
Equity Smart Order Router

Huan Lai

Xiaoyun Wang

December 14, 2010

2010/12/14 |Lai & Wang 2

Goal / Purpose

The problem:
• Blizzard is a complex system with lots of moving parts

• The monitoring software in place is essentially a filtered log events,

leaving it up to the user to interpret what’s going on

So what can we do?
• Develop a tool that can be used to visualize Blizzard

• Use that tool in order to come up with useful statistics for the business

2010/12/14 |Lai & Wang 3

Functional Requirements

• Develop a tool that can be used to visually monitor and analyze the

behavior and performance of Blizzard

• Develop a tool that can be used to compute and display various metrics

on orders to find anomalies and problem areas

2010/12/14 |Lai & Wang 4

Non-Functional Requirements

• Minimize perceived response time

• Minimize performance impact to database

• Develop the tool to be extensible and easy to maintain

• Make components of the tool reusable for other projects in the future

2010/12/14 |Lai & Wang 5

Architecture / Flow

GenericChart

(flex lib)

Client-Side Server-Side

Blizzard

Visualization

Tool

1. Include component

2. Set web service URL

with desired parameters

set

Blizzard

Visualization

Server

3. Send request to

web service

Blizzard

DB

4. Query DB for

necessary data

(caching results)

*Chart

(python lib)

5. Build chart

6. Generate flex formatting

for chart

7. Return formatted

dictionary to client

to render

2010/12/14 |Lai & Wang 6

Charting Framework

Implementation of functional requirements:

• Develop a tool that can be used to visually monitor and analyze the

behavior and performance of Blizzard

• Framework supports all of the major charting functionality within Flex while

significantly improving development time

• Framework adds user interactions not built into the Flex Charting library

and fixes some of the inherent limitations

2010/12/14 |Lai & Wang 7

Charting Framework

Considerations for non-functional requirements:

• Make components of the tool reusable for other projects in the future
• Develop the framework to be general purpose and data agnostic

• All major design and implementation of the framework is done before, not

simultaneously with, the Blizzard Visualization Tool

• Develop the tool to be extensible and easy to maintain

• Features required by the Blizzard Visualization Tool but not initially

implemented added later, but coupling minimized

• Broken into two components:

– Client side component (Flex)

– Server side component (python)

2010/12/14 |Lai & Wang 8

Client Side Component

• Handles making request to web service and parsing results

• URL of the server and formatting of the parameters passed to the

framework by user application to avoid coupling

• Formatting assumed to be as given by server side library

• Renders chart based on specifications given by web service

• All details of chart are specified by the web service – allowing for

changes to be deployed without having to force the clients to update

• Handles advanced user interactions

• Zooming and scrolling

• Enabling/disabling different components of the chart

2010/12/14 |Lai & Wang 9

Server Side Component

• Allows for user to build the chart up piece-by-piece

• Generates response that describes the chart in a format that the client

side component of the library can understand

2010/12/14 |Lai & Wang 10

Sample Code – Client Side

<mx:Script>

private function onLoad_(e:Event) : void {
barChartView.src = makeUrl("test_bar_chart", {});

}

</mx:Script>

<mx:Canvas label="Bar Chart" width="600" height="600>

<chart:GenericChart id="barChartView“

width="100%" height="100%“ />

</mx:Canvas>

A chart can be inserted into any existing Flex project in only a few lines:

Add component

to flex project

Tell GenericChart

to load content

from URL

2010/12/14 |Lai & Wang 11

Sample Code – Server Side

chart = BarChart()

chart.set_linear_x_axis('x title',

'bottom', 0, 100)

chart.set_linear_y_axis('y title',

'left', 0, 100)

chart.set_stack_type('stacked')

chart.add_bar_composition('compo1')

chart.add_bar_composition('compo2')

chart.add_bar(5, [2, 6],

'bar one')

chart.add_bar(10, [10],

'bar two')

chart.add_bar(17, [50, 50],

'bar three')

chart.add_bar(29, [20, 20],

'bar four')

chart.add_bar(80, [60, 10],

'bar five')

And the resulting chart is:

2010/12/14 |Lai & Wang 12

Blizzard Visualization Tool

Implementation of functional requirements:

• Develop a tool that can be used to compute various metrics on orders

to find anomalies and problem areas

• Metrics table section of tool

• Develop a tool that can be used to visually monitor and analyze the

behavior and performance of Blizzard

• Charts section of tool

2010/12/14 |Lai & Wang 13

Blizzard Visualization Tool

Considerations for non-functional requirements:

• Develop the tool to be extensible and easy to maintain

• Types of charts and metrics simply lists of titles and URL, so

adding/removing types are one line changes

• No dependencies between each type of chart or metric

• Minimize performance impact to database

• Results of SQL queries that require complex calculations or joins of large

tables cached

• Minimize perceived response time

• Tabbing allows for multiple charts to be open and only rendered once

2010/12/14 |Lai & Wang 14

Blizzard Visualization Tool

Tool split into two sections:

Metrics Table

Charts Area

2010/12/14 |Lai & Wang 15

Metrics table

• The metrics table allows the user to select any given day and computes
the desired metric over all orders that were processed that day

• Hit ratio, stalled ratio, fill ratio, submission fill ratio

• Internal latency, order new internal latency

• Returns the top N orders that have the “worst” scores for that metric

• Allows the user to quickly isolate orders that have issues

2010/12/14 |Lai & Wang 16

Charts

• Currently implemented are three types of charts:

• Price-by-time chart

• Shows the historic price of the order and all order mods over time

• Shows all submissions to the markets and fills associated with those

submissions

• Shows the historic market prices for the desired stock

• Quantity-by-time chart

• Shows the quantity of shares the order calls for over time

• Shows the quantity of shares executed over time

• Latency-by-time chart

• Shows the latency of every order over the course of a day

• Supports multiple types of latency measurements

2010/12/14 |Lai & Wang 17

Blizzard Visualization Tool – Live Demo

• http://wbedevserv12.us.net.intra/blizzard_dev/Visualization/devserv11.html#

• Orders to demo:

• 3118464 (Omega)

• 3280639 (PriceMarch)

http://wbedevserv12.us.net.intra/blizzard_dev/Visualization/devserv11.html

2010/12/14 |Lai & Wang 18

Price-by-time Chart

2010/12/14 |Lai & Wang 19

Quantity-by-time Chart

2010/12/14 |Lai & Wang 20

Latency-by-time Chart

2010/12/14 |Lai & Wang 21

Data Analysis

• Goal:
Overview of router performance
Find factors that influence the successfulness of trades
which is measured by the fill ratio.

• Result:
Stalled ratio and latencies have the largest impacts

• Note: only aggressive orders are counted

Background Per day Per Order Per 5 minutes Summary

2010/12/14 |Lai & Wang 22

Background – Router Specifications

Receive an

order / order

modification

Determine

destinations

and quantity

Send

submissions

to the server

Get back from

the market
Complete

If not fully filled

Server send

submissions

to the market

2010/12/14 |Lai & Wang 23

Background – Metrics used

• Router fill ratio
Filled quantity / total quantity sent

• Customer fill ratio
Filled quantity / order quantity

• Hit ratio
Number of executed submissions / total number of submissions

• Stalled ratio
Number of successive unexecuted submissions at the same price from

the same destination / total number of submissions

• Latencies

Order Qty = 500

Total Sent Qty = 1000

Filled Qty = 500

2010/12/14 |Lai & Wang 24

Per Day Result

• Group data daily:

• Customer fill ratio = sum of filled quantity / sum of total quantity

• Customer fill ratio on average (from Sep.1 to Oct.30) :

Customer fill ratio PriceMarch Omega Dark DarkPlus Foes

Avg 0.83 0.66 0.96 0.62 0.35 0.89

STD 0.057 0.124 0.078 0.357 0.354 0.052

Percentage 1 10.1% 9.4% 0.3% 0.2% 79.9%

• Different strategies have different performance

• Foes is the most used strategy, while Dark and Dark Plus are

seldom used

2010/12/14 |Lai & Wang 25

• Group by side:

Slightly higher fill ratio on

buy side than sell side

Varies day to day

• Consistent when further

grouped to limit buy and

limit sell

Market order:

• Completing orders under

the market price

• Average fill ratio = 0.998

Limit order:

• Have specific price limits

required by customers

• Similar results as before,

because most orders are limit

Per Day Result – further grouped by

2010/12/14 |Lai & Wang 26

Per Day Result – Correlation

Found -0.4 correlation between

ack latency and customer fill ratio

400 450 500 550 600

0
.7

0
0

.7
5

0
.8

0
0

.8
5

0
.9

0
0

.9
5

ack_latency

e
x
e

c
u

ti
v
e

_
ra

ti
o

2010/12/14 |Lai & Wang 27

Per Order Result – Router fill ratio

• Get data and calculate stats for each order

• Do the correlation test

• Repeat it for several days

• Stalled ratio, ack latency and market ack latency have more impacts

Correlation between router fill ratio and: Nov.19 Nov.23 Nov.24 Nov.29 Nov.30 Average

