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Abstract 
The goal of this project was to develop a thermoelectric scavenging device for use on a Pratt and 

Whitney gas turbine engine during static testing.  Design requirements include an overall system 

size of less than 3”x3”x3” and the ability to produce a steady 10V at 300 mA.  This project 

extended previous efforts by a WPI MQP group.  Modifications were made to many of the 

original components to further the goal of creating a more robust assembly.  Computer models 

were created and examined in parallel with experimental results to select optimized 

configurations and operating conditions.  Vibration and thermal failure modes were analyzed to 

ensure the final design would function in the test environment.  Finally, an endurance test was 

run on a hot steam pipe in the WPI Powerhouse to simulate use by a client in the field.  The 

device successfully converts thermal energy into electricity but at a lower power levels than 

required by Pratt and Whitney.  Suggested solutions are provided to overcome the lack of 

adequate power generation. 
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1 Introduction 
 

In the process of jet engine testing and validation, one of the major costs is the set up of 

the thousands of sensors that are required to fully observe how the engine performs. Mainly 

sensors collect pressure and temperature data in order to calculate engine characteristics such 

as specific fuel consumption, static and stagnation pressure ratios, and temperature ratios. As 

seen in Figure 1-2, an engine setup can be quite complex. It can take thousands of man hours to 

prepare a test, which translates into tens of thousands of dollars. 

Each set of sensors requires two sets of cabling, namely power and data transfer lines. 

The data transfer lines can be fairly easily eliminated with a wireless data transmitter. Unless 

the need for an external power supply can be eliminated, the savings would be marginal. The 

purpose of this project is to design, build, and test an energy scavenging system that can be 

implemented in order to fill this demand.  

Figure 1-2 Engine During Testing (Def10) Figure 1-1: Engine During Testing (Def10) 
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2 Design Requirements 

Each energy scavenging system must measure less than 3”x3”x3”, produce roughly 10V 

at 0.3 A, and be able to withstand a temperature of up to 2000°F. The unit must continuously 

provide stable power before engine start up, throughout the testing, and after engine 

shutdown. It must also be able to withstand the harsh environment that it will operate in 

without need of repair. It must also be affordable, and practical in order to be implemented on 

a full scale at Pratt and Whitney. The precise requirements and constraints are listed in bullet 

form below, for ease of reference. 

2.1 Requirements 

 10 V at 0.3 A 

 Continuous power delivery before “firing” of engine 

 Continuous operations for 100+ hours 

 Withstand temperatures of up to 2000 F 

 Maintenance free 

2.2 Design Constraints 

 3”x3”x3” Volume 

 No chance of engine damage 

 Fairly inexpensive 
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3 Previous Work 
 
  This project is a continuation of an MQP project by Bradway et al (2008).  The initial 

project had the goals of building a proof of concept device that would harvest excess energy 

from an active jet engine to power test sensors.  Many feet of wiring along with hundreds of 

hours used in setup time would be able to be saved by using a device to scavenge this excess 

energy and so Pratt and Whitney, an Aerospace and Defense company, took the role of sponsor 

for the project.  

Bradway et al (2008) identified available sources of energy scavenging from turbine 

engines to be thermal, vibrational and piezoelectric.  By examining past research they were able 

to determine that both vibrational and piezoelectric methods, for the 3”x3”x3” volume limit 

required, could not generate the desired power.  Thermal energy scavenging was found to be 

the most viable solution due to both the abundance of research in the field and the relative 

ease of use.  Many manufacturers offer Thermo-Electric Generators (TEGs) and basic heat 

transfer theory is very accessible making thermal energy scavenging a very practical solution.  

When designing the assembly, Bradway et al (2008) had a number of design decisions to 

make.  First, they had to select an appropriate TEG to maximize power while minimizing cost 

and size. They selected a TEG from the supplier Tellurex that was approximately 2.1”x2.1” in 

cross section and 0.125” thick.  Because of these dimensions, only one TEG could be used in the 

desired 3”x3” cross section.  To maximize the possible output of this generator, the ΔT had to 

be maximized across it. This was done with a heat sink attachment, and later with a table fan 

forcing air over the heat sink.  In order to maximize the transfer of heat to and from the 
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generator, aluminum plates were fabricated to envelop it.  

One of the Pratt and Whitney’s requirements of the generator assembly was that the 

device would operate during start-up of the engine, even before excess heat was generated. 

To solve this problem, a rechargeable battery pack was introduced into the design.  Bradway 

et al (2008) chose Lithium Ion batteries because of their longevity.  A dual-power electric 

circuit was then designed to draw power from the batteries during transient and low 

temperature periods, and to charge the batteries when excess energy was available.  The 

circuit was designed and tested successfully.  

During testing, desirable voltages and currents were achieved through the use of a 

large external fan. The batteries and most electronics were left off of the hot plate used for 

testing to prevent thermal failure, and they acknowledge the large table fan used will be 

unfeasible for a production model, but their results certify the proof of concept that this 

device can meet the power requirements of Pratt and Whitney.  
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4 Background Theory 
 

4.1 The Seebeck Principle 

 

 The thermo electric generators, as stated above, work through the Seebeck principle.  In 

1821, Thomas Seebeck discovered the thermocouple when he noted that two electrically 

conductive metals are separated along their length but connected at their ends and exposed to 

different temperatures, a magnetic field is generated at the legs (Encyclopedia Britannica, 

2010).  The ratio of temperature difference across the metals to the voltage generated by the 

magnetic field is called the Seebeck coefficient.  These thermocouples can be wired in series to 

create an array called a thermopile which is placed between ceramic plates to withstand high 

temperatures (TEG Power, 2009).  

4.2 Heat Sinks 

 

As will be discussed in §5.1, a heat sink was used to increase heat dissipation from the 

generator.  This decision was made similarly to that of Bradway et al (2008).  Heat sinks utilize 

fins protruding from their surface to increase their total surface area.  This increased surface 

area allows for much higher rates of cooling than would be possible with the generator exposed 

to ambient air.  By increasing this cooling, the effectiveness of the Seebeck principle can 

likewise be increased.  The goal is to maximize the hot side temperature and minimize the cool 

side without using active cooling such as fans.  This allows all energy harvested to be used by 

the load and keeps the volume of the assembly within the allowable envelope.   
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5 Design Alternatives 
 

5.1 Assembly 

 

The direction taken in the design process was straightforward from the description of 

the project and the limiting dimensions and factors. The original design for this project 

consisted of, from bottom to top; an aluminum base plate, the thermoelectric generators, a 

heat sink, a fan, and electronics boxes.  There was to be an insert milled into the heat sink to 

allow for flush contact between the generators and the sink. 

The first design revision can be seen in Figure 5-1.  The black ribbon seen in Figure 5-1 is 

a silicone insert designed to insulate the heat sink from the aluminum plate.  The silicone gasket 

will force the heat flow to go through the generators, allowing the device to reach maximum 

effectiveness.  

 

Figure 5-1 Original Assembly 
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As a result of budgetary constraints the four generator design was not a viable option, 

therefore the design was altered to fit two generators instead.  The change from four 

generators to two will be shown in the decreased performance of the device. The decrease will 

be linear and will be accounted for in the results section.  The results from initial testing 

showed that the fans were not significantly increasing performance and were removed from 

the design to fully utilize the power generated by the device.  The final assembly is shown in 

Figure 5-2. The final design allows for the electronics to be placed on the side of the heat sink.  

Two screws were added instead of one so that the bottom plate and heat sink could not rotate. 

 

Because the base plate of the heat sink was so thin, the milled insert was moved to the 

heat sink.  This feature allows for more flexibility in the design by creating a quick change 

interface between heat sinks..  To test new heat sinks using the original design each sink would 

have to be precisely machined.  In the current design, the only work that needs to be done on a 

Figure 5-2 Second Generation Assembly 
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new heat sink is the tapping of two holes to accommodate the screws that hold the assembly 

together.  

