PORTFOLIO RISK MINIMIZATION USING HISTORICAL DATA

A Major Qualifying Project Report:

submitted to the Faculty

> of the

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
by

Brian Duncan

Date: April 24, 2008

Approved:

Professor Marcel Blais
Project Advisor

ACKNOWLEDGMENTS

I would like to thank Professor Marcel Blais, Mathematical Sciences Department, Worcester Polytechnic Institute, as well as everyone who helped contribute to my success in this project.

Abstract

Data from 1999 was gathered for 90 stocks in the S\&P 500. The first 6 months of data was used to create a portfolio with the minimum risk while given an expected rate of return. Constraints were then added to limit short selling and limit the number of shares of certain stocks. The resulting portfolios were then tested to see if their future performance for the next 6 months would have produced a profit.

Contents

1 Introduction 1
2 Background 3
3 Data 4
4 Optimization 7
4.1 Unconstrained Problem 7
4.1.1 Problem Formulation 7
4.1.2 Results 14
4.2 Constrained Problem 21
4.2.1 Problem Formulation 21
5 Conclusions 29
6 Appendix 31
6.1 Daily Prices Routine 31
6.2 Calculate All Prices and Std Dev's 33
6.3 Splits 36
6.4 Half 39
6.5 Length Check 40
6.6 Timeframe 41
6.7 Returns 42
6.8 Covariance Matrix 43
6.9 Positive Definiteness 44
6.10 Optimization Routine 45
6.11 Calculate Proportions 47
6.12 Future Performance 48

List of Figures

1 AA 2-1 Stock Split 6
2 Efficient Frontier Optimal 16
3 Efficient Frontier 17
4 Daily Value for Portfolio with Minimum Variance 19
5 Daily Returns for Portfolio with Minimum Variance 20
6 Daily Value 21
7 Daily Value2 22
8 Daily Returns 23
9 Daily Returns2 24
10 S\&P 500, all of 1999 25
11 S\&P 500, second half of 1999 25

List of Tables

1 Tick Data 4
2 Minimum Variance Portfolios 15
3 Portfolio Proportions Part1 50
4 Portfolio Proportions Part2 51
5 Portfolio Proportions Part3 52
6 Future Performance 52

1 Introduction

Investing in the stock market can potentially be a way to make a lot of money; however, there is a certain level of risk involved. When dealing with riskless investments such as money market accounts, investors are guaranteed a certain return without having to worry about losing their capital. On the other hand, when investing in the stock market, investors can lose money if their stocks lose value. There is a potential for a large reward, especially when investing in more risky stocks.

The stock market is ever-changing, and patterns can be difficult to discern. There may be trends, and there are many strategies to try and predict how stocks will perform, but we can never be certain. One way to decrease the risk associated with a stock portfolio is by using diversification. This means that we spread out our capital into many different stocks. Since there is a very low probability that each of the stocks will drop significantly in price at the same time, diversification gives us a mechanism to reduce the volatility of our portfolio's value.

The phrase "high-risk, high-reward" means that the riskier stocks have a higher potential reward associated with them. If we invest in stocks that fluctuate greatly, the large jumps in price can be very beneficial, but the large drops in price can also decrease our portfolio's value a great deal. Portfolio risk minimization involves taking stock price historical data and calculating past returns and their variances [1]. This will separate certain stocks which
have a tendency to fluctuate greatly from day to day and those that have more consistency. If a stock's price over the last six months continued to gradually rise without any sharp changes, it might be in our best interest to invest a large percentage of our capital in this stock. Using historical data, the algorithm will be able to give us the portfolio with the minimum variance for each expected return. By varying the expected return, we construct an efficient frontier [1]. The efficient frontier is a term used for the infinite number of combinations of the mean rate of returns and corresponding minimum variances. For any mean rate of return that we choose, there is a minimum variance portfolio associated with it.

On the surface and to an inexperienced investor the stock market is a risky forum, but using Markowitz Theory [1] and minimizing our portfolio variance can give us a fairly stable return. Since we are using historical data, it is very important to gather data as recent as possible. Even then, over time that data will become less useful, and we will again have to perform this optimization routine to update our portfolio. When our main concern is to make a profit, this is an effective strategy. We can always set a high expected rate of return, and even though the portfolio variance will be high, the optimization routine will minimize it. This strategy could thus be used by both the conservative investor and the aggressive investor. In this project we implement this theory using historical data from the first six months of 1999 to find the optimal portfolio and then computing how much return we would have gotten in the next six months using a buy and hold strategy.

2 Background

Harry Markowitz is an economist who is best known for his work in modern portfolio theory. In 1952 he wrote a paper called "Portfolio Selection" which appeared in the Journal of Finance [7]. He later won a Nobel Prize for his contributions related to portfolio theory and his revolutionary ideas described in his 1952 work. He suggested that instead of investing primarily in low risk securities, to diversify stock portfolios and minimize the risk in those.

