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Abstract 
 The purpose of this project was to design, create, and test a robotic mobile platform 

capable of housing and interfacing with an ice thickness measuring sensor. This robot was 

designed to: drive across natural snow, ice, and water surfaces; follow a user-defined path; report 

live position and heading information to a user. The unique auger-drive system of this robot was 

designed to provide efficient movement across ice, as well as buoyancy and aquatic propulsion, 

in the case of broken ice. A user interface was also designed and implemented as part of this 

project. This interface was designed to: display the live information sent by the robot; allow the 

user to send instructions to the robot; prompt the user for input; inform the user of the program’s 

progress and state.  
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Executive Summary 
 In cold weather climates, frozen ponds and lakes are a source of entertainment for many 

people. To ensure safety, there needs to be a reliable way to determine that the ice used is thick 

enough to hold the weight of those on its surface. The purpose of our project was to design a 

robotic solution to the problem of unreliable ice thickness reading. Such a robotic system would 

need to be able to drive on ice and snow, survive in water, keep track of its position, detect the 

thickness of ice, and send data to and receive data from a user. After review of the workload such 

a project would require, the scope of the project was narrowed down to exclude the actual 

sensing of ice. This left the goal of the project at designing and building a mobile, autonomous 

robotic system capable of housing and interfacing with an ice sensor. 

 The first step in the design phase was to research the capability of driving on ice. 

Extensive research was done on current drive systems, including track, propeller, wheel, and 

auger drives. After this research, it was apparent that the best drive method for this purpose 

would be the auger drive. This drive system provides good traction and mobility on ice, as well 

as the ability to float and drive in water. This was an important factor because, in the case of thin 

ice, the robot may end up breaking through into the water beneath. 

 After the auger drive type was decided upon, the specifics of the auger needed to be 

decided. Factors that needed to be considered included weight, pontoon shape and size, blade 

pitch and height, and strength. The total auger weight, along with the pontoon shape and size, 

were important factors because they determined the buoyancy that each auger would provide for 

the robot. The shape also determined the auger’s ability to pass over obstacles in its path. The 

pitch of the blades determines the ratio of conversion from angular velocity of the augers to 

linear velocity of the robot. The height of the blades determines the propulsion in water. The 

strength of the auger as a whole is an important factor that determines survivability and 

maintainability of the system. 

 Concurrently with the auger design, the chassis was also being designed. The chassis 

needed to be able house the drive train, motors, motor controllers, the robot controller, and any 

sensors that the robot would use. In addition to housing these components, the chassis needed to 

keep these components protected from the elements (excessive cold, water, etc.). The chassis 

also needed to provide physical support for the augers to keep the system stable while driving. It 
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was decided that polycarbonate would be the ideal material to construct the chassis from, 

because of its relative strength, heat-insulating properties, and ability to be welded to form water-

tight seals. Later developments in the chassis design let to a sloped front section for ease of 

surpassing obstacles, handles for ease of transportation, panels for access to interior components, 

and a heat sync to compensate for the polycarbonate’s insulation of the heat from the motors. 

 Next, a decision was made on how the robot would be controlled. A few systems were 

considered, but rather quickly it was decided that the Neuron Robotics DyIO, in accompaniment 

with a Fujitsu Lifebook, would be the ideal system. The DyIO provided a system in which all of 

the low-level coding used for interfacing with sensors had already been completed. In addition, 

performing the higher-level code on an internal Lifebook would minimize the potential of over 

taxing the control system. These two components, used in conjunction, provided a relatively easy 

base upon which the software system could be developed. 

The next major system that was developed for the project was the sensor suite that would 

be used for localization. The primary sensors that were considered were gyros, accelerometers, 

compasses, encoders, and GPS. GPS was eliminated from the potential sensors rather early in 

this design phase. The reason for this is that the range of error of a GPS is extremely significant 

when compared to the scale on which this robot was intended to drive. Later in the design 

process, accelerometers were eliminated as well. This was due to the complexity of designing a 

complete IMU in the time that this project was to take place. These eliminations left encoders 

and a gyro for driving straight, and the gyro and a compass for turning. 

After choosing the sensors, the software architecture needed to be developed. The design 

for the software was broken into three main components. The first was the GUI. This part of the 

software needed to have the capability of interpreting the intentions of a user sending commands 

to the robot, and displaying information that was sent from the robot to the user. In both 

directions, the majority of information was sent through a map on the GUI. The user selects 

target points for the robot to travel to by clicking on the map. The GUI displays the robot’s live 

position and heading, as well as data points representing the thickness of the ice at certain 

locations.  
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The next section of the software system was the communication between the Lifebook 

inside the robot and an external computer for the user. After researching various techniques, this 

task was accomplished by a private desktop connection over an ad hoc, computer-to-computer, 

wireless connection. This provided the display from the Lifebook to be shown on the user’s 

computer, and allowed input from the user’s computer to reach the internal computer.  

Finally, the major portion of the software was the robot’s actual code. This included 

interpreting the commands sent from the GUI, keeping track of positions from data acquired 

through sensors, communicating with those sensors, driving control algorithms, and the sending 

of positional data. 

After each system of the robot was designed and fabricated in its own manner, these 

systems were brought together and tested. Testing phases ranged from initial, stationary testing 

of the driving, to indoor remote controlled driving, to outdoor remote controlled driving on ice, 

snow, and water, and finally semi-autonomous driving of the robot through the GUI’s map 

interface. There was also extensive testing of the sensors and GUI interface before they were 

combined with the drive system and the rest of the robot. This testing led to optimized designs of 

many of the robot’s systems, but it also revealed flaws in the project that could not be fixed 

before the conclusion of the project. 

Overall, most of the project goals were accomplished, and a few were surpassed. On the 

other hand, a few goals were not met. The largest example of such a shortcoming was the robot’s 

inability to keep track of its position, mainly due to its failure to drive straight. This failure was 

likely caused by a combination of inconsistencies in the two auger blades that came from 

manufacturing errors, and a false assumption that the auger blades would not slip or free spin on 

ice. Attempts were made to change the way the robot determined if it was driving straight, but a 

solution was not found before the end of the project. 

Before a robotic project can be completed, certain social issues must be considered. For 

example, any safety issues associated with a robot must be identified. For this robot, there are 

two major safety concerns. The first is that the robot is relatively heavy and bulky for one person 

to safely carry, and injuries may occur if it is handled improperly. To account for this issue, two 

carrying handles have been designed on the top of the chassis. This makes it easier for one or 
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two people to carry the robot, and reduces the chances of the robot being dropped. The other 

safety concern is the blades on the augers. During motion, these blades spin fairly quickly, and 

could cause injury if they are touched. There is not too much that can be done about this issue, 

but in order to reduce the potential for injury, the blades were not sharpened after they were 

delivered. Another social issue that needs to be considered is any potential job displacement 

issues. This robot is designed to inspect ice autonomously. While there may be a few people 

whose job would be eliminated if this robot were to become a large-scale solution, the number of 

people would not be significant. Additionally, the robot still needs an operator, and such an 

operator would not need to be highly trained, due to the simplicity of the GUI interface. Rather 

than being displaced by this robot, a person could easily just be reassigned from an inspector to 

an operator. 

This project leaves room for future project groups to pick up the system and make 

improvements. For example, an ice thickness sensor could be acquired or developed, and 

interfaced with the platform. Similarly a GPS or other advance localization system could be 

added to improve the robot’s ability to track its motion. 

At the conclusion of this project, a semi-autonomous, mobile, robotic platform capable of 

housing an ice sensor had been created. This robot met the majority of the specifications that 

were set forth from the beginning of the project. The shortcomings in the project proved to be a 

learning experience for the students involved. Important information about the engineering 

design process had been acquired, and this knowledge will be applied to future projects in their 

engineering careers. 
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Introduction 

Problem Statement  

Across the nation, cold weather enthusiasts engage in winter activities occurring on ice. 

These activities include ice fishing, ice skating, and snowmobiling, which all depend on the ice 

being safe. Each year there is an average of 235 ice related deaths reported in the US alone. 

There are several ways that cities attempt to prevent and reduce these incidents; however the 

most common current method of ice inspection is not effective enough in terms of time, cost, and 

labor. The most common method is creating a hole in the ice and taking a measurement with a 

ruler; this takes a long time and only gauges the thickness of that one spot. Using satellites is 

another method, but is not cost effective. It is apparent that a more efficient and effective method 

of measuring ice thickness could make ice-borne activities more accessible and safe. 

Project Statement 

 The purpose of this Major Qualifying Project (MQP) was to develop a robot for 

autonomously measuring ice thickness while moving over the surface of bodies of ice. After 

some background research on methods of sensing ice thickness, it was found that Ground 

Penetrating Radar (GPR) is the most effective method for measuring ice thickness. However, 

GPR is extremely expensive, difficult to use, and far beyond the budget of this project. After 

talking with the advisor of this project and contacting Geophysical Survey Systems, Inc. (GSSI), 

the world’s largest manufacturer of GPR systems, it was decided to narrow the focus of the 

project to developing a mobile platform. The intent is that a future project team could develop a 

sensor for, or integrate an existing sensor into, this platform. 

 The robot developed for this project, named Auger Driven Ice Surveyor (ADIS), was 

designed to fulfill a number of requirements needed to effectively create a system with which an 

ice sensor could be interfaced. These requirements included: 

• Traveling on a natural ice and snow surfaces 

• Sensing its location  

• Receiving commands from the user 
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• Preserving itself if it falls through the ice  

• Transmitting or storing data  

The user interface needs to be capable of: 

• Receiving data from the robot 

• Creating a gradient map of thicknesses throughout the surveyed area based on 
thickness and location data 

• Displaying this map to a user 
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Background 

Dangers of Thin Ice 

Each year, there are an estimated 235 deaths in the United States that occur as a result of 

people falling through the ice on a frozen lake or pond. According to the Minnesota Department 

of Natural Resources’ (DNR) [2] ice-related fatality statistics there is an average of 6.4 deaths 

per winter season in the state of Minnesota (based on the past 30 years of data). Over the past 

five winters (2004/2005 through 2008/2009) 35% of the fatalities were from people traveling on 

the ice by foot (including ice skates and skis), 41% of the deaths resulted from people falling 

through the ice on snowmobiles or ATVs, and the remaining 24% are from people in passenger 

vehicles (cars and trucks) [3].  

235 deaths due to ice related accidents may not seem like very many, but there are 

thousands of undocumented cases where people fell through the ice and did not die. There are 

specially trained rescue teams who specialize in rescuing victims who have fallen through the 

ice. Their methods are very effective and as long as someone is present to call for help, they can 

often save the victims in time. However, as stated in the statistics above, there are times where 

this is not the case and deaths do occur. 

The best way to prevent death due to falling through 

the ice is to take preventative measures. The most extreme 

preventative measure would be never going out on the ice to 

begin with, but this may be too harsh for enthusiasts. Many 

public bodies of water are checked regularly to ensure that the 

ice is safe for various activities. Minnesota’s DNR, like many 

other state departments, recommends that anyone participating 

in any activities on ice first checks the thickness to verify it is strong enough for the desired 

activities (i.e. ice fishing, ice skating, snowmobiling, etc.). Most cases where someone fell 

through the ice on a pond or lake occurred in a spot where, for whatever reason, the ice happened 

to be thinner than the surrounding areas. This is why they also recommend carrying what they 

call “Ice Claws” which are wooden handles with sharpened nails sticking out that could be used 
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Figure 1: Ice Claws
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to grip the ice and pull themselves out if they were to fall through. See Error! Reference source 

not found. for an image of what they look like. 

The Minnesota DNR provides the rough guidelines shown below in Figure 2 which 

indicate how thick the ice must be for various activities. North Dakota Game and Fish 

Department [4] provides a similar graphic on their website shown in Figure 3. The general 

consensus is that 4 inch thick ice is safe for activities on foot. However, this is for clear ice. Ice 

that is opaque is considered to be weaker, usually by a factor of 2, which means 8 inches of 

opaque ice is the minimum that is safe to walk on. 

Figure 2: Minnesota Ice Thickness Guidelines 

Figure 3: North Dakota Ice Thickness Guidelines 
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Methods of Measuring Ice 

There are a few ways to effectively measure the thickness of ice. Of all these methods, they can 

be broken down into two subcategories: Invasive and Noninvasive. Invasive methods of 

measuring the ice thickness require cutting through the surface. Noninvasive methods of 

measuring the ice thickness will use a sensor that does not damage the ice in the process. Some 

examples of noninvasive methods include Ground Penetrating RADAR (GPR), ultrasonic 

sensors, and acoustic sensors. 

Invasive Methods 

There are several invasive methods of measuring ice thickness; however they are all similar in 

theory: Break through the ice and measure the thickness. The most common methods involve 

4 
 

http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://www.dnr.state.mn.us/safety/ice/thickness.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html
http://gf.nd.gov/education/ice-brochure.html


creating a hole in the ice and measuring the thickness with a ruler. One traditional way of 

checking ice thickness is using an ice chisel or ice pick. In this method the user simply stabs the 

ice with the chisel or pick until they break through to the water and 

then measure the thickness with a ruler. A more modern way to break 

through the ice in order to measure the thickness is using an ice auger 

like the one shown in Figure 4, or simply a cordless drill with a 

sufficiently long drill bit if only a small hole is needed.  
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The city of Worcester, MA employs the Department of Public Works 

to check the ice thickness of all public bodies of water regularly. 

Their current method of checking the ice thickness is to drill a hole 

and measure with a ruler that has a hook on the end. While the general 

consensus is that 4 inches of ice is safe enough for activities like ice fishing and ice skating, the 

city of Worcester takes extra precautions and does not allow anyone on the ice until it is 6 inches 

thick. On the ponds that are maintained for ice skating, there needs to be even more ice, at last 8 

inches, because the machine used to clear off the snow is approximately 1500lbs. 

Figure 4: Gas Powered Ice Auger

Invasive methods are the current standard; however there are negative consequences of using 

them. They require breaking the ice which can lessen the structural integrity of the surrounding 

ice, making invasive methods more dangerous when done repeatedly in a small area. 

Additionally, invasive methods only measure at one specific location. Research shows that often 

people fall through the ice in an area where the ice is thinner than the surrounding areas. By 

drilling a few holes and measuring thickness, areas where the ice is thinner may not be identified 

and accidents can still occur. This factor makes invasive methods less dependable. 

Noninvasive Methods 

Noninvasive methods use sensors to measure the ice thickness without physically altering the 

ice. Some sensors that could work to accomplish this are: ground penetrating radar (GPR), 

ultrasonic sensors and acoustic sensors. The most reliable technique appears to be GPR. These 

systems have been proven to work for ice and snow applications [5]. They can reliably, and 

accurately, measure the thickness of ice from thicknesses as thin as mere centimeters up to tens 

of meters. Another feature is that radar can measure the thickness at varying distances from the 

surface of the ice. CryoSat 2 [6], for example, is a satellite that was launched in April 2010 that 
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is capable of measuring ice thickness of the Polar Regions from orbit with 1 centimeter of 

accuracy. One negative aspect is that GPR systems can be quite expensive in comparison to other 

technologies.  

Ground Penetrating Radar equipped snowmobiles [7] are widely used in northern 

Sweden. Several companies that work in car and tire industry do winter tests in Sweden where 

test tracks are constructed on lakes during the winter. GPR equipped snowmobiles are lighter 

than the cars and can be used to test the tracks to ensure sufficient thickness to keep cars on the 

test track, and out of the water.  

Ultrasound technology, similar to that used for sonograms, could, in theory, be used for 

ice measurement, though no off-the-shelf sensors have been found through research. In theory if 

a frequency could be found that penetrates ice but reflects off water, the travel time of the sound 

waves could be measured to calculate the thickness. 

The final noninvasive method that has been identified as a possibility is to tap the ice 

with some predetermined force and listen to the sound it makes with an acoustic sensor. The 

theory is that different thicknesses of ice would resonate at a different pitch when struck, though 

this may be altered by the quality of the ice as well.  
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Methodology 

Propulsion/Locomotion Design  

 Selecting the method of locomotion for our robot was a core part of our design process. 

Auger Driven Ice Surveyor (ADIS) needed to be able to effectively drive over natural ice and 

snow surfaces. Because of this, the drive method was decided on after extensive background 

research and comparison of various propulsion techniques.  

 After the background research was completed, five different types of driving methods 

were considered. These methods were: track belt drive, propeller driven, wheel drive, and auger 

drive.  

Multi-Track Belt 

 

  

Figure 5: 4-track belt drive Snowcat, 2-track belt drive Snow Truck 
Multi-track belt drives are a commonly used drive method for all-terrain vehicles. This 

drive system is capable of moving on top of snow, ice, pavement, mud, and many others. A 

majority of large construction vehicles, tanks, and snow vehicles use this system because of its 

high traction in loose mediums (soft soil, mud, snow, etc.). The reason for this high traction is 

that a tread has more points of contact with the driving surface, and the treads can be designed to 

have a high coefficient of friction.  

Although treads would offer a high maneuverability on ice and snow, there are a few 

disadvantages to this drive system. Treaded vehicles generally have a slower maximum speed 
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than other types of drive offer. Additionally, the cost of these types of systems is usually more 

than that of other systems. 

Single-Track Belt 

 

 

Figure 6: Single-track Snowmobile 
Single-track vehicles, such as snowmobiles, use one tread in the rear for propulsion and 

two skies in the front for steering. While this method of drive generally has a higher speed, it is 

less agile than multi-track drives when turning. One of the major advantages to this type of drive 

system is the capability to dynamically distribute weight, causing downhill travel to be more 

efficient when weight is shifted properly. Additionally, a single-track vehicle can slow down or 

accelerate more quickly by shifting weight over the tread. While this ability is advantageous for 

human drivers, developing a software system capable of capitalizing on this advantage would be 

extremely challenging.  
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Propeller 

 

 

Figure 7: Lotus concept Ice vehicle 
A propeller drive system pushes air with rotating blades for thrust and a separate 

mechanism for steering. One example of a propeller driven vehicle is an airboat. These boats use 

a large fan mounted above the water, rather than an underwater propeller. 

Another example of a propeller driven vehicle is the Lotus Ice Vehicle. It was designed 

by Lotus CIV to prove the concept of propeller drive in place of more conventional systems on 

ice for the 2005 Ice Challenger expedition. The Lotus vehicle used skis were used for steering, 

but also provided a low friction surface to slide across the ice. 

