were in line with our vision for the risk scores, we also visualized the distribution of
risk scores. In general, there is a trend towards lower risk scores. They ranged between 14%-36%

and the average risk score was 25.6% Figure 6.17 displays this.

Risk Score Distribution
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Figure 6.17: The distribution of risk scores among participants
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In Figure 6.18, we can observe that the risk score of the male category has the largest
range while the female category has the smallest one. We can conclude that the subjects
belonging to the male and non-binary / third gender categories had higher risk scores.

Risk Score by Gender
40%
35%
30%

25%

20%
15%
10%
5%
0%

Male Female Non-binary / third gender

Figure 6.18: The distribution of risk scores by gender

Figure 6.19 shows the distribution of risk scores divided by class year. The most

significant one being the one for seniors since two thirds of the subjects were seniors, as a result

the graph for seniors is very similar to the graph for the whole study. The graph confirms most
users had a risk score between 20%-30%.
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Risk Score distribution by Class Year
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Figure 6.19: The distribution of risk scores by class year

In conclusion, we found that the sum of all questionnaire values most closely correlated
with a user’s calculated risk score. As one’s questionnaire sum increases, the risk score tends to
increase as well. This relationship applied to all groups of students that participated in the study.
Figure 6.20 displays this relationship in a plot of risk score against the sum of questionnaire
values. The data points that fall outside of this pattern have lower risk scores because they were
calculated over a multi-day period and were subjected to the rolling average function of our risk
score formula. A linear regression line was fitted to the data with an R"*2 value of 0.6166. The
Root Mean Squared Error (RSME) between the data points and the trendline is 0.04009.
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Plot of Risk Score against Questionnaire Values Sum
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Figure 6.20: Scatter plot showing relationship between sum of questionnaire values and risk

score
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Chapter 7. Discussion

7.1 Successes

e All participants displayed a trend towards lower risk scores, with all risk scores ranging
from 14% to 36%.

e There are two factors that could have caused this: the participants’ questionnaire values
and the number of contacts each participant had. As discussed in Chapter 6, most
participants gave answers with low values for three of the five questionnaire questions,
which would significantly decrease their total questionnaire sum. Therefore, the
participants’ low risk scores correlate with their questionnaire values.

e There are two factors that could have caused this: the participants’ questionnaire values
and the number of contacts each participant had. As discussed in Chapter 6, most
participants gave answers with low values for three of the five questionnaire questions,
which would significantly decrease their total questionnaire sum. Therefore, the
participants’ low risk scores correlate with their questionnaire values. As for contacts, there

were none recorded during the study.

7.2 Challenges

e No contacts were recorded during the study, which prevents us from determining whether
the risk scores correlate with participants’ numbers of contacts. This could have been
caused by participants not being in contact with each other or by a lack of BLE scanning
by their smartphones.

e We observed during the study that specific phone models with Android 11 installed had
battery optimization features that would aggressively close background apps. Numerous
participants owned such phones, and the features prevented the app from running. This
problem caused phones to not scan for close contacts at all and prevented them from
recording risk scores.

e According to the plot of distances against the machine learning model’s predicted

distances, the model predicts long distances, even when the actual distance is short. This
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may have been caused by an imbalance between longer distances and shorter distances in

the dataset. The model’s feature set or model type could have also led to this.

7.3 Limitations

We were not able to find whether the risk score correlated with numbers of contacts
because there were no contacts recorded during the study.

There was a small number of participants during the study, which may have led to the trend
of low questionnaire values.

A close contact between two people will only be measured if both have the Goatvid app on
their phones. Since both studies only had a small amount of subjects, the likelihood of two
users being less than 6 feet away for more than 15 minutes was very low.

The Android 11 problem prevented the smartphones from regularly recording risk scores

and scanning for contacts.

7.4 Future Work

As stated in Chapter 7, the battery optimization settings on Android 11 phones caused
significant obstacles when testing the effectiveness of our app. Our next steps would be
researching the Android 11 issue and finding a solution that allows the app to run
continuously in the background. Next, we would test the app on a wide variety of phones
from different brands and models as well as all Android versions. Finally, we would re-run
the study with a much larger number of participants to ensure that close contacts could be
detected.