The returns are thought of as random variables that can follow a trend which can be estimated using historical data. It is assumed that past trends are indicative of future behavior, so past volatility can be a good representation of future volatility. The theory produces a portfolio with the minimum variance given an expected return. This is where the risk-reward relationship comes into play, and we quantify the minimal additional risk associated with a higher expected return by constructing the efficient frontier. Markowitz introduced the efficient frontier curve which represents all of the calculated optimal portfolios. Each point on the curve represents a portfolio with the minimum variance for a given expected return.

Modern portfolio theory and risk minimization has made trading in the stock market a more sophisticated investment than it was in the past. Stock portfolios can create a large profit for investors, and optimization techniques can be used to minimize risk. Procedures such as data cleaning and problem formulation are necessary for portfolio optimization to be effective.

3 Data

Data gathering and cleaning is a vital component of portfolio optimization. We started with a pool of 90 stocks, where each has its own tick data file. Each line of the tick data represents one trade for that particular stock. There was three years of data in total, and we focused on 1999. The first six months of data was used for calculating the optimal portfolios, and the second six months was used to test the future performance of our portfolios.

Our first step involved extracting the useful data from the information gathered. Table 1 shows a sample of the tick data for stock AA. Column 1 is the stock symbol. Columns 3 and 7 were used as an ID number. In column 2, the date was given in Julian format, where the value represents the number of days since January 1, 1900. Column 4 is the time of day. For stock AA the first trade occured on 1/4/99 at 9:31 AM. Column 5 is the number of shares and column 6 is the price of the stock for that particular trade. The number of shares is not important to us, but the prices will be used to find the mean price of each day.

Table 1: Tick Data

Stock Symbol	Date		Time	Shares	Price	
AA	36164	4912	93100	13400	74.56	2130
AA	36164	4912	93200	1200	74.5	2130
AA	36164	4912	93200	500	74.5	2130

We set our timeframe to be one year, from $1 / 4 / 99$ to $1 / 3 / 00$. We chose
to eliminate trades occuring at the beginning and end of each day when computing the average daily price. Many traders in the market often face the additional constraint of opening and closing large positions at the beginning and end of the trading day, respectively. This causes dramatic fluctuations in stock prices that are typically not indicative of the true market value of the stock. We set a timeframe from 10 AM to 3 PM for each day to calculate the average daily stock price. After calculating a stock price for each day, we calculated the standard deviation of the daily prices for each stock to help find errors in the data.

If the standard deviation of the daily prices was very large, this often indicated that there could be an error in the data. Sometimes we found that some of the columns were permuted. If the shares column and the price column were switched, the daily price could be off by several orders of magnitude, which would set off a red flag. These cases were easy to identify and fix. Sometimes the prices in some trades seemed nonsensical were extremely large. In this case, we needed to delete some trades and even some entire days. We did, however, have to be careful that we did not falsely identify an error in the data when there actually was a stock split.

When a company performs a stock split, they decrease the price of the stock while increasing the number of shares. Some common stock splits are $2-1,3-1$, and $3-2$. For example, in the case of a $2-1$ stock split, the price is cut in half while the number of shares is doubled. A stockholder keeps the same amount of market capital (shares times price). A company may want
to have a stock split to decrease the price and make their stock look more attractive to a consumer. In our situation, if there is a sudden large decrease in price, this may indicate a stock split. Figure 1 shows a 2-1 stock split for Alcoa. The price steadily fluctuates around $\$ 60$ and then suddenly drops to \$30. Matlab was used to identify the splits, and new files were created where the prices after the split were adjusted to eliminate these jumps in price. For example, in the case of AA, we multiplied all the prices after the stock split by 2 .

Figure 1: AA 2-1 Stock Split

After fixing the splits and errors, we needed to eliminate five more stocks. We needed 126 days of data for the optimization and 126 days of data for the portfolio testing. However, five stocks had days that needed to be deleted because of errors in the data so they could not be used in the optimization. We were thus left with 85 stocks.

4 Optimization

In this optimization problem we have N stocks, a fixed expected return rate μ, and portfolio weights denoted by Π_{i}. Our objective is to minimize the variance (risk) of the portfolio returns. We use R_{i} as the mean return rate for each stock. Generally, the higher the expected return rate is, the higher the risk is going to be. The problem formulation will be split into two parts. The first will be the "unconstrained problem", where we require only that the portfolio weights sum to 1 and that the expected return is μ. The second part will be the constrained problem, where lower and upper bounds will be imposed on the portfolio weights for each stock. In both cases, short selling is allowed, and thus $\Pi_{i} \in(-\infty, \infty)$.

4.1 Unconstrained Problem

4.1.1 Problem Formulation

We formulate a standard risk minimization problem with the given price and return data. The goal is to minimize the portfolio variance, σ_{Π}^{2}, while satisfying two initial constraints. The first constraint assures that the portfolio will