 

The final assembly, shown in Figure 4, allows for the electronics to be placed on the side 

of the heat sink.  The configuration of these electronics will be determined by the method that 

the customer will use to make the circuits discussed in the Circuitry section.  During 

construction the decision was made to use the current heat sink which is larger than shown but 

still fits within the required dimensions. 

The final assembly is easily adjusted to accommodate any number of generators based 

on the data collected from testing. The only changes would be to the base plate, gasket and 

heat sink, the rest of the design would stay the same.  The finished product’s overall structure 

would not differ except in heat sink dimensions.  The performance would be altered based on 

the heat sink’s capabilities.      

Figure 5-3 Final Assembly as Tested 
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5.2 Thermal Generators 

 

Initially there were two possibilities for thermoelectric generators that appeared to 

meet the requirements; Hi-Z and TEG Power. TEG Power is a West Virginia based company who 

created enhanced Seebeck TE modules. The TEG Power Enhanced Seebeck TE Module is 

capable of creating 5 volts, 1.8 amps, and 9 watts with a temperature gradient of 200C. Hi-Z 

Technology, Inc. was identified as possessing a product that performed in the range of the TEG 

Power module but was more expensive.  

Properties of the 2 Watt Module, HZ-2 

Physical Properties Value Tolerance 

Width & Length  1.15" (2.90 cm) ±0.01 (0.25) 

Thickness  0.2" (0.508) ±0.01 (0.25) 

(Special Order)   ±0.002 (0.05)  

Weight 13.5 grams ±2 grams 

Compressive Yield Stress 3 ksi (20 MPa) minimum 

Number of active couples  97 couples ---- 

Thermal Properties 

Design Hot Side Temperature 230°C (450°F) ±10 (20) 

Design Cold Side Temperature 30°C (85°F) ±5 (10) 

Maximum Continuous Temperature 250°C (480°F) ---- 

Maximum Intermittent Temperature  400°C (750°F) ---- 

Thermal Conductivity* 0.024 W/cm*K 0.001 

Heat Flux*  9.54 W/sqcm ±0.5 

Electrical Properties (as a generator)* 

Power** 2.5 Watts minimum 

Load Voltage 3.3 Volts ±0.1 

Internal Resistance 4.0 A ±0.05 

Current  0.8 Amps ±1 

Open Circuit Voltage  6.53 Volts ±0.3 

Efficiency  4.50% minimum 

    

Table 5-1 Properties of the HZ-2 Module (Hi-Z) 
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The product is known as the HZ-2 and is 1.15 inches square and .2 inches thick. The HZ-2 

module is capable of creating 2.5 Watts and 3.3 Volts at matched loads with a hot side 

temperature of 230C and a differential of 200C.  The HZ-2 is also quite durable with a maximum 

continuous temperature of 250C and a maximum intermittent temperature of 400C. 

The specifications for the HZ-2 are listed in Table 5-1 and, when compared to the 

specifications for the TEG Power Enhanced Seebeck Module, show that there is very little 

difference in the two devices and the final unit performance should not suffer.(Hi-Z) 

After placing an order with TEG Power they had numerous issues in being able to deliver 

the final product. The decision was then made to use the HZ-2 as a replacement for the TEG 

Power generators. As discussed earlier, the dimensions and properties are more than adequate 

to act as a drop in replacement for the TEG Power enhanced Seebeck modules used in the 

preliminary design.  At the writing of this report TEG Power was no longer producing the 

Enhanced Seebeck Module. 

The HZ-2 and TEG Power modules both work by implementing the Seebeck effect.  

Seebeck modules are more durable and efficient at converting a temperature differential into 

usable electricity than the more common Peltier modules.  The majority of thermoelectric 

devices utilize the Peltier effect which is not as robust as the Seebeck module produced by Hi-Z 

and TEG Power which have a 100F higher temperature threshold.  The Seebeck module is also 

capable of creating 9 watts of power compared to the two watt limit on all 127 thermocouple 

Peltier modules.  The modules are also capable of being connected in parallel or series to 

increase any desired output from the thermal energy scavenging device.(TEG Power, 2009)   
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5.3 Batteries 

 

The batteries to be used need to fit several requirements.  The batteries must have 

enough capacity to power the load until the thermoelectric generators begin producing 

sufficient power.  Low self discharge rates are needed to ensure there is power to run the 

device after idling for long periods of time, as much as three months or more.  The batteries 

should also have the ability to go through many charge cycles without ill effects on the 

batteries' characteristics.   

    Many batteries can be eliminated due to the baseline requirements.  Rechargeable 

lithium-coin type batteries, such as those typically used in watches, lacked the capacity needed 

in this application.  Standard Ni-Cd rechargeable and Ni-MH have poor self-discharge 

characteristics, losing as much as 30% of their capacity per month at room temperature, with 

self discharge rates increasing with increasing temperatures.  Rechargeable alkaline batteries 

have poor cycle life.  Lithium-ion batteries will permanently lose capacity if constantly charged 

for periods of time, and have more catastrophic failure modes with the possibility of exploding 

if overcharged or overheated.  

     Low self discharge Ni-MH batteries were found to be a good match for this application. 

 Low self discharge Ni-MH rechargeable batteries have lower self discharge rates because of 

three changes from the traditional Ni-MH battery.  A different material for the negative 

electrode is used, additional additives are used in the positive electrode, and using a different 

separator between the electrodes.  These all result in a lower self-discharge rate, with the 

batteries only losing 5% to 10% of their capacity per month.  From the graphs provided by 

Sanyo, after three months of sitting idle, the batteries retain over 90% of their capacity as 
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shown in Figure 5-5.  Even at the reduced capacity, it is expected that the batteries will provide 

enough power to allow the sensors to be run during the time the thermoelectric generators will 

need to reach operating temperatures.  The batteries are also rated to be recharged over 1000 

times before significant degradation in storage capacity occurs, as seen in Figure 5-4.  This will 

allow the device to be run without the need to replace batteries after many test cycles.  From 

the material safety datasheet (SANYO), the maximum temperature before the batteries begin 

to fail is 212°F at which point they may begin to leak electrolyte, which can cause skin burns if 

handled without proper safety gear.  Should the batteries fail from high temperature, this is 

relatively mild and manageable and should not damage any other components of the device 

 

 

 

 

  

Figure 5-4 Discharge Capacity of Ni-MH Batteries (Teraoka) 
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Figure 5-5 Storage Time Performance of Ni-MH Batteries (Teraoka) 
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5.4 Circuitry 

 

 One major design task is routing the desired energy from the thermoelectric generators 

into the array of sensors and data transmitters. Under normal circumstances, the idea of 

transporting electrical energy might not seem to be much of a challenge, but this is not an 

ordinary application. Temperatures immediately surrounding the thermoelectric generator can 

be as high as 250 °C, much hotter than most electronics can operate. Also, because of 

temperature variations with time, the energy produced is not constant. These sensors require a 

constant energy supply.  Finally, the batteries will need to be on a smart circuit to either charge 

or drain them during the test. 

 The first challenge is to remain well within the operating temperature of each of the 

components in the circuitry. As discussed earlier, the batteries have max temperature of 50 °C. 

Standard electronic components operate at a ceiling of roughly 50 °C. It is paramount that the 

temperature of the electronics does not exceed their capabilities.  Active cooling has the 

potential to increase the voltage generated at a cost of using generated power. This may result 

in less net power generated than passive cooling. This will be discussed in further detail later 

on. 

 Ideally, the energy created by the thermoelectric generator is constant and steady. This 

assumes that all temperatures, cooling rates and energy dissipation are constant at steady 

state. In a real life situation, this scenario is extremely unlikely. A means must be provided in 

order to account for such perturbations in the nominal conditions. 
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In order to ensure a constant energy distribution, either the temperatures must remain 

constant at their nominal conditions, or a circuit must be designed in which the voltage is 

regulated at a given quantity. To be able to keep the temperatures nominal would require a 

degree of sophistication, complexity, and cost that is not in the scope of this project. 

