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Abstract 
 

Human mesenchymal stem cells (hMSCs) are an extremely valuable asset to the field of 

biomedical engineering as well as regenerative medicine. They are commonly used in tissue 

engineering because they can differentiate into a variety of cell types and are relatively easy to 

culture and maintain.  hMSCs have been used in preclinical models for tissue engineering of 

bone, cartilage, muscle, marrow stroma, tendon, fat, and other connective tissues [4, 6, 7, 18, 19, 

36, 40, 42, 54].  Several studies have shown that these materials show promise for rebuilding 

diseased or damaged tissues [24].   

      The difficulty involved with hMSCs arises in the delivery of the cells to the site of 

injured tissue.  Injection is the preferred method, but it has been shown that simple injection of 

hMSCs in media through hypodermic needles results in extreme turbulent flow, killing the cells 

in the process.  Biocompatible hydrogels have been previously researched as a form of carrier for 

hMSC transport. However, the handling and delivery of the gel, as well as the cell viability while 

within, remain a problem.  This project aims to seek the best overall hydrogel to act as the carrier 

as well as a novel delivery mechanism that allows for simple, safe and convenient transport of 

hMSCs. 
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Executive Summary 
 

Human mesenchymal stem cells (hMSCs) are an extremely valuable asset to the field of 

biomedical engineering as well as regenerative medicine. They are commonly used in tissue 

engineering because they can differentiate into a variety of cell types and are relatively easy to 

culture and maintain.  hMSCs have been used in preclinical models for tissue engineering of 

bone, cartilage, muscle, marrow stroma, tendon, fat, and other connective tissues [1].  Several 

studies have shown that these materials show promise for rebuilding diseased or damaged tissues 

[2].   

      The difficulty involved with hMSCs arises in the delivery of the cells to the site of 

injured tissue.  Injection is the preferred method, but it has been shown that simple injection of 

hMSCs in media through hypodermic needles results in extreme turbulent flow, killing the cells 

in the process.  Biocompatible hydrogels have been previously researched as a form of carrier for 

hMSC transport [3]. However, the handling and delivery of the gel, as well as the cell viability 

while within, remain a problem.  This project aims to seek the best overall hydrogel to act as the 

carrier as well as a novel delivery mechanism that allows for simple, safe and convenient 

transport of hMSCs. 

      The device requires the culturing of human mesenchymal stem cells and then transfer 

these cells into a three dimensional matrix which is in the form of a hydrogel. In order to culture 

these stem cells, we had to feed the cells media which included Dulbecco’s Eagle Medium, 10 % 

fetal bovine serum, as well as penicillin and streptomyocin. This gave the cells appropriate 

nutrients to grow and plate. We decided to grow these cells in a T-75 flask and incubate them for 

a period of 5-7 days, changing the media with fresh media every 2-3 days. After the cells had 

fully plated on the surface of the flask, we collected the cells by applying trypsin and then 
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combined the cells with 0.7 g of 4 hydrogel powders (PEG, PGA, CMC, HA) along with 23mL 

of media. After a day of constant rotation the gel/cell matrix was formed and placed in a 24 well 

plate. The second part of our design required the creation of a delivery mechanism for these 

hMSCs/hydrogel combination. Our design team decided upon using a cartridge which has the 

plunger attached and holds the cells/hydrogel combination is placed in the back of the syringe, 

and guides it through a syringe, after which a stopper holds the cartridge in place while the 

hMSC/hydrogel combination continues through the syringe and dispels through a 22 gauge 

needle.  

Our initial step was to determine which hydrogel matrices allowed for viable human 

mesenchymal stem cells as well as three-dimensional growth. Therefore we grew the stem cells 

in (PGA,PEG,CMC,HA ) in a 24 well plate and assessed there viability using the MTS assay 

which measures the amount of light passing through the matrix, and histology readings (H&E 

staining) as well.  

After determining the matrix that promoted three dimensional growth with hMSCs, the 

next step was to test the how the design affected the viability. Therefore we compared the 

standard method of loading and unloading by suction of the hMSC/hydrogel composition 

through the needle and then ejecting it through the needle to our innovative design of loading the 

gel from the back and then ejecting it through the needle. By running the MTS assay, 

conclusions can be made as to which delivery method results in a higher viability of hMSCs.  

     Our results from determining which hydrogel provided a viable matrix which promoted 

three dimensional growth was figured out using MTS assay and histology readings. Our team 

eliminated PGA from the initial MTS assay when the results concluded that it was not 

compatible with hMSCs. CMC was eliminated through histology readings; the cells were not 
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mimicking the behavior as seen in the control. Our two final choices were PEG and HA, which 

displayed similar viability readings in the MTS assay. The histology readings suggested that HA 

promoted three dimension growth. Therefore HA was the selected matrix. 

      Next we had to prove that our design was more effective then the standard method of 

delivery. Therefore we performed an MTS assay comparing the standard loading and unloading 

with a syringe through the needle and our design which loaded the hydrogel from the back and 

ejected it through the needle, thus only subjecting the gel to forces in one direction (unloading). 

Our design team created a cartridge which can be loaded from the back of the syringe and the 

results confirmed that our theory and design did in fact increase viability by limiting the forces 

induced in the ejection phase.   

Our delivery mechanism eliminates much of the viability issues presented with the 

standard method of loading/unloading of a hMSC/hydrogel matrix associated with shear stress. 

The quantitative and qualitative measurements can be easily communicated to medical 

professionals in need of delivering cells to a tissue where shear stress is the major constraint 

involved in maintaining the viability. Our team believes that this device enhance the standard 

method of delivery and can be modified to fit the needs of a variety of other cell lineages and can 

potentially aid in the healing of a variety of tissues. 
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1. Introduction 
 

The use of stem cell treatments has the potential to change the face of not only tissue 

engineering, but all of medicine.  The ability to have these stem cells grow, proliferate, and 

differentiate into tissue make them extremely useful for a wide variety medical applications.  A 

number of stem cell treatments already exist.  Currently, the primary use for stem cells in 

medicine is for bone marrow transplantation.  The future of stem cell research includes 

applications for cancer, spinal chord damage, haematopoiesis, baldness, missing teeth, 

amyotrophic lateral sclerosis (ALS), deafness, vision impairment, and tissue engineering/drug 

delivery [1].
 

 Mesenchymal stem cells (MSC’s) are commonly used in tissue engineering because they 

can differentiate into a variety of cell types.
 
 They can be isolated from bone marrow or marrow 

aspirates and because they are culture-dish adherent, they can be expanded in culture while 

maintaining their multipotency [5].  MSC’s have been used in preclinical models for tissue 

engineering of bone, cartilage, muscle, marrow stroma, tendon, fat, and other connective tissues 

[4, 6, 7, 18, 19, 36, 40, 42, 54].
 
 Several studies have shown that these materials show promise 

for rebuilding diseased or damaged tissues [24].  Culturing MSC’s is both relatively easy and 

inexpensive, thus making them a natural choice for study in this project. 

 Biodegradable polymers have been subject to extensive study in the past couple years in 

the fields of tissue engineering and regenerative medicine.  Because of their unique mechanical 

properties, hydrogels in particular have the potential to have a significant impact on both of these 

fields [23].  Hydrogels are hydrophilic polymers that are capable of absorbing water and swelling 

to much greater sizes.  They are inter-penetrating networks (two networks chemically 

crosslinked) that can undergo a reversible water swelling process that gives them unique and 
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useful properties.  Depending on the polymers used, the way in which they are crosslinked, and 

side groups that can be added, the properties of these materials can be altered to fit desired needs 

[27].   

Hydrogels were the first biomaterials designed for use in the human body. However, the 

initial production of hydrogels did not provide any control of their detailed structure [20].  New 

ideas in designing (stimuli-sensitive phase changes) hydrogels have made them relevant in tissue 

engineering and regenerative medicine once again [28].  Hydrogel scaffolds have been theorized 

to be a good mode for delivering stem cells to the site of tissue injury or disease in a 3-D manner, 

allowing for optimal cell proliferation.
 
 The most commonly studied hydrogels for stem cell 

culturing are polyethylene glycol (PEG) based.  PEG is a very important biopolymer at this time 

because it is one of the only FDA approved polymers [22].  PEG’s copolymers are even more 

useful.  PEG, when photo-crosslinked with fibrinogen, produces a hydrogel with an adjustable 

molecular design, enabling changes to be made to certain properties such as mesh size and 

permeability [27]. The Pluronic family [32], Polyglutamic acid (PGA) [35], PGA-PVA 

copolymers [37], Pullulan based hydrogels [42], hyaluronan based polymers (i.e. HA) [44], and 

carboxyl methyl cellulose (CMC) are other hydrogels that have potentially useful properties for 

stem cell delivery purposes [45].  

Previously, the use of stem cell delivery to the site of injured or diseased tissue was 

devalued due to low cell viability rates [49].  Injection has been the most researched form of 

delivery.  It has been shown that the shear forces inside the needle are far too great to inject cells 

on their own. Different media, such as saline and collagen, have been used as carriers and have 

shown that they can enhance cell viability [51].  However, the lack of material strength and other 

physical properties did keep the cells from differentiating and proliferating successfully at the 
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site if the injury.  It is theorized that hydrogels can be a more efficient way of delivering and 

maintaining stem cells to the site of damaged or diseased tissues. 

2. Literature Review  

2.1.  Stem Cells 
 

Stem cells have the remarkable potential to develop into many different cell types in the 

body [1]. They serve as a repair mechanism where they can be transplanted in a human and 

divide limitlessly and can substitute damaged cells or replenish cells as well. When a stem cell 

divides it can either stay a stem cell or differentiate into a specialized cell such as a neuron, 

muscle cell, or cardiac cell. The three properties which separate stem cells from other cells is that 

they are capable of dividing and renewing themselves for long periods, they are unspecialized, 

and they have the ability to give rise to specialized cells [1]. The two main categories that stem 

cells can be divided into are embryonic stem cells and adult stem cells. Embryonic stem cells are 

located as the name states from the embryo, whereas adult stem cells are undifferentiated stem 

cells found in pools of differentiated cells in tissues or organs. The difference between the two 

categories of stem cells are mainly that embryonic stem cells are pluripotent, which means that 

they can differentiate into a variety of specialized cells, while adult stem cells are usually 

restricted to the organ or tissue where they were found. 

2.1.1. Mesenchymal Stem Cells 
 

Each year, millions of people suffer from tissue loss and end-stage organ failure [2]. 

Allogenic transplants have saved many lives.  However, a shortage of organ donors limits the use 

of this therapy. A variety of transplants have the ability to be revolutionized by the use of 
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autologous stem cells as a source of donor tissue. The requirements of these cells for this 

application are that they should be isolated ex vivo and have multipotential precursors for diverse 

tissues. The adult human mesenchymal stem cell meets these requirements and is why it has been 

investigated as a potential substitute for organ transplantation.  

Mesenchymal stem cells are non-hematopoietic cells which are derived from a variety of 

areas in the body. They can be derived from bone marrow, umbilical cord, the stroma of the 

thymus and spleen, and synovial fluid. Bone marrow is considered the most effective means of 

extracting mesenchymal stem cells due to its high concentration of MSCs [7].    

2.1.2.  Culturing Mesenchymal Stem Cells 
 

The method of isolating and culturing MSCs was developed in the mid 1970’s by 

Friedenstein and has since been modified in the 1990’s [3]. This method has survived more than 

30 years as the primary method of isolation and culturing. Bone marrow must be donated, and 

mononuclear cells (MNCs) must be prepared from the marrow through density sedimentation on 

Percoll and then cultivated on Petri dishes in a DMEM-LG medium with 10% fetal bovine 

serum. These MNCs are deprived of hematopoietic cells non-adherent to the dishes after 

culturing for 48 hours. The remaining cells, MSCs adhered to the dishes. The cells were spindle 

shaped and formed foci of more than 30 cells after culturing for 12 days. These MSCs were also 

homogeneous as well. [4] In order to indicate mesenchymal stem cells, alkaline phosphates 

positive ALP
+
 reticular cells are associated closely with mesenchymal stem cells and ALP

+
 

staining are indicators of (MSCs) [6]. 