The main advantage of this system is that it does not require friction between a surface 

and the vehicle, making it ideal for snow and ice. Because the system relies on low friction with 

the surface to maintain movement it can only work efficiently in specific environments. In 

addition, a large enough fan to propel a robot designed for the purpose of this project could 

easily become dangerous in less than ideal situations. 
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Wheels 

 

Figure 8: Snow Tread Wheel 
 Wheel drive is one of the most commonly used drive systems. A wheel driven system has 

many advantages in complexity and price. There does not need to be many moving parts, and 

those parts are very simple when compared to track systems. Furthermore, because of the 

simplicity and availability of parts, the price becomes much less substantial. The major 

disadvantage to wheel driven system is that they are less versatile in the medium that can drive 

on. On ice, wheels have much less traction than other systems, and therefore driving becomes 

much more difficult. 
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Screw- Propelled Vehicle (Auger Driven Vehicle) 

 

Figure 9: 1970 ZiL-29061 Screw Propelled Vehicle (Soviet Union) 
The screw-propelled vehicle in Figure 9 is amphibious; it floats and propels itself on 

water, ice, snow, mud, and even dry land. The augers underneath the vehicle transform rotational 

energy into translational energy, propelling it forward. Screw-propelled vehicles move forward 

by rotating one auger clockwise and the other one counter-clockwise. One auger is threaded 

clockwise, while the other is counter-clockwise. This vehicle can also drive sideways, in a crab-

like motion, by rotating both augers in the same direction. This type of vehicle cannot be used on 

roads or most other hard surfaces because it can damage both the blades and the surface. This 

vehicle is relatively hard to control compared to wheel and track belt vehicles. However it has 

the advantage on ice of minimizing the slip between the surface and augers. The augers can also 

be designed to provide buoyancy for the vehicle. 

Decision 

A decision matrix was created to aid in selecting the optimal drive configuration for this 

robot. The decision was made by considering six categories. The categories were cost, route 

flexibility, ice mobility, maintainability, part availability, and buoyancy/water mobility. Because 

the focus of the project is a mobile platform to drive on ice, the ice mobility category was given 

the highest weight. Additionally, buoyancy and water mobility were given more weight, as self-

preservation was one of the major objectives. 
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Table 1: Decision Table for Propulsion/Locomotion Design  

   Cost  Route 
Flexibility 

Ice 
Mobility Maintainability  Part 

Availability
Buoyancy and
water mobility Total 

Weight  0.15  0.10  0.35 0.05 0.15 0.20 
Track Belt 
Drive  3  8  8  4  6  2  5.55 

Snow 
Mobile 
Drive 

4  5  7  5  7  3  5.45 

Propeller 
Drive  6  3  9  8  8  4  6.75 

Wheels  9  6  4 8 10 5  6.25
Augers  5  9  9 7 3 10  7.65

 

From this matrix, it was apparent that an auger drive system would be the best choice for 

the project. This system’s superiority in both water mobility and ice mobility far outweigh its 

major disadvantage, lack of part availability. 

Auger Design 

 One of the most unique aspects of this project was the use of the auger drive system. 

Because the design of the augers was essential to the platform’s performance, special care was 

taken to optimize this design. First, calculations were done to 

determine what auger dimensions would provide sufficient 

buoyancy to support the weight of the robot. The calculations 

were completed under the assumption that the auger would 

consist of a cylindrical midsection with hemispherical ends as 

shown in Figure 10. It was determined through the calculations that if the robot weighed the 

target weight of 50 lbs a minimum volume of 0.40 ft3 would be required from each auger. From 

this, values of 24 inches for length and 8 inches for diameter were selected. With the selected 

values, it was calculated that the augers would be 58% submerged if the robot had a relatively 

even weight distribution. These full calculations can be found in Appendix A: Initial Auger 

Buoyancy Calculations. 

Figure 10: Auger Concept Design

Additional calculations were done to determine what thread pitch for the helix would be 

optimal in terms of the forces involved and the angular velocity required to achieve the desired 
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drive speed of 5 ft/sec. A pitch of 8 inches was selected yielding an angular velocity of 450 

RPM. Refer to Appendix C: Drive Speed Calculations for the full drive speed calculations.  

Auger Prototype 

 To facilitate building a prototype quickly so that fabrication of the final design and 

testing of sensors and control functions could be worked on simultaneously, the decision was 

made to fabricate prototype augers that were less than ideal in design but easier to manufacture. 

The prototype augers used 22 inches of 8 inch diameter Schedule 40 PVC pipe for the main 

cylinder and ¼ inch diameter PVC rod for the helix. The length was shortened from the original 

plan of 24 inches due to limitations in the size of parts that could be cut by the laser cutter for the 

chassis. The helix had the planned 8 inch pitch but was changed from being double threaded, as 

in the concept design, to having a single thread. Hubs were machined out of 3/8 inch thick 

polycarbonate and 3/16 inch keyways were cut into the hubs and steel drive shaft. The keyways 

in the polycarbonate hubs were reinforced with 1/8 inch thick pieces of aluminum. The PVC 

helix was created by clamping the rod to the pipe and using a heat gun to heat up and bend the 

rod around the pipe. Once cooled, the rod held its helical shape and was glued in place using 

Weld-On #16 solvent adhesive. 

There was not a taper on the ends of the cylinder (like the hemispherical ends in the 

initial design) because a pre-fabricated cone or sphere could not be found and it was agreed that 

for the sake of time, the prototype augers would be 

constructed faster without it. It was hypothesized that the 

tapered ends would be necessary for navigating loose 

snow and designing the prototype without them would 

also serve to confirm this prediction. Once the prototype 

was completed and tested in the snow for the first time 

this hypothesis was confirmed. The prototype augers 

would not allow the robot to drive in deep or loose snow; however they worked excellent on 

areas of hard packed snow and ice. Figure 11 shows the design of the completed prototype 

augers. 

Figure 11: Prototype Auger Design
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Auger: Final Design  

 Once some testing was completed using the prototype augers, the final design of the 

augers was chosen. Rather than using the originally planned hemispherical ends, the augers 

would have truncated conical ends. This feature was chosen primarily because the cones would 

be easier to fold out of sheet metal than hemispheres; however this design also allows the robot 

 to overcome slightly taller obstacles than the hemispheres.

 The front cone was designed to 

bring the 8 inch diameter of the 

cylinder down to a 4 inch diameter 

over a length of 4 inches. The back 

cone had less of a taper, only taking 

the diameter down to 5.5 inches over a 

length of 2 inches. The auger was 

designed this way because the gear 

box would bottom out at a diameter less than 5.5 inches. Additionally, the robot would be 

driving forward more often than backwards so it made sense to have a forward advantage. Figure 

12 shows the Solidworks model of the auger. 

Figure 12: Model of Final Auger Design

Pontoon Material Selection 

Choosing the material for the pontoon portion of the auger was an important task since 

the material properties would directly affect the strength, weight, buoyancy of the robot, and ease 

of forming and welding the parts together. The target weight of the robot was 50 lbs. It was 

important that the augers take up as little of those 50 lbs. as possible while still maintaining the 

necessary strength to endure the abuse of rotating on various surfaces. Aluminum is less dense 

than steel but would need a greater wall thickness to yield the same strength. Another 

consideration was cost. The price of aluminum and galvanized steel were much cheaper than 

stainless steel; however both are harder to weld than stainless steel. Galvanized steel is difficult 

weld and can emit toxic fumes if not done properly. Aluminum requires a more skilled welder 

than steel, especially when working with thin walled material. To weigh these different 

considerations against each other the decision matrix shown in  

Table 2 was created. 
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Table 2: Decision Matrix for Pontoon Material 
Material Price Strength (US, YS) Density Usability Total 

Aluminum 9 ($90) 6 (19 ksi, 9 ksi) 10 (0.10 lb/in3) 6 5.57 

Stainless Steel 3 ($250) 10 (125 ksi, 75 ksi) 4 (0.28lb/in3) 7 3.20 

Galvanized Steel 10 ($70) 10 (125 ksi, 75 ksi) 4 (0.28lb/in3) 2  4.0 

Percentage 25% 15% 35% 25% 100 

 

It was decided that Aluminum would be the best option for the pontoon. The pontoon was 

made up of seven aluminum components. There was the main 16 inch cylinder, the two inner 

hubs, the two cones, and the two outer hubs. The exploded view can be seen in Figure 13.  

 

Helix Material Selection 

 After substantial consideration of materials, cost, lead times, and effort, the decision was 

made to outsource the fabrication of the two helixes. The cost was fairly significant ($436) 

however the quality of what would have been produced using on-campus facilities could not be 

compared to the professionally bent helicoid flighting that was ordered. Although it would be 

Falcon Industries’ problem to form the material, the cost and ease of combining the helix with 

the pontoon were considered. Since aluminum would have been almost twice as expensive as 

stainless steel and would wear down easier since it is a softer metal, the decision was made to 

have the helix manufactured out of 304 stainless steel.  

  

Figure 13: Exploded View of Pontoon
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ombining the Components 

of the auger was purchased from a metal 

The front and back cones were formed 

out of .050 inch thick sheet aluminum. The 

calculations used to draw the geometry of the 

cone on the flat sheet metal can be found 

in Appendix D: Cone Calculations. Figure 14 

shows the flat geometry of the front cone and 

Figure 16 shows what the front cone looked 

like once it was formed. 

These components were all welded 

together by Barnstorm Cycles, a local custom 

motorcycle shop. Because the pontoon was 

aluminum and the helix was steel, they could not 

be welded together. JB Kwik, a steel filled epoxy, 

was used to attach the helix to the pontoon. 

Unfortunatly the epoxy and hardener were not 

mixed properly and the bond did not hold. The JB 

Kwik was ground off and replaced by Loctite E-

20NS, a metal bonding epoxy with a much greater strength than JB Kwik.  

 The primary cylinder of the pontoon portion 

tubing supplier. The decision to purchase 8 inch diameter, 14 gauge tubing was made because 

the project partners agreed it would be difficult to roll 

sheet metal into a close-to-perfect cylinder once, not to 

mention needing two identical pieces. The tubing was 

ordered already cut to a length of 16 inches. See Figure 

15.  

Figure 15: Aluminum Tubing

Figure 14: Front Cone Flat Geometry

Figure 16: Front Cone Before and After



Steel hubs were made to transfer the load from the steel drive shaft to the aluminum hub 

of the a

¼-20 bolts rather than a single keyway. 

re 17. 

uger. The alternative that was considered required keyways. The steel hub method was 

chosen over keyways for two reasons: the auger would be easier to waterproof without the 

keyway and the forces would be distributed between five 

The final auger completely assembled can be seen in Figu

  

Figure 17: Fully Assembled Auger
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Chass

d, and be rigid and capable of 

ithstanding the forces and torques that will be experienced during operation. 

Similar to the augers, the chassis went through two iterations. A prototype chassis was 

created out of less than ideal materials, but completed in an accelerated timeframe. The design 

was then modified slightly to enhance certain features and remade out of better materials. 

Prototype Chassis 

 The prototype chassis was designed 

around two constraints. The first was the 

auger drive; the auger dimensions had 

already been decided on, so the chassis 

needed to be designed with the augers in 

mind. The second design constraint was the 

size limitation of parts that could be cut using 

the laser cutter. The cutting area wa

to 24 x 18 inches. A larger part could have 

been cut out of multiple pieces of material, 

however it was decided against, in order to 

maximize strength. Strength of the parts used in the prototype chassis was important because it 

was constructed out of acrylic. Polycarbonate would have been a more ideal material, however 

the laser cutter on campus is not capable of cutting polycarbonate and the only other way to cut 

complex curves on campus was using the CNC mills. Milling the parts would not have been time 

efficient, therefore acrylic was used.  

 The design consisted of three main ribs in a double trapezoidal shape. There were 

supports between the tops of the ribs, and three panels that extended the length of the bottom half 

of the chassis. The ribs had consistent dimensions on the bottom half, however, the top section 

is Design 

The chassis was an important aspect of this robotic platform as is the chassis with most 

mobile platforms. The robot would fall apart without a sturdy structure to mount everything to. 

The chassis was designed with the considerations that the chassis needs to: be compatible with 

auger drive, have an area designated for an ice sensor payloa

w

s limited 

Figure 18: Prototype Chassis 

18 
 



decreased in size
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 as they moved toward the front. This feature was added primarily for 

aesthetics; it m

sembled Prototype 

orked out well. However there were a few flaws 

lic being brittle. One of these was that there was 

flaw was that the supports between the tops of the 

 flaw 

ade the robot look less like a rectangular box. The Solidworks model of the 

chassis can be seen in Figure 18. The finished prototype, assembled with the front plate, back 

plate and augers, can be seen in Figure 19.  

 

Figure 19: As

Final Chassis Design 

 Prototyping the chassis out of acrylic w

in the design besides the obvious issue of acry

no easy way to carry the robot. Another design 

ribs were not ridged enough. The third design

was that the chassis would be a sealed compartment 

once the top was attached and sealed; this would 

cause the inside to heat up to dangerous 

temperatures. The last design flaw that was 

addressed was the general aesthetics of the design. 

 The ribs and their supports were redesigned to use 3/8 inch thick polycarbonate and be 

solid parts, with notches cut out. Once welded together with the Weld-on solvent, the chassis was 

Figure 20: Final Chassis Design 



much more rigid than prototype. A solid piece 

of 1/8 inch thick polycarbonate was bent into 

the shape of the bottom plate and attached, 

which added additional rigidity. The final 

chassis design can be seen in Figure 20. 

 The issue of carrying the robot was 

addressed by cutting a handle into the front and 

back plates. The aesthetics of the design were 

improved by rounding off some edges and 

adding wedges on the front plate. The fully assembled, final design can be seen in Figure 21. A 

heat sink was design to be sunken into the back plate where the drive motors attach. This would 

absorb some of the heat and allow it to dissipate through the external fins into the outside air. 

The heat sink model can be seen in Figure 22 and the finished 

part attached to the back plate can be seen in Figure 23. The 

calculations for heat dissipation can be found in Appendix F: 

Heat Calculations 

 , with the exception of the 
compass, were placed between 

 for the 
yload. The 

imately 9 
3). 

Figure 21: Assembled Final Design

All components of the robot

the middle and rear ribs of the 

chassis. This made the robot very 
back heavy and shifted the center 

of gravity back a fair distance; however this allowed
entire front section to be used for carrying a sensor pa
volume of this area designated to the payload is approx

inches wide, 11 inches deep, and 7 inches high (~.40 ft
Calculations in  

  

Figure 22: Installed Heat Sink

Figure 23: Heat Sink Model 
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s show that that robot is capable of carrying a 

water (greater payloads could be carried in 

).  

simple. CIM motors were chosen as the drive 

red, however the additional performance over 

 extra expense. Calculations for the maximum 

ree Body ons). To 

method was implemented into th

The bearings for the shaft housing the 12- and 

inch thick polycarbonate bearing blocks. The holes

1/8 inch. This allows the chain in the second st

the orientation of the bearing blo s. A  

CIM motors so that the motor co ounting bolt. This tightens the 

chain in the first stage of the redu rification. 

 
Appendix B: Final Auger Buoyancy Calculation

payload of up to 21 lbs. without sinking in 

environments where water will not be encountered

Drive Train 

The drive train for this system is relatively 

motors. AmpFlow E-150 motors were conside

CIMs was not need and therefore not worth the

torque required can be found in Appendix G: F

achieve a useable range of speeds for the auger a 12:1 reduction was implemented in two stages 

using ANSI #25 roller chain and sprockets. The two stages for the reduction were 12:36 and then 

12:48. Chains need to be tensioned because they stretch during use; therefore a tensioning 

e design.  

32-tooth sprockets were press fit into 3/8 

 for the bearings were offset from center by 

age of the reduction to be tensioned by rotating 

 Diagram (Torque Calculati

ck slot was machined for one of the mounting bolts on the

uld be rotated about the other m

ction. Refer to Figure 24 for cla
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ain Tensioning Explained 
  

 

Figure 24: Ch

Rotating the bearing 

blocks provides eight 

discrete configurations. 

This slot allows 

the first stage 

of the chain to 

be tensioned. 
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Control System Design 

 The most complex electrical component of a robotic p  

microcontroller. With the obvious mechanical challenges of the ADI e 

overhead involved in implementing the microcontroller was a primary concern. In order to 

achieve this, a controller with minimal low-level interfacing was chosen. Neuron Robotics’ 

DyIO module turns a USB port into a 24 port microcontroller. The DyIO cannot be 

reprogrammed, but instead functions by interfacing with a computer using a library of 

standardized communication protocols, which means that some other device would need to 

handle the logic and processing of the robot. 

 The devised solution was to include a small computer on board the robot, from which all 

decision Java program. This eliminated two time-consuming parts of robotic 

program code to the controller and optimizing for slow microprocessors. The 

computing power of a computer al microcontroller, allowing for 

uch more complex code to be written. Furthermore, no code would ever need to be uploaded to 

the robot because the un-compiled code was on-board, which even allowed for changes to be 

made out in the field. Though there were many benefits to using this control scheme, it was far 

from perfect. Due to the fact that the DyIO was still in development, monthly changes to the 

firmware and code libraries frequently had an unforeseen impact on the previously functional 

code. One such issue caused a major change in the program flow of the project, when the 

asynchronous communication with analog sensors ceased to function as it had before. All 

asynchronous communication ceased to cause interrupts properly, due to a slight change in the 

DyIO firmware. Several other minor issues occurred, but were solved with minimal alterations. 

 Though the DyIO made much of the low-level control much easier, there was still a key 

piece of controlling the robot that was beyond its capabilities: motor control. The motors would 

require a supply of power far beyond the capabilities of a microcontroller, so another control 

option had to be considered. The motor controller needed to provide a constant supply of 20 

amps, with a slightly higher peak current. This was the primary concern, though the availability 

and price where also considered. To meet these standards, two Jaguar MDL-BDC24 motor 

controllers were installed. The controller featured additional functionality in monitoring encoders 

and potentiometers internally, but this functionality was neither necessary nor desirable. Though 

latform is typically the

S design, minimizing th

s are made from a 

ming - uploading 

 is many times that of the typic

m
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it is capable of taking some processing load off of the main computer, interfacing with the 

ithout compromising weight. Finally longevity 

device, which is known to be difficult, is not worth the reward. 

Power Supply Design 

 A number of strict requirements were placed on battery selection. The first, and most 

important restriction, was cold-temperature performance. Because of the typical environmental 

conditions the robot would be operating in, i.e. sub-freezing temperatures and unhindered winds 

on open lakes, the power supply of the robot would need to not only remain unharmed, but also 

provide ample energy to power normal functionality. The second criterion was high energy 

density, which would allow high performance w

was considered, both in full discharge energy and number of recharge cycles. A battery that lasts 

longer on the field is a must, especially when the task is performed in a place that it cannot be 

safely recover from, should the power fail. 

