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Goal / Purpose

The problem:
• Blizzard is a complex system with lots of moving parts

• The monitoring software in place is essentially a filtered log events, 

leaving it up to the user to interpret what’s going on 

So what can we do?
• Develop a tool that can be used to visualize Blizzard

• Use that tool in order to come up with useful statistics for the business
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Functional Requirements

• Develop a tool that can be used to visually monitor and analyze the 

behavior and performance of Blizzard

• Develop a tool that can be used to compute and display various metrics 

on orders to find anomalies and problem areas
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Non-Functional Requirements

• Minimize perceived response time

• Minimize performance impact to database

• Develop the tool to be extensible and easy to maintain

• Make components of the tool reusable for other projects in the future
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Architecture / Flow
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Charting Framework

Implementation of functional requirements:

• Develop a tool that can be used to visually monitor and analyze the 

behavior and performance of Blizzard

• Framework supports all of the major charting functionality within Flex while 

significantly improving development time

• Framework adds user interactions not built into the Flex Charting library 

and fixes some of the inherent limitations



2010/12/14    |Lai & Wang 7

Charting Framework

Considerations for non-functional requirements: 

• Make components of the tool reusable for other projects in the future
• Develop the framework to be general purpose and data agnostic

• All major design and implementation of the framework is done before, not 

simultaneously with, the Blizzard Visualization Tool

• Develop the tool to be extensible and easy to maintain

• Features required by the Blizzard Visualization Tool but not initially 

implemented added later, but coupling minimized

• Broken into two components:

– Client side component (Flex)

– Server side component (python)
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Client Side Component

• Handles making request to web service and parsing results

• URL of the server and formatting of the parameters passed to the 

framework by user application to avoid coupling

• Formatting assumed to be as given by server side library

• Renders chart based on specifications given by web service

• All details of chart are specified by the web service – allowing for 

changes to be deployed without having to force the clients to update

• Handles advanced user interactions

• Zooming and scrolling

• Enabling/disabling different components of the chart
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Server Side Component

• Allows for user to build the chart up piece-by-piece

• Generates response that describes the chart in a format that the client 

side component of the library can understand 
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Sample Code – Client Side

<mx:Script>

private function onLoad_(e:Event) : void {
barChartView.src = makeUrl("test_bar_chart", {});

}

</mx:Script>

<mx:Canvas label="Bar Chart" width="600" height="600>

<chart:GenericChart id="barChartView“ 

width="100%" height="100%“ />

</mx:Canvas>

A chart can be inserted into any existing Flex project in only a few lines:

Add component 

to flex project

Tell GenericChart 

to load content 

from URL
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Sample Code – Server Side

chart = BarChart() 

chart.set_linear_x_axis('x title',   

'bottom',  0, 100)

chart.set_linear_y_axis('y title', 

'left', 0, 100)

chart.set_stack_type('stacked')

chart.add_bar_composition('compo1')

chart.add_bar_composition('compo2')

chart.add_bar(5, [2, 6], 

'bar one')

chart.add_bar(10, [10], 

'bar two')

chart.add_bar(17, [50, 50], 

'bar three')

chart.add_bar(29, [20, 20], 

'bar four')

chart.add_bar(80, [60, 10], 

'bar five')

And the resulting chart is:
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Blizzard Visualization Tool

Implementation of functional requirements:

• Develop a tool that can be used to compute various metrics on orders 

to find anomalies and problem areas

• Metrics table section of tool

• Develop a tool that can be used to visually monitor and analyze the 

behavior and performance of Blizzard

• Charts section of tool
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Blizzard Visualization Tool

Considerations for non-functional requirements:

• Develop the tool to be extensible and easy to maintain

• Types of charts and metrics simply lists of titles and URL, so 

adding/removing types are one line changes

• No dependencies between each type of chart or metric

• Minimize performance impact to database

• Results of SQL queries that require complex calculations or joins of large 

tables cached

• Minimize perceived response time

• Tabbing allows for multiple charts to be open and only rendered once
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Blizzard Visualization Tool

Tool split into two sections:

Metrics Table

Charts Area
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Metrics table

• The metrics table allows the user to select any given day and computes 
the desired metric over all orders that were processed that day

• Hit ratio, stalled ratio, fill ratio, submission fill ratio

• Internal latency, order new internal latency

• Returns the top N orders that have the “worst” scores for that metric

• Allows the user to quickly isolate orders that have issues
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Charts

• Currently implemented are three types of charts:

• Price-by-time chart

• Shows the historic price of the order and all order mods over time

• Shows all submissions to the markets and fills associated with those 

submissions

• Shows the historic market prices for the desired stock

• Quantity-by-time chart

• Shows the quantity of shares the order calls for over time

• Shows the quantity of shares executed over time

• Latency-by-time chart

• Shows the latency of every order over the course of a day

• Supports multiple types of latency measurements
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Blizzard Visualization Tool – Live Demo

• http://wbedevserv12.us.net.intra/blizzard_dev/Visualization/devserv11.html#

• Orders to demo:

• 3118464 (Omega)

• 3280639 (PriceMarch)

http://wbedevserv12.us.net.intra/blizzard_dev/Visualization/devserv11.html


2010/12/14    |Lai & Wang 18

Price-by-time Chart
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Quantity-by-time Chart
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Latency-by-time Chart
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Data Analysis

• Goal:
Overview of router performance
Find factors that influence the successfulness of trades 
which is measured by the fill ratio.

• Result:
Stalled ratio and latencies have the largest impacts

• Note: only aggressive orders are counted

Background Per day Per Order Per 5 minutes Summary
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Background – Router Specifications 

Receive an 

order / order 

modification

Determine 

destinations 

and quantity

Send 

submissions 

to the server

Get back from 

the market
Complete

If not fully filled

Server send 

submissions 

to the market
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Background – Metrics used

• Router fill ratio
Filled quantity / total quantity sent

• Customer fill ratio
Filled quantity / order quantity

• Hit ratio
Number of executed submissions / total number of submissions

• Stalled ratio
Number of successive unexecuted submissions at the same price from 

the same destination / total number of submissions

• Latencies

Order Qty = 500

Total Sent Qty = 1000

Filled Qty = 500



2010/12/14    |Lai & Wang 24

Per Day Result

• Group data daily:

• Customer fill ratio = sum of filled quantity / sum of total quantity

• Customer fill ratio on average (from Sep.1 to Oct.30) :

Customer fill ratio PriceMarch Omega Dark DarkPlus Foes

Avg 0.83 0.66 0.96 0.62 0.35 0.89

STD 0.057 0.124 0.078 0.357 0.354 0.052

Percentage 1 10.1% 9.4% 0.3% 0.2% 79.9%

• Different strategies have different performance

• Foes is the most used strategy, while Dark and Dark Plus are  

seldom used
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• Group by side: 

Slightly higher fill ratio on 

buy side than sell side

Varies day to day

• Consistent when further 

grouped to limit buy and 

limit sell

Market order:

• Completing orders under 

the market price

• Average fill ratio = 0.998

Limit order:

• Have specific price limits 

required by customers

• Similar results as before, 

because most orders are limit

Per Day Result – further grouped by
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Per Day Result – Correlation 

Found -0.4 correlation between 

ack latency and customer fill ratio 
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Per Order Result – Router fill ratio

• Get data and calculate stats for each order

• Do the correlation test

• Repeat it for several days

• Stalled ratio, ack latency and market ack latency have more impacts

Correlation between router fill ratio and: Nov.19 Nov.23 Nov.24 Nov.29 Nov.30 Average

hit ratio 0.84 0.84 0.89 0.89 0.87 0.87

Ack latency -0.26 -0.33 -0.39 -0.42 -0.38 -0.36

Internal latency -0.24 -0.28 -0.37 -0.39 -0.37 -0.33

Order new internal latency -0.24 -0.28 -0.37 -0.39 -0.37 -0.33

Force latency -0.14 -0.14 -0.21 -0.13 -0.13 -0.15

Force ack latency -0.19 -0.21 -0.23 -0.17 -0.22 -0.20

Market ack latency -0.50 -0.42 -0.54 -0.42 -0.38 -0.46

duration -0.15 -0.14 -0.20 -0.17 -0.17 -0.17

Number of live submissions -0.16 -0.14 -0.21 -0.18 -0.17 -0.17

Stalled ratio -0.37 -0.50 -0.40 -0.53 -0.57 -0.48

Quantity / volume -0.13 -0.27 -0.13 -0.18 -0.12 -0.17

Price range -0.23 -0.18 -0.05 -0.03 -0.05 -0.11
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Per Order Result – Nov.19
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Per Order Result – Customer fill ratio

• Lack of data to do the correlation test

• 91% customer fill ratios are 1 on Nov.19

• 0.91 possibility to get fully filled

• Average = 0.96

• (different from 0.88 because not weighted by quantity)

• 92% for Nov.24

• Average = 0.95
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Per 5 minutes Result

• Group orders created in the 5 minutes period

• Strengthened correlation for latencies

Correlation between router fill ratio and: Nov.19 Nov.23 Nov.24 Nov.29 Nov.30 Average

hit ratio 0.91 0.89 0.90 0.93 0.92 0.92

Ack latency -0.44 -0.33 -0.40 -0.39 -0.73 -0.48

Internal latency -0.12 -0.27 -0.18 -0.52 -0.62 -0.39

Order new internal latency -0.46 -0.24 -0.42 -0.02 -0.56 -0.35

Force latency -0.44 -0.41 -0.19 -0.33 -0.38 -0.37

Force ack latency -0.43 -0.41 -0.24 -0.44 -0.46 -0.41

Market ack latency -0.68 -0.61 -0.40 -0.67 -0.73 -0.65

Number of live submissions -0.15 -0.05 0.01 0.23 0.45 0.10
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Per 5 minutes Result – compared to per order
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Summary

• Weighted average customer fill ratio is around 0.83 
(from Sep.1 to Oct.30)

• Over 90% aggressive orders are fully filled
(late November)

• Factors influence the fill ratio most:

• Stalled ratio 

• Ack latency

• Internal latency

• Market ack latency
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Questions?

Free to Contact us:

Xiaoyun Wang  wang@wpi.edu

Huan Lai           huanlai@wpi.edu

Thanks to BNP Paribas and people who 

support us:

David Jobet (our mentor) 

david.jobet@americas.bnpparibas.com

Scott Visconti

Christophe Poulmarc'k

Thanks to WPI and our adviors:

Prof. Gerstenfeld  ag@wpi.edu

Prof. Dougherty    dd@cs.wpi.edu

Prof. Abraham      jabraham@wpi.edu
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