2.1.3. Differentiation in Mesenchymal Stem Cells 
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Mesenchymal stem cells have the ability to be induced to differentiate into bone, adipose, 

cartilage, muscle, and endothelium is these cells are cultured under specific permissive 

conditions. [5] Mesenchymal cells can also differentiate into cells of alternate germinal 

derivation such as neural cells, skin, and liver, which proves how versatile mesenchymal stem 

cells are in regenerative medicine. [2] Mesenchymal adult stem cells have shown the ability to 

differentiate into cells out of their specific organ cell lineage, but in rare cases. In terms of 

controlling differentiation for mesenchymal stem cells, the type of media as well as growth 

factors is crucial to obtain the specific cell lineage of interest. 

Differentiation is caused by various factors such as growth factors. The four main growth 

factors that have been studied for differentiation include platelet derived growth factors (PDGF), 

basic fibroblast growth factors (bFGF), transforming growth factor β ( TGF-β), and epidermal 

growth factor(EGF) [6]. For example, for chondrogenic differentiation, the MSC must centrifuge 

to form pellets and then growth factor-β3 was introduced. The pellets form a matrix and type II 

collagen was detected after 10 to 14 days. For osteogenic differentiation hMSC are derived from 

bone marrow and exposed to dexamethasone, β-glycerol phosphate, and ascorbate, as well as 

10% FBS. Calcium accumulation is evident after 1 week. The growth factor and proteins are the 

determinant for differentiation for mesenchymal stem cells [3]. 

2.1.4.  Applications for Mesenchymal Stem Cells 
 

There are a variety of applications for mesenchymal stem cells due to the pluripotency of 

MSC’s. The major application is for orthopedic needs, such as cartilage replacement, bone 

fractures, and bone loss. Although there haven’t been significant tissue engineered bones or 

cartilage using stem cells, they have the ability to solve disorders involving osteoporosis, 

ligament and tendon damage. Mesenchymal stem cells can be applied to the tissue site of need 
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and can differentiate with the appropriate growth factors to induce differentiation. Mesenchymal 

stem cells can also be used to differentiate into skin cells as a skin substitute. The modern skin 

grafts lack some of the necessary cellular components that human skin possess, if mesenchymal 

stem cells can overcome this limitation it could be used for cosmetic needs, burn victims, or skin 

disorder substitute. Mesenchymal stem cells could be induced to promote proliferation in the 

liver and cure liver failure as well. It has been seen that mesenchymal stem cells can differentiate 

into liver cells as stated before. The potential for mesenchymal stem cells are limitless, but these 

cells cannot be injected without a scaffold or some type of matrix that holds these cells together. 

An environment to house these cells for growth and multiplication as well as transportation to 

the injured tissue site is necessary for an efficient stem cell delivery.    

2.2.  Hydrogels as Biomaterials  
 

Hydrogels are hydrophilic polymeric materials that upon absorption of water swell to 

several times its size, maintain a distinct three dimensional size, and takes on unique mechanical 

and chemical properties.  More specifically, hydrogels are crosslinked inter-penetrating 

networks, which can be synthesized a number of different ways.  Initially, the crosslinking 

between polymers needed to create hydrogels was obtained through copolymerization, reaction 

of polymer precursors, and polymer-polymer reaction. Hydrogels were the first biopolymers 

designed to be used in the body [Wichterle et al, 1960].  The very first hydrogels were first 

introduced in the 1960’s, but were dismissed soon after because of their poor properties.  The 

poor properties of the initial gels were due to the synthesizing methods mentioned above.  They 

are rather simple and do not allow for specific control over the detailed structure of the polymer. 

However, new and advanced methods of synthesizing hydrogels have once again made 

them a prevalent topic in the Biomaterial research.  Among the many materials being studied 
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today in tissue engineering, hydrogels are receiving more attention due to their ability to retain 

water, good biocompatibility, low interfacial tension, and minimal mechanical and frictional 

irritation [29, 30].  Studies by Gong, et al, have shown that hydrogels can now be synthesized to 

have great mechanical strengths [60].  They can also be made with controlled porosity, which 

can control degradation rates as short as a couple of hours to as long as a couple of years.  This is 

an extremely useful ability in drug delivery [8-10].  With the advancements in nanotechnology, 

nanotubes can reinforce the mechanical strength and structure within the hydrogel depending on 

the desired function [11].  Exact micropatterns can be made to the gel using by photolithography 

in order to enhance the gel’s specific function [12].  Nanopores and nano-scaffolding are 

important in tissue engineering because they provide a foundation for cell adhesion, growth, and 

differentiation.  The development of stimuli sensitive hydrogels has the potential to be a key 

breakthrough in the field of drug delivery and tissue engineering.  These hydrogels can change 

from a liquid phase to a gel phase based on pH levels and temperature changes [13-17, 28].  

Some of these gels, like poly(N-isopropylacrylamide)/dextran-maleic acid (pNiPAAm) can be 

injected into the body as a carrier for cells, drugs, etc. easily in its liquid phase at 20 degrees 

Celsius.  Once at the site of interest, the temperature will rise past the lower critical solution 

temperature (LCST) and a body temperature will congeal into a biodegradable gel, providing the 

physical properties needed for the particular application. 

Stem cells of varying kinds have shown that they are able to remain viable, proliferate, 

and differentiate in certain biocompatible polymers [18].  Three dimensional scaffolds carrying 

bone-growth inducing proteins have been successfully used in hydrogels to help the regeneration 

of bone tissue [19].  Mesenchymal stem cells in particular have shown some success in 

differentiating into mature osteoblasts to form mineralized matrices within hydrogel scaffolds 
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[20].  Although, most studies have been done in vitro, there is significant data to suggest that the 

delivery of stem cells to the site of injured biological tissue via hydrogel injection could be an 

integral part of the future of regenerative medicine. 

There is a wide array of hydrogels that have been studied for their usefulness in 

engineering.  Poly(ethylene glycol), the Pluronic family, polyglutamic acid, polyvinyl alcohol, 

Pullulan, hyaluronan, and carboxyl methyl cellulose are the hydrogels that will be focused on for 

this project. 

2.2.1.  Poly (ethylene glycol) 
 

Poly (ethylene glycol), or PEG, is one of the most useful and widely used polymers in 

terms of biomedical engineering because it is one of the few polymers that are FDA approved.  It 

is one of the simpler polymers on its own, which makes it an easy polymer to manipulate.  Below 

is the mer structure of PEG. 

 

Figure 1: Mer Structure of PEG 

 
PEG has been shown to be nontoxic, non-immunogenic, and non-antigenic [21-23].  PEG 

hydrogels have been used as a scaffold for successfully repairing and regenerating tissues such as 

cartilage and bone [24-26].  Because of its mechanical properties and highly swollen three 

dimensional shape, it is very similar to soft tissues with high water content. This allows for the 
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diffusion of cellular waste and necessary nutrients.  PEG is bioinert and naturally non adhesive, 

making it a poor choice for natural cell adhesion.  In order to make up for this, nanopillars can be 

created in the hydrogel.  Kim DH et al, has shown that ultraviolet-assisted capillary lithography 

can be successfully used to create uniform pillars (D~150nm, h~400nm) [61].  The presence of 

the nanopillars led to the three-dimensional growth of cardiomyocytes. 

 Basic PEG hydrogels, because of their resistance to protein absorption, are unable 

to support adhesion of human mesenchymal stem cells on their own.  However, by forming a 

mineral phase throughout the hydrogel, cell adhesion can be greatly improved [29].  Nuttleman 

et al have shown that the presence of the phosphate containing molecule ethylene glycol 

methacrylate phosphate (EGMP) can increase cell viability of MSCs from 15% without EGMP 

to 97% with EGMP.   Glucosamine and dexamethasone have also been shown to affect PEG in 

such a way [30, 31]. 

PEG also has a wide array of copolymers that can be used in biomedical engineering 

applications.  Arcaute et al, conducted a study in which stereolithography was used to construct 

complex bioactive PEG dimethacrylate based hydrogels.  They were able to show that these 

hydrogels could support 87% viability of human dermal fibroblasts at two and twenty-four hours 

following fabrication [34].  It is reasonable to assume that provided the controlled presence of 

the appropriate growth factors and proteins, this gel should support mesenchymal stem cell 

viability and proliferation. 

PEGylated fibrinogen can be controlled chemically in order meet certain desired 

properties.  PEG diacrylate and fibrinogen can be crosslinked using photoinitiation in the 

presence of cells to form a dense culture of hydrogel network.  Fibrinogen maintains the 

biofunctional backbone, while molecular changes are made to PEG, adjusting certain properties 
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such as mesh size and permeability [27].  Smooth muscle cells were used in the study by 

Dikovsky at al.  These cells were shown to integrate into the PEG-DA at a constant rate and the 

cells showed a 91% increase after one week. 

When PEG is crosslinked with another polymer, it is able to maintain its good physical 

properties while also gaining properties of the other polymer.  A copolymer of PEG and 

pNiPAAm can be synthesized to create a thermo-responsive hydrogel [28].  This hydrogel can be 

injected at a liquid phase and congeal to a gel once inside the body.  Cell detachment is able to 

be controlled as well, which could be helpful depending on how long the cells need to remain 

inside the gel at the injured tissue site. 

2.2.2.  Pluronic 
 

Pluronic is actually a trademarked name for the polyoxypropylene-polyoxethylen block 

copolymer.  It is another good biocompatible polymer with good materials and also exhibits 

thermal stimulated phase changes.  Its thermal sensitive properties will not be of any use to us in 

this project because of its lower critical solution temperature. 

 

Figure 2: Mer Structure of Pluronic F127 

Pluronic F127 is a member of the Pluronic family that takes the form of a hydrogel.  Its 

uses as a stem cell scaffold are almost exclusively limited to tissue engineering bone.  Huang et 

al have constructed a Pluronic F127 based scaffold for MSCs.  Their results showed that both 

alkatine phosphates and calcium levels increased after both seven and fourteen days of 

incubation, indicating osteoblastic differentiation.  Using alizarin red S staining, they were able 
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to determine that the MSCs could survive and differentiate into osteoblasts while within the 

Pluronic F127 based hydrogel scaffold [33].  Pluronic F127 has also shown that it will promote 

alveoli tissue growth from somatic lung progenitor cells without inflammatory reaction [34]. 

However, another study conducted involving MSCs suspended in a Pluronic F127 

hydrogel scaffold showed that the MSCs, while again promoting the formation of bone tissue in 

vitro, did not promote any formation of bone tissue in vivo. 

2.2.3.  Poly (glutamic acid) 
  

Poly (glutamic acid), or PGA is a commonly used polymer with a relatively simple mer 

structure that, much like PEG, can be altered to adjust certain physical properties.  PGA is a 

lightly hydrophilic, biodegradable polypeptide that has good physical properties (very high 

Young’s Modulus).  When copolymerized with other biocompatible polymers, PGA can form 

useful hydrogels. 

 

Figure 3: Mer Structure of PGA 

PGA has shown to be an excellent polymer for culturing specific cell types in vitro [35, 

37].  While cell viability will not be a problem for a PGA based hydrogel, biocompatibility may 

be.  Depending on the tissue of interest, PGA may trigger an immunogenic response.  A study of 

PGA hydrogel scaffolds containing somatic lung progenitor cells showed that in vivo, an 
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immunocompetent host induced a foreign body response that altered the integrity of the 

developing tissue [35].   

