
Open-Source FPGA Implementation of Number-Theoretic

Transform for CRYSTALS-Dilithium

A Major Qualifying Project Report

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science in

Electrical & Computer Engineering

Mathematical Sciences

By:

Brandon Voci

Advisor(s):

Patrick Schaumont 1

Herman Servatius 2

April 23, 2023

This report represents the work of one or more WPI undergraduate students submitted to
the faculty as evidence of a degree requirement. WPI routinely publishes these reports on

its website without editorial or peer review. For more information about the projects
program at WPI, see https://www.wpi.edu/project-based-learning.

1Department of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester MA,
01609

2Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester MA, 01609

1 Abstract

In Ring-Learning with Error (R-LWE) and R-LWE related cryptosystems, the Number The-
oretic Transform (NTT) is the most important mathematical operation. The NTT effec-
tively reduces the time complexity of polynomial multiplication from O(N2) to O(N logN)
by exploiting a certain algebraic isomorphism. One of such R-LWE related cryptosystems
is the CRYSTALS-Dilithium (Dilithium) digital signature scheme, a Round 3 finalist in
the National Institute for Standards in Technology’s Post-Quantum Cryptography (PQC)
standardization project. This paper discusses the mathematical theory underpinning the
NTT and implementation details concerning the Dilithium NTT specifically. Ultimately,
we develop an open-source FPGA implementation of the Dilithium NTT at the Register-
Transfer Level (RTL). Targeting speed and high-throughput, our RTL design exploits the
full parallelism of the Radix-2 Decimation-in-Time (DIT) Cooley-Tukey NTT algorithm.
We hence performed behavioral simulation on our RTL design via unit and regression tests,
estimating a 40-48 clock cycle delay to compute the full forward transform. However, given
the increased utilization of FPGA resources, our design is better suited for dedicated parallel
hardware.

ii

2 Acknowledgments

I would like to thank my advisors, Professor Patrick Schaumont and Professor Herman
Servatius, for their willingness to take on this project and for their exceptional mentorship
thereafter. This project would not have possible without them. Additionally, I would like
to thank my family for their unwavering support.

iii

Link to FPGA Project Repository:
https://github.com/bvoc59/CRYSTALS_Dilithium_NTT

Link to Python Utility Repository:
https://github.com/bvoc59/CRYSTALS_Dilithium_NTT_Py_Util

Contents

1 Abstract ii

2 Acknowledgments iii

3 Introduction: 5

4 Mathematical Background: 8
4.1 Polynomial Rings: . 9
4.2 Discrete-Time Signals: . 11
4.3 Convolution Operations: . 12
4.4 The Discrete Fourier Transform (DFT): . 16
4.5 The Number Theoretic Transform (NTT): 18

5 Implementation Details: 23
5.1 CRYSTALS-Dilithium NTT: . 23
5.2 Radix-2 & Radix-4 DIT Cooley-Tukey NTT Algorithms: 24
5.3 Radix-2 & Radix-4 Cooley-Tukey Signal Flow Diagrams 29
5.4 Bit Reversals: Radix-2 . 31
5.5 Barrett Reductions: . 33

6 FPGA Implementation: 34
6.1 System Architecture: . 34
6.2 Description of NTT-Core RTL Modules: . 37
6.3 Overview of HDL and Python Utility Scripts: 39

7 Performance: 41
7.1 RTL Verification: Unit & Regression Test 41
7.2 Behavioral Simulation Results . 43

8 Conclusions: 44

9 References: 46

10 Appendices: 48
10.1 barret.v . 48
10.2 ntt butterfly 2x2.v . 48
10.3 dilithium ntt butterfly gen.py . 49
10.4 ntt butterfly nxn test vec.py . 53
10.5 ntt butterfly 8x8 unit tb.v . 55

iv

3 Introduction:

Learning With Errors (LWE): Over the past decade, the Learning with Errors (LWE)
problem has become an extremely versatile tool in cryptographic constructions. The prob-
lem essentially consists of solving a system of linear equations with noise from uniformly
sampled values over a particular finite-dimensional lattice [1]. In particular, given the in-
tegers N ≥ 1, q > 1, and a real number ϵ ≥ 0, the LWE problems asks to recover a secret
vector or lattice coordinate, s ∈ ZNq , given the list of approximate equations [1, 2]:

⟨s,ai⟩ ≈ϵ bi mod q , i = 1, 2, ... (1)

where ⟨s,ai⟩ :=
∑

j sj(ai)j , for j = 1, 2, ..., and ϵ represents a certain noise or error factor.
For ϵ = 0, (1) can be solved by taking N samples, 1 ≤ i ≤ N , and thereafter solving an
N ×N linear system over a finite dimensional lattice. Using a technique such as Gaussian
elimination requires O(N) equations and O(Nk) (polynomial) time, for a positive integer
k [1]. On the other hand, for ϵ > 0, a simple maximum likelihood algorithm requires O(N)
equations and is of time complexity 2O(N) [1]. Figure 1 illustrates this problem for N = 2
over the 2 dimensional lattice Z2

q . Here, the blue vector represents the secret vector, s ∈ Z2
q ,

while the orange vector, sϵ, represents the solution to the erroneous system ⟨sϵ,ai⟩ = bi, for
1 ≤ i ≤ N . Of course, in the case of N = 2, inferring the correct vector s is rather simple

Figure 1: Two dimensional, N = 2, illustration of the LWE problem over the lattice Z2
q .

The blue vector represents our secret vector, s ∈ Z2
q , while sϵ represents the vector which

solves the erroneous system. Our error factor can be thought of as a small radius of ϵ about
the secret vector.

given that there are only a handful of nearby lattice points to choose from. However, for
a sufficiently large of value of N , this problem becomes extremely difficult as there are a
multitude of different directions one can move. One of the best known algorithms for solving
this problem requires both 2O(N/ logN) time and equations [3]. Indeed, for a sufficiently large
N , it has been shown that the computational hardness of LWE is equivalent to worst-case
lattice problems [2].

5

Ring-Learning With Errors (R-LWE): Despite the promising outlook of cryptogra-
phy based on the hardness of LWE, two major inefficiencies involve large key sizes and
computationally expensive operations, with key sizes of spatial complexity O(N2) [4,5]. In-
deed, one solution involves adding an algebraic structure to the space of secret key vectors,
replacing the lattice ZNq with the polynomial ring:

Rq := Zq[x]/⟨xN + 1⟩ (2)

where N = 2d for some integer d > 1 and q ≡ 1 mod 2N is a sufficiently large public prime
modulus [4]. Set-wise, Rq is equivalent to the our former space, though we shall find that
(2) enables much more efficient arithmetic operations and reduces the spatial complexity
of key sizes from O(N2) to O(N). Thus, the variation of the LWE problem which utilizes
(2) is known as the Ring-LWE problem, or simply the R-LWE problem. With respect to
security, Balbas gives a proof of hardness which, similar to the case of LWE, involves a re-
duction from lattice problems [5]. Lyubashevsky et al. prove a comparable hardness result,
assuming that worst-case problems on ideal lattices are hard for both classical and quantum
computers [4]. This alleged computational hardness together with aforementioned versa-
tility has rendered R-LWE a major foundational element of Post-Quantum Cryptography
(PQC) [5].

CRYSTALS & Number Theoretic Transform (NTT): The preeminence of PQC
based on the R-LWE problem can be seen from the National Institute of Standards and
Technology (NIST) PQC standardization project. Among the Round 3 finalists for public-
key encryption and digital signature algorithms were the two cryptographic primitives of the
Cryptographic Suite for Algebraic Lattices (CRYSTALS), CRYSTALS-Kyber (Kyber) and
CRYSTALS-Dilithium (Dilithum), respectively [6]. These cryptosystems utilize so-called
“module lattices”which have less algebraic structure than those typically associated with
R-LWE and are in fact closer to those associated with LWE [7]. Note that the rendition of
LWE utilizing such modular lattices is hence termed M-LWE. Indeed, while the hardness
of Dilithium explicitly depends on M-LWE, for a sufficient N , Kyber and Dilithium inherit
the same efficiency as R-LWE [7,8].

In CRYSTALS and in general R-LWE settings, the most important mathematical operation
is the Number Theoretic Transform (NTT). The NTT can be thought of as an algebraically-
compatible version of the Discrete-Fourier Transform (DFT) for the finite-field Zq, where
q denotes a positive prime integer [9]. Ultimately, the NTT simplifies multiplicative oper-
ations over Rq by exploiting a certain algebraic isomorphism, analogous to the application
of the DFT in simplifying complex-valued polynomial multiplication. More precisely, the
NTT computes the ring isomorphism:

NTT : Rq →
N∏
i=1

Riq := R1
q ×R2

q × · · · ×RNq (3)

where each Riq is associated with an irreducible, linear factor of xN+1 over Zq. This renders
ordinary polynomial multiplication into pointwise-multiplication. Furthermore, the same

6

basic techniques which enable Fast-Fourier Transforms (FFT) extend to the NTT [9, 10].
Thus, with respect to multiplication over Rq, the NTT enables a reduction from quadratic
time, O(N2), to logarithmic, O(N logN). Note that in Dilithium, one has N = 28 = 256
and q = 223 − 213 + 1 ≡ 1 mod 512.

FPGA Implementations: Already, there are a number of Field-Programmable Gate
Array (FPGA) implementations of the Dilithium digital signature scheme [11–13]. These
implementations can be regarded as advancements towards non-programmable hardware
solutions, such as Application-Specific Integrated Circuits (ASIC). Despite the potential
move towards non-programmable solutions, efficient and optimized FPGA implementations
are valuable as starting points in the design flow. Indeed, because the NTT is generally the
most computationally expensive operation in Dilithium, many of these FPGA implemen-
tations tend to focus on optimized NTT implementations foremost. In [11], the authors
describe an iterative NTT which processes 4 polynomial coefficients per clock cycle and 2
NTT layers at once, utilizing an arrangement of 4, 2 × 2 Cooley-Tukey butterflies. Here,
the ideal cost of the forward transform is N/4 · log2N/2 = 256 clock cycles. The authors
in [12] utilize a similar butterfly arrangement, compromising between speed and hardware
resources. On the other hand, the NTT architecture in [13] requires 533 clock cycles, opti-
mizing the number of Look-Up Tables (LUTs) required.

Our Contributions: In this paper, we first discuss the algebraic framework associated
with R-LWE and R-LWE related cryptosystems, including Dilithium, so as to develop the
mathematical theory underpinning the NTT. We hence discuss the implementation of the
Dilithium NTT, focusing on the Radix-2 and Radix-4 Decimation-in-Time (DIT) Cooley-
Tukey NTT algorithms. Ultimately, we establish an FPGA implementation of the (forward)
Dilithium NTT, utilizing the Radix-2 version of this algorithm and designing at the Register-
Transfer Level (RTL). Targeting speed and high-throughput, our RTL design exploits the
full parallelism of the Cooley-Tukey NTT algorithm, performing the forward transform on
3N Byte = 7.68 kB blocks of data at a time. By performing behavioral simulations on our
RTL design, we estimate the cost of the forward transform to be 5 · log2N = 40 clock cycles
at best and 6 · log2N = 48 cycles at worst, with respect to speed. However, the fully-parallel
architecture which enables this speed incurs a significant number of FPGA resources. Thus,
our design is better suited for dedicated parallel-computational hardware.

7

4 Mathematical Background:

In this Section, we expose and discuss the algebraic framework utilized in R-LWE and
R-LWE related cryptography, in which arithmetic operations are performed over certain
polynomial rings. As previously noted, this particular framework enables efficient multi-
plicative operations by exploiting a particular ring isomorphism. More specifically, suppose
F is a field and let Φ(x) denote an F−valued polynomial of degree N . If Φ(x) splits into
irreducible, linear factors over F , then given the quotient ring F [x]/⟨Φ(x)⟩, one can find an
isomorphism into the product ring:

N∏
i=1

F [x]/⟨Φi(x)⟩ := F [x]/⟨Φ1(x)⟩ × F [x]/⟨Φ2(x)⟩ × · · · × F [x]/⟨ΦN (x)⟩ (4)

where each Φi(x) is an irreducible, linear factor of Φ(x), associated with its Chinese Remain-
der Theorem (CRT) factorization, and F [x]/⟨Φi(x)⟩ ∼= F . In the product ring, multiplica-
tion is pointwise, hence rendering multiplicative operations less computationally expensive.
Figure 2 illustrates this algebraic framework given a(x), b(x) ∈ F [x]/⟨Φ(x)⟩. If F = C then

Figure 2: Algebraic framework utilized in R-LWE and R-LWE related cryptography. One
can perform multiplicative operations in the product ring, which requires less computational
effort.

this isomorphism can be computed using the DFT. On the other hand if F is the finite field
of order q, with q prime such that GF(q) ∼= Zq, then one can use the NTT. It is in this
sense that the NTT is the finite-field equivalent of the DFT.

In Section 4.1, we discuss polynomial rings, focusing primarily on the finite ring Zq[x]/⟨Φ(x)⟩
and proving the finite-field case of the isomorphism shown in (4). In Sections 4.2 and 4.3,
we turn to discrete-time signals analysis, which gives explicit maps for certain Φ(x). These
explicit maps are in fact the direct forms of the DFT and NTT, which we present in Sections
4.4 and 4.5, respectively.

8

4.1 Polynomial Rings:

Let R be a commutative ring with 1 ∈ R and let R[x] denote the ring of R−valued polyno-
mials, in the indeterminate x. We write polynomials as formal linear combinations: thus,
given a(x) ∈ R[x]:

a(x) =
∑
i

aix
i , ai ∈ R

For a(x), b(x) ∈ R[x], we recall that addition is defined component-wise and multiplication,
c(x) = a(x) · b(x), is defined as follows:

c(x) = (
∑
i

aix
i) · (

∑
j

bjx
j) =

∑
i

∑
j

aibjx
i+j (5)

We note that if a(x), b(x) are each of degree N − 1, then computing c(x) requires O(N2)
time since for each 0 ≤ i < N we must calculate aibj for 0 ≤ j < N . This assumes that a
single ring multiplication requires O(1) time: we shall continue to make this assumption.

Suppose Φ(x) ∈ R[x]: then ⟨Φ(x)⟩ denotes the principal ideal generated by Φ(x). Set-
wise:

⟨Φ(x)⟩ = {a(x) · Φ(x) | a(x) ∈ R[x]}

Let F denote a field. As expected, we are primarily interested in the quotient ring:

R(Φ;F) := F [x]/⟨Φ(x)⟩ (6)

for some Φ(x) ∈ F [x]. In the case when F is the finite field of order q, we denote this ring
as Rq(Φ, F). Note that because F is a field, we have that F [x] is a euclidean domain [14].
Thus, to characterize the elements of R(Φ;F), we use the fact that for every a′(x) ∈ F [x]
there exists a′′(x), a(x) ∈ F [x] with deg a′′(x) > deg a(x) or a(x) = 0, such that:

a′(x) = a′′(x) · Φ(x) + a(x)

Then, using the canonical homomorphism ψ : F [x]→ R(Φ;F) we have that ψ(a′(x)) = a(x).
We hence write a(x) ≡ a′(x) mod Φ(x) ∈ R(Φ;F) and impose the following rules for all
a(x), b(x) ∈ R(Φ;F):

1. a(x) + b(x) ≡ (a′(x) + b′(x)) mod Φ(x)

2. a(x) · b(x) ≡ (a′(x) · b′(x)) mod Φ(x)

which can be done since F [x] is a euclidean domain. Let N := degΦ(x) > 1. We remark
that for every a(x) ∈ R(Φ;F), we have that deg a(x) < N . Thus, in the case of the finite
field of order q, we have that |Rq(Φ;F)| = qN .

We shall now turn our attention to the Chinese-Remainder Theorem (CRT). In its full
generality, the CRT establishes an important relationship between a commutative ring and
its comaximal ideals. Note that two ideals I1, I2 are comaximal if I1 + I2 = 1 ∈ R [15].

9

Theorem 1. Let I1, I2, ..IN be ideals in a commutative ring R with 1 ∈ R. The map R→
R/I1×R/I2×· · ·×R/IN defined by r 7→ (r+I1, r+I2, ..., r+ IN) is a ring homomorphism.
Additionally, if the list of ideals I1, I2, ..IN is pairwise comaximal then this map is surjective
and I1 ∩ I2 ∩ · · · ∩ IN = I1I2 · · · IN such that:

R/(I1I2 · · · IN) ∼= R/I1 ×R/I2 × · · · ×R/IN (7)

A proof of this general case can be found in [15]. Nonetheless, we shall prove this result for
a slightly more general form of the R-LWE ring, Rq(Φ;Zq) for q prime.

Theorem 2. Let Φ(x) ∈ Zq[x] be a degree N polynomial and suppose Φ(x) splits into

irreducible linear factors Φ1(x),Φ2(x), ...ΦN (x) over Zq. That is, Φ(x) =
∏N
i=1Φi(x) with

each Φi(x) an irreducible linear factor over Zq. Then it follows that:

Rq(Φ;Zq) ∼=
N∏
i=1

Riq(Φ;Zq) := R1
q(Φ;Zq)×R2

q(Φ;Zq)× · · · ×RNq (Φ;Zq) (8)

where Riq(Φ;Zq) := Zq[x]/⟨Φi(x)⟩.

Proof: We first point that every euclidean domain is a unique factorization domain such
that the factorization Φ(x) = Φ1(x)Φ2(x) · · ·Φn(x) is unique. Indeed, as suggested in the
previous theorem, let us define the map ϕ : Rq(Φ;Zq)→

∏
iR

i
q(Φ;Zq) as follows:

a(x) 7→(a′(x) mod Φ1(x), a
′(x) mod Φ2(x), ..., a

′(x) mod ΦN (x)) :=

(a1(x), a2(x), ..., aN (x)) := (ai(x))

In other words, the factors Φ1(x),Φ2(x), ...,ΦN (x) generate a list of comaximal ideals. One
can verify that this map is indeed a ring homomorphism. In the case of addition, we observe
that:

ϕ(a(x) + b(x)) = ϕ((a′(x) + b′(x)) mod Φ(x))

= ((a′(x) + b′(x)) mod Φi(x))

= (a′(x) mod Φi(x) + b′(x) mod Φi(x))

= (a′(x) mod Φi(x)) + (b′(x) mod Φi(x))

= (ai(x)) + (bi(x))

= ϕ(a(x)) + ϕ(b(x))

with the case of multiplication (defined pointwise) following nearly identical reasoning. With
respect to injectivity, since each Φi(x) is irreducible over Zq, the representation (ai(x)) is
coordinate-wise unique. With respect to surjectivity, since each Riq(Φ;Zq) is a linear factor
we have that:

Riq(Φ;Zq) ∼= Zq

Therefore:

|
N∏
i=1

Riq(Φ;Zq)| =
N∏
i=1

|Riq(Φ;Zq)| = |Zq|N = qN

10

and on the other hand we have that |Rq(Φ;Zq)| = qN . Thus, ϕ is necessarily surjective
given that it is injective and the domain and codomain have the same size. We conclude
that ϕ is indeed a ring isomorphism □.

Although implicitly understood in the previous theorems, we remark that given two rings
R1, R2 then the product ring R1 ×R2 is naturally equipped with pointwise multiplication,
⊙. Now, in the product

∏
iR

i
q(Φ;Zq), since Riq(Φ;Zq) ∼= Zq, we note that each (ai(x))

reduces to some ai ∈ Zq. Thus, given (ai), (bi) ∈
∏
iR

i
q(Φ;Zq) the pointwise product is:

(ai)⊙ (bi) = (a1, a2, ..., aN)⊙ (b1, b2, ..., bN)

= (a1 · a2, a2 · b2, ..., aN · bN)
= (c1, c2, ..., cN)

= (ci)

where ci := ai·bi for 1 ≤ i ≤ N . One can readily see from this calculation that multiplication
in

∏
iR

i
q(Φ;Zq) requires O(N) time.

4.2 Discrete-Time Signals:

Given the ring F [x]/⟨Φ(x)⟩, we know that for a sufficient choice of Φ(x) the CRT predi-
cates the existence of an isomorphism into the product ring

∏
i F [x]/⟨Φi(x)⟩. The maps

given in Theorem(s) 1 and 2, however, are somewhat inexplicit. Indeed, discrete-time sig-
nals analysis gives explicit maps, F [x]/⟨Φ(x)⟩ →

∏
i F [x]/⟨Φi(x)⟩ for a certain class of Φ(x).

A discrete-time signal is nothing more than an integer-indexed sequence. More precisely,
given the sets D ⊆ Z and S ⊆ F , F a field, an F -valued discrete-time signal is a sequence
of the form a : D → S, denoted by {a[n]}n∈D or simply a[n]. As expected, we gener-
ally take F = C or F = Zq. We shall write D(D;S) for the set of such sequences: thus,
{a[n]} ∈ D(D;S). If |D| < ∞ then a[n] is said to be finite-duration: otherwise, a[n] is
infinite-duration. Note that any finite-duration signal, a[n] ∈ D(D;S), can be naturally
extended into an infinite-duration one by setting a[n] := 0 for each n ∈ Z \D. Often, we
refer to the terms of the sequence as samples.

Generally, we are interested in finite-duration signals defined over D = [N] := {0, 1, ..., N −
1}, for some N ∈ Z>0: that is, a[n] ∈ D([N];S). Here, a[n] can be described as a finite list
of length N , indexed by n. That is:

a[n] = {a[0], a[1], ..., a[N − 1]} , 0 ≤ n < N

As we shall come to see, it is useful to realize discrete-time signals as the coefficients of F -
valued polynomials, in some indeterminate, x. To do this precisely, given a[n] ∈ D(D;S),
we define the discrete-time polynomial operator, P : D(D;S)→ F [x], as follows:

a(x) := P{a[n]} :=
∑
n∈D

a[n]xn (9)

11

We further define it’s inverse, the polynomial discrete-time operator, P−1 : F [x]→ D(D;S),
described by:

a[n] := P−1{a(x)} = P−1{
∑
n∈D

a[n]xn} := {a[n]}n∈D (10)

In other words, a(x) is the polynomial with coefficients a[n], multiplied by the indeterminate
xn. Thus, the image of a[n] ∈ D([N];S) under P is:

{a[0], a[1], ..., a[N − 1]} 7→ a[0] + a[1]x+ · · ·+ a[N − 1]xN−1 =
N−1∑
i=0

a[i]xi

So the discrete-time polynomial operator maps discrete-time signals of length N to polyno-
mials of degree N −1. Conversely, the polynomial discrete-time operator maps polynomials
of degree N − 1 to signals of length N since P−1{P{a[n]}} = a[n] for all a[n] ∈ D(D;S).

In the next Section, we shall make use of this operator in proving three critical propo-
sitions.

4.3 Convolution Operations:

The set D(Z;F) is equipped with three important variations of a type of mathemati-
cal operation known as a (discrete) convolution. These are essentially binary operators,
D(Z;F) × D(Z;F) → D(Z;F), which exhibit a certain correspondence with polynomial
multiplication over various rings. Here we shall introduce these operations and prove their
respective connection(s) to multiplication over such rings. Throughout, we shall assume
that N > 0 is an integer value.

To begin, we define the linear convolution of two discrete-time signals. Namely, given
a[n], b[n] ∈ D(Z;F) then the (discrete) linear convolution is the binary operator ∗ : D(Z;F)×
D(Z;F)→ D(Z;F) described in [16] by:

c[n] := a[n] ∗ b[n] :=
∑
m∈Z

a[m]b[n−m] (11)

Implicitly, we apply the infinite-duration extension detailed in the previous Section so that
a[m], b[n−m] are well-defined for every integer.

Although (11) gives a complete description of the linear convolution for infinite-duration
signals, it lacks computational insight for finite-duration signals, given the unspecified lower
and upper bounds of the summation. Thus, given a[n], b[n] ∈ D([N];F), a modified, com-
putationally practical version of the linear convolution is:

c[n] := a[n] ∗ b[n] :=

∑n

m=0 a[m]b[n−m] 0 ≤ n < N∑N−1
m=n−(N−1) a[m]b[n−m] N ≤ n < 2N − 1

(12)

With this definition, we have that c[n] ∈ D([2N − 1];F): that is, c[n] is of length 2N − 1:

c[n] = a[n] ∗ b[n] = {c[0], c[1], ..., c[2N − 2]} , 0 ≤ n < 2N − 1

12

We claim that the linear convolution of two discrete-time signals corresponds to the product
of the associated polynomials. This is made precise in the following proposition.

Proposition 1. Suppose we have a[n], b[n] ∈ D([N];F). Then:

a[n] ∗ b[n] = P−1{P{a[n]} · P{b[n]}} (13)

Proof: Let P{a[i]} =
∑N−1

i=0 a[i]xi := a(x) and P{b[j]} =
∑N−1

j=0 b[j]xj := b(x), wherein we
replace n with the dummy indices i and j in the summation. Further let c(x) := a(x) · b(x).
Note that deg a(x) = deg b(x) = N − 1 so deg c(x) = 2N − 2 implying that P−1{c(x)}
is a signal of length 2N − 1, as expected. It remains to be shown that the coefficients of
c(x) correspond to the discrete-time signal c[n] := a[n] ∗ b[n]. To see this, we note that the
coefficients of product polynomial:

c(x) =
N−1∑
i=0

N−1∑
j=0

a[i]b[j]xi+j =
2N−2∑
k=0

(∑
i+j=k

a[i]b[j]

)
xk

can be represented by an N ×N square matrix, where the indices i, j specify the row and
column:

a[0]b[0] a[0]b[1] · · · a[0]b[N − 1]
a[1]b[0] a[1]b[1] · · · a[1]b[N − 1]

...
...

. . .
...

a[N − 1]b[0] a[N − 1]b[1] · · · a[N − 1]b[N − 1]

The kth coefficient of the product polynomial, ck, is a summation over the indices in which
i+j = k. With respect to our matrix, this corresponds to a[0]b[0] for k = 0, a[0]b[1]+a[1]b[0]
for k = 1, and the remaining cross diagonals for k > 1. For 0 ≤ k < N , these diagonal
summations are given by:

ck =
k∑
i=0

a[i]b[k − i] , 0 ≤ k < N

which are precisely the elements of the convolution, c[k], for the values of k in this range.
Furthermore, for N ≤ n < 2N − 1 we have:

ck =
N−1∑

i=k−(N−1)

a[i]b[k − i] , N ≤ k < 2N − 1

which again corresponds to the elements of the convolution c[k] for the necessary values of
k □.

Thus, given the result of the above proposition, we have that linear convolution corresponds
to multiplication in F [x]. The next convolution operation we shall consider is the cyclic or
circular convolution. In particular, given a[n], b[n] ∈ D([N];F), the cyclic convolution of
a[n] and b[n] corresponds to the binary operator ∗N : D([N];F) × D([N];F) → D([N];F)
described in [17] by:

c[n] := a[n] ∗N b[n] =
N−1∑
m=0

a[m]b[(n−m) mod N] (14)

13

Note that while the linear convolution of two discrete-time signals of length N produces
another discrete-time signal of length 2N + 1, the length of the cyclic convolution remains
N . With respect to index of the second discrete-time signal in the summation, the difference
n−m is reduced modulo N such that one computes n̄ ≡ (n−m) mod N . This corresponds
to a circular shift of b[n] by m samples of the signal [17]. With this definition, we claim
that cyclic convolution corresponds to polynomial multiplication modulo xN + 1.

Proposition 2. Let a[n], b[n] ∈ D([N];F). Then:

a[n] ∗N b[n] = P−1{P{a[n]} · P{b[n]} mod (xN − 1)} (15)

Proof: We seek to evaluate the right-hand side of (16). Let P{a[i]} =
∑N−1

i=0 a[i]xi and

P{b[j]} =
∑N−1

j=0 b[j]xj The product polynomial, P{a[i]} · P{b[j]}, is therefore:

N−1∑
i=0

N−1∑
j=0

a[i]b[j]xi+j =
N−1∑
i=0

(N−1)+i∑
k=i

a[i]b[k − i]xk

where the right-hand side corresponds to the ordinary convolution form and k = i + j.
Extracting the xN terms from the inner summation:

N−1∑
i=0

(N−1)+i∑
k=i

a[i]b[k − i]xk =
N−1∑
i=0

a[i]

(N−1∑
k=i

b[k − i]xk + η[i]

(N−1)+i∑
k=N

b[k − i]xk
)

=

N−1∑
i=0

a[i]

(N−1∑
k=i

b[k − i]xk + η[i]xN
(N−1)+i∑
k=N

b[k − i]xk−N
)

where η[i] := 0 if i = 0 and η[i] := 1 otherwise. Here, we note that the inside of the
parenthesis can be rewritten as follows for i = 0, 1, ..., N − 1:

N−1∑
k=i

b[k − i]xk + η[i](xN − 1)

(N−1)+i∑
k=N

b[k − i]xk−N + η[i]

(N−1)+i∑
k=N

b[k − i]xk−N

such that modulo xN − 1, the inner term simply becomes:

N−1∑
k=i

b[k − i]xk + η[i]

(N−1)+i∑
k=N

b[k − i]xk−N

with the resulting product given by:

N−1∑
i=0

a[i]

(N−1∑
k=i

b[k − i]xk + η[i]

(N−1)+i∑
k=N

b[k − i]xk−N
)

We hence define l := k −N , rendering the product:

14

N−1∑
i=0

a[i]

(N−1∑
k=i

b[k − i]xk + η[i]

i−1∑
l=0

b[l − i+N]xl
)

We can now rewrite this expression in terms of the difference k − i modulo N , allowing us
to recombine the inner summations. That is:

N−1∑
i=0

a[i]

(N−1∑
k=0

b[(k − i) modN]xk
)

=

N−1∑
k=0

N−1∑
i=0

a[i]b[(k − i) modN]xk

Applying the inverse polynomial-discrete-time operator, P−1, gives the desired result □.

Thus, because the cyclic convolution of two discrete-time signals corresponds to the product
of the associated polynomials modulo xN +1, we infer that a cyclic convolution corresponds
to multiplication in the ring F [x]/⟨Φ(x)⟩ where Φ(x) = xN − 1.

One convenient intuition for performing the cyclic convolution of two discrete-time sig-
nals of length N includes computing the linear convolution for N points and then succes-
sively adding the remaining points at each subsequent index. To motivate the negacyclic,
sometimes termed negative-wrapped convolution, we can imagine successively subtracting
instead. Thus, given a[n], b[n] ∈ D([N];F) the negacylic convolution is given as follows:

a[i] ∗−N b[i] :=
N−1∑
i=0

a[i]

(N−1∑
k=i

b[k − i]− η[i]
i−1∑
k=0

b[(k − i)modN]

)
(16)

where the indices in the rightmost summation are again reduced modulo N . Indeed, com-
plementing (16), we can write:

a[i] ∗N b[i] :=
N−1∑
i=0

a[i]

(N−1∑
k=i

b[k − i] + η[i]
i−1∑
k=0

b[(k − i)modN]

)
which justifies our computational intuition. Furthermore, just as the cyclic convolution
corresponds to multiplication modulo xN + 1, we have that the negacyclic convolution
corresponds to multiplication modulo xN − 1.

Proposition 3. Let a[n], b[n] ∈ D([N];F). Then:

a[n] ∗−N b[n] = P−1{P{a[n]} · P{b[n]} mod (xN + 1)} (17)

Proof: The proof follows a nearly identical argument to that of the previous proposition,
though instead of creating the term xN−1 we create the term xN+1 and thereafter reduce,
hence causing the term −η[i] instead of +η[i] which corresponds exactly to how we have
defined the negacyclic convolution □.

Therefore, the negacylic convolution corresponds to multiplication over the ring F [x]/⟨Φ(x)⟩
for Φ(x) = xN + 1. Indeed, having introduced all three discrete convolution operations, we
summarize their relationship(s) with polynomial multiplication, given discrete-time signals
a[n], b[n] ∈ D([N];F):

15

Convolution: Polynomial Form: Polynomial Ring:

Linear (∗) P{a[n]} · P{b[n]} F [x]
Cyclic (∗N) P{a[n]} · P{b[n]} mod (xN − 1) F [x]/⟨xN − 1⟩

Negacyclic (∗−N) P{a[n]} · P{b[n]} mod (xN + 1) F [x]/⟨xN + 1⟩

Table 1: Different (discrete) convolution operations with their corresponding polynomial
multiplication and the associated polynomial rings.

4.4 The Discrete Fourier Transform (DFT):

Having examined various convolution operations, we shall now return to the problem of
computing the isomorphism detailed in (4) over a particular class of rings. We first detail
this process using the more familiar DFT. Here, we fix F = C.

Generally, the DFT is applied to periodic discrete-time signals, with period N ∈ Z>0. De-
spite this, we can consider signals in D([N];C) by treating the values of a[n] for 0 ≤ n < N
as one period. Thus, given a[n] ∈ D([N];C), the forward transform associated with the
DFT, DFT : D([N];C)→ D([N];C) is the map given by [16]:

A[k] := DFT{a[n]} =
N−1∑
n=0

a[n] exp(−j2πkn
N

) , 0 ≤ k < N (18)

where j denotes the imaginary unit, satisfying j2 = −1. As stated in (18), the DFT converts
complex-valued discrete-time signals of length N to complex-valued ones of the same length:
in the language of discrete-time signals analysis, A[k] is the frequency-domain representa-
tion of a[n]. The backwards transform associated with the DFT, DFT−1 : D([N];C) →
D([N];C), is simply [16]:

a[n] = DFT−1{A[k]} = 1

N

N−1∑
k=0

A[k] exp(
j2πkn

N
) , 0 ≤ n < N (19)

Indeed, DFT−1{DFT{a[n]}} = a[n] for all a[n] in D([N];C).

A critical feature of both the forwards and backwards transforms, is that the kernels of
these transforms are the Nth roots of unity over the complex plane, C. This can be demon-
strated as follows:

exp(±j2πkn
N

)N = exp(±j2πkn) = cos(2πkn)± j sin(2πkn) = 1

In fact, it can be shown that every Nth root of unity over C, ω ∈ C, is of the form:

ω = exp(±j2πm
N

) , m ∈ Z

Although the DFT satisfies a number of remarkable properties, with respect to our discus-
sion, its most important property involves its relation with cyclic convolution. We state
and prove this relation in the proposition given below.

16

Proposition 4. Let a[n], b[n] ∈ D([N];C). Then:

a[n] ∗N b[n] = DFT−1{DFT{a[n]} ⊙DFT{b[n]}} (20)

Proof: Write A[k] := DFT{a[n]} and B[k] := DFT{b[m]}, where the dummy index n is
replaced with m in the second input signal. The point-wise product C[k] := A[k]⊙B[k] is
therefore given by:

C[k] = (

N−1∑
n=0

a[n] exp(−j2πnk
N

))(

N−1∑
m=0

b[m] exp(−j2πmk
N

))

=

N−1∑
n=0

N−1∑
m=0

a[n]b[m] exp(−j2π(n+m)k

N
)

We hence define the index l := n+m⇒ m = l − n such that:

C[k] =
N−1∑
n=0

(N−1)+n∑
l=n

a[n]b[l − n] exp(−j2πlk
N

)

=

(N−1)+n∑
l=n

(N−1∑
n=0

a[n]b[l − n]) exp(−j2πlk
N

)

)
Observe that the index n ≤ l ≤ (N − 1) + n implies a circular shift of b[l] by n samples.
Indeed, since each of our signals are of length N , we can write:

C[k] =

(N−1)∑
l=0

(
N−1∑
n=0

a[n]b[(l − n) mod N]) exp(−j2πlk
N

)

=

(N−1)∑
l=0

(a[l] ∗N b[l]) exp(−j2πlk
N

)

such that:

DFT−1{
(N−1)∑
l=0

(a[l] ∗N b[l]) exp(−j2πlk
N

)} = a[l] ∗N b[l]

completing our proof □.

As previously noted, the kernel of the DFT corresponds to the Nth roots of unity over
C. More explicitly, they are the solutions to the polynomial equation Φ(x) := xN − 1 = 0
over this particular field. By the fundamental theorem of algebra, we can factor Φ(x) as
follows:

Φ(x) = (x− exp(j2π/N))(x− exp(j4π/N)) · · · (x− 1)

=
N∏
k=1

(x− exp(j2πk/N)) =
N∏
k=1

Φk(x)

17

where each Φk(x) := x− exp(j2πk/N) is an irreducible, linear factor over C, corresponding
to a distinct root of Φ(x). Thus, using the CRT, we have:

C[x]/⟨Φ(x)⟩ ∼=
N∏
k=1

C[x]/⟨Φk(x)⟩ (21)

Now based on the result of (20), we know that the DFT renders circular convolution, or
multiplication modulo xN − 1, into pointwise multiplication. In fact, the DFT is precisely
the ring isomorphism:

DFT : C[x]/⟨Φ(x)⟩ →
N∏
k=1

C[x]/⟨Φk(x)⟩

We apply nearly identical reasoning in our contextualization of the NTT, discussed in the
next Section.

4.5 The Number Theoretic Transform (NTT):

Just as the DFT is the ring isomorphism from C[x]/⟨Φ(x)⟩ to
∏N
k=1C[x]/⟨Φk(x)⟩, for

Φ(x) = xN − 1, the NTT is the isomorphism associated with the finite field Zq ∼= GF(q), q
a positive prime integer. Additionally, while the DFT solely utilizes, Φ(x) = xN − 1, the
NTT has two distinct forms, one corresponding to the factorization of Φ(x) := xN + 1 and
the other corresponding to Φ(x) := xN − 1. These are termed the cyclic form of the NTT
and negacyclic form, respectively.

In order for Zq to admit an N−point NTT, Zq must contain an Nth root of unity, ω ∈ Zq.
That is, ωN ≡ 1 mod q, such that the solutions to the polynomial equation Φ(x) = xN−1 =
0 over Zq are of the form x = ωk. x− ωk is therefore a root of Φ(x) for 1 ≤ k ≤ N . Given
that such a N -th root of unity exists, we can define the cyclic form of the transform,
NTT : D([N];Zq)→ D([N];Zq), by [9]:

A[k] := NTT{a[n]} =
N−1∑
n=0

a[n]ωnk mod q , 0 ≤ k < N (22)

and the backwards transform, NTT−1 : D([N];Zq)→ D([N];Zq), by [9]:

a[n] := NTT−1{A[k]} = N−1
N−1∑
k=0

A[k]ω−kn mod q , 0 ≤ n < N (23)

Of course, as in the case of the DFT, one has that NTT−1{NTT{a[n]}} = a[n] for any
discrete-time signal input, valued in Zq [10]. Further analogous to the DFT, (22) satisfies
the proposition shown below.

Proposition 5. Suppose a[n], b[n] ∈ D([N];Zq) Then:

18

a[n] ∗N b[n] = NTT−1{NTT{a[n]} ⊙NTT{b[n]}} (24)

Proof: The proof of (24) is nearly identical to that of (20) in Proposition 2.4.1. Namely,
let:

A[k] := NTT{a[i]} =
N−1∑
i=0

a[i]ωikmod q , B[k] := NTT{b[j]} =
N−1∑
j=0

b[j]ωjkmod q

such that the point-wise product, NTT{a[i]} ⊙ NTT{b[j]} = A[k] · B[k] := C[k] , k =
0, 1, ..., N − 1 is:

C[k] =
N−1∑
i=0

N−1∑
j=0

a[i]b[j]ω(i+j)kmod q

As usual, let l := i+ j such that:

C[k] =
N−1∑
i=0

(N−1)+i∑
l=i

a[i]y[l − i]ωlkmod q

Once again, the index i ≤ l ≤ (N − 1)+ i corresponds to a circular shift of y[l] by i samples
such that:

C[k] =

N−1∑
i=0

N−1∑
l=0

a[i]y[(l − i)mod N]ωlkmod q

=
N−1∑
l=0

(N−1∑
i=0

a[i]y[(l − i)mod N]

)
ωlkmod q

=

N−1∑
l=0

(a[i] ∗N b[j])ωlkmod q = NTT{a[n] ∗N b[n]}

Therefore, NTT{a[n] ∗N b[n]} = NTT{a[n]} ⊙ NTT{b[n]} so we necessarily have that
a[n] ∗N b[n] = NTT−1{NTT{a[n]} ⊙NTT{b[n]}} □.

To clarify the result of this proposition, we have rendered circular convolution, or poly-
nomial multiplication modulo xN − 1, into pointwise multiplication. With respect to the
CRT, we have that for the factorization:

Φ(x) = (x− ω)(x− ω2) · · · (x− 1) =

N∏
k=1

(x− ωk) =
N∏
k=1

Φk(x)

and associated ring-isomorphism:

Zq[x]/⟨Φ(x)⟩ ∼=
N∏
k=1

Zq[x]/⟨Φk(x)⟩

the cyclic form of the NTT is the map:

NTT : Zq[x]/⟨Φ(x)⟩ →
N∏
k=1

Zq[x]/⟨Φk(x)⟩ , Φ(x) = xN − 1 , Φk(x) = x− ωk

19

To discern the negacyclic form of the transform we require an additional ψ ∈ Zq such that
ψ2 = ω. That is, ψ is a 2Nth root of unity over Zq. This condition is equivalent to requiring
q ≡ 1 mod 2N . Additionally, we require ψ to satisfy the identity ψ ≡ −1 mod q. If we
define the discrete-time signal:

ψ[n] := ψn , 0 ≤ n < N (25)

then we can write the negacyclic form of the NTT as follows (26):

A[k] := NTTψ{a[n]} := NTT{ψ[n]⊙ a[n]} =
N−1∑
n=0

a[n]ψnωnkmod q (26)

Similarly, defining ψ−1[n] := ψ−n for 0 ≤ n < N gives the negacylic form of the backwards
transform:

a[n] := NTT−ψ{A[k]} := ψ−1[n]⊙NTT−1{a[n]} = N−1ψ−n
N−1∑
k=0

A[k]ω−nkmod q (27)

It can be shown that: a[n] = NTT−ψ{NTTψ{a[n]}} [10]. Moreover, as previously alluded
to, the negacyclic form of the NTT satisfies:

Proposition 6. Suppose a[n], b[n] ∈ D([N];Zq). Then:

a[n] ∗−N b[n] = NTT−ψ{NTTψ{a[n]} ⊙NTTψ{b[n]}} (28)

Proof: As done in the previous proposition, let:

A[k] := NTTψ{a[i]} =
N−1∑
i=0

a[i]ψiωikmod q , B[k] := NTTψ{b[j]} =
N−1∑
j=0

b[j]ψjωjkmod q

The point wise product A[k]⊙B[k] := C[k], for k = 0, 1, ...N − 1, is therefore:

C[k] =

N−1∑
i=0

N−1∑
j=0

a[i]b[j]ψi+jω(i+j)kmod q

=
N−1∑
i=0

(N−1)+i∑
l=i

a[i]b[l − i]ψlωlkmod q

where l := i + j. Analogous to the expansion performed in the proof of Proposition 2, we
hence expand the inner summation:

C[k] =

N−1∑
i=0

a[i]

(N−1∑
l=i

b[l − i]ψlωlkmod q + η[i]

(N−1)+i∑
l=N

b[k − i]ψlωlkmod q

)

=
N−1∑
i=0

a[i]

(N−1∑
l=i

b[k − i]ψlωlkmod q + η[i]ψNωNk
i−1∑
m=0

b[m− i+N]ψmωmkmod q

)

20

where m := l −N . Now since ψN ≡ −1 mod q and ω is an Nth root of unity over Zq, we
have that:

C[k] =
N−1∑
i=0

a[i]

(N−1∑
l=i

b[k − i]ψlωlkmod q − η[i]
i−1∑
m=0

b[m− i mod N]ψmωmkmod q

)
which we can readily identify as the negacyclic form of the NTT of c[n] := a[n] ∗−N
b[n]. Thus, C[k] = NTTψ{a[k] ∗−N b[k]} such that a[k] ∗−N b[k] = NTT−ψ{C[k]} =
NTTψ{NTTψ{a[k]} ⊙NTTψ{b[k]}} □.

We should point out that using the identity ψ2 = ω, a more straightforward form of the
forward transform in (26) is:

NTTψ{a[n]} =
N−1∑
n=0

a[n]ψ(2k+1)n mod q (29)

The CRT contextualization of the negacyclic form of the NTT utilizes the fact that over
over Zq, the solutions to the polynomial equation Φ(x) = xN + 1 = 0 are of the form
x = ψ(2k+1) such that x− ψ2k+1 is a root of Φ(x) for 1 ≤ k ≤ N . Thus, we have that:

Φ(x) = (x− ψ3)(x− ψ5) · · · (x− ψ) =
N∏
k=1

(x− ψ2k+1) =
N∏
k=1

Φk(x)

such that, given the associated ring isomorphism, the negacyclic form of the NTT is the
map:

NTTψ : Zq[x]/⟨Φ(x)⟩ →
N∏
k=1

Zq[x]/⟨Φk(x)⟩ , Φ(x) = xN + 1 , Φk(x) = x− ψ2k+1

Indeed, for Φ(x) = xN + 1 as shown above, the ring Zq[x]/⟨Φ(x)⟩ = Rq(Φ;Zq) := Rq corre-
sponds to the classical R-LWE setting: in actuality, however, one further prescribes N = 2d

for some integer d > 0 [4]. This condition provides computational assistance, as well shall
soon see.

Given the above discussion, if we wish to compute the product c(x) = a(x) · b(x), for
some a(x), b(x) ∈ Rq one can simply compute:

c[n] = NTT−ψ{NTTψ{a[n]} ⊙NTTψ{b[n]}} (30)

where a[n] := P−1{a(x)}, b[n], c[n] defined similarly. We summarize this in Algorithm 1,
shown on the next page. Per our remarks at the end of Section 4.1, for Φk(x) = x−ψ2k+1,
we know that multiplication in the product ring

∏N
k=1 Zq[x]/⟨Φk(x)⟩ :=

∏N
k=1R

k
q requires

only O(N) time. However, the utility of Algorithm 1 and ultimately the NTT rests on the
assumption that we can compute the forward and inverse transform in reasonable time.
Despite this, computational equations such as (26), and (22) imply that we require O(N2)

21

Algorithm 1 NTT-based Negacyclic Convolution Algorithm

Require: a(x), b(x) ∈ Rq
a[n]← P−1{a(x)}
b[n]← P−1{b(x)}
A[k]← NTTψ{a[n]}
B[k]← NTTψ{b[n]}
for k = 0; k < N − 1; k = k + 1 do

C[k]← A[k] ·B[k]
end for
c(x) := a(x) · b(x)← P{NTT−ψ{C[k]}}

time to compute the NTT.

To exemplify this, consider computing the negacyclic form of the NTT using (26). We
note that (26) can be expressed as the following matrix-vector product, where the modulo
q’s in our matrix are omitted for brevity:

A[0]
A[1]
...

A[N − 1]

 =

1 ψ · · · ψN−1

1 ψω · · · (ψω)N−1

...
...

. . .
...

1 (ψωN−1) · · · (ψωN−1)N−1

a[0]
a[1]
...

a[N − 1]

 (31)

In this light, the NTT is a sort of linear transformation over the vector space ZNq . Nonethe-
less, a direct computation of the NTT involves N2 multiplications for each (ψωi)ja[j],
followed by N(N − 1) = N2 − N additions across each row of this matrix, rendering its
time-complexity O(N2).

Thus, if we chose to utilize a direct form the NTT, we would be no better off in time-
complexity than in comparison to ordinary polynomial multiplication. Fortunately, there
are a number of different FFT-inspired algorithms which compute the NTT in O(N logN)
time [9, 10]. We shall discuss one particular algorithm at length in the next section.

22

5 Implementation Details:

Given the promising outlook of the NTT, its utility in R-LWE and R-LWE related cryp-
tography ultimately depends on efficient implementation. In this Section, we discuss non-
hardware specific implementation details regarding the the Dilithium NTT, which shall
provide concrete transform parameters. Namely, the desired prime modulus q ∈ Z>1, the
length of discrete-time signal inputs N ∈ Z>0, and our chosen root of unity over Zq, ω ∈ Zq.
Thus, in Section 5.1, given q and inferring the remaining parameters, we derive the direct
form equation of the forward transform.

Per our remarks at the end of the previous Section, however, such a direct form equa-
tion is computationally insufficient. Thus, in Section 5.2 and 5.3, we mathematically and
graphically describe the Radix-2 and Radix-4 Decimation-in-Time (DIT) Cooley-Tukey al-
gorithms. In the case of the Radix-2 algorithm, we recursively decompose our N point NTT
into 2, N/2 point NTT’s. Similarly, in the case of the Radix-4 algorithm, we decompose
our N point NTT into 4, N/4 point NTT’s. In Section 5.4, in the context of the Radix-2
algorithm, we motivate performing bit reversals on the indices of the input discrete-time
signal, which gives a more natural order for applying the transform. Finally, in Section 5.5,
we discuss the Barrett reduction algorithm, enabling efficient modular reductions over Zq.

5.1 CRYSTALS-Dilithium NTT:

In Dilithium, we have the prime integer q := 223 − 213 + 1 = 8380417, corresponding to
the public prime modulus [8]. It follows that there exists a 512-th root of unity over Zq,
denoted r: according to the algorithm specifications, r is taken to be 1753 [8]. Therefore:

r512 = 1753512 ≡ 1 mod q

We further note that:
r256 = 1753256 ≡ −1 mod q

We hence consider the polynomial equation x512 − 1 = 0. It follows that the solutions to
this equation are integer powers of r. Namely: x = rl for 0 ≤ l < 512. If we factor our
original equation:

x512 − 1 = (x256 + 1)(x256 − 1) = 0

we observe that the even integer solutions, x = r2k, correspond to the solutions of x256−1 =
0, for 0 ≤ k < 256. On the other hand, the odd integer solutions, x = r2k+1 correspond to
the solutions of x256 + 1 = 0, for 0 ≤ k < 256. Therefore, the polynomial x256 + 1 splits
into linear factors over Zq:

x256 + 1 =
255∏
k=0

(x− r2k+1) (32)

and by Theorem 2, we have:

Rq = Zq[x]/⟨x256 + 1⟩ ∼=
255∏
k=0

Zq[x]/⟨x− r2k+1⟩ :=
255∏
k=0

Rkq (33)

23

As the right hand side of (33) represents the CRT factorization of the original polynomial
ring, Rq, our NTT must compute the ring isomorphism NTT : Rq →

∏
k R

k
q . Indeed, one

can easily verify that ψ = r and ω = r2. In particular, given N = 256, ψN = r256 ≡ −1
mod q and ωN = (r2)256 ≡ 1 mod q. Furthermore, r2 = ψ2 = ω. Therefore, given
a[n] ∈ D([256];Zq), the direct form the Dilithium NTT is:

A[k] := NTTr{a[n]} =
255∑
n=0

a[n]r(2k+1)n =
255∑
n=0

a[n]rn(r2)nk , 0 ≤ k < 256 (34)

where the modulo q’s are once again omitted for the sake of brevity. Henceforth, we shall
continue this notation, unless otherwise noted.

As expected, we have utilized the negacyclic form of the forward transform, since we have
Φ(x) = xN + 1. For the sake of contextualization, the direct form associated with the
backwards transform is:

a[n] := NTT−r{A[k]} = 256−1r−n
255∑
k=0

A[k](r2)−nk , 0 ≤ n < 256 (35)

where 256−1 = 8347681 is meant to denote the multiplicative inverse of 256 in Zq. Now,
with our direct form equations, we can exploit the Cooley-Tukey algorithm.

5.2 Radix-2 & Radix-4 DIT Cooley-Tukey NTT Algorithms:

While there a variety of different Cooley-Tukey Algorithms available, all act on the principle
of division of labor, recursively reducing a larger problem into smaller, sub-problems. Gen-
erally, this procedure involves splitting or decimating a length N discrete-time signal into
smaller signals at each layer or stage of the algorithm. Decimating the input signal, a[n],
corresponds to a Decimation-in-Time (DIT) algorithm, while decimating the output signal,
A[k] := NTT{a[n]}, corresponds to a Decimation-in-Frequency (DIF) algorithm [16].

For either decimation, if N is an integer power of p, that is, N = pd for some integer
d > 0, then recursively decimating the signal of length N into signals of length N/(pj), for
an integer 0 ≤ j < d, corresponds to a Radix-p algorithm [16]. Such an algorithm consists
of logpN = d stages and requires O(N logpN) time. Generally speaking, choosing N such
that p = 2 is ideal given that powers of 2 are highly composite, enabling effective recur-
sion [16]. This commentary justifies the fact that the R-LWE formulation takes N = 2d, as
previously referenced. Since in the case of Dilithium we have N = 256, we shall focus on
the Radix-2 and Radix-4 DIT algorithms as 256 = 28 or 256 = 44. Indeed, in the Radix-2
case, we require 8 stages while the Radix-4 case requires only 4.

Radix-2 Case: Let a[n] ∈ D([256],Zq) denote our input discrete-time signal. We hence
define f0[m], f1[m] ∈ D([128];Zq) as follows:

f0[m] := a[2m] 0 ≤ m < 128

f1[m] := a[2m+ 1]

24

More explicitly, we separate the even and odd indexed terms of our original discrete-time
signal, assigning to f0[m] the terms corresponding to the even indices and assigning to
f1[m] the terms corresponding to the odd ones. Thus, if F0[k] := NTTr{f0[m]} and
F1[k] := NTTr{f1[m]}, then (34) can be written as follows:

A[k] =

255∑
n=0

a[n]rn(r2)nk =

127∑
m=0

f0[m]r2m(r2)2mk +

127∑
m=0

f1[m]r2m+1(r2)(2m+1)k

=

127∑
m=0

f0[m](r2)m(r4)mk + r2k+1
127∑
m=0

f1[m](r2)m(r4)mk

= F0[k] + r2k+1F1[k]

So A[k] = F0[k] + r2k+1F1[k], meaning we have rewritten our original 256-point NTT as a
sum of two, 128-point NTT’s. Indeed, one can verify that the kernel’s associated with these
128-point NTT’s are correct, by noting that: (r2)128 = r256 ≡ −1 mod q and (r4)128 =
r512 ≡ 1 mod q. A subtle point of this summation, however, is that this expression is only
valid for 0 ≤ k < 128 since this corresponds to the range of m. To resolve this issue, we use
the result of the following proposition:

Proposition 7. Given the decomposition A[k] = F0[k] + r2k+1F1[k], for 0 ≤ k < 128, then
A[k + 128] = F0[k]− r2k+1F1[k].

Proof: We have that:

A[k + 128] = F0[k + 128] + r2(k+128)+1F1[k + 128]

A[k + 128] =

127∑
m=0

f0[m](r2)m(r4)m(k+128) + r2(k+128)+1
127∑
m=0

f1[m](r2)m(r4)m(k+128)

In the summations, we find that (r4)m(k+128) = (r4)mk+128m = (r4)mkr512m = (r4)mk, im-
plying that these expressions remain the same. For the coefficient multiplying F1[k], we
have: r2(k+128)+1 = r2k+256+1 = r256r2k+1 = −r2k+1, which explains the subtraction of
F1[k] □.

To summarize the above discussion, instead of computing A[k] ∈ D([256];Zq), we can
instead compute F0[k], F1[k] ∈ D([128];Zq) as:

A[k] = F0[k] + r2k+1F1[k] , 0 ≤ k < 128

A[k + 128] = F0[k]− r2k+1F1[k]
(36)

Of course, the efficacy of Cooley-Tukey lies in the power of recursion: in particular, we can
successively apply the above procedure on F0[k], F1[k], developing a recursive scheme which
will ultimately reduce our problem to 128, 2-point NTT’s. At this stage, we can take full
advantage of the parallelism afforded by this algorithm.

To motivate this recursion and organize the various stages of our algorithm, we shall refer

25

to (36) as stage 0 and annotate the associated discrete-time signals with a superscript 0.
That is:

A0[k] = F 0
0 [k] + r2k+1F 0

1 [k] , 0 ≤ k < 128

A0[k + 128] = F 0
0 [k]− r2k+1F 0

1 [k]

We further adopt the notation:

F 0
i [k] := NTTr{f0i [m]} =

127∑
m=0

f0i [m](r2)m(r4)mk , 0 ≤ i ≤ 1

as each of the summations will contain identical terms, aside from the input discrete-time
signals. Let A1[k] := F 0

i [k]. It follows that:

A1[k] =

127∑
m=0

f0i [m](r2)m(r4)mk =

63∑
m=0

f10 [m](r2)2m(r4)2mk +
63∑
m=0

f11 [m](r2)2m+1(r4)(2m+1)k

=
63∑
m=0

f10 [m](r4)m(r8)mk + (r2)2k+1
63∑
m=0

f11 [m](r4)m(r8)mk

= F 1
0 [k] + (r2)2k+1F 1

1 [k]

where f10 [m], f11 [m] ∈ D([64];Zq) are defined in the same manner as before: that is, f10 [m]
represents the even indexed terms of f0i [m] and f11 [m] the odd indexed ones. Here, we have
a slight abuse of notation, as we have repurposed our prior m indices: we shall continue to
permit this, as the explicit bounds of the summations provide a concrete reference for the
range of our indices.

Given the above derivation and a result nearly identical to Proposition 7, the stage 1
equations can be expressed as follows:

A1[k] = F 1
0 [k] + (r2)2k+1F 1

1 [k] , 0 ≤ k < 64

A1[k + 64] = F 1
0 [k]− (r2)2k+1F 1

1 [k]
(37)

where, once again:

F 1
i [k] := NTTr{f1i [m]} =

64∑
m=0

f1i [m](r4)m(r8)mk , 0 ≤ i ≤ 1

Proceeding forth, let 0 ≤ j < 8 denote the index of our recursive scheme. In particular,
each 0 ≤ j < 8 = log2 256 refers to a specific layer or stage of our algorithm. Inductively,
we can show that for an arbitrary value of j in this range, the equations associated with
stage j are:

Aj [k] = F j0 [k] + r2
j(2k+1)F j1 [k] , 0 ≤ k < 128/2j

Aj [k + 128/2j] = F j0 [k]− r
2j(2k+1)F j1 [k]

(38)

26

In the context of Cooley-Tukey, the coefficients multiplying F j1 [k], ±r2
j(2k+1), are known as

twiddle factors. We compute F ji [k] as follows:

F ji [k] := NTTr{f ji [m]} =

128

2j
−1∑

m=0

f ji [m](r2)2
jm(r4)2

jmk := Aj+1[k] , 0 ≤ i ≤ 1 (39)

and f j0 [m], f j1 [m] ∈ D([128/2j];Zq) are formed in the usual manner.

At the maximum value of j = 7, our scheme decomposes the two-point NTT A7[k] as
two, one-point NTTs. Namely:

A7[0] = F 7
0 [0] + r128F 7

1 [0]

A7[1] = F 7
0 [0]− r128F 7

1 [0]
(40)

To understand what is meant by F 7
0 [0], F

7
1 [0] we note that, from (39), F 7

0 [0] = f70 [0] and
F 7
1 [0] = f71 [0]. Now, f70 [0] refers to the even index of the 2-point discrete-time signal
f6i [m]. Thus, f70 [0] = f6i [0]. Similarly, f71 [0] means the odd index of f6i [m] so f71 [0] = f6i [1].
Furthermore, A7[0] = F 6

i [0] and A
7[1] = F 6

i [1]. Thus, (40) can be rewritten as follows:

F 6
i [0] = f6i [0] + r128f6i [1]

F 6
i [1] = f6i [0]− r128f6i [1]

(41)

Indeed, f6i [0], f
6
i [1] represents the result of performing an even-odd indexed term separation

of our signal, 7 times.

Radix-4 Case: In the case of the Radix-4 algorithm, rather than decimating our sig-
nal into smaller signals of length 2, we instead decimate into smaller signals of length 4,
with a parity of 4 rather than 2. In particular:

f0[m] := a[4m] 0 ≤ m < 64

f1[m] := a[4m+ 1]

f2[m] := a[4m+ 2]

f3[m] := a[4m+ 3]

The NTT in (34) hence becomes:

A[k] =

63∑
m=0

f0[m]r(2k+1)4m+

63∑
m=0

f1[m]r(2k+1)(4m+1)+

63∑
m=0

f2[m]r(2k+1)(4m+2)+

63∑
m=0

f3[m]r(2k+1)(4m+3)

Or more compactly:

A[k] =

3∑
i=0

63∑
m=0

fi[m]r(2k+1)(4m+i) =

3∑
i=0

r(2k+1)i
63∑
m=0

fi[m]r(2k+1)4m =

3∑
i=0

r(2k+1)iFi[k]

where Fi[k] := NTTr{fi[k]}. Indeed, this formulations holds for 0 ≤ m < 64. We must
therefore evaluate A[k + 64], A[k + 128], A[k + 192] or A[k + 64i′] for i′ = 1, 2, 3. Indeed:

27

A[k + 64i′] =

3∑
i=0

r(2(k+64i′)+1)i
63∑
m=0

fi[m]r(2(k+64i′)+1)4m

=

3∑
i=0

r(2k+1)ir128i
′i

63∑
m=0

fi[m]r(2k+1)4mr512mi
′

=
3∑
i=0

r(2k+1)ir128i
′i

63∑
m=0

fi[m]r(2k+1)4m =
3∑
i=0

r(2k+1)ir128i
′iFi[k]

More explicitly, we have the set of four equations:

A[k] = F0[k] +r(2k+1)F1[k] + r2(2k+1)F2[k] +r3(2k+1)F3[k]

A[k + 64] = F0[k] +r128r(2k+1)F1[k] + r256r(2k+1)F2[k] +r384r(2k+1)F3[k]

A[k + 128] = F0[k] +r256r(2k+1)F1[k] + r512r(2k+1)F2[k] +r768r(2k+1)F3[k]

A[k + 192] = F0[k] +r384r(2k+1)F1[k] + r768r(2k+1)F2[k] +r1152r(2k+1)F3[k]

which reduces to:

A[k] = F0[k] +r(2k+1)F1[k] + r2(2k+1)F2[k] +r3(2k+1)F3[k]

A[k + 64] = F0[k] +r128r(2k+1)F1[k]− r2(2k+1)F2[k] −r128r3(2k+1)F3[k]

A[k + 128] = F0[k] −r(2k+1)F1[k] + r2(2k+1)F2[k] −r3(2k+1)F3[k]

A[k + 192] = F0[k] −r128r(2k+1)F1[k]− r2(2k+1)F2[k] +r128r3(2k+1)F3[k]

As these equations correspond to the 0th stage of our scheme, we hence annotate with
A0[k+64i′], F 0

i [k]. Given that we expect log4 256 = 4 stages we seek the equations associated
with stage j for 0 ≤ j < 4. Similar to the Radix-2 case, it can be shown that:

Aj [k] =
3∑
i=0

64/4j−1∑
m=0

f ji [m]r(2k+1)(4j+1m+4ji)

Aj [k] =
3∑
i=0

r4
j(2k+1)i

64/4j−1∑
m=0

f ji [m]r(2k+1)4j+1m =
3∑
i=0

r4
j(2k+1)iF ji [k] , 0 ≤ j < 4

where Aji [k] = F j−1
i [k]. Thus, at j = 3, we have:

F 2
i [k] =

3∑
i=0

r64(2k+1)iF 3
i [k] , F

3[k] = f2i [k] , 0 ≤ k < 4

Hence:
F 2
i [0] = f2i [0] +r64f2i [1] + r128f2i [2] +r192f2i [3]

F 2
i [1] = f2i [0] +r192f2i [1] + r384f2i [2] +r576f2i [3]

F 2
i [2] = f2i [0] +r320f2i [1] + r640f2i [2] +r960f2i [3]

F 2
i [2] = f2i [0] +r448f2i [1] + r896f2i [2] +r1344f2i [3]

28

which reduces to:

F 2
i [0] = f2i [0] +r64f2i [1] + r128f2i [2] +r192f2i [3]

F 2
i [1] = f2i [0] +r192f2i [1]− r128f2i [2] +r64f2i [3]

F 2
i [2] = f2i [0] −r64f2i [1] + r128f2i [2] −r192f2i [3]
F 2
i [2] = f2i [0] −r192f2i [1]− r128f2i [2] −r64f2i [3]

(42)

5.3 Radix-2 & Radix-4 Cooley-Tukey Signal Flow Diagrams

While our derivations above give a complete description of our recursive scheme, working
with them can be rather tedious and cumbersome. By using signal-flow diagrams, we can
better convey this recursion and render the (fully-parallel) system architecture more intu-
itive.

Radix-2 Case: In the case of the Radix-2 algorithm, we begin with the stage 7 equa-
tions, given in (41). Here, the corresponding signal flow diagram is shown in Figure 3. Note
that our recursive scheme utilizes 128 of these 2-point computational units. In the context
of the Cooley-Tukey algorithm, we refer to such a computational unit as a Butterfly unit.
To clarify this diagram, the inputs f6i [0], f

6
i [1] refer to either the even indexed terms of the

Figure 3: Stage 7, 2-point Radix-2 Cooley-Tukey NTT ”Butterfly” Unit.

4-point signal f5i [m], or to the odd indexed terms of this signal, depending on weather i = 0
or i = 1, respectively. For the stage 6 equations, we recall that:

F 5
i [k] = F 6

0 [k] + r64(2k+1)F 6
1 [k] , 0 ≤ k < 2

F 5
i [k + 2] = F 6

0 [k]− r64(2k+1)F 6
1 [k]

Hence the 4-point NTT F 5
i [k] can be reconstructed as follows:

F 5
i [0] = F 6

0 [0] + r64F 6
1 [0]

F 5
i [1] = F 6

0 [1] + r192F 6
1 [1]

F 5
i [2] = F 6

0 [0]− r64F 6
1 [0]

F 5
i [3] = F 6

0 [1]− r192F 6
1 [1]

We capture this in Figure 4. For the next stage, we have the equations:

29

Figure 4: Stage 6, 4-point Radix-2 Cooley-Tukey NTT Unit.

F 4
i [k] = F 5

0 [k] + r32(2k+1)F 5
1 [k] , 0 ≤ k < 4

F 4
i [k + 2] = F 5

0 [k]− r32(2k+1)F 5
1 [k]

which, upon a twiddle factor calculation, gives the diagram shown in Figure 5. Because of

Figure 5: Stage 5, 8-point Radix-2 Cooley-Tukey NTT Unit.

the increasing complexity of these Cooley-Tukey NTT units, we shall not proceed further
than this stage in the Radix-2 case. Nevertheless, having gone through the signal-flow dia-
grams for some of the smaller stages, we now have a better sense of how the different stages
of our recursive scheme fit together.

Radix-4 Case: In the case of the Radix-4, the equations given in (42) describe the most
basic computational units. Figure 6 illustrates these stage 3, 4-point units. Indeed, the
Radix-4 algorithm requires 64 = 256/4 of such 4-point units. At stage 2, we combine 4 of
these 4-point units and perform additional arithmetic so as to partially reconstruct F 1

i [k].
We illustrate this stage in Figure 7. As expected, our Radix-4 algorithm utilizes 16 = 256/16
of these 16-point units.

30

Figure 6: Stage 3, 4-point Radix-4 Cooley-Tukey NTT Unit.

Figure 7: Stage 2, 16-point Radix-4 Cooley-Tukey NTT Unit. Note that the twiddle
factors have been removed for ease of illustration.

5.4 Bit Reversals: Radix-2

In the case of the Radix-2 algorithm, by merely inspecting the 8-point Cooley-Tukey NTT
unit shown in Figure 5, it is clear that there is a better input order we can utilize. In partic-
ular, throughout the entire input stage, none of our signals are scaled or modified. Rather,
we have a series of long-winded connections, which seemingly detract from an otherwise
more natural input ordering.

To see this more natural order, consider the following table, which displays the discrete-time
signal index assuming our input stage is bypassed, referred to as the bypassed index, pre-
ceded by our original indexing. We displays both indices in both decimal (d) and binary (b)
form. By inspection of this table, we see that the bypassed index reflects a sort of bit reversal

31

Original Index (d): Original Index (b): Bypassed Index (d): Bypassed Index (b):

0 000 0 000

1 001 4 100

2 010 2 010

3 011 6 110

4 100 1 001

5 101 5 101

6 110 3 011

7 111 7 111

Table 2: Original indexing associated with the input(s) to our 8-point Cooley-Tukey NTT
unit, in binary and decimal format, as well as the bypassed indexing, assuming we bypass
the input stage, further in binary and decimal format.

of the original index. To make this precise, suppose we have d ∈ Z≥0. Recall, the decimal
representation of d is simply d =

∑
i≥0 di10

i where di ∈ {0, 1, ..., 9} are the decimal digits

of d. The (unsigned) binary representation of d is hence d =
∑

i≥0 bi2
i where bi ∈ {0, 1}

are the binary digits (bits) of d. If the binary representation of b is M bits long, then the
bit reversal of d is the function bitRev : Z≥0 → Z≥0 defined by

∑
i≥0 bi2

i 7→
∑

i≥0 bM−i2
i.

Note that d = bitRev(bitRev(d)) for all d of exactly M bits long: we therefore hold our
bit length fixed and zero-pad as necessary, as suggested in the above table. We further note
that d = bitRev(d) if and only if the M bit representation of d is symmetric.

Thus, for our Radix-2 algorithm, we develop an auxiliary algorithm, bitRevSort(), which
will sort our input signal a[n] ∈ D([256];Zq). This algorithm should iterate through each
of the indices n = 0, 1, ..., 255, and swap a[n] with a[bitRev(n)] if the 8-bit representation
of n is asymmetric and n is less than its bit reversal. This condition is added to guarantee
an element is swapped only once. Indeed, our swap() function, shown in Algorithm 3, can

Algorithm 2 bitRevSort() Algorithm

Require: a[n] ∈ D([256];Zq)
for n = 0; n < 256; n = n+ 1 do

if bitRev(n) ̸= n and n < bitRev(n) then
swap(n,bitRev(n))

end if
end for

be simply implemented by using a single temporary variable, t.

Algorithm 3 swap(n0,m0) Algorithm

Require: a[n] ∈ D([256];Zq), 0 ≤ n0,m0 ≤ 256 , n0 ̸= m0

t ∈ Zq ← a[n0]
a[n0]← a[m0]
a[m0]← t

32

5.5 Barrett Reductions:

Polynomial arithmetic aside, all of our integral arithmetic should be performed over the
finite field Zq. Thus, every integral arithmetic operation must map the resulting a′ ∈ Z to
some a ∈ Zq wherein a ≡ a′ mod q. In other words, we must perform modular reduction
on a′ ∈ Z so as to maintain finite field arithmetic.

While one could ascertain a ∈ Zq via a fast-division algorithm, a more elegant approach
involves the Barret Reduction technique. To enable this technique, we fix a modulus
q ∈ Z≥3 [18]: in the case of Dilithium q = 223 − 213 + 1 is constant throughout. We
hence choose a k ∈ Z>1 such that 2k > q. Note that the smallest choice of k is ⌈log2 q⌉ [18].
Thus, given our particular q associated with Dilithium, we choose:

k := ⌈log2 (223 − 213 + 1)⌉ = 23

Indeed, 223 > 223 − 213 +1. Next, we compute the factor r̃ := ⌊4k/q⌋ [18]. Four our chosen
k, we have:

r̃ := ⌊ 423

223 − 213 + 1
⌋ = 8396807

Finally, we define the following quantity, t [18]:

t := a′ − ⌊a
′r̃

4k
⌋q (43)

If t < q we are done. Otherwise, we perform t− q 7→ t. In either case, it can be shown that
a := t ≡ a′ mod q. A proof of this can be found in [18].

One important feature of (43) is the fact that the floored fractional value can be com-
puted quickly by bit shifting since ⌊a′r̃/4k⌋ = ⌊a′r̃/22k⌋. Indeed, this corresponds to right
shifting the bits associated with a′r̃ = 8396807 · a′ by 2k = 46 places. Thus, according to
43, we can compute the modular reduction of a′ in two multiplications and, at most, two
subtractions. We conclude by summarizing our Dilithium Barret reduction algorithm:

Algorithm 4 Dilithium Barret Reduction Algorithm

Require: a′ ∈ Z≥q

t← a′ − [(8396807 · a′) >> 46] · q
if t ≥ q then

a← (t− q)
else

a← t
end if
return a

33

6 FPGA Implementation:

In this section, we discuss an FPGA implementation of the Dilithium NTT at at the
Register-Transfer Level (RTL). Our design utilizes the Radix-2 version of the DIT Cooley-
Tukey algorithm, described at length in the previous section. Our motivation for implement-
ing the Radix-2 version of this algorithm rather than the Radix-4 version is twofold. First,
the most basic computational units involved in this algorithm, the 2-point or 2× 2 Cooley-
Tukey butterflies, have a more straightforward implementation. Second, in the Radix-2
algorithm, one can perform a simple bit reversal sort beforehand, whereas the Radix-4
algorithm requires additional work to establish the necessary input order. Note that our
entire project has been made open-source, as we include links to the GitHub repository’s
containing our design files: such links can be found on the Contents page.

Our RTL design consists of a fully-parallel architecture. That is, at any given stage in
our algorithm, j = 0, 1, ..., 7, all of the associated butterfly calculations occur in parallel.
This contrasts with an iterative NTT approaches in which one only calculates one section
of a given stage at any time. Such a fully-parallel architecture leverages optimal speed and
throughput, but requires an immense number of FPGA resources and power.

The fundamental hardware module housing this architecture is a consolidated NTT-core,
which performs the transform on 3N Byte or 7.68 kB blocks of data at a given time. In the
context of an FPGA implementation, it is difficult to operate on actual data blocks of this
size given potential Input/Output (IO) limitations. Our FPGA implementation circum-
vents this by multiplexing the input as well as the output data. In other words, our NTT
core requires peripheral hardware support for such multiplexing. Furthermore, our design
requires additional peripheral hardware support for interfacing with FPGA block RAM
(BRAM), if desired. These factors suggest that our fully-parallel design is better suited for
dedicated parallel-hardware, such as a Single-Instruction Multiple-Data (SIMD) processor
or certain Graphics Processing Units (GPUs) which demand optimal speed. Nonetheless,
our FPGA implementation can be regarded as a conceptual starting point for a more effi-
cient fully-parallel implementation.

In Section 6.1, we discuss this architecture in greater detail. In Sections 6.2 and 6.3,
we describe the RTL modules associated with our Radix-2 design. Then, in Section 6.4,
using the Verilog Hardware Description Language (HDL), we give an overview of the RTL
to HDL translation and make use of python scripting in assisting with this task.

6.1 System Architecture:

To reiterate, the fundamental system architecture consists of a consolidated NTT core,
CT_radix_2_ntt_core. Using the parallelism of the Radix-2 DIT Cooley-Tukey algorithm,
this module performs the full 256-point forward transform on the input port data and writes
directly to the output port. CT_radix_2_ntt_core hence consists of 256 input ports and
256 output ports, in addition to a generic clock signal. Since the largest field element,
q− 1 = 8380416, has a 24-bit unsigned representation, 0x7FE000, each input is a 24-bit bus

34

and similarly each output is a 24-bit bus. This corresponds to 2 · 7.68 = 15.36 kB of IO,
excluding the aforementioned clock signal. In this light, our NTT core is a Multiple-Input,
Multiple-Output (MIMO) hardware module.

Within CT_radix_2_ntt_core, we have various stages of fixed-architecture butterfly mod-
ules, labelled ntt_butterfly_nxn, corresponding to each of the different stages of the
Cooley-Tukey NTT algorithm. Recall that for a Radix-r Cooley-Tukey algorithm there are
d = logpN = 8 different stages. Thus, n = 2, 4, ..., 256 in the case of the Radix-2 algorithm.
Figure 8 gives a partial block diagrams of our NTT-core, showing the inter-connectivity
of various n × n butterfly modules. That is, butterfly modules with n 24-bit inputs and
n 24-bit outputs. While one can readily observe from Figure 8 that our NTT core has

Figure 8: NTT Core showing the inter-connectivity of various fixed-architecture butterfly
modules.

the potential for handling 7.68 kB of input data at a time, this is difficult to achieve on an
FPGA given potential IO limitations, as previously mentioned. Thus, our FPGA implemen-
tation includes an input demultiplexer of dimensions 1 : N = 1 : 256, ntt_core_demuxi,
which maps a 24-bit input value to the appropriate input port of the NTT core, given an
8-bit index. Similarly, we include an output multiplexer of dimensions N : 1 = 256 : 1,
ntt_core_mux, which maps the 24-bit NTT-core output associated with the specified 8-bit
index to a 24-bit output port. This effectively renders our system a Single-Input, Single-
Output (SISO) hardware module, capable of handing input streams of data with additional
logic.

For the SISO system described, one may like to interface with dedicated FPGA BRAM.
This can be achieve by adding an additional memory manager module, mem_mananger,
which reads and writes to a 7.68 kB NTT BRAM module, ntt_BRAM. The mem_manager

module additionally interfaces with the multiplexer modules described above to read and

35

write from the NTT core. Figure 9 gives a simplified block diagram of this FPGA appli-
cation system. We further include a dedicated IO stream for the NTT data, consisting of
the 24-bit input and output buses labelled ntt_data_path_in and ntt_data_path_out:
we assume the user enters the discrete-time signal inputs in bit reversed order. Note that

Figure 9: Simplified block diagram of FPGA application system, consisting of memory
management module and dedicated FPGA BRAM.

Figure 9 only represents an application system, as we do not account for mem_mananger

nor ntt_BRAM in our design. Indeed, our design solely accounts for our multiplexer mod-
ules togethter with the NTT core itself. Given the straightforward implementation of our
multiplexer modules, we shall only describe the modules contained inside our NTT core in
greater detail. Indeed, this amounts to our barret reduction module, barret, as well as
n × n butterfly modules, ntt_butterfly_nxn. Table 3 gives the individual quantities of
the different butterfly modules contained in CT_radix_2_ntt_core.

Butterfly Module: Quantity:

ntt_butterfly_2x2 128

ntt_butterfly_4x4 64

ntt_butterfly_8x8 32

ntt_butterfly_16x16 16

ntt_butterfly_32x32 8

ntt_butterfly_64x64 4

ntt_butterfly_128x128 2

ntt_butterfly_256x256 1

Table 3: Quantity of different butterfly modules in our NTT core.

36

6.2 Description of NTT-Core RTL Modules:

Before discussing our RTL modules, we assume than any integer arithmetic operation re-
quires exactly one clock cycle. Indeed, in all of our block diagrams, we shall generally
exclude clock signals for ease of illustration.

barret: Our Barrett reduction modules performs reduction modulo q using the Barret
reduction algorithm described in Section 5.5. The input to this module, a_in corresponds
to the element a ∈ Z which we must reduce modulo q. The output wire, a_out, hence
corresponds to the finite-field element a′ ∈ Zq satisfying a ≡ a′ mod q. As suggested in
Algorithm 4, our RTL design utilizes 2 instantiated multipliers, 2 instantiated subtractors,
1 combinational right-shift unit, 1 combinational comparator element, and a 2:1 multiplexer
(MUX). Our logic is primarily asynchronous, with only the arithmetic units requiring a clock
signal. Figure 5 illustrates the block diagram associated with our RTL module. As seen in

Figure 10: Block diagram of Barrett reduction module. Note that only the arithmetic
units require a clock signal.

Figure 10, the primary data path consists of wires b1, b2, b3, b4. b4 represents the first
potential output of the Barrett reduction algorithm, t := a′− [(8396807 ·a′) >> 46] ·q. Note
that both multipliers along this data path are constant-coefficient multipliers. In the case
when t ≥ q, however, we must output t− q. Thus, b4 is compared to q such that the logical
output of this comparison becomes the input to our MUX. For t < q, the MUX output is
0 which corresponds to t; b4 is thus mapped to the output wire, a_out. For t ≥ q, the
MUX output is 1 which corresponds to t − q; the wire b5 which includes a branch of b4
with q_const subtracted is hence mapped to a_out.

Since the delay through each of our multipliers and subtractors is uniform (1 clock cy-
cle), we expect the delay to be around 4 clock cycles for worst-case performance, from input
to output. In the best-case performance, we do not require this extra subtraction rendering
the delay to 3 clock cycles from input to output.

37

ntt_butterfly_2x2.v: Our most basic Cooley-Tukey NTT computational units, these
modules compute the stage 7, 2×2 equations, described in 41. The input wires fi_0, fi_1

correspond to f6i [0], f
6
i [1], respectively. Similarly, the output wires Fi_0, Fi_1 correspond

to F 6
i [0], F

6
i [1], respectively. The RTL design closely resembles the signal flow diagram out-

lined in Figure 3.

To mitigate delay, our 2 × 2 butterfly modules only perform modular reduction once on
each expression f6i [0] ± r128f6i [1]. This contrasts with performing the reduction on each
r128f6i [1] and thereafter performing an additional subtraction if the addition of f6i [0] ex-
ceeds the maximum field element. That is, f6i [0] + r128f6i [1] > q − 1. This is done to avoid
the presence of an additional arithmetic unit, which requires one extra clock cycle. Instead,
we simply add an extra bit to each of the data paths in barret. 11 displays our 2× 2 but-
terfly design: With respect to worst-case performance, we expect a delay of 4 clock cycles

Figure 11: Block diagram of 2 × 2 Cooley-Tukey NTT butterfly module, consisting of 2
multipliers, 2 adders, and 2 Barret reduction modules

from each of the Barret reduction modules. Thus, because the computation of Fi_0 occurs
in parallel to the computation of Fi_1, we expect a delay of 4 clock cycles + 2 additional
clock cycles from each of the multiplier and adder totaling to 6 clock cycles from input to
output. With respect to best-case performance, our Barret reduction modules incurs only
3 clock cycles, such that the delay from input to output becomes 3 + 2 = 5 clock cycles.

ntt_butterfly_nxn.v: Since each of our Radix-2 Cooley-Tukey butterfly modules uti-
lize a fixed architecture, we require dedicated n× n butterfly modules for n = 2, 4, ..., 256,
corresponding to each stage of the Radix-2 Cooley-Tukey NTT algorithm. With respect to
design, any given n×n butterfly module essentially consists of n/2, 2×2 butterfly modules.
Figure 12 illustrates this for n = 4, shown on the next page. Therefore, given that the delay
through a 2 × 2 butterfly module is 5 clock cycles at best and 6 clock cycles at worst, we
expect the delay through any given n× n butterfly to also be 5 clock cycles at best and 6

38

Figure 12: Block diagram of 4 × 4 Radix-2 Cooley-Tukey butterfly module. One can see
that such a 4 × 4 butterfly module is nothing more than 2 parallel, 2 × 2 butterfly modules.

clock cycles at worst. This hence renders the net delay across our NTT core to 5 log2N = 40
clock cycles at best and 6 log2N = 48 clock cycles at worst.

One can further observe that for any given n×n butterfly, the number of multiplier, adder
and Barrett module instantiations is simply n. This allows us to calculate the number of
multipliers, adders, and Barret module instantiations in our NTT core: we display these
results in table 4, shown below. Note that we exclude the multipliers inside our Barret

Instantiation: Quantity:

Multiplier 2048

Adder 2048

Barret 2048

Table 4: Quantity of multipliers, adders, and Barret instantiations in our NTT core.

reduction modules. To ascertain the total number of multipliers in our design, we note that
each Barret module incurs an additional two multipliers which gives 2048 + 2(2048) = 6144
total multipliers. Similarly, each Barret module has two subtractors which implies 2(2048)
= 4096 total subtractors.

6.3 Overview of HDL and Python Utility Scripts:

We hence translate our designs into the Verilog Hardware Description Language (HDL),
writing Verilog RTL modules, so as to perform logical synthesis. We wrote our Verilog code
in the Vivado environment, with our Vivado project targeting an Artix-7 family Evaluation
Platform. In particular, we targeted the Artix-7 AC701 Evaluation Platform, with associ-
ated FPGA part xc7a200tfbg676-2.

39

To implement basic arithemtic, we utilized Xilinx LogiCORE Multiplier IPs as well as
Xilinx LogiCORE Adder/Subtracter IPs . In both IPs, one specifies the widths of the input
ports A,B. In the case of the Multiplier, the IP hence dictates the bit width of the output,
C, while one further specifies the width of the output in the case of the Adder/Subtracter.
Indeed, for the Adder/Subtracter, one must further select which of the two operations one
would like the IP to perform. Upon specifiying bit-width(s), in both IPs one can select to
implement using either LUTs or DSP slice logic. In the case of DSP slices, the maximum
bit width is 48 bits. Thus, in all our n × n butterfly modules, we implement our twiddle
factor calculations using available DSP slices.

For barret.v, our Verilog code primarily consists of instantiating the dedicated arithemtic
IPs. The only additional logic requires right shifting b1 by 46 bits, setting the MUX enble
based on weather b4 exceeds the maximum field element, and inferring the MUX itself. In
the case of right-shifting the bits of b1 and setting the MUX enable, the following combi-
national logic suffices:

assign b2 = (b1 >> k_const);

assign mux_en = (b4 >= q_const) ? 1’b1 : 1’b0

Additionally, we can infer our 2:1 MUX as follows:

always @ (*) begin

case(mux_en)

1’b1: a_out = b5[23:0];

1’b0: a_out = b4[23:0];

endcase

end

Recall that b5 represents the output which corresponds to the additional subtraction with
q whereas b4 is the original output from the primary data path. The complete Verilog code
can be found in the Appendices Section, under Subsection 10.1.

In the case of ntt_butterfly_2x2.v, our implementation requires nothing more than arith-
metic IP and Barret module instantiation, as there is no additional combinational or se-
quential logic. In general, such instantiations fall into three distinct blocks of code. The
first block instantiates the multiplier IPs, corresponding to the initial multiplication(s) of
fi_1 with the twiddle factor(s) C_POS_R_128 and C_NEG_R_128. The next block consists of
adder IPs corresponding to addition(s) of fi_0. Lastly, we instantiate two pairs of barret
modules, for performing modular reduction. Indeed, the complete Verilog code for this
module can be found in the Appendices Section, in Subsection 10.2.

Since any ntt_butterfly_nxn for n = 2, 4, ..., 256 is just a collection of n/2, 2 × 2 but-
terfly modules, these distinct blocks of code generalize to all subsequent butterfly mod-
ules. We hence wrote python code which exploits the formulaic nature of such butterfly
modules to write the correct Verilog code to some output text file. This python code,
dilithium_ntt_butterfly_gen.py consists of a function butterfly_gen(n) wherein n

40

corresponds to the dimensions of the associated butterfly. The function first opens a generic
text file and writes the module header, with the necessary IO ports. Upon calculating and
parameterizing the associated twiddle factors, it then instantiates the three distinct blocks
of code. Namely, the multipliers, adders, and then Barret reduction modules. We further
include an option to add additional start, done signals to each butterfly module, along
with a 3-bit counter which asserts this done signal after 6 clock cycles has passed from the
rising edge of the start signal. Although our actual design does not utilize these signals,
these can be helpful in verification or if a different module requires some indication that
a given butterfly module has finished its calculation. Regardless, one can then copy the
output text file to the .v file titled ntt_butterfly_nxn.v for digital synthesis: we include
this python code in Subsection 10.3 of the appendices.

7 Performance:

Given our Verilog modules, we verified intended functionality by writing RTL testbenches
and thereafter performing behavioral simulation. In particular, we simulated unit tests as
well as regression tests of various butterfly modules. Our unit tests consisted of evaluating
the functionality of an individual ntt_butterfly_nxn module while our regression tests
consisted of evaluating a family of different butterfly modules, together connected. In
Section 7.1, we describe the testbenches and testbench logic associated with these tests.
Then, in Section 7.2, we comment on the behavioral simulation results.

7.1 RTL Verification: Unit & Regression Test

In essence, both our unit and regression tests consist of sets of input test vectors as well as
sets of expected output test vectors. In the case of unit tests, test vectors are sequentially
mapped to the input port of an instantiated device-under-test (DUT) such that the output
port is read and compared to a set of expected output test vectors. We hence display a
pass or fail message accordingly. In the case of regression tests, we have virtually the same
procedure though instead of mapping inputs to a single instantiated DUT, we have a family
of DUTs which model a specific region of our NTT core.

With respect to concrete testbench files, we labelled our unit tests ntt_butterfly_nxn_unit_tb.v
for n = 2, 4, ...256. Intuitively, ntt_butterfly_nxn_unit_tb.v verifies the functionality of
the associated n × n butterfly module, placing this module as the testbench DUT. We la-
belled our regression tests ntt_butterfly_nxn_reg_tb.v. With respect to our concrete
testbenches, we developed a sufficiently flexible unified framework for both test forms.

In this framework, we specify a test-length, L, which corresponds to the number of sets
of inputs to be tested. Recall that a given n×n butterfly module requires a set of n inputs
and maps to set of n outputs. Therefore, for an n×n test, we have n many 24-bit register-
arrays, each of size L, which correspond to input test vectors. In the case of n = 8, these
are labelled as follows:

reg [23:0] test_vec_in_fi_0[0:L-1]

41

reg [23:0] test_vec_in_fi_1[0:L-1]

.

.

reg [23:0] test_vec_in_fi_7[0:L-1]

On the other hand, we also have n = 8 many 24-bit register-arrays which correspond to
expected output test vectors, for a particular test index 0 ≤ l < L:

reg [23:0] test_vec_exp_out_Fi_0[0:L-1]

reg [23:0] test_vec_exp_out_Fi_1[0:L-1]

.

.

reg [23:0] test_vec_exp_out_Fi_7[0:L-1]

We developed a python script to generate random input test-vectors, calculate the expected
output test-vectors, and thereafter write to a test-file the initialized registers. In particular,
our script first generates n many 24-bit arrays of length L, corresponding to the input test
vectors, with each array containing arbitrary elements of the finite field, Zq. Note that
each array is associated with a specific port of the DUT or family of DUTs. We next per-
form some Cooley-Tukey butterfly calculations depending on weather we specify a unit or
regression test, and finally write L many initial blocks to an output text file, wherein
test_vec_in_fi_j[l] and test_vec_exp_out_Fi_j[l] have been initialized accordingly.
This python script can be found in the appendices section, underneath subsection 10.4.

Aside from test-vector generation, the test bench logic itself is driven by an always block
which counts clock cycles. The testbench clock is generated by simply toggling a 1-bit
register every 5 ns to create a 100 Mhz signal. Indeed, at every number of clock cycles that
is a multiple of the number of clock cycles we expect to wait for valid butterfly data, we
read the output port of our DUT or family of DUT’s and check to see if they match the
expected outputs at that particular test index, 0 ≤ l < L. More specifically, for n = 8, we
logically evaluate expressions of the form:

(Fi_0 == test_vec_exp_out_Fi_0[l]) &&

(Fi_1 == test_vec_exp_out_Fi_1[l]) &&

.

.

.

(Fi_7 == test_vec_exp_out_Fi_7[l])

If this expression evaluates to true we print a pass message to the TCL console. Conversely,
if this expression evaluates to false we print a fail message, along with the expected results
and the actual results. We then increment the test index, l, and write the next set of
input test vectors to the input port of the DUT(s). In our appendices section underneath
subsection 10.5, we include a sample unit test ntt_butterfly_8x8_unit_tb.v. Note that
ntt_butterfly_8x8_reg_tb.v is essentially the same, with the only difference being that
this testbench instantiates 4 × ntt_butterfly_2x2.v, 2 × ntt_butterfly_4x4.v, and 1
× ntt_butterfly_8x8.v rather than a single ntt_butterfly_8x8.v DUT.

42

7.2 Behavioral Simulation Results

Having written testbenches to verify the functionality of individual butterfly modules or
families of butterfly modules in the form of unit and regression tests, respectively, we per-
formed behavioral simulation in the Vivado environment. As far as intended functionality
goes, we simply check the TCL console to determine the results of the test-bench logic.
Additionally, however, we can use the waveform viewer to verify the conjectured 5-6 clock
cycle delay to receive valid butterfly data.

As an example of a typical output waveform, we examine the result from our 2 × 2 unit
testbench in the waveform viewer. This is shown below in Figure 13: Here, the red cursor

Figure 13: Waveform view from 2 x 2 unit testbench. The red cursor indicates the time
at which new data was mapped to the input port(s) of the DUT.

indicates the time at which input test vector data was written to the 24-bit DUT input(s)
fi_0, fi_1. One can easily see that after 6 clock cycles, the DUT output(s) of the same
bit-width, Fi_0, Fi_1, do not change value, indicating that the final result from the 2× 2
butterfly calculation has been obtained.

43

Furthermore, in the 4×4 unit test, we observe a similar delay. This is captured in Figure 14.
Once again, the red cursor indicates the time at which input test vector data was written

Figure 14: Waveform view from 4 x 4 unit testbench. Once again, the red cursor indicates
the time at which data was mapped to input port(s) of the DUT.

to each of the four 24-bit DUT input port(s), fi_0, fi_1, fi_2, fi_3. One can readily
see that after 6 clock cycles, the DUT output(s) Fi_0, Fi_1, Fi_2, Fi_3 do not change
implying that the device has completed its 4× 4 butterfly calculation.

Indeed, in each of our unit and regression test benches conducted, the number of clock
cycles required to perform an n × n butterfly calculation never exceeds 6 clock cycles nor
does it settle in less than 5 clock cycles. These measurements support our previous esti-
mate of the delay through our NTT core remaining bounded between 5 · log2N = 40 and
6 log2N = 48 clock cycles.

We should point out, however, that these quantities merely reflect the results of our be-
havioral simulation. Indeed, the physical implementation results may differ, depending on
weather or not the associated arithmetic IP indeed requires a single clock cycle, as observed
in simulation.

8 Conclusions:

To summarize the content of this paper, we investigated the ring-theoretic foundations of
the Number Theoretic Transform (NTT) and exposed the algebraic framework associated
with R-LWE and R-LWE related cryptography. With respect to the Cooley-Tukey algo-
rithm, this enabled a reduction from O(N2) time to O(N logN) time. We hence proposed
a fully-parallel FPGA implementation which sought to exploit the full-parallelism afforded
by the Cooley-Tukey algorithm. We concluded by performing behavioral simulation on the
associated RTL modules.

44

Although such a design leverages optimal speed and high-throughput, we noted that on
an FPGA it is difficult to achieve this maximum throughput given possible IO constraints.
Furthermore, our design requires an immense number of FPGA resources. From a pre-
liminary synthesis, Vivado estimates 79,720 LUT’s which corresponds to an almost 60%
utilization of LUTs for the targeted FPGA part, xc7a200tfbg676-2. Furthermore, the size
of this implementation gave rise to difficulties in simulating large areas of the NTT core.

Further work therefore includes reducing the size of our design to aid the feasibility of
our FPGA implementation. This could be achieved by returning to an iterative approach
so as to reduce the number of butterfly modules associated with the NTT core. Alterna-
tively, one could investigate fully-parallel hardware implementations on devices other than
FPGAs. In either case, we have outlined seemingly efficient individual, butterfly units and
a somewhat-optimized modular reduction unit. These items could be of potential use in
pursuing either of these two routes.

45

9 References:

[1] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography.”
"https://cims.nyu.edu/~regev/papers/qcrypto.pdf", 2009.

[2] O. Regev, “The learning with errors problem.” https://cims.nyu.edu/~regev/

papers/lwesurvey.pdf, 2010.

[3] A. Blum, A. Kalai, and H. Wasserman, “Noise tolerant learning, the parity problem,
and the statistical query model,” Journal of the ACM, pp. 506–519, 2003.

[4] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors
over rings,” 2013.

[5] D. Balbás, “The hardness of lwe and ring-lwe: A survey.” Cryptology ePrint Archive,
Paper 2021/1358, 2021. https://eprint.iacr.org/2021/1358.

[6] N. I. of Standards and Technology, “Post quantum cryptography: Round
3 submissions.” https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions, 2023.

[7] “Crystals: Cryptographic suite for algebraic lattices.” https://pq-crystals.org/

index.shtml, 2022.

[8] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehle, “Crystals-dilithium: Algorithm specifications and sup-
porting documentation (version 3.1).” https://pq-crystals.org/dilithium/data/

dilithium-specification-round3-20210208.pdf, 2021.

[9] P. Longa and M. Naehrig, “Speeding up the number theoretic transform for faster
ideal lattice-based cryptography,” International Conference on Cryptology and Network
Security, pp. 124–139, 2016.

[10] Z. Liang and Y. Zhao, “Number theoretic transform and its applications in lattice-
based cryptosystems: A survey,” 2022.

[11] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-performance hardware implementa-
tion of crystals-dilithium,” in 2021 International Conference on Field-Programmable
Technology (ICFPT), pp. 1–10, 2021.

[12] S. Ricci, L. Malina, P. Jedlicka, D. Smekal, J. Hajny, P. Cibik, P. Dzurenda, and
P. Dobias, “Implementing crystals-dilithium signature scheme on fpgas,” ARES 21:
Proceedings of the 16th International Conference on Availability, Reliability, and Se-
curity, pp. 1–11, 2021.

[13] G. Land, P. Sasdrich, and T. Guneysu, “A hard crystal: Implementing dilithium on
reconfigurable hardware,” SmartCard Research and Advanced Applications: 20th Inter-
national Conference, CARDIS 2021, Lubeck, Germany, November 11-12, 2021, Revised
Selected Papers, pp. 210–230, 2021.

46

[14] S. Shahriari, Algebra in Action: A Course in Groups, Rings, and Fields. American
Mathematical Society, 2017.

[15] “Chinese remainder theorem.” https://www.math.columbia.edu/~khovanov/ma2_

fall/files/crt.pdf.

[16] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms,
and Applications. Pearson Education, Inc., 4th ed., 2007.

[17] I. Selesnick, “Properties of the dft.” https://eeweb.engineering.nyu.edu/

iselesni/EL713/zoom/dftprop.pdf.

[18] “Barret reduction algorithm.” https://www.nayuki.io/page/

barrett-reduction-algorithm.

47

10 Appendices:

10.1 barret.v

Verilog HDL implementation of barret module.

module barret(

input clk_100Mhz,

input [48:0] a_in,

output reg [23:0] a_out

);

parameter q_const = 24’d8380417;

parameter k_const = 6’d46;

wire [72:0] b1;

wire [26:0] b2;

wire [49:0] b3;

wire [50:0] b4;

wire [50:0] b5;

wire mux_en;

mult_gen_49_bit mult_gen_49_biti(.CLK(clk_100Mhz), .A(a_in), .P(b1));

mult_gen_27_bit mult_gen_27_biti(.CLK(clk_100Mhz), .A(b2), .P(b3));

c_sub_51_bit c_sub_51_biti0(.A(a_in), .B({1’d0, b3}),

.CLK(clk_100Mhz), .CE(1’b1), .S(b4));

c_sub_51_bit c_sub_51_biti1(.A(b4[48:0]), .B({27’d0, q_const}),

.CLK(clk_100Mhz), .CE(1’b1), .S(b5));

assign b2 = (b1 >> k_const);

assign mux_en = (b4 >= q_const) ? 1’b1 : 1’b0;

always @ (*) begin

case(mux_en)

1’b1: a_out = b5[23:0];

1’b0: a_out = b4[23:0];

endcase

end

endmodule

10.2 ntt butterfly 2x2.v

Verilog HDL implementation of ntt_butterfly_2x2.v module.

module ntt_butterfly_2x2(

input clk_100Mhz,

input [23:0] fi_0,

input [23:0] fi_1,

output [23:0] Fi_0,

output [23:0] Fi_1

48

);

parameter C_POS_R_128 = 24’d4808194;

parameter C_NEG_R_128 = 24’d3572223;

wire [48:0] sum0;

wire [48:0] sum1;

wire [47:0] prod0;

wire [47:0] prod1;

mult_gen_0 mult_gen_0i(.CLK(clk_100Mhz), .A(fi_1), .B(C_POS_R_128), .P(prod0));

mult_gen_0 mult_gen_1i(.CLK(clk_100Mhz), .A(fi_1), .B(C_NEG_R_128), .P(prod1));

c_add_0 c_add_0i(.A(prod0), .B(fi_0), .CLK(clk_100Mhz), .CE(1’b1), .S(sum0));

c_add_0 c_add_1i(.A(prod1), .B(fi_0), .CLK(clk_100Mhz), .CE(1’b1), .S(sum1));

barret barret_0i(.clk_100Mhz(clk_100Mhz), .a_in(sum0), .a_out(Fi_0));

barret barret_1i(.clk_100Mhz(clk_100Mhz), .a_in(sum1), .a_out(Fi_1));

endmodule

10.3 dilithium ntt butterfly gen.py

Python script which generates Verilog butterfly modules, given 2 ≤ n ≤ 256.

-*- coding: utf-8 -*-

"""

Created on Fri Mar 31 14:58:56 2023

@author: bvoc5

Generate n x n butterfly module for CRYSTALS-Dilithium

Radix-2 Cooley-Tukey NTT FPGA Implementation

"""

#Enable cycle counter for start/done signals

clocked_en = 0

def butterfly_gen(n):

r = 1753

q = 8380417

exp_factor_list = []

bit_width = 24

num_cycles = 15

cycles_width = 4

barret_count = 0

clk_signal = "clk_100Mhz"

rst_signal = "rst_n"

49

str_signal = "start"

dne_signal = "done"

#Open file with writing priveleges

butterfly_file_name = "ntt_butterfly_" + str(n) + "x" + str(n)

butterfly_file = open(butterfly_file_name + ".txt", "w")

#Port declaration

butterfly_file.write("module " + butterfly_file_name + "(\n")

butterfly_file.write("\t input " + clk_signal + ",\n")

if(clocked_en == 1):

butterfly_file.write("\t input " + rst_signal + ",\n")

butterfly_file.write("\t input " + str_signal + ",\n")

#Butterfly input(s)

for i in range(n):

butterfly_file.write("\t input [" + str(bit_width - 1) + ":0] ")

butterfly_file.write("fi_" + str(i) + ",\n")

#Butterfly output(s)

for i in range(n):

butterfly_file.write("\t output [" + str(bit_width - 1) + ":0] ")

butterfly_file.write("Fi_" + str(i))

if(i != (n - 1)):

butterfly_file.write(",\n")

else:

if(clocked_en == 0):

butterfly_file.write("\n \t);\n")

butterfly_file.write("\n")

else:

butterfly_file.write(",\n")

if(clocked_en == 1):

butterfly_file.write("\t output " + dne_signal + "\n")

butterfly_file.write("\t);\n")

butterfly_file.write("\n")

#Twiddle factor calculation

for k in range(int(n/2)):

exp_factor = int((256 / n)*(2*k + 1))

pos_twid_factor = pow(r, exp_factor, q)

neg_twid_factor = q - pow(r, exp_factor, q)

butterfly_file.write("\t parameter C_POS_R_" + str(exp_factor) + " = 24’d" +

str(pos_twid_factor) + ";\n")

butterfly_file.write("\t parameter C_NEG_R_" + str(exp_factor) + " = 24’d" +

str(neg_twid_factor) + ";\n")

50

exp_factor_list.append(exp_factor)

#Cycles to wait

if(clocked_en == 1):

butterfly_file.write("\t parameter C_CYCLES_TO_WAIT = " +

str(cycles_width) + "’d" + str(num_cycles) + ";\n")

butterfly_file.write("\n")

#Sum wire declaration

for i in range(n):

butterfly_file.write("\t wire [48:0] ")

#butterfly_file.write("\t wire [" + str(bit_width) + ":0] ")

butterfly_file.write("sum" + str(i) + ";\n")

butterfly_file.write("\n")

#Product wire declaration

for i in range(n):

butterfly_file.write("\t wire [" + str(2*bit_width - 1) + ":0] ")

butterfly_file.write("prod" + str(i) + ";\n")

butterfly_file.write("\n")

if(clocked_en == 1):

butterfly_file.write("\t reg [" + str(cycles_width - 1) + ":0] clk_count;\n")

butterfly_file.write("\n")

#mult_gen instantiations

for i in range(n):

butterfly_file.write("\t mult_gen_0 mult_gen_" + str(i) + "i(")

butterfly_file.write(".CLK(" + clk_signal + "), ")

if(i < int(n/2)):

butterfly_file.write(".A(fi_" + str(i + int(n/2)) + "), ")

butterfly_file.write(".B(C_POS_R_" + str(exp_factor_list[i]) + "), ")

else:

butterfly_file.write(".A(fi_" + str(i)

+ "), ")

#butterfly_file.write(".B(sub" + str(i - int(n/2)) + "), ")

butterfly_file.write(".B(C_NEG_R_" + str(exp_factor_list[i - int(n/2)])

+ "), ")

butterfly_file.write(".P(prod" + str(i) + "));\n")

butterfly_file.write("\n")

#c_add_0 instantiations

for i in range(n):

51

butterfly_file.write("\t c_add_0 c_add_" + str(i) + "i(")

butterfly_file.write(".A(prod" + str(i) + "), ")

#butterfly_file.write(".A(prod" + str(i) + "_rdd), ")

if(i < int(n/2)):

butterfly_file.write(".B(fi_" + str(i) + "), ")

else:

butterfly_file.write(".B(fi_" + str(i - int(n/2)) + "), ")

butterfly_file.write(".CLK(" + clk_signal + "), ")

butterfly_file.write(".CE(1’b1), ")

butterfly_file.write(".S(sum" + str(i) + "));\n")

butterfly_file.write("\n")

#barret instantiations

for i in range(n):

butterfly_file.write("\t barret barret_" + str(barret_count) +

"i(.clk_100Mhz(" + clk_signal + "), ")

#butterfly_file.write(".rst_n(" + rst_signal + "), ")

#butterfly_file.write(".a_in(sum" + str(i) + "_pdd), ")

butterfly_file.write(".a_in(sum" + str(i) + "), ")

butterfly_file.write(".a_out(Fi_" + str(i) + ")); \n")

barret_count = barret_count + 1

if(clocked_en == 1):

butterfly_file.write("\n")

butterfly_file.write("\t assign " + dne_signal + " =

(clk_count == C_CYCLES_TO_WAIT) ? 1’b1 : 1’b0;\n")

butterfly_file.write("\n")

#Clock counter

butterfly_file.write("\t always @ (posedge " + clk_signal + ") begin \n")

butterfly_file.write("\t \t if(" + rst_signal + " == 1’b1) begin \n")

butterfly_file.write("\t \t \t clk_count <= " + str(cycles_width) + "’d0;\n")

butterfly_file.write("\t \t end \n")

butterfly_file.write("\t \t else begin\n")

butterfly_file.write("\t \t \t if(clk_count == C_CYCLES_TO_WAIT) begin\n")

butterfly_file.write("\t \t \t \t clk_count <= " + str(cycles_width) + "’d0;\n")

butterfly_file.write("\t \t \t end \n")

butterfly_file.write("\t \t \t else begin\n")

butterfly_file.write("\t \t \t \t if(" + str_signal + " == 1’b1) begin\n")

butterfly_file.write("\t \t \t \t \t clk_count <= clk_count + " +

str(cycles_width) + "’d1;\n")

butterfly_file.write("\t \t \t \t end \n")

butterfly_file.write("\t \t \t end \n")

butterfly_file.write("\t \t end \n")

butterfly_file.write("\t end \n")

52

#End module

butterfly_file.write("\n")

butterfly_file.write("endmodule")

#Close file

butterfly_file.close()

#Code to Execute

butterfly_gen(2)

butterfly_gen(4)

butterfly_gen(8)

butterfly_gen(16)

butterfly_gen(32)

butterfly_gen(64)

butterfly_gen(128)

butterfly_gen(256)

10.4 ntt butterfly nxn test vec.py

Python script to generate input test vectors as well as expected-output vectors.

-*- coding: utf-8 -*-

"""

Created on Sun Apr 2 01:06:59 2023

@author: bvoc5

Generate test vectors for ntt_butterfly_nxn unit testbench file

in CRYSTALS-Dilithium NTT FPGA Implementation

"""

import random

import math

q = 8380417

r = 1753

N = 8

"U" -> Unit Test, "R" -> Regression Test

test = "U"

test_length = 8

def ntt_nxn_butterfly_instance(fi, N_local):

Fi = [0]*N_local

f1 = fi[0 : int(N_local/2)]

f2 = fi[int(N_local/2) : N_local]

for k in range(int(N_local/2)):

Fi[k] = (f1[k] +

53

pow(r, int((256/N_local)*(2*k + 1)), q)*f2[k]) % q

Fi[k + int(N_local/2)] = (f1[k] -

pow(r, int((256/N_local)*(2*k + 1)), q)*f2[k]) % q

return Fi

def ntt_nxn_butterfly(fi):

Fi = [0]*N

if test == "U":

Fi = ntt_nxn_butterfly_instance(fi, N)

elif test == "R":

Fi_temp = []

fi_temp = fi

for i in range(int(math.log(N, 2))):

M1 = 2**(i + 1)

M2 = int(N/(2**M1))

for j in range(M2):

Fi_temp2 = ntt_nxn_butterfly_instance(fi_temp[M1*j : M1 + M1*j], M1)

Fi_temp.append(Fi_temp2)

fi_temp = Fi_temp

return Fi

butterfly_test_vec_file = open("ntt_butterfly_" + str(N) + "x" +

str(N) + "_test_vec.txt", "w")

butterfly_test_vec_file.write("\n")

for i in range(N):

butterfly_test_vec_file.write("\t reg [23:0] fi_" + str(i) + ";\n")

butterfly_test_vec_file.write("\n")

for i in range(N):

butterfly_test_vec_file.write("\t wire [23:0] Fi_" + str(i) + ";\n")

butterfly_test_vec_file.write("\n")

for i in range(N):

butterfly_test_vec_file.write("\t //Input test vectors: fi_" + str(i) + " \n")

butterfly_test_vec_file.write("\t reg [23:0] test_vec_in_fi_" + str(i) +

"[0:" + str(test_length-1) + "];\n")

butterfly_test_vec_file.write("\n")

for i in range(N):

butterfly_test_vec_file.write("\t //Expected-output test vectors: Fi_"

+ str(i) + " \n")

butterfly_test_vec_file.write("\t reg [23:0] test_vec_exp_out_Fi_"

+ str(i) + "[0:" + str(test_length-1) + "];\n")

54

butterfly_test_vec_file.write("\n")

butterfly_test_vec_file.write("\t //Initialization Blocks\n")

for i in range(test_length):

fi = []

for j in range(N):

fi_in = int((q-1)*random.random())

fi.append(fi_in)

Fi = ntt_nxn_butterfly(fi)

butterfly_test_vec_file.write("\t initial begin\n")

for j in range(N):

butterfly_test_vec_file.write("\t \t test_vec_in_fi_" + str(j) +

"[" + str(i) + "] = ")

butterfly_test_vec_file.write("24’d" + str(fi[j]) + ";\n")

butterfly_test_vec_file.write("\n")

for j in range(N):

butterfly_test_vec_file.write("\t \t test_vec_exp_out_Fi_" + str(j) +

"[" + str(i) + "] = ")

butterfly_test_vec_file.write("24’d" + str(Fi[j]) + ";\n")

butterfly_test_vec_file.write("\t end\n")

butterfly_test_vec_file.write("\n")

butterfly_test_vec_file.close()

10.5 ntt butterfly 8x8 unit tb.v

Sample unit test verifying the functionality of the RTL module ntt_butterfly_8x8.v.

module ntt_butterfly_8x8_unit_tb();

parameter CYCLES_TO_WAIT = 10;

integer i;

integer j;

reg clk_100Mhz;

reg [23:0] fi_0;

reg [23:0] fi_1;

reg [23:0] fi_2;

reg [23:0] fi_3;

reg [23:0] fi_4;

reg [23:0] fi_5;

reg [23:0] fi_6;

55

reg [23:0] fi_7;

wire [23:0] Fi_0;

wire [23:0] Fi_1;

wire [23:0] Fi_2;

wire [23:0] Fi_3;

wire [23:0] Fi_4;

wire [23:0] Fi_5;

wire [23:0] Fi_6;

wire [23:0] Fi_7;

//Input test vectors: fi_0

reg [23:0] test_vec_in_fi_0[0:7];

//Input test vectors: fi_1

reg [23:0] test_vec_in_fi_1[0:7];

//Input test vectors: fi_2

reg [23:0] test_vec_in_fi_2[0:7];

//Input test vectors: fi_3

reg [23:0] test_vec_in_fi_3[0:7];

//Input test vectors: fi_4

reg [23:0] test_vec_in_fi_4[0:7];

//Input test vectors: fi_5

reg [23:0] test_vec_in_fi_5[0:7];

//Input test vectors: fi_6

reg [23:0] test_vec_in_fi_6[0:7];

//Input test vectors: fi_7

reg [23:0] test_vec_in_fi_7[0:7];

//Expected-output test vectors: Fi_0

reg [23:0] test_vec_exp_out_Fi_0[0:7];

//Expected-output test vectors: Fi_1

reg [23:0] test_vec_exp_out_Fi_1[0:7];

//Expected-output test vectors: Fi_2

reg [23:0] test_vec_exp_out_Fi_2[0:7];

//Expected-output test vectors: Fi_3

reg [23:0] test_vec_exp_out_Fi_3[0:7];

//Expected-output test vectors: Fi_4

reg [23:0] test_vec_exp_out_Fi_4[0:7];

//Expected-output test vectors: Fi_5

56

reg [23:0] test_vec_exp_out_Fi_5[0:7];

//Expected-output test vectors: Fi_6

reg [23:0] test_vec_exp_out_Fi_6[0:7];

//Expected-output test vectors: Fi_7

reg [23:0] test_vec_exp_out_Fi_7[0:7];

initial begin

clk_100Mhz = 1’b0;

end

//Clock source

always begin

#5; clk_100Mhz = ~clk_100Mhz;

end

//Initialization Blocks

initial begin

test_vec_in_fi_0[0] = 24’d6160794;

test_vec_in_fi_1[0] = 24’d3729094;

test_vec_in_fi_2[0] = 24’d821436;

test_vec_in_fi_3[0] = 24’d1638510;

test_vec_in_fi_4[0] = 24’d7514611;

test_vec_in_fi_5[0] = 24’d6118607;

test_vec_in_fi_6[0] = 24’d5530952;

test_vec_in_fi_7[0] = 24’d7342218;

test_vec_exp_out_Fi_0[0] = 24’d5669706;

test_vec_exp_out_Fi_1[0] = 24’d5935776;

test_vec_exp_out_Fi_2[0] = 24’d2835773;

test_vec_exp_out_Fi_3[0] = 24’d7778795;

test_vec_exp_out_Fi_4[0] = 24’d6651882;

test_vec_exp_out_Fi_5[0] = 24’d1522412;

test_vec_exp_out_Fi_6[0] = 24’d7187516;

test_vec_exp_out_Fi_7[0] = 24’d3878642;

end

initial begin

test_vec_in_fi_0[1] = 24’d6876389;

test_vec_in_fi_1[1] = 24’d1975857;

test_vec_in_fi_2[1] = 24’d4602930;

test_vec_in_fi_3[1] = 24’d7808932;

test_vec_in_fi_4[1] = 24’d283156;

test_vec_in_fi_5[1] = 24’d8356797;

test_vec_in_fi_6[1] = 24’d80761;

test_vec_in_fi_7[1] = 24’d7536007;

test_vec_exp_out_Fi_0[1] = 24’d2728632;

test_vec_exp_out_Fi_1[1] = 24’d2113095;

test_vec_exp_out_Fi_2[1] = 24’d3795874;

57

test_vec_exp_out_Fi_3[1] = 24’d5921040;

test_vec_exp_out_Fi_4[1] = 24’d2643729;

test_vec_exp_out_Fi_5[1] = 24’d1838619;

test_vec_exp_out_Fi_6[1] = 24’d5409986;

test_vec_exp_out_Fi_7[1] = 24’d1316407;

end

initial begin

test_vec_in_fi_0[2] = 24’d1244392;

test_vec_in_fi_1[2] = 24’d3230516;

test_vec_in_fi_2[2] = 24’d6747272;

test_vec_in_fi_3[2] = 24’d1042654;

test_vec_in_fi_4[2] = 24’d2464511;

test_vec_in_fi_5[2] = 24’d2892116;

test_vec_in_fi_6[2] = 24’d5141250;

test_vec_in_fi_7[2] = 24’d7534089;

test_vec_exp_out_Fi_0[2] = 24’d4768373;

test_vec_exp_out_Fi_1[2] = 24’d925230;

test_vec_exp_out_Fi_2[2] = 24’d5392395;

test_vec_exp_out_Fi_3[2] = 24’d5032258;

test_vec_exp_out_Fi_4[2] = 24’d6100828;

test_vec_exp_out_Fi_5[2] = 24’d5535802;

test_vec_exp_out_Fi_6[2] = 24’d8102149;

test_vec_exp_out_Fi_7[2] = 24’d5433467;

end

initial begin

test_vec_in_fi_0[3] = 24’d835924;

test_vec_in_fi_1[3] = 24’d6030074;

test_vec_in_fi_2[3] = 24’d1887552;

test_vec_in_fi_3[3] = 24’d5492287;

test_vec_in_fi_4[3] = 24’d2226060;

test_vec_in_fi_5[3] = 24’d1897376;

test_vec_in_fi_6[3] = 24’d5856029;

test_vec_in_fi_7[3] = 24’d3248945;

test_vec_exp_out_Fi_0[3] = 24’d6479918;

test_vec_exp_out_Fi_1[3] = 24’d5076546;

test_vec_exp_out_Fi_2[3] = 24’d4350607;

test_vec_exp_out_Fi_3[3] = 24’d6256317;

test_vec_exp_out_Fi_4[3] = 24’d3572347;

test_vec_exp_out_Fi_5[3] = 24’d6983602;

test_vec_exp_out_Fi_6[3] = 24’d7804914;

test_vec_exp_out_Fi_7[3] = 24’d4728257;

end

initial begin

test_vec_in_fi_0[4] = 24’d2113451;

test_vec_in_fi_1[4] = 24’d3390569;

test_vec_in_fi_2[4] = 24’d5629027;

58

test_vec_in_fi_3[4] = 24’d5900066;

test_vec_in_fi_4[4] = 24’d5492090;

test_vec_in_fi_5[4] = 24’d2181125;

test_vec_in_fi_6[4] = 24’d6374548;

test_vec_in_fi_7[4] = 24’d1865695;

test_vec_exp_out_Fi_0[4] = 24’d3175772;

test_vec_exp_out_Fi_1[4] = 24’d904055;

test_vec_exp_out_Fi_2[4] = 24’d512679;

test_vec_exp_out_Fi_3[4] = 24’d4760456;

test_vec_exp_out_Fi_4[4] = 24’d1051130;

test_vec_exp_out_Fi_5[4] = 24’d5877083;

test_vec_exp_out_Fi_6[4] = 24’d2364958;

test_vec_exp_out_Fi_7[4] = 24’d7039676;

end

initial begin

test_vec_in_fi_0[5] = 24’d6889110;

test_vec_in_fi_1[5] = 24’d2253402;

test_vec_in_fi_2[5] = 24’d7538125;

test_vec_in_fi_3[5] = 24’d4834889;

test_vec_in_fi_4[5] = 24’d4888133;

test_vec_in_fi_5[5] = 24’d7304219;

test_vec_in_fi_6[5] = 24’d7240836;

test_vec_in_fi_7[5] = 24’d1347179;

test_vec_exp_out_Fi_0[5] = 24’d950864;

test_vec_exp_out_Fi_1[5] = 24’d4613492;

test_vec_exp_out_Fi_2[5] = 24’d457053;

test_vec_exp_out_Fi_3[5] = 24’d3373799;

test_vec_exp_out_Fi_4[5] = 24’d4446939;

test_vec_exp_out_Fi_5[5] = 24’d8273729;

test_vec_exp_out_Fi_6[5] = 24’d6238780;

test_vec_exp_out_Fi_7[5] = 24’d6295979;

end

initial begin

test_vec_in_fi_0[6] = 24’d3536705;

test_vec_in_fi_1[6] = 24’d3058919;

test_vec_in_fi_2[6] = 24’d3474614;

test_vec_in_fi_3[6] = 24’d5554529;

test_vec_in_fi_4[6] = 24’d6723010;

test_vec_in_fi_5[6] = 24’d6107763;

test_vec_in_fi_6[6] = 24’d4994185;

test_vec_in_fi_7[6] = 24’d3280394;

test_vec_exp_out_Fi_0[6] = 24’d3753375;

test_vec_exp_out_Fi_1[6] = 24’d320226;

test_vec_exp_out_Fi_2[6] = 24’d6281642;

test_vec_exp_out_Fi_3[6] = 24’d6876327;

test_vec_exp_out_Fi_4[6] = 24’d3320035;

59

test_vec_exp_out_Fi_5[6] = 24’d5797612;

test_vec_exp_out_Fi_6[6] = 24’d667586;

test_vec_exp_out_Fi_7[6] = 24’d4232731;

end

initial begin

test_vec_in_fi_0[7] = 24’d6510849;

test_vec_in_fi_1[7] = 24’d1126108;

test_vec_in_fi_2[7] = 24’d6161972;

test_vec_in_fi_3[7] = 24’d906439;

test_vec_in_fi_4[7] = 24’d1310684;

test_vec_in_fi_5[7] = 24’d6419979;

test_vec_in_fi_6[7] = 24’d5670648;

test_vec_in_fi_7[7] = 24’d5782392;

test_vec_exp_out_Fi_0[7] = 24’d1384189;

test_vec_exp_out_Fi_1[7] = 24’d1974865;

test_vec_exp_out_Fi_2[7] = 24’d1453786;

test_vec_exp_out_Fi_3[7] = 24’d8198446;

test_vec_exp_out_Fi_4[7] = 24’d3257092;

test_vec_exp_out_Fi_5[7] = 24’d277351;

test_vec_exp_out_Fi_6[7] = 24’d2489741;

test_vec_exp_out_Fi_7[7] = 24’d1994849;

end

initial begin

i = 0;

j = 0;

fi_0 = test_vec_in_fi_0[j];

fi_1 = test_vec_in_fi_1[j];

fi_2 = test_vec_in_fi_2[j];

fi_3 = test_vec_in_fi_3[j];

fi_4 = test_vec_in_fi_4[j];

fi_5 = test_vec_in_fi_5[j];

fi_6 = test_vec_in_fi_6[j];

fi_7 = test_vec_in_fi_7[j];

end

//Test bench logic

always @ (posedge clk_100Mhz) begin

i = i + 1;

if(i % CYCLES_TO_WAIT == 0 && j < 8) begin

if(Fi_0 == test_vec_exp_out_Fi_0[j] &&

Fi_1 == test_vec_exp_out_Fi_1[j] &&

Fi_2 == test_vec_exp_out_Fi_2[j] &&

Fi_3 == test_vec_exp_out_Fi_3[j] &&

Fi_4 == test_vec_exp_out_Fi_4[j] &&

Fi_5 == test_vec_exp_out_Fi_5[j] &&

Fi_6 == test_vec_exp_out_Fi_6[j] &&

Fi_7 == test_vec_exp_out_Fi_7[j]) begin

60

$display("\t[Testbench, j = %d] PASS", j);

end

else begin

$display("\t[Testbench, j = %d] FAIL", j);

$display("\t \t[Testbench, j = %d] Fi_0 Exepcted:

%h", j, test_vec_exp_out_Fi_0[j]);

$display("\t \t[Testbench, j = %d] Fi_1 Expected:

%h", j, test_vec_exp_out_Fi_1[j]);

$display("\t \t[Testbench, j = %d] Fi_2 Exepcted:

%h", j, test_vec_exp_out_Fi_2[j]);

$display("\t \t[Testbench, j = %d] Fi_3 Expected:

%h", j, test_vec_exp_out_Fi_3[j]);

$display("\t \t[Testbench, j = %d] Fi_4 Exepcted:

%h", j, test_vec_exp_out_Fi_4[j]);

$display("\t \t[Testbench, j = %d] Fi_5 Expected:

%h", j, test_vec_exp_out_Fi_5[j]);

$display("\t \t[Testbench, j = %d] Fi_6 Exepcted:

%h", j, test_vec_exp_out_Fi_6[j]);

$display("\t \t[Testbench, j = %d] Fi_7 Expected:

%h", j, test_vec_exp_out_Fi_7[j]);

$display("\t \t[Testbench, j = %d] Fi_0 Received:

%h", j, Fi_0);

$display("\t \t[Testbench, j = %d] Fi_1 Received:

%h", j, Fi_1);

$display("\t \t[Testbench, j = %d] Fi_2 Received:

%h", j, Fi_2);

$display("\t \t[Testbench, j = %d] Fi_3 Received:

%h", j, Fi_3);

$display("\t \t[Testbench, j = %d] Fi_4 Received:

%h", j, Fi_4);

$display("\t \t[Testbench, j = %d] Fi_5 Received:

%h", j, Fi_5);

$display("\t \t[Testbench, j = %d] Fi_6 Received:

%h", j, Fi_6);

$display("\t \t[Testbench, j = %d] Fi_7 Received:

%h", j, Fi_7);

end

j = j + 1;

fi_0 = test_vec_in_fi_0[j];

fi_1 = test_vec_in_fi_1[j];

fi_2 = test_vec_in_fi_2[j];

fi_3 = test_vec_in_fi_3[j];

fi_4 = test_vec_in_fi_4[j];

fi_5 = test_vec_in_fi_5[j];

fi_6 = test_vec_in_fi_6[j];

fi_7 = test_vec_in_fi_7[j];

61

end

end

//Device under test (DUT)

ntt_butterfly_8x8 ntt_butterfly_8x8_DUT(

.clk_100Mhz(clk_100Mhz),

.fi_0(fi_0),

.fi_1(fi_1),

.fi_2(fi_2),

.fi_3(fi_3),

.fi_4(fi_4),

.fi_5(fi_5),

.fi_6(fi_6),

.fi_7(fi_7),

.Fi_0(Fi_0),

.Fi_1(Fi_1),

.Fi_2(Fi_2),

.Fi_3(Fi_3),

.Fi_4(Fi_4),

.Fi_5(Fi_5),

.Fi_6(Fi_6),

.Fi_7(Fi_7));

endmodule

62