 Many different types of batteries were considered, from the heavy but reliable lead-acid 

to the powerful but high-maintenance lithium-ion. After performing a cost-benefit analysis, 

Lithium Polymer (LiPo) batteries were selected for their superb energy density and wide variety 

of form-factors. To avoid igniting a LiPo through thermal runaway, several procedures had to be 

strictly adhered to: charging or discharging could not exceed the specified amperage; do not 

charge a very cold battery; only proper chargers should be used; and charging must be frequently 

balanced between individual cells of each pack. To meet our power requirements, the selected 

battery had to output at least 14 volts at 20 amps for 30 min, with an optimized max current load 

and recharge time. The selected battery, of which two were used, had 4 LiPo cells to total 14.8V 

and 5 amp-hours, with a C value of 30. The C value determines the maximum discharge rate, 

which was 150 amps. 

 An important consideration for these types of batteries is quality, as we discovered near 

the end of the project. Within a LiPo battery pack, several cells are connected in series, where 

each cell is like an independent battery. With packs of poor to moderate quality, there are 

frequently instances where a single cell will cease to function properly. Continuing to use the 

battery as it was intended can becomes impossible, and replacing the cell can be risky. One of 

the batteries used in ADIS ceased to function correctly in this way. Fortunately the robot was 
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still functional with a single battery, without noticeable side effects besides a shorter running 

time. 

 

Sensor Implementation 

 Sensors used on the platform would need to gather accurate information about the 

thickness of ice, and the location of such a reading relative to some starting point. To maintain an 

accurate representation of this information, there would have to be several sensor subsystems 

that collect specific information, such as the current heading or localized position. To accomplish 

these tasks, the following sensors were originally chosen: a GPS to give absolute position; a gyro 

and accelerometers to give heading and motion information; a GPR to measure ice thickness; 

encoders to measure distance; and a series of ultrasonic sensors to identify obstacles. However, 

several flaws were found in these choices as more research and discussion followed. 

racy provided would be insubstantial even for corrections to 

other methods of measuring position. 

 A GPS system gives the global coordinates of a user at any time they have sufficient line-

of-sight to the system of satellites that maintain it. To provide a global location for the robot, this 

type of system was considered early in the design process.  However, it was soon determined that 

such a system wasn’t as beneficial as originally perceived, due to a number of considerations 

about the goals of the project. In order for a GPS receiver to initialize, a significant (and often 

inconsistent) amount of time is required to acquire satellite information; furthermore, that 

information would only be accurate to within a few meters with the most affordable GPS 

systems, and this accuracy is highly dependent on circumstances such as time of day and 

weather. These conclusions led to the exclusion of GPS since our workspace will only cover a 

small area, within which the accu

 Very quickly it was realized, due to the nature of frozen ponds and lakes, that there would 

be no obstacles or barriers to get in the way of the robots planned path, as long as that path 

remained on the ice. This allowed the ultrasonic sensors to be excluded, which would also make 

water-proofing much easier since they would have had to been exposed to the air. However, this 

meant that more dependence would be put on other systems to accurately track position. 
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 An Inertial Measurement Unit (IMU), which contained both accelerometers and a gyro, 

was selected to fill in the gaps in sensory information. However, it wasn’t until raw data from the 

eters was collected that the complexity of such a system became apparent. Though 

 about accelerations in any direction, the meaning was highly 

direction of gravity at all times. A motionless IMU can be used to 

term

le. The first 

ompas

hassis was determined as the least-influenced. However, 

other project goals took priority near the deadline, and the compass was never properly tuned. 

g value. 

While certainly capable of measuring the ice, the data gathered by a GPR is extremely 

accelerom

they could give accurate data

dependent on knowing the 

de ine the direction of gravity, but without at least two gyros then that vector cannot be 

determined while in motion. Because of this, the accelerometers became useless since there was 

no way to differentiate between acceleration from gravity, which had x and y components when 

tipped slightly, and the acceleration of the platform. The gyro thus became the primary method 

of determining heading, but this also became a problem, as was discovered with the amount of 

drift from that sensor. To combat this drift, a compass was acquired. This would allow for 

periodic checks to be made, to determine that the perceived heading was still accurate. 

 One obstacle that hindered the project was implementing the compass modu

c s purchased turned out to be incompatible with the communication protocols used on the 

DyIO, and couldn’t be interfaced with even after extensive troubleshooting. A second compass 

was purchased, this time with analog output. However, two more issues became apparent after 

actual data was collected. The first issue was in interpreting the data from the compass, which 

required a function tailored for each unique compass. A trial-and-error method was devised to 

tune it, by making 10 degree changes in the position and recording the offset to create a function 

that represented the error. This provided the most meaningful feedback, and resulted in 

consistent and accurate interpretation of the data. The second issue was realized shortly after, 

when the compass was installed in the platform chassis: the magnetic fields of the motors 

influenced the magnometers in the compass significantly. After some research into the behavior 

of magnetic fields, a position in the c

The same trial-and-error method can be used in the future to accurately tune the compass in its 

new magnetically influenced environment.  

After consulting Geophysical Survey Systems, Inc. (GSSI) about GPR technology, it was 

discovered that using such a complicated sensor wouldn’t be as easy as reading an analo
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co cated and can’t be simply interpreted by a computer system as a thickness. This was not 

ideal, though it would suffice to correlate the position with each reading taken. Luckily, GSSI 

had an analog sensor on hand that they had researched before; it was an analog ice radar once 

used in Russia. While unfit for their purposes, mainly from a sales point of view, it seemed to 

fulfill the requirements of this project nicely. They expressed an interest in aiding with the 

project by lending the sensor. Unfortunately, due to the sheer value of either of these sensors, it 

was deemed that an accurate weight and volume substitute for either sensor would suffice in the 

meantime, under the assumption that the actual sensor could be used with minimal trouble. 

 

Software Design 

mpli

Human-Computer Interface 

Initially, the method of providing instructions to the robot was going to be in the form of 

a list of GPS coordinates that represented the constraints of the pond that the robot was to be 

inspecting. The intent was that the robot would then autonomously cover the area within these 

coordinates, thus surveying the entire pond.  

Once GPS was removed from the scope of the project, this idea evolved into the user 

inputting coordinates, relative to the robots current position, on a map of the pond being 

inspected. The robot would then travel to each coordinate it was given, taking ice-thickness 

readings along the way or at each point, depending on the sensor the robot would be using. 

To implement this idea, the user would need a GUI which would be capable of displaying 

a map and accepting mouse-clicks on the map, to represent target locations and the starting 

location of the robot. It would also be advantageous if this GUI would display the current 

location of the robot as it traveled, keep track of and display the target locations given, and have 

a way to represent the path that the robot had traveled. These were the features initially aimed for 

in the GUI. 

The first iteration of the GUI was a grid of buttons, with each button representing one 

square foot. When this grid was created, it would set the robot’s initial position to the center of 

the grid, and color the button there green. When a button was pressed, the button would turn red, 
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the distance between the robot’s current position and the target position would be calculated, and 

a simulation of the robot driving to that point would be displayed. For this, small increments 

would be added to the robots current position, in the direction of the target point. When the robot 

reached a new square foot, the button representing the previous square foot would be colored 

black, and the new button would be colored green. This simulation kept track of the robot’s 

current location, and displayed the path that the robot had traveled along. 

There were a few problems with this iteration of the GUI. First, the positions given to the 

robot were only distances from its starting location. This meant that a person using this GUI 

would have to know the dimensions of the lake, and plot a course based on these numbers, not 

based on the actual shape of the lake. Additionally, the resolution of the grid of buttons was very 

t a larger area or a higher resolution, more buttons needed to be created, but 

cessor. Finally, only one target point could be added at a time, 

meanin

n 

on of the robot and set target points, which were 

stored i  

ted one 

ould 

clicked. This meant that, once the scale of the map is known, a distance can be applied to a pixel, 

and the

s the 

 triangle rather than a square, with the front pointing in the direction the 

robot was facing. 

limited. To represen

this took a heavy toll on the pro

g the user would have to wait for the robot to get to its location before giving it a new 

location. 

The next iteration of the GUI used an image of a map as the main display. By clicking o

the map, a user could select the starting locati

n an array of positions. To represent the situation, colored shapes were drawn onto the

map. A yellow square represented the starting location of the robot. A red square represen

of the target positions in the list of targets. A green square represented the robot. The GUI w

report locations with x and y coordinates determined by the pixels on the image that were 

 edges of the lake on the map image should accurately represent the edges of the real lake. 

Once this was implemented and tested, small features were added to the mapping. A

robot moved across the map, lines were drawn from the robot’s current instantaneous location to 

its last location, therefore creating a visual, persistent path. As another feature, the robot was 

displayed as an isosceles

After the mapping was complete, functionality was added to the GUI to give it a broad 

array of uses. A textual display was added to give the user information about what the program 
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was doing at any given time. For example, at the beginning of the program, the display states 

“Please select starting location”, and later in the program once the robot has finished moving 

through the array of target locations, the display states “Waiting for new locations.”  

Another feature that was added to the GUI was the ability to select a map from anywhere 

on the computer. Previously, the map to be used was hard-coded. This new feature allowed the 

user to select an image at run-time. A third new functionality was the ability to pre-load target 

location

 

 

d of black lines, the GUI drew squares with a 

color th

s 

 
ap is selected. When the “Map” button is 

pressed

s before the robot starts moving. A user can input as many targets as they want, and the 

robot will not begin moving until the “Start” button is pressed. To better see the orientation of

the robot, a larger triangle had been added to the side of the map. An exit button was also added

to the GUI, so that the user can safely exit the program at any time. 

The next round of improvements to the GUI resulted in a maximum speed controller, and 

a mock ice thickness display. The maximum speed controller is a slider that scales down the 

maximum speed of the robot if necessary. To display ice thickness, the previous method of 

marking the path of the robot was changed. Instea

at represents the thickness of the ice at that location. A black square represented ice that 

was positively unsafe. A red square represented ice that was dangerous. A yellow square 

represented ice that was questionably safe, and a green square represented safe ice. These range

were set in the IceReading class, and could easily be adjusted. At the conclusion of this project, 

the ice thicknesses used to display this functionality of the GUI were randomly generated, as the 

robot did not have a sensor to read the thickness of ice.  

               
Figure 25: (Left) GUI Prior to Map Selection, (Right) Map Selection GUI  

 Figure 25(Left) shows the GUI before a m

, a file chooser pops up, in which the user selects a map, as shown in Figure 25(Right).  
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Figure 26: The GUI after a Map Has Been Selected 
 

 Once a map is selected, the GUI inserts the map, as well as making the other componen

of the GUI visible. Figure 26 shows this updated GUI. Figure 27 shows The GUI while the robot 

has been moving. All of the functionality can be seen here. 

ts 

Figure 27: The GUI as the Robot is Moving 

External Computer-Internal Computer Interface  

 To control the robot during its inspection, a Fujitsu U-Series Lifebook was placed inside 

the chassis. This computer ran the program that gave instructions to the DyIO, and displayed the 

GUI. To access the GUI, a system needed to be developed that allowed a user to remotely 

interface with this onboard computer.  

 The initial idea was to u

would 

 

se a Remote Desktop connection from a laptop on shore. This 

give the user complete control of the onboard computer, and the ability to start the 

program, give the robot commands, and see the information that the robot outputs.  
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 To use Remote Desktop, both computers must be on the same wireless network. To make 

this possible on the field, a wireless ad-hoc (computer to computer) network was attempted. 

Unfortunately, it was found that it is not possible to establish a standard Remote Desktop through 

an ad-hoc connection. To circumvent this issue, software that performs similarly to Remote 

Desktop, which can function over ad-hoc was found. The program used was called UltraVNC.  

Robot Code 

 Through the development of this project, a complex software system has been 

created

 

 

 

 The fields of Robot are: A DyIO, dyio, two Augers, LeftAuger and RightAuger, a 

led 

resents 

tart, used for 

program flow, and finally, the various GUI components discussed in the previous section. 

 

 to communicate with the robot. This section will describe the purpose and functionality 

of each Java class that is not involved in the GUI. Figure 28 shows a model of the code.  

Figure 28: Model of the Code 

Robot 

 Robot is the main class of the software. This class contains functions for communicating

with each of the sensors, controlling the motors, and keeping track of the robot’s position. It also

contains all of the GUI elements, and a DyIO, for communication purposes. 

Compass, an AbSensor called IceSensor (as a placeholder), a Gyro, two Positions, one cal

Posn that represents the current position of the robot, and the other called Target that rep

the current position that the robot is moving to, and two Booleans, hasMap and s
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 The constructor for Robot contains a lot of functionality. It is in this constructor that each 

sensor gets its port on the DyIO. The Augers are created, with the port for their Encoders, and 

their direction, which represents which direction of the motor would drive that Auger forward. 

Parts of the GUI are also initialized. 

The first function in Robot is ChooseMap. This function opens a MapChooser, and then 

adds the selected map to the Robot’s Display. The function also creates a new NavMap with the 

lected map. 

Next is Move, which takes in an int called speed. This function calls the Auger’s function 

‘Go’ for both augers, which results in both augers moving at the given speed, in the correct 

direction for that Auger. 

 UpdateDialog is a GUI function. This function sets the angle of the Robot’s 

AngleDialog’s Triangle to the angle of the Robot’s Position. Then the function redraws the 

Display, so that any changes are shown. 

 The driveStraight function takes in an int called setSpeed. The function calls the drive 

function with the given speed, and a turn factor of zero. This function should be called from 

within a loop. 

 The next function is TurnBlo

trol to turn the robot the given number of degrees, in a clockwise direction. The function 

se  

The next function is Stop, which simply sets the speed of both augers to 127, stopping 

their rotation.  

ck, which takes in an int called degrees. This function uses 

PID con

uses the Gyro to turn, and after it has turned, it waits, and then verifies with the Compass that it 

has turned the correct number of degrees. If it hasn’t, it takes the average of what the two sensors 

are saying, and uses that as the current heading for the robot. 

 Next is the function getNumTicks. This function takes in a double called distance, and 

returns the number of encoder ticks the augers should turn in order to travel that distance. The 

function getDistance does the inverse operation. It returns the distance that would be traveled in 

the given number of ticks. 
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 RestartTime is a function that sets the ‘TimeTaken’ field of each sensor to the current 

time. The reason for this is so that if a sensor hasn’t been used for a relatively long time, this 

function can be called to avoid an error with the next reading of the sensor.  

 The function ps2drive is designed to allow the user to control the robot with a Play 

Station

  takes in a double called angle. The function adds the given angle to the 

robot’s

s, and corrects it if it is not. 

 

ction then adds the new position to the list of positions the robot has 

 

n the map to be clicked, then adds the clicked position 

ction CaluculateDistance calculates the distance, in inches, between the Robot’s 

sition, and uses the compass’ 

heading as the Robot’s heading. 

pdating the display accordingly. This results in the function first 

waiting for the Robot’s initial position, then accepting new target positions, orienting the robot 

 2 controller. This function is mainly used for testing, and does not sync with the normal 

operation of the robot. 

UpdateAngle

 current angle. The function then checks to see if the robot’s angle is outside the range of 

1 to 360 degree

UpdatePosition takes in a double called distance. The function calculates the Robot’s 

new position based off the Robot’s previous position, assuming it traveled the given distance at 

its current angle. The fun

occupied, and updates the display to show the robot at its new position. 

 The next function is UpdateTargetBlock. If the list of target positions for the Robot is

empty, this function waits for a position o

to the list. Otherwise, the function updates the Robot’s current target to the next position in the 

list. 

 The fun

target position, and its current position, then returns this value. Similarly, the function 

CalculateAngle uses the Robot’s current heading, and returns the number of degrees that the 

Robot has to turn in order to be facing the target position. 

 The getStartBlock function, when called, waits until the user clicks on the map. The 

function then uses the clicked location as the Robot’s initial po

 mapBlock is the main function used for the Robot’s functionality. This function calls 

getStartBlock, UpdateTargetBlock, TurnBlock, DriveStraightBlock, CalculateAngle, and 

CalculateDistance, while u
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towards the next target position, driving the correct distance to this position, then repeating th

process for the next target position. 

 The next function, feauxMapBlock, is a function mainly for testing. This function 

e 

on 

ut requiring that the robot actually be driving around. 

 turn factor causes the robot to turn more sharply in a 

I can be observed.  In 

future work on the project, once an actual ice s sor is acquired, this function will be re-written 

The class Auger represents an auger and a motor on the robot. The fields of an Auger are: 

t 

Auger is 

 

forward, an Encoder called encoder, an int, encoderPort, which is the port on the DyIO the 

mum 

 The constructor for an Auger takes in values for the Auger’s dyio, speed, port, direction, 

nd en  the 

operates similarly to mapBlock, except that instead of actually moving the Robot, the functi

feeds artificial data to the Robot object to simulate movement. This allows testing of the GUI 

mapping features witho

 The drive function takes in an int called setSpeed, and an int called turnFactor. The 

function sets the robot to drive at the given speed, but uses the turnFactor variable to set the two 

augers at different speeds. A higher positive

clockwise direction. This function needs to be called in a loop to work properly, as it only sets 

the motors to go their given speeds once, and then does not wait any amount of time. 

 The final method in the Robot class is GetIceThickness. Currently, this function only 

generates a false ice-thickness reading, so that the functionality of the GU

en

to read a measurement from the sensor. 

Auger 

 

a DyIO called dyio, an int, speed, that represents the PWM speed that this Auger is currently se

to drive, an int, port, which is the number of the port on the DyIO that the motor for this 

plugged into, a ServoChannel called servo which is the channel used by the motor, an int called

direction which represents the direction the motor for this Auger must turn to drive the Auger 

Auger’s encoder uses, a double called divisor, which is a number that scales down the maxi

speed of this Auger. 

a coderPort. With the port variable, the constructor creates a new ServoChannel on

DyIO. Similarly, the constructor creates an Encoder object with the given encoderPort. 
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 An Auger has two functions for changing its speed field, SetSpeed, and SetSpeedAc

SetSpeed instantly changes the Aug

c. 

er’s speed to the given speed. SetSpeedAcc makes a small 

iting the acceleration

peed. This function 

calls SetSpeed with the given speed, and then calls the function Go. The function Go performs 

m 

ServoChannel of the Auger to actually move at this final PWM value. 

t 

DyIO, dyio, an int called port that represents the port 

number of this encoder, and a ConterInputChannel called channel that is the channel for the 

. 

. Three constructors exist for a position. The first takes in doubles to 

 The IceReading class is used for storing an ice thickness reading, as well as for 

displaying this reading in the GUI. An IceReading contains: A Position to represent where the 

change towards the given new speed from the Auger’s previous speed. This has the effect of 

lim  that the Auger can have. In order for this function to fully change the 

Auger’s speed to the given speed, it must be called repeatedly in a loop. 