However, future Android versions may have even stronger battery optimization features
which would cause the same issues to arise. An alternative solution could be to create a
hardware device that can connect to the user’s cellphone and the device can measure close
contacts. The device would allow us to work around the battery optimization issue and
allow users to have constant close contact detection. In turn this would also allow the risk
score algorithm to work as intended and improve its accuracy. The next iteration of the

project could then focus on improving the algorithm if necessary, with the complete results.
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In addition, we could display the server database contents within the mobile application.
For example, using the current subjectID, a list of past risk scores could be displayed. We
could also create a places table in the server and populate it with user data in order to have
a better understanding of where close contacts occur. Additionally, we could further test
the Beacon service that is running in the background in order to figure out what happens if

there are more than one device in the area.
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Chapter 8. Conclusion

Our work explores the idea of predicting one’s risk of exposure to COVID-19 using
smartphones. This establishes the feasibility of such a project as well as serves as a baseline for
future projects in this area. The best achievement in the project was the development of the risk
score formula which took into account a user’s behaviors, contacts, location and past risk score to
produce a singular score estimating their risk of exposure to COVID-19. In addition, we
implemented passive close contact detection using the AltBeacon library. Using these beacons, we
created a Machine Learning model that could estimate distances between two phones with a CV
RMSE of 1.587660707. The final model’s R squared score was -0.5933. During the study, the
risk score seemed to adequately measure risk of COVID-19 exposure. However, due to the

challenges facing the study, further testing is needed to confirm this.
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Appendices:

A. In-App Questionnaire

1. Which of the options below align most closely with the way in which you attend classes?
(Course related reasons include lectures, labs, office hours, group meetings, project work,
etc.)

a. Never leave the house for course related reasons

b. Going to campus < 1x a week for course related reasons
c. Going to campus 1x a week for course related reasons
d. Going to campus 2-3x a week for course related reasons

e. Going to campus 4-5x a week for course related reasons

=h

Going to campus 6x a week or more for course related reasons

2. Which of the options below align most closely with the way in which you get food?

Never leave the house to pick up groceries or take out out
Leaves the house to get groceries or take out < 1x a month
Leaves the house to get groceries or take out 1-2x a month
Leaves the house to get groceries or take out 3-4x a month
Leaves the house to get groceries or take out 1x a week

Leaves the house to get groceries or take out 2x a week

Leaves the house to get groceries or take out 3x a week

Leaves the house to get groceries or take out 4x a week

Leaves the house to get groceries or take out 5x a week

Leaves the house to get groceries or take out 6x a week or more

o Se o o0 o

3. Which of the options below align most closely with the frequency that you attend campus for
non-course work related reasons? (Non course related reasons include work, food, seeing friends,
etc. )

a.  Only going to campus for COVID testing

b. Going to campus 1x a week (other than for testing)
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c. Going to campus 2-3x a week (other than for testing)
d. Going to campus 4-5x a week (other than for testing)
e. Going to campus 6x a week or more (other than for testing)
4. Which of the options below most closely aligns with your mask wearing behavior?
a. Wears a mask 100% of the time
b. Wears a mask 80% of the time
c. Wears a mask 60% of the time
d. Wears a mask 40% of the time
e. Only wearing a mask when required or < 20% of the time
5. Which of the following options most closely relates to your social distancing behavior?
a. Practices social distancing 100% of the time
b.  Practices social distancing 80% of the time
c. Practices social distancing 60% of the time
d. Practices social distancing 40% of the time
e.  Only practices social distancing when required or < 20% of the time

6. Which of the options below align most closely with how you use public transportation? This
includes buses, trains, planes, rideshares (Uber), taxis or any method other than a personal vehicle.

a.  Never using public transportation

b.  Using public transportation < 1x a month
c.  Using public transportation 2-3x a month
d.  Using public transportation < 1x a week

e. Using public transportation 1x a week

f.  Using public transportation 2-3x a week

Using public transportation 4-5x a week

@«
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h.  Using public transportation 6x a week or more
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B.

from the questionnaire.