Because of its simple mer structure, PGA is easily copolymerized easily.  A 72% 

sulfonated gamma-PGA (γ-PGA-S72) gel has lower swelling rates than PGA, high sulfonic acid 

group concentrations, and had high fibroblast growth factor activity [36].  Because of this, both 

cell adhesion and proliferation rates were higher than that of PGA after twenty four hours (γ-

PGA-S72: 52.8%; PGA: 20.7%).  PGA can also be crosslinked with Polyvinyl alcohol (PVA) to 

form a PGA-PVA inter penetrating network hydrogel.  This gel exhibits good thermal stability 

and controllable swelling ratio.  The tensile strength is not as high (15-30% lower) as native 

PVA (6.37 MPa), whereas the elongation was increased by 200 to 250%.  It also has good blood 

compatibility and will not induce clotting when in direct contact [38]. 

2.2.4.  Polyvinyl Alcohol 
 

Polyvinyl alcohol (PVA) is also used on its own because of its very high Young’s 

modulus and ultimate tensile strength.  When made into a hydrogel, theses properties can be 

controlled by the ratio of polymer concentration to water.  By altering the number of crosslinks 

in its chain, highly elastic PVA gels can be obtained.  PVA has also been found to support 

attachment and proliferation of fibroblasts [39]. 

 

Figure 4: Mer Structure of PVA 
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Hydrogels have been prepared from PVA and chitosan (40 wt % chitosan content) can 

support fibroblast cell attachment and proliferation [40].   

2.2.5.  Pullulan 
 

Pullulan is a neutral, linear, and non-immunogenic polysaccharide that has good 

mechanical properties and is biocompatible.  Currently, the chief commercial use for pullulan is 

in oral hygiene films (breath fresheners) because of its edible and tasteless nature.  It has also 

been widely used in the pharmaceutical and cosmetic industries for its functional properties that 

include adhesiveness, film formability, and its controlled degradability.  Pullulan can also take 

the form of a hydrogel.  Pullulan was found to be a hydrogel particularly suited for in vitro 

studies because of it is non-cytotoxic, degrades via enzymes, and it can be cut or molded to the 

desired shape easily [41, 42].  Handling and shaping of other hydrogels is difficult, but pullulan 

based gels can be handled, molded, and shaped with ease. 

 

Figure 5: Mer Structure of Pullulan 

Because of its high water content (90%), pullulan based hydrogels can expect limited cell 

adhesion on its surface.  Autissier et al showed that a pullulan based gel can very well support 

cell viability, although with limited migration and proliferation [42].  Pullulan created with 

nanotubes or crosslinked with another biopolymer may provide better results. 

2.2.6.  Hyaluronic Acid 
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Hyaluronic acid is a natural carbohydrate polymer that can be found in several parts of 

the body, such as synovial fluid, cartilage, and skin.  Because it is naturally found in the body, 

HA is well suited for use in many biomedical applications.  HA has been used since the 1970’s 

in ophthalmic surgeries and also to treat osteoarthritis in the knee.  It is biocompatible and also 

can be found in the extracellular matrix of tissue, making it an increasingly popular material in 

tissue engineering. 

 

Figure 6: Mer Structure of HA 

 HA hydrogels can support stem cell viability, proliferation, and differentiation 

[43].   HA was shown to be able to polymerize in situ while delivering stem cells as well as other 

biomolecules such as growth factors.  HA, like PEG, has anti-adhesive effects and does not 

naturally allow protein absorption.  Because of this, cell viability in vitro is not good.  Therefore, 

the cells in the HA hydrogel must have additional extracellular matrix (ECM) proteins for 

adhesion and proliferation.  MSCs have been shown to have an 81% cell viability rate and a 

round morphology in vitro after two days.  While 81% viability is still not ideal, Kim et al [44] 

showed that bone regeneration in vivo demonstrated different results.  HA hydrogels, along with 

the appropriate growth factors and proteins, can be used for regeneration in various tissues, such 

as bone, cartilage, heart, and nerve.   
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 HA has also been crosslinked with PEGDA and modified with peptides 

containing the Arg-Gly-Asp sequence (RGD to form an injectable polymer that supports cell 

attachment, spreading, and proliferation.  Shu et al showed that in vitro, over 90% of human 

fibroblast cells maintained viability and 53% of the cells spread in the gel.  The gel also 

increased cell differentiation by 33%.  At day 15, the cells had proliferated over 250% of the 

initial count.  This fibroblasts and peptides were then injected via the HA-PEGDA hydrogel into 

rats.  As a result, the formation of the fibrous tissue was accelerated in vivo and the fibroblasts in 

the new fibrous tissue increased the production of procollagen within four weeks [62]. 

2.2.7 Carboxymethylcellulose 
 

Carboxymethylcellulose (CMC) is a derivative of cellulose formed by its reaction with 

alkali and chloroacetic acid.  At low concentrations, CMC molecules are rod like.  However, 

increasing the concentration causes the molecules to bend, curl up, and eventually entangle to 

become a thermo-reversible gel.  CMC has the ability to absorb water twenty times its own 

weight.  

 

Figure 7: Mer Structure of CMC 

CMC has been crosslinked with superoxide dismutase and studies have conducted in 

vitro to determine the human fibroblast viability and proliferation.  The CMC hydrogel showed a 

47% viability rate after forty-eight hours and also that the cells migrated as well [45].  However, 
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it remains to be seen if these viability rates will be sufficient in vivo.  More testing is needed on 

the biocompatibility of CMC and its copolymers. 

2.3.  Stem Cell Delivery Methods 
 

The uses of mesenchymal stem cells (MSCs) in regenerative medicine are a promising 

approach for tissue engineering. MSCs have been proven to have great potential in regenerating 

tissues of musculoskeletal [46], cardiovascular [47], and neurological systems [48]. However, 

the outcomes of existing treatments have not been satisfactory. Current methods of delivery 

involve the use of injections and microencapsulation to implant MSC-based media into the body, 

however they are not efficient. By means of injection there is an immediate loss of the majority 

of the cells implanted due to back-flow via the injection path [49]. Also, the shear forces and 

turbulences generated during injection lead to low engraftment and poor functional remodeling 

of the cells [50]. By means of microencapsulation a large majority of biomaterials proved to 

have impenetrable membranes to cells. These materials restricted the use of MSCs in 

regenerative medicine and tissue engineering because MSCs requires intimate host-implant 

integration at the cellular level. As a result, the quest for a more effective approach, noninvasive 

by nature, is among the biggest technological challenges in regenerative medicine today. 

2.3.1.  Media Used in Cell Delivery 
 

In the delivery of MSCs a variety of different media, ranging from saline, natural and 

synthetic hydrogels, sodium alginate, agrose [51], and polyethylene glycol [49], have been 

tested, however suspending the cells in saline or hydrogel, for delivery via injection, are the two 

most common approaches. Hydrogels of both natural and synthetic biomaterials, hyaluronan gel 

[52] and 2-hydroxyethyl methacrylate [53] respectively have been tested, but result in poor cell 

viability.  
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These carriers were not able to provide anchorage to the cells being delivered nor were 

they sufficient in protecting them against the hostile environment at the injury site, consisting of 

cytotoxic inflammatory cytokines [54] and matrix-eroding proteases [55]. Hyaluronan gel and 2-

hydroxyethyl methacrylate when injected lead to an immediate loss of the majority of the cells 

implanted due to back-flow via the injection path, resulting in a low local availability of cells and 

an insufficient viscosity or stiffness of the hydrogel [56]. Sodium alginate, agrose and 

polyethylene glycol, all have impenetrable membranes to cells, restricting MSC and due to 

MSCs’ need for intimate host-implant integration at a cellular level and sensitivity to anchorage 

dependant survival-apoptosis regulation [57], the use of them results in poor cell viability [58]. 

2.3.2. Delivery Problems and Complications 
 

Current methods of delivery involve the use of injections and microencapsulation to 

implant MSC-based media into the body, however they are not efficient. By means of injection 

there is an immediate loss of the majority of the cells implanted due to back-flow via the 

injection path resulting in a low local availability of cells and an insufficient viscosity or stiffness 

of the hydrogel. Also, the shear forces and turbulences generated during injection lead to low 

engraftment and poor functional remodeling of the cells. By means of microencapsulation a large 

majority of biomaterials proved to have impenetrable membranes to cells. Existing transporters 

were not able to sufficiently protect MSCs against the hostile environment at the injury site 

ensuing poor cell viability, but the use of microencapsulation proved trustworthy. 

Microencapsulation is the process of entrapping cells within the boundaries of a semi-

permeable membrane forming a homologous solid mass, a microsphere. This method has been 

used in aiding immunoisolation during allogenic or xenogenic cell transplantation. Existing 

microencapsulation techniques involve vigorous mechanical disturbances such as pressurized 
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nozzles, emulsification, or stirring during droplet generation [59], but perhaps an alternative 

means is achievable. 

3. Project Approach 

The literature review served as a backbone for our project. It gave us the necessary 

research to initiate ideas and clarify and define our project. In order to clarify and define our 

project, an initial problem statement, forming a project hypothesis, defining assumptions, and 

defining the specific aims of the project. 

3.1. Clarification of the Initial Problem Statement 
 

After consulting with our client and advisor as well as extensive background research, we 

formulated a basic problem statement for our project. ―Develop an efficient delivery system for 

stem cells using a biopolymer.‖ This problem statement lacked depth and detail to produce a 

statement that truly described the extent of our problem. Therefore a defined problem statement 

was needed and thus became the first step in our design process. 

 Consulting with our client and advisor to formulate a clear understanding of our 

problem was the next step. The basic research on a variety of areas including hydrogels, delivery 

vehicles, and culturing stem cells had been done. Based on the problems presented in previous 

experiments, we have decided that our project requires the design of a new delivery method 

using hydrogels as a carrier.  The overall designs function that the device must maintain cell 

viability. Cell viability is the major problem that past systems of delivery had and producing a 

method that increases this factor would be influential to the field of regenerative medicine. 

Conveying to our client that this mechanism should transport the stem cells to the area of tissue 

injury was important as well. One of the main obstacles to overcome was deciding which stem 
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cells to use for the system. After consulting with another team working on culturing stem cells 

and obtaining their advice, mesenchymal stem cells was a natural choice. Mesenchymal stem 

cells exhibit pluripotency or the ability to differentiate into a number of cell lineages as well as 

their accessibility and ease of differentiating. The design team formulated that a an experiment 

transporting stem cells from Petri dish to a separate Petri dish will provide an acceptable scenario 

of how the hydrogel will react in the body.  Therefore we formulated the following revised client 

statement:  

―Design a mechanism for safely transporting harvested mesenchymal  

stem cells from a Petri dish to a site of tissue injury, maximizing  

cell viability while maintaining pluripotency.‖ 

 This statement portrays to our client and users exactly what the design entails and the 

features produced by the design. 

 

3.2. Project Hypothesis 
 

As stated before, the goal of our project is to design a mechanism for safely transporting 

harvested mesenchymal stem cells from a Petri dish to a site of tissue injury while maintaining 

cell viability. Current methods of delivery have problems with an efficient cell viability rate for 

stem cells. Upon injection, the shear forces from the needle are two great for the cells to 

withstand and will either crush them or induce apoptosis, causing a substantial decrease in the 

amount of viable cells for implantation. Another limitation of using hydrogels to transport cells 

via injection is that the viscosity of the hydrogel should be high enough to cause laminar flow. 

Turbulent flow, the antagonist to laminar flow, causes the cells to die easily due to the rotation 

and shear forces being applied on the area of the gel being greater.  
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Therefore, our team hypothesized that breaking the project down into three components. 

1) Identify materials, such as the proper hydrogels, that were compatible with growing the cells. 

2) Develop a delivery mechanism for ease of transfer. 3) Demonstrate feasibility for the entire 

system.  The design team believes that a combination of these components to our project will 

provide a mechanism which will be more effective at maximizing the viability of the 

mesnchymal stem cells compared to the standard method of injection.  