 An Auger has a function called Move that takes in an int called moveS

multiple duties. First, the function limits the Auger’s speed field to a number between 0 and 255. 

Next, the function performs an operation on the Auger’s speed with the Auger’s divisor, scaling 

down the maximum speed. For example, a divisor of 2 would result in cutting the maximu

speed of the Auger in half, both forwards and backwards. Finally, the function Go sets the 

Encoder 

 The Encoder class deals with all of the code necessary for interfacing with a shaf

encoder. The fields of an encoder are: A 

encoder

 The only method in the Encoder class is the constructor for the class. The constructor 

takes in a DyIO and an int port. The function creates the channel for the Encoder from this port. 

The code for reading ticks from an Encoder comes inherently in the code for a 

CounterInputChannel, given by the nrdk. 

Position 

 A Position represents a set of x and y coordinates, as well as a heading. Each of these 

values is stored in a double

represent the three fields of the class. The second constructor takes in only the coordinates, and 

sets the heading angle to zero. Finally, a default constructor sets all three values to zero. 

IceReading  
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reading was taken, a double called thickness which is the thickness of the reading, a Color called 

color, used for displaying the IceReading, and three ints that define the upper bounds of 

“unsafe”, “dangerous”, and “questionable” ice thickness ranges. 

 The default constructor for an IceReading sets all the numerical values of the object to 

zero, and sets the color to black. The second constructor takes in a double for an x coordinate, y 

ker than the final range. 

AbSensor double LastReading

, which is the channel for the sensor. The constructor 

, and creates the AnalogInputChannel on that port of 

. 

 extends Absensor, and represents the code needed to interface with a gyroscope. 

coordinate, and ice thickness. The constructor then sets then calls setColor to determine the 

proper color for this object. A third constructor takes in Robot, and uses the Position of the 

Robot to set the Position of this object. The constructor then calls setColor. 

 The method setColor is used to determine the color of an IceReading, based on the 

thickness. The method compares the thickness to the three upper bounds of ice thickness, and 

then sets the color to black is the thickness is less than “unsafe”, red if it is less than 

“dangerous”, yellow if it is less than “questionable”, and green if it is thic

AbSensor 

 An AbSensor is an abstract class for the various sensors that Robot interfaces with. In this 

project, Gyros and Compasses are examples of classes that extend this class. The intention is that 

the ice sensor will also extend the AbSensor Class. 

 The fields of an  include: A  called , which is the reading 

that the sensor most recently returned to the Robot, a long called TimeTaken, which is the time 

that the LastReading was taken, an int, Port, for used with the DyIO, a DyIO for communication, 

and an AnalogInputChannel called AnInput

for an AbSensor takes in a DyIO and a port

the DyIO

 The method UpdateTime sets the TimeTaken field of an AbSensor to the current system 

time, in milliseconds. The class also has an abstract method called ReadSensor. This sensor is 

written by each class that extends AbSensor. 

Gyro 

 A Gyro

This class contains three doubles, in addition to those inherited from the parent class. The field 
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voltageOffset represents the number of volts that must be subtracted from the voltage read from 

the sensor, to center the range around zero volts. Next, ratio represents the ratio of angular 

velocity to voltage. Finally, angle represents the current angle that the gyro is facing, based off 

of a series of given angle changes. 

ethod next adds this 

magnetometers, so the Compass class was designed to incorporate this. 

: A double, ratio, two ints for the left and right port, and two 

els using the ports. 

ReadSensor

 

 The ReadSensor method of the Gyro class first looks at the LastReading of the sensor, 

and converts this voltage into an angular velocity. Next, the method compares the current time to 

the TimeTaken. This change in time is used with the angular velocity to determine the number of 

the degrees that have been traversed since the last reading was taken. The m

number of degrees to the Gyro’s angle. Finally, the method reads the voltage from the sensor and 

the current time, and updates the appropriate fields. 

Compass 

 A Compass is another class that extends AbSensor. The Compass used for this project 

uses two perpendicular 

The class contains

AnalogInputChannels for the two Channels to the DyIO. The constructor for this class takes in a 

DyIO, and two ints for the ports, and then creates the chann

 The  method of this class takes the voltages from both channels, and then 

takes the arctangent of the two values. This gives an angle that needs to be adjusted slightly, so 

the function calls the adjustAngle function. The adjustAngle function takes in an angle, and 

returns an angle based on a lookup table acquired by experimentation. 
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Results and Analysis 

Testing 

 As the various systems of this project were designed, manufactured, coded, and brought 

together, extensive testing needed to be done in order to verify the success of the project as a 

ain aspects: The ability to provide reliable 

propulsion on ice, and the ability to maintain their structural integrity while providing this 

. 

urning ability was vastly 

different than it had been in the previous tests. On snow, the robot turned very easily, and had a 

greatly improved forward velocity. Additionally, it did not crab drive at all. The robot retained 

this style of motion through the ice testing. 

Water testing 

 In water, this robot needed to be able to remain buoyant, be mobile, and stay water tight. 

For these tests, an open section of Elm Park Pond was used. First, the robot was gently placed 

into the water, and observed for signs of leaks. After it became apparent that the robot would 

stay afloat, the remote control system was used to drive the robot across a small segment of open 

water. Recovery over an ice edge from the water was also attempted at this time. 

whole. The tests that were conducted were chosen in accordance with the goals of each system. 

Testing locations included the laboratory, flat regions of snow on campus, and ice and water on 

Elm Park Pond.  

Auger  

 The augers needed to be tested for two m

propulsion

 To test both of these aspects, the augers were first driven on carpet in the lab with a 

remote control system. After this was shown to be possible, the system was taken outside and 

tested similarly on snow. Finally, these driving tests were performed on the surface of a frozen 

pond. 

 While driving the robot on the carpet, it was observed that the robot has some ability to 

turn, but would very easily crab drive, as was expected. This crab driving was much faster than 

the forward motion of the robot. 

 When the robot was driven on snow, it was found that the t
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 During the initial buoyancy tests, the robot stayed afloat, but was not balanced correctly. 

The chassis was back-heavy, so the robot tipped backwards a small amount. Prior to the water 

 testing, a ten pound weight was added to the front to ballast the robot. During this 

 One of the major concerns for the robot’s batteries was their ability to run the system for 

ded period of time. Fortunately, this concern was easily addressed by using the battery 

 for at least 30 minutes. 

st both of these functionalities, the feuxMapBlock was created. This was a function that 

nding signals to the actual robot. Testing the communication 

capability of the GUI was finished in this manner. 

 send information in a timely manner. To test this 

ability, an UltraVNC server was established on the Lifebook. A separate computer established a 

 this server through the WPI network. The robot was then controlled through this 

propulsion

test, the robot did show the capability to maneuver in aquatic conditions, as well as the potential 

to climb over the edge of the ice. Unfortunately, this testing needed to be cut short, as the augers 

caused a significant amount of splashing, and the robot was not sealed on the top. 

Battery Life 

an exten

for extended periods of time during other tests, and monitoring the remaining voltage after the 

tests were completed. Through this testing, it was found that the batteries had enough charge to 

run the robot

Graphical User Interface (GUI) 

 The most important tasks that the GUI needed to perform were giving commands to the 

robot through the map, and displaying information from the robot on the map for the user. To 

first te

read input from the user, and generated a model of what the robot would be doing if it had 

received that input. After bugs with the GUI were worked out using this function, the real 

MapBlock function was used, se

Computer to Computer Network 

 To communicate wirelessly with the robot, the user-end computer needed to reliably 

connect with the robot-end computer, and

connection with

server in the lab. After this method was proven to work, the robot-end computer connected to the 

server through an ad hoc network. The robot was then driven outside, in realistic conditions with 

this connection. 
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 With this testing, it was found that the robot can be successfully controlled through this 

type of connection. Commands are sent to the robot nearly instantly. The display has a small 

amount of lag for showing the user information, but none of the information is ever lost over the 

connection. After the success of this system was verified, further testing of the robot was done 

through a wired connection, for ease of coding. 

Robot Navigation 

 For this project, the robot platform was required to drive straight for a given distance, and 

 the robot, it was instructed to turn ninety degrees in one 

e other direction. During these tests, accuracy was tested by 

oth m

ce and turn a specified number of degrees was 

l system could have been tuned slightly more 

turn a specified number of degrees, allowing the robot to easily keep track of its location. To test 

the driving straight capability, the robot was given a long distance to travel. If the robot veered, 

corrections to the control system would be made. Then, the distance that was traveled was 

measured and compared to the distance given. 

 To test the turning ability of

direction, then ninety degrees in th

b easuring each turn of ninety degrees, and also observing for long-term drift. 

 This system was the least successful during the testing phase. While the drive straight 

functionality did keep the augers rotating at constant speeds, this did not necessarily mean that 

the robot was driving forward. To account for this, the gyro was incorporated into the function. 

By the end of the project, this functionality was still in development, and had not been fully 

integrated. 

 The ability to both drive a specified distan

achieved by the end of the project. The PID contro

to achieve a faster response time and less oscillation, however the system as a whole was fairly 

consistent.  

Evaluation 

 Overall, this project was a success. Though not every goal set at the beginning of the 

project had been met, the majority of them were, and some goals were even exceeded.  
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 The first major goal of the project was 

developing a robot capable of traveling on a natural 

ice and snow surface. This goal has been thoroughly 

tested, and met. Under remote operation, the robot can 

easily traverse over uneven ice and snow, open water, 

and even patches of bare ground. Under autonomous 

were not quite reached. For turning and driving a 

o blades may 

cause one auger to drive further than the other, causing a turn rather than a straight line. 

solution that was attempted to counteract these issues, using the gyro to assist in 

driving straight, was not fully implemented by the end of the project. This is mainly due to a 

isjud

 little time to test and correct the software. If this project had been spread 

ime-span, it is likely that these issues could have been worked out. 

 map, the 

system calculates the change in angle and distance needed to travel to this point. The robot then 

turns that number of degrees, then attempts to drive that distance while correcting for course 

drift. 

conditions, the robot has more trouble, but still does 

have the capability of driving on all of these surfaces. 

The next goal of the project was that the robot be able to sense its location while moving 

autonomously. This was one of the goals that 

Figure 29: Final Tests on Snow 

set distance, the robot successfully uses the gyro and the encoders. Driving in a straight line is 

where the issues arise. Part of this issue may be the non-uniformity in the auger blades. While 

the augers are turning at the same exact rate, the difference in shape between the tw

Additionally, the augers do not have quite as much grip on the ice as had originally been 

assumed. This may occasionally cause one auger to free-spin, while the other retains contact with 

the ground, causing a non straight path. 

The 

m gment in the amount of time e project would take. Lead times on parts ordered for the 

project were much greater than had been expected, which had the effect of delaying the assembly 

of the final robot. The final version of the robot was not completed until the last week of the 

project, giving very

over a larger t

 The next goal of the project that was accomplished was the ability to receive commands 

from the user. This goal is demonstrated by the fact that, when a user clicks a point on a
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 Self-preservation upon falling thr

next goal of the project. This goal was n

but was also surpassed. If the ice under th

will float above the surface, with its ow

additional 21 lbs of payload. This 

requirements of the project. Beyond this

could also propel itself through the w

potential to drive over the edge of the ice, back onto the surface. This functionality is not fully 

nual control of the robot, this task would 

likely b

 addition to all of this, the GUI has a display to prompt 

the user for input, and to inform the user of the current state of the program. It also provides a 

simple 

ber, company 

se. The spreadsheet also had a feature that would keep track of who needed to be 

ough ice was the 

ot only achieved, 

e robot breaks, it 

n weight, and an 

alone met the 

 ability, the robot 

ater and had the 

incorporated into the autonomous mode, but with ma

Figure 30: Final Tests in Water

e possible. 

 The next goal of the robot was to transmit data to a user, or store data onboard. At the 

conclusion of the project, the robot had the ability to transmit both ice-thickness data, as well as 

live positional data for the robot. This more than qualified as an achievement of the goal. 

 The next set of requirements was for the GUI. The goals for this were the ability to 

receive and interpret data from the robot, create a gradient map of thicknesses, and display a map 

with this information on it. The GUI does all of these things, as well as showing the user the live 

position and orientation of the robot. In

method to select a map, so that the robot can easily be used in multiple locations. 

 

Budget Evaluation 

 The budget for this project was maintained rigorously using an Excel spreadsheet. This 

sheet kept track of all the purchases made throughout the project and recorded all the necessary 

details of each item purchased. These details included: description, part num

purchased from, which system it was for, whether it was for the prototype, final version, or 

would be used for both, who purchased it, who paid for it, what budget it would come out of, and 

most importantly the total cost. Since this project was funded from multiple sources, keeping the 

budget spreadsheet up to date was crucial in order to ensure funds were still available for each 

purcha
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imbu  out of a budget other than their 

Table 3. 

n 

re rsed when they paid for something that was coming

personal contribution to the project. 

 In the project proposal, a budget of $2250 was projected; this was broken down into six 

system categories with individual allowances shown below in 

 

Table 3: Proposed Budget Breakdow

Category Allowance 
Drive Train $600 
Motors $400 

Sensors $400 
Chassis $300 
Battery/Power $300 
Controller $250 
Total $2250 

 

This budget was used as a guide while considering certain part and material decisions that 

were made. However it was used lightly since all of the allowances were rough estimates and no 

design decisions had been made at that time. 

The final cost of the robot proved to be more than anticipated. Some of the categories 

orked out to be close to the proposed amount; however others were grossly underestimated. 

The “Drive Train” budget for example was estimated to be $600 in the proposal but once the 

lete, more than $1,100 had been spent on the drive train. This was because 

w

final design was comp

the design decision was made to use auger drive; the materials and manufacturing fees that went 

into the augers alone were over $900. 

The pie charts in Table 4 and Table 5 show the breakdown of the budget by each of the 

six systems and by the version of the robot (prototype or final design).  

 



As can be seen in Table 

6, the drive train was the most 

Drive Train
$1,122.13 

Chassis
$672.26 

nsors
37.82 

$246.67 

0.00 

Total Spent: $2,786.52
Table 5: Budget Breakdown by System 

expensive system of the robot. 

This system was composed of 
Power

Controller
$12

Se
$3

Motors
$287.64 

Drive Train Chassis Sensors Motors Power Controller

nearly $200 worth of 

omponents such as chain, 

sprockets, bearings, and shafts, 

and over $900 that went into the 

materials and m  

both the prototype and final 

augers. The chassis was 

composed of three primary 

expenses: mater

(which included ls 

such as bolts, s lue, and 

asket tape require to assemble 

and wa

c

anufacturing of

ials, nuts & bolts 

 all the materia

olvent g

g

terproof the robot), and the fees to have the parts of the chassis waterjet. This distribution 

is shown in Table 5. 

Table 4: Budget Breakdown by Version

Nuts & 
Bolts
$76.21 WaterJet 

Fee
$245.00 

Materials
$351.05 

Nuts & Bolts Materials WaterJet Fee

Table 6: Chassis Budget Breakdown 

Prototype
$174.26 

Both

Final
$1,501.48 

$1,110.78 
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 en down by robot version (prototype or final design) you can 

oney spent on nto 

bout $175 spent on parts for the prototype that were not reused 

75 went into the materials for the prototype augers. The full 

ndix H. 

bots, have some effect on society. It is important to predict 

hether good or bad, intended or unintended, preventable or 

ct, the social implications of the Auger Driven Ice Surveyor 

s of safety, ethical, and moral implications. 

art of any project that should be considered and identified 

e first thing the operator must note is that the auger can be 

dangerous because the helicoid flighting can be relatively sharp, not to 

very f driving velocity. The second critical safety issue is that the 

robot is heavy enough to hurt the operator or itself when it is dropped accidentally.  

 To minimize these risks, some features of the mechanical design should be noted. The 

frame includes handles to provide ADIS with a simple and discrete method of being carried to 

help prevent dropping the robot accidentally. Furthermore, the blades of the auger have not been 

sharpened, and thus are relatively flat, much like a hockey skate, which helps prevent injury 

while the auger is motionless. 

Looking at the budget brok

see that there was a significant amount of m

the final version. There was only a

in the final version. $110 of that $1

bill of materials can be found in Appe

 

Social Implications 

 All inventions, including ro

these effects to gauge their impact, w

unpreventable. As part of this proje

(ADIS) have been predicted in term

Safety Issues 

 Safety issues are a vital p

before they cause a problem. The ADIS robot has some safety issues that must be considered 

before being safely operated. Th

the prototype that was recycled i

mention that it rotates 

ast to accomplish the desired 



 

Figure 31: Handle of the Robot, and Auger Blade 

hose recognition 

systems generate new work for technicians and programmers. 

The purpose of the ADIS robot is to measure ice thickness. Each city with a body of 

l, one which 

ill mu

Occupational Issues 

 Many robots are built with specific objectives or tasks in mind. These roles can have the 

potential to eliminate jobs, which is an issue that should be discussed before development. For 

example, where individuals once answered calls for large businesses, many have replaced them 

with voice recognition software. On the other hand, the servers that maintain t

water that freezes annually has their own way of protecting people from the dangers of thin ice, 

usually by marking off dangerous areas and keeping records of ice thickness, as measured by the 

ruler-methods mentioned earlier. In most cases, the task of measuring the ice thickness is 

performed by an individual that is employed by the city, usually one that has other duties as well. 

ADIS is designed to make the task of measuring ice thickness easier, safer, and more complete, 

but it is not capable of replacing the role of the operator.  The robot is merely a too

st st have an individual that wields it. There is the possibility of depreciating the value of an 

ice measuring specialist, if there is any such individual, but there is no evidence that there are a 

significant number of people with this career. 
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Conclusion and Recommendations 

Suggestions for Future Work 

 Though this project has been judged a success, it is far from a finished, marketable 

product. Future project groups could pick up the project where this group left off and make 

changes that significantly improve the performance of the robot.  

An example of one i

n actual sensor to measure ice thickness, then incorporating that sensor 

her useful improvement could be incorporating GPS or some other 

of various systems of the project. 

For exam

Surveyor, the students involved in this project 

arned many lessons ab ut the engineering 

conceptualization, design, and fabrication processes. 

Such lessons include setting reasonable goals for a 

project, accounting for lead times in early project 

time-lines, using specializations within a group effectively, applying weights to project goals and 

spending appropriate amounts of time on each, and time management with an impending 

mprovement that could be made to the project would be either 

designing or acquiring a

into the platform. Anot

advanced localization system, to improve upon the robot’s ability to record and report its 

position, and the position of ice thickness readings that it makes. Fully autonomous self-recovery 

would be another improvement that could be made.  

Another use for this project could be the repurposing 

ple, the auger drive system is versatile enough that another use could be found for it, 

potentially in a mud, sand, or fully aquatic environment. Similarly, the GUI could be repurposed 

to work with another robotic systems that requires mapping or positional display. 