Behavior Risk Score Values

The table below presents the associated value of each multiple choice of each question

Questionnaire Value relations
Going to
campus < 1x
Never leave | a week for Going to campus | Going to campus
the house for course Going to campus 1x a Going to campus 2-3x | 4-5x a week for 6x a week or
course related related week for course related a week for course course related more for course
reasons reasons reasons related reasons reasons related reasons
Leaves the
Leaves the | Leaves the | Leaves the| house to
Leaves the Leaves the Leaves the | house to house to house to get
Never leave the Leaves the house to get | Leaves the house | house to get | house to get get get get groceries
house to pick up house to get groceries or | to get groceries or |  groceries or groceries or | groceries | groceries | groceries | or take out
groceries or take | groceries or take | take out 1-2x a | take out 3-4x a take out 1x a |take out 2x a | or take out | or take out | or take out | 6x a week
out out out < 1x a month month month week week 3xaweek | 4xaweek | 5x aweek [ or more

Only going to campus for

COVID testing

Going to campus 1x a
week (other than for

Going to campus 2-3x
a week (other than for

4-5x a week

Going to campus

Going to campus
6x a week or

(other than for | more (other than
testing) testing) testing) for testing)
1 2 3 4 5

Wears a mask 100% of the

Wears a mask 80% of the

Only wearing a

mask when
Wears a mask 60% of [ Wears a mask (required or < 20%
time time the time 40% of the time of the time
1 2 3 4 5

Practices social distancing
100% of the time

Practices social distancing

Practices social
distancing 60% of the

Practices social

Only practices

social distancing
distancing 40% of | when required or
80% of the time time the time < 20% of the time
1 2 3 4 5
Using Using Using
Using public public public public
Never using | transportatio | transportati | Using public | transportati | transport Using public Using public
public n<lxa on 2-3x a |transportation| on1xa |ation 2-3x| transportation 4- | transportation 6x
transportation month month < 1x a week week a week 5x a week a week or more
0 1 2 3 4 5 6

7
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The table below illustrates where the Risk score gets the raw data from

Raw Data to be Used As Partial Risk Score

Source

Number of close contacts (15 minutes within 6ft)

Beacons/ML model

Time spent in close contact (hnumber of minutes)

Beacons/ML model

Questionnaire input

Input from User
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C. Place Type Risk Score Values

The location categories below are describing what each location label represents. Those

labels are pre-defined by Google’s API. We are receiving those from the Places API.

Location Place Type API Labels Risk Scores
Bar bar 9
Restaurant restaurant 9
Night Club night_club 9
Movie Theater movie_theater 8
Supermarket supermarket 5
Shopping Mall shopping_mall 5
Natural Feature natural_feature 5
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D.

Contact Tracing App Research (link here)

As part of the literature review for this project, we researched numerous contact tracing

apps to find potential features for our app, and ways of implementing those features. The apps that

we found during our research and documented are displayed in the following tables.

App Mama (Pygseriink 1o i o wabste)

y-Presening Prosimity Tracing

Pop Categary Pt
Datahase A
Smal scals sodal dskancing nolification Androd,
Cantadt tracing for neguiar paopl uncigar

Caontadt iracing for specific group

Smal seaie sorial distancing notibeation Wty
Dathase Aramid,
Dissaminaling Infarmakion Ancmid,
Cantadt tracing for reguiar paopls Arcr,
Dissaminaling Infarmation