3.3. Project Assumptions 
 

The hypothesis of the project requires an implementation of an innovative delivery 

system involving injection as well as an appropriate hydrogel that will maximize cell viability 

and provide a more efficient means of delivery compared to current methods. Our assumptions 

therefore are as follows: 

 Shear forces, apoptosis, and the loss of media during implantation are the outlining 

problems associated with cell viability 

 An appropriate hydrogel will maximize cell viability throughout the process of 

delivery as well as support differentiation ultimately 

 Transporting the mesenchymal stem cells in hydrogel from Petri dish to Petri dish 

will provide an acceptable simulation of how the hydrogel will act when implanted in 

the body 

3.4. Specific Aims 
 

Maximizing cell viability is the major factor involving our design. Therefore our main 

test will involve an initial Petri dish with a predetermined amount of mesenchymal stem cells.  

After which the hydrogel with the MSCs will be implanted in the device and then injected onto 

another Petri dish and the cell viability will be recorded. If the cell viability of the 
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hydrogel/hMSC combination after the completion of a delivery is higher than that of cells 

suspended in media after the completion of a delivery, than it can be concluded that the 

mechanism is an efficient means of maximizing cell viability. Therefore our specific aims are as 

follows: 

 Produce a delivery method using hMSCs suspended in hydrogel that maximizes 

cell viability higher than cells suspended In media. 

 Design an innovative delivery mechanism which limits the forces applied on the 

cells. 

 Implement a hydrogel which will promote cells to function accordingly in the 

tissue. 

 Conduct and design experiments to assess the hypothesis. 

 

4. Design 
 

This section describes the design process to develop a hMSC delivery system utilizing 

hydrogels as a delivery vehicle. The design process involves three groups of individuals: clients, 

design team, and users. The clients, Professor Gaudette (Biomedical Engineering professor) and 

Al Prescott (CEO of Crescent Innovations) provided the initial problem statement of having 

possible mean(s) of delivering hMSC. Utilizing hydrogels as the delivery vehicle was introduced 

by Al Prescott who has extensive knowledge in hydrogels, and would benefit his practice greatly 

with the addition of this design. Both Prof. Gaudette and Al Prescott guided the design team in 

carrying out the design process and reaching our specific aims. The design team consisted of four 

biomedical engineers, Jay Shivaprakash and John Bray, who specialized in biomechanics major 
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at Worcester Polytechnic Institute. Wai-Mun Leung and Kene Mgbojikwe were biomedical 

engineers who specialized in biomaterials major at Worcester Polytechnic Institute.  

The design team continued working together by following the step-by-step design 

process. The initial problem statement was clarified after constant feedback via meetings with 

the clients. Afterwards, we followed the five-stage prescriptive model in the design process in 

order to understand and coherently continue the process to obtain results and to determine a 

conclusion. Our clients provided their statements at which we formulated our problem definition. 

Preliminary research was conducted to provide the background literature review and 

conceptualize design alternatives with specifications. During the preliminary design phase, we 

evaluate specific stages of the testing phases. Once this is completed with nominal results, we 

have isolated the type of hydrogel to be used for optimal viable hMSC after transportation from 

cultivation process. Below is the engineering design process followed by the design team to 

reach specific aims.  

4.1. Objectives, Functions, and Constraints 
 

In order to achieve a true grasp of the problems and necessary components of the design 

project, we needed to follow the process and outline the objectives, functions, and constraints of 

the delivery process. The design team decided to outline the general objectives, functions, and 

constraints of the mechanism of delivery and the components involved that was read through 

preliminary literature review. After consultation with our clients, we decided to focus on the 

stages of the delivery process and list the objectives, functions, and constraints accordingly as 

can be seen in Figure 8 below. 
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Figure 8: Stages of Delivery Process 

4.1.1. Objectives, Functions, Constraints for Phase 1-A 
 

A detailed list of the objectives and corresponding functions are listed for Phase 1-A: 

Culturing and harvesting the mesenchymal stem cells can be seen in Figure 9 below. 

Detailed list of Objectives and Functions for Phase 1-A 

 

Figure 9: List of Objectives and Functions for Phase 1-A 
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Phase 1-A: Culturing and Harvesting Mesenchymal Stem Cells is the first stage in our 

design of a delivery process. The design team believed that the primary objective for this stage 

involved successfully culturing and harvesting hMSCs. Since this statement is broad and the 

term successful is very ambiguous. We decided to narrow its meaning by stating that it should 

grow in a suitable environment, maintain its stemness, produce homogeneous hMSCs, and create 

a non-adhesive environment for hMSCs. These are all necessary for proper growth of 

mesenchymal stem cells as reviewed in the literature. Maintaining sterility is also a necessary 

objective for Phase 1-A as well. If sterility is not kept in the highest regard then we could 

compromise the growth of mesenchymal stem cells. If any contamination is present when 

culturing these cells, it will jeopardize the outcome and validity of the project. Therefore it is 

important to keep all instruments used in the procedure sterile and use instruments under a sterile 

hood as much as possible. In order to efficiently test these hydrogels, it is necessary to grow an 

adequate amount of cells. The design team used this as an objective for this phase, and believes 

an appropriate amount of cells must be grown and should not be overgrown to cause layering of 

hMSCs. The design team wanted this procedure to be time efficient considering time is an 

overall constraint for the project, and the duration of time to culture stem cells and harvesting 

could cut into the available time. The design team wanted an efficient means to reproduce 

mesenchymal stem or ―double‖ the hMSCs. Cell doubling would be cost effective and would aid 

the design team greatly. The various constraints associated with Phase 1-A are detailed in Figure 

10 below. 

Detailed list of Constraints for Phase 1-A 
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Figure 10: List of Constraints for Phase 1-A 

In order to successfully complete Phase 1-A, there must be a degree of sterility that must 

be maintained. All instruments and devices should fit under the sterile laminar flow hood and fit 

in the incubator as well. The time for culturing is a constraint because there is a necessary period 

of culturing and growing that must be done, in order to complete the project. Another constraint 

is the need for abundant media for growth. The media provides the hMSCs with necessary 

nutrients and proteins for growth; therefore it is critical to have an abundant supply of media.  

4.1.2. Objectives, Functions, and Constraints for Phase 1-B 
 

A detailed list of objectives and corresponding functions are listed in Phase 1-B: 

Incorporation of hydrogel with mesenchymal stem cells can be seen in Figure 11 below. 
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Detailed list of Objectives and Functions for Phase 1-B 

 

Figure 11: List of Objectives and Functions for Phase 1-B 

These objectives relate to Phase 1-B: Incorporation of hydrogel with mesenchymal stem 

cells. The primary objective is successfully incorporating mesenchymal stem cells with the 

hydrogel. The meaning of the ambiguous term ―successfully‖ is defined as promoting three 

dimensional growth in the hydrogel, maintaining stemness in the hydrogel, and promote 

proliferation in an environment suitable for hMSC growth. These are all necessary functions the 

hydrogel must maintain or assimilate in order to contain hMSC. The process should be scalable 

as well; the cell viability should be assessed in order to distinguish whether the hydrogel is 

adequate for hMSC growth. Like Phase 1-A, the procedure must be sterile for the same reasons 

as before. The design team believes that the procedure must be easy to perform; therefore it 

should be time efficient, minimal steps in procedure, and easy to incorporate hMSC into 
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hydrogel. The procedure should be cost effective due to budget constraints as well. The various 

constraints associated with Phase 1-B are detailed in Figure 12.  

Detailed list of Constraints for Phase 1-B 

 

Figure 12: List of Constraints for Phase 1-B 

The constraints for Phase 1-B show that an equal number of cells must be allocated to the 

tissue culture environment, whether it is a Petri dish or well plate, should be allocated properly. 

This is for proving the validity of the study, and to identify which hydrogel performed the best. 

The duration of time for cells to settle in the hydrogel is a constraint which cannot be overcome. 

In Phase 1-A, the reason for maintaining the highest degree of sterility was expressed and is 

necessary for Phase 1-B as well. Therefore it is necessary to fit under a sterile hood and fit in an 

incubator. 

4.1.3. Objectives, Functions, and Constraints for Phase 2 
 

A detailed list of objectives and corresponding functions are listed for Phase 2: Loading 

hydrogel into delivery mechanism in Figure 13 below.  
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Detailed list of Objectives and Functions for Phase 2 

 

Figure 13: List of Objectives and Functions for Phase 2 

Phase 2: Loading hydrogel into delivery mechanism requires a unique set of objectives. 

In order to successfully load the hydrogel into the syringe, there should be minimal media loss, 

maintain stemness, and maintain cell viability as well. The number of cells presented in the 

syringe should be maintained or increased since the hydrogel was incorporated with the hMSCs. 

The procedure must be scalable too; since our project deals with the cell viability of hMSC when 

injected using syringe, there must be a way of quantifying the cell count of hMSCs before 

loading occurs. Like the previous phases, the procedure should be sterile; which means using 

sterile instruments and there should be no adverse reaction to the syringe environment. The phase 

should be easy to perform, time efficient, and there should be minimal steps involved as well. 

The procedure should be cost effective, due to the budget constraints. A detailed list of the 

associated constraints can be seen in Figure 14. 

Detailed list of Constraints for Phase 2 
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Figure 14: List of Constraints for Phase 2 

The constraints associated with Phase 2 include the syringe must fit under the sterile 

hood. This is necessary for maintaining sterility and a contamination free environment for the 

hMSCs. Along with sterility, the syringe should accommodate the necessary environment in 

terms of temperature, gas mixture, and nutrients for hMSCs. For obvious reasons, the hydrogel 

must fit into the syringe. The duration of the procedure is a constraint which cannot be 

overcome. The cost for materials is a constraint, considering the associated budget constraints 

involved. 

4.1.4. Objectives, Functions, and Constraints for Phase 3 
 

A detailed list of objectives and corresponding functions are listed in Phase 3: Injection. 
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Detailed list of Objectives and Functions for Phase 3 

 

Figure 15: List of Objectives and Functions for Phase 3 

The objectives for Phase 3: Injection has been identified. The primary objective of a 

successful injection of hydrogel with hMSCs is defined as minimizing media loss, maintaining 

cell viability, and dispersing uniformly on the host. The success of the injection is dependent 

upon limiting shear forces of the needle wall, which is the outlining problem for the project. The 

process should be scalable as well, in order to find out if the shear forces had been limited, a cell 

viability assessment must be determined and the value should be compared to the initial value. 

For reasons mentioned before, the procedure must be sterile by using sterile instruments and 

allowing for no adverse reaction to injection. The procedure must also be time efficient and there 

should be minimal steps in the procedure. The process should be cost effective due to budget 

constraints. The associated constraints for Phase 3 can be viewed in Figure 16 below. 
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Detailed list of Constraints for Phase 3 

 

Figure 16: List of Constraints for Phase 3 

The associated constraints for the last phase of the process shows that the design team is 

still thinking about maintaining the highest degree of sterility because the team is working with 

living cells which could be jeopardize due to contamination. Therefore, the host (Petri dish, well 

plate) should fit under a sterile hood. The host should provide a suitable environment for hMSCs. 

The duration of the procedure cannot be overcome, and the cost must fit the associated budget 

constraint. 

4.2. Analysis of Needs and Wants 
 

In order to assess the needs and wants for our project, the design team decided to create 

pairwise comparison charts for each phase. A pairwise comparison chart is a technique used in 

ENGINEERING DESIGN: A PROJECT-BASED INTRODUCTION. 2ND ED (Dym, Clive, Little, Patrick. (2004), pp. 24-

25) which compares objectives and associates weights to them to rank the objectives in order. 
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The design team decided that any objective which received a weight of 50 % or higher will be 

considered a need, and a weight of lower than 50% will be considered a want. 

4.2.1. Pairwise Comparison Chart for Phase 1-A 
 

Table 1 shows a detailed pairwise comparison chart with associated weight analysis for 

Phase 1-A: Culturing and Harvesting mesenchymal stem cells. 