 

Accomplishments 

The completion of this project resulted in, in 

addition to a semi-autonomous mobile platform for 

an ice thickness sensor, a group of experienced 

engineers. While completing the Auger Driven Ice 

le o

Figure 32: Final Testing on Ice 
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or professional engineers to have learned, as they all 

are applicable to the vast majority of engineering projects in both academic and professional 

deadline. All of these lessons are important f

settings. 
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Appendices 

Appendix A: Initial Auger Buoyancy Calculations 

These are the calculations used to determine the initial length and diameter of the pontoon
augers assuming hemispherical ends.  

 values indicate user defined variables. 

 

De y
 
> 

> 
Ma o

 
Gravitational Acceleration: 
 
 

inimum Buoyancy require  for robot to float: 
 
> 

Minumum volume required to achieve buoyancy at specified mass: 
> 

 
L = length of pontoon, d = Diameter of pontoon,  
 

 
 

Green
>  
>  

nsit  of water: 

 

 
ss f robot: 

 
>  

>  

M d
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> 

 use the provided values of m, L, and d to determine the percentage of 
e pontoon that will be submerged: 

  = volume of the sphere section of a pontoon submerged 

ngle pontoon submerged 
  = total volume of both pontoons submerged 

  

 

 

These calculations
th
    

    
 

         = total volume of a si  
    
 

 

>  
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Appendix B: Final Auger Buoyancy Calculations 

These are the calculations to determine if the actual volumes of the prototype and final 
auger designs were sufficient to support the weight of the robot. 
> 
Density of water: 
 
> 

Mass of robot: 
 

Minumum volume required to achieve buoyancy at specified robot mass: 
> 

 
Actual volume of prototype auger: 
22 inch long cyclinder with 8.625 inch diameter 
 

 

 

Gravitational Acceleration: 
 
>  

>  
 
Minimum Buoyancy required for robot to float: 
 
>  
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> 

ual volume of final auger design: 
inch diameter and conical ends.  

ameter of 4 inches, and height of 4 inches. 
k cone base dia eter of 8 inches, top diameter of 5.5 inches, and height of 2 inches. 

: 

one Volumes: 

Helix Volume 

 

 
Act
16 inch long cylinder with 8.0 

ront cone base diameter of 8 inches, top diF
Bac m
 
Cylinder Volume

>  

 
 

C
>  
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>  

 
Aug
> 

er Volume: 

Maximum robot weight that can be supported by final auger dimensions 
 

> 

Max Payload 
 
> 
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Appendix C: Drive Speed Calculations 

se are the calculations used to determine the speed the augers need to be driven to move 
at the desired speed.  
Green values indicate user defined variables. 
 
> 

Desired Drive Speed of Robot. 
 
> 

verted to Mph. 

> 

Pitch (P ) 
ameter (d) 

  Length (L) 
  Thread Height (h) 

 

Required RPM of Pontoon Augers. 
 
> 

> 

The

 

 

Dri
 

ve Speed con

 

 

Auger Properties  
  
  Di

 
>  
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Appendix D: Cone Calculations 

Front Cone 

These are the calculations to determine the geometry needed to be folded into the 
nt cone 
ations and pictures found at: http://mathcentral.uregina.ca/QQ/database/QQ.02.06/phil1.html  

for the example these pictures correspond to: t = 290, b = 
550, and h = 250. 

 

fro
Equ

>  
>  

 
 

>  
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>  

 

>  

 
>  

 

 
> 

> 

 

 
 

>  
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Bac

These are the calculat
k Cone 

ions to determine the geometry needed to be folded into the 
back cone 

ations and pictures found at: http /mathcentral.uregina.ca/QQ/database/QQ.02.06/phil1.html  

for the example these pictures correspond to: t = 290, b = 
550, and h = 250. 

 

> 

Equ :/

> 
> 

 
 
 
 

>  
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>  

 
>  

 

 
> 

> 

  

  

 
 

>  
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Appendix E: Stability Calculations 

erical end-shape (Example) 

 robot wil flip over when center of gravity goes over the last point of contacting ground. 

oment generated from gravity force does not have reaction moment to balance 

the moment.  

 

Figure 33: Free Body iagram of The Robot on Angled Terrain. 
 to irregular shape of augers, last oint of contacting ground changes while The robot is 

ed auger will not slip since auger thread will create enough friction force 

een ice and The robot.  

 

Figure 34: Auger Model with X, Y, and Z Coordinates and Explanation 
 By using coordinate system to define the changes in last point in contact, I was able to 

make a graph of angle of terrain versus last point in contact changes.   

Sph  

The l 

Reason is that m

 D
Due p

flipping. I assum

betw
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Stability for x dir  

X and Y are achieved from Excel sheet that list all the weights 

A is distance from 0.0 to center of gravity  

 

B is distance from 0.0 to last point contacting the ground in x direction 

Range of x is from 0in to 4in 

Law of cosine 

Using law of cosine, I was able to make equation in form of θ(x) 

 

 

X 4in:=

Y 6in:=

A X2 Y2
+( ) 7.211 in⋅=:=

 y x( ) 4in x in⋅( )2
− 16in2

+−:=

 B x( ) x in⋅ 12in+( )2 4in x in⋅( )2
− 16in2

+−⎡⎣ ⎤⎦
2

+:=

Finding θ when center of gravity goes over last point contacting ground 

y x( )
x 12+
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X

⎛⎜
⎝
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⎠
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Maximum angle of stability is  

Opposite direction Calculatio  

Finding θ when center of gravity goes over last point contacting ground 

 

Using law of cosine, I was able to make equation in form of θ(x) 

 

n

Law of cosine 
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Maximum angle of stability is 

 θ 4( ) 84.289deg=

Stability for z dir 

Z is achieved from Excel sheet that list all the weights 

 

A is distance from 0.0 to center of gravity in  

Z direction 

 

B is distance from 0.0 to last point contacting the ground in z direction 

Range of x is from 0in to 4in 

round 

 

Law of cosine 
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 B x( ) x in⋅ 8in+( )2 4in x in⋅( )2
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+−⎡⎣ ⎤⎦
2

+:=

Finding θ when center of gravity goes over last point contacting g

cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

θ−⎛⎜
⎝

⎞⎟
⎠

A⋅ cos atan
y x( )
x 8+

⎛⎜
⎝

⎞⎟
⎠

θ−⎛⎜
⎝

⎞⎟
⎠

B x( )⋅

 cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos θ−( )⋅ A⋅ sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin θ−( )⋅ A⋅+ cos atan
y x( )
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos θ−( )⋅ B x( )⋅

sin atan
y x( )
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin θ−( )⋅ B x( )⋅+

...
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 cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

tan θ−( )⋅+ cos atan
y x( )
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x( )
A

⋅

sin atan
y x( )
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

tan θ−( )⋅
B x( )
A

⋅+

...

Using law of cosine, I was able to make equation in form of θ(x) 

ngle of stability is  

 

Finding θ when center of gravity goes over last point contacting ground 

θ x( ) atan
cos atan

Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos atan
y x( )

x in⋅ 8in+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x( )
A

⋅−

sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
y x( )

x in⋅ 8 in⋅+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x( )
A

⋅−

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

−:=  

 

0 1 2 3 4
50

60

70

90

80

θ x( )

deg

x

Maximum a

θ 4( ) 80.538deg=

Opposite direction Calculation 

cos atan
Y

A⋅ cos atan
y x( )
x 8+

⎛  

Law of cosine 

 

 

Z
⎛⎜ ⎞ ⎞ ⎛
⎝

⎟
⎠

θ+⎜
⎝

⎟
⎠

⎛ ⎞ ⎞⎜ ⎜ ⎟ ⎟θ−
⎝ ⎠⎝ ⎠

− B x( )⋅

cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos θ( )⋅ A⋅ sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin θ( )⋅ A⋅+ cos atan
y x( )
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

− cos θ−( )⋅ B x( )⋅

sin atan
y x( )
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

−⎛⎜
⎝

sin θ−( )⋅ B x( )⋅+

...

cos atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

tan θ( )⋅+ cos atan
y x( )
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

−
B x( )
A

⋅

sin atan
y x( )
x 8+

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

− tan θ( )⋅
B x( )
A

⋅⎛⎜
⎝

+

...
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Using law of cosine, I was able to make equation in form of θ(x) 

 

Maximum angle of stability is  

 

 

  

θ x( ) atan
cos atan

Y
Z

⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

cos atan
y x( )

x in⋅ 8in+
⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x( )
A

⋅+⎛ ⎞
⎜ ⎟

 

sin atan
Z
Y⎛⎜

⎝
⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

sin atan
x in⋅ 8 in⋅+

y x( )⎛⎜
⎝

⎞⎟
⎠

⎛⎜
⎝

⎞⎟
⎠

B x( )
A

⋅−
⎜ ⎟

⎟
⎠

:=
⎜
⎝
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Appendix F: Heat Calculations 

Heat dissipation rate of 2 motor 
 

 

 

 

 

 

 
 

 

 

ssume temperature of motor (Aluminum heat sink) is 60 degree Celsius and Ambient 
mperature is 10 degree Celsius 

 
 

 

 

 

 
 

 

 

Lexan conduction from inside to outside 
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It goes into steady ate when inside temperature and outside temperature is 17 degree different 
inside temperature and outside temperature. So if inside temperature is 37 degree Celsius and 
outside surface temperature will be 20 degree. 

 
 

 
 

 
 
 

 

 
 

 
With robot 37 degree Celsius, it became steady state
 
  

 
 

 

st

 

 

 

 

 

. 
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Appendix G: Free Body Diagram (Torque Calculations) 

 

Free Body Diagram 

Assume Weight is distributed evenly, Friction between bottom of blade and ice is negligible 

Distance from location of Reaction force to neutral 

Weight of robot 

Length of Wheel 

Each Reaction force from Ground 

  
 

 hf 0.95 h⋅ 0.712 in⋅=:=

 W 50lbf:=

 L 16in:=

Fr

W

2

2L

L

 

pitch

6.25 lbf⋅=:=
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Torque at peak efficiency for motor  Trotate x( ) xlbf in⋅:=

A20 

Coefficient of Friction between ice and steel 

Reaction force 

Friction force of blade and ice 

Force cancel each other by left over 

This force is cancel out by other auger force 

All the forces cancel out 

Torque requirement can be calculated by F.torque_xprime = F.f_blade 

 μ 0.03:=

 Rblade x( )
Trotate x( ) cos α( )⋅

hf
:=

 Ff_blade x( ) Rblade x( ) μ⋅ Fr μ⋅+:=

  Ftorque_xprime x( )
Trotate x( ) sin α( )⋅

hf
:=Ftorque_yprime x( ) Rblade x( ):=

 Fleft x( ) Ftorque_xprime x( ) Ff_blade x( )−:=

 x 0 0.1, 30..:=

 Ftorque_xprime_min 0.834lbf:=

 Torqueminimum 0.4
lbf
in

6.4
ozf
in

⋅=:=



A

 

Item  Quantity  Part Number  System  Purchased From 
Total 
Cost

ppendix H:  Bill of Materials 

1/8 x 3 x 36 inch Stainless Steel  1  8992K383  Drive Train  McMASTER‐CARR  39.58
1/8" Hex Insert Bit  1   8526A64  Chassis  ‐CARR  9.86McMASTER

1/8" T‐Handel 1  7391A53   Chassis  McMASTER‐CARR  29.26 Hex Key 
10' x 0.25" pvc rod  3  n/a  Drive Train  Plastics Unlimited  21.34
10' x 0.25" pvc rod  1  n/a  Drive Train  Plas cs Unlimited  251.01ti

10' x 8" Schedule 40 PVC pipe  1  n/a  Drive Train  Washburn‐Garfield  245
100 Pack 10 1  92949A242  Chassis  McMASTER‐CARR  40.16‐24 x 1/2" Button Head Screw 

100 Pack Ny‐Locknut 1/4‐20  1  9183   6.981A029  Chassis  McMASTER‐CARR

100 Pack Ny‐Locknut 10‐24  1  91831A011  Chassis  McMASTER‐CARR  1.4
10x36x.25 Aluminum  1  8975K117  Drive Train  McMASTER‐CARR  3.8
12 gauge w 25  9697T4  Power  McMASTER‐CARR  1.09ire ‐ 2 strand Red/Black 

12‐Tooth ANSI  Train  McMASTER‐CARR  5 25 Sprocket 1/4 inch Bore  2  2737T101  Drive

12‐Tooth A e Train  McMASTER‐CARR  6.24NSI 25 Sprocket 3/8 inch Bore  2  2737T102  Driv

12x12x.25 Aluminum  1  9246K13  Drive Train  McMASTER‐CARR  6.53
12x12x1/4 6061 Aluminum  1   9246K13    Drive Train  McMASTER‐CARR  5.01
12x24x.05 Aluminum  1  88895K44    Drive Train  McMASTER‐CARR  120
24x24x.05 Aluminum  1  88895K54    Drive Train  McMASTER‐CARR  37.64
25 Pack 1/4‐20 x 3/4" Torx Pan Head Screw  1  96710A737  Chassis  McMASTER‐CARR  436
3 Pair of 4mm Gold Plated Bullet Connectors  1  B000X4RZ2E  Power  Amazon  89.52
3/16" x 1/2" x 6' Stainless Steel  1  8992K17  Drive Train  McMASTER‐CARR  58.36
3/4 Dimeter Polycarbonate Rod (1 foot)  2  8571K15  Chassis  McMASTER‐CARR  41.38
3/8 keyed Stainless Steel Shaft ‐ 3"  2  1497K4  Drive Train  McMASTER‐CARR  27.17
36‐Tooth ANSI 25 Sprocket 3/8 inch Bore  2  2737T261  Drive Train  McMASTER‐CARR  14.21
3x1 Connector Housing  20   JS‐1108‐03‐R  Sensors  Jameco Electronics  11.82
48‐Tooth ANSI 25 Sprocket 5/8 inch Bore  2  2737T322  Drive Train  McMASTER‐CARR  14.1
4x1 Connector Housing  3  100803  Sensors  Jameco Electronics  24.15
5 inch OD Polycarb Tube (1 foot)  1  8585K45  Chassis  McMASTER‐CARR  19
5/8 non‐key Auger Drive Shaft ‐ 5ft  1  1346K28  Drive Train  McMASTER‐CARR  20
50' 3‐Color Heavy Gauge Servo Wire  1  57417.00  Sensors  Jameco Electronics  30
5x1 Connector Housing  4  163686  Sensors  Jameco Electronics  16.93998
60 Amp Fuses  1  EAGU60‐4  Power  Amazon  13.75
8" Diamerter 16" Aluminum Pipe   2     Drive Train  Global Technology & 

Engineering  6.48
8" x 8" X 3/8" 6061 Aluminum  1  9246K21  Chassis  McMASTER‐CARR  71.93
8ft ANSI 25 Roller Chain  1  6261K288  Drive Train  McMASTER‐CARR  218
Analog Compass  1  1525.00  Sensors  Images Scientific 

Instruments  3.32
ANSI 25 Master Link  4  6261K108  Drive Train  McMASTER‐CARR  8.74
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ArduIMU  1  n/a  Sensors  Spark Fun  11.52
Bearing 3/  7/8 OD Double Sealed  4  6384K23  Drive Train  McMASTER‐CARR  27.68 ID

Bearings 5/8 ID Flanged, Double Sealed  4  6384K365  Drive Train  McMASTER‐CARR  14.24

Blue Lipo 4‐Cell 5000mAh 14.8v 4S1P 30C RC Battery  2  83P‐5000mAh‐4S1P‐
148‐40C  Power  HobbyPartz  .6438

Brushed DC Motor Controllers (Jaguar Black)  0.662  MDL‐BDC24  Motors  DigiKey  2
CIM Motors  2  M4‐R0062‐12  Motors  Trossen Robotics  26.74
Compass Module (not just the component)  1  HMC6352  Sensors  Spark Fun  27.2
Crimper  1  HT‐202A‐R   Sensors  Jameco Electronics 69.64
DyIO Controller  1  n/a  Controller  Neuron Robotics  11.02
Female Pins  30  100766   Sensors  Jameco Electronics 8.95
Fused Distribution Block  1  Scosche EADB4  Power  Amazon  4.5
Ground Distribution Block  1  EDB  Power  Amazon  11.4
Helicoid Flighting  2  n/a  Drive Train  Falcon Industries   4
I2c to UART board  1  BOB‐09981  Sensors  Spark Fun  0.87
J‐B Weld Epoxy 2 oz  2  7605A13   Drive Train  McMASTER‐CARR  1.4
Li‐Po GUARD Safety Battery Storage Bag  11  n/a  Power  HobbyPartz  5.95
Male Pins  60  Y‐1800‐TX‐R    52.0Sensors  Jameco Electronics 6
Panel Mount 120A Circuit Breaker  1  CB3‐PM‐120    13Power  Terminal Supply Co 3.05
Polycarbonate for Chassis   1  n/a  Chassis  Plastics Unlimited  51.5
Quadrature Encoder  2  SP‐16  Sensors  US‐Digital  19.19
scrap lexan  5  n/a  Drive Train  Plastics Unlimited  34.95
Thunder AC6 Charger  1  n/a  Power  HobbyPartz  4.95
Torx T30 Insert Bit  1  7013A29  Chassis  McMASTER‐CARR  9.44
Torx T30 Screwdriver  1  5756A19  Chassis  McMASTER‐CARR  9.48
Two‐Piece Clamp‐On Shaft Collar   2  6436K136 Drive Train  McMASTER‐CARR  13.95
Value Seal Gasket Tape 1/2 wide 50ft roll  1  9477K21  Chassis  McMASTER‐CARR  99.98
WaterJet Fees for Cutting Polycarb Parts  1  n/a  Chassis  Vangy Tool  5.75
Welding fees for Augers  1  n/a  Drive Train  Barnstorm Cycles  54.7
Welding fees for Augers  1  n/a  Drive Train  Barnstorm Cycles  16.25
Weld‐On Solvent and Applicator supplies  1  IPS16‐PT  Chassis  Ridout Plactics  32.17
            Grand Total:  2786.52



Appendix I: Robot Code 

AbSensor 

tics.sdk. io.
import com.neuronrobotics.sdk. io. rals.Anal tCh

 
ublic class AbSensor mpl ts ISensor{ 

//FIELDS  
public double LastReadin = - most rec adi the 
 

 long TimeTaken = ste ntTimeMil T last 

 public int Port;//The port of the DyIO that this sensor is plugged into  
dyio;//The dyio

package package1; 
 
 
import com.neuronrobo dy DyIO; 

dy periphe ogInpu annel; 
 
 
 