Fortunately it is much easier, simpler, and cost effective to create what is known as a voltage 

stabilizer.  

 A voltage stabilizer is a relatively simple circuit that uses a shunt regulator in order to 

maintain a constant voltage. A shunt regulator, such as a Zener diode, will begin conducting at a 

specified voltage. The shunt regulator will conduct as much current as required to hold its 

terminal voltage in order to maintain the desired voltage. 

 A transistor is a rather innovative electronic component which has revolutionized 

electronics since its introduction in 1960. It has a variety of uses which include, but aren’t 

limited to amplification and switching. In this particular application, we are most concerned 

with the switching application of the transistor.  The Zener diode used in series with a transistor 

will stabilize any voltage produced by the thermoelectric generators, assuming that Vin is 0.7 V 

greater than the design voltage Vout. 

 In order to validate the theory, the previous circuit as pictured in Figure 5-10 needs to 

be analyzed computationally with software. Although more sophisticated and complex analysis 

tools exist, for our purposes and budget, PSICE will be sufficient. As specified by Pratt & 

Whitney, the sensors will draw 0.3 A at 10 V. Using Ohms Law, Equation 1, the equivalent 

resistance can be calculated as 33.3 Ohms.  
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𝑽

𝑰
= 𝑹 (1) 

The above calculated equivalent resistance will be used for R2 in the simulation in order 

to model the circuit. The Zener Diode, D1, is chosen to be a 1N740A 10V 1W diode. This should 

supply 10 V to the collector of the transistor and thus supply ~ 10V to the load. In this model, 

the thermo electric generators are simulated by a DC and AC voltage supply, placed in series, 

creating a sinusoidal Vin that is modeled by Equation 2.  This will simulate a varying voltage 

ranging from 12.75 to 13.25 V with a period of 1 second. 

𝑽𝒊𝒏 = 𝟏𝟑 + 𝟎.𝟐𝟓 ∗ 𝐬𝐢𝐧(
𝒕

𝟐 ∗ 𝝅
) (2) 

Figure 5-6 displays the input and output of the voltage stabilizer as a function of time. 

This input is shown by the red line labeled V(V2:+) and the output is shown by the blue line 

labeled V(R2:2). As can be shown, the amplitude of voltage oscillation is reduced by a factor of 

2. 

 

Figure 5-6 Voltage Stabilizer 
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The dampening is even more dramatic if the nominal input voltage is raised to 14.75V as 

shown in Figure 5-7. 

 

 

Unfortunately, this presents another problem. In order to produce a stable 10.2V 

output, we need to generate at least 14.75V from the thermo electric generator. One TEG only 

produces, at most, 2.45 V at a hot side temperature of 200 °C and cool side of 50 °C. A DC to DC 

converter can be used in order to step up the voltage to the required value, while conserving 

power. The output of the integrated circuit is governed by the following equation, Equation 3. 

The power in 𝑽𝒊𝒏 ∗ 𝑰𝒊𝒏 must equal the power out 𝑽𝒐𝒖𝒕 ∗ 𝑰𝒐𝒖𝒕 divided by the efficiency of the 

integrated circuit.  

𝑽𝒊𝒏 ∗ 𝑰𝒊𝒏 =
𝑽𝒐𝒖𝒕 ∗ 𝑰𝒐𝒖𝒕

𝜼𝒊𝒄
 (3) 

 

Figure 5-7 14.75 Volt Circuit 
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As stated by Hi-Z specs, at a hot side temperature of 200 °C and a cool side of 50 °C, 

each module produces a maximum power of 1.86 W at matched loads (Hi-Z).  As stated by Pratt 

& Whitney, 10V at 0.3A of electricity is required. This equates to 3 W of electricity. Therefore, 

using Equation 3, an efficiency of 80.6% is required for the system.  

A MAX863 is used in order to step up the voltage to the needed 10V. Key parameters of 

the IC are shown in the following chart, Figure 5-8. Figure 5-9 shows how to use the MAX863 in 

a circuit. 

 
MAX863 

Efficiency 90% 

Vout Max 24 V 

I @ Vout of 
10V 337 mA 

Vin Min 1.7 V 

Operating 
Temp 

-40°C to 
+85°C 

 

Figure 5-8 MAX863 Performance Table 

Figure 5-9 Voltage Selector 
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In order to select the output voltage required, the following formula can be used, where 

R1 and R2 are as labeled in Figure 5-9. R2 is recommended to be in the 10kΩ to 500kΩ range. 

Stepping through Equation 4, the ratio R1/R2 can be found to be 7.  

𝑹𝟏 = 𝑹𝟐 ∗  
𝑽𝒐𝒖𝒕

𝟏.𝟐𝟓
− 𝟏  (4) 

 

The external circuit required to support a step up to 10V is shown below in Figure 5-10. 

All components are readily available and pose no problems for manufacturing a printed circuit 

board. 

 

 

Figure 5-10 Voltage Stabilizing Circuit 
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 Battery power must be utilized during engine startup times when little to no thermal 

energy will be produced. To avoid the hassle of changing the batteries, rechargeable NiMH 

batteries have been chosen as discussed in §5.3. Charging can be done by putting the batteries 

in parallel with the load resistance. The net voltage across the batteries is defined by the 

following equation, Equation 5: 

𝑽𝒏𝒆𝒕 = 𝑽𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅 − 𝑽𝒃𝒂𝒕𝒕𝒆𝒓𝒊𝒆𝒔 (5) 

 

 During startup, the generated voltage is equal to 0 and the battery voltage, assuming 

they are fully charged, is equal to -9 V.  The resulting net voltage is -9V. As the batteries drain 

and the transient stage is passed, the thermoelectric generators will produce a stabilized 

voltage. Now the generated voltage will be 9 V and the voltage of the batteries (which have 

been slightly drained) will be lower, i.e. 8.8 V. According to Equation 5, the resulting net voltage 

across the batteries will be equal to +0.2 V. The batteries will trickle charge at 0.2 V. With each 

Figure 5-11 Voltage Stabilization Circuit 
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battery having an internal resistance of 40 mΩ, the resulting current produced would be 833 

mA; a value typical among NiMH battery chargers. This system of charging is inherently stable.  

As soon as the batteries reach full capacity, 9 V, the voltage differential is reduced to 0, 

preventing overcharging which can ruin the battery life. 
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5.5 Materials 

 

 Heat transfer performance can, in certain situations, be drastically improved using 

alternative materials.  Aluminum plates and an aluminum heat sink were used in previous 

testing and were marked as baseline performance for the assembly.  An examination was done 

to discover if alternate materials would improve the performance of the device. 

The heat sink was chosen experimentally by Bradway et al (2008) comparing the results 

of a pinned copper heat sink against two different finned aluminum heat sinks.  Despite having 

different fin configurations, the difference in performance was significant enough that Bradway 

et al (2008) were confident in selecting aluminum as the dominant material.  

The material of the plates housing the TEG was also examined.  These plates facilitate 

the heat transfer both to and from the generator, so high thermal conductivities were desired.  

Insulating materials such as ceramics would prevent heat from reaching the generator’s hot 

side and also negatively impact dissipation of heat from the cool side.  The bubble plot shown in 

Figure 5-12 was created using the CES Edupack Granta (Granta Design Limited, 2009) package 

comparing the thermal conductivity (k) of many metals and ceramics. Because the budget for 

the project is limited, these k values were plotted against price/mass of the material.  

As can be seen in Figure 5-12, for the same price range only copper has a higher k than 

aluminum.  To see the effect of increasing the thermal conductivity of the plates, a short 

Matlab script was written utilizing the thermal resistance method explained in §6.1 . The script 

plots the expected ‘cool side’ temperature of the TEG exposed to ambient air, with no heat 

sink, against the thermal conductivity of the sandwiching plates.  Equation 6 was used to 

generate the results plotted in Figure 5-13.  The code can be found in Appendix B, Material 
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Selection Code. 