Table 1: Detailed Pairwise Comparison Chart for Phase 1-A 

 Successfully 

culture and 

harvest 

hMSCs 

Maintain 

Sterility 

Grow 

appropriate 

amount of 

cells 

Time 

efficient 

Reusable 

(splitting) 

Successfully 

culture and 

harvest 

hMSCs 

 

X 

 

1 

 

1 

 

1 

 

1 

Maintain 

Sterility 

 

0 

 

X 

 

1 

 

1 

 

1 

Grow 

appropriate 

amount of 

cells 

 

0 

 

0 

 

X 

 

1 

 

1 

Time 

efficient 

 

0 

 

0 

 

0 

 

X 

 

0 

Reusable 

(splitting) 

 

0 

 

0 

 

0 

 

1 

 

X 

  

Successfully culture and harvest hMSC = 5/15 = 33.3% = NEED 

Maintain Sterility =4/15 = 26.7% = NEED 

Grow appropriate amount of cells = 3/15 = 20% = NEED 

Time efficient = 1/15 = 6.67% = WANT 

Reusable = 2/15 = 13.3 % = WANT 
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As can be seen the needs associated with Phase 1-A: Culturing and Harvesting 

Mesenchymal Stem Cells are successfully culturing and harvesting hMSCs, maintaining sterility, 

and growing appropriate amount of cells. Obviously it is necessary to successfully culture and 

harvest hMSC in order to proceed to the next phase. Sterility has been mentioned several times 

in this section, and through the analysis proves to be an outlining feature in Phase 1-A. The 

design team needs to grow appropriate amounts of cells in order to have a great enough supply to 

test and distinguish which hydrogel performs the best. 

4.2.2. Pairwise Comparison Chart for Phase 1-B 
 

Table 2 shows a detailed pairwise comparison chart with associated weight analysis for 

Phase 1-B: Incorporation of hydrogel with mesenchymal stem cells. 

Table 2: Detailed Pairwise Comparison Chart for Phase 1-B 

 Successfully 

incorporate 

hMSC with 

hydrogel 

Scalable Sterile 

procedure 

Easy 

Procedure 

Cost 

Successfully 

incorporate 

hMSC with 

hydrogel 

 

X 

 

½ 

 

1 

 

1 

 

1 

Scalable  

½ 

 

X 

 

1 

 

1 

 

1 

Sterile 

procedure 

 

0 

 

0 

 

X 

 

1 

 

1 

Easy 

procedure 

 

0 

 

0 

 

0 

 

X 

 

½ 

Cost 0 0 0 ½ X 
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Successfully incorporate hMSC with hydrogel = 4.5/15 = 30% = NEED 

Scalable = 4.5/15 = 30% = NEED 

Sterile procedure = 3/15 = 20% = NEED 

Easy procedure = 1.5/4 = 10% = WANT 

Cost = 1.5/4 = 10 % = WANT 

 

For Phase 1-B: Incorporation of hydrogel with mesenchymal stem cells the pairwise 

comparison chart shows that successfully incorporating hMSCs with hydrogel, scalable, and 

sterile procedure are the associated needs for the phase. Successful incorporation of hMSC with 

hydrogel is necessary in order to proceed to the next phase and is very important to assess if the 

hydrogel will be able to promote growth for hMSCs. Scalability is necessary in order to assess 

qualitatively or quantitatively how effective these hydrogels perform and all hMSC to be viable 

with hydrogel. A sterile procedure for reasons mentioned previously in the section, which is why 

it is analyzed as a need. 

4.2.3. Pairwise Comparison Chart for Phase 2 
 

Table 3 shows a detailed pairwise comparison chart with associated weight analysis for 

Phase 2: Load hydrogel into delivery mechanism. 

Table 3: Detailed Pairwise Comparison Chart for Phase 2 

 Successfully 

load 

hydrogel 

into syringe 

Scalable Sterile 

procedure 

Easy 

Procedure 

Cost 

Successfully 

load 

hydrogel 

into syringe 

 

X 

 

½ 

 

1 

 

1 

 

1 

Scalable  

½ 

 

X 

 

1 

 

1 

 

1 

Sterile 

procedure 

 

0 

 

0 

 

X 

 

1 

 

1 
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Easy 

procedure 

 

0 

 

0 

 

0 

 

X 

 

½ 

Cost  

0 

 

0 

 

0 

 

½ 

 

X 

 

Successfully load hydrogel into syringe= 4.5/15 = 30% = NEED 

Scalable =4.5/15 = 30% = NEED 

Sterile procedure = 3/15 = 20% = NEED 

Easy procedure = 1.5/15 = 20% = WANT 

Cost = 1.5/15 = 20 % = WANT 

 

Phase 2: Loading hydrogel into delivery mechanism shows that the associated needs are 

successfully loading hydrogel into syringe, scalable, and sterile procedure. In order to proceed to 

the next phase, successful loading of the hydrogel into the syringe must be met.  The process 

needs to be scalable, in order to obtain results and prove the validity of the study. A sterile 

procedure is necessary because of the reasons mentioned before in the section. 

4.2.4. Pairwise Comparison Chart for Phase 3 
 

Table 4 shows a detailed pairwise comparison chart with associated weight analysis for Phase 3: 

Injection. 

Table 4: Detailed Pairwise Comparison Chart for Phase 3 

 Successful 

injection of 

hydrogel 

with hMSCs 

Scalable Sterile 

procedure 

Easy 

Procedure 

Cost 

Successful 

injection of 

hydrogel 

with hMSCs 

 

X 

 

½ 

 

1 

 

1 

 

1 

Scalable      
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½ X 1 1 1 

Sterile 

procedure 

 

0 

 

0 

 

X 

 

1 

 

1 

Easy 

procedure 

 

0 

 

0 

 

0 

 

X 

 

½ 

Cost  

0 

 

0 

 

0 

 

½ 

 

X 

 

Successful injection of hydrogel with hMSCs = 4.5/15 = 30% = NEED 

Scalable =4.5/15 = 30% = NEED 

Sterile procedure = 3/15 = 20% = NEED 

Easy procedure = 1.5/15 = 10% = WANT 

Cost = 1.5/15 = 10 % = WANT 

 

For Phase 3: Injection the needs are as stated; successful injection of hydrogel with 

hMSCs, scalable, and sterile procedure. A successful injection of hydrogel with hMSCs has been 

defined before, and is important to conclude the process. Scalability is equally as important 

because the project goal is to assess the cell viability and find out which hydrogel reduces the 

cell viability after injection the best, therefore a need for quantifying or visually analyzing the 

cell viability is necessary. A sterile procedure is necessary as well for the reasons mentioned 

before in the section, and is why it has been assigned as a need. 

4.3. Design Specifications 
 

Thus far in this chapter, we have sufficiently identified the objectives and functions of 

our project.  With this having been done, we are now able to establish the specifications of our 

project which will describe certain goals that the design must meet in order to be successful.  
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Again, our specifications will be congruent with the rest of our design process and be broken 

down into three phases: 

Phase 1A and 1B: culturing human mesenchymal stem cells and incorporation with 

hydrogels. 

Phase 2:  Transportation of hydrogel containing mesenchymal stem cells into delivery 

mechanism 

Phase 3: Injection of hydrogel containing mesenchymal stem cells through a needle. 

The specifications are described in detail in the next section.  The sections describe the 

particular specifications of each phase, the method in which they will be tested, and the criteria 

that must be met in order to be considered a success. 

4.3.1. Design Specifications for Phase 1A 
 

 In order to grow a sufficient amount of hMSCs, the team decided to use T-75 flask, to 

create a large bank of mesenchymal stem cells. In order to ensure cell growth and stemness we 

used Dulbecco’s Modified Eagle’s Media (DMEM) along with 10% fetal bovine serum and 

penicillin as well to feed the cells and allow to plate on the T-75 flask. To ensure viability, our 

team decided to change the media and supplement the flask with fresh media every 3 days. A 

sterile procedure was used by performing all experiments under a hood, with proper sterile 

procedures taken into account such as spraying instruments with 70% IPA and using pre- 

packaged pipettes. 

Design Specifications for Phase 1-A 

 Cell Viability based histology and MTS Assay 

 Sterility based on histology 
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4.3.2. Design Specifications for Phase 1B 
 

 In order to optimize the design of our device, we decided to incorporate hydrogel with 

mesenchymal stem cells in a 24 well plate. We believed the 24 well plate would allow us to 

maximize the number of hydrogels while using the limited number of cells we had. In order to 

assess cell viability we tested all combination of cells and hydrogel using an MTSMTS assay 

which measures absorbance of light through the gel. Next, we must acquire a linear relationship 

of the cell viability of increasing cell number. From this relationship, we then can correlate the 

MTSMTS results to the estimated cell number. Thus, the absorbance level can be converted to 

cell number which can be compared to the initial count. In order to ensure stemness and 

migration, we decided to place the cells on top of the hydrogel, in order for the cells to fully 

disperse through the gel and inter mix within the gel thoroughly. 

Design Specification for Phase 1-B 

 2000 cells per 750 µL incorporated into hydrogel 

 Cell viability must be at 60 % from initial count after 10 days based on histology and 

MTS Assay 

 Three-dimensional distribution based on observation  via inverted microscope 

4.3.3. Design Specifications for Phase 2 
 

 In order to ensure that our design was optimal to our objective, constrains, and functions, 

several design modifications needed to be made. We decided that the best way maximize cell 

viability while minimizing volume loss is to limit the amount of times the hydrogel was put 

under pressure or forces were induced on the gel. Another specification is that this design is 
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designed for various needle gauges. We also require that our design be used using sterile 

methods as well as used strictly under a sterile hood. 

 

Design Specifications for Phase 2 

 Cell viability based on histology and MTS Assay 

 Compatible with existing needles 

 Less than 20 % residual hydrogel volume 

4.3.4. Design Specifications for Phase 3 
 

A safe effective delivery was the ultimate goal of this device. In order to ensure that we 

had to make sure there was enough pressure to force the gel through the needle. We decided that 

the needle can be at various diameters using the Reynolds number equation. Also we need to 

make sure the viability is not compromised, by doing transferring from Petri dish to Petri dish 

and using MTS assay and histology.  

Design Specifications for Phase 3 

 Cell viability must be 45 % compared to original count based on histology and MTS 

Assay 

 Flow profile based on Reynold’s number, below 3000 for laminar flow. 

4.4. Revised Client Statement 
 

Our initial client statement was undefined and incomplete 

 ―Design a mechanism for safely transporting harvested mesenchymal  

stem cells from a Petri dish to a site of tissue injury, maximizing  

cell viability while maintaining pluripotency.‖ 
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Having completed a detailed analysis of the objectives, functions, constraints, and specifications, 

we now have a much clearer of the design space in which our delivery system can be created.  

We are now able to form a more concise client statement. 

―Design and develop a hydrogel based system for safely transporting harvested 

human mesenchymal stem cells from a culture flask to the site of tissue injury, 

maximizing cell viability while maintaining pluripotency.  The human 

mesenchymal stem cells should be incorporated into a hydrogel at a density of 

2000 cells per 750 µl and maintain 60% cell viability after 10 days.  The cells 

must be transported to the delivery mechanism while maintaining this cell 

viability and pluripotency.  Upon delivery from the mechanism to the injured 

tissue site, 45% of cells must remain viable, as well as be located within the 

hydrogel to promote migration and integration with the surrounding tissue.  The 

hydrogel itself must maintain its structural integrity through the delivery process, 

protecting the cells in the mechanism as well as at the site of injury until 

degradation.‖ 

4.5. Conceptual Designs 
 

At first our conceptual designs focused on the needle head. Our team thought that 

manipulating the forces induced on the needle head could have a positive effect on the viability 

of the cells. Here are some of the designs that were constructed and a brief statement about each 

design. 

 

Figure 17: Conceptual Design 1 
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Conceptual design 1 was a surface treated polymer lining for the needle head. This design 

was implemented to reduce the shear forces on the cells as well as create a flexible lining 

which could form to the gel.  

 

Figure 18: Conceptual Design 2 

 
 

Conceptual design 2 used a multi-porous needle which was created to limit the shear force 

induced on the cells by allowing for the gel to perfuse out of the holes and allow for more 

surface area for ejection.  