 
// An Abstract Sensor
abstract p  i emen
 
 
sensor

g 1;//The ent re ng from 

 public Sy m.curre lis();// he time the 
reading was taken 

 public DyIO  
alogInputChanne AnI e chann at c

//CONSTRUCORS 
Sensor(DyIO dyio,int P t){

 this.dyio = dyio; 
 this.Port = Port; 

this.AnInput = new nal Channel(d tCh  

 

 //METHODS 
 //Updates TimeTaken to the current time 
 public void UpdateTime(){ 
  TimeTaken = System.currentTimeMillis(); 
  } 
  
 //get the last reading 
 public double GetReading(){ 
  return this.LastReading; 
 } 
  
 //get the time of the last reading 
 public long GetReadingTime(){ 
  return this.TimeTaken; 
 } 
  

 public An l nput;//Th el th ontrols this 
sensor 
  
  
 
 Ab or  
 
 
   A ogInput yio.ge annel(Port),
true); 
   
 }  
 AbSensor(){ 
  
 } 
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 //get the port of the sensor
 public int GetPort

return this

 
(){ 

   .Port; 

ensor and updates the LastReading and TimeTaken 
ic void ReadSensor(); 

ngleDialog 
ckage package1; 

s; 

 } 
  
 //Reads the s

abstract publ 
} 
 

A
pa
 
import java.awt.Graphic
 
//An abstract Sensor 
blicpu  class AngleDialog{ 

  
 //FIELDS 
 double angle=0; 
 Triangle triangle = new Triangle();  
 Display display; 
 JLabel label; 
  
 //CONSTRUCTOR 
 public AngleDialog(Display d) { 
  this.display = d
  triangle.setBounds(0, 16,

; 
 284, 246); 

("Robot Orientation"); 
 300, 284, 16); 

Graphics g){ 

   label = new JLabel
  label.setBounds(40,
   
 } 
  
 //METHODS 
 public void paint(
  if(display.ADIS.hasMap){ 

iangle.paint(g); 
 

port DyIO; 
ipherals.ServoChannel; 

er, and drive system 

d; //The set rotational speed for the motor 

  tr
  }
 } 
 
} 

Auger 
package package1; 
 
im  com.neuronrobotics.sdk.dyio.
import com.neuronrobotics.sdk.dyio.per
 

ug//A motor, a
ublicp  class Auger { 
  
 //FIELDS 

io; //The DyIO  DyIO dy
ee int sp
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 int ratio = 1; //The ratio of 
 the 

speed:PWM 
 int port; //The port of dyio this auger uses 

 Channel for controlling the motor 
n  

 
 

  
TRUCTORS 
(DyIO dyio, int speed, int port, int direction, int encoderPort){ 

eed = speed; 
rt = port; 

w ServoChannel(dyio.getChannel(port)); 
rection) != 1) 

em.out.println("Auger direction must be 1 or -1. 
ow."); 

derPort = encoderPort; 
r = new Encoder(dyio, encoderPort); 

ch this Auger should turn and 

eed; 
wSpeed;   

he speed at which this auger should turn, with acceleration 

peed){ 
 of acceleration control. A higher 

direction ==-1) newSpeed = 255-newSpeed; 

 if (speed != newSpeed){ 
  //if the actual speed is less than the set speed range, go 
y faster 

 if (speed < newSpeed - (range-1)) speed += range; 

d + (range-1)) speed -= range; 
 the set speed 

 to move at the given speed 
veSpeed){ 

 ServoChannel servo; //The
ctio ;//Whether the auger is a left or a right int dire

 Encoder encoder; 
 int encoderPort; 
 double divisor=3; 
 
 

 //CONS
 Auger 
  this.sp

 this.po 
  this.servo = ne

 if (Math.abs(di 
   Syst
Unexpected results may foll

this.direction = direction;   
  this.enco
  this.encode
 } 
   
 //METHODS 
  
  
 //instantly sets the speed at whi

n compensates for auger directio
ublic p  void SetSpeed(int newSpeed){ 

  if (this.direction == 1) this.speed = newSp
= 255-ne  if(this.direction ==-1) this.speed 

 } 
  

 t //sets
control 
 public void SetSpeedAcc(int newS
  int range= 10;//The amount
number is less control. 
 

f(this.  i
   

 
 
slightl
  
   //if the actual speed is more than the set speed range, go 
ightly slower sl

   else if (speed > newSpee
   //if the actual speed is in range, set it to

  else speed = newSpeed;  
  } 
 } 
  
 //set the motor
 public void Move(int mo
  SetSpeed(moveSpeed); 
  Go(); 
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 } 
  
 //set the motor to move at its set speed 
 public void Go(){ 

 ratio;   int pwm = speed *
  if(pwm >252) pwm = 252;//upper PWM limit with the DyIO 

wm = 2;//Lower PWM limit with the DyIO 

/divisor divisor divisor)*127)); 

);

nt; 
MouseEvent; 
nt.MouseInputAdapter; 

e1.Position; 

 start = null; 

_DESTINATIONS]; 

  if(pwm < 2) p
   
  //this scales the maximum and minimum outputs, and centers them 
around 127 
  pwm =(int)((pwm )+(( -1)/(
   

   servo.SetPosition(pwm
 } 
  
 
} 

Clicker 
package package1; 
 
import java.awt.Poi
import java.awt.event.

.swing.eveimport javax
import packag
 
//A class for accepting inputs on an image 
ass cl Clicker extends MouseInputAdapter{ 

 //FIELDS 
 NavMap map; 

n first = null;  Positio
on Positi

 Position lastClicked = null; 
 int MAX_DESTINATIONS = 100; 
 Position destinations[]=new Position[MAX
 IceReading path[] = new IceReading[10000]; 
 int head=0; 

int tail = 0;  
 int ppt = 0; 
   
 //CONSTRUCTOR 
 public Cli ker(N c avMap c){ 
    map = c; 
  } 
  
  //METHODS 
  public void mousePressed(MouseEvent e){ 
  f (tail >=  i MAX_DESTINATIONS) return;//Don't overflow the array of 
positions 
    

 = e.ge   Point p tPoint();//Find out where the user clicked  

  

Height())) return; 

    
   if(  (p.x < 355)|| 

tWidth())||    (p.x>345+map.image.ge
     (p.y<45)|| 

34+map.image.get     (p.y>
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  Position clicked = new Position(p.x, p.

null){ 
y); 

(p.x,p.y); 

} 

tClicked.x==clicked.x && lastClicked.y == clicked.y) 

stClicked = clicked; 
 

 destinations[tail] = clicked; 
 map.ADIS.display.repaint(); 

tail ++; 

rals.AnalogInputChannel; 

blic bSensor { 

nel LeftChannel; 
nnel RightChannel; 

int RightPort){ 

is.dyio = dyio; 
 this.LeftPort = LeftPort; 

.RightPort = RightPort; 

Channel(dyio.getChannel(RightPort)); 

TH S 
Take the pass,  
conv ts i ields 

  if (first == 
   first = new Position
   map.ADIS.display.repaint(); 
   //DRAW SOMETHING GREEN AT CLICKED_POS 
   lastClicked = clicked; 
   return; 
  
   
  if (las
return;   
  la
  //MAKE THE POSITION AT CLICKED_POS RED
 
 
  
   
  } 
} 
 

Compa
ckage package1; 

ss 
pa
 
import com.neuronrobotics.sdk.dyio.DyIO; 

otics.sdk.dyio.peripheimport com.neuronrob
 
//The Compass 
pu  class Compass extends A
 
 //FIELDS 
 double ratio = 1;//the ratio of voltage:Heading 
 int LeftPort; 

;  int RightPort
 AnalogInputChan
 AnalogInputCha

  
 //CONSTRUCTORS  
 Compass(DyIO dyio, int LeftPort, 

uper();   s
 th 

 
  this
  this.LeftChannel = new 
AnalogInputChannel(dyio.getChannel(LeftPort)); 
  this.RightChannel = new 

log nputAna I
 } 
 
  

ME // OD  
ge reading of the Com // s analog volta

 // er t to a heading, then updates the proper f
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 pu
 
blic void ReadSensor (){ 

int LeftVal = (int)( .getVoltage()*100); 
()*100); 

; 
 

an2(LeftVal,RightVal)); 
Syst ing); 

ng); 
intln(" After Adjust: "+LastReading); 

 

le of recorded difference 

he difference from true angle were recorded for 
  angles[] = 
,39,58,84,115,155,183,202,221,240,258,276,286,301,314,324,342,360}; 
 //Differences from true angle recorded for the above angles 
 double diffs[] = {0,4,-1,-

2,4,15,35,43,42,41,40,38,36,26,21,14,4,2,0}; 
int a,b; 
for(a=1;a<19;a++){ 

=a-1; 
(angle<angles[a]){ 

 range is found, find the linear 

s[b]); 
 offset = angle-angles[b]; 

et + diffs[b]; 
ff; 

ed: "+angle); 
le; 

 package1; 

 LeftChannel
  int RightVal = (int)(RightChannel.getVoltage

)  LeftVal= (LeftVal-254
  RightVal = (RightVal - 254);   
  LastReading = 180-Math.toDegrees(Math.at
  // em.out.print("Before Adjust: "+LastRead
  LastRe = adjustAngle(LastReadiading 
  //System.out.pr
    
  dateTUp ime(); 
 } 
 
 //Linearizes the angle, based on a lookup tab
between actual and read data 
 public double adjustAngle(double angle){ 
  double diff,slope,offset; 
  //Angles that t

double 
{0,24
 
 

  
  
   b

  if 
    //Once the correct
value for difference 

   slope = (diffs[a]-diffs[b])/(angles[a]-angle 
   
    diff = slope*offs

   return angle - di 
   } 
  } 

ut.println("ERROR: Angle not Adjust  System.o
  return ang
   
 } 
  
  
  
   
   
   
  
} 
 

ControllerController 
package
 
 
portim  net.java.games.input.*; 

 

A28 



//A class for controling a USB controller 

ronment. ().getControllers(); 

ler */ 
ler.Type.STICK){ 

); 

public class ControllerController { 
 //FIELDS 
 public Controller controller; 

blic pu  DirectController dc; 
 public JoyStickDialog jsd;  
 
 //CONSTRUCTOR 

blic pu  ControllerController(){ 
 
  Controller[] ca = 

getDefaultEnvironmentControllerEnvi
 
 
 for int i =0;i<ca. ( length;i++){ 
   /* Get the name of the control

 Control   if(ca[i].getType() ==
    controller = ca[i]; 
    break; 
   }  
  } 
  dc = new DirectController(controller
  jsd = new JoyStickDialog(dc); 
 
 } 
} 
 

DirectController 
package package1; 
 

ut.*; import net.java.games.inp
 
//A class for recieving data from a USB PS2 Controller 

ler { public class DirectControl
 //FIELDS 

tStick int Lef
ft

X; 
StickY; 
htStickX; 
htStickY; 

vice; 
; 

 
ontroller(Controller device){ 

 this.device = device; 
 this.input = device.getComponents(); 

 } 

pdate(){   
device.poll(); 

255 -(input[0].getPollData()*127 + 127)); 
 LeftStickX = ( ) (input[1].getPollData()*127 + 127);  

 int Le
 int Rig
 int Rig
 Controller de
 Component[] input
 

TRUCTOR //CONS
DirectC 

 
 

 
 //METHODS 
 public void U

  
   
  LeftStickY = (int) (

int 
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  RightStickX = (int) (input[2].g
- (input

etPollData()*127 + 127); 
[3].getPollData()*127 + 127)); 

(input[0].isAnalog()){ 
"Input 0 is Analog"); 

  System. .println("Input 0 is Digital"); 

 (input[1].isAnalog()){ 
out ); 

"); 

()){ 
.println("Input 2 is Analog"); 

ital"); 

  
(input[3].isAnalog()){ 

  System.out.println("Input 3 is Analog"); 
 }else{ 

   System.out.println("Input 3 is Digital"); 

port e; 
port on; 

 

il.Hashtable; 

; 
g vent

stener; 

h 

  RightStickY = (int) (255 
 } 
  
 
 public void CheckComponents(){ 

 if 
   System.out.println(
  }else{ 

out 
  } 
   

if 
   System. .println("Input 1 is Analog"
  }else{ 
   System.out.println("Input 1 is Digital
  } 
   
  if(input[2].isAnalog

t   System.ou
  }else{ 
   System.out.println("Input 2 is Dig
  } 
 
  if
 
 

  } 
 
 } 
 
} 
 

Display 
package package1; 
 
im  javax.swing.JFram
im  javax.swing.JButt
import javax.swing.JLabel; 
import javax.swing.JScrollPane;
port javax.swing.JSlider; im

import java.awt.Graphics; 
import java.awt.event.ActionListener; 
import java.awt.event.ActionEvent; 
import java.io.IOException; 
import java.ut
 
import . g.JTe
port

 javax swin xtPane
im  javax.swing.event.Chan eE ; 
import javax.swing.event.ChangeLi
 
//A display that contains an output window, various buttons to interact wit
the robot 
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// and various displays to show the robot's state. 
@SuppressWarnings("serial") 

extendspublic class Display  JFrame{ 

 = ; 

utton; 
Control; 

 

ltCloseOperation(JFrame. ); 

e()
new JButton("Reset"); 

Button("Exit"); 

 JTextPane(); 

new
 speedControl = new JSlider(JSlider.VERTICAL, 1, 5, 3); 

eedLabel = new JLabel("Speed Scale"); 

 exitButton.setBounds(190,11, 70, 23); 
 resetButton.setBounds(106, 59, 70, 23);   

  scrollPane.setBounds(10, 93, 264, 151); 
mapButton.setBounds(21, 11, 70,23); 
startButton.setBounds(106,11,70,23); 

ntrol.setBounds(280,60,60,200); 
bel.setBounds(260,40,80,20); 

add(exitButton); 
add(resetButton); 

scrollPane); 
mapButton); 

add(startButton); 

stener(new ChangeListener(){ 
 stateChanged(ChangeEvent e){ 
alue = 6 - speedControl.getValue(); 
uger.divisor = value; 

visor = value; 

  x.Stop(); 

 
 //FIELDS 
 Robot ADIS; 
 JTextPane text; 
 JScrollPane scrollPane; 

false boolean paused
 JButton mapButton; 
 JButton startB
 JSlider speed
 JLabel speedLabel; 
 int xSize=300; 
 int ySize=300;
 
 //CONSTRUCTOR 
 @Suppr sWarnes ings("unchecked") 
 public Display(final Robot x) { 
 

EXIT_ON_CLOSE  setDefau
  ADIS = x; 

ntPan .setLayout(null);   getConte
  uttonJB  resetButton = 
  JButton exitButton = new J
  mapButton = new JButton("Map"); 
  text = new
  scrollPane = new JScrollPane(text); 

ton =  JButton("Start");   startBut
 
  sp
 
 
 

  
  
  speedCo

 speedLa 
 
  getContentPane().

).  getContentPane(
  getContentPane().add(

.add(  getContentPane()
().  getContentPane

 
 

ChangeLi  speedControl.add
   public void

   int v 
    x.LeftA
    x.RightAuger.di
   } 

 });  
  exitButton.addActionListener(new ActionListener(){ 
   public void actionPerformed(ActionEvent arg0){ 
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    try { 
sleep  Thread.

    } catch (Inter
 

   (100); 
ruptedException e) { 

   e.printStackTrace(); 
} 
System.exit(1); 

onListener(new ActionListener() { 
ctionPerformed(ActionEvent arg0) { 
 = null; 
icker.destinations = new 

STINATIONS]; 
.clicker.path = new IceReading[1000]; 

ADIS.display.repaint(); 
   ADIS.nm.clicker.head = 0; 

 = 0; 
 = 0; 

tln("Resetting"); 

ner(){ 
(ActionEvent arg0){ 

Map"); 
    e.printStackTrace(); 

); 
rol); 

stener(){ 
    actionPerformed(ActionEvent arg0){ 

 text.setEditable( ); 
 Hashtable labelTable = new Hashtable(); 

); 
l") ); 

); 

 
    
    
   } 
  }); 
  resetButton.addActi
   public void a
    ADIS.Posn
    ADIS.nm.cl
Position[ADIS.nm.clicker.MAX_DE

ADIS.nm    
    
 
    ADIS.nm.clicker.tail
   IS.nm.clicker.ppt AD
    System.out.prin
    ADIS.getStartBlock(); 
     
 
   } 
  }); 
  mapButton.addActionListener(new ActionListe
   public void actionPerformed
 
    try { 
     x.chooseMap(); 
    } catch (IOException e) {  
     println("Cannot Choose 
 
    } 
    x.hasMap = true; 
    speedControl.setPaintLabels(true
    getContentPane().add(speedCont
   } 
  }); 
  startButton.addActionListener(new ActionLi

public void 
    x.start = true; 
   } 
  }); 
 
 

false 
 
  labelTable.put( new Integer( 1 ), new JLabel("1/5th") 
  labelTable.put( new Integer( 5), new JLabel("Ful
  speedControl.setLabelTable( labelTable ); 
  speedControl.setMajorTickSpacing(1); 
 

(50, 50, xSize, ySize);   this.setBounds
(true  setVisible

 } 
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 //METHODS 
 
 //print the given string to the console, and this display's output 

.getText()+t); 

ticalScroll

{ 

 end 

t

window 
 void print(String t){ 
  System.out.print(t); 
  text.setText(text
 
 scrollPane.getVerticalScrollBar().setValue(scrollPane.getVer
Bar().getMaximum()); 
  try { 
   Thread.sleep(10); 
  } catch (InterruptedException e) 
   e.printStackTrace(); 
  } 
 } 
 
 //print the given string with a line break at the
 void println(String t){ 
  print(t+"\n"); 
 } 
 
 //print the given in  
 public void print(  t){ 
  print(Integer.toString(t));   

int

 } 
 
 //print the given int with a line break at the end 

nt; 
.IOException; 

port java.util.Hashtable; 

 public void println(int t){ 
  print(Integer.toString(t)+"\n"); 
 } 
 
 public void paint(Graphics g){ 
  paintComponents(g); 
  if(ADIS.nm != null)ADIS.nm.paint(g); 
  if(ADIS.ad != null) ADIS.ad.paint(g); 
 
 } 
 
}//end class 
 

Encoder 
package package1; 
 
import javax.swing.JFrame; 
import javax.swing.JButton; 
import javax.swing.JLabel; 
import javax.swing.JScrollPane; 
port javax.swing.JSlider; im

import java.awt.Graphics; 
stener; import java.awt.event.ActionLi

wt.event.ActionEveimport java.a
port java.ioim

im
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port javax.swing.JTextPane; im

im  javax.swing.event.ChangeEvent; 
import j ax.swing.event.ChangeListener; 
port

t window, various buttons to interact with 

 JFrame{ 

rollPane; 
paused = false; 

e=300; 
 ySize=300; 

 Robot x) { 

utton resetButton =  JButton("Reset"); 
on exitButton = new JButton("Exit"); 

ap"); 

 speedControl =  JSlider(JSlider. , 1, 5, 3); 
eedLabel = new JLabel("Speed Scale"); 

itButton.setBounds(190,11, 70, 23); 
  

  scrollPane.setBounds(10, 93, 264, 151); 
mapButton.setBounds(21, 11, 70,23); 
startButton.setBounds(106,11,70,23); 

ntrol.setBounds(280,60,60,200); 
bel.setBounds(260,40,80,20); 

add(exitButton); 
add(resetButton); 

scrollPane); 
mapButton); 

add(startButton); 

stener(new ChangeListener(){ 
 stateChanged(ChangeEvent e){ 
alue = 6 - speedControl.getValue(); 

av
 
//A display that contains an outpu
the robot 
// and various displays to show the robot's state. 
@SuppressWarnings("serial") 
public class Display extends
 
 //FIELDS 
 Robot ADIS; 
 JTextPane text; 
 JScrollPane sc
 boolean 
 JButton mapButton; 
 JButton startButton; 
 JSlider speedControl; 
 JLabel speedLabel; 
 int xSiz

int 
 
 //CONSTRUCTOR 
 @SuppressWarnings("unchecked") 

isplay(final public D
 
  setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
  ADIS = x; 
  getContentPane().setLayout(null); 

new  JB
J  Butt

  mapButton = new JButton("M
  text = new JTextPane(); 
  scrollPane = new JScrollPane(text); 
  startButton = new JButton("Start"); 

new VERTICAL 
  sp
 
  ex

 resetButton.setBounds(106, 59, 70, 23);  

  
  
  speedCo

 speedLa 
 
  getContentPane().