 

 

 

 

Figure 5-12 Thermal Conductivity against Price for common materials 
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𝑇𝐶𝑜𝑜𝑙 = 𝑇𝐻𝑜𝑡 −
 𝑇𝐻𝑜𝑡 − 𝑇∞ 

 2
𝑡𝑀𝑎𝑡

𝑘𝑀𝑎𝑡
+

𝑡𝐺𝑒𝑛
𝑘𝐺𝑒𝑛

+
𝑡𝐴𝑖𝑟
𝑘𝐴𝑖𝑟

 
∙  2

𝑡𝑀𝑎𝑡

𝑘𝑀𝑎𝑡

+
𝑡𝐺𝑒𝑛

𝑘𝐺𝑒𝑛
  (6) 

 

The cool side temperature in the model varies by only 0.07 K over a conductivity range of 

400 W/m-K. This is insignificant and, as such, aluminum will remain the material of choice for 

cost and ease of acquisition reasons. 

  

 

Figure 5-13 Thermal Conductivity against Temperature Drop for common materials 
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5.6 The Final Design 

The final design used in testing was a two HZ-2 TEG design with an oversized heat sink.  

Using two TEGs removed budget as a constraint but still allowed for relevant testing to be done.  

The final circuit could not be fabricated due to issues with the IC; a micro IC was delivered that 

was incompatible with the breadboards available.  High temperature wiring was used to extend 

the leads of the TEGs to the circuitry. 

The final design, shown in Figure 5-14, allowed for the electronics to be placed on the 

side of the heat sink.  The heat sink remained cool enough to prevent damage to electronics, 

and the addition of dual sided, thermally insulating tape to secure the electronics further 

increased the margin of safety.   

 

 

  

Figure 5-14 The Final Assembly Design 
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6 Simulations 
 

6.1 Matlab Simulation 

 

 Throughout the design of the thermoelectric generator, many questions were raised 

about performance should one aspect or another be adjusted.  Rather than build many different 

iterations of the assembly to test the performance of each under different configurations, the 

obvious conclusion was drawn that a computerized model would be ideal.  Matlab was used to 

write the main simulation and results were compared to SolidWorks models in addition to the 

actual performance of the assembly.  Matlab was used because of its ubiquity in engineering 

settings, its relative speed in dealing with simple scripts and its lack of overhead due to its 

powerful built-in graphing capabilities. 

 The most important topics to be investigated with the model were the performance of 

different heat sinks and whether or not passive cooling would be powerful enough to achieve 

the required results.  The model was written to output various key temperatures and the 

expected voltage generation given different initial conditions.  The purpose of the model was to 

create an appreciable correlation between expectations and real performance with a relatively 

simple model at a reasonable level of accuracy.  Limited assumptions were made during the 

modeling process to further this goal. 

 After various iterations of solution methods, it was decided to use the thermal 

resistance of each piece of the assembly to create a thermal circuit.  This circuit could then be 

evaluated as an electric circuit and points of interest easily backed out from the final solutions 

(Incropera, et al., 2006).  Each piece of the assembly has its own resistance measured in °C/W, 
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the temperature drop across the piece divided by the heat flow through it.  These resistances 

are then assembled according to their position in the assembly and summed as electrical 

resistors to find a total, effective resistance for the entire thermal circuit.  The circuit used for 

the model is diagrammed in Figure 6-1 below. 

 

Heat Sink Base

Air Gap

Al Plate

TEG

TEG

Convection from

Heat Sink Base

Convection from

Heat Sink Fins

A

B C

D

 

 

 Newton’s law of cooling was used to calculate the thermal resistance of each element.  

Equation 6 and Equation 7 are the equations of heat transfer for conduction and convection, 

respectively.  A in each of the equations is the cross sectional area of the element normal to the 

direction of heat flow.  In Equation 7, L is the thickness of the material in the direction of heat 

flow.  The h in Equation 8 is the convective heat transfer coefficient.  This term generally needs 

to be experimentally determined as it depends so heavily on the properties of the gas 

(Incropera, et al., 2006). 

Figure 6-1 Thermal Circuit for Matlab Model 
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𝑞𝑐𝑜𝑛𝑑 =
𝑘𝐴

𝐿
∆𝑇 (7) 

 

𝑞𝑐𝑜𝑛𝑣 = ℎ𝐴∆𝑇 (8) 

 

The thermal resistance for each element, Rn, can be calculated using Equation 9, where n 

is the element number. 

𝑅𝑛 =
∆𝑇𝑛
𝑞𝑛

 (9) 

 

According to the method, the heat flow, q, through each section of the thermal circuit is 

a constant, i.e.: qn = q.  The heat flow, q, is equivalent to the current through an electrical circuit.  

This constant heat flow can be calculated from the effective resistance of the entire circuit, RTot.  

By calculating RTot and having knowledge of the temperature of the heat source (Point A in 

Figure 6-1) and the temperature of ambient air (Point D in Figure 6-1), q can be calculated.  The 

total resistance is calculated in Equations 10 and 11 by summing the resistances together as one 

would in the equivalent electrical circuit. 

𝑅𝑇𝑜𝑡 =
∆𝑇𝑇𝑜𝑡
𝑞

 (10) 

𝑅𝑇𝑜𝑡 =  
1

𝐿𝐵𝑃
𝑘𝐵𝑃𝐴𝐵𝑃

+
𝐿𝑇𝐸𝐺

2𝑘𝑇𝐸𝐺𝐴𝑇𝐸𝐺

+
1

𝐿𝐵𝑃 + 𝐿𝑇𝐸𝐺

𝑘𝐴𝑖𝑟  𝐴𝐻𝑆𝐵𝑃 − 𝐴𝐵𝑃 

 

−1

+
𝐿𝐻𝑆𝐵𝑃

𝑘𝐻𝑆𝐵𝑃𝐴𝐻𝑆𝐵𝑃

+  
1

 ℎ ∙ 𝐴𝑓𝑖𝑛𝑁𝑓𝑖𝑛 𝜂𝑓𝑖𝑛 
−1 +

1

 ℎ 𝐴𝑡 − 𝑁𝑓𝑖𝑛𝐴𝑓𝑖𝑛   
−1 

−1

 

(11) 
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In Equation 11, the acronyms HSBP, BP and TEG correspond to the values of the 

parameters specific to the heat sink base plate, aluminum base plate underneath the TEGs, and 

thermoelectric generators, respectively.  Nfin is the number of fins on the heat sink; 29 in the 

final design.  Fin parameters are shown in the following table, Table 6-1. 

Name Abbr. Value 
 Number of Fins Nf 29 
 Surface Area of a 

fin Af 0.002924 m2 
Total Heat Sink 

Area At 0.086821 m2 

Single Fin Efficiency ηf 0.9979 
  

By substituting this now known value for q back into each part’s thermal resistance 

equation, the temperature drop across that part can be found.  Summing the temperature 

drops allows the temperature at any point over the assembly to be found.  The temperature 

drop that controls the voltage generation is measured by taking the difference between the 

temperatures calculated at points B and C in Figure 6-1. 

 To reduce unknowns and simplify the modeling process a number of assumptions were 

made.  Aside from the assumptions associated with using the thermal resistance process itself, 

the largest deviation from reality was the exclusion of contact resistance between parts of the 

assembly.  While this issue caused many problems during live testing, the final assembly will be 

tightly fit with thermal grease added to all interfaces.  The grease should reduce the contact 

resistance to a point where the assumption causes minimal error in the model. 

 The final assembly utilizes a heat sink that is larger than the aluminum housing for the 

Table 6-1 Heat Sink Parameters 
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generators.  This means that the base of the heat sink overhangs the housing on all sides.  To 

account for this, a conduction term for air from the heat source directly to the heat sink was 

added.  The term uses a conduction coefficient for air calculated from a polynomial data fit to 

points given by Incropera et al.  This polynomial is included as Equation 12.  Tf in the equation is 

the film temperature, the average between the conducting surface and ambient temperature. 