 

After consulting and proceeding through the design process, the design team decided to 

gear our conceptual designs towards phase 2 of the process which was the loading phase. We 
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formulated out conceptual designs based on the objectives that were formulated moths ago such 

as reducing media loss, reducing shear force, and cell viability. The following are some 

conceptual designs geared towards the loading phase as well as a brief description of each.  

 

 

 

 

 

 

Figure 19: Conceptual Design 3 

 
 

Conceptual design 3 was created to use a cartridge that can be loaded from the rear. This 

delivery method exposes the cells to forces in one direction, ejection.  
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4.6. Design Matrix for Conceptual Designs 
 

After formulating the conceptual designs, the next step was to evaluate the conceptual 

designs based on objectives and functions, and choose the appropriate design. The objectives and 

functions the design team thought was necessary for the design to possess include: maintain 

hMSC viability, easy to load, simple to use, cost effective, compatible with existing instruments, 

decrease media loss. As can be seen from the table, the cartridge design was the nest design and 

is what we used as our final design. 

 

Table 5: Design Matrix for Conceptual Design   

 CD1 CD2 CD3 

Maintains hMSC viability 3 3 7 

Easy to load 4 4 8 

Simple to use 5 5 4 

Cost effective 1 3 6 

Compatible with existing instruments 5 5 5 

Decreases media loss 3 3 8 

Total 21 23 38 

 

 

 The cartridge design (Figure 19: conceptual design 3) maintains hMSCs viability better 

then the other conceptual designs because of forces are induced only in the ejection phase. The 

cartridge design is easy to load because the cartridge can be easily loaded in the back and is user 

friendly, it requires less force then the other methods of loading and unloading of the gel through 

the needle.  The design is simple to use as explained before, and extremely user friendly. It is 

cost effective because it does not require manufacturing like the other conceptual designs. The 
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design is compatible with existing instruments because it can easily fit in the incubator and the 

gel can actually grow within the cartridge in the incubator. The design also decreases media loss 

better than the other conceptual designs because the cartridge protects the gel from media loss 

and guides until ejection.  

 

4.7. Final Design 
 

The final design was created based on the conceptual design. The figures explain how the final 

design works. 

 

Figure 20: Cartridge design in test tube rack 

 
Cartridge design can easily fit in a test tube rack which can fit within a incubator therefore 

allowing the gels and cells to grow within the design for easy implementation into the 

syringe. Note how the plunger is attached to the cartridge. 
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Figure 21: Align the syringe and cartridge 

 
 

Cartridge aligns with the lumen of the syringe in the back for easy loading that requires 

little force. 

 

Figure 22: Insert cartridge into syringe 

 
 

This is user friendly and again requires little force to implement. It is easy to load and takes 

away the shear forces induced normally by the standard method of delivery. 
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Figure 23: Press plunger to eject syringe 

 
 

The cartridge guides the cells in the gel through out until it reaches the needle. This allows 

for minimal media loss and secures that the cells will only be exposed to forces when 

ejected. 

 

5. Methods 
 

In this chapter we discuss the process to achieve the objective of our project: the 

transportation of hMSCs while retaining a sufficient level of cell viability. We divided our 

project into two parts, designing a delivery vehicle and mechanism. In part one, designing a 

delivery vehicle, we explain the steps for: culturing hMSCs, the fabrication of hydrogel, and the 

incorporation of hMSCs into hydrogel. In part two, designing a delivery mechanism, we explain 

the steps for:  the transportation of the hMSC seeded hydrogel via a syringe, and the 

computational fluid mechanics required.  
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5.1. Part one: Delivery vehicle 
 

In this section we discuss the procedure and protocols for the culturing of hMSCs, the 

fabrication of the hydrogel, and the integration of the hMSCs with the hydrogel. All procedures 

were performed in a sterile environment within a Class II A/B3 Biological Safety Cabinet, hood. 

HMSCs seeded in hydrogels were compared to hMSCs in media.   

 

5.1.1.  Culturing hMSCs 
 

We obtained hMSC P-14 in a cryovial, frozen in a liquid nitrogen cryotank from Glenn 

Gaudette (a Professor at WPI). Using proper thawing protocols (Appendix A), obtained from 

Gaudette laboratory, the cells were thawed and placed into tissue-culture treated BD Flacon T-75 

flask. Briefly, the cells were seeded with a 0.2 µm vented blue plug seal cap and DMEM 

(Dulbecco’s Modified Eagle’s Medium) containing 10% Fetal Bovine Serum and 1% Penicillin-

Streptomycin Solution was used as the media. During the thawing procedure, at a follow-up 

time, a cell count was taken following the proper cell counting protocol (Appendix B) obtained 

from Gaudette laboratory.  

Cells were placed and stored in an incubator at 37°C (5% CO2) for a period of 7 days, 

changing the media at days 1, 4, and 7. On day 7, T-Flask containing cells (hMSCf) were viewed 

under an inverted microscope and it was found that the flask was over-populated by plated 

hMSCs. DMEM inside the hMSCf was removed with a Pasteur pipette and 5 ml of Trypsin (from 

Mediatech Inc, Herndon VA, 02771) was added once to hMSCf. After 5 minutes, the hMSC 

detached from the surface of the T-Flask. Afterwards 5 ml of DMEM was added to hMSCf to 
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inhibit Trypsin activity. This solution was removed from hMSCf with the pipette and placed in a 

15 ml conical tube. Following steps 5-8 of the thawing protocol, the solution was placed in two 

new T-75 flasks and into an incubator. 

 Cell media inside hMSCf were changed on the same days as initial hMSCf, day 1, 4 and 

7, after plating and splitting performed as seen fit. 

5.1.2. Fabrication of hydrogel 
 

We obtained four hydrogels, 0.7 g PGA, 5.8 g PEG, 7.0 g CMC, and 0.7 g HA, in 

powdered form contained within 15 ml conical tubes from Al Prescott (CEO of Crescent 

Innovations) and stored them at room temperature. Four sterile 50 ml beakers containing stir bars 

were placed on a scale under a hood.  The scale was calibrated to disregard the weight and 0.7 g 

of each hydrogel was measured. Next, 23 ml of fresh DMEM was added into their respective 

beakers making an approximate 3% concentration. The beakers were covered with a sterile gauze 

and aluminum foil to prevent evaporation and then placed on a stir plate running at 200-300 rpm 

for 20 hours. Afterwards, a gel was formed and stored in an incubator at 37°C. The procedure 

was performed under the supervision and instructions of Al Prescott.  

5.1.3. Integration of hMSCs into hydrogel & testing for viability 
 

Media inside hMSCf was removed with a Pasteur pipette and 5 ml of Trypsin was added 

to the hMSCf. After 5 minutes, the hMSC detached and another 5 ml of DMEM was added to 

hMSCf. The solution was removed from hMSCf using a pipette and placed in a 15ml conical 

tube. Steps 5 and 6 from the thawing protocol were followed, but a new T-Flask was not used. 

After re-suspension, for uniform cell distribution, 1ml of hMSC-DMEM solution was placed in 

each well of a tissue culture treated Multiwell 24 well plates. Each row, with 4 wells per row, 
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was designated to specific hydrogels and 1ml of hydrogel solution was place into their respective 

wells. The last 2 rows were left with only hMSC-DMEM solution to serve as the controls. For 

Visual description can be seen in Appendix C.  

5.1.3.1. MTS Assay 
 

MTS Assay solution was added to the each well of the Multiwell 24 well plate containing 

hMSC seeded hydrogel. 0.22ml of MTS Assay solution was added to wells that contained hMSC 

seeded hydrogel. 0.11ml of MTS Assay solution was added to wells that contained only hMSCs 

in media solution. Well plate was placed back into incubator for 2 hours to attain suitable 

absorbance readings. 300µml was taken from each well on the Multiwell 24 well plate and place 

into wells on a Multiwell 96 well plate filling 3 wells, with 100µml in each. 96 well plate was 

placed into Spectramax 250 to assess absorbance levels. For further detail see Appendix B 

5.1.3.2. Histology Staining 
 

For each well of the 24-well plate, we first removed most of the solution using pipette. 

Then we fixed the cell with approximately1ml of parafornaldehyde per well for ~10minutes. 

After 10 minutes, we rinse the well with tap water and removed the mixture with vacuum pipette. 

Next, we added approximately1ml hematoxylin into each well and let it sit there for ~4minutes. 

After 4minutes, we repeatedly rinse the well with tap water and used a vacuum pipette to remove 

the contents from the edge of the well until blue staining can be seen uniformly in the center of 

the well.  
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5.2. Part two: Delivery mechanism 
 

In this section we discuss the procedure and protocols for the transportation of hMSC 

seeded hydrogel via a syringe.  All procedures were performed in a sterile environment within a 

Class II A/B3 Biological Safety Cabinet, hood. HMSCs seeded in hydrogel were compared to 

hMSCs that did not pass through a syringe.   

5.2.1.  Syringe Methods 
 

HMSC seeded hydrogel were placed into 5cc syringe (from Becton Dickinson & Co., 

Franklin Lakes, New Jersey, 07417-1884) using two different techniques, loaded and standard, 

and then expelled out of a 22G1 Precision Glide Needle (from Becton Dickinson & Co., Franklin 

Lakes, New Jersey, 07417-1884). Solution was then assessed with histology staining and MTS 

assay to provide results on which method maintained cell viability.  

5.2.1.1. Standard method  
 

In the standard method, hMSCs seeded hydrogel in a 24 well-plate were withdrawn and 

expelled through the needle.  

5.2.1.2. Loaded method  
 

In the loaded method hMSCs seeded hydrogel in a 24 well-plate were withdrawn with a 

10 ml pipette. Solution was expelled into the syringe, loading it from the back end with the 

plunger removed. Once loaded with the hMSCs seeded hydrogel, the plunger is placed back and 

the solution expelled out through the needle.  
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5.2.2. Computational fluid mechanics  
 

In order to better understand exactly what forces and motions cause cell lysis, we 

analyzed the fluid mechanics of our delivery vehicles upon passage through hypodermic needles 

of various gauges.  We used tested our varying delivery methods using 18, 22, and 27 gauge 

needles.  We expelled normal media through each needle using normal, non-excessive force.  We 

measured the time it took to expel 1.5ml of media through a 22 gauge needle.  The average time 

of non-excessive expulsion was 4.12 seconds.  For the sake of simplicity, we rounded this time 

down to 4 seconds.  Based on the length and diameter of the 22 gauge needle, we calculated the 

volumetric flow rate.  We used this rate as a base for the rest of our calculations. 

We first calculated the Reynolds number for our gels.  The following equation was used 

in order to determine the Reynolds number: 



VL
Re  

In this calculation, ρ denotes the fluid density of the vehicle, V is the mean fluid velocity, L is 

the length and µ is the viscosity of the vehicle. 

We used the following We then calculated the pressure gradient throughout the length of 

the needle using the following equation, where dV/dt is volumetric flow rate through the needle, 

µ again is viscosity of the fluid vehicle, R is the radius of the needle and L is the length again. 
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Based on this value, we calculated the shear forces acting between the fluid particles 

using this equation.  Again, R is the radius, ΔP denotes the change in pressure, and Δx denotes 

position of the fluid being measured with respect to the distance from the wall of the needle. 
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6. Results 

6.1. Part 1: Fabrication of Hydrogels 
 

During the fabrication of each hydrogel, CMC, PEG, and HA had the same red coloration 

from the DMEM (10% fetal bovine serum) solution that used as the media for hydration of the 
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hydrogels. PGA did not have the red coloration, but when the hydrogel came in contact with 

DMEM, it began to change from red to light pink and remained at a yellow coloration. DMEM 

solution used in providing nutrients to hMSCs also has a pH indicator which causes the DMEM 

solution to change color when an environment is too acidic (yellow) for an hMSCs culture. After 

constant mixing (of the solution and hydrogel in powder form) for 19 hours over a magnetic stir 

plate, the solution became viscous. The viscosity was later quantitatively evaluated, but HA was 

the most viscous of all four hydrogels. PEG was the least viscous. PGA was eliminated from 

further testing because of its high acidic properties indicated with the change in coloration from 

red to yellow during the fabrication of the hydrogel.  