).  getContentPane(
  getContentPane().add(

.add(  getContentPane()
().  getContentPane

 
 

ChangeLi  speedControl.add
   public void
    int v
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    x.LeftAuger.divisor = value; 
 = value; 

new ActionListener(){ 

  x.Stop(); 

(100); 
ruptedException e) { 

 e.printStackTrace(); 
} 
System.exit(1); 

onListener(new ActionListener() { 
ctionPerformed(ActionEvent arg0) { 
 = null; 
icker.destinations = new 

STINATIONS]; 
ADIS.nm.clicker.path = new IceReading[1000]; 
ADIS.display.repaint(); 

.nm.clicker.head = 0; 
IS.nm.clicker.tail = 0; 

 = 0; 
tln("Resetting"); 

   ADIS.getStartBlock(); 

ner(){ 
(ActionEvent arg0){ 

Map"); 
    e.printStackTrace(); 

); 
rol); 

stener(){ 

 Hashtable labelTable = new Hashtable(); 
); 

l") ); 

 Auger.divisor
   } 

   x.Right

  }); 
 exitButton.addActionListener( 

   public void actionPerformed(ActionEvent arg0){ 
  
    try { 

sleep  Thread.
    } catch (Inter

   

    
    
    
   } 
  }); 
  resetButton.addActi
   public void a
    ADIS.Posn
    ADIS.nm.cl
Positi ADIS.nm.clicker.MAX_DEon[
    
    
    ADIS
    AD
    ADIS.nm.clicker.ppt
    System.out.prin
 
     
 
   } 
  }); 
  mapButton.addActionListener(new ActionListe
   public void actionPerformed
 
    try { 
     x.chooseMap(); 
    } catch (IOException e) { 
     println("Cannot Choose 
 
    } 
    x.hasMap = true; 
    speedControl.setPaintLabels(true
    getContentPane().add(speedCont
   } 
  }); 
  startButton.addActionListener(new ActionLi

  public void actionPerformed(ActionEvent arg0){  
    x.start = true; 
   } 
  }); 
 
 

 text.setEditable(false);  
 
  labelTable.put( new Integer( 1 ), new JLabel("1/5th") 
  labelTable.put( new Integer( 5), new JLabel("Ful
  speedControl.setLabelTable( labelTable ); 
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  speedControl.setMajorTickSpacing(1); 
 
  this.setBounds

(true
(50, 50, xSize, ySize); 
); 

lay's output 

.getText()+t); 

ticalScroll

{ 

 end 

t

  setVisible
 } 
 
 
 //METHODS 
 
 //print the given string to the console, and this disp
window 
 void print(String t){ 
  System.out.print(t); 
  text.setText(text
 
 scrollPane.getVerticalScrollBar().setValue(scrollPane.getVer
Bar().getMaximum()); 
  try { 
   Thread.sleep(10); 
  } catch (InterruptedException e) 
   e.printStackTrace(); 
  } 
 } 
 
 //print the given string with a line break at the
 void println(String t){ 
  print(t+"\n"); 
 } 
 
 //print the given in  

t(  t){  public void prin int
  print(Integer.toString(t));   
 } 
 
 //print the given int with a line break at the end 

 g)

 public void println(int ){  t
  print(Integer.toString(t)+"\n"); 
 } 
 
 public void paint(Graphics { 
  paintComponents(g); 
  if(ADIS.nm != null)ADIS.nm.paint(g); 
  if(ADIS.ad != null) ADIS.ad.paint(g); 
 
 } 
 
}//end class 
 

Gyro 
package package1; 
 
import com.neuronrobotics.sdk.dyio.DyIO; 
 
//The Gyro 
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public class Gyro extends AbSensor { 
 
 //FIELDS 
 double voltageOffset;// 

 = .8;//the ratio of Angular Acceleration:Voltage  double ratio
(1.76470588) 

public double angle = 0;//The angle that the Gyro  is at 

 

; 

 

ing of the gyro

 
 
 //CONSTRUCTORS  
 Gy (DyIO dyio, int Port){ ro
  super(dyio, Port)
 } 
  
 
 //METHODS  
 
  
 //Takes the analog voltage read ,  

then updates the proper 

adSensor(){ 
LastReading;// voltage in volts 

 voltage = voltage - voltageOffset;//center the voltage around 
ro 

100;//voltage in milivolts

 //converts it to an angular acceleration, 
fields 
 public void Re

uble voltage =   do
 
ze
  voltage = voltage *  

age * ratio;//anglular  double angVel = -volt  velocity in a 
ction 
 (-1<angVel && angVel<1) angVel = 0; 

System.currentTimeMillis() - TimeTaken; 
Vel* (timeChange); 

(-.2<degMoved && degMoved<.2)degMoved = 0; 
 angle = angle +degMoved; 

etVoltage();//get the reading for the next 

currentTimeMillis();//get the time the reading 
s ta

e1; 

t.Color; 

//A class representing a reading of ice thickness 
 class IceReading { 
//FIELDS 

tion = new Position();//The position of the reading 
ess;//Thickness of the ice read at the position 

 thickness 
of safety of different ice-

in inches 

clockwise dire
 if 

 double timeC ge han  = 
  double degMoved = ang
  degMoved = degMoved/(15*14); 
  if
 
   
  LastReading = AnInput.g
iteration 

meTaken = System.  Ti
wa ken 
 } 
} 

IceReading 
package packag
 
import java.aw
 

public
 
 Position posi

double thickn 
 Color color;//Color representing the

//Variables representing the levels  
thicknesses 
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 int unsafe = 1;//less than this 
int dangerous = 3;//less than this is dangerous

is unsafe 
 

e = 5;//less than this is questionable 
afe. 

S 

position.x=0; 
.y=0; 

eading(  x, double y, double thickness){ 
.position.x = x; 
.position.y = y; 

s = thickness;  
setColor(); 

.y; 
ceThickness(); 

 

ness < unsafe) color = Color. ; 
Color.red; 

 for Sensors 
blic interface ISensor { 

ReadSensor(); 
ding(); 
ngTime(); 

 
 int questionabl
 //otherwise, the ice is s
  
 //CONSTRUCTOR
 public IceReading(){ 
  
  position
  thickness=0; 
  = Color.black; color
 } 

ceR double public I
  this
  this
  this.thicknes
  
 } 
 public IceReading(Robot ADIS){ 
  position.x = ADIS.Posn.x; 
  position.y = ADIS.Posn
  thickness = ADIS.GetI
  setColor(); 
 } 
 
 //METHODS 
 public void setColor(){ 
  if (thick black
  else if (thickness < dangerous) color = 
  else if (thickness < questionable) color = Color.yellow;  
  else color = Color.green; 
 } 
} 
 

ISensor 
package package1; 
 
An interface//

pu
 void UpdateTime(); 
 void 
 double GetRea

long GetReadi 
 int GetPort(); 
 
} 
 

JoyStickDialog 
package package1; 
 
import javax.swing.JDialog; 
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im  javax.swing.JLabel; port
port
port

mation from a USB controller 

extends JDialog { 

ght, Left, X, Y; 

UCTOR 

); 

.setBounds(146, 60, 46, 14); 
etContentPane().add(RX); 

 getContentPane().add(RY); 
  

  Left = new JLabel("Left-Stick"); 
Left.setFont(new Font("Tahoma", Font.BOLD, 11)); 
Left.setForeground(Color.RED); 

tBounds(32, 33, 62, 14); 
entPane().add(Left); 

el("Right-Stick"); 
w Font("Tahoma", Font.BOLD, 11)); 

round(Color.RED); 
124, 33, 68, 14); 
dd(Right); 

abel("X"); 
 X.setFont(new Font("Tahoma", Font.BOLD, 11)); 
 X.setForeground(Color.RED); 
 X.setBounds(12, 60, 26, 14); 

  getContentPane().add(X); 

= new JLabel("Y"); 
nt(new Font("Tahoma", Font.BOLD, 11)); 

RED); 
10, 17, 14); 

 getContentPane().add(Y); 

im  java.awt.Color; 
im  java.awt.Font; 
 
//A class to display infor
@SuppressWarnings("serial") 
blicpu  class JoyStickDialog 

 //FIELDS 
 DirectController sticks; 
 JLabel LX, LY, RX, RY, Ri
  
 //CONSTR
 public JoyStickDialog(DirectController sticks){ 
  this.sticks = sticks; 
   
  setBounds(100, 100, 254, 209); 

etLayout(null  getContentPane().s
   
  LX = new JLabel("0"); 
  LX.setBounds(48, 60, 46, 14); 
  getContentPane().add(LX); 
   

");   RX = new JLabel("0
  RX
  g
   
   = new JLabel("0"LY ); 
  LY.setBounds(48, 110, 46, 14); 
  getContentPane().add(LY); 
   
  RY = new JLabel("0"); 

.setBounds(146, 110, 46, 14);   RY
 
 

  
  
  Left.se

 getCont 
   
  Right = new JLab

(ne  Right.setFont
  Right.setForeg
  Right.setBounds(
  getContentPane().a
   

 X = new JL 
 
 
 

   
  Y 
  Y.setFo

 Y.setForeground(Color. 
  Y.setBounds(12, 1
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  setVisible(true); 

 

ng(sticks.LeftStickX)); 
ftStickY)); 

(sticks.RightStickX)); 
eger.toString(sticks.RightStickY)); 

ialog; 

 throws InterruptedException, 

evice(dyio)){ 

 

r sensor timing 

 } 
 
 //METHODS 
 public void Update(){ 
  sticks.Update(); 
   
  LX.setText(Integer.toStri
  LY.setText(Integer.toString(sticks.Le

toString  RX.setText(Integer.
  RY.setText(Int
  repaint(); 
 } 
} 
 

Main 
package package1; 
 
 
mporti  java.io.IOException; 
import com.neuronrobotics.sdk.dyio.DyIO; 

obotics.sdk.ui.ConnectionDimport com.neuronr
 
 
public class Main { 

c void main(String[] args) public stati
IOException{ 
  //Set up the DyIO 
  DyIO dyio = new DyIO(); 

onnectionDialog.getBowlerD  if (!C
   System.exit(1); 
  } 
  //Create the robot 
  Robot ADIS = new Robot(dyio);  
   

estartTime();//a function fo  ADIS.R
   
  /*//Optional code for controling the robot with the PS2 

o use this functionality.  

ler 

controller. 
   *simply remove the block comment t
    

te the PS2 Controller Control  //Crea
  ControllerController cc = new ControllerController();   
  boolean what = true; 
  ADIS.hasMap = true; 
  ADIS.start = true; 
  while(what){ 

ADIS.ps2drive(   cc); 
   Thread.sleep(10); 

 

   } 
  //*/ 
   
  //wait for a map to be selected
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  ADIS.displa "Waiting for Map Selection"); 

DIS.getStartBlock(); 

 180; 

pChooser 
package package1; 

; 
 java.io.IOException; 
 javax.imageio.ImageIO; 

er; 

n image file to repre  map 

apChooser  JFrame{ 

{ 
 JFileChooser("src/Maps"); 

Filter", 

 retreval;   

); 
ON){ 

file); 

y.println(
  while(!ADIS.hasMap); 
   
  A
 A Gyro.ReadSensor();  DIS.
  ADIS.Gyro.angle =
   

){      while(true
   ADIS.mapBlock(); 
  }//end while    
 }//end main 
}//end class 
 

Ma

 
import java.awt.image.BufferedImage; 
import java.io.File
portim

import
import javax.swing.JFileChoos
import javax.swing.JFrame; 
import javax.swing.filechooser.FileFilter; 
port javax.swing.filechooser.FileNameExtensionFilter; im

 
//A class for choosing a sent a
@SuppressWarnings("serial") 
public class M extends
 //FIELDS 
 JFileChooser fc; 
 File file; 
 BufferedImage map; 
  
 //CONSTRUCTOR 
 public MapChooser() throws IOException

w  fc = ne
  FileFilter ff = new FileNameExtensionFilter("Image 
"png","jpg"); 
  fc.setFileFilter(ff); 
  int
  retreval = fc.showDialog(this, "Choose Map"); 

EXIT_ON_CLOSE  setDefaultCloseOperation(JFrame.
  if(retreval == JFileChooser.APPROVE_OPTI
    file = fc.getSelectedFile(); 

tln(file.getName());     System.out.prin
    map = ImageIO.read(
    //Robot x = null; 
    //NavMap nm = new NavMap(x, map); 
    //nm.repaint(); 
  } 

xit(1);;   else System.e
   
 } 
} 
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NavMap 
package package1; 
 
 
import java.awt.*; 
import java.awt.image.*; 
 

 managing a//A class for
nput from the

 map, components on the map, and a clicker to accept 
 map 

ublic class NavMap{ 
 //FIELDS 

ADIS; 
image; 
e; 

 x_pos; 

licker(this); 

e image) 

 .image = image; 
getHeight()); 

ouseListener(clicker); 
y.addMouseMotionListener(clicker); 

 RenderingHints. ); 
 ADIS.display); 

i
p

 Robot 
 BufferedImage 
 Dimension siz

int 
 int y_pos; 
 
 Clicker clicker = new C

Graphics2D g2; 

 int SIZE=4; 
 
 //CONSTRUCTOR 
 public NavMap(Robot ADIS, BufferedImag
 { 

this 
  size = new Dimension(image.getWidth(), image.
 
  this.ADIS = ADIS; 
   
  ADIS.display.addM
  ADIS.displa
 } 
 
 ODS //METH
 public void paint(Graphics g){ 
  g2 = (Graphics2D)g; 
  g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, 
   VALUE_ANTIALIAS_ON
  g2.drawImage(image, 350, 40,
 
  //if (clicker.first != null){ 
   g2.setColor(Color.yellow); //
  // g2.fillRect((int)((clicker.first.x)-.5*SIZE), 
(int)((clicker.first.y)-.5*SIZE), SIZE, SIZE); 
 
  //} 

t  in   i;
ll){ 

(i=clicker.head;i<clicker.tail;i++){ 
((int)(clicker.destinations[i].x-.5*SIZE), 

nations[i].y-.5*SIZE), SIZE,SIZE); 
} 

 

  if(clicker.destinations[clicker.head] !=nu
   g2.setColor(Color.blue); 

r   fo
    g2.fillRect
(int)(clicker.desti
   

 } 
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  if(ADIS.Posn != null){ 
   g2.setColor(Color.green); 

 //g2.fillRect((int  )(ADIS.Posn.x-.5*SIZE), 
(int)(ADIS.Posn.y-.5*SIZE), SIZE,SIZE); 

 angle = (ADIS.Posn.angle); 
 xx = ADIS.Posn.x; 

  double yy = ADIS.Posn.y; 
uble L = 20; 

th.toRadians(angle); 
 math only once, to avoid bogging

   double
  double 

 
   do
   angle=Ma

  //do the  down the system 

ft point 
le x1 = xx+((L/4)*cos); 
 y1 = yy+((L/4)*sin); 

((L/4)*cos); 
= yy-((L/4)*sin); 

//top 
 = xx+(L*sin); 

 xPts[] = {(int)x1,(int)x2,(int)x3}; 
[] = {(int)y1,(int)y2,(int)y3}; 

int)(clicker.path[i].position.x-.5*SIZE), 
y-.5*SIZE), SIZE,SIZE); 

   double sin = Math.sin(angle); 
   double cos = Math.cos(angle); 
   //le

ub   do
   double
   //right point 

 = xx-   double x2
double y2    

   
   double x3
   double y3 = yy-(L*cos); 

    
  int 

   int yPts
   g2.fillPolygon(xPts, yPts, 3); 

    
  } 
  for(i=2;i<clicker.ppt;i++){ 

  g2.setColor(clicker.path[i].color);  
   g2.fillRect((

[i].position.(int)(clicker.path
   //g2.setColor(Color.black); 
   //g2.drawLine((int)clicker.path[i].x, 
(int)clicker.path[i].y, (int)clicker.path[i-1].x, (int)clicker.path[i-1].y); 

sitio  

s, double y_pos, double angle){ 

 
  } 
 
 } 
 
} 

Po n
package package1; 
 
//A location and orientation 
blic class Position { pu

  
 //FIELDS 
 public double x; 
 public double y; 
 double angle; 
  
  
 //CONSTRUCTORS 

le x_po Position(doub
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  this.x = x_pos; 
  this.y = y_pos; 
  this.angle = angle;   
 } 
 public Position(double x_pos, double y_pos){ 
  this.x = x_pos; 
  this.y = y_pos; 

   this.angle = 0;  
 } 
 Position(){ 
  this(0,0,0); 
 } 
 
} 
 

Robot 
package package1; 
 

s.sdk.dyio.DyIO; import com.neuronrobotic
import java.io.IOException; 
import java.lang.Math; 
import java.util.Random; 
 
 
//A robot 
public class Robot{ 
 //FIELDS 
 DyIO dyio; 
 