Smal stale sorial distancing notibeation

Contact tracing or reguiar paoplc

Contact tracing bor reguiar paopls Aramid,
Coniadt Tracing App for speciic grmun Ancmid,
Cantadt tracing tor reguiar poople Arcric,
Cantadt tracing for reguiar paopls Arcr,
Contact tracing or reguiar paople Aromid,
Contact tracing or reguiar paoplc Aromi,
Contact tracing bor reguiar paopls Aramid,
Coniadt Tracing App for speciic grmun Ancmid,
Dissaminaling Infarmakion Arcid
Smal soak social dskancing notittion Arcr,
Datahase Wty
Datahase Wty
Cortact iracing 200 o reguiar pacpie Aramid,
Cortact iracing 20 or reguiar pecpie and Dissaminaling imtmmabe Andrid,
Cankact iracing app for reguiar pecple Ancmid,
Corkact iracing app 1o reguar peopis Arcr,
Corkat iracing a0 o reguar peopis Aearicid
Cortact iracing a0 o reguar pecpis Aromi,
Corkact iracing 200 o reguiar pacpis Aramid,
Cortact iracing 200 o reguiar pacpie Aramid,
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Nor: Inpulnc data trom fronend

unciar &P location

B

unciar Arcnymous biseiooln 1D and apticnal location

uncicar Aronymocs hisakootn ID

S 000N 2N ANCAYMOLS BLaioin D

B biutaathid

uncigar unciear

uncigar butnothid

na link providd

[ncucewet) | WhoMads It Campicled? | Open Source? | Pupose
Hiok Mainisine Yos - | ¥es - | Coriad Tracing with iBoanon signals
s Crganization has na pubik: mar Na - s anenymans kecation g 10 natly usar
HezelTracs Team Na - ha - | purty GOMID-19 wransmission
na link proviced - o link provided
Contat Tracing os - s ~ | Romambar who you mat i siow Spaad of oovid
o8 Contart Tracar Toam Yoz - ¥es - | Anangnisa and eannost i 0T feices o matis tha plaom
=) {CPficial’”) Duich Projact Yos - | ¥es -
s Na - Mo - | Cavic-19 riss managament
- - | show the Spread of coud-19
o8 [ Yoz - ¥es ~ | Sacure Cantact Tracing Apn
=) SAP and Duutsche Tookom  Yas - | ¥es ~ | Germany's Covid Expoeune App
s ot Maintzinad HNa - Yes ~ | Cortact Tracing App from Hackathon
s TCN Coaition o - s - | Privacy Frst Conact Tracing o
0s Paih Crack s - s - | Cortad Tracirg Apn
03 Convis Waich s - v = | anonymans exposun rolficaion apn
o8 == Na - ¥es = | Anamymous Contact Tracing
=) tsraafs Minesiry of Haalth  Na - | ¥es - leranl Confact Trackng Agp
Ghana Haakh Servics Yos - Ha - | Prowank spraad of rensmissiie infoctios dsaases
s Hack Parnars o - Mo - | Office Socal Distancing
¥ Na - s - | Carsciicak and DperaSonalize dita cobeckd
Erigra cam Na - v Cortraling 2t rotoct Ihe 983 colectn
s Cpenhindos Yoz - ¥es = | A prvaCy-presening Spa for companng Laskinawn ocations of caranavins patient
s ¥ Yoz - e - siow the spread of coid-19
-] W Yos - | ¥es - show he spread of covd-13
s ¥ o - Mo - | show the spread of covid-19
ios ¥ s - ha - | siow the spread of covid-19
s Inomatanal colkaive s - s = | protect duilians’ ivacy and skow the spread of covid 10
s W Yoz - e - | siow the sproad of coid-19
s W Yoz - e + | siow the sproad of cid-19

‘Sumemary (ona sartancal

iming al feiging fight GOVID- 15 spread by collecting ancmymous du about penpie mesting sach olner
BLikfing pandemic rasponca oo i halp knop induid als and mmmunitos sain

A SCAIIG SUNVGY-Dased SIEl CONICNITASING PATKAm 10 Ch COVID-19 Yarsmission

na link provided

ofifies your dinect and indinec contacts f you iog Fal you show Symgfoms or best postive

The poinl of the anp & being atie o magrise and conned 10 clher Gavices no Malter e pationm and achangs UL i recand for how kong paacis hav baan in cantad
Godl b ba find cut 7 2 contact Iracing 260 can ba an efecivs toal 1 baiting the SARS-CoV-2 s

‘Cavie-19 riss managament cesignad o prow privacy.