6.2. Hydrogel incorporation with hMSCs  
 

The follow sections describe the results of MTS assay and histological testing that was 

conducted in this study.  

6.2.1. Part 1: Incorporation into T-flask and cell count 
 

The hydrogels that were incorporated into four T-flasks of hMSC culture and incubated 

for a period of 13 days acquired cell counts which are seen in Table 6 below: 
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Table 6: Cell Count of hMSCs after incorporation within hydrogels via 

Trypan Blue Staining  

 PEG CMC HA 

# live cells 357 15 129 

# dead cells 6 23 3 

#Totals cells 363 38 132 

Cell Viability % 98.3 39.5 94.5 
(PGA hydrogel and data were discard for suspicion of contamination) 

6.2.1.1. Incorporation into 24-well plates and MTS assay 
 

Hydrogels were placed into 24-well cell culture plates. Three main tests groups were 

setup. Test group one consist of 1 ml hydrogel and 1 ml of cell culture which were placed into 

the well in that sequence. Eight wells were made with two wells associated with each hydrogel. 

Test group two consists of 1 ml of cell culture and 1 ml of hydrogel which were placed into the 

well in that sequence. Eight wells were also made with two wells associated with each hydrogel. 

Test group three consists of eight wells each with 1ml of cell culture as the negative control.  

The 24-well plate was incubated for six days and then MTS Assay was performed. Each 

well in the 24-well plate were distributed into 3 wells of the 96-well plate. Each well consists .2 

ml of solution from the 24-well plate. The absorbance levels of each hydrogel in test group one 

and two, and control can be seen in Figure 24 and 25. The calculations and raw data can be seen 

in Appendix D. 
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Figure 24: Test Group 1 

 

 
Figure 25: Test Group 2 

Adding hydrogel before the incorporation of hMSCs (Hydrogel then Cell) resulted in 

higher absorbance levels, which meant that there were more cells. Therefore we conducted 

further testing with this sequence of incorporation. Because of a small sample size (n=2), more 

test samples were created that consisted of hydrogel then cell method of incorporation of hMSCs 

and hydrogel. Figure 26 shows the absorbance levels from a MTS assay with a larger sample size 

(n=5) of hydrogel then cell. The calculations and raw data can be seen in Appendix E.  
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Figure 26: Test Group 1 increased sample size 

 

6.2.1.2. Incorporation into 24-well plates and Histology 
 

Histology results show that hMSCs incorporated with HA has the most distinct visibility 

of hMSCs. It was difficult to determine the three-dimensional distribution between hMSCs 

incorporated in HA, CMC, and PEG. The two-dimensional image from digital photograph did, 

however, portrayed layers which can be seen in Figure 27 and Figure 28 which are indicated 

with the green boxes. Figure 27 is picture of our control group where hMSCs are in cell media 

without incorporation into hydrogel where layers of plated hMSC are seen indicated in green. 

There were plated hMSCs behind the purple hematoxylin stained hMSCs. Figure 28 is picture of 

HA hydrogel with hMSCs incorporation. Plated hMSCs were not visible in CMC hydrogel, but 

dead cell matter was visible which are indicated in red in Figure 29, thus eliminating it as a 

possible delivery vehicle. The hMSCs within PEG hydrogel were visible but not as distinct as the 

hMSCs of HA hydrogel. There were not much purple staining from the hematoxylin, but three-

dimensional distribution could be seen which are indicated in green in Figure 30.  

 



69 

 

 
Figure 27: Histological result of control group without hydrogel and green boxes indicate 

layering of hMSCs 

 
Figure 28: Histological result of hMSCs with HA hydrogel and green boxes indicate 

layering of hMSCs 
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Figure 29: Histological result of hMSCs with CMC hydrogel and red boxes indicate dead 

hMSCs 

 

 
Figure 30: Histological result of hMSCs with PEG hydrogel and green boxes indicate 

layering of hMSCs
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6.2.2. Part 2: Transportation of hMSC-hydrogel solution and MTS Assay 
 

Based upon the cell number of the MTS Assay and histological results, we have 

concluded that HA and PEG hydrogel should be further tested and CMC was eliminated as a 

possible delivery vehicle because it resulted in dead cell matter as seen in Figure 29. We 

experimented with the methods of transferring the hMSC-hydrogel serum, mentioned in chapter 

5.2.1. The MTS assay results of the both methods with HA and PEG hydrogel can be seen in 

Figure 31 with the six different test groups and the raw data can be seen in Appendix F. Overall, 

the loaded methods of both PEG and HA did give as much cell number as compared with the 

standard methods. However, loaded control (hMSCs in cell media) had the highest cell number 

with over 45,000 cells. Therefore, with conflicting results we decided to conduct computational 

fluid mechanics and histological testing of PEG and HA via loaded and standard methods. Also, 

the statistical p-value of 0.011284 was computed using ANOVA which compared Loaded HA to 

standard HA. The computation can be seen in Appendix F. 

 
Figure 31: Cell Viability of Transfer Methods of HA and PEG 
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6.2.2.1. Computational Fluid Mechanics 
 

We conducted computational fluid mechanics to evaluate PEG’s and HA’s Reynolds 

number to determine which one had the most turbulent flow which induced stress force on the 

hMSCs when passing through the needle. HA and PEG, therefore, were tested for their viscosity 

via viscometer. The viscosity is needed to determine the Reynolds number, unitless value, to 

assess whether our hydrogel creates a turbulent or laminar flow. The viscosity of PEG is μPEG  = 

0.001 Pa*s and HA is μHA  = 25.283 Pa*s (calculations are in Appendices G and H).  The design 

team decided to calculate the force through the plunger  as a proof of concept proving when 

incorporating the delivery vehicle with the mechanism it proved to be better than then standard 

method of delivery (calculations are in Appendix G)  We used the diameter of a 22-gauge needle 

to determine the Reynolds number of PEG and HA. The RePEG =11056 and ReHA=2.357. 

Overall, HA resulted in a laminar flow and PEG resulted in a turbulent flow. 

6.2.2.2. Transportation of hMSC-hydrogel solution and Histology 
 

The histological results can be seen in Figure 32-37 of the six test groups. Correlated to 

the cell viability of the transfer methods, standard method with HA had visibility of the hMSCs 

which is indicated in green in Figure 32. However, loaded method with HA also had visible 

hMSCs which are indicated in green in Figure 33. The standard and loaded methods of PEG had 

dead cell matter which was indicated red in Figure 34 and 35. The standard and loaded methods 

of control also resulted in dead cell matter which is indicated in red in Figure 36 and 37.  
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Figure 32: Histological result of standard method with HA and green boxes indicate viable 

hMSCs Many hMSCs, that appeared viable, were found throughout the HA 

 
Figure 33: Histological result of loaded method of HA and green boxes indicate viable 

hMSCs, which were numerous in the HA 
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Figure 34: Histological result of standard method with PEG and red boxes indicate dead 

hMSCs. 

 
Figure 35: Histological result of loaded method of PEG and red boxes indicate dead 

hMSCs. 
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Figure 36: Histological result of standard method with hMSCs in media and red boxes 

indicate dead hMSCs. 

 

 
Figure 37: Histological result of loaded method with hMSCs in media and red boxes 

indicate dead hMSCs. 
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From the cell viability and histological results from using the two different transfer 

methods, we can see that the hMSCs were adversely affected when passing though the needle 

during the standard method of delivery which can be seen in Figure 36 and 37. Also, when the 

hMSCs were incorporated into HA hydrogel, the cell viability was greater than without any 

hydrogel incorporation. Qualitatively, more hMSC visibility was seen when incorporated with 

HA hydrogel than with PEG. Based on these results, we have decided that HA hydrogel is the 

most optimal delivery vehicle to transport the hMSCs.  

 

6.2.2.3. Loaded and standard method of delivery of hMSCs within HA hydrogel 
and MTS Assay 

 

Another MTS Assay was conducted to determine whether standard or loaded methods of 

delivery maintained the most cell viability. The calculations and raw data can be seen in 

Appendix J. The results can be seen in Figure 38 where it showed that HA under loaded method 

of delivery had the highest cell number.  

 
Figure 38: Cell Viability of Transfer Methods of HA. 
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6.2.2.4. Loaded and standard method of delivery of hMSCs within HA hydrogel 
and Histology 

 

The histological results can be seen in Figure 39-43. For this test the control group, in 

Figure 39 consists of hMSCs that were not incorporated with hydrogel and was not delivery by 

standard or loaded methods. The hMSCs of the control group was transported to 24-well plates 

using a pipette. The control group served to compare the histological results from test groups: 

Standard hMSCs within HA, Standard hMSCs in media, Loaded hMSCs within HA, and Loaded 

hMSCs in Media. Both Figure 41 and 43, hMSCs in media, without incorporation with hydrogel, 

did not have similar cell morphology as our control group. However, Figure 40 and 42 had 

similar cell morphology with control when incorporated with HA. The loaded method of hMSCs 

incorporated with HA had the most similarity with the control group.  

 

 
Figure 39: Histological result of Control group not delivered and not incorporated with 

hydrogel 
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Figure 40: Histological result of standard method of hMSCs within HA 

 
Figure 41: Histological result of standard method of hMSCs in media 
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Figure 42: Histological result of loaded method of hMSCs within HA 

 
Figure 43: Histological result of loaded method of hMSCs in media 
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7. Analysis and Discussion 

7.1. Preliminary Delivery Vehicle Analysis 
 

The MTS assay, histology readings, and three-dimensional distribution were the tests 

which aided in our decision to use hyaluronic acid (HA) as our hydrogel and delivery vehicle of 

choice.  

In our preliminary MTS assay using hMSC suspended on top of PEG, HA, CMC, and 

PGA hydrogels. After incorporating the hMSCs with PGA it was clearly evident that the acidic 

nature of PGA limited the viability of hMSCs as well as the film of lysed matter on top of the 

gel. These observations along with consultation from our clients allowed us to limit the use of 

PGA. The design team then decided to proceed with the other three hydrogels and conduct an 

MTS assay. In the MTS assay the team decided to conduct the MTS assay by incorporating 

hMSC on a 24 well plate, with half being suspended on top of the gel and half suspended on the 

bottom of the gel. This would eventually prove which hydrogel intermixed or provided three 

dimensional distributions of hMSCs as well as which method we should use in further testing. 

The results showed that incorporating the cells suspended on top of the hydrogel resulted in the 

highest viability and cell number, therefore the team decided to proceed with this method of 

incorporation.  

The results show that CMC did not provide a suitable viable environment for hMSCs 

with its initial 39.5 % viability outlined in Table 6 (Results section). Our hypothesis was further 

proven by the histology readings using H & E stain showing hMSCs in the CMC matrix in 

Figure 29 (Results section). Comparing hMSCs in the CMC matrix to PEG, HA, and the control, 

the cells do not look as uniform or disperse as they do in other gels. The cells ball up and look as 
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if they are dead from the histology readings. This allowed us to rule out CMC as a possible 

delivery vehicle.  

This left the design team with two choices for possible delivery vehicles which was PEG 

and HA. Since both had similar readings for MTS assay and histology readings compared to the 

control, we decided to proceed with these two gels to secondary testing involving three 

dimensional distribution, fluid mechanics testing, and processing the gels with hMSCs through 

two different delivery mechanisms. 

7.2. Secondary Delivery Vehicle Analysis 
In order to distinguish which delivery vehicle supported cell viability with providing 

three dimensional distributions, further testing had to be done. To understand, the nature of these 

gels it is important to describe the viscosity. The HA hydrogel is very thick and heavy and moves 

like molasses, where as PEG is like water and moves very rapidly. Therefore from observation it 

was clearly evident that HA provided three dimensional distribution of hMSCs compared to 

PEG. Yet we had to prove this results which will be further explained. 