𝑘𝑎𝑖𝑟 =   0.0045 𝑇𝑓 +  0.001 𝑇𝑓
2 ∙ 10−3 (12) 

 

 Output from the Matlab simulation is plotted below.  Figure 6-2 shows the expected 

temperature difference over the TEG, dT, plotted against various heat source temperatures and 

for various convection coefficients, h.  Figure 6-3 shows the calculated voltage generation per 

TEG plotted against the same parameters. 

 

 
Figure 6-2 Matlab Model: dT against Source Temp 
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 As can be seen, the driving factor behind increased voltage generation is the convection 

coefficient value, h.  As h is increased, both the temperature difference achieved across the TEG 

and the voltage generated increase, as does the impact of the hot plate temperature. Once 

tests were run, correlations were made to determine the h value of the device. This allowed for 

the determination of unknown temperatures during the later tests. These results are presented 

in Section 8. 

 The code for the Matlab simulation can be found in Appendix B, Assembly Temperature 

Calculation and Assembly Voltage Calculation.  

Figure 6-3 Matlab Model: Voltage against Source Temp 
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6.2 SolidWorks 

To support the results from the thermal modeling performed in Matlab, both Solidworks 

and Ansys were used to create thermal models of the generator using the Solidworks Solid 

model of the design.  These models were compared to the results of the Matlab simulations in 

order to give more confidence to the accuracy of the Matlab model.  The calculated 

temperatures could then be used to determine an expected voltage generation given the 

specifications of Hi-Z’s thermoelectric generators. 

 Using Solidworks and Ansys, each component of the device was assigned the materials 

used in the prototype.  The material database in Solidworks and Ansys had the thermal 

properties of some of the materials used.  However, the coefficients of thermal conductivity for 

some materials were not in the database, such as the thermo electric generators themselves.  

Custom coefficients of thermal conductivity were inputted into the software to model these 

materials using the values given by Hi-Z for the thermo electric generators.  The material 

database from the Granta CES Edupack software (Granta Design Limited, 2009) was used to 

determine the thermal conductivity of the other materials, shown in Table 6-2.  Boundary 

conditions were set to the values expected in the testing, and the simulations were run.  

Several tests were run with varying convection heat transfer coefficients for the heat sink as the 

exact coefficient was not known.    
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Material Thermal Conductivity [W/m2] 

Aluminum 237 

Thermoelectric generator 2.4 

Silicone Gasket 0.6 

Aluminum Heat Sink 237 

  

There are several assumptions incorporated into these models.  These assumptions are the 

source of discrepancies between the simulated and experimental results.  There is assumed to 

be no contact resistance between neighboring surfaces, including the assumption that the 

bottom of the base plate is at the exact temperature of the heated surface.  Conduction and 

radiation through the air gaps present in the device are also ignored in these simulations. 

The results of the Matlab and Solidworks simulations differed due to differences in 

assumptions made between the models.  The Matlab simulation modeled heat transfer through 

the air gaps present within the device, as well as heat transfer through the air gap between the 

heat source and the heat sink directly.  The Ansys model omitted these.   

Table 6-2 Thermal Conductivities of Elements in Assembly 
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Figure 6-4 plots the temperature differences between the Matlab and Ansys simulations 

at multiple heat source temperatures and convection coefficient values.  For each simulation 

run at a given heat source temperature with a given convection coefficient, the Matlab 

simulation gave higher temperatures at heat sink tip and the cool side of thermoelectric 

generator.  It is assumed that the reason for this is the extra path modeled in Matlab between 

the heat source and the heat sink base directly allows more heat transfer to the heat sink.  As 

all the parameters such as coefficients of thermal conductivity and device dimensions are 

consistent between the two simulations, it is believed that the results differ between the two 

because of the additional paths modeled in Matlab for the heat to pass through.  Also, the 

method Ansys uses for calculating the heat transfer is unknown, so differences between the 

Ansys solution method and the thermal circuit method used in the Matlab simulation may also 

have led to the differing results.       
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7 Experimental Methodology 
 

7.1 Thermal Tests 

 

A testing program was used in order to validate the original designs and their 

performance.  A further goal was to experimentally verify the theoretical results, thus providing 

an experimental corroboration between theory and practice in the design.  Performance 

characteristics and limitations at different operating conditions were also identified and 

documented. 

In order to fully design the system, including the location of various temperature 

sensitive components, the limitations of each component of the system were explored. 

Through a systematic approach, the effect of elevated temperature on each component was 

investigated. This allowed for the protection of temperature sensitive components. A detailed 

component failure test plan can be found in Appendix A, Part a) Test for Failure Mode. 

 Careful consideration was taken to ensure that sufficient data was collected that an 

accurate representation of what is actually occurring within the system could be established. 

Two thermocouples were used to monitor the system. The first was located on the hot surface 

in contact with the assembly and the second was attached to the tip of the heat sink. The 

remainder of the system can be defined using the simulation results. These temperatures were 

used together with the simulation results to estimate temperatures elsewhere on the assembly. 

The value of h, the convection coefficient, was calculated through experiments which, in 
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conjunction with the MatLab simulation, was used to estimate the cool side temperature of the 

generator. 

A short term test was conducted to verify the correlation of temperature gradient and 

voltage. Once completed, a long term test was run to ensure the stability of the system over 

time and verify the endurance characteristics of the device. These test plans can be found in 

Appendix A, Part vb), Short and Long Term Testing. 
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7.2 Vibration Test 

 

 During operation, jet engines tend to vibrate with frequencies that are correlated to 

blade rpm in the turbines (Kerrebrock pp. 391-392).  For a turbine rotating at 8000 rpm a single 

off balance blade would pass a stationary point 133 times per second, i.e. at a frequency of 133 

Hz.  The frequency of blade passing, for blade rows of 35 blades, is therefore approximately 4.5 

kHz. 

Kerrebrock notes an investigation into “buzz-saw” noise generation in engines.  The 

study shows that in frequencies up to the blade passing frequency of 4.5 kHz there are 

numerous harmonics that cause resonance.  Figure 7-1 below, reproduced from Kerrebrock, 

shows that at a critical frequency of approximately 1.55 kHz the maximum sound pressure level 

inside the engine under investigation is reached.  Because Pratt and Whitney’s specific engine 

performance characteristics are proprietary, the frequencies presented in Kerrebrock’s data 

were used as benchmarks. 
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The thermoelectric generator was vibration tested at 130 Hz, 1.55 kHz and 4.5 kHz.  The 

goal of this test was to locate failure modes.  Normally when conducting vibration tests, the 

goal is to determine resonance frequencies and operating modes of different devices (Smith, 

1989).  However, because the design is so far altered from the target design of four TEGs and a 

base plate sitting completely flush with the heat sink, this approach would not be useful.  

Testing at the three identified frequencies allowed the completion of low, medium and high 

frequency tests quickly and with a far reduced set of tools. 

 To test for vibration failure modes, the assembly was attached to a shaker at WPI.  Using 

the shaker, tests were completed on the device at and around the three frequencies listed 

above at amplitudes on the order of 1/1000 of an inch.  Before and after each test a visual 

inspection of the device was performed to check for faults such as loosening of the assembly’s 

Figure 7-1 Sound Level against Blade Frequency (Kerrebrock p. 392) 
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adhesives or screws.  Aliveness tests were also performed to ensure that non-visual faults had 

not occurred.  
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7.3 Challenges 

 

Several problems were encountered during the initial testing of the device.  Large 

discrepancies existed between the expected voltages and the voltages achieved, where the 

expected voltages were as much as two to three times as high as the voltages being measured.  

Solving this problem was a multiple step process involving many repeated tests. 

One of the problems discovered was that the thermocouples prevented a flush 

connection between the TEGs and the heat sink.  This reduced the amount of heat being drawn 

away from the cool side of the TEGs by the heat sink, leading to a lower temperature 

differential across the TEG.   To solve this problem, the decision was made to mill gaps for the 

thermocouples in the base of the heat sink as well as the aluminum base plates.  This solution 

allowed the heat sink to sit flush on top of the thermocouples and draw heat more effectively.  

Thermal paste was added to fill in the air pockets in the milled grooves which also served to 

increase the heat transfer.    

Another problem found through testing was an electrical short between the leads of the 

TEGs and the aluminum heat sink.  High temperature, electrically insulating tape was purchased 

to wrap around the leads and butt splices to prevent this.  While an effective temporary 

solution, after repeated assemblies and disassemblies of the device the tape tended to wear 

and the short reappeared. 

 The most frustrating problem was the fragility of the leads of the HZ-2 modules.  The 

leads are bundles of very fine wires and after being handled even a marginal amount would 

separate from the module.  The first pair of generators was rendered completely useless in this 

manner with no warning.  The chosen solution was to strengthen the connection between the 
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leads and the circuitry through the use of metallic butt splices.  This meant that the leads, while 

still fragile, did not need to be manipulated as much during repeated tests.  Hi-Z was contacted 

about the issue and responded that modules with solid leads are available per request.  This 

style of module should be used in any future work as this type of failure is catastrophic to the 

device. 

The butt splices were too large to fit into the old base plate and, as such, U shaped grooves 

were milled into the sides of the base plate.  This gave the butt splices room to extend 

perpendicularly from the side of the base plate.    
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8 Results 

8.1 Short Term Thermal Test 

Prior to the steam pipe endurance test, a 5 hour performance test was run to ensure that 

the device was performing adequately.  Figure 8-1 shows the data collected during this test. 

This included hot plate temperature (Heat Source Temp), heat sink fin tip temperature and 

device output voltage. 

 

  

The hot plate used during the test oscillated in order to maintain an average 

temperature.  This oscillation caused a violent transient period in the beginning of the test as 

the heat sink attempted to establish equilibrium.  This transient is evident in the data shown in 

Figure 8-1 Short Term Data 
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Figure 8-1 between up to 1.5 hrs. After the 2 hour mark, however, the data became relatively 

smooth as can be seen by the horizontal lines shown in Figure 8-1 for fin temperature and 

voltage generation. 

 During this period, the TEGs produced roughly 0.3V each.  Because there was not a 

thermocouple directly in contact with the generators, the temperature differentials were 

backed out using the Matlab simulation and the Excel sheet provided by Hi-Z.  Figure 8-2 shows 

5 randomly selected sample points taken during the test plotted on the Matlab simulation 

results for voltage vs. hot plate temperature shown in Figure 6-2.     

 

Figure 8-2 Matlab Comparison to Short Term Test 
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 The experimental data points shown in Figure 8-2 correspond to an h value of 

approximately 2.5 W/m2-K.  According to the Matlab simulation, this corresponds to an 

approximate temperature difference of 30 °C.  According to the Hi-Z spreadsheet, a 150 °C to 

120 °C temperature drop produces 0.49 V per TEG. This is consistent with the results measured. 

 This test provided proof that the device is stable when exposed to steady state 

conditions.  Despite the oscillations in the heat source, the device produced a steady voltage 

and did not overheat.  The voltages produced, while lower than expected from the simulation 

results, were representative of the device’s efficiency. 
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8.2 Long Term Thermal Test 

A five day thermal test was run on a redundant steam pipe in the WPI Power House.  The 

thermal stability of the pipe allowed steady state to be reached almost instantly by the 

generator.  Due to an effective attachment solution not being found during this iteration of the 

project, the device was taped to the pipe using high temperature tape.  The data acquisition 

system (DAQ) and breadboard circuit were taped to a nearby insulated pipe.  Figure 8-3 shows 

the device from a top view attached to the steam pipe.  Figure 8-4 shows the breadboard and 

DAQ taped to the insulated pipe.  Finally, Figure 8-5 shows the complete setup including the 

data logging computer.  

 

Figure 8-3 Long Term Test Setup Top 



R e - D e s i g n  o f  a  T h e r m a l  E n e r g y  S c a v e n g i n g  S y s t e m  f o r  a  G a s  T u r b i n e  | 52 

 

 

 

 

 Figure 8-6 shows the results of the test.  The steam pipe temperature, the heat sink tip 

temperature and the voltage generation over a 1 kΩ resistor are shown.  The voltages 

Figure 8-4 Long Term Test Breadboard and DAQ 

Figure 8-5 Long Term Test Setup 



R e - D e s i g n  o f  a  T h e r m a l  E n e r g y  S c a v e n g i n g  S y s t e m  f o r  a  G a s  T u r b i n e  | 53 

 

generated by the device throughout the test were overwhelmingly low.  The average 

generation was between 0.13 and 0.15 V.  The average temperature of the steam pipe was 

between 140 and 150 °C, well under the maximum and optimum performance temperature of 

the HZ-2 generators.  This does not explain the extremely low voltages, however. 

 Using the Matlab thermal model and adjusting for an ambient temperature of around 

30 °C instead of the normal 25 °C, the voltage generation can be expected to be closer to 0.52 

V.  While this prediction is expected to be high, as it does not take many non-idealities into 

account, it reveals a substantial discrepancy between what was expected and what was 

generated. 

 There are a number of possible causes for the loss of voltage, but the overwhelming 

consensus is that the electrically insulating tape wore away through repeated assembly and 

disassembly of the device.  This problem had occurred before and been fixed through 

reapplication of tape. The device was tested for shorts prior to the long term thermal test, but a 

short circuit is the only known failure that could cause such a dramatic loss of efficiency. 

During one of the checks on the device, it was noticed that a thermocouple attached to 

the heat sink was not in contact with the metal.  Rather, it was recording ambient temperature 

close to the heat sink.  This was fixed by reattaching the probe to a more suitable location and 

subsequently the heat sink temperature took on a more appreciable value.  This did not affect 

the fact that the voltage generation was still extremely low for the temperature regime. 

A number of spikes appear on Figure 8-6. These data points are simply bad data. 



R e - D e s i g n  o f  a  T h e r m a l  E n e r g y  S c a v e n g i n g  S y s t e m  f o r  a  G a s  T u r b i n e  | 54 

 

Despite the low values of voltage generation, the test was successful in demonstrating 

the capability of the device for operating for over 115 hours continuously.  After the first five 

hours of operation, the device was left to run with no supervision except the three times daily 

check to restart data collection.  This experiment helped achieve the long term testing 

requirement set out by Pratt and Whitney. 

 

 

   

Figure 8-6 Endurance Test Data Plot 
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8.3 Vibration 

The vibration test was successfully carried out on the assembly.  Because of the circuit 

problems associated with the IC, the circuit itself was not included in the test.  The device was 

tested at each of the three target frequencies, 140 Hz, 1.5 kHz and 4.5 kHz for 2 minutes each.   

Tests were also performed at ± 5% of the tested frequency to increase the spectrum of results. 

At the low test frequency of 140 Hz, the assembly underwent 3.7 Gs of acceleration.   This 

acceleration value increased to 4 Gs at the 1.5 kHz test frequency and finally reached 7 Gs at 

the highest test frequency of 4.5 kHz.  These accelerations represented very high values of a 

stabilized engine on a test stand (Hall, 2010) and, as such, served to represent what the device 

could see under worst condition testing. 

The device did not fail throughout the test.  The leads of the TEGs were not damaged to 

any recordable degree and the assembly screws were still tight.  Aliveness tests performed post 

test confirmed the device’s fidelity.  These positive results validated the design as stable and 

viable for future work.  
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9 Conclusion 

A thermoelectric energy scavenging device was successfully constructed.  The device is 

capable of transferring thermal energy into useable electric power.  It can be left on a heat 

source indefinitely and continuously produce power.  The assembly is very stable, easily passing 

vibration and thermal tests.  The largest concern is short circuiting that drastically reduced 

performance of the device.  With proper circuit design and a grounded heat sink, this can be 

made into a non-issue. 

The device constructed, however, does not meet the requirements set forth by Pratt and 

Whitney.  Voltage generation was more than an order of magnitude under the called-for 

amount, and power generation was far under the desired value as well.  This is due to many 

factors.  The efficiency of thermoelectric generators leaves much to be desired, with the 

modules used in this test a paltry 4.5% (Hi-Z).  The cooling required to achieve the necessary 

temperature differential is most likely beyond the capability of passive cooling, but the addition 

of active cooling has many drawbacks itself.  Finally, the use of metallic screws to hold the base 

plate to the heat sink provided a source of thermal leakage. 

 The ultimate goal of this design was to utilize four HZ-2 devices, each capable of 

producing 2.5V at a 150 °C temperature difference.  This ideal situation would produce the 10V 

required by Pratt and Whitney.  While this temperature differential is high, the work presented 

here suggests that the potential does exist for this device to be created and utilized with more 

advanced cooling technology. 
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10 Future Work 

It is clear from the testing results that much work still needs to be done to meet the 

requirements set forward by Pratt and Whitney.  Bradway et al started the project with proof of 

concept tests and an initial performance examination.  The current tests were focused on 

determining how to increase efficiency and package the final device.  Future work needs to be 

done to refine the current work and maximize the efficiency to the point where the device is 

effective enough to enter use on an engine test stand.  Recommendations on how to 

accomplish this follow. 

 The generators used in the current iteration were very expensive.  Because of budget 

constraints, it was impossible to buy the four required to even theoretically approach the 

design requirements.  A device with the target number of generators should be built. 

 Cooling is a major concern of this device’s efficiency.  Keeping the temperature 

differential maximized for the life of the test is a challenge.  Passive cooling should be the main 

topic of research as this method does not leech generated power.  If a compromise between 

leeched and generated power can be found, such as in a high efficiency CPU or GPU fan, a 

smart circuit should be designed to utilize cooling to its maximum advantage.  Other options 

include emerging technology such as unidirectional polymer heat sinks recently developed by a 

team at MIT (Dillow, 2010). 

 The method of mounting the device to various surfaces also needs to be refined.  The 

tape used in experiments, while effective in an experiment, is not a design solution.  Thermally 

conductive, electrically insulating adhesives would be a suitable starting point.  The main 
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limiting factor, however, as has been the case with many of the components already part of the 

assembly, is the temperature range necessary for the final product.  Many adhesive pads that 

are designed for high temperature applications do not have the thermal conductivity required 

to adequately transfer heat to the aluminum base plates.  One thermally conductive pad 

offered by 3M only has a thermal conductivity value k = 0.6 W/m-K, almost 400 times lower 

than aluminum (3M, 2008). 

Future work should miniaturize the current circuit and design and print custom circuit 

boards.  Current work shows that a mounting point on a heat sink with an insulated enclosure 

and insulating tape is adequate, but more permanent mounting methods could be a topic of 

investigation. 

Once the device is built, a complete set of testing should be undertaken.  Performance 

curves at a wide range of temperatures should be constructed, documenting the output against 

various loads.  A full spectrum vibration test will also need to be completed to ensure the 

internal circuitry will not be negatively affected by normal jet engine vibration.  
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Appendices 

A. Test Plans 

a. Test for Failure Mode 

Objective: Determine the modes and points of failure of each component of the energy 

harvesting system. 

Components to be tested: 

1. Thermo Electric Generator 

2. Aluminum plates 

3. Wiring 

4. Heat sink 

5. Fan 

6. NiMH battery 

7. Electric Circuitry 

Procedure: 

Thermo Electric Generator 

1. Turn on hot plate to 160 C. 

2. Place TEG on hot plate. 

3. Measure output voltage and temperature of TEG 

4. Increase the temperature in 10 °C increments until failure. (Note: The manufacturer 

specifies a maximum Temperature of 260 °C). 
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5. Record if voltage generation degrades at higher temperatures, and if unit fails. 

Aluminum plates 

1. Turn on hot plate to 400 C. 

2. Place Al plate on hot plate. 

3. Increase the temperature in 50 °C increments until failure. (The melting point of Al is 

660 °C). 

4. Watch for any signs of failure. 

Wiring 

1. Wrap hotplate surface in aluminum foil 

2. Turn on hot plate to 80 °C.  

3. Place wires on hotplate 

4. Increase the temperature in 10 °C increments until failure. (Expected failure for wire 

insulation is between 100 °C and 300 °C). 

5. Observe for insulation melting 

NiMH 

1. Wrap hotplate surface in aluminum foil 

2. Ensure that the hotplate is behind a protective polycarbonate shielding. 

3. Have fire extinguisher on hand. 

4. Turn on hot plate to 40 °C 

5. Place battery on hotplate. 
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6. Increase the temperature in 5 °C increments until failure. 

7. Measure voltage and temperature. Watch for failures. 

Electrical Circuitry 

1. Wrap hotplate surface in aluminum foil 

2. Turn on hot plate to 30 °C 

3. Place circuitry on hotplate. 

4. Continuously check for complete circuit 

5. Increase the temperature in 5 °C increments until failure. 

6. Watch for blown capacitors, melting solder and open circuits 

Analysis: Record the failure point and failure mode of each component. 
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b. Short and Long Term Testing 

Objective: Explore the long term endurance of the energy harvesting device. Determine hot 

and cool side steady state temperatures given the ambient air temperature and the heat source 

temperature. Verify the equations derived that model the system. 

Instrumentation: 

1. Thermocouple – Heat source 

2. Thermocouple – Heat sink 

3. Voltage – Dummy load 

Procedure: 

1. Place energy harvesting device on the heat source 

2. Begin recording data. Monitor constantly. Visually inspect the device for any component 

or system level failures. 

3. Let test run for 5 hours. 

4. Check for any failures. 

5. Analyze data for stability 

6. For Long Term Endurance Test: repeat for 5 days, monitoring the system every 6 hours. 

Analysis:  

Inspect the graphs of total voltage generated, and voltage across the dummy load for stability. 

Review the temperature of each of the components and ensure that the maximum 

temperature (including factor of safety) was never exceeded.  
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B. Matlab Code 

a. Material Selection Code 

 

%% Material Selection 

% Sept 21 2009 

% Matlab 7.5.0 

  

clear; clc; close all; 

  

%% Definitions 

% Given 

d_cer = .000032; d_gen = .0032; d_boundaryAir = .006; 

k_cer = 2; k_gen = 1.2; k_boundaryAir = .0261; 

T_hot = 453; T_ambient = 296; 

A = .0036; 

  

% Design param 

d_mat = .006; k_mat = (100:500); 

T_coolSide = zeros(length(k_mat),1); 

  

%% Equations 

dT = T_hot - T_ambient; 

  

for i=1:length(k_mat) 

  

    Qtot = (1/(d_mat/k_mat(i) + d_cer/k_cer + d_gen/k_gen + d_cer/k_cer +... 

        d_mat/k_mat(i) + d_boundaryAir/k_boundaryAir))*A*dT; 

  

    temp = d_mat/k_mat(i) + d_cer/k_cer + d_gen/k_gen + d_cer/k_cer +... 

        d_mat/k_mat(i); 

  

    T_coolSide(i) = T_hot - (Qtot * temp) / A; clear temp; 

end 

  

%% Plot 
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plot(k_mat, T_coolSide); 

xlabel('Thermal Conductivity (W/m/K)'); ylabel('Cool Side Temp (K)'); 
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b. Assembly Temperature Calculation 

 

%%  TempEst 

%  March 22, 2010 

% 

%  Estimates the temperature profile of the TEG assembly for a given 

%  heat source temperature Tsource in degrees C and convection 

%  coefficient h in W/m^2-K.  The coefficient represents the average 

%  heat transfer to ambient from the heat sink on top of the assembly. 

% 

%  Typical values for Tsource are from 150 - 250 where 250 is the max 

%  operating temperature of the TEG and many components of the assembly. 

% 

%  h values should be experimentally determined, values of between 5 and 

%  30 have produced comparable results to tests. 

% 

%  [Thot,Tcool,Tfb,Tft,Rtot]=TempEst[Tsource,h] 

%  Thot => Hot side of the TEG in C 

%  Tcool => Cool side of the TEG in C 

%  Tfb => Temperature at convective fin base in C 

%  Tft => Temperature at tip of convective fin of heatsink in C 

%  Rtot => Effective thermal resistance of assembly in K/W 

  

function [Thot,Tcool,Tfb,Tft,Rtot]=TempEst(Tsource,h) 

  

%% Constants 

Tinf = 298;     %Room temp ~ 25C 

Tinf = 305;     %Room temp ~ 32C 

k_Al = 237;     %Cond. coeff of Al in W/m-K 

k_Zn=112;       %Zinc 

k_Alumina=2.5;  %Alumina - Ceramic screw 

USE_FREE_CONV = false; 

%% Generator Parameters from HZ-2 documentation 

% Design hot side T = 230C (503K) 

% Design cool side T = 30C (303K) 

% Design flux q" = 9.54W/cm^2 = 95400 W/m^2 

w_gen=.029; l_gen=.029; A_gen=w_gen*l_gen; 
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t_gen=.00508; k_gen = 2.4; 

  

%% Assembly screws 

% d_sc = 0.0035052;   %0.138" diameter screw 

% A_sc = pi*d_sc^2/4; 

% k_sc = 0; 

% t_sc = 2*t_gen;     %Simplification based on t_bp=t_gen 

%% Baseplate (bp) Parameters 

w_bp=2*.029; l_bp=.029; 

% A_bp=w_bp*l_bp+2*A_sc;  

A_bp=w_bp*l_bp;  

t_bp=t_gen; k_bp = k_Al; 

  

%% Heat Sink Base Plate (hsbp) Parameters 

w_hsbp=0.0667;                      %2 5/8" in m 

l_hsbp=0.0762;                      %3" in m 

t_hsbp=0.0111;                      %7/16" in m 

A_hsbp=w_hsbp*l_hsbp; k_hsbp=k_Al; 

  

% -------------------------- OLD HEAT SINK -----------------------------% 

% w_hsbp=2*w_gen; l_hsbp=.029; %l_hsbp=2*w_gen; A_hsbp=w_hsbp*l_hsbp; 

% t_hsbp=2*t_gen; k_hsbp=k_Al; 

% -------------------------- OLD HEAT SINK -----------------------------% 

  

  

%% Heat Sink Fin Parameters 

N=29;                           %number of fins 

t_fin=0.0015875;                %1/16" in m 

w_fin=0.0667;                   %2 5/8" in m 

l_fin=0.0206375;                %13/16" in m 

  

% -------------------------- OLD HEAT SINK -----------------------------% 

% N = 15;  t_fin = 2*w_gen/N;%Assume fin spacing equals fin width 

% w_fin = 2*w_gen;            %Fins run parallel to long face of assembly 

% l_fin = .0381;              %1.5 inch fins 

% -------------------------- OLD HEAT SINK -----------------------------% 
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lc_fin = l_fin+(t_fin/2);       %Corrected fin lengh for eff estimation 

P = 2*w_fin+2*t_fin;            %perimeter of a fin 

Ac = t_fin*w_fin;               %Area of contact b/w fin and hsbp 

Af = P*l_fin + Ac;              %Surface area of one fin 

At = A_hsbp + N*(Af-Ac);        %Total area of HS available for convection 

k_fin=k_Al; 

  

%% Design Parameters 

%Tsource=523;     %250C in K 

Tsource=Tsource+273; 

%h=5;               %Conv coeff over heatsink in W/m^2-K 

  

%% The Circuit (outdated) 

  

%% Free Convection Calculation 

A_free=A_hsbp-A_bp; %Free convection occurs where TEGs don't touch heatsink 

h_free=FreeConvCoeff(Tsource,Tinf,(t_bp+t_gen)); 

% if h_free < 0 %Ra out of range 

%     disp('Free convection ignored, Ra invalid for correlation') 

%     USE_FREE_CONV = false; 

% end 

  

%% Calculation of efficiency 

m=sqrt(h*P/(k_fin*Ac)); 

fin_eff=tanh(m*lc_fin)/(m*lc_fin);  %Eq 3.89 Intro to Heat Xfer 

% a=t_sc/(k_sc*2*A_sc); 

b=t_bp/(k_bp*A_bp)+t_gen/(k_gen*2*A_gen); 

  

if USE_FREE_CONV, 

    c=1/(h_free*A_free); 

else 

    Tf=(Tsource+Tinf)/2; 

    k_air=(.0001*Tf^2+.0045*Tf+13.685)*10^(-3); 

    c=(t_bp+t_gen)/(k_air*A_free); 

end 

  

d=t_hsbp/(k_hsbp*A_hsbp); 
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e=1/(N*fin_eff*h*Af); 

f=1/(h*(At-N*Af)); 

  

% Rtot=d+1/(1/a+1/b+1/c)+1/(1/e+1/f); 

Rtot=d+1/(1/b+1/c)+1/(1/e+1/f); 

  

q=(Tsource-Tinf)/Rtot; 

  

%% Temperature Calculation 

Thot=Tsource-q*t_bp/(k_bp*A_bp); 

Tcool=Thot-q*t_gen/(k_gen*A_bp); 

Tfb=Tcool-q*t_hsbp/(k_hsbp*A_hsbp); 

Tft=1/(cosh(m*l_fin)+h/(m*k_fin)*sinh(m*l_fin))*(Tfb-Tinf)+Tinf; 

  

Thot=Thot-273;Tcool=Tcool-273;Tfb=Tfb-273;Tft=Tft-273; 
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c. Assembly Voltage Calculation 

 

%% Volt Calc 

% Feb 28, 2010 

%   This function uses constants taken from the HZ-2 prediction chart 

%   provided by Hi-Z corp to predict the voltage across ONE HZ-2 TEG 

%   from given temperatures Thot and Tcool.  The temperatures represent 

%   the temperature seen by the TEG on its hot and cool side, respectively. 

%   The temperatures should be provided in degrees Celsius. 

% 

% 

%   [V_oc, V_ml] = VoltCalc(T_hot,T_cool) returns the open circuit and  

%   matched load voltages for an HZ-2 TEG at temperatures T_hot and T_cool 

  

function [V_oc,V_ml]=VoltCalc(Thot,Tcool) 

  

%% Generator parameters 

n_legs = 196; 

% N-type constants 

C1n=3.4691; C2n=-0.014202; C3n=0.000023254; C4n=-0.000000013; 

% P-Type constants 

C1p=-1.818175; C2p=0.01113344; C3p=-0.00002035; C4p=1.1344e-8; 

  

%% Calculation 

  

Tave = (Thot+Tcool)/2+273; 

dT = Thot-Tcool; 

  

alfa_n=-442.76+C1n*Tave+C2n*Tave^2+C3n*Tave^3+C4n*Tave^4; 

alfa_p=161+C1p*Tave+C2p*Tave^2+C3p*Tave^3+C4p*Tave^4; 

  

% Open circuit voltage across n- and p- type semiconductors 

Voc_n=alfa_n*dT/1000; 

Voc_p=alfa_p*dT/1000; 

  

V_oc=0.89*(n_legs/2)*(-Voc_n+Voc_p)/1000; 
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V_ml=V_oc/2; 

  

% voltage=[V_oc,V_ml]; 

 

 