AOp AL GPANRS ANCAOTOUS AN SOCLTR CONAT FACNG O MANY IS
A app that anabiss you 1o rolriovn et meuls clactnicaily, and & haipe 1n identPy pocsibin Gpce.ree e haws had in poapin dsgnazed wih COVD-18

Remova Fom ist?

B0 b & privacy-Arst contact racing apn in Sgnt BARS-CoN-2 and aher paihogens.

COVID Sata Faks i=a mohik 200 for dgilal conact racing {DCT) snonscmd by Fafh Chock & nanprofi and deveiopad By & 0rwing gichal eamurity of engingars, dosgnars. and contrbuiars.
Fron and Ananymous Exposurs Nollcation fgp implementod al University of Arizona)

A pivacy-Brst Systom for ancnymecs Blucinol prximity-based AR SKring basod on wlurkary Symplom shareg.

PYiaCY Grsored COnct IRCRG 3pe INAL NS POaRi of POSSERS EXPaSLIR fof 15raa

Infonme Ghanian gavummant of vl 10 apidemic arona e and sends infrmation &2 uwam i Ihasa lozsons

Monthiy subsriplion based matike ag Ih g5 when Fiay am rt 9 Wih 2 sound.

Erly protolypa 4 backend for a weh 2. Mors aonCemad win how 10 masmizn tha s of Sala rthar than Fow to colect £

Privacy presering Dakahass.25-a4enice

Cantadt tracing sbert fhal was aandanad for conkrbubon o anther project (Cormna-Face)

Atoal 10 akert yous 2o highiy reéevant. public haslth amcuncemants, polential expcsum 1 COVIDH1G, and to assist pubie healh oficiais.

Cavic dart agn

Fully hwrcioring ape avalabks forfroa.

Fully lnaaning ape 3vaiaok: for e

Fully tarcioring ape avalaks farfroa.

Fully arconing ano avalaske for froa

Fully tarcioring ape avalasks fortrea.

112


https://docs.google.com/spreadsheets/d/1gwc-ZsYSmQBeM5r1eLbdynu8SOYR3tDePwx_8yNebi8/edit?usp=sharing

E. Beacon Library (RSSI vs. Distance in meters)

When we found the AltBeacon library during our research, we initially tested it to
determine how accurately it could estimate distances. We tested the library by using it between
smartphones at various distances between each other and collecting the actual distance, predicted
distance, and RSSI. The graph below shows a plot of RSSI against actual distance.
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RSSI vs. Time (unix millis)
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F. Beacon Library (Distance in meters vs. RSSI vs. Actual Distance

in meters)

The plot below shows the ‘Distance’ which is the value predicted by the AltBeacon library.
This distance (in meters) is predicted by the model that the AltBeacon library includes.

Distance Measured vs RSSI vs Actual Distance
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G. Google Sheets Python Parser Library Requirements

This is the list of Python packages used for the google sheets parser program.
google-api-core==1.22.3
google-api-python-client==1.12.5
google-auth==1.22.0
google-auth-httplib2==0.0.4
google-auth-oauthlib==0.4.1
google-pasta==0.2.0
googleapis-common-protos==1.52.0
oauth2client==4.1.3
oauthlib==3.1.0
mysql==0.0.2
mysqlclient==2.0.1
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H. COVID-19 Infographics

I. Back to College Tips [10]
Infographic produced by the CDC with tips for reducing exposure to COVID-19 in a

college setting.

BACK-TO-COLLEGE TIPS

Protect Yourself from COVID-19

uuuuu

« Ifyou do, clean and disinfect before sharing or using.

Watch your distance [ - 2T

Stay at least 6 feet apart from others, when possible 3 P SHARED BATHROOM

on counter surfaces.
« Use totes for personal items to limit contact with other surfaces
in the bathroom.