Our design team wanted to first figure out which gel caused turbulent flow compared to 

laminar flow. Turbulent flow causes rotation of fluid particles within the pipe which causes 

constant shearing along the pipe wall and this is what limits the viability of cells when ejected 

through a needle which acts as our pipe. Laminar flow allows for a fluid linear ejection of the 

fluid particles and limits shearing occurring and benefits viability of cells.  A diagram of 

turbulent vs. laminar flow is provided in Appendix (I). Therefore we decided to use a Viscometer 

(find details from Al) and test the viscosities of PEG and HA. Our team decided to calculate the 

Reynold’s number of each hydrogel. The Reynold’s number determines whether a fluid is 

laminar or turbulent, if a fluid has a Reynold’s number above 300 than it is considered turbulent. 
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As mentioned in chapter 6.2.2.1, HA had a Reynold’s number considerable lower than 3000, 

therefore, categorizing it as laminar. PEG had a Reynold’s number significantly higher than 3000 

categorizing it as turbulent.   

Or next step was to proceed to the actual test of comparing PEG and HA within two 

different delivery mechanisms. We decided to use the standard method of delivery which 

involves using a syringe and loading the gel through the needle and ejecting it out through the 

needle. The other mechanism was pipetting the hydrogel/hMSC combination and ejecting it in 

the back of the syringe and ejecting it through the needle. The results shown in Figure 31 and 

Figure 32 (Results section) prove that HA provides a better delivery vehicle for hMSCs. The 

histology readings show PEG which has lysed matter compared to HA which still has uniform 

and disperse cells after delivery seen in Figure 28. 

This concluded our decision to use HA as our delivery vehicle. The design team had to 

next think of a unique delivery mechanism to complete the project goals. 

7.3. Preliminary Delivery Mechanism Analysis 
 

After deciding upon a suitable delivery vehicle, our next step was to create a delivery 

mechanism. The design team decided upon using conceptual design three which was using a 

cartridge that is loaded from the rear of the syringe for a variety of reasons. It is cost effective in 

that little manufacturing is needed, which benefits the users tremendously. It is compatible with 

existing medical instruments. It fits in a test tube rack, incubator, and under a sterile hood. It can 

vary in size for different sized syringes as well. It is easy to load because the hMSCs in the 

hydrogel matrix are grown in the cartridge and then easily loaded in the rear. The cartridge 

decreases media loss and maintains the viability of the cells by only exposing it to forces when 

ejected. We decided to conduct preliminary MTS test by comparing our design to the standard 
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method of delivery. The standard method of delivery is defined as loading the hydrogel through 

the needle and ejecting it though the needle as well. As can be seen in Figure 38 (Results section) 

the results show that our design maintains viability at a greater rate than the standard method. 

This concludes that our design only exposes the cells to forces in the ejection state. This also 

proves that forces induced on cells limits their viability. 

7.4. Secondary Delivery Mechanism Analysis 
 

After concluding that our design maintains cell viability by exposing the cells to forces 

when being ejected, we wanted to combine the delivery vehicle in the delivery mechanism and 

relate them to the standard method of delivery. Three separate tests were conducted using MTS 

and histology; standard method of delivery comparing hMSCs in media vs. hMSCs in HA 

hydrogel, loaded method of delivery comparing hMSCs in media vs. hMSCs in HA hydrogel, 

and loaded method of delivering hMSCs in HA hydrogel vs. standard method of delivering 

hMSCs in HA hydrogel (Figures 39-43, Results section). As can be seen through the histology 

pictures the loaded delivery mechanism using HA hydrogel as a delivery vehicle shows the most 

cells which are viable compared to the other methods. The MTS assay also validates this theory 

as well. Therefore it is safe to say that the combination of using HA hydrogel as a delivery 

vehicle and loading it from the rear therefore exposing it to forces ejected from the rear is clearly 

a better method than the standard method of delivery. The unique aspect about the device is that 

the cells in the delivery vehicle can be grown in the cartridge in an incubator and then loaded 

from the rear and injected to the injured tissue. 

7.5. Limitations of Testing Methods 
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Some of the testing methods we used had limitations. Due to the high viscosity of 

hyaluronic acid and the slow rate of diffusion, only limited testing methods could be used for 

assessing cell viability. Another limitation of using hydrogel is a proper way of assessing three 

dimensional distribution due to the gel like nature of HA. These topics will be discussed in 

detail. 

HA hydrogel is a highly viscous matrix that compares to molasses in its movement. It 

does not allow diffusion quickly because of this high viscosity. This limited the testing protocols 

we could use. For example, we tried to use LIVE/DEAD assay but the dye could only be applied 

for a period of 45 minutes before killing the cells. When the design team tried to use this method, 

they could not visualize any cells under a fluorescent microscope and the theory was because the 

dye could not diffuse through the gel. Therefore we were limited to the only method of 

quantifying cell viability which was the MTS assay. Though MTS assay quantifies how many 

cells are located in the gel and does not distinguish whether these cells are dead or alive, this 

along with histology was a sufficient enough method to distinguish cell viability.  

Another limitation is qualifying three dimensional distribution. Because of the three 

dimensional nature it was hard to show pictures of this on a two dimensional scale. The usual 

method is to take slices of the gel and show different levels of the material to prove three 

dimensional distribution of cells. Our first thought was free drying the hydrogel and then taking 

slices of the gel, but this would show dead cells which would disprove our viability. Because of 

the gel like nature of the hydrogel, it was difficult to display the three dimensional nature of the 

cells in the allotted time. Therefore expressing the three dimensional nature verbally was the 

only method of relaying the three dimensional nature. 
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8. Conclusions 
 

Based on the testing we had done and our analysis that has been discussed in previous 

chapters, we were able to interoperate our results and determine conclusions that can summarize 

our attempts to design a suitable vehicle and mechanism for delivering hMSCs.  

Both PEG and HA proved to be suitable materials in which to contain hMSCs.  After 

being cultured, they were able to maintain cell viability as well as allow for proliferation within 

the gels.  However, only HA was able to do so in a three dimensional manner, which, according 

to our literature review, allows for greater success in producing new tissue at the site of injury.  

We determined this to be true based on our histology results, shown in figure --, and by 

observing cells at different depths using a microscope. 

Our computational fluid mechanics analysis suggests that cell previous cell viability 

difficulties through delivery are caused by the internal shear forces between the fluid particles 

themselves cause by extreme turbulent flow.  As a result, it is important that the hydrogel 

delivery vehicle be viscous.  The viscosity of the vehicle allows for safer transport of our hMSCs 

by promoting a more laminar flow during injection through a hypodermic needle.  Our MTS 

assay and histology results supported our assessment, showing that cell viability after being 

passed through a needle is significantly higher in HA, a viscous gel, than in media, a fluid with 

similar viscosity to water. 

The same results show that cells are compromised due to the forces caused by forces 

created between the fluid vehicle and the wall of the needle.  Each time the cells were passed 

through the needle, regardless of the vehicle, cell viability was lost.  Based on this assumption, 

we naturally determined that it was important to limit the amount of passes through a needle.  

Our design of a cartridge loaded mechanism into the syringe to allow for easy culturing of cells 
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within the gel as well as easy and immediate delivery to the site of injured tissue.  Upon testing 

our mechanism in comparison with standard delivery methods using hMSC seeded hydrogels, 

we confirmed that our design in fact allowed for greater cell viability than standard procedures. 

Overall, we developed a suitable delivery vehicle that was able to allow for cell viability 

while promoting three-dimensional distribution and providing protection upon delivery through a 

hypodermic needle.  The second part of our project resulted in the design of a novel delivery 

mechanism in which stem cells can be cultured within a viscous hydrogel vehicle inside of a 

cartridge-like cell culturing well.  When needed, the cartridge, complete with cell seeded gel, can 

be taken from the incubator and inserted into a pre-fit syringe and be ready for immediate 

injection to the injury site.  Our complete design allows for an efficient, effective, and easy 

method for quickly delivering stem cells from the laboratory to operation room and into the site 

of injury of the patient. 

9. Recommendations 
 

After creating our final designs, the design team discussed possible methods of 

improving the design and the methods of testing. As stated in the discussion and analysis section 

we had limitations in some of the methods of testing. The design team came up with possible 

solutions for these limitations and a possible addition to the design. 

Quantifying cell viability was a limitation throughout the design. Due to the thick 

viscosity of the hydrogel, diffusion of dye became a problem and limited us using LIVE/DEAD 

assay and other assays to quantify cell viability. Our design team recommendation would be to 

use flow cytometry to quantify viability due to its ability to singly count live and dead cells. Due 



87 

 

to time and budget constraints, we were not able to use this method, but believe it would enhance 

the ability to truly quantify cell viability. 

Showing a picture of three dimensional distribution throughout the hydrogel was another 

limitation the design team experienced in the project. The design team’s recommendation was to 

freeze the hydrogel and use a dye to depict the cells in the gel, and cut vertical sections of the gel 

and show that three dimensional distribution occurred. 

The design team also wanted to check if the cells when delivered targeted the specific site 

of injury and made sure the cells help aid in the process of healing and not migrate to other parts 

of the body. Therefore the team recommends delivery the hydrogel and hMSCs with a 

chondrogenic differentiation media into animals with articular defects and doing in vivo studies 

to see if healing occurs after 6 months. This would truly promote our design as a potential 

solution to problems associated with delivering stem cells. 

A design recommendation the team came up with is creating a space saving cartridge 

with a screw in plunger. This would allow for the cartridges to have more room in the incubator, 

and could serve as a well plate which can be taken out and serve as a cartridge and loaded into 

the syringe. 
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Appendix A: Culturing hMSCs Protocol 
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Appendix B: Cell Counting and MTS Assay Protocols 
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Appendix C: Integration of hMSCs into hydrogel 

 
Figure 44: Two variations of incorporation of hMSCs into hydrogel within 24-well plate. 

 



98 

 

Appendix D: MTS Assay Data of Incorporation of hMSCS into 24-well 
plates with hydrogels (n=2).  

 
Table 7: Raw data of MTS Assay of the two variations of incorporation (n=2) 
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Appendix E: MTS Assay Data of Incorporation of hMSCS into 24-well 
plates with hydrogels then cell suspension(n=5). 

 
Table 8: Raw data of MTS Assay of hydrogel then cell incorporation (n=5) 
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Appendix F: MTS Assay Data of Transportation of hMSC-hydrogel 
solution 

 
Table 9: Raw data of cell viability of transfer method (n=2) 

 

Figure 45: Equation to determine cell number for cell viability of transfer method of HA and PEG 
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Table 10: Anova results of HA Loaded 
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Appendix G: Force Calculation of Plunger 
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Appendix H: Computational Fluid Mechanics calculations 
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Appendix I: Visual Description of Laminar and Turbulent Flow 

Fi

gure 46: Laminar v.s. Turbulent Flow 
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Appendix J: MTS Assay Data of loaded and standard methods of delivery 
of hMSCs within HA hydrogel 

 
Table 11: Raw data of loaded and standard methods of delivery of hMSCs within HA hydrogel 

 
Figure 47: Equation to determine cell number for cell viability of transfer method of HA 
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Table 12: ANOVA results of HA Loaded 
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Appendix K: Conceptual Designs of Needle  

 
Figure 48: Syringe Needle with hydrogel interior coating to reduce shear forces acting on hMSCs during withdrawal and 

expulsion. 

 
Figure 49: Syringe needle with multiple holes to reduce shear force and hMSCs loss during expulsion 

 



113 

 

Appendix L: Cartridge Conceptual designs  

 
Figure 50: Cartridge type syringe with interchangeable needle head. 

 
Figure 51: Syringe with Cartridge inserted from the back. O-ring provides air-tight seal to prevent leaking during 

expulsion. 
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Appendix M: Final Cartridge Design 
 

Step 1: Take one of the cartridges from the rack.  Step 2: Align the syringe and cartridge with plunger. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3: Insert Cartridge into syringe.     Step 4: Press plunger to eject 

contents.  

 

 


