
Ice Inspection Robot

A Major Qualifying Project Report:
Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

Degree of Bachelor of Science
By:

Derrick Brown (RBE)

Minkyu Lee (RBE/ME)

Mark Mordarski (RBE)

Matthew Richards (RBE)

Approved:

Prof. Ken Stafford, Major Advisor

Prof. Fred Looft, Co-Advisor

This report represents the work of four WPI undergraduate students, submitted to the faculty as
evidence of completion of a degree requirement. WPI routinely publishes these reports on its web
site without editorial or peer review.

Abstract
 The purpose of this project was to design, create, and test a robotic mobile platform

capable of housing and interfacing with an ice thickness measuring sensor. This robot was

designed to: drive across natural snow, ice, and water surfaces; follow a user-defined path; report

live position and heading information to a user. The unique auger-drive system of this robot was

designed to provide efficient movement across ice, as well as buoyancy and aquatic propulsion,

in the case of broken ice. A user interface was also designed and implemented as part of this

project. This interface was designed to: display the live information sent by the robot; allow the

user to send instructions to the robot; prompt the user for input; inform the user of the program’s

progress and state.

ii

Acknowledgements
We would like to thank the following parties for their support throughout this project:

• Professor Kenneth Stafford, for providing his vast experience and support.

• Professor Fred J. Looft, for providing us with lab space and funding.

• Geophysical Survey Systems, Inc. for generously donating their time and consultation.

• Jake Cutler for assistance with aluminum welding.

• Neal Whitehouse for his advice.

• Mike Fagan for his manufacturing expertise.

• Jeff Gorges for teaching us how to weld steel.

• Catherine Emmerton for being a sweetheart.

iii

Executive Summary
 In cold weather climates, frozen ponds and lakes are a source of entertainment for many

people. To ensure safety, there needs to be a reliable way to determine that the ice used is thick

enough to hold the weight of those on its surface. The purpose of our project was to design a

robotic solution to the problem of unreliable ice thickness reading. Such a robotic system would

need to be able to drive on ice and snow, survive in water, keep track of its position, detect the

thickness of ice, and send data to and receive data from a user. After review of the workload such

a project would require, the scope of the project was narrowed down to exclude the actual

sensing of ice. This left the goal of the project at designing and building a mobile, autonomous

robotic system capable of housing and interfacing with an ice sensor.

 The first step in the design phase was to research the capability of driving on ice.

Extensive research was done on current drive systems, including track, propeller, wheel, and

auger drives. After this research, it was apparent that the best drive method for this purpose

would be the auger drive. This drive system provides good traction and mobility on ice, as well

as the ability to float and drive in water. This was an important factor because, in the case of thin

ice, the robot may end up breaking through into the water beneath.

 After the auger drive type was decided upon, the specifics of the auger needed to be

decided. Factors that needed to be considered included weight, pontoon shape and size, blade

pitch and height, and strength. The total auger weight, along with the pontoon shape and size,

were important factors because they determined the buoyancy that each auger would provide for

the robot. The shape also determined the auger’s ability to pass over obstacles in its path. The

pitch of the blades determines the ratio of conversion from angular velocity of the augers to

linear velocity of the robot. The height of the blades determines the propulsion in water. The

strength of the auger as a whole is an important factor that determines survivability and

maintainability of the system.

 Concurrently with the auger design, the chassis was also being designed. The chassis

needed to be able house the drive train, motors, motor controllers, the robot controller, and any

sensors that the robot would use. In addition to housing these components, the chassis needed to

keep these components protected from the elements (excessive cold, water, etc.). The chassis

also needed to provide physical support for the augers to keep the system stable while driving. It

iv

was decided that polycarbonate would be the ideal material to construct the chassis from,

because of its relative strength, heat-insulating properties, and ability to be welded to form water-

tight seals. Later developments in the chassis design let to a sloped front section for ease of

surpassing obstacles, handles for ease of transportation, panels for access to interior components,

and a heat sync to compensate for the polycarbonate’s insulation of the heat from the motors.

 Next, a decision was made on how the robot would be controlled. A few systems were

considered, but rather quickly it was decided that the Neuron Robotics DyIO, in accompaniment

with a Fujitsu Lifebook, would be the ideal system. The DyIO provided a system in which all of

the low-level coding used for interfacing with sensors had already been completed. In addition,

performing the higher-level code on an internal Lifebook would minimize the potential of over

taxing the control system. These two components, used in conjunction, provided a relatively easy

base upon which the software system could be developed.

The next major system that was developed for the project was the sensor suite that would

be used for localization. The primary sensors that were considered were gyros, accelerometers,

compasses, encoders, and GPS. GPS was eliminated from the potential sensors rather early in

this design phase. The reason for this is that the range of error of a GPS is extremely significant

when compared to the scale on which this robot was intended to drive. Later in the design

process, accelerometers were eliminated as well. This was due to the complexity of designing a

complete IMU in the time that this project was to take place. These eliminations left encoders

and a gyro for driving straight, and the gyro and a compass for turning.

After choosing the sensors, the software architecture needed to be developed. The design

for the software was broken into three main components. The first was the GUI. This part of the

software needed to have the capability of interpreting the intentions of a user sending commands

to the robot, and displaying information that was sent from the robot to the user. In both

directions, the majority of information was sent through a map on the GUI. The user selects

target points for the robot to travel to by clicking on the map. The GUI displays the robot’s live

position and heading, as well as data points representing the thickness of the ice at certain

locations.

v

The next section of the software system was the communication between the Lifebook

inside the robot and an external computer for the user. After researching various techniques, this

task was accomplished by a private desktop connection over an ad hoc, computer-to-computer,

wireless connection. This provided the display from the Lifebook to be shown on the user’s

computer, and allowed input from the user’s computer to reach the internal computer.

Finally, the major portion of the software was the robot’s actual code. This included

interpreting the commands sent from the GUI, keeping track of positions from data acquired

through sensors, communicating with those sensors, driving control algorithms, and the sending

of positional data.

After each system of the robot was designed and fabricated in its own manner, these

systems were brought together and tested. Testing phases ranged from initial, stationary testing

of the driving, to indoor remote controlled driving, to outdoor remote controlled driving on ice,

snow, and water, and finally semi-autonomous driving of the robot through the GUI’s map

interface. There was also extensive testing of the sensors and GUI interface before they were

combined with the drive system and the rest of the robot. This testing led to optimized designs of

many of the robot’s systems, but it also revealed flaws in the project that could not be fixed

before the conclusion of the project.

Overall, most of the project goals were accomplished, and a few were surpassed. On the

other hand, a few goals were not met. The largest example of such a shortcoming was the robot’s

inability to keep track of its position, mainly due to its failure to drive straight. This failure was

likely caused by a combination of inconsistencies in the two auger blades that came from

manufacturing errors, and a false assumption that the auger blades would not slip or free spin on

ice. Attempts were made to change the way the robot determined if it was driving straight, but a

solution was not found before the end of the project.

Before a robotic project can be completed, certain social issues must be considered. For

example, any safety issues associated with a robot must be identified. For this robot, there are

two major safety concerns. The first is that the robot is relatively heavy and bulky for one person

to safely carry, and injuries may occur if it is handled improperly. To account for this issue, two

carrying handles have been designed on the top of the chassis. This makes it easier for one or

vi

two people to carry the robot, and reduces the chances of the robot being dropped. The other

safety concern is the blades on the augers. During motion, these blades spin fairly quickly, and

could cause injury if they are touched. There is not too much that can be done about this issue,

but in order to reduce the potential for injury, the blades were not sharpened after they were

delivered. Another social issue that needs to be considered is any potential job displacement

issues. This robot is designed to inspect ice autonomously. While there may be a few people

whose job would be eliminated if this robot were to become a large-scale solution, the number of

people would not be significant. Additionally, the robot still needs an operator, and such an

operator would not need to be highly trained, due to the simplicity of the GUI interface. Rather

than being displaced by this robot, a person could easily just be reassigned from an inspector to

an operator.

This project leaves room for future project groups to pick up the system and make

improvements. For example, an ice thickness sensor could be acquired or developed, and

interfaced with the platform. Similarly a GPS or other advance localization system could be

added to improve the robot’s ability to track its motion.

At the conclusion of this project, a semi-autonomous, mobile, robotic platform capable of

housing an ice sensor had been created. This robot met the majority of the specifications that

were set forth from the beginning of the project. The shortcomings in the project proved to be a

learning experience for the students involved. Important information about the engineering

design process had been acquired, and this knowledge will be applied to future projects in their

engineering careers.

vii

Contents
Abstract ... ii
Acknowledgements .. iii
Executive Summary ... iv
Table of Figures and Tables ... xi
Introduction ... 1

Problem Statement .. 1
Project Statement ... 1

Background ... 3
Dangers of Thin Ice ... 3
Methods of Measuring Ice... 4

Invasive Methods ... 4
Noninvasive Methods .. 5

Methodology ... 7
Propulsion/Locomotion Design... 7

Multi-Track Belt .. 7
Single-Track Belt ... 8
Propeller... 9
Wheels ... 10
Screw- Propelled Vehicle (Auger Driven Vehicle) ... 11
Decision ... 11

Auger Design ... 12
Auger Prototype ... 13
Auger: Final Design... 14

Chassis Design .. 18
Prototype Chassis .. 18
Final Chassis Design ... 19

Drive Train .. 21
Control System Design.. 23
Power Supply Design .. 24
Sensor Implementation .. 25
Software Design .. 27

Human-Computer Interface ... 27
External Computer-Internal Computer Interface ... 30
Robot Code .. 31

viii

Results and Analysis ... 38
Testing ... 38

Auger ... 38
Water testing .. 38
Battery Life .. 39
Graphical User Interface (GUI) ... 39
Computer to Computer Network ... 39
Robot Navigation ... 40

Evaluation .. 40
Budget Evaluation ... 42

Social Implications .. 45
Safety Issues .. 45
Occupational Issues ... 46

Conclusion and Recommendations ... 47
Suggestions for Future Work .. 47
Accomplishments .. 47

References ... 49
Appendices ... A1

Appendix A: Initial Auger Buoyancy Calculations ... A1
Appendix B: Final Auger Buoyancy Calculations ... A3
Appendix D: Cone Calculations ... A7

Front Cone .. A7
Back Cone... A9

Appendix E: Stability Calculations .. A11
Appendix F: Heat Calculations .. A17
Appendix G: Free Body Diagram (Torque Calculations) .. A19
Appendix H: Bill of Materials ... A21
Appendix I: Robot Code .. A23

AbSensor .. A23
AngleDialog.. A24
Auger .. A24
Clicker .. A26
Compass.. A27
ControllerController ... A28

ix

DirectController .. A29
Display .. A30
Encoder ... A33
Gyro .. A36
IceReading .. A37
ISensor .. A38
JoyStickDialog ... A38
Main .. A40
MapChooser ... A41
NavMap .. A42
Position ... A43
Robot .. A44
Triangle ... A52

x

xi

Table of Figures and Tables
Figure 1: Ice Claws ... 3
Figure 2: Minnesota Ice Thickness Guidelines ... 4
Figure 3: North Dakota Ice Thickness Guidelines .. 4
Figure 4: Gas Powered Ice Auger ... 5
Figure 5: 4-track belt drive Snowcat, 2-track belt drive Snow Truck .. 7
Figure 6: Single-track Snowmobile .. 8
Figure 7: Lotus concept Ice vehicle .. 9
Figure 8: Snow Tread Wheel .. 10
Figure 9: 1970 ZiL-29061 Screw Propelled Vehicle (Soviet Union) ... 11
Figure 10: Auger Concept Design .. 12
Figure 11: Prototype Auger Design .. 13
Figure 12: Model of Final Auger Design .. 14
Figure 13: Exploded View of Pontoon ... 15
Figure 14: Front Cone Flat Geometry ... 16
Figure 15: Aluminum Tubing ... 16
Figure 16: Front Cone Before and After ... 16
Figure 17: Fully Assembled Auger ... 17
Figure 18: Prototype Chassis .. 18
Figure 19: Assembled Prototype ... 19
Figure 20: Final Chassis Design ... 19
Figure 21: Assembled Final Design .. 20
Figure 22: Installed Heat Sink .. 20
Figure 23: Heat Sink Model .. 20
Figure 24: Chain Tensioning Explained ... 22
Figure 25: (Left) GUI Prior to Map Selection, (Right) Map Selection GUI 29
Figure 26: The GUI after a Map Has Been Selected .. 30
Figure 27: The GUI as the Robot is Moving .. 30
Figure 28: Model of the Code ... 31
Figure 29: Final Tests on Snow .. 41
Figure 30: Final Tests in Water .. 42
Figure 31: Handle of the Robot, and Auger Blade ... 46
Figure 32: Final Testing on Ice ... 47
Figure 33: Free Body Diagram of The Robot on Angled Terrain. .. A11
Figure 34: Auger Model with X, Y, and Z Coordinates and Explanation A11

Table 1: Decision Table for Propulsion/Locomotion Design ... 12
Table 2: Decision Matrix for Pontoon Material .. 15
Table 3: Proposed Budget Breakdown ... 43
Table 4: Budget Breakdown by Version ... 44
Table 5: Chassis Budget Breakdown .. 44
Table 6: Budget Breakdown by System .. 44

Introduction

Problem Statement

Across the nation, cold weather enthusiasts engage in winter activities occurring on ice.

These activities include ice fishing, ice skating, and snowmobiling, which all depend on the ice

being safe. Each year there is an average of 235 ice related deaths reported in the US alone.

There are several ways that cities attempt to prevent and reduce these incidents; however the

most common current method of ice inspection is not effective enough in terms of time, cost, and

labor. The most common method is creating a hole in the ice and taking a measurement with a

ruler; this takes a long time and only gauges the thickness of that one spot. Using satellites is

another method, but is not cost effective. It is apparent that a more efficient and effective method

of measuring ice thickness could make ice-borne activities more accessible and safe.

Project Statement

 The purpose of this Major Qualifying Project (MQP) was to develop a robot for

autonomously measuring ice thickness while moving over the surface of bodies of ice. After

some background research on methods of sensing ice thickness, it was found that Ground

Penetrating Radar (GPR) is the most effective method for measuring ice thickness. However,

GPR is extremely expensive, difficult to use, and far beyond the budget of this project. After

talking with the advisor of this project and contacting Geophysical Survey Systems, Inc. (GSSI),

the world’s largest manufacturer of GPR systems, it was decided to narrow the focus of the

project to developing a mobile platform. The intent is that a future project team could develop a

sensor for, or integrate an existing sensor into, this platform.

 The robot developed for this project, named Auger Driven Ice Surveyor (ADIS), was

designed to fulfill a number of requirements needed to effectively create a system with which an

ice sensor could be interfaced. These requirements included:

• Traveling on a natural ice and snow surfaces

• Sensing its location

• Receiving commands from the user

1

• Preserving itself if it falls through the ice

• Transmitting or storing data

The user interface needs to be capable of:

• Receiving data from the robot

• Creating a gradient map of thicknesses throughout the surveyed area based on
thickness and location data

• Displaying this map to a user

2

Background

Dangers of Thin Ice

Each year, there are an estimated 235 deaths in the United States that occur as a result of

people falling through the ice on a frozen lake or pond. According to the Minnesota Department

of Natural Resources’ (DNR) [2] ice-related fatality statistics there is an average of 6.4 deaths

per winter season in the state of Minnesota (based on the past 30 years of data). Over the past

five winters (2004/2005 through 2008/2009) 35% of the fatalities were from people traveling on

the ice by foot (including ice skates and skis), 41% of the deaths resulted from people falling

through the ice on snowmobiles or ATVs, and the remaining 24% are from people in passenger

vehicles (cars and trucks) [3].

235 deaths due to ice related accidents may not seem like very many, but there are

thousands of undocumented cases where people fell through the ice and did not die. There are

specially trained rescue teams who specialize in rescuing victims who have fallen through the

ice. Their methods are very effective and as long as someone is present to call for help, they can

often save the victims in time. However, as stated in the statistics above, there are times where

this is not the case and deaths do occur.

The best way to prevent death due to falling through

the ice is to take preventative measures. The most extreme

preventative measure would be never going out on the ice to

begin with, but this may be too harsh for enthusiasts. Many

public bodies of water are checked regularly to ensure that the

ice is safe for various activities. Minnesota’s DNR, like many

other state departments, recommends that anyone participating

in any activities on ice first checks the thickness to verify it is strong enough for the desired

activities (i.e. ice fishing, ice skating, snowmobiling, etc.). Most cases where someone fell

through the ice on a pond or lake occurred in a spot where, for whatever reason, the ice happened

to be thinner than the surrounding areas. This is why they also recommend carrying what they

call “Ice Claws” which are wooden handles with sharpened nails sticking out that could be used

ht
tp

://
w

w
w

.d
nr

.st
at

e.
m

n.
us

/s
af

et
y/

ic
e/

cl
aw

s.h
tm

l

Figure 1: Ice Claws

3

http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html
http://www.dnr.state.mn.us/safety/ice/claws.html

to grip the ice and pull themselves out if they were to fall through. See Error! Reference source

not found. for an image of what they look like.

The Minnesota DNR provides the rough guidelines shown below in Figure 2 which

indicate how thick the ice must be for various activities. North Dakota Game and Fish

Department [4] provides a similar graphic on their website shown in Figure 3. The general

consensus is that 4 inch thick ice is safe for activities on foot. However, this is for clear ice. Ice

that is opaque is considered to be weaker, usually by a factor of 2, which means 8 inches of

opaque ice is the minimum that is safe to walk on.

Figure 2: Minnesota Ice Thickness Guidelines

Figure 3: North Dakota Ice Thickness Guidelines

ht
tp

://
w

w
w

.d
nr

.st
at

e.
m

n.
us

/s
af

et
y/

ic
e/

th
ic

kn
es

s.h
tm

l

ht
tp

://
gf

.n
d.

go
v/

ed
uc

at
io

n/
ic

e-
br

oc
hu

re
.h

tm
l

Methods of Measuring Ice

There are a few ways to effectively measure the thickness of ice. Of all these methods, they can

be broken down into two subcategories: Invasive and Noninvasive. Invasive methods of

measuring the ice thickness require cutting through the surface. Noninvasive methods of

measuring the ice thickness will use a sensor that does not damage the ice in the process. Some

examples of noninvasive methods include Ground Penetrating RADAR (GPR), ultrasonic

sensors, and acoustic sensors.