 Auger LeftAuger; 
 Auger RightAuger; 
 
 Compass Compas

AbSensor IceSe
s; 
nsor; 

o;  

Position Posn; 
Position Target; 

olean hasMap = false; 
 = false; 

 fake initial thickness. See "GetIceThickness" 

he dialog box that displays the relative position and 
ient  

tion{ 

 
 Gyro Gyr
 
 
 
 
 bo
 boolean start
 
 double thickness = 3;//A
 

oser mc;  MapCho
 NavMap nm; 
 AngleDialog ad;//T
or ation of the robot

y;  Display displa
 
 
 //CONSTRUCTOR 
 Robot(DyIO dyio) throws IOException, InterruptedExcep
  this.dyio = dyio; 
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  this.LeftAuger = new Auger(dyio, 127, 2, -1, 21); 

 Auger(dyio, 127, 3, 1, 23); 

; 
w Compass(dyio, 10, 11); 

.Posn = ; 

this); 
 =  AngleDialog(display);//The dialog box that displays the 

lative position and orientation of the robot 

 //Find the offset of the Gyro

  this.RightAuger = new
 
  this.Gyro = new Gyro(dyio,12); 

null  this.IceSensor = 
  this.Compass = ne
 

is null  th
 
  display = new Display(

new  ad
re
 
  
  double voltages = 0; 

Gyro.ReadSensor(); 
for (int i=0;i<5;i++){ 

.ReadSensor(); 
oltages += Gyro.LastReading; 

t = voltages/5; 

lay the map 
 throws IOException{ 
r(); 
is, mc.map); 

ne().add(ad.label); 
ne().add(ad.triangle); 

ntentPane().add(display.speedLabel); 

tPane().remove(display.mapButton); 

y to account for new components 
 + nm.image.getWidth(); 
tHeight())<600)display.ySize = 600; 

(); 

 for (int i=0;i<10;i++){ 
r.SetSpeedAcc(127); 

(); 

  
  
   Gyro

  v 
   Thread.sleep(5); 
  } 

eOffse  Gyro.voltag
 
 
 
 } 
 
 //METHODS 
 

//choose and disp 
 public void chooseMap()
  mc = new MapChoose

 nm = new NavMap(th 
 
  display.getContentPa

ontentPa  display.getC
 display.getCo 

 
  display.getConten
 
  //Resize the Displa

70  display.xSize = 3
 if((60+nm.image.ge 

  else display.ySize = 60 + nm.image.getHeight(); 
 display.setSize(display.xSize,display.ySize);  

 
paint  display.re

 } 
 
 //stops the robot 

public void Stop(){  
 
   LeftAuge
   RightAuger.SetSpeedAcc(127); 

();    LeftAuger.Go
   RightAuger.Go
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//sets both motors to the same speed 

//set the angle the triangle 

} 
 } 
 
 
 public void Move(int speed){ 
  LeftAuger.Move(speed); 
  RightAuger.Move(speed); 
 } 
 
 shoudl be facing, and repaint the display 

 

given speed, using proportional control. 

n amount of degrees 
ockwise 

public void TurnBlock(int degrees) throws InterruptedException{ 

splay.println("Target Angle: "+ degrees); 
  

  Ki = 0; 

ns turn clockwise 

 

  timeChange = 0; 

me since last 

 based of 

error); 
errorSum += error*timeChange; 
rate = error - errorPrev; 

ge = System.currentTimeMillis()-time; 
int) ((Kp*error) + (Ki*errorSum) + 

;//to turn clockwise, 

);//to turn clockwise, 

 public void UpdateDialog(){ 
  ad.triangle.angle= Posn.angle; 
  display.repaint(); 
 }
 
 //drives both augers at the 
 //Must be called in a loop. 
 public void driveStraight(int setSpeed){ 
  drive(setSpeed, 0); 
 
 }//end driveStraight 
 
 //block that sets the motors to turn the give
cl
 
   
  di
 
  int Kp=5; 

int 
  int Kd = 900; 
  double error = 0;//a positive error mea
  double errorSum=0; 
  double errorPrev =0; 

double rate = 0;  
  int speed = 0; 
  int done = 3; 
  long time = System.currentTimeMillis(); 

long 
  double prevAngle=0; 

   
  Gyro.ReadSensor();//Read the sensor, to reset the ti
reading 
  Gyro.angle = 0;//Reset the angle, so that turn angle is
current heading 
  while (done > 0){    

  error = degrees - (int)Gyro.angle;  
   System.out.println(
   

   
  timeCha n
   speed = (
(Kd*rate/timeChange)); 
   LeftAuger.SetSpeedAcc(127 + speed)
increase this 

(127 - speed   RightAuger.SetSpeedAcc
decrease this 
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   LeftAuger.Go(); RightAuger.Go(); 
errorPrev = error;//Set previous error for next iteration 

  time = System.currentTimeMillis(); 

 
//Add the degrees 

ot 
UpdateDialog(); 

  display.repaint(); 

"+done); 

} 
  else { 

"); 
 //Verify with Compass 

n.angle>Compass.LastReading
sn.angle<C

.println("Verified"); 

rintln("Not Verified. Heading Adjusted."); 

tor to drive straight the given distance in 

ightBlock(double distance) throws 

icks(distance);//Find the number of ticks 

//the average of the encoder values 

 traveled so far 

 
orti  C stant that scales the value 

ant 

 

g time = System. (); 
ng t
tAuger.encoder.channel.setValue(0); 

   
 
   Thread.sleep(20); 
   Gyro.ReadSensor();//to update the angle
   UpdateAngle(Gyro.angle-prevAngle);
traveled to the current heading of the rob
   
 
   if ((Gyro.angle >= degrees - 5)&&(Gyro.angle<=degrees + 
5)){ 
    display.println("Done in 
    done--; 
   
 
    prevAngle = Gyro.angle; 
   done = 3 ; 
   }    
  }//end while 
  Stop(); 
  display.println("DONE
 
  display.println("Veryifying with Compass..."); 
 sleep Thread. (3000); 
  Compass.ReadSensor(); 

-10 &&   if (Pos
Po ompass.LastReading+10){ 
   display
  } 
  else { 
   display.p
  } 
 } 
 
 //block that sets the mo
inches 
 public void DriveStra
InterruptedException{ 
  double ticks = getNumT
equivalent to the given distance 
  double avg=0;
  double distTraveled = 0;//the total distance, in inches, the 
robot has
  double lastDist = 0;//The distance the robot had traveled the 
last iteration through the loop
  double Kp = 6;//Prop on on

uble
al

  do  Ki = 0;//Integral Constant 
  double Kd = 600;//Derivative Const
  double error=0; 

uble  do  errorSum = 0; 
  double errorPrev = 0; 
  double rate = 0; 
  int speed=0;

t do  in ne = 3; 
  lon currentTimeMillis
  lo imeChange = 0; 
  Lef
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  RightAuger.encoder.channel.setValue(0); 
  Gy ngle = 0; ro.a
  while(done>0){ 
   error = (ticks - avg); 

()-time; 
 based on error 

); 

(); 
-

RightAuger.encoder.channel.getValue())/2

ce(avg); 
ed- lastDist); 

stTraveled; 

avg<=ticks+5)){ 
"Done in "+Integer.toString(done)); 

he motors to a complete stop 

//converts distance in inches to a number of encoder ticks 

 

 ticks){ 
very tick 

(); 

 = time; 

he ps2 controller 
(ControllerController cc){ 
dc.LeftStickY); 

 127 

   errorSum += (error*timeChange);  
   rate = error - errorPrev; 
   timeChange = System.currentTimeMillis
   //Move the motors slower
   speed = 127; 
   speed += (Kp*error) + (Ki*errorSum) + (Kd*rate/timeChange
   driveStraight(speed); 
   errorPrev = error; 

tTimeMillis   time = System.curren
   = -(avg 
LeftAuger.encoder.channel.getValue()+
; 
   distTraveled = getDistan
   UpdatePosition(distTravel
   lastDist = di
   display.repaint(); 
   if ((avg >= ticks - 5)&&(
    display.println(
    done--; 
   } 
   else { 
    done = 3; 
   } 
 
  } 
  //slow t
  Stop(); 
 } 
 
 
 public double getNumTicks(double distance){ 
 return  distance*2;//the robot moves a half-inch for every tick
 } 
 
 //converts number of encoder ticks to a distance in inches 
 public double getDistance(double
  return ticks/2;//the robot moves a half-inch for e
 } 
  
 //restart the time, as if the robot has just begun taking sensor 
readings 
 public void RestartTime(){ 

s  long time = System.currentTimeMilli
  imeTaken = time; Gyro.T
  Compass.TimeTaken
 } 
 
 //drive the robot with t
 public void ps2drive
  int Left = (cc.
  int Right= (cc.dc.RightStickY); 
 
  //if the set speed is close to 127, set it to
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  if (112 < Left && Left < 142) Left = 127; 
ht < 142) Right = 127;   if (112 < Right && Rig

  System.out.println("Start the motors moving at "+Right+" and 

ontroller 

from a given change in angle 
{ 

Posn.angle<0)){ 

   (Posn.angle < 0)Posn.angle +=360; 

the given distance 

(angle); 
e= (Math.sin(angle)*distance); 

ngle)*distance); 
ange; 

 Posn.y -= y_change; 

++; 
= new Position(); 

 current.x = Posn.x; 

); 

the target 

 (nm.clicker.head == nm.clicker.tail){ 
nm.clicker.head = 0; 

"Waiting for input"); 
r.head == nm.clicker.tail){ 

 Target = nm.clicker.destinations[nm.clicker.head]; 

urrent and target positions 
 CalculateDistance(){ 

"+Left); 
  RightAuger.Move(Right); 
  LeftAuger.Move(Left); 
  cc.jsd.Update();//Update the Dialog box for the PS2 C
 
 } 
 
 //Calculates the new angle of the robot 
 public void UpdateAngle(double angle)
  Posn.angle += angle; 

>360)||(  while ((Posn.angle
   if (Posn.angle > 360)Posn.angle -= 360; 
 if
  } 
 } 
 
 //calculates he new x/y position of  t the robot, from 
traveled in inches 
 public void UpdatePosition(double distance){ 
  double angle = Posn.angle; 
  angle th.toRadians= Ma
  double x_chang
  double y_change= (Math.cos(a
  Posn.x += x_ch
 
 
 
  nm.clicker.ppt

sition current   Po
 
  current.y = Posn.y; 

ceReading(this  nm.clicker.path[nm.clicker.ppt] = new I
  display.repaint(); 
 } 
 
 s  button to be ed on the map, then updates //wait  for a  press
position 
 public void UpdateTargetBlock() throws InterruptedException{ 
  if
   
   nm.clicker.tail = 0; 
   display.println(
   while (nm.clicke
    Thread.sleep(10); 
   } 
  } 
 
 
 
 } 
 
 //calculates the distance between the c

public int 
  int distance; 
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  double x, x2, y, y2; 
  x = (Target.x - Posn.x); 
  x2 = x*x; 
  y = (Target.y - Posn.y); 
  y2 = y*y; 
  distance = (int) (Math.sqrt((x2+y2))); 
  return distance;  
 } 
 
 //calculates the angle change needed to get to the target position 

ange, x, y; 

ent position to the 

gleGlobal = Math.toDegrees(Math.atan(x/y));   
  (y<0){ 

is angle to a zero-

 based on it's 

- Posn.angle; 
 

 while ((angleChange>180)||(angleChange<-180)){ 
80)angleChange -= 360; 

nge +=360; 

for the user to input a starting position 
void getStartBlock(){ 

 display.println("Select Starting Position"); 

ker.first.x,nm.clicker.first.y, 

  

); 

//drive the robot according to instructions given from the GUI 
 mapBlock() throws InterruptedException{ 

 r n angle from o 180 //retu ns a -180 t
 public double CalculateAngle(){ 
  double angleGlobal, angleCh
  x = (int)Target.x - (int)Posn.x; 
  y = (int)Target.y - (int)Posn.y; 
  //first, find the global angle from the curr
target  
  an

if 
   if (x<0) angleGlobal= -180+angleGlobal; 
   if (x>0) angleGlobal = 180+angleGlobal; 
   if (x==0)angleGlobal = 180; 
  } 
  angleGlobal = 180-angleGlobal;//Translates th
up, positive-clockwise angle 
  //now, find the angle the robot needs to turn,
current heading 
  angleChange = angleGlobal 

 //adjust the number to a number between +/-180 
 
   if(angleChange > 1
   if(angleChange <-180) angleCha
  } 
  return angleChange; 
 } 
 
 //waits 

public  
  while(Posn == null){ 
  
   while(nm.clicker.first == null); 
   Compass.ReadSensor(); 
   Posn = new Position(nm.clic
0); 
   nm.clicker.path[0] = new IceReading(this); 
   display.println("Start Position Set: 
("+Posn.x+","+Posn.y+"){"+(int)Posn.angle+"}"
  } 
  display.repaint(); 

}  
 
 
 public void
  getStartBlock(); 
  if(!start)display.println("Preload any map points, then press 
\"Start\"."); 
  while(!start); 
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  UpdateTargetBlock(); 
   
  double angleChange =CalculateAngle();   
   
  display.println("Turning..."); 
  TurnBlock((int)angleChange);//*dir 
  display.println("Success!"); 

 UpdateDialog(); 

tance();    

aint(); 

actually turn and drive the 

)display.println("Preload any map points, then press 
Star ".")

 

ir=1;  dir = -1; 
Change;i+=dir){ 

UpdateAngle(dir); 
  UpdateDialog(); 

 

 } 

ed, with the given turning factor (zero 
 

void drive(int setSpeed, int turnFactor){ 

 the ticks from each encoder 
tAuger.encoder.channel.getValue(); 

   
 
  display.repaint(); 
   
  int distance = CalculateDis
   
  displ println("Driving..."); ay.
  DriveStraightBlock(distance); 
  display.println("Success!"); 
   
  .clicker.head ++; nm
  display.rep
 } 
  
 //draw the map, assuming the robot would 
correct distance 

blic pu  void feauxMapBlock() throws InterruptedException{ 
  int i; 
  getStartBlock(); 
  if(!start
\" t\ ; 
  while(!start); 
  UpdateTargetBlock(); 
  double angleChange =CalculateAngle();  
  int dir; 

else  if gl (an eChange>0) d
  for(i=0;i!=(int)angle
   
 
   Thread.sleep(5); 

       display.repaint();
  }   
  int distance = CalculateDistance(); 

    for(i=0;i<distance;i+=10){   
   UpdatePosition(10); 
   Thread.sleep(100); 
 
  nm.clicker.head ++; 
  display.repaint(); 
 } 
 
 //drive the robot the given spe

ositive is clock-wise)is straight, p
public  

  double leftTicks; 
  double rightTicks; 
  int angle; 
  int error;   
  //get
  leftTicks = -Lef
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  rightTicks = RightAuger.encoder.channel.getValue();   
er h s bee  moving too fast 

( ) (rightTicks - leftTicks);  

  //a positive error means the right aug a n
  

int  error = 
 
  //Assume the gyro was initially set to 0 

+error); 
gle);//if the robot has turned clockwise, 

 counter-clockwise 

he corrected set speed for each auger 

 + (error) + turnFactor);//a 

// 

LeftAuger.SetSpeedAcc(setSpeed - error - turnFactor);//a 

// a 

 

Auger.Go(); 

 po tion
tIceThickness()

SO THAT THE MAP SHOWS SOME 

D, THIS SHOULD BE CHANGED TO READING 

 

   

/end

  Gyro.ReadSensor(); 
  display.print("Error: "
  angle = (int) (Gyro.an
subtract more from the error, to turn
  playdis .println(", angle"+angle); 
 
  //set t
  if (setSpeed >= 127){//forwards 
   LeftAuger.SetSpeedAcc(setSpeed
positive error speed this up   
   RightAuger.SetSpeedAcc(setSpeed - (error) - turnFactor);
a positive error slows this down 
  } 

se {//backwards   el
   
positive error slows this down   
   RightAuger.SetSpeedAcc(setSpeed + error + turnFactor);
positive error speeds this up 
  }  
  Start the augers driv// ing at the corrected speed. 
  LeftAuger.Go(); 
  Right
 } 
 
 //get the thickness of the ice at the current si  
 public double Ge { 
 
  //THIS IS FAKE. IT IS A TEMPORARY FIX 
SORT OF ICE READING. 
  //ONCE AN ICE SENSOR IS ADDE
FROM THAT SENSOR. 
  Random r = new Random(); 
  int adjust = r.nextInt(3)-1; 
  thickness = thickness + (adjust);  
  if (thickness < 0)thickness = 1; 
  if (thickness > 7)thickness = 6;
  //END OF THE FAKE PART 
 
  return thickness; 
 
 } 
 
}/  class 
 
 
 

Triangle 
package package1; 
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wt.Graph ; 

 
portim  java.awt.Color; 

import java.a ics
import java.awt.Graphics2D; 
 
import javax.swing.JComponent; 
 
//A class that draws a triangle 
@SuppressWarnings("serial") 
public class Triangle extends JComponent{ 
 //FIELDS 

double  x = 150;//The X coordinate around which the triangle is centered 
uble riangle is centered 

 of aphics thing. It's necessary. 

uctor 

k); 
 150, 300); 

 //g2g.drawLine(0, 150, 300, 150); 

 do  y = 450;//The Y coordinate around which the t
ngle  double L = 100;//the height of the tria

uble do  angle = 0;//the angle at which the triangle is drawn, in degrees 
 Graphics2D g2g;//some kind gr
  
 //CONSTRUCTOR 
 //empty constr
 public Triangle() { 
 
 } 
  
 //METHODS 
 //paint the triangle 

blic pu  void paint(Graphics g){ 
  g2g = (Graphics2D)g; 
  g2g.setColor(Color.blac

g2g.drawLine(150, 0,  //
 
  angle=Math.toRadians(angle); 

avoid   //do the math only once, to bogging down the system 
  sin = Math. (angle); 

L/4)*cos); 
 

 angle = Math. (angle); 

  
draw the lines between the points 
.drawLine((int)x1, (int)y1, (int)x2, (int)y2); 

 g2g.drawLine((int)x2, (int)y2, (int)x3, (int)y3); 
 g2g.drawLine((int)x3, (int)y3, (int)x1, (int)y1);   

 
 

 double sin
  double cos = Math.cos(angle);   
   
  //left point 
  double x1 = x+((
  double y1 = y+((L/4)*sin);
  //right point 
  double x2 = x-((L/4)*cos); 
  double y2 = y-((L/4)*sin); 
  //top 
  double x3 = x+(L*sin); 

  y3 = y-(L*cos);  double
   

toDegrees 
   
 
  //

 g2g 
 
 

  
 } 
} 
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