CLASSROOM BEFORE YOU GO OUT,
« Enrollin online dasses if they fit your i TAKE THE FOLLOWING:
+ Wipe down your desk with a disinfectant wipe if possible.
« Skip seats or rows to create physical distance between
other students.
« Avoid placing your personal items (e.g., cell phone) on your desk.

Wash your hands

or use hand sanitizer with at least 60% alcohol + Mask
« Tissues
+ Hand sanitizer

DINING HALL & MEALS « Disinfection wipes

. , drink, utensils or other i I (if possible)
«  Pidk up grab-and-go options for meals if offered.

wea r a ma s k « Avoid buffets and self-serve stations.

in public spaces and common areas LAUNDRY ROOM
+ Cean and disinf touched
(e.g., buttons on the washing machine).
= Wash masks in warmest appropriate water
setting for the fabric.

The more closely you interact with others and the longer
that interaction, the higher the risk of COVID-19 spread.

J. COVID-19 Risk Index [16]
Infographic from COVID-19 RECoVERY CONSULTING showing the risk factors for
different activities.

COVID-19 Risk Index

Risk levels for exposure vary <3
based on four main factors:

When near
people,
wear a
mask

Enclosed space

Duration of interaction

383 Crowds - Subw
e p— ,

X' Density of people + _ 7
challenges for social distancing (E] "
Forceful exhalation st el
Sneezing, yelling, singing, i 2 T
and coughing Indoor dosecomact an ergn 3

* 5 1 e e Do
ow = R

Walking outdoors Running or biking
ith or without pets  Alor h another pe Movie theater or live theater °

°
e - ey
» G > Watching spo

< Outdoor
7 Picking up takeout ¢
= food, coffes, or et e e REOPEN INTELLIGENTLY.
\ grocerue.s rom stores 1 9 ot pucple REOPEN SAFELY.
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K. What you should know about COVID-19 to protect yourself and others [12]

Infographic from the CDC with tips and info about protecting yourself and others from

COVID-19

What you should know about COVID-19
to protect yourself and others

CS314937A 06/01/2020

Know about COVID-19

Coronavirus (COVID-19) is an illness caused
by a virus that can spread from person
to person.

« The virus that causes COVID-19 is a new

coronavirus that has spread throughout
the world.

COVID-19 symptoms can range from mild
(or no symptoms) to severe illness.

Know how COVID-19 is spread

You can become infected by coming into
close contact (about 6 feet or two

arm lengths) with a person who has
COVID-19. COVID-19 is primarily spread
from person to person.

You can become infected from respiratory
droplets when an infected person coughs,
sneezes, or talks.

You may also be able to get it by touching a
surface or object that has the virus on it, and
then by touching your mouth, nose, or eyes.

Protect yourself and others from COVID-19

«+ There is currently no vaccine to protect

against COVID-19. The best way to protect
yourself is to avoid being exposed to the
virus that causes COVID-19.

Stay home as much as possible and avoid
close contact with others.

Wear a mask that covers your nose and
mouth in public settings.

Clean and disinfect frequently
touched surfaces.

Wash your hands often with soap and water
for at least 20 seconds, or use an alcohol-
based hand sanitizer that contains at least
60% alcohol.

o

i)

Practice social distancing

Buy groceries and medicine,
go to the doctor, and
complete banking activities
online when possible.

If you must go in person,

stay at least 6 feet away from
others and disinfect items you
must touch.

Get deliveries and takeout,
and limit in-person contact as
much as possible.

Prevent the spread of
COVID-19if you are sick

Stay home if you are sick,
except to get medical care.

Avoid public transportation,
ride-sharing, or taxis.

Separate yourself from other
people and pets in your home.

« Thereis no specific treatment

for COVID-19, but you can seek
medical care to help relieve
your symptoms.

If you need medical attention,
call ahead.

Know your risk for
severe illness

Everyone is at risk of
getting COVID-19.

Older adults and people of
any age who have serious
underlying medical conditions
may be at higher risk for more
severe illness.

cdc.gov/coronavirus
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