Invasive Methods

There are several invasive methods of measuring ice thickness; however they are all similar in

theory: Break through the ice and measure the thickness. The most common methods involve

4

http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html

creating a hole in the ice and measuring the thickness with a ruler. One traditional way of

checking ice thickness is using an ice chisel or ice pick. In this method the user simply stabs the

ice with the chisel or pick until they break through to the water and

then measure the thickness with a ruler. A more modern way to break

through the ice in order to measure the thickness is using an ice auger

like the one shown in Figure 4, or simply a cordless drill with a

sufficiently long drill bit if only a small hole is needed.

ht
tp

://
w

w
w

.a
w

or
ld

of
re

nt
al

s.c
a/

im
ag

es
/e

qu
ip

m
en

t/l
aw

n-

The city of Worcester, MA employs the Department of Public Works

to check the ice thickness of all public bodies of water regularly.

Their current method of checking the ice thickness is to drill a hole

and measure with a ruler that has a hook on the end. While the general

consensus is that 4 inches of ice is safe enough for activities like ice fishing and ice skating, the

city of Worcester takes extra precautions and does not allow anyone on the ice until it is 6 inches

thick. On the ponds that are maintained for ice skating, there needs to be even more ice, at last 8

inches, because the machine used to clear off the snow is approximately 1500lbs.

Figure 4: Gas Powered Ice Auger

Invasive methods are the current standard; however there are negative consequences of using

them. They require breaking the ice which can lessen the structural integrity of the surrounding

ice, making invasive methods more dangerous when done repeatedly in a small area.

Additionally, invasive methods only measure at one specific location. Research shows that often

people fall through the ice in an area where the ice is thinner than the surrounding areas. By

drilling a few holes and measuring thickness, areas where the ice is thinner may not be identified

and accidents can still occur. This factor makes invasive methods less dependable.

Noninvasive Methods

Noninvasive methods use sensors to measure the ice thickness without physically altering the

ice. Some sensors that could work to accomplish this are: ground penetrating radar (GPR),

ultrasonic sensors and acoustic sensors. The most reliable technique appears to be GPR. These

systems have been proven to work for ice and snow applications [5]. They can reliably, and

accurately, measure the thickness of ice from thicknesses as thin as mere centimeters up to tens

of meters. Another feature is that radar can measure the thickness at varying distances from the

surface of the ice. CryoSat 2 [6], for example, is a satellite that was launched in April 2010 that

5

http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg
http://www.aworldofrentals.ca/images/equipment/lawn-garden/ice-auger-lg.jpg

is capable of measuring ice thickness of the Polar Regions from orbit with 1 centimeter of

accuracy. One negative aspect is that GPR systems can be quite expensive in comparison to other

technologies.

Ground Penetrating Radar equipped snowmobiles [7] are widely used in northern

Sweden. Several companies that work in car and tire industry do winter tests in Sweden where

test tracks are constructed on lakes during the winter. GPR equipped snowmobiles are lighter

than the cars and can be used to test the tracks to ensure sufficient thickness to keep cars on the

test track, and out of the water.

Ultrasound technology, similar to that used for sonograms, could, in theory, be used for

ice measurement, though no off-the-shelf sensors have been found through research. In theory if

a frequency could be found that penetrates ice but reflects off water, the travel time of the sound

waves could be measured to calculate the thickness.

The final noninvasive method that has been identified as a possibility is to tap the ice

with some predetermined force and listen to the sound it makes with an acoustic sensor. The

theory is that different thicknesses of ice would resonate at a different pitch when struck, though

this may be altered by the quality of the ice as well.

6

Methodology

Propulsion/Locomotion Design

 Selecting the method of locomotion for our robot was a core part of our design process.

Auger Driven Ice Surveyor (ADIS) needed to be able to effectively drive over natural ice and

snow surfaces. Because of this, the drive method was decided on after extensive background

research and comparison of various propulsion techniques.

 After the background research was completed, five different types of driving methods

were considered. These methods were: track belt drive, propeller driven, wheel drive, and auger

drive.

Multi-Track Belt

Figure 5: 4-track belt drive Snowcat, 2-track belt drive Snow Truck
Multi-track belt drives are a commonly used drive method for all-terrain vehicles. This

drive system is capable of moving on top of snow, ice, pavement, mud, and many others. A

majority of large construction vehicles, tanks, and snow vehicles use this system because of its

high traction in loose mediums (soft soil, mud, snow, etc.). The reason for this high traction is

that a tread has more points of contact with the driving surface, and the treads can be designed to

have a high coefficient of friction.

Although treads would offer a high maneuverability on ice and snow, there are a few

disadvantages to this drive system. Treaded vehicles generally have a slower maximum speed

7

than other types of drive offer. Additionally, the cost of these types of systems is usually more

than that of other systems.

Single-Track Belt

Figure 6: Single-track Snowmobile
Single-track vehicles, such as snowmobiles, use one tread in the rear for propulsion and

two skies in the front for steering. While this method of drive generally has a higher speed, it is

less agile than multi-track drives when turning. One of the major advantages to this type of drive

system is the capability to dynamically distribute weight, causing downhill travel to be more

efficient when weight is shifted properly. Additionally, a single-track vehicle can slow down or

accelerate more quickly by shifting weight over the tread. While this ability is advantageous for

human drivers, developing a software system capable of capitalizing on this advantage would be

extremely challenging.

8

Propeller

Figure 7: Lotus concept Ice vehicle
A propeller drive system pushes air with rotating blades for thrust and a separate

mechanism for steering. One example of a propeller driven vehicle is an airboat. These boats use

a large fan mounted above the water, rather than an underwater propeller.

Another example of a propeller driven vehicle is the Lotus Ice Vehicle. It was designed

by Lotus CIV to prove the concept of propeller drive in place of more conventional systems on

ice for the 2005 Ice Challenger expedition. The Lotus vehicle used skis were used for steering,

but also provided a low friction surface to slide across the ice.

The main advantage of this system is that it does not require friction between a surface

and the vehicle, making it ideal for snow and ice. Because the system relies on low friction with

the surface to maintain movement it can only work efficiently in specific environments. In

addition, a large enough fan to propel a robot designed for the purpose of this project could

easily become dangerous in less than ideal situations.

9

Wheels

Figure 8: Snow Tread Wheel
 Wheel drive is one of the most commonly used drive systems. A wheel driven system has

many advantages in complexity and price. There does not need to be many moving parts, and

those parts are very simple when compared to track systems. Furthermore, because of the

simplicity and availability of parts, the price becomes much less substantial. The major

disadvantage to wheel driven system is that they are less versatile in the medium that can drive

on. On ice, wheels have much less traction than other systems, and therefore driving becomes

much more difficult.

10

Screw- Propelled Vehicle (Auger Driven Vehicle)

Figure 9: 1970 ZiL-29061 Screw Propelled Vehicle (Soviet Union)
The screw-propelled vehicle in Figure 9 is amphibious; it floats and propels itself on

water, ice, snow, mud, and even dry land. The augers underneath the vehicle transform rotational

energy into translational energy, propelling it forward. Screw-propelled vehicles move forward

by rotating one auger clockwise and the other one counter-clockwise. One auger is threaded

clockwise, while the other is counter-clockwise. This vehicle can also drive sideways, in a crab-

like motion, by rotating both augers in the same direction. This type of vehicle cannot be used on

roads or most other hard surfaces because it can damage both the blades and the surface. This

vehicle is relatively hard to control compared to wheel and track belt vehicles. However it has

the advantage on ice of minimizing the slip between the surface and augers. The augers can also

be designed to provide buoyancy for the vehicle.

Decision

A decision matrix was created to aid in selecting the optimal drive configuration for this

robot. The decision was made by considering six categories. The categories were cost, route

flexibility, ice mobility, maintainability, part availability, and buoyancy/water mobility. Because

the focus of the project is a mobile platform to drive on ice, the ice mobility category was given

the highest weight. Additionally, buoyancy and water mobility were given more weight, as self-

preservation was one of the major objectives.

11

Table 1: Decision Table for Propulsion/Locomotion Design

 Cost Route
Flexibility

Ice
Mobility Maintainability Part

Availability
Buoyancy and
water mobility Total

Weight 0.15 0.10 0.35 0.05 0.15 0.20
Track Belt
Drive 3 8 8 4 6 2 5.55

Snow
Mobile
Drive

4 5 7 5 7 3 5.45

Propeller
Drive 6 3 9 8 8 4 6.75

Wheels 9 6 4 8 10 5 6.25
Augers 5 9 9 7 3 10 7.65

From this matrix, it was apparent that an auger drive system would be the best choice for

the project. This system’s superiority in both water mobility and ice mobility far outweigh its

major disadvantage, lack of part availability.

Auger Design

 One of the most unique aspects of this project was the use of the auger drive system.

Because the design of the augers was essential to the platform’s performance, special care was

taken to optimize this design. First, calculations were done to

determine what auger dimensions would provide sufficient

buoyancy to support the weight of the robot. The calculations

were completed under the assumption that the auger would

consist of a cylindrical midsection with hemispherical ends as

shown in Figure 10. It was determined through the calculations that if the robot weighed the

target weight of 50 lbs a minimum volume of 0.40 ft3 would be required from each auger. From

this, values of 24 inches for length and 8 inches for diameter were selected. With the selected

values, it was calculated that the augers would be 58% submerged if the robot had a relatively

even weight distribution. These full calculations can be found in Appendix A: Initial Auger

Buoyancy Calculations.

Figure 10: Auger Concept Design

Additional calculations were done to determine what thread pitch for the helix would be

optimal in terms of the forces involved and the angular velocity required to achieve the desired

12

drive speed of 5 ft/sec. A pitch of 8 inches was selected yielding an angular velocity of 450

RPM. Refer to Appendix C: Drive Speed Calculations for the full drive speed calculations.

Auger Prototype

 To facilitate building a prototype quickly so that fabrication of the final design and

testing of sensors and control functions could be worked on simultaneously, the decision was

made to fabricate prototype augers that were less than ideal in design but easier to manufacture.

The prototype augers used 22 inches of 8 inch diameter Schedule 40 PVC pipe for the main

cylinder and ¼ inch diameter PVC rod for the helix. The length was shortened from the original

plan of 24 inches due to limitations in the size of parts that could be cut by the laser cutter for the

chassis. The helix had the planned 8 inch pitch but was changed from being double threaded, as

in the concept design, to having a single thread. Hubs were machined out of 3/8 inch thick

polycarbonate and 3/16 inch keyways were cut into the hubs and steel drive shaft. The keyways

in the polycarbonate hubs were reinforced with 1/8 inch thick pieces of aluminum. The PVC

helix was created by clamping the rod to the pipe and using a heat gun to heat up and bend the

rod around the pipe. Once cooled, the rod held its helical shape and was glued in place using

Weld-On #16 solvent adhesive.

There was not a taper on the ends of the cylinder (like the hemispherical ends in the

initial design) because a pre-fabricated cone or sphere could not be found and it was agreed that

for the sake of time, the prototype augers would be

constructed faster without it. It was hypothesized that the

tapered ends would be necessary for navigating loose

snow and designing the prototype without them would

also serve to confirm this prediction. Once the prototype

was completed and tested in the snow for the first time

this hypothesis was confirmed. The prototype augers

would not allow the robot to drive in deep or loose snow; however they worked excellent on

areas of hard packed snow and ice. Figure 11 shows the design of the completed prototype

augers.

Figure 11: Prototype Auger Design

13

Auger: Final Design

 Once some testing was completed using the prototype augers, the final design of the

augers was chosen. Rather than using the originally planned hemispherical ends, the augers

would have truncated conical ends. This feature was chosen primarily because the cones would

be easier to fold out of sheet metal than hemispheres; however this design also allows the robot

 to overcome slightly taller obstacles than the hemispheres.

 The front cone was designed to

bring the 8 inch diameter of the

cylinder down to a 4 inch diameter

over a length of 4 inches. The back

cone had less of a taper, only taking

the diameter down to 5.5 inches over a

length of 2 inches. The auger was

designed this way because the gear

box would bottom out at a diameter less than 5.5 inches. Additionally, the robot would be

driving forward more often than backwards so it made sense to have a forward advantage. Figure

12 shows the Solidworks model of the auger.

Figure 12: Model of Final Auger Design

Pontoon Material Selection

Choosing the material for the pontoon portion of the auger was an important task since

the material properties would directly affect the strength, weight, buoyancy of the robot, and ease

of forming and welding the parts together. The target weight of the robot was 50 lbs. It was

important that the augers take up as little of those 50 lbs. as possible while still maintaining the

necessary strength to endure the abuse of rotating on various surfaces. Aluminum is less dense

than steel but would need a greater wall thickness to yield the same strength. Another

consideration was cost. The price of aluminum and galvanized steel were much cheaper than

stainless steel; however both are harder to weld than stainless steel. Galvanized steel is difficult

weld and can emit toxic fumes if not done properly. Aluminum requires a more skilled welder

than steel, especially when working with thin walled material. To weigh these different

considerations against each other the decision matrix shown in

Table 2 was created.

14

Table 2: Decision Matrix for Pontoon Material
Material Price Strength (US, YS) Density Usability Total

Aluminum 9 ($90) 6 (19 ksi, 9 ksi) 10 (0.10 lb/in3) 6 5.57

Stainless Steel 3 ($250) 10 (125 ksi, 75 ksi) 4 (0.28lb/in3) 7 3.20

Galvanized Steel 10 ($70) 10 (125 ksi, 75 ksi) 4 (0.28lb/in3) 2 4.0

Percentage 25% 15% 35% 25% 100

It was decided that Aluminum would be the best option for the pontoon. The pontoon was

made up of seven aluminum components. There was the main 16 inch cylinder, the two inner

hubs, the two cones, and the two outer hubs. The exploded view can be seen in Figure 13.

Helix Material Selection

 After substantial consideration of materials, cost, lead times, and effort, the decision was

made to outsource the fabrication of the two helixes. The cost was fairly significant ($436)

however the quality of what would have been produced using on-campus facilities could not be

compared to the professionally bent helicoid flighting that was ordered. Although it would be

Falcon Industries’ problem to form the material, the cost and ease of combining the helix with

the pontoon were considered. Since aluminum would have been almost twice as expensive as

stainless steel and would wear down easier since it is a softer metal, the decision was made to

have the helix manufactured out of 304 stainless steel.

Figure 13: Exploded View of Pontoon

15

C

16

ombining the Components

of the auger was purchased from a metal

The front and back cones were formed

out of .050 inch thick sheet aluminum. The

calculations used to draw the geometry of the

cone on the flat sheet metal can be found

in Appendix D: Cone Calculations. Figure 14

shows the flat geometry of the front cone and

Figure 16 shows what the front cone looked

like once it was formed.

These components were all welded

together by Barnstorm Cycles, a local custom

motorcycle shop. Because the pontoon was

aluminum and the helix was steel, they could not

be welded together. JB Kwik, a steel filled epoxy,

was used to attach the helix to the pontoon.

Unfortunatly the epoxy and hardener were not

mixed properly and the bond did not hold. The JB

Kwik was ground off and replaced by Loctite E-

20NS, a metal bonding epoxy with a much greater strength than JB Kwik.

 The primary cylinder of the pontoon portion

tubing supplier. The decision to purchase 8 inch diameter, 14 gauge tubing was made because

the project partners agreed it would be difficult to roll

sheet metal into a close-to-perfect cylinder once, not to

mention needing two identical pieces. The tubing was

ordered already cut to a length of 16 inches. See Figure

15.

Figure 15: Aluminum Tubing

Figure 14: Front Cone Flat Geometry

Figure 16: Front Cone Before and After

Steel hubs were made to transfer the load from the steel drive shaft to the aluminum hub

of the a

¼-20 bolts rather than a single keyway.

re 17.

uger. The alternative that was considered required keyways. The steel hub method was

chosen over keyways for two reasons: the auger would be easier to waterproof without the

keyway and the forces would be distributed between five

The final auger completely assembled can be seen in Figu

Figure 17: Fully Assembled Auger

17

Chass

d, and be rigid and capable of

ithstanding the forces and torques that will be experienced during operation.

Similar to the augers, the chassis went through two iterations. A prototype chassis was

created out of less than ideal materials, but completed in an accelerated timeframe. The design

was then modified slightly to enhance certain features and remade out of better materials.

Prototype Chassis

 The prototype chassis was designed

around two constraints. The first was the

auger drive; the auger dimensions had

already been decided on, so the chassis

needed to be designed with the augers in

mind. The second design constraint was the

size limitation of parts that could be cut using

the laser cutter. The cutting area wa

to 24 x 18 inches. A larger part could have

been cut out of multiple pieces of material,

however it was decided against, in order to

maximize strength. Strength of the parts used in the prototype chassis was important because it

was constructed out of acrylic. Polycarbonate would have been a more ideal material, however

the laser cutter on campus is not capable of cutting polycarbonate and the only other way to cut

complex curves on campus was using the CNC mills. Milling the parts would not have been time

efficient, therefore acrylic was used.

 The design consisted of three main ribs in a double trapezoidal shape. There were

supports between the tops of the ribs, and three panels that extended the length of the bottom half

of the chassis. The ribs had consistent dimensions on the bottom half, however, the top section

is Design

The chassis was an important aspect of this robotic platform as is the chassis with most

mobile platforms. The robot would fall apart without a sturdy structure to mount everything to.

The chassis was designed with the considerations that the chassis needs to: be compatible with

auger drive, have an area designated for an ice sensor payloa

w

s limited

Figure 18: Prototype Chassis

18

decreased in size

19

 as they moved toward the front. This feature was added primarily for

aesthetics; it m

sembled Prototype

orked out well. However there were a few flaws

lic being brittle. One of these was that there was

flaw was that the supports between the tops of the

 flaw

ade the robot look less like a rectangular box. The Solidworks model of the

chassis can be seen in Figure 18. The finished prototype, assembled with the front plate, back

plate and augers, can be seen in Figure 19.

Figure 19: As

Final Chassis Design

 Prototyping the chassis out of acrylic w

in the design besides the obvious issue of acry

no easy way to carry the robot. Another design

ribs were not ridged enough. The third design

was that the chassis would be a sealed compartment

once the top was attached and sealed; this would

cause the inside to heat up to dangerous

temperatures. The last design flaw that was

addressed was the general aesthetics of the design.

 The ribs and their supports were redesigned to use 3/8 inch thick polycarbonate and be

solid parts, with notches cut out. Once welded together with the Weld-on solvent, the chassis was

Figure 20: Final Chassis Design

much more rigid than prototype. A solid piece

of 1/8 inch thick polycarbonate was bent into

the shape of the bottom plate and attached,

which added additional rigidity. The final

chassis design can be seen in Figure 20.

 The issue of carrying the robot was

addressed by cutting a handle into the front and

back plates. The aesthetics of the design were

improved by rounding off some edges and

adding wedges on the front plate. The fully assembled, final design can be seen in Figure 21. A

heat sink was design to be sunken into the back plate where the drive motors attach. This would

absorb some of the heat and allow it to dissipate through the external fins into the outside air.

The heat sink model can be seen in Figure 22 and the finished

part attached to the back plate can be seen in Figure 23. The

calculations for heat dissipation can be found in Appendix F:

Heat Calculations

 , with the exception of the
compass, were placed between

 for the
yload. The

imately 9
3).

Figure 21: Assembled Final Design

All components of the robot

the middle and rear ribs of the

chassis. This made the robot very
back heavy and shifted the center

of gravity back a fair distance; however this allowed
entire front section to be used for carrying a sensor pa
volume of this area designated to the payload is approx

inches wide, 11 inches deep, and 7 inches high (~.40 ft
Calculations in

Figure 22: Installed Heat Sink

Figure 23: Heat Sink Model

20

21

s show that that robot is capable of carrying a

water (greater payloads could be carried in

).

simple. CIM motors were chosen as the drive

red, however the additional performance over

 extra expense. Calculations for the maximum

ree Body ons). To

method was implemented into th

The bearings for the shaft housing the 12- and

inch thick polycarbonate bearing blocks. The holes

1/8 inch. This allows the chain in the second st

the orientation of the bearing blo s. A

CIM motors so that the motor co ounting bolt. This tightens the

chain in the first stage of the redu rification.

Appendix B: Final Auger Buoyancy Calculation

payload of up to 21 lbs. without sinking in

environments where water will not be encountered

Drive Train

The drive train for this system is relatively

motors. AmpFlow E-150 motors were conside

CIMs was not need and therefore not worth the

torque required can be found in Appendix G: F

achieve a useable range of speeds for the auger a 12:1 reduction was implemented in two stages

using ANSI #25 roller chain and sprockets. The two stages for the reduction were 12:36 and then

12:48. Chains need to be tensioned because they stretch during use; therefore a tensioning

e design.

32-tooth sprockets were press fit into 3/8

 for the bearings were offset from center by

age of the reduction to be tensioned by rotating

 Diagram (Torque Calculati

ck slot was machined for one of the mounting bolts on the

uld be rotated about the other m

ction. Refer to Figure 24 for cla

22

ain Tensioning Explained

Figure 24: Ch

Rotating the bearing

blocks provides eight

discrete configurations.

This slot allows

the first stage

of the chain to

be tensioned.

22

Control System Design

 The most complex electrical component of a robotic p

microcontroller. With the obvious mechanical challenges of the ADI e

overhead involved in implementing the microcontroller was a primary concern. In order to

achieve this, a controller with minimal low-level interfacing was chosen. Neuron Robotics’

DyIO module turns a USB port into a 24 port microcontroller. The DyIO cannot be

reprogrammed, but instead functions by interfacing with a computer using a library of

standardized communication protocols, which means that some other device would need to

handle the logic and processing of the robot.

 The devised solution was to include a small computer on board the robot, from which all

decision Java program. This eliminated two time-consuming parts of robotic

program code to the controller and optimizing for slow microprocessors. The

computing power of a computer al microcontroller, allowing for

uch more complex code to be written. Furthermore, no code would ever need to be uploaded to

the robot because the un-compiled code was on-board, which even allowed for changes to be

made out in the field. Though there were many benefits to using this control scheme, it was far

from perfect. Due to the fact that the DyIO was still in development, monthly changes to the

firmware and code libraries frequently had an unforeseen impact on the previously functional

code. One such issue caused a major change in the program flow of the project, when the

asynchronous communication with analog sensors ceased to function as it had before. All

asynchronous communication ceased to cause interrupts properly, due to a slight change in the

DyIO firmware. Several other minor issues occurred, but were solved with minimal alterations.

 Though the DyIO made much of the low-level control much easier, there was still a key

piece of controlling the robot that was beyond its capabilities: motor control. The motors would

require a supply of power far beyond the capabilities of a microcontroller, so another control

option had to be considered. The motor controller needed to provide a constant supply of 20

amps, with a slightly higher peak current. This was the primary concern, though the availability

and price where also considered. To meet these standards, two Jaguar MDL-BDC24 motor

controllers were installed. The controller featured additional functionality in monitoring encoders

and potentiometers internally, but this functionality was neither necessary nor desirable. Though

latform is typically the

S design, minimizing th

s are made from a

ming - uploading

 is many times that of the typic

m

23

it is capable of taking some processing load off of the main computer, interfacing with the

ithout compromising weight. Finally longevity

device, which is known to be difficult, is not worth the reward.

Power Supply Design

 A number of strict requirements were placed on battery selection. The first, and most

important restriction, was cold-temperature performance. Because of the typical environmental

conditions the robot would be operating in, i.e. sub-freezing temperatures and unhindered winds

on open lakes, the power supply of the robot would need to not only remain unharmed, but also

provide ample energy to power normal functionality. The second criterion was high energy

density, which would allow high performance w

was considered, both in full discharge energy and number of recharge cycles. A battery that lasts

longer on the field is a must, especially when the task is performed in a place that it cannot be

safely recover from, should the power fail.

 Many different types of batteries were considered, from the heavy but reliable lead-acid

to the powerful but high-maintenance lithium-ion. After performing a cost-benefit analysis,

Lithium Polymer (LiPo) batteries were selected for their superb energy density and wide variety

of form-factors. To avoid igniting a LiPo through thermal runaway, several procedures had to be

strictly adhered to: charging or discharging could not exceed the specified amperage; do not

charge a very cold battery; only proper chargers should be used; and charging must be frequently

balanced between individual cells of each pack. To meet our power requirements, the selected

battery had to output at least 14 volts at 20 amps for 30 min, with an optimized max current load

and recharge time. The selected battery, of which two were used, had 4 LiPo cells to total 14.8V

and 5 amp-hours, with a C value of 30. The C value determines the maximum discharge rate,

which was 150 amps.

 An important consideration for these types of batteries is quality, as we discovered near

the end of the project. Within a LiPo battery pack, several cells are connected in series, where

each cell is like an independent battery. With packs of poor to moderate quality, there are

frequently instances where a single cell will cease to function properly. Continuing to use the

battery as it was intended can becomes impossible, and replacing the cell can be risky. One of

the batteries used in ADIS ceased to function correctly in this way. Fortunately the robot was

24

still functional with a single battery, without noticeable side effects besides a shorter running

time.

Sensor Implementation

 Sensors used on the platform would need to gather accurate information about the

thickness of ice, and the location of such a reading relative to some starting point. To maintain an

accurate representation of this information, there would have to be several sensor subsystems

that collect specific information, such as the current heading or localized position. To accomplish

these tasks, the following sensors were originally chosen: a GPS to give absolute position; a gyro

and accelerometers to give heading and motion information; a GPR to measure ice thickness;

encoders to measure distance; and a series of ultrasonic sensors to identify obstacles. However,

several flaws were found in these choices as more research and discussion followed.

racy provided would be insubstantial even for corrections to

other methods of measuring position.

 A GPS system gives the global coordinates of a user at any time they have sufficient line-

of-sight to the system of satellites that maintain it. To provide a global location for the robot, this

type of system was considered early in the design process. However, it was soon determined that

such a system wasn’t as beneficial as originally perceived, due to a number of considerations

about the goals of the project. In order for a GPS receiver to initialize, a significant (and often

inconsistent) amount of time is required to acquire satellite information; furthermore, that

information would only be accurate to within a few meters with the most affordable GPS

systems, and this accuracy is highly dependent on circumstances such as time of day and

weather. These conclusions led to the exclusion of GPS since our workspace will only cover a

small area, within which the accu

 Very quickly it was realized, due to the nature of frozen ponds and lakes, that there would

be no obstacles or barriers to get in the way of the robots planned path, as long as that path

remained on the ice. This allowed the ultrasonic sensors to be excluded, which would also make

water-proofing much easier since they would have had to been exposed to the air. However, this

meant that more dependence would be put on other systems to accurately track position.

25

 An Inertial Measurement Unit (IMU), which contained both accelerometers and a gyro,

was selected to fill in the gaps in sensory information. However, it wasn’t until raw data from the

eters was collected that the complexity of such a system became apparent. Though

 about accelerations in any direction, the meaning was highly

direction of gravity at all times. A motionless IMU can be used to

term

le. The first

ompas

hassis was determined as the least-influenced. However,

other project goals took priority near the deadline, and the compass was never properly tuned.

g value.

While certainly capable of measuring the ice, the data gathered by a GPR is extremely

accelerom

they could give accurate data

dependent on knowing the

de ine the direction of gravity, but without at least two gyros then that vector cannot be

determined while in motion. Because of this, the accelerometers became useless since there was

no way to differentiate between acceleration from gravity, which had x and y components when

tipped slightly, and the acceleration of the platform. The gyro thus became the primary method

of determining heading, but this also became a problem, as was discovered with the amount of

drift from that sensor. To combat this drift, a compass was acquired. This would allow for

periodic checks to be made, to determine that the perceived heading was still accurate.

 One obstacle that hindered the project was implementing the compass modu

c s purchased turned out to be incompatible with the communication protocols used on the

DyIO, and couldn’t be interfaced with even after extensive troubleshooting. A second compass

was purchased, this time with analog output. However, two more issues became apparent after

actual data was collected. The first issue was in interpreting the data from the compass, which

required a function tailored for each unique compass. A trial-and-error method was devised to

tune it, by making 10 degree changes in the position and recording the offset to create a function

that represented the error. This provided the most meaningful feedback, and resulted in

consistent and accurate interpretation of the data. The second issue was realized shortly after,

when the compass was installed in the platform chassis: the magnetic fields of the motors

influenced the magnometers in the compass significantly. After some research into the behavior

of magnetic fields, a position in the c

The same trial-and-error method can be used in the future to accurately tune the compass in its

new magnetically influenced environment.

After consulting Geophysical Survey Systems, Inc. (GSSI) about GPR technology, it was

discovered that using such a complicated sensor wouldn’t be as easy as reading an analo

26

co cated and can’t be simply interpreted by a computer system as a thickness. This was not

ideal, though it would suffice to correlate the position with each reading taken. Luckily, GSSI

had an analog sensor on hand that they had researched before; it was an analog ice radar once

used in Russia. While unfit for their purposes, mainly from a sales point of view, it seemed to

fulfill the requirements of this project nicely. They expressed an interest in aiding with the

project by lending the sensor. Unfortunately, due to the sheer value of either of these sensors, it

was deemed that an accurate weight and volume substitute for either sensor would suffice in the

meantime, under the assumption that the actual sensor could be used with minimal trouble.

Software Design

mpli

Human-Computer Interface

Initially, the method of providing instructions to the robot was going to be in the form of

a list of GPS coordinates that represented the constraints of the pond that the robot was to be

inspecting. The intent was that the robot would then autonomously cover the area within these

coordinates, thus surveying the entire pond.

Once GPS was removed from the scope of the project, this idea evolved into the user

inputting coordinates, relative to the robots current position, on a map of the pond being

inspected. The robot would then travel to each coordinate it was given, taking ice-thickness

readings along the way or at each point, depending on the sensor the robot would be using.

To implement this idea, the user would need a GUI which would be capable of displaying

a map and accepting mouse-clicks on the map, to represent target locations and the starting

location of the robot. It would also be advantageous if this GUI would display the current

location of the robot as it traveled, keep track of and display the target locations given, and have

a way to represent the path that the robot had traveled. These were the features initially aimed for

in the GUI.

The first iteration of the GUI was a grid of buttons, with each button representing one

square foot. When this grid was created, it would set the robot’s initial position to the center of

the grid, and color the button there green. When a button was pressed, the button would turn red,

27

the distance between the robot’s current position and the target position would be calculated, and

a simulation of the robot driving to that point would be displayed. For this, small increments

would be added to the robots current position, in the direction of the target point. When the robot

reached a new square foot, the button representing the previous square foot would be colored

black, and the new button would be colored green. This simulation kept track of the robot’s

current location, and displayed the path that the robot had traveled along.

There were a few problems with this iteration of the GUI. First, the positions given to the

robot were only distances from its starting location. This meant that a person using this GUI

would have to know the dimensions of the lake, and plot a course based on these numbers, not

based on the actual shape of the lake. Additionally, the resolution of the grid of buttons was very

t a larger area or a higher resolution, more buttons needed to be created, but

cessor. Finally, only one target point could be added at a time,

meanin

n

on of the robot and set target points, which were

stored i

ted one

ould

clicked. This meant that, once the scale of the map is known, a distance can be applied to a pixel,

and the

s the

 triangle rather than a square, with the front pointing in the direction the

robot was facing.

limited. To represen

this took a heavy toll on the pro

g the user would have to wait for the robot to get to its location before giving it a new

location.

The next iteration of the GUI used an image of a map as the main display. By clicking o

the map, a user could select the starting locati

n an array of positions. To represent the situation, colored shapes were drawn onto the

map. A yellow square represented the starting location of the robot. A red square represen

of the target positions in the list of targets. A green square represented the robot. The GUI w

report locations with x and y coordinates determined by the pixels on the image that were

 edges of the lake on the map image should accurately represent the edges of the real lake.

Once this was implemented and tested, small features were added to the mapping. A

robot moved across the map, lines were drawn from the robot’s current instantaneous location to

its last location, therefore creating a visual, persistent path. As another feature, the robot was

displayed as an isosceles

After the mapping was complete, functionality was added to the GUI to give it a broad

array of uses. A textual display was added to give the user information about what the program

28

was doing at any given time. For example, at the beginning of the program, the display states

“Please select starting location”, and later in the program once the robot has finished moving

through the array of target locations, the display states “Waiting for new locations.”

Another feature that was added to the GUI was the ability to select a map from anywhere

on the computer. Previously, the map to be used was hard-coded. This new feature allowed the

user to select an image at run-time. A third new functionality was the ability to pre-load target

location

d of black lines, the GUI drew squares with a

color th

s

ap is selected. When the “Map” button is

pressed

s before the robot starts moving. A user can input as many targets as they want, and the

robot will not begin moving until the “Start” button is pressed. To better see the orientation of

the robot, a larger triangle had been added to the side of the map. An exit button was also added

to the GUI, so that the user can safely exit the program at any time.

The next round of improvements to the GUI resulted in a maximum speed controller, and

a mock ice thickness display. The maximum speed controller is a slider that scales down the

maximum speed of the robot if necessary. To display ice thickness, the previous method of

marking the path of the robot was changed. Instea

at represents the thickness of the ice at that location. A black square represented ice that

was positively unsafe. A red square represented ice that was dangerous. A yellow square

represented ice that was questionably safe, and a green square represented safe ice. These range

were set in the IceReading class, and could easily be adjusted. At the conclusion of this project,

the ice thicknesses used to display this functionality of the GUI were randomly generated, as the

robot did not have a sensor to read the thickness of ice.

Figure 25: (Left) GUI Prior to Map Selection, (Right) Map Selection GUI

 Figure 25(Left) shows the GUI before a m

, a file chooser pops up, in which the user selects a map, as shown in Figure 25(Right).

29

Figure 26: The GUI after a Map Has Been Selected

 Once a map is selected, the GUI inserts the map, as well as making the other componen

of the GUI visible. Figure 26 shows this updated GUI. Figure 27 shows The GUI while the robot

has been moving. All of the functionality can be seen here.

ts

Figure 27: The GUI as the Robot is Moving

External Computer-Internal Computer Interface

 To control the robot during its inspection, a Fujitsu U-Series Lifebook was placed inside

the chassis. This computer ran the program that gave instructions to the DyIO, and displayed the

GUI. To access the GUI, a system needed to be developed that allowed a user to remotely

interface with this onboard computer.

 The initial idea was to u

would

se a Remote Desktop connection from a laptop on shore. This

give the user complete control of the onboard computer, and the ability to start the

program, give the robot commands, and see the information that the robot outputs.

30

 To use Remote Desktop, both computers must be on the same wireless network. To make

this possible on the field, a wireless ad-hoc (computer to computer) network was attempted.

Unfortunately, it was found that it is not possible to establish a standard Remote Desktop through

an ad-hoc connection. To circumvent this issue, software that performs similarly to Remote

Desktop, which can function over ad-hoc was found. The program used was called UltraVNC.

Robot Code

 Through the development of this project, a complex software system has been

created

 The fields of Robot are: A DyIO, dyio, two Augers, LeftAuger and RightAuger, a

led

resents

tart, used for

program flow, and finally, the various GUI components discussed in the previous section.

 to communicate with the robot. This section will describe the purpose and functionality

of each Java class that is not involved in the GUI. Figure 28 shows a model of the code.

Figure 28: Model of the Code

Robot

 Robot is the main class of the software. This class contains functions for communicating

with each of the sensors, controlling the motors, and keeping track of the robot’s position. It also

contains all of the GUI elements, and a DyIO, for communication purposes.

Compass, an AbSensor called IceSensor (as a placeholder), a Gyro, two Positions, one cal

Posn that represents the current position of the robot, and the other called Target that rep

the current position that the robot is moving to, and two Booleans, hasMap and s

31

 The constructor for Robot contains a lot of functionality. It is in this constructor that each

sensor gets its port on the DyIO. The Augers are created, with the port for their Encoders, and

their direction, which represents which direction of the motor would drive that Auger forward.

Parts of the GUI are also initialized.

The first function in Robot is ChooseMap. This function opens a MapChooser, and then

adds the selected map to the Robot’s Display. The function also creates a new NavMap with the

lected map.

Next is Move, which takes in an int called speed. This function calls the Auger’s function

‘Go’ for both augers, which results in both augers moving at the given speed, in the correct

direction for that Auger.

 UpdateDialog is a GUI function. This function sets the angle of the Robot’s

AngleDialog’s Triangle to the angle of the Robot’s Position. Then the function redraws the

Display, so that any changes are shown.

 The driveStraight function takes in an int called setSpeed. The function calls the drive

function with the given speed, and a turn factor of zero. This function should be called from

within a loop.

 The next function is TurnBlo

trol to turn the robot the given number of degrees, in a clockwise direction. The function

se

The next function is Stop, which simply sets the speed of both augers to 127, stopping

their rotation.

ck, which takes in an int called degrees. This function uses

PID con

uses the Gyro to turn, and after it has turned, it waits, and then verifies with the Compass that it

has turned the correct number of degrees. If it hasn’t, it takes the average of what the two sensors

are saying, and uses that as the current heading for the robot.

 Next is the function getNumTicks. This function takes in a double called distance, and

returns the number of encoder ticks the augers should turn in order to travel that distance. The

function getDistance does the inverse operation. It returns the distance that would be traveled in

the given number of ticks.

32

 RestartTime is a function that sets the ‘TimeTaken’ field of each sensor to the current

time. The reason for this is so that if a sensor hasn’t been used for a relatively long time, this

function can be called to avoid an error with the next reading of the sensor.

 The function ps2drive is designed to allow the user to control the robot with a Play

Station

 takes in a double called angle. The function adds the given angle to the

robot’s

s, and corrects it if it is not.

ction then adds the new position to the list of positions the robot has

n the map to be clicked, then adds the clicked position

ction CaluculateDistance calculates the distance, in inches, between the Robot’s

sition, and uses the compass’

heading as the Robot’s heading.

pdating the display accordingly. This results in the function first

waiting for the Robot’s initial position, then accepting new target positions, orienting the robot

 2 controller. This function is mainly used for testing, and does not sync with the normal

operation of the robot.

UpdateAngle

 current angle. The function then checks to see if the robot’s angle is outside the range of

1 to 360 degree

UpdatePosition takes in a double called distance. The function calculates the Robot’s

new position based off the Robot’s previous position, assuming it traveled the given distance at

its current angle. The fun

occupied, and updates the display to show the robot at its new position.

 The next function is UpdateTargetBlock. If the list of target positions for the Robot is

empty, this function waits for a position o

to the list. Otherwise, the function updates the Robot’s current target to the next position in the

list.

 The fun

target position, and its current position, then returns this value. Similarly, the function

CalculateAngle uses the Robot’s current heading, and returns the number of degrees that the

Robot has to turn in order to be facing the target position.

 The getStartBlock function, when called, waits until the user clicks on the map. The

function then uses the clicked location as the Robot’s initial po

 mapBlock is the main function used for the Robot’s functionality. This function calls

getStartBlock, UpdateTargetBlock, TurnBlock, DriveStraightBlock, CalculateAngle, and

CalculateDistance, while u

33

towards the next target position, driving the correct distance to this position, then repeating th

process for the next target position.

 The next function, feauxMapBlock, is a function mainly for testing. This function

e

on

ut requiring that the robot actually be driving around.

 turn factor causes the robot to turn more sharply in a

I can be observed. In

future work on the project, once an actual ice s sor is acquired, this function will be re-written

The class Auger represents an auger and a motor on the robot. The fields of an Auger are:

t

Auger is

forward, an Encoder called encoder, an int, encoderPort, which is the port on the DyIO the

mum

 The constructor for an Auger takes in values for the Auger’s dyio, speed, port, direction,

nd en the

operates similarly to mapBlock, except that instead of actually moving the Robot, the functi

feeds artificial data to the Robot object to simulate movement. This allows testing of the GUI

mapping features witho

 The drive function takes in an int called setSpeed, and an int called turnFactor. The

function sets the robot to drive at the given speed, but uses the turnFactor variable to set the two

augers at different speeds. A higher positive

clockwise direction. This function needs to be called in a loop to work properly, as it only sets

the motors to go their given speeds once, and then does not wait any amount of time.

 The final method in the Robot class is GetIceThickness. Currently, this function only

generates a false ice-thickness reading, so that the functionality of the GU

en

to read a measurement from the sensor.

Auger

a DyIO called dyio, an int, speed, that represents the PWM speed that this Auger is currently se

to drive, an int, port, which is the number of the port on the DyIO that the motor for this

plugged into, a ServoChannel called servo which is the channel used by the motor, an int called

direction which represents the direction the motor for this Auger must turn to drive the Auger

Auger’s encoder uses, a double called divisor, which is a number that scales down the maxi

speed of this Auger.

a coderPort. With the port variable, the constructor creates a new ServoChannel on

DyIO. Similarly, the constructor creates an Encoder object with the given encoderPort.

34

 An Auger has two functions for changing its speed field, SetSpeed, and SetSpeedAc

SetSpeed instantly changes the Aug

c.

er’s speed to the given speed. SetSpeedAcc makes a small

iting the acceleration

peed. This function

calls SetSpeed with the given speed, and then calls the function Go. The function Go performs

m

ServoChannel of the Auger to actually move at this final PWM value.

t

DyIO, dyio, an int called port that represents the port

number of this encoder, and a ConterInputChannel called channel that is the channel for the

.

. Three constructors exist for a position. The first takes in doubles to

 The IceReading class is used for storing an ice thickness reading, as well as for

displaying this reading in the GUI. An IceReading contains: A Position to represent where the

change towards the given new speed from the Auger’s previous speed. This has the effect of

lim that the Auger can have. In order for this function to fully change the

Auger’s speed to the given speed, it must be called repeatedly in a loop.

 An Auger has a function called Move that takes in an int called moveS

multiple duties. First, the function limits the Auger’s speed field to a number between 0 and 255.

Next, the function performs an operation on the Auger’s speed with the Auger’s divisor, scaling

down the maximum speed. For example, a divisor of 2 would result in cutting the maximu

speed of the Auger in half, both forwards and backwards. Finally, the function Go sets the

Encoder

 The Encoder class deals with all of the code necessary for interfacing with a shaf

encoder. The fields of an encoder are: A

encoder

 The only method in the Encoder class is the constructor for the class. The constructor

takes in a DyIO and an int port. The function creates the channel for the Encoder from this port.

The code for reading ticks from an Encoder comes inherently in the code for a

CounterInputChannel, given by the nrdk.

Position

 A Position represents a set of x and y coordinates, as well as a heading. Each of these

values is stored in a double

represent the three fields of the class. The second constructor takes in only the coordinates, and

sets the heading angle to zero. Finally, a default constructor sets all three values to zero.

IceReading

35

reading was taken, a double called thickness which is the thickness of the reading, a Color called

color, used for displaying the IceReading, and three ints that define the upper bounds of

“unsafe”, “dangerous”, and “questionable” ice thickness ranges.

 The default constructor for an IceReading sets all the numerical values of the object to

zero, and sets the color to black. The second constructor takes in a double for an x coordinate, y

ker than the final range.

AbSensor double LastReading

, which is the channel for the sensor. The constructor

, and creates the AnalogInputChannel on that port of

.

 extends Absensor, and represents the code needed to interface with a gyroscope.

coordinate, and ice thickness. The constructor then sets then calls setColor to determine the

proper color for this object. A third constructor takes in Robot, and uses the Position of the

Robot to set the Position of this object. The constructor then calls setColor.

 The method setColor is used to determine the color of an IceReading, based on the

thickness. The method compares the thickness to the three upper bounds of ice thickness, and

then sets the color to black is the thickness is less than “unsafe”, red if it is less than

“dangerous”, yellow if it is less than “questionable”, and green if it is thic

AbSensor

 An AbSensor is an abstract class for the various sensors that Robot interfaces with. In this

project, Gyros and Compasses are examples of classes that extend this class. The intention is that

the ice sensor will also extend the AbSensor Class.

 The fields of an include: A called , which is the reading

that the sensor most recently returned to the Robot, a long called TimeTaken, which is the time

that the LastReading was taken, an int, Port, for used with the DyIO, a DyIO for communication,

and an AnalogInputChannel called AnInput

for an AbSensor takes in a DyIO and a port

the DyIO

 The method UpdateTime sets the TimeTaken field of an AbSensor to the current system

time, in milliseconds. The class also has an abstract method called ReadSensor. This sensor is

written by each class that extends AbSensor.

Gyro

 A Gyro

This class contains three doubles, in addition to those inherited from the parent class. The field

36

voltageOffset represents the number of volts that must be subtracted from the voltage read from

the sensor, to center the range around zero volts. Next, ratio represents the ratio of angular

velocity to voltage. Finally, angle represents the current angle that the gyro is facing, based off

of a series of given angle changes.

ethod next adds this

magnetometers, so the Compass class was designed to incorporate this.

: A double, ratio, two ints for the left and right port, and two

els using the ports.

ReadSensor

 The ReadSensor method of the Gyro class first looks at the LastReading of the sensor,

and converts this voltage into an angular velocity. Next, the method compares the current time to

the TimeTaken. This change in time is used with the angular velocity to determine the number of

the degrees that have been traversed since the last reading was taken. The m

number of degrees to the Gyro’s angle. Finally, the method reads the voltage from the sensor and

the current time, and updates the appropriate fields.

Compass

 A Compass is another class that extends AbSensor. The Compass used for this project

uses two perpendicular

The class contains

AnalogInputChannels for the two Channels to the DyIO. The constructor for this class takes in a

DyIO, and two ints for the ports, and then creates the chann

 The method of this class takes the voltages from both channels, and then

takes the arctangent of the two values. This gives an angle that needs to be adjusted slightly, so

the function calls the adjustAngle function. The adjustAngle function takes in an angle, and

returns an angle based on a lookup table acquired by experimentation.

37

Results and Analysis

Testing

 As the various systems of this project were designed, manufactured, coded, and brought

together, extensive testing needed to be done in order to verify the success of the project as a

ain aspects: The ability to provide reliable

propulsion on ice, and the ability to maintain their structural integrity while providing this

.

urning ability was vastly

different than it had been in the previous tests. On snow, the robot turned very easily, and had a

greatly improved forward velocity. Additionally, it did not crab drive at all. The robot retained

this style of motion through the ice testing.

Water testing

 In water, this robot needed to be able to remain buoyant, be mobile, and stay water tight.

For these tests, an open section of Elm Park Pond was used. First, the robot was gently placed

into the water, and observed for signs of leaks. After it became apparent that the robot would

stay afloat, the remote control system was used to drive the robot across a small segment of open

water. Recovery over an ice edge from the water was also attempted at this time.

whole. The tests that were conducted were chosen in accordance with the goals of each system.

Testing locations included the laboratory, flat regions of snow on campus, and ice and water on

Elm Park Pond.

Auger

 The augers needed to be tested for two m

propulsion

 To test both of these aspects, the augers were first driven on carpet in the lab with a

remote control system. After this was shown to be possible, the system was taken outside and

tested similarly on snow. Finally, these driving tests were performed on the surface of a frozen

pond.

 While driving the robot on the carpet, it was observed that the robot has some ability to

turn, but would very easily crab drive, as was expected. This crab driving was much faster than

the forward motion of the robot.

 When the robot was driven on snow, it was found that the t

38

 During the initial buoyancy tests, the robot stayed afloat, but was not balanced correctly.

The chassis was back-heavy, so the robot tipped backwards a small amount. Prior to the water

 testing, a ten pound weight was added to the front to ballast the robot. During this

 One of the major concerns for the robot’s batteries was their ability to run the system for

ded period of time. Fortunately, this concern was easily addressed by using the battery

 for at least 30 minutes.

st both of these functionalities, the feuxMapBlock was created. This was a function that

nding signals to the actual robot. Testing the communication

capability of the GUI was finished in this manner.

 send information in a timely manner. To test this

ability, an UltraVNC server was established on the Lifebook. A separate computer established a

 this server through the WPI network. The robot was then controlled through this

propulsion

test, the robot did show the capability to maneuver in aquatic conditions, as well as the potential

to climb over the edge of the ice. Unfortunately, this testing needed to be cut short, as the augers

caused a significant amount of splashing, and the robot was not sealed on the top.

Battery Life

an exten

for extended periods of time during other tests, and monitoring the remaining voltage after the

tests were completed. Through this testing, it was found that the batteries had enough charge to

run the robot

Graphical User Interface (GUI)

 The most important tasks that the GUI needed to perform were giving commands to the

robot through the map, and displaying information from the robot on the map for the user. To

first te

read input from the user, and generated a model of what the robot would be doing if it had

received that input. After bugs with the GUI were worked out using this function, the real

MapBlock function was used, se

Computer to Computer Network

 To communicate wirelessly with the robot, the user-end computer needed to reliably

connect with the robot-end computer, and

connection with

server in the lab. After this method was proven to work, the robot-end computer connected to the

server through an ad hoc network. The robot was then driven outside, in realistic conditions with

this connection.

39

 With this testing, it was found that the robot can be successfully controlled through this

type of connection. Commands are sent to the robot nearly instantly. The display has a small

amount of lag for showing the user information, but none of the information is ever lost over the

connection. After the success of this system was verified, further testing of the robot was done

through a wired connection, for ease of coding.

Robot Navigation

 For this project, the robot platform was required to drive straight for a given distance, and

 the robot, it was instructed to turn ninety degrees in one

e other direction. During these tests, accuracy was tested by

oth m

ce and turn a specified number of degrees was

l system could have been tuned slightly more

turn a specified number of degrees, allowing the robot to easily keep track of its location. To test

the driving straight capability, the robot was given a long distance to travel. If the robot veered,

corrections to the control system would be made. Then, the distance that was traveled was

measured and compared to the distance given.

 To test the turning ability of

direction, then ninety degrees in th

b easuring each turn of ninety degrees, and also observing for long-term drift.

 This system was the least successful during the testing phase. While the drive straight

functionality did keep the augers rotating at constant speeds, this did not necessarily mean that

the robot was driving forward. To account for this, the gyro was incorporated into the function.

By the end of the project, this functionality was still in development, and had not been fully

integrated.

 The ability to both drive a specified distan

achieved by the end of the project. The PID contro

to achieve a faster response time and less oscillation, however the system as a whole was fairly

consistent.

Evaluation

 Overall, this project was a success. Though not every goal set at the beginning of the

project had been met, the majority of them were, and some goals were even exceeded.

40

 The first major goal of the project was

developing a robot capable of traveling on a natural

ice and snow surface. This goal has been thoroughly

tested, and met. Under remote operation, the robot can

easily traverse over uneven ice and snow, open water,

and even patches of bare ground. Under autonomous

were not quite reached. For turning and driving a

o blades may

cause one auger to drive further than the other, causing a turn rather than a straight line.

solution that was attempted to counteract these issues, using the gyro to assist in

driving straight, was not fully implemented by the end of the project. This is mainly due to a

isjud

 little time to test and correct the software. If this project had been spread

ime-span, it is likely that these issues could have been worked out.

 map, the

system calculates the change in angle and distance needed to travel to this point. The robot then

turns that number of degrees, then attempts to drive that distance while correcting for course

drift.

conditions, the robot has more trouble, but still does

have the capability of driving on all of these surfaces.

The next goal of the project was that the robot be able to sense its location while moving

autonomously. This was one of the goals that

Figure 29: Final Tests on Snow

set distance, the robot successfully uses the gyro and the encoders. Driving in a straight line is

where the issues arise. Part of this issue may be the non-uniformity in the auger blades. While

the augers are turning at the same exact rate, the difference in shape between the tw

Additionally, the augers do not have quite as much grip on the ice as had originally been

assumed. This may occasionally cause one auger to free-spin, while the other retains contact with

the ground, causing a non straight path.

The

m gment in the amount of time e project would take. Lead times on parts ordered for the

project were much greater than had been expected, which had the effect of delaying the assembly

of the final robot. The final version of the robot was not completed until the last week of the

project, giving very

over a larger t

 The next goal of the project that was accomplished was the ability to receive commands

from the user. This goal is demonstrated by the fact that, when a user clicks a point on a

41

 Self-preservation upon falling thr

next goal of the project. This goal was n

but was also surpassed. If the ice under th

will float above the surface, with its ow

additional 21 lbs of payload. This

requirements of the project. Beyond this

could also propel itself through the w

potential to drive over the edge of the ice, back onto the surface. This functionality is not fully

nual control of the robot, this task would

likely b

 addition to all of this, the GUI has a display to prompt

the user for input, and to inform the user of the current state of the program. It also provides a

simple

ber, company

se. The spreadsheet also had a feature that would keep track of who needed to be

ough ice was the

ot only achieved,

e robot breaks, it

n weight, and an

alone met the

 ability, the robot

ater and had the

incorporated into the autonomous mode, but with ma

Figure 30: Final Tests in Water

e possible.

 The next goal of the robot was to transmit data to a user, or store data onboard. At the

conclusion of the project, the robot had the ability to transmit both ice-thickness data, as well as

live positional data for the robot. This more than qualified as an achievement of the goal.

 The next set of requirements was for the GUI. The goals for this were the ability to

receive and interpret data from the robot, create a gradient map of thicknesses, and display a map

with this information on it. The GUI does all of these things, as well as showing the user the live

position and orientation of the robot. In

method to select a map, so that the robot can easily be used in multiple locations.

Budget Evaluation

 The budget for this project was maintained rigorously using an Excel spreadsheet. This

sheet kept track of all the purchases made throughout the project and recorded all the necessary

details of each item purchased. These details included: description, part num

purchased from, which system it was for, whether it was for the prototype, final version, or

would be used for both, who purchased it, who paid for it, what budget it would come out of, and

most importantly the total cost. Since this project was funded from multiple sources, keeping the

budget spreadsheet up to date was crucial in order to ensure funds were still available for each

purcha

42

43

imbu out of a budget other than their

Table 3.

n

re rsed when they paid for something that was coming

personal contribution to the project.

 In the project proposal, a budget of $2250 was projected; this was broken down into six

system categories with individual allowances shown below in

Table 3: Proposed Budget Breakdow

Category Allowance
Drive Train $600
Motors $400

Sensors $400
Chassis $300
Battery/Power $300
Controller $250
Total $2250

This budget was used as a guide while considering certain part and material decisions that

were made. However it was used lightly since all of the allowances were rough estimates and no

design decisions had been made at that time.

The final cost of the robot proved to be more than anticipated. Some of the categories

orked out to be close to the proposed amount; however others were grossly underestimated.

The “Drive Train” budget for example was estimated to be $600 in the proposal but once the

lete, more than $1,100 had been spent on the drive train. This was because

w

final design was comp

the design decision was made to use auger drive; the materials and manufacturing fees that went

into the augers alone were over $900.

The pie charts in Table 4 and Table 5 show the breakdown of the budget by each of the

six systems and by the version of the robot (prototype or final design).

As can be seen in Table

6, the drive train was the most

Drive Train
$1,122.13

Chassis
$672.26

nsors
37.82

$246.67

0.00

Total Spent: $2,786.52
Table 5: Budget Breakdown by System

expensive system of the robot.

This system was composed of
Power

Controller
$12

Se
$3

Motors
$287.64

Drive Train Chassis Sensors Motors Power Controller

nearly $200 worth of

omponents such as chain,

sprockets, bearings, and shafts,

and over $900 that went into the

materials and m

both the prototype and final

augers. The chassis was

composed of three primary

expenses: mater

(which included ls

such as bolts, s lue, and

asket tape require to assemble

and wa

c

anufacturing of

ials, nuts & bolts

 all the materia

olvent g

g

terproof the robot), and the fees to have the parts of the chassis waterjet. This distribution

is shown in Table 5.

Table 4: Budget Breakdown by Version

Nuts &
Bolts
$76.21 WaterJet

Fee
$245.00

Materials
$351.05

Nuts & Bolts Materials WaterJet Fee

Table 6: Chassis Budget Breakdown

Prototype
$174.26

Both

Final
$1,501.48

$1,110.78

44

Prototype Final Both

45

 en down by robot version (prototype or final design) you can

oney spent on nto

bout $175 spent on parts for the prototype that were not reused

75 went into the materials for the prototype augers. The full

ndix H.

bots, have some effect on society. It is important to predict

hether good or bad, intended or unintended, preventable or

ct, the social implications of the Auger Driven Ice Surveyor

s of safety, ethical, and moral implications.

art of any project that should be considered and identified

e first thing the operator must note is that the auger can be

dangerous because the helicoid flighting can be relatively sharp, not to

very f driving velocity. The second critical safety issue is that the

robot is heavy enough to hurt the operator or itself when it is dropped accidentally.

 To minimize these risks, some features of the mechanical design should be noted. The

frame includes handles to provide ADIS with a simple and discrete method of being carried to

help prevent dropping the robot accidentally. Furthermore, the blades of the auger have not been

sharpened, and thus are relatively flat, much like a hockey skate, which helps prevent injury

while the auger is motionless.

Looking at the budget brok

see that there was a significant amount of m

the final version. There was only a

in the final version. $110 of that $1

bill of materials can be found in Appe

Social Implications

 All inventions, including ro

these effects to gauge their impact, w

unpreventable. As part of this proje

(ADIS) have been predicted in term

Safety Issues

 Safety issues are a vital p

before they cause a problem. The ADIS robot has some safety issues that must be considered

before being safely operated. Th

the prototype that was recycled i

mention that it rotates

ast to accomplish the desired

Figure 31: Handle of the Robot, and Auger Blade

hose recognition

systems generate new work for technicians and programmers.

The purpose of the ADIS robot is to measure ice thickness. Each city with a body of

l, one which

ill mu

Occupational Issues

 Many robots are built with specific objectives or tasks in mind. These roles can have the

potential to eliminate jobs, which is an issue that should be discussed before development. For

example, where individuals once answered calls for large businesses, many have replaced them

with voice recognition software. On the other hand, the servers that maintain t

water that freezes annually has their own way of protecting people from the dangers of thin ice,

usually by marking off dangerous areas and keeping records of ice thickness, as measured by the

ruler-methods mentioned earlier. In most cases, the task of measuring the ice thickness is

performed by an individual that is employed by the city, usually one that has other duties as well.

ADIS is designed to make the task of measuring ice thickness easier, safer, and more complete,

but it is not capable of replacing the role of the operator. The robot is merely a too

st st have an individual that wields it. There is the possibility of depreciating the value of an

ice measuring specialist, if there is any such individual, but there is no evidence that there are a

significant number of people with this career.

46

47

Conclusion and Recommendations

Suggestions for Future Work

 Though this project has been judged a success, it is far from a finished, marketable

product. Future project groups could pick up the project where this group left off and make

changes that significantly improve the performance of the robot.

An example of one i

n actual sensor to measure ice thickness, then incorporating that sensor

her useful improvement could be incorporating GPS or some other

of various systems of the project.

For exam

Surveyor, the students involved in this project

arned many lessons ab ut the engineering

conceptualization, design, and fabrication processes.

Such lessons include setting reasonable goals for a

project, accounting for lead times in early project

time-lines, using specializations within a group effectively, applying weights to project goals and

spending appropriate amounts of time on each, and time management with an impending

mprovement that could be made to the project would be either

designing or acquiring a

into the platform. Anot

advanced localization system, to improve upon the robot’s ability to record and report its

position, and the position of ice thickness readings that it makes. Fully autonomous self-recovery

would be another improvement that could be made.

Another use for this project could be the repurposing

ple, the auger drive system is versatile enough that another use could be found for it,

potentially in a mud, sand, or fully aquatic environment. Similarly, the GUI could be repurposed

to work with another robotic systems that requires mapping or positional display.

Accomplishments

The completion of this project resulted in, in

addition to a semi-autonomous mobile platform for

an ice thickness sensor, a group of experienced

engineers. While completing the Auger Driven Ice

le o

Figure 32: Final Testing on Ice

48

or professional engineers to have learned, as they all

are applicable to the vast majority of engineering projects in both academic and professional

deadline. All of these lessons are important f

settings.

49

References
1. http://2010.census.gov/news/releases/operations/big‐form.html : Census – Government

research about population, Number of city with more than 100000 populations.
2. http://www.dnr.state.mn.us/safety/ice/index.html : Minnesota Department of Natural

Resources (DNR) “Ice safety”
3. http://files.dnr.state.mn.us/education_safety/safety/ice/ice_stats.pdf : Minnesota DNR Boat

9”
4. http://gf.nd.gov/education/ice‐brochure.html

and Water Safety Section “Ice‐Related Fatalities 1976‐200
: North Dakota Game and Fish Department,

“Safety on Ice”
5. http://www.malags.com/Case‐Studies/Case‐Studies‐1 : MALÅ, “Quality Inspections of Ice Roads

using GPR”
6. http://www.esa.int/esaLP/ESAOMH1VMOC_LPcryosat_0.html : European Space Agency,

“CryoSat‐ESA's ice mission”
7. http://www.geophysical.com/: Geophysical Surveying Systems, Inc. “World Leader in Ground

Penetrating Radar and Electromagnetic Induction Instruments”

Appendices

Appendix A: Initial Auger Buoyancy Calculations

These are the calculations used to determine the initial length and diameter of the pontoon
augers assuming hemispherical ends.

 values indicate user defined variables.

De y

>

>
Ma o

Gravitational Acceleration:

inimum Buoyancy require for robot to float:

>

Minumum volume required to achieve buoyancy at specified mass:
>

L = length of pontoon, d = Diameter of pontoon,

Green
>
>

nsit of water:

ss f robot:

>

>

M d

A1

>

 use the provided values of m, L, and d to determine the percentage of
e pontoon that will be submerged:

 = volume of the sphere section of a pontoon submerged

ngle pontoon submerged
 = total volume of both pontoons submerged

These calculations
th

 = total volume of a si

>

A2

Appendix B: Final Auger Buoyancy Calculations

These are the calculations to determine if the actual volumes of the prototype and final
auger designs were sufficient to support the weight of the robot.
>
Density of water:

>

Mass of robot:

Minumum volume required to achieve buoyancy at specified robot mass:
>

Actual volume of prototype auger:
22 inch long cyclinder with 8.625 inch diameter

Gravitational Acceleration:

>

>

Minimum Buoyancy required for robot to float:

>

A3

>

ual volume of final auger design:
inch diameter and conical ends.

ameter of 4 inches, and height of 4 inches.
k cone base dia eter of 8 inches, top diameter of 5.5 inches, and height of 2 inches.

:

one Volumes:

Helix Volume

Act
16 inch long cylinder with 8.0

ront cone base diameter of 8 inches, top diF
Bac m

Cylinder Volume

>

C
>

A4

>

Aug
>

er Volume:

Maximum robot weight that can be supported by final auger dimensions

>

Max Payload

>

A5

Appendix C: Drive Speed Calculations

se are the calculations used to determine the speed the augers need to be driven to move
at the desired speed.
Green values indicate user defined variables.

>

Desired Drive Speed of Robot.

>

verted to Mph.

>

Pitch (P)
ameter (d)

 Length (L)
 Thread Height (h)

Required RPM of Pontoon Augers.

>

>

The

Dri

ve Speed con

Auger Properties

 Di

>

A6

Appendix D: Cone Calculations

Front Cone

These are the calculations to determine the geometry needed to be folded into the
nt cone
ations and pictures found at: http://mathcentral.uregina.ca/QQ/database/QQ.02.06/phil1.html

for the example these pictures correspond to: t = 290, b =
550, and h = 250.

fro
Equ

>
>

>

A7

>

>

>

>

>

>

A8

Bac

These are the calculat
k Cone

ions to determine the geometry needed to be folded into the
back cone

ations and pictures found at: http /mathcentral.uregina.ca/QQ/database/QQ.02.06/phil1.html

for the example these pictures correspond to: t = 290, b =
550, and h = 250.

>

Equ :/

>
>

>

A9

>

>

>

>

>

A10

Appendix E: Stability Calculations

erical end-shape (Example)

 robot wil flip over when center of gravity goes over the last point of contacting ground.

oment generated from gravity force does not have reaction moment to balance

the moment.

Figure 33: Free Body iagram of The Robot on Angled Terrain.
 to irregular shape of augers, last oint of contacting ground changes while The robot is

ed auger will not slip since auger thread will create enough friction force

een ice and The robot.

Figure 34: Auger Model with X, Y, and Z Coordinates and Explanation
 By using coordinate system to define the changes in last point in contact, I was able to

make a graph of angle of terrain versus last point in contact changes.

Sph

The l

Reason is that m

 D
Due p

flipping. I assum

betw

A11

Stability for x dir

X and Y are achieved from Excel sheet that list all the weights

A is distance from 0.0 to center of gravity

B is distance from 0.0 to last point contacting the ground in x direction

Range of x is from 0in to 4in

Law of cosine

Using law of cosine, I was able to make equation in form of θ(x)

X 4in:=

Y 6in:=

A X2 Y2
+() 7.211 in⋅=:=

 y x() 4in x in⋅()2
− 16in2

+−:=

 B x() x in⋅ 12in+()2 4in x in⋅()2
− 16in2

+−⎡⎣ ⎤⎦
2

+:=

Finding θ when center of gravity goes over last point contacting ground

y x()
x 12+

cos atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

θ−⎛⎜
⎝

⎞⎟
⎠

A⋅ cos atan⎛⎜
⎝

⎛ ⎞ ⎞⎜ ⎟ ⎟ B x()⋅θ−
⎝ ⎠ ⎠

cos atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos θ−()⋅ A⋅ sin atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin θ−()⋅ A⋅+ cos atan
y x()

x 12+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos θ−()⋅ B x()⋅

sin atan
y x()

x 12+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin θ−()⋅ B x()⋅+

...

cos atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

tan θ−()⋅+ cos atan
y x()

x 12+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⋅

sin atan
y x()

x 12+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

tan θ−()⋅
B x()
A

⋅+

...

θ x() atan
cos atan

Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos atan
y x()

x in⋅ 12in+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⋅−

sin atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
y x()

x in⋅ 12 in⋅+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⎛
⎜
⎜
⎜ ⋅−
⎝

⎞
⎟
⎟
⎟
⎠

−:=

A12

Maximum angle of stability is

Opposite direction Calculatio

Finding θ when center of gravity goes over last point contacting ground

Using law of cosine, I was able to make equation in form of θ(x)

n

Law of cosine

0 1 2 3 4

90

80

50

60

70
θ x()

deg

x

θ 4() 80.538deg=

cos atan
Y⎛
X

⎛⎜ ⎞ ⎞
⎝

⎟
⎠

θ+⎜
⎝

⎟
⎠

A⋅ cos atan
y x()

x 12+
⎛ ⎛ ⎞ ⎞⎜ ⎜ ⎟ ⎟θ−

⎝ ⎠⎝ ⎠
− B x()⋅

cos atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos θ()⋅ A⋅ sin atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin θ()⋅ A⋅+ cos atan
y x()

x 12+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

− cos θ−()⋅ B x()⋅

sin atan
y x()

x 12+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

sin θ−()⋅ B x()⋅+

...

cos atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

tan θ()⋅+ cos atan
y x()

x 12+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

−
B x()
A

⋅

sin atan
y x()

x 12+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

− tan θ()⋅
B x()
A

⋅⎛⎜
⎝

+

...

θ x() atan
cos atan

Y
X

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos atan
y x()

x in⋅ 12in+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⋅+

sin atan
Y

⎛ ⎞
⎜ ⎟

X
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
x in⋅ 12 in⋅+

y x()⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⋅−
⎜ ⎟:=
⎜ ⎟

⎠⎝

A13

0 1 2 3 4
65

70

75

80

85

θ x()

deg

x

Maximum angle of stability is

 θ 4() 84.289deg=

Stability for z dir

Z is achieved from Excel sheet that list all the weights

A is distance from 0.0 to center of gravity in

Z direction

B is distance from 0.0 to last point contacting the ground in z direction

Range of x is from 0in to 4in

round

Law of cosine

Z 0.000001in:=

A Z2 Y2
+() 6 in⋅=:=

 B x() x in⋅ 8in+()2 4in x in⋅()2
− 16in2

+−⎡⎣ ⎤⎦
2

+:=

Finding θ when center of gravity goes over last point contacting g

cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

θ−⎛⎜
⎝

⎞⎟
⎠

A⋅ cos atan
y x()
x 8+

⎛⎜
⎝

⎞⎟
⎠

θ−⎛⎜
⎝

⎞⎟
⎠

B x()⋅

 cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos θ−()⋅ A⋅ sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin θ−()⋅ A⋅+ cos atan
y x()
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos θ−()⋅ B x()⋅

sin atan
y x()
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin θ−()⋅ B x()⋅+

...

A14

 cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

tan θ−()⋅+ cos atan
y x()
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⋅

sin atan
y x()
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

tan θ−()⋅
B x()
A

⋅+

...

Using law of cosine, I was able to make equation in form of θ(x)

ngle of stability is

Finding θ when center of gravity goes over last point contacting ground

θ x() atan
cos atan

Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos atan
y x()

x in⋅ 8in+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⋅−

sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
y x()

x in⋅ 8 in⋅+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⋅−

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

−:=

0 1 2 3 4
50

60

70

90

80

θ x()

deg

x

Maximum a

θ 4() 80.538deg=

Opposite direction Calculation

cos atan
Y

A⋅ cos atan
y x()
x 8+

⎛

Law of cosine

Z
⎛⎜ ⎞ ⎞ ⎛
⎝

⎟
⎠

θ+⎜
⎝

⎟
⎠

⎛ ⎞ ⎞⎜ ⎜ ⎟ ⎟θ−
⎝ ⎠⎝ ⎠

− B x()⋅

cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos θ()⋅ A⋅ sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin θ()⋅ A⋅+ cos atan
y x()
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

− cos θ−()⋅ B x()⋅

sin atan
y x()
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

sin θ−()⋅ B x()⋅+

...

cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

tan θ()⋅+ cos atan
y x()
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

−
B x()
A

⋅

sin atan
y x()
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

− tan θ()⋅
B x()
A

⋅⎛⎜
⎝

+

...

A15

Using law of cosine, I was able to make equation in form of θ(x)

Maximum angle of stability is

θ x() atan
cos atan

Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos atan
y x()

x in⋅ 8in+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⋅+⎛ ⎞
⎜ ⎟

sin atan
Z
Y⎛⎜

⎝
⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
x in⋅ 8 in⋅+

y x()⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x()
A

⋅−
⎜ ⎟

⎟
⎠

:=
⎜
⎝

0 1 2 3 4
50

60

70

80

90

θ x()

deg

x

θ 4() 80.538deg=

A16

Appendix F: Heat Calculations

Heat dissipation rate of 2 motor

ssume temperature of motor (Aluminum heat sink) is 60 degree Celsius and Ambient
mperature is 10 degree Celsius

Lexan conduction from inside to outside

A
te

A17

It goes into steady ate when inside temperature and outside temperature is 17 degree different
inside temperature and outside temperature. So if inside temperature is 37 degree Celsius and
outside surface temperature will be 20 degree.

With robot 37 degree Celsius, it became steady state

st

.

A18

Appendix G: Free Body Diagram (Torque Calculations)

Free Body Diagram

Assume Weight is distributed evenly, Friction between bottom of blade and ice is negligible

Distance from location of Reaction force to neutral

Weight of robot

Length of Wheel

Each Reaction force from Ground

 hf 0.95 h⋅ 0.712 in⋅=:=

 W 50lbf:=

 L 16in:=

Fr

W

2

2L

L

pitch

6.25 lbf⋅=:=

A19

Torque at peak efficiency for motor Trotate x() xlbf in⋅:=

A20

Coefficient of Friction between ice and steel

Reaction force

Friction force of blade and ice

Force cancel each other by left over

This force is cancel out by other auger force

All the forces cancel out

Torque requirement can be calculated by F.torque_xprime = F.f_blade

 μ 0.03:=

 Rblade x()
Trotate x() cos α()⋅

hf
:=

 Ff_blade x() Rblade x() μ⋅ Fr μ⋅+:=

 Ftorque_xprime x()
Trotate x() sin α()⋅

hf
:=Ftorque_yprime x() Rblade x():=

 Fleft x() Ftorque_xprime x() Ff_blade x()−:=

 x 0 0.1, 30..:=

 Ftorque_xprime_min 0.834lbf:=

 Torqueminimum 0.4
lbf
in

6.4
ozf
in

⋅=:=

A

Item Quantity Part Number System Purchased From
Total
Cost

ppendix H: Bill of Materials

1/8 x 3 x 36 inch Stainless Steel 1 8992K383 Drive Train McMASTER‐CARR 39.58
1/8" Hex Insert Bit 1 8526A64 Chassis ‐CARR 9.86McMASTER

1/8" T‐Handel 1 7391A53 Chassis McMASTER‐CARR 29.26 Hex Key
10' x 0.25" pvc rod 3 n/a Drive Train Plastics Unlimited 21.34
10' x 0.25" pvc rod 1 n/a Drive Train Plas cs Unlimited 251.01ti

10' x 8" Schedule 40 PVC pipe 1 n/a Drive Train Washburn‐Garfield 245
100 Pack 10 1 92949A242 Chassis McMASTER‐CARR 40.16‐24 x 1/2" Button Head Screw

100 Pack Ny‐Locknut 1/4‐20 1 9183 6.981A029 Chassis McMASTER‐CARR

100 Pack Ny‐Locknut 10‐24 1 91831A011 Chassis McMASTER‐CARR 1.4
10x36x.25 Aluminum 1 8975K117 Drive Train McMASTER‐CARR 3.8
12 gauge w 25 9697T4 Power McMASTER‐CARR 1.09ire ‐ 2 strand Red/Black

12‐Tooth ANSI Train McMASTER‐CARR 5 25 Sprocket 1/4 inch Bore 2 2737T101 Drive

12‐Tooth A e Train McMASTER‐CARR 6.24NSI 25 Sprocket 3/8 inch Bore 2 2737T102 Driv

12x12x.25 Aluminum 1 9246K13 Drive Train McMASTER‐CARR 6.53
12x12x1/4 6061 Aluminum 1 9246K13 Drive Train McMASTER‐CARR 5.01
12x24x.05 Aluminum 1 88895K44 Drive Train McMASTER‐CARR 120
24x24x.05 Aluminum 1 88895K54 Drive Train McMASTER‐CARR 37.64
25 Pack 1/4‐20 x 3/4" Torx Pan Head Screw 1 96710A737 Chassis McMASTER‐CARR 436
3 Pair of 4mm Gold Plated Bullet Connectors 1 B000X4RZ2E Power Amazon 89.52
3/16" x 1/2" x 6' Stainless Steel 1 8992K17 Drive Train McMASTER‐CARR 58.36
3/4 Dimeter Polycarbonate Rod (1 foot) 2 8571K15 Chassis McMASTER‐CARR 41.38
3/8 keyed Stainless Steel Shaft ‐ 3" 2 1497K4 Drive Train McMASTER‐CARR 27.17
36‐Tooth ANSI 25 Sprocket 3/8 inch Bore 2 2737T261 Drive Train McMASTER‐CARR 14.21
3x1 Connector Housing 20 JS‐1108‐03‐R Sensors Jameco Electronics 11.82
48‐Tooth ANSI 25 Sprocket 5/8 inch Bore 2 2737T322 Drive Train McMASTER‐CARR 14.1
4x1 Connector Housing 3 100803 Sensors Jameco Electronics 24.15
5 inch OD Polycarb Tube (1 foot) 1 8585K45 Chassis McMASTER‐CARR 19
5/8 non‐key Auger Drive Shaft ‐ 5ft 1 1346K28 Drive Train McMASTER‐CARR 20
50' 3‐Color Heavy Gauge Servo Wire 1 57417.00 Sensors Jameco Electronics 30
5x1 Connector Housing 4 163686 Sensors Jameco Electronics 16.93998
60 Amp Fuses 1 EAGU60‐4 Power Amazon 13.75
8" Diamerter 16" Aluminum Pipe 2 Drive Train Global Technology &

Engineering 6.48
8" x 8" X 3/8" 6061 Aluminum 1 9246K21 Chassis McMASTER‐CARR 71.93
8ft ANSI 25 Roller Chain 1 6261K288 Drive Train McMASTER‐CARR 218
Analog Compass 1 1525.00 Sensors Images Scientific

Instruments 3.32
ANSI 25 Master Link 4 6261K108 Drive Train McMASTER‐CARR 8.74

A21

A22

ArduIMU 1 n/a Sensors Spark Fun 11.52
Bearing 3/ 7/8 OD Double Sealed 4 6384K23 Drive Train McMASTER‐CARR 27.68 ID

Bearings 5/8 ID Flanged, Double Sealed 4 6384K365 Drive Train McMASTER‐CARR 14.24

Blue Lipo 4‐Cell 5000mAh 14.8v 4S1P 30C RC Battery 2 83P‐5000mAh‐4S1P‐
148‐40C Power HobbyPartz .6438

Brushed DC Motor Controllers (Jaguar Black) 0.662 MDL‐BDC24 Motors DigiKey 2
CIM Motors 2 M4‐R0062‐12 Motors Trossen Robotics 26.74
Compass Module (not just the component) 1 HMC6352 Sensors Spark Fun 27.2
Crimper 1 HT‐202A‐R Sensors Jameco Electronics 69.64
DyIO Controller 1 n/a Controller Neuron Robotics 11.02
Female Pins 30 100766 Sensors Jameco Electronics 8.95
Fused Distribution Block 1 Scosche EADB4 Power Amazon 4.5
Ground Distribution Block 1 EDB Power Amazon 11.4
Helicoid Flighting 2 n/a Drive Train Falcon Industries 4
I2c to UART board 1 BOB‐09981 Sensors Spark Fun 0.87
J‐B Weld Epoxy 2 oz 2 7605A13 Drive Train McMASTER‐CARR 1.4
Li‐Po GUARD Safety Battery Storage Bag 11 n/a Power HobbyPartz 5.95
Male Pins 60 Y‐1800‐TX‐R 52.0Sensors Jameco Electronics 6
Panel Mount 120A Circuit Breaker 1 CB3‐PM‐120 13Power Terminal Supply Co 3.05
Polycarbonate for Chassis 1 n/a Chassis Plastics Unlimited 51.5
Quadrature Encoder 2 SP‐16 Sensors US‐Digital 19.19
scrap lexan 5 n/a Drive Train Plastics Unlimited 34.95
Thunder AC6 Charger 1 n/a Power HobbyPartz 4.95
Torx T30 Insert Bit 1 7013A29 Chassis McMASTER‐CARR 9.44
Torx T30 Screwdriver 1 5756A19 Chassis McMASTER‐CARR 9.48
Two‐Piece Clamp‐On Shaft Collar 2 6436K136 Drive Train McMASTER‐CARR 13.95
Value Seal Gasket Tape 1/2 wide 50ft roll 1 9477K21 Chassis McMASTER‐CARR 99.98
WaterJet Fees for Cutting Polycarb Parts 1 n/a Chassis Vangy Tool 5.75
Welding fees for Augers 1 n/a Drive Train Barnstorm Cycles 54.7
Welding fees for Augers 1 n/a Drive Train Barnstorm Cycles 16.25
Weld‐On Solvent and Applicator supplies 1 IPS16‐PT Chassis Ridout Plactics 32.17
 Grand Total: 2786.52

Appendix I: Robot Code

AbSensor

tics.sdk. io.
import com.neuronrobotics.sdk. io. rals.Anal tCh

ublic class AbSensor mpl ts ISensor{

//FIELDS
public double LastReadin = - most rec adi the

 long TimeTaken = ste ntTimeMil T last

 public int Port;//The port of the DyIO that this sensor is plugged into
dyio;//The dyio

package package1;

import com.neuronrobo dy DyIO;

dy periphe ogInpu annel;

// An Abstract Sensor
abstract p i emen

sensor

g 1;//The ent re ng from

 public Sy m.curre lis();// he time the
reading was taken

 public DyIO
alogInputChanne AnI e chann at c

//CONSTRUCORS
Sensor(DyIO dyio,int P t){

 this.dyio = dyio;
 this.Port = Port;

this.AnInput = new nal Channel(d tCh

 //METHODS
 //Updates TimeTaken to the current time
 public void UpdateTime(){
 TimeTaken = System.currentTimeMillis();
 }

 //get the last reading
 public double GetReading(){
 return this.LastReading;
 }

 //get the time of the last reading
 public long GetReadingTime(){
 return this.TimeTaken;
 }

 public An l nput;//Th el th ontrols this
sensor

 Ab or

 A ogInput yio.ge annel(Port),
true);

 }
 AbSensor(){

 }

A23

 //get the port of the sensor
 public int GetPort

return this

(){

 .Port;

ensor and updates the LastReading and TimeTaken
ic void ReadSensor();

ngleDialog
ckage package1;

s;

 }

 //Reads the s

abstract publ
}

A
pa

import java.awt.Graphic

//An abstract Sensor
blicpu class AngleDialog{

 //FIELDS
 double angle=0;
 Triangle triangle = new Triangle();
 Display display;
 JLabel label;

 //CONSTRUCTOR
 public AngleDialog(Display d) {
 this.display = d
 triangle.setBounds(0, 16,

;
 284, 246);

("Robot Orientation");
 300, 284, 16);

Graphics g){

 label = new JLabel
 label.setBounds(40,

 }

 //METHODS
 public void paint(
 if(display.ADIS.hasMap){

iangle.paint(g);

port DyIO;
ipherals.ServoChannel;

er, and drive system

d; //The set rotational speed for the motor

 tr
 }
 }

}

Auger
package package1;

im com.neuronrobotics.sdk.dyio.
import com.neuronrobotics.sdk.dyio.per

ug//A motor, a
ublicp class Auger {

 //FIELDS

io; //The DyIO DyIO dy
ee int sp

A24

 int ratio = 1; //The ratio of
 the

speed:PWM
 int port; //The port of dyio this auger uses

 Channel for controlling the motor
n

TRUCTORS
(DyIO dyio, int speed, int port, int direction, int encoderPort){

eed = speed;
rt = port;

w ServoChannel(dyio.getChannel(port));
rection) != 1)

em.out.println("Auger direction must be 1 or -1.
ow.");

derPort = encoderPort;
r = new Encoder(dyio, encoderPort);

ch this Auger should turn and

eed;
wSpeed;

he speed at which this auger should turn, with acceleration

peed){
 of acceleration control. A higher

direction ==-1) newSpeed = 255-newSpeed;

 if (speed != newSpeed){
 //if the actual speed is less than the set speed range, go
y faster

 if (speed < newSpeed - (range-1)) speed += range;

d + (range-1)) speed -= range;
 the set speed

 to move at the given speed
veSpeed){

 ServoChannel servo; //The
ctio ;//Whether the auger is a left or a right int dire

 Encoder encoder;
 int encoderPort;
 double divisor=3;

 //CONS
 Auger
 this.sp

 this.po
 this.servo = ne

 if (Math.abs(di
 Syst
Unexpected results may foll

this.direction = direction;
 this.enco
 this.encode
 }

 //METHODS

 //instantly sets the speed at whi

n compensates for auger directio
ublic p void SetSpeed(int newSpeed){

 if (this.direction == 1) this.speed = newSp
= 255-ne if(this.direction ==-1) this.speed

 }

 t //sets
control
 public void SetSpeedAcc(int newS
 int range= 10;//The amount
number is less control.

f(this. i

slightl

 //if the actual speed is more than the set speed range, go
ightly slower sl

 else if (speed > newSpee
 //if the actual speed is in range, set it to

 else speed = newSpeed;
 }
 }

 //set the motor
 public void Move(int mo
 SetSpeed(moveSpeed);
 Go();

A25

 }

 //set the motor to move at its set speed
 public void Go(){

 ratio; int pwm = speed *
 if(pwm >252) pwm = 252;//upper PWM limit with the DyIO

wm = 2;//Lower PWM limit with the DyIO

/divisor divisor divisor)*127));

);

nt;
MouseEvent;
nt.MouseInputAdapter;

e1.Position;

 start = null;

_DESTINATIONS];

 if(pwm < 2) p

 //this scales the maximum and minimum outputs, and centers them
around 127
 pwm =(int)((pwm)+((-1)/(

 servo.SetPosition(pwm
 }

}

Clicker
package package1;

import java.awt.Poi
import java.awt.event.

.swing.eveimport javax
import packag

//A class for accepting inputs on an image
ass cl Clicker extends MouseInputAdapter{

 //FIELDS
 NavMap map;

n first = null; Positio
on Positi

 Position lastClicked = null;
 int MAX_DESTINATIONS = 100;
 Position destinations[]=new Position[MAX
 IceReading path[] = new IceReading[10000];
 int head=0;

int tail = 0;
 int ppt = 0;

 //CONSTRUCTOR
 public Cli ker(N c avMap c){
 map = c;
 }

 //METHODS
 public void mousePressed(MouseEvent e){
 f (tail >= i MAX_DESTINATIONS) return;//Don't overflow the array of
positions

 = e.ge Point p tPoint();//Find out where the user clicked

Height())) return;

 if((p.x < 355)||

tWidth())|| (p.x>345+map.image.ge
 (p.y<45)||

34+map.image.get (p.y>

A26

 Position clicked = new Position(p.x, p.

null){
y);

(p.x,p.y);

}

tClicked.x==clicked.x && lastClicked.y == clicked.y)

stClicked = clicked;

 destinations[tail] = clicked;
 map.ADIS.display.repaint();

tail ++;

rals.AnalogInputChannel;

blic bSensor {

nel LeftChannel;
nnel RightChannel;

int RightPort){

is.dyio = dyio;
 this.LeftPort = LeftPort;

.RightPort = RightPort;

Channel(dyio.getChannel(RightPort));

TH S
Take the pass,
conv ts i ields

 if (first ==
 first = new Position
 map.ADIS.display.repaint();
 //DRAW SOMETHING GREEN AT CLICKED_POS
 lastClicked = clicked;
 return;

 if (las
return;
 la
 //MAKE THE POSITION AT CLICKED_POS RED

 }
}

Compa
ckage package1;

ss
pa

import com.neuronrobotics.sdk.dyio.DyIO;

otics.sdk.dyio.peripheimport com.neuronrob

//The Compass
pu class Compass extends A

 //FIELDS
 double ratio = 1;//the ratio of voltage:Heading
 int LeftPort;

; int RightPort
 AnalogInputChan
 AnalogInputCha

 //CONSTRUCTORS
 Compass(DyIO dyio, int LeftPort,

uper(); s
 th

 this
 this.LeftChannel = new
AnalogInputChannel(dyio.getChannel(LeftPort));
 this.RightChannel = new

log nputAna I
 }

ME // OD
ge reading of the Com // s analog volta

 // er t to a heading, then updates the proper f

A27

 pu

blic void ReadSensor (){

int LeftVal = (int)(.getVoltage()*100);
()*100);

;

an2(LeftVal,RightVal));
Syst ing);

ng);
intln(" After Adjust: "+LastReading);

le of recorded difference

he difference from true angle were recorded for
 angles[] =
,39,58,84,115,155,183,202,221,240,258,276,286,301,314,324,342,360};
 //Differences from true angle recorded for the above angles
 double diffs[] = {0,4,-1,-

2,4,15,35,43,42,41,40,38,36,26,21,14,4,2,0};
int a,b;
for(a=1;a<19;a++){

=a-1;
(angle<angles[a]){

 range is found, find the linear

s[b]);
 offset = angle-angles[b];

et + diffs[b];
ff;

ed: "+angle);
le;

 package1;

 LeftChannel
 int RightVal = (int)(RightChannel.getVoltage

) LeftVal= (LeftVal-254
 RightVal = (RightVal - 254);
 LastReading = 180-Math.toDegrees(Math.at
 // em.out.print("Before Adjust: "+LastRead
 LastRe = adjustAngle(LastReadiading
 //System.out.pr

 dateTUp ime();
 }

 //Linearizes the angle, based on a lookup tab
between actual and read data
 public double adjustAngle(double angle){
 double diff,slope,offset;
 //Angles that t

double
{0,24

 b

 if
 //Once the correct
value for difference

 slope = (diffs[a]-diffs[b])/(angles[a]-angle

 diff = slope*offs

 return angle - di
 }
 }

ut.println("ERROR: Angle not Adjust System.o
 return ang

 }

}

ControllerController
package

portim net.java.games.input.*;

A28

//A class for controling a USB controller

ronment. ().getControllers();

ler */
ler.Type.STICK){

);

public class ControllerController {
 //FIELDS
 public Controller controller;

blic pu DirectController dc;
 public JoyStickDialog jsd;

 //CONSTRUCTOR

blic pu ControllerController(){

 Controller[] ca =

getDefaultEnvironmentControllerEnvi

 for int i =0;i<ca. (length;i++){
 /* Get the name of the control

 Control if(ca[i].getType() ==
 controller = ca[i];
 break;
 }
 }
 dc = new DirectController(controller
 jsd = new JoyStickDialog(dc);

 }
}

DirectController
package package1;

ut.*; import net.java.games.inp

//A class for recieving data from a USB PS2 Controller

ler { public class DirectControl
 //FIELDS

tStick int Lef
ft

X;
StickY;
htStickX;
htStickY;

vice;
;

ontroller(Controller device){

 this.device = device;
 this.input = device.getComponents();

 }

pdate(){
device.poll();

255 -(input[0].getPollData()*127 + 127));
 LeftStickX = () (input[1].getPollData()*127 + 127);

 int Le
 int Rig
 int Rig
 Controller de
 Component[] input

TRUCTOR //CONS
DirectC

 //METHODS
 public void U

 LeftStickY = (int) (

int

A29

 RightStickX = (int) (input[2].g
- (input

etPollData()*127 + 127);
[3].getPollData()*127 + 127));

(input[0].isAnalog()){
"Input 0 is Analog");

 System. .println("Input 0 is Digital");

 (input[1].isAnalog()){
out);

");

()){
.println("Input 2 is Analog");

ital");

(input[3].isAnalog()){

 System.out.println("Input 3 is Analog");
 }else{

 System.out.println("Input 3 is Digital");

port e;
port on;

il.Hashtable;

;
g vent

stener;

h

 RightStickY = (int) (255
 }

 public void CheckComponents(){

 if
 System.out.println(
 }else{

out
 }

if
 System. .println("Input 1 is Analog"
 }else{
 System.out.println("Input 1 is Digital
 }

 if(input[2].isAnalog

t System.ou
 }else{
 System.out.println("Input 2 is Dig
 }

 if

 }

 }

}

Display
package package1;

im javax.swing.JFram
im javax.swing.JButt
import javax.swing.JLabel;
import javax.swing.JScrollPane;
port javax.swing.JSlider; im

import java.awt.Graphics;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.io.IOException;
import java.ut

import . g.JTe
port

 javax swin xtPane
im javax.swing.event.Chan eE ;
import javax.swing.event.ChangeLi

//A display that contains an output window, various buttons to interact wit
the robot

A30

// and various displays to show the robot's state.
@SuppressWarnings("serial")

extendspublic class Display JFrame{

 = ;

utton;
Control;

ltCloseOperation(JFrame.);

e()
new JButton("Reset");

Button("Exit");

 JTextPane();

new
 speedControl = new JSlider(JSlider.VERTICAL, 1, 5, 3);

eedLabel = new JLabel("Speed Scale");

 exitButton.setBounds(190,11, 70, 23);
 resetButton.setBounds(106, 59, 70, 23);

 scrollPane.setBounds(10, 93, 264, 151);
mapButton.setBounds(21, 11, 70,23);
startButton.setBounds(106,11,70,23);

ntrol.setBounds(280,60,60,200);
bel.setBounds(260,40,80,20);

add(exitButton);
add(resetButton);

scrollPane);
mapButton);

add(startButton);

stener(new ChangeListener(){
 stateChanged(ChangeEvent e){
alue = 6 - speedControl.getValue();
uger.divisor = value;

visor = value;

 x.Stop();

 //FIELDS
 Robot ADIS;
 JTextPane text;
 JScrollPane scrollPane;

false boolean paused
 JButton mapButton;
 JButton startB
 JSlider speed
 JLabel speedLabel;
 int xSize=300;
 int ySize=300;

 //CONSTRUCTOR
 @Suppr sWarnes ings("unchecked")
 public Display(final Robot x) {

EXIT_ON_CLOSE setDefau
 ADIS = x;

ntPan .setLayout(null); getConte
 uttonJB resetButton =
 JButton exitButton = new J
 mapButton = new JButton("Map");
 text = new
 scrollPane = new JScrollPane(text);

ton = JButton("Start"); startBut

 sp

 speedCo

 speedLa

 getContentPane().

). getContentPane(
 getContentPane().add(

.add(getContentPane()
(). getContentPane

ChangeLi speedControl.add
 public void

 int v
 x.LeftA
 x.RightAuger.di
 }

 });
 exitButton.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent arg0){

A31

 try {
sleep Thread.

 } catch (Inter

 (100);
ruptedException e) {

 e.printStackTrace();
}
System.exit(1);

onListener(new ActionListener() {
ctionPerformed(ActionEvent arg0) {
 = null;
icker.destinations = new

STINATIONS];
.clicker.path = new IceReading[1000];

ADIS.display.repaint();
 ADIS.nm.clicker.head = 0;

 = 0;
 = 0;

tln("Resetting");

ner(){
(ActionEvent arg0){

Map");
 e.printStackTrace();

);
rol);

stener(){
 actionPerformed(ActionEvent arg0){

 text.setEditable();
 Hashtable labelTable = new Hashtable();

);
l"));

);

 }
 });
 resetButton.addActi
 public void a
 ADIS.Posn
 ADIS.nm.cl
Position[ADIS.nm.clicker.MAX_DE

ADIS.nm

 ADIS.nm.clicker.tail
 IS.nm.clicker.ppt AD
 System.out.prin
 ADIS.getStartBlock();

 }
 });
 mapButton.addActionListener(new ActionListe
 public void actionPerformed

 try {
 x.chooseMap();
 } catch (IOException e) {
 println("Cannot Choose

 }
 x.hasMap = true;
 speedControl.setPaintLabels(true
 getContentPane().add(speedCont
 }
 });
 startButton.addActionListener(new ActionLi

public void
 x.start = true;
 }
 });

false

 labelTable.put(new Integer(1), new JLabel("1/5th")
 labelTable.put(new Integer(5), new JLabel("Ful
 speedControl.setLabelTable(labelTable);
 speedControl.setMajorTickSpacing(1);

(50, 50, xSize, ySize); this.setBounds
(true setVisible

 }

A32

 //METHODS

 //print the given string to the console, and this display's output

.getText()+t);

ticalScroll

{

 end

t

window
 void print(String t){
 System.out.print(t);
 text.setText(text

 scrollPane.getVerticalScrollBar().setValue(scrollPane.getVer
Bar().getMaximum());
 try {
 Thread.sleep(10);
 } catch (InterruptedException e)
 e.printStackTrace();
 }
 }

 //print the given string with a line break at the
 void println(String t){
 print(t+"\n");
 }

 //print the given in
 public void print(t){
 print(Integer.toString(t));

int

 }

 //print the given int with a line break at the end

nt;
.IOException;

port java.util.Hashtable;

 public void println(int t){
 print(Integer.toString(t)+"\n");
 }

 public void paint(Graphics g){
 paintComponents(g);
 if(ADIS.nm != null)ADIS.nm.paint(g);
 if(ADIS.ad != null) ADIS.ad.paint(g);

 }

}//end class

Encoder
package package1;

import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JScrollPane;
port javax.swing.JSlider; im

import java.awt.Graphics;
stener; import java.awt.event.ActionLi

wt.event.ActionEveimport java.a
port java.ioim

im

A33

port javax.swing.JTextPane; im

im javax.swing.event.ChangeEvent;
import j ax.swing.event.ChangeListener;
port

t window, various buttons to interact with

 JFrame{

rollPane;
paused = false;

e=300;
 ySize=300;

 Robot x) {

utton resetButton = JButton("Reset");
on exitButton = new JButton("Exit");

ap");

 speedControl = JSlider(JSlider. , 1, 5, 3);
eedLabel = new JLabel("Speed Scale");

itButton.setBounds(190,11, 70, 23);

 scrollPane.setBounds(10, 93, 264, 151);
mapButton.setBounds(21, 11, 70,23);
startButton.setBounds(106,11,70,23);

ntrol.setBounds(280,60,60,200);
bel.setBounds(260,40,80,20);

add(exitButton);
add(resetButton);

scrollPane);
mapButton);

add(startButton);

stener(new ChangeListener(){
 stateChanged(ChangeEvent e){
alue = 6 - speedControl.getValue();

av

//A display that contains an outpu
the robot
// and various displays to show the robot's state.
@SuppressWarnings("serial")
public class Display extends

 //FIELDS
 Robot ADIS;
 JTextPane text;
 JScrollPane sc
 boolean
 JButton mapButton;
 JButton startButton;
 JSlider speedControl;
 JLabel speedLabel;
 int xSiz

int

 //CONSTRUCTOR
 @SuppressWarnings("unchecked")

isplay(final public D

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ADIS = x;
 getContentPane().setLayout(null);

new JB
J Butt

 mapButton = new JButton("M
 text = new JTextPane();
 scrollPane = new JScrollPane(text);
 startButton = new JButton("Start");

new VERTICAL
 sp

 ex

 resetButton.setBounds(106, 59, 70, 23);

 speedCo

 speedLa

 getContentPane().

). getContentPane(
 getContentPane().add(

.add(getContentPane()
(). getContentPane

ChangeLi speedControl.add
 public void
 int v

A34

 x.LeftAuger.divisor = value;
 = value;

new ActionListener(){

 x.Stop();

(100);
ruptedException e) {

 e.printStackTrace();
}
System.exit(1);

onListener(new ActionListener() {
ctionPerformed(ActionEvent arg0) {
 = null;
icker.destinations = new

STINATIONS];
ADIS.nm.clicker.path = new IceReading[1000];
ADIS.display.repaint();

.nm.clicker.head = 0;
IS.nm.clicker.tail = 0;

 = 0;
tln("Resetting");

 ADIS.getStartBlock();

ner(){
(ActionEvent arg0){

Map");
 e.printStackTrace();

);
rol);

stener(){

 Hashtable labelTable = new Hashtable();
);

l"));

 Auger.divisor
 }

 x.Right

 });
 exitButton.addActionListener(

 public void actionPerformed(ActionEvent arg0){

 try {

sleep Thread.
 } catch (Inter

 }
 });
 resetButton.addActi
 public void a
 ADIS.Posn
 ADIS.nm.cl
Positi ADIS.nm.clicker.MAX_DEon[

 ADIS
 AD
 ADIS.nm.clicker.ppt
 System.out.prin

 }
 });
 mapButton.addActionListener(new ActionListe
 public void actionPerformed

 try {
 x.chooseMap();
 } catch (IOException e) {
 println("Cannot Choose

 }
 x.hasMap = true;
 speedControl.setPaintLabels(true
 getContentPane().add(speedCont
 }
 });
 startButton.addActionListener(new ActionLi

 public void actionPerformed(ActionEvent arg0){
 x.start = true;
 }
 });

 text.setEditable(false);

 labelTable.put(new Integer(1), new JLabel("1/5th")
 labelTable.put(new Integer(5), new JLabel("Ful
 speedControl.setLabelTable(labelTable);

A35

 speedControl.setMajorTickSpacing(1);

 this.setBounds

(true
(50, 50, xSize, ySize);
);

lay's output

.getText()+t);

ticalScroll

{

 end

t

 setVisible
 }

 //METHODS

 //print the given string to the console, and this disp
window
 void print(String t){
 System.out.print(t);
 text.setText(text

 scrollPane.getVerticalScrollBar().setValue(scrollPane.getVer
Bar().getMaximum());
 try {
 Thread.sleep(10);
 } catch (InterruptedException e)
 e.printStackTrace();
 }
 }

 //print the given string with a line break at the
 void println(String t){
 print(t+"\n");
 }

 //print the given in

t(t){ public void prin int
 print(Integer.toString(t));
 }

 //print the given int with a line break at the end

 g)

 public void println(int){ t
 print(Integer.toString(t)+"\n");
 }

 public void paint(Graphics {
 paintComponents(g);
 if(ADIS.nm != null)ADIS.nm.paint(g);
 if(ADIS.ad != null) ADIS.ad.paint(g);

 }

}//end class

Gyro
package package1;

import com.neuronrobotics.sdk.dyio.DyIO;

//The Gyro

A36

public class Gyro extends AbSensor {

 //FIELDS
 double voltageOffset;//

 = .8;//the ratio of Angular Acceleration:Voltage double ratio
(1.76470588)

public double angle = 0;//The angle that the Gyro is at

;

ing of the gyro

 //CONSTRUCTORS
 Gy (DyIO dyio, int Port){ ro
 super(dyio, Port)
 }

 //METHODS

 //Takes the analog voltage read ,

then updates the proper

adSensor(){
LastReading;// voltage in volts

 voltage = voltage - voltageOffset;//center the voltage around
ro

100;//voltage in milivolts

 //converts it to an angular acceleration,
fields
 public void Re

uble voltage = do

ze
 voltage = voltage *

age * ratio;//anglular double angVel = -volt velocity in a
ction
 (-1<angVel && angVel<1) angVel = 0;

System.currentTimeMillis() - TimeTaken;
Vel* (timeChange);

(-.2<degMoved && degMoved<.2)degMoved = 0;
 angle = angle +degMoved;

etVoltage();//get the reading for the next

currentTimeMillis();//get the time the reading
s ta

e1;

t.Color;

//A class representing a reading of ice thickness
 class IceReading {
//FIELDS

tion = new Position();//The position of the reading
ess;//Thickness of the ice read at the position

 thickness
of safety of different ice-

in inches

clockwise dire
 if

 double timeC ge han =
 double degMoved = ang
 degMoved = degMoved/(15*14);
 if

 LastReading = AnInput.g
iteration

meTaken = System. Ti
wa ken
 }
}

IceReading
package packag

import java.aw

public

 Position posi

double thickn
 Color color;//Color representing the

//Variables representing the levels
thicknesses

A37

 int unsafe = 1;//less than this
int dangerous = 3;//less than this is dangerous

is unsafe

e = 5;//less than this is questionable
afe.

S

position.x=0;
.y=0;

eading(x, double y, double thickness){
.position.x = x;
.position.y = y;

s = thickness;
setColor();

.y;
ceThickness();

ness < unsafe) color = Color. ;
Color.red;

 for Sensors
blic interface ISensor {

ReadSensor();
ding();
ngTime();

 int questionabl
 //otherwise, the ice is s

 //CONSTRUCTOR
 public IceReading(){

 position
 thickness=0;
 = Color.black; color
 }

ceR double public I
 this
 this
 this.thicknes

 }
 public IceReading(Robot ADIS){
 position.x = ADIS.Posn.x;
 position.y = ADIS.Posn
 thickness = ADIS.GetI
 setColor();
 }

 //METHODS
 public void setColor(){
 if (thick black
 else if (thickness < dangerous) color =
 else if (thickness < questionable) color = Color.yellow;
 else color = Color.green;
 }
}

ISensor
package package1;

An interface//

pu
 void UpdateTime();
 void
 double GetRea

long GetReadi
 int GetPort();

}

JoyStickDialog
package package1;

import javax.swing.JDialog;

A38

im javax.swing.JLabel; port
port
port

mation from a USB controller

extends JDialog {

ght, Left, X, Y;

UCTOR

);

.setBounds(146, 60, 46, 14);
etContentPane().add(RX);

 getContentPane().add(RY);

 Left = new JLabel("Left-Stick");
Left.setFont(new Font("Tahoma", Font.BOLD, 11));
Left.setForeground(Color.RED);

tBounds(32, 33, 62, 14);
entPane().add(Left);

el("Right-Stick");
w Font("Tahoma", Font.BOLD, 11));

round(Color.RED);
124, 33, 68, 14);
dd(Right);

abel("X");
 X.setFont(new Font("Tahoma", Font.BOLD, 11));
 X.setForeground(Color.RED);
 X.setBounds(12, 60, 26, 14);

 getContentPane().add(X);

= new JLabel("Y");
nt(new Font("Tahoma", Font.BOLD, 11));

RED);
10, 17, 14);

 getContentPane().add(Y);

im java.awt.Color;
im java.awt.Font;

//A class to display infor
@SuppressWarnings("serial")
blicpu class JoyStickDialog

 //FIELDS
 DirectController sticks;
 JLabel LX, LY, RX, RY, Ri

 //CONSTR
 public JoyStickDialog(DirectController sticks){
 this.sticks = sticks;

 setBounds(100, 100, 254, 209);

etLayout(null getContentPane().s

 LX = new JLabel("0");
 LX.setBounds(48, 60, 46, 14);
 getContentPane().add(LX);

"); RX = new JLabel("0
 RX
 g

 = new JLabel("0"LY);
 LY.setBounds(48, 110, 46, 14);
 getContentPane().add(LY);

 RY = new JLabel("0");

.setBounds(146, 110, 46, 14); RY

 Left.se

 getCont

 Right = new JLab

(ne Right.setFont
 Right.setForeg
 Right.setBounds(
 getContentPane().a

 X = new JL

 Y
 Y.setFo

 Y.setForeground(Color.
 Y.setBounds(12, 1

A39

 setVisible(true);

ng(sticks.LeftStickX));
ftStickY));

(sticks.RightStickX));
eger.toString(sticks.RightStickY));

ialog;

 throws InterruptedException,

evice(dyio)){

r sensor timing

 }

 //METHODS
 public void Update(){
 sticks.Update();

 LX.setText(Integer.toStri
 LY.setText(Integer.toString(sticks.Le

toString RX.setText(Integer.
 RY.setText(Int
 repaint();
 }
}

Main
package package1;

mporti java.io.IOException;
import com.neuronrobotics.sdk.dyio.DyIO;

obotics.sdk.ui.ConnectionDimport com.neuronr

public class Main {

c void main(String[] args) public stati
IOException{
 //Set up the DyIO
 DyIO dyio = new DyIO();

onnectionDialog.getBowlerD if (!C
 System.exit(1);
 }
 //Create the robot
 Robot ADIS = new Robot(dyio);

estartTime();//a function fo ADIS.R

 /*//Optional code for controling the robot with the PS2

o use this functionality.

ler

controller.
 *simply remove the block comment t

te the PS2 Controller Control //Crea
 ControllerController cc = new ControllerController();
 boolean what = true;
 ADIS.hasMap = true;
 ADIS.start = true;
 while(what){

ADIS.ps2drive(cc);
 Thread.sleep(10);

 }
 //*/

 //wait for a map to be selected

A40

 ADIS.displa "Waiting for Map Selection");

DIS.getStartBlock();

 180;

pChooser
package package1;

;
 java.io.IOException;
 javax.imageio.ImageIO;

er;

n image file to repre map

apChooser JFrame{

{
 JFileChooser("src/Maps");

Filter",

 retreval;

);
ON){

file);

y.println(
 while(!ADIS.hasMap);

 A
 A Gyro.ReadSensor(); DIS.
 ADIS.Gyro.angle =

){ while(true
 ADIS.mapBlock();
 }//end while
 }//end main
}//end class

Ma

import java.awt.image.BufferedImage;
import java.io.File
portim

import
import javax.swing.JFileChoos
import javax.swing.JFrame;
import javax.swing.filechooser.FileFilter;
port javax.swing.filechooser.FileNameExtensionFilter; im

//A class for choosing a sent a
@SuppressWarnings("serial")
public class M extends
 //FIELDS
 JFileChooser fc;
 File file;
 BufferedImage map;

 //CONSTRUCTOR
 public MapChooser() throws IOException

w fc = ne
 FileFilter ff = new FileNameExtensionFilter("Image
"png","jpg");
 fc.setFileFilter(ff);
 int
 retreval = fc.showDialog(this, "Choose Map");

EXIT_ON_CLOSE setDefaultCloseOperation(JFrame.
 if(retreval == JFileChooser.APPROVE_OPTI
 file = fc.getSelectedFile();

tln(file.getName()); System.out.prin
 map = ImageIO.read(
 //Robot x = null;
 //NavMap nm = new NavMap(x, map);
 //nm.repaint();
 }

xit(1);; else System.e

 }
}

A41

NavMap
package package1;

import java.awt.*;
import java.awt.image.*;

 managing a//A class for
nput from the

 map, components on the map, and a clicker to accept
 map

ublic class NavMap{
 //FIELDS

ADIS;
image;
e;

 x_pos;

licker(this);

e image)

 .image = image;
getHeight());

ouseListener(clicker);
y.addMouseMotionListener(clicker);

 RenderingHints.);
 ADIS.display);

i
p

 Robot
 BufferedImage
 Dimension siz

int
 int y_pos;

 Clicker clicker = new C

Graphics2D g2;

 int SIZE=4;

 //CONSTRUCTOR
 public NavMap(Robot ADIS, BufferedImag
 {

this
 size = new Dimension(image.getWidth(), image.

 this.ADIS = ADIS;

 ADIS.display.addM
 ADIS.displa
 }

 ODS //METH
 public void paint(Graphics g){
 g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 VALUE_ANTIALIAS_ON
 g2.drawImage(image, 350, 40,

 //if (clicker.first != null){
 g2.setColor(Color.yellow); //
 // g2.fillRect((int)((clicker.first.x)-.5*SIZE),
(int)((clicker.first.y)-.5*SIZE), SIZE, SIZE);

 //}

t in i;
ll){

(i=clicker.head;i<clicker.tail;i++){
((int)(clicker.destinations[i].x-.5*SIZE),

nations[i].y-.5*SIZE), SIZE,SIZE);
}

 if(clicker.destinations[clicker.head] !=nu
 g2.setColor(Color.blue);

r fo
 g2.fillRect
(int)(clicker.desti

 }

A42

 if(ADIS.Posn != null){
 g2.setColor(Color.green);

 //g2.fillRect((int)(ADIS.Posn.x-.5*SIZE),
(int)(ADIS.Posn.y-.5*SIZE), SIZE,SIZE);

 angle = (ADIS.Posn.angle);
 xx = ADIS.Posn.x;

 double yy = ADIS.Posn.y;
uble L = 20;

th.toRadians(angle);
 math only once, to avoid bogging

 double
 double

 do
 angle=Ma

 //do the down the system

ft point
le x1 = xx+((L/4)*cos);
 y1 = yy+((L/4)*sin);

((L/4)*cos);
= yy-((L/4)*sin);

//top
 = xx+(L*sin);

 xPts[] = {(int)x1,(int)x2,(int)x3};
[] = {(int)y1,(int)y2,(int)y3};

int)(clicker.path[i].position.x-.5*SIZE),
y-.5*SIZE), SIZE,SIZE);

 double sin = Math.sin(angle);
 double cos = Math.cos(angle);
 //le

ub do
 double
 //right point

 = xx- double x2
double y2

 double x3
 double y3 = yy-(L*cos);

 int

 int yPts
 g2.fillPolygon(xPts, yPts, 3);

 }
 for(i=2;i<clicker.ppt;i++){

 g2.setColor(clicker.path[i].color);
 g2.fillRect((

[i].position.(int)(clicker.path
 //g2.setColor(Color.black);
 //g2.drawLine((int)clicker.path[i].x,
(int)clicker.path[i].y, (int)clicker.path[i-1].x, (int)clicker.path[i-1].y);

sitio

s, double y_pos, double angle){

 }

 }

}

Po n
package package1;

//A location and orientation
blic class Position { pu

 //FIELDS
 public double x;
 public double y;
 double angle;

 //CONSTRUCTORS

le x_po Position(doub

A43

 this.x = x_pos;
 this.y = y_pos;
 this.angle = angle;
 }
 public Position(double x_pos, double y_pos){
 this.x = x_pos;
 this.y = y_pos;

 this.angle = 0;
 }
 Position(){
 this(0,0,0);
 }

}

Robot
package package1;

s.sdk.dyio.DyIO; import com.neuronrobotic
import java.io.IOException;
import java.lang.Math;
import java.util.Random;

//A robot
public class Robot{
 //FIELDS
 DyIO dyio;

 Auger LeftAuger;
 Auger RightAuger;

 Compass Compas

AbSensor IceSe
s;
nsor;

o;

Position Posn;
Position Target;

olean hasMap = false;
 = false;

 fake initial thickness. See "GetIceThickness"

he dialog box that displays the relative position and
ient

tion{

 Gyro Gyr

 bo
 boolean start

 double thickness = 3;//A

oser mc; MapCho
 NavMap nm;
 AngleDialog ad;//T
or ation of the robot

y; Display displa

 //CONSTRUCTOR
 Robot(DyIO dyio) throws IOException, InterruptedExcep
 this.dyio = dyio;

A44

 this.LeftAuger = new Auger(dyio, 127, 2, -1, 21);

 Auger(dyio, 127, 3, 1, 23);

;
w Compass(dyio, 10, 11);

.Posn = ;

this);
 = AngleDialog(display);//The dialog box that displays the

lative position and orientation of the robot

 //Find the offset of the Gyro

 this.RightAuger = new

 this.Gyro = new Gyro(dyio,12);

null this.IceSensor =
 this.Compass = ne

is null th

 display = new Display(

new ad
re

 double voltages = 0;

Gyro.ReadSensor();
for (int i=0;i<5;i++){

.ReadSensor();
oltages += Gyro.LastReading;

t = voltages/5;

lay the map
 throws IOException{
r();
is, mc.map);

ne().add(ad.label);
ne().add(ad.triangle);

ntentPane().add(display.speedLabel);

tPane().remove(display.mapButton);

y to account for new components
 + nm.image.getWidth();
tHeight())<600)display.ySize = 600;

();

 for (int i=0;i<10;i++){
r.SetSpeedAcc(127);

();

 Gyro

 v
 Thread.sleep(5);
 }

eOffse Gyro.voltag

 }

 //METHODS

//choose and disp
 public void chooseMap()
 mc = new MapChoose

 nm = new NavMap(th

 display.getContentPa

ontentPa display.getC
 display.getCo

 display.getConten

 //Resize the Displa

70 display.xSize = 3
 if((60+nm.image.ge

 else display.ySize = 60 + nm.image.getHeight();
 display.setSize(display.xSize,display.ySize);

paint display.re

 }

 //stops the robot

public void Stop(){

 LeftAuge
 RightAuger.SetSpeedAcc(127);

(); LeftAuger.Go
 RightAuger.Go

A45

//sets both motors to the same speed

//set the angle the triangle

}
 }

 public void Move(int speed){
 LeftAuger.Move(speed);
 RightAuger.Move(speed);
 }

 shoudl be facing, and repaint the display

given speed, using proportional control.

n amount of degrees
ockwise

public void TurnBlock(int degrees) throws InterruptedException{

splay.println("Target Angle: "+ degrees);

 Ki = 0;

ns turn clockwise

 timeChange = 0;

me since last

 based of

error);
errorSum += error*timeChange;
rate = error - errorPrev;

ge = System.currentTimeMillis()-time;
int) ((Kp*error) + (Ki*errorSum) +

;//to turn clockwise,

);//to turn clockwise,

 public void UpdateDialog(){
 ad.triangle.angle= Posn.angle;
 display.repaint();
 }

 //drives both augers at the
 //Must be called in a loop.
 public void driveStraight(int setSpeed){
 drive(setSpeed, 0);

 }//end driveStraight

 //block that sets the motors to turn the give
cl

 di

 int Kp=5;

int
 int Kd = 900;
 double error = 0;//a positive error mea
 double errorSum=0;
 double errorPrev =0;

double rate = 0;
 int speed = 0;
 int done = 3;
 long time = System.currentTimeMillis();

long
 double prevAngle=0;

 Gyro.ReadSensor();//Read the sensor, to reset the ti
reading
 Gyro.angle = 0;//Reset the angle, so that turn angle is
current heading
 while (done > 0){

 error = degrees - (int)Gyro.angle;
 System.out.println(

 timeCha n
 speed = (
(Kd*rate/timeChange));
 LeftAuger.SetSpeedAcc(127 + speed)
increase this

(127 - speed RightAuger.SetSpeedAcc
decrease this

A46

 LeftAuger.Go(); RightAuger.Go();
errorPrev = error;//Set previous error for next iteration

 time = System.currentTimeMillis();

//Add the degrees

ot
UpdateDialog();

 display.repaint();

"+done);

}
 else {

");
 //Verify with Compass

n.angle>Compass.LastReading
sn.angle<C

.println("Verified");

rintln("Not Verified. Heading Adjusted.");

tor to drive straight the given distance in

ightBlock(double distance) throws

icks(distance);//Find the number of ticks

//the average of the encoder values

 traveled so far

orti C stant that scales the value

ant

g time = System. ();
ng t
tAuger.encoder.channel.setValue(0);

 Thread.sleep(20);
 Gyro.ReadSensor();//to update the angle
 UpdateAngle(Gyro.angle-prevAngle);
traveled to the current heading of the rob

 if ((Gyro.angle >= degrees - 5)&&(Gyro.angle<=degrees +
5)){
 display.println("Done in
 done--;

 prevAngle = Gyro.angle;
 done = 3 ;
 }
 }//end while
 Stop();
 display.println("DONE

 display.println("Veryifying with Compass...");
 sleep Thread. (3000);
 Compass.ReadSensor();

-10 && if (Pos
Po ompass.LastReading+10){
 display
 }
 else {
 display.p
 }
 }

 //block that sets the mo
inches
 public void DriveStra
InterruptedException{
 double ticks = getNumT
equivalent to the given distance
 double avg=0;
 double distTraveled = 0;//the total distance, in inches, the
robot has
 double lastDist = 0;//The distance the robot had traveled the
last iteration through the loop
 double Kp = 6;//Prop on on

uble
al

 do Ki = 0;//Integral Constant
 double Kd = 600;//Derivative Const
 double error=0;

uble do errorSum = 0;
 double errorPrev = 0;
 double rate = 0;
 int speed=0;

t do in ne = 3;
 lon currentTimeMillis
 lo imeChange = 0;
 Lef

A47

 RightAuger.encoder.channel.setValue(0);
 Gy ngle = 0; ro.a
 while(done>0){
 error = (ticks - avg);

()-time;
 based on error

);

();
-

RightAuger.encoder.channel.getValue())/2

ce(avg);
ed- lastDist);

stTraveled;

avg<=ticks+5)){
"Done in "+Integer.toString(done));

he motors to a complete stop

//converts distance in inches to a number of encoder ticks

 ticks){
very tick

();

 = time;

he ps2 controller
(ControllerController cc){
dc.LeftStickY);

 127

 errorSum += (error*timeChange);
 rate = error - errorPrev;
 timeChange = System.currentTimeMillis
 //Move the motors slower
 speed = 127;
 speed += (Kp*error) + (Ki*errorSum) + (Kd*rate/timeChange
 driveStraight(speed);
 errorPrev = error;

tTimeMillis time = System.curren
 = -(avg
LeftAuger.encoder.channel.getValue()+
;
 distTraveled = getDistan
 UpdatePosition(distTravel
 lastDist = di
 display.repaint();
 if ((avg >= ticks - 5)&&(
 display.println(
 done--;
 }
 else {
 done = 3;
 }

 }
 //slow t
 Stop();
 }

 public double getNumTicks(double distance){
 return distance*2;//the robot moves a half-inch for every tick
 }

 //converts number of encoder ticks to a distance in inches
 public double getDistance(double
 return ticks/2;//the robot moves a half-inch for e
 }

 //restart the time, as if the robot has just begun taking sensor
readings
 public void RestartTime(){

s long time = System.currentTimeMilli
 imeTaken = time; Gyro.T
 Compass.TimeTaken
 }

 //drive the robot with t
 public void ps2drive
 int Left = (cc.
 int Right= (cc.dc.RightStickY);

 //if the set speed is close to 127, set it to

A48

 if (112 < Left && Left < 142) Left = 127;
ht < 142) Right = 127; if (112 < Right && Rig

 System.out.println("Start the motors moving at "+Right+" and

ontroller

from a given change in angle
{

Posn.angle<0)){

 (Posn.angle < 0)Posn.angle +=360;

the given distance

(angle);
e= (Math.sin(angle)*distance);

ngle)*distance);
ange;

 Posn.y -= y_change;

++;
= new Position();

 current.x = Posn.x;

);

the target

 (nm.clicker.head == nm.clicker.tail){
nm.clicker.head = 0;

"Waiting for input");
r.head == nm.clicker.tail){

 Target = nm.clicker.destinations[nm.clicker.head];

urrent and target positions
 CalculateDistance(){

"+Left);
 RightAuger.Move(Right);
 LeftAuger.Move(Left);
 cc.jsd.Update();//Update the Dialog box for the PS2 C

 }

 //Calculates the new angle of the robot
 public void UpdateAngle(double angle)
 Posn.angle += angle;

>360)||(while ((Posn.angle
 if (Posn.angle > 360)Posn.angle -= 360;
 if
 }
 }

 //calculates he new x/y position of t the robot, from
traveled in inches
 public void UpdatePosition(double distance){
 double angle = Posn.angle;
 angle th.toRadians= Ma
 double x_chang
 double y_change= (Math.cos(a
 Posn.x += x_ch

 nm.clicker.ppt

sition current Po

 current.y = Posn.y;

ceReading(this nm.clicker.path[nm.clicker.ppt] = new I
 display.repaint();
 }

 s button to be ed on the map, then updates //wait for a press
position
 public void UpdateTargetBlock() throws InterruptedException{
 if

 nm.clicker.tail = 0;
 display.println(
 while (nm.clicke
 Thread.sleep(10);
 }
 }

 }

 //calculates the distance between the c

public int
 int distance;

A49

 double x, x2, y, y2;
 x = (Target.x - Posn.x);
 x2 = x*x;
 y = (Target.y - Posn.y);
 y2 = y*y;
 distance = (int) (Math.sqrt((x2+y2)));
 return distance;
 }

 //calculates the angle change needed to get to the target position

ange, x, y;

ent position to the

gleGlobal = Math.toDegrees(Math.atan(x/y));
 (y<0){

is angle to a zero-

 based on it's

- Posn.angle;

 while ((angleChange>180)||(angleChange<-180)){
80)angleChange -= 360;

nge +=360;

for the user to input a starting position
void getStartBlock(){

 display.println("Select Starting Position");

ker.first.x,nm.clicker.first.y,

);

//drive the robot according to instructions given from the GUI
 mapBlock() throws InterruptedException{

 r n angle from o 180 //retu ns a -180 t
 public double CalculateAngle(){
 double angleGlobal, angleCh
 x = (int)Target.x - (int)Posn.x;
 y = (int)Target.y - (int)Posn.y;
 //first, find the global angle from the curr
target
 an

if
 if (x<0) angleGlobal= -180+angleGlobal;
 if (x>0) angleGlobal = 180+angleGlobal;
 if (x==0)angleGlobal = 180;
 }
 angleGlobal = 180-angleGlobal;//Translates th
up, positive-clockwise angle
 //now, find the angle the robot needs to turn,
current heading
 angleChange = angleGlobal

 //adjust the number to a number between +/-180

 if(angleChange > 1
 if(angleChange <-180) angleCha
 }
 return angleChange;
 }

 //waits

public
 while(Posn == null){

 while(nm.clicker.first == null);
 Compass.ReadSensor();
 Posn = new Position(nm.clic
0);
 nm.clicker.path[0] = new IceReading(this);
 display.println("Start Position Set:
("+Posn.x+","+Posn.y+"){"+(int)Posn.angle+"}"
 }
 display.repaint();

}

 public void
 getStartBlock();
 if(!start)display.println("Preload any map points, then press
\"Start\".");
 while(!start);

A50

 UpdateTargetBlock();

 double angleChange =CalculateAngle();

 display.println("Turning...");
 TurnBlock((int)angleChange);//*dir
 display.println("Success!");

 UpdateDialog();

tance();

aint();

actually turn and drive the

)display.println("Preload any map points, then press
Star ".")

ir=1; dir = -1;
Change;i+=dir){

UpdateAngle(dir);
 UpdateDialog();

 }

ed, with the given turning factor (zero

void drive(int setSpeed, int turnFactor){

 the ticks from each encoder
tAuger.encoder.channel.getValue();

 display.repaint();

 int distance = CalculateDis

 displ println("Driving..."); ay.
 DriveStraightBlock(distance);
 display.println("Success!");

 .clicker.head ++; nm
 display.rep
 }

 //draw the map, assuming the robot would
correct distance

blic pu void feauxMapBlock() throws InterruptedException{
 int i;
 getStartBlock();
 if(!start
\" t\ ;
 while(!start);
 UpdateTargetBlock();
 double angleChange =CalculateAngle();
 int dir;

else if gl (an eChange>0) d
 for(i=0;i!=(int)angle

 Thread.sleep(5);

 display.repaint();
 }
 int distance = CalculateDistance();

 for(i=0;i<distance;i+=10){
 UpdatePosition(10);
 Thread.sleep(100);

 nm.clicker.head ++;
 display.repaint();
 }

 //drive the robot the given spe

ositive is clock-wise)is straight, p
public

 double leftTicks;
 double rightTicks;
 int angle;
 int error;
 //get
 leftTicks = -Lef

A51

 rightTicks = RightAuger.encoder.channel.getValue();
er h s bee moving too fast

() (rightTicks - leftTicks);

 //a positive error means the right aug a n

int error =

 //Assume the gyro was initially set to 0

+error);
gle);//if the robot has turned clockwise,

 counter-clockwise

he corrected set speed for each auger

 + (error) + turnFactor);//a

//

LeftAuger.SetSpeedAcc(setSpeed - error - turnFactor);//a

// a

Auger.Go();

 po tion
tIceThickness()

SO THAT THE MAP SHOWS SOME

D, THIS SHOULD BE CHANGED TO READING

/end

 Gyro.ReadSensor();
 display.print("Error: "
 angle = (int) (Gyro.an
subtract more from the error, to turn
 playdis .println(", angle"+angle);

 //set t
 if (setSpeed >= 127){//forwards
 LeftAuger.SetSpeedAcc(setSpeed
positive error speed this up
 RightAuger.SetSpeedAcc(setSpeed - (error) - turnFactor);
a positive error slows this down
 }

se {//backwards el

positive error slows this down
 RightAuger.SetSpeedAcc(setSpeed + error + turnFactor);
positive error speeds this up
 }
 Start the augers driv// ing at the corrected speed.
 LeftAuger.Go();
 Right
 }

 //get the thickness of the ice at the current si
 public double Ge {

 //THIS IS FAKE. IT IS A TEMPORARY FIX
SORT OF ICE READING.
 //ONCE AN ICE SENSOR IS ADDE
FROM THAT SENSOR.
 Random r = new Random();
 int adjust = r.nextInt(3)-1;
 thickness = thickness + (adjust);
 if (thickness < 0)thickness = 1;
 if (thickness > 7)thickness = 6;
 //END OF THE FAKE PART

 return thickness;

 }

}/ class

Triangle
package package1;

A52

A53

wt.Graph ;

portim java.awt.Color;

import java.a ics
import java.awt.Graphics2D;

import javax.swing.JComponent;

//A class that draws a triangle
@SuppressWarnings("serial")
public class Triangle extends JComponent{
 //FIELDS

double x = 150;//The X coordinate around which the triangle is centered
uble riangle is centered

 of aphics thing. It's necessary.

uctor

k);
 150, 300);

 //g2g.drawLine(0, 150, 300, 150);

 do y = 450;//The Y coordinate around which the t
ngle double L = 100;//the height of the tria

uble do angle = 0;//the angle at which the triangle is drawn, in degrees
 Graphics2D g2g;//some kind gr

 //CONSTRUCTOR
 //empty constr
 public Triangle() {

 }

 //METHODS
 //paint the triangle

blic pu void paint(Graphics g){
 g2g = (Graphics2D)g;
 g2g.setColor(Color.blac

g2g.drawLine(150, 0, //

 angle=Math.toRadians(angle);

avoid //do the math only once, to bogging down the system
 sin = Math. (angle);

L/4)*cos);

 angle = Math. (angle);

draw the lines between the points
.drawLine((int)x1, (int)y1, (int)x2, (int)y2);

 g2g.drawLine((int)x2, (int)y2, (int)x3, (int)y3);
 g2g.drawLine((int)x3, (int)y3, (int)x1, (int)y1);

 double sin
 double cos = Math.cos(angle);

 //left point
 double x1 = x+((
 double y1 = y+((L/4)*sin);
 //right point
 double x2 = x-((L/4)*cos);
 double y2 = y-((L/4)*sin);
 //top
 double x3 = x+(L*sin);

 y3 = y-(L*cos); double

toDegrees

 //

 g2g

 }
}

	Abstract
	Acknowledgements
	Executive Summary
	Table of Figures and Tables
	Introduction
	Problem Statement
	Project Statement

	Background
	Dangers of Thin Ice
	Methods of Measuring Ice
	Invasive Methods
	Noninvasive Methods

	Methodology
	Propulsion/Locomotion Design
	Multi-Track Belt
	Single-Track Belt
	Propeller
	Wheels
	Screw- Propelled Vehicle (Auger Driven Vehicle)
	Decision

	Auger Design
	Auger Prototype
	Auger: Final Design
	Pontoon Material Selection
	Helix Material Selection
	Combining the Components

	Chassis Design
	Prototype Chassis
	Final Chassis Design

	Drive Train
	Control System Design
	Power Supply Design
	Sensor Implementation
	Software Design
	Human-Computer Interface
	External Computer-Internal Computer Interface
	Robot Code
	Robot
	Auger
	Encoder
	Position
	IceReading
	AbSensor
	Gyro
	Compass

	Results and Analysis
	Testing
	Auger
	Water testing
	Battery Life
	Graphical User Interface (GUI)
	Computer to Computer Network
	Robot Navigation

	Evaluation
	Budget Evaluation

	Social Implications
	Safety Issues
	Occupational Issues

	Conclusion and Recommendations
	Suggestions for Future Work
	Accomplishments

	References
	Appendices
	Appendix A: Initial Auger Buoyancy Calculations
	Appendix B: Final Auger Buoyancy Calculations
	Appendix D: Cone Calculations
	Front Cone
	Back Cone

	Appendix E: Stability Calculations
	Appendix F: Heat Calculations
	Appendix G: Free Body Diagram (Torque Calculations)
	Appendix H: Bill of Materials
	Appendix I: Robot Code
	AbSensor
	AngleDialog
	Auger
	Clicker
	Compass
	ControllerController
	DirectController
	Display
	Encoder
	Gyro
	IceReading
	ISensor
	JoyStickDialog
	Main
	MapChooser
	NavMap
	Position
	Robot
	Triangle