hit ratio 0.84 0.84 0.89 0.89 0.87 0.87

Ack latency -0.26 -0.33 -0.39 -0.42 -0.38 -0.36

Internal latency -0.24 -0.28 -0.37 -0.39 -0.37 -0.33

Order new internal latency -0.24 -0.28 -0.37 -0.39 -0.37 -0.33

Force latency -0.14 -0.14 -0.21 -0.13 -0.13 -0.15

Force ack latency -0.19 -0.21 -0.23 -0.17 -0.22 -0.20

Market ack latency -0.50 -0.42 -0.54 -0.42 -0.38 -0.46

duration -0.15 -0.14 -0.20 -0.17 -0.17 -0.17

Number of live submissions -0.16 -0.14 -0.21 -0.18 -0.17 -0.17

Stalled ratio -0.37 -0.50 -0.40 -0.53 -0.57 -0.48

Quantity / volume -0.13 -0.27 -0.13 -0.18 -0.12 -0.17

Price range -0.23 -0.18 -0.05 -0.03 -0.05 -0.11

2010/12/14 |Lai & Wang 28

Per Order Result – Nov.19

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

hit_ratio

fi
ll
_

ra
ti
o

0.0 0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

stalled_ratio

fi
ll
_

ra
ti
o

5000 10000 15000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

market_ack_latency

fi
ll
_

ra
ti
o

Hit ratio:

0.8

Stalled ratio:

-0.4

Market ack latency:

-0.5

2010/12/14 |Lai & Wang 29

Per Order Result – Customer fill ratio

• Lack of data to do the correlation test

• 91% customer fill ratios are 1 on Nov.19

• 0.91 possibility to get fully filled

• Average = 0.96

• (different from 0.88 because not weighted by quantity)

• 92% for Nov.24

• Average = 0.95

2010/12/14 |Lai & Wang 30

Per 5 minutes Result

• Group orders created in the 5 minutes period

• Strengthened correlation for latencies

Correlation between router fill ratio and: Nov.19 Nov.23 Nov.24 Nov.29 Nov.30 Average

hit ratio 0.91 0.89 0.90 0.93 0.92 0.92

Ack latency -0.44 -0.33 -0.40 -0.39 -0.73 -0.48

Internal latency -0.12 -0.27 -0.18 -0.52 -0.62 -0.39

Order new internal latency -0.46 -0.24 -0.42 -0.02 -0.56 -0.35

Force latency -0.44 -0.41 -0.19 -0.33 -0.38 -0.37

Force ack latency -0.43 -0.41 -0.24 -0.44 -0.46 -0.41

Market ack latency -0.68 -0.61 -0.40 -0.67 -0.73 -0.65

Number of live submissions -0.15 -0.05 0.01 0.23 0.45 0.10

2010/12/14 |Lai & Wang 31

Per 5 minutes Result – compared to per order

1000 1500 2000 2500 3000 3500

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

force_ack_latency

fi
ll
_

ra
ti
o

2000 4000 6000 8000 10000 12000

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

market_ack_latency

fi
ll
_

ra
ti
o

5000 10000 15000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

market_ack_latency

fi
ll
_

ra
ti
o

0 5000 10000 15000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

force_ack_latency

fi
ll
_

ra
ti
o

-0.7

-0.5

-0.4

-0.2

2010/12/14 |Lai & Wang 32

Summary

• Weighted average customer fill ratio is around 0.83
(from Sep.1 to Oct.30)

• Over 90% aggressive orders are fully filled
(late November)

• Factors influence the fill ratio most:

• Stalled ratio

• Ack latency

• Internal latency

• Market ack latency

2010/12/14 |Lai & Wang 33

Questions?

Free to Contact us:

Xiaoyun Wang wang@wpi.edu

Huan Lai huanlai@wpi.edu

Thanks to BNP Paribas and people who

support us:

David Jobet (our mentor)

david.jobet@americas.bnpparibas.com

Scott Visconti

Christophe Poulmarc'k

Thanks to WPI and our adviors:

Prof. Gerstenfeld ag@wpi.edu

Prof. Dougherty dd@cs.wpi.edu

Prof. Abraham jabraham@wpi.edu

mailto:wang@wpi.edu
mailto:huanlai@wpi.edu
mailto:david.jobet@americas.bnpparibas.com
mailto:ag@wpi.edu
mailto:dd@cs.wpi.edu
mailto:jabraham@wpi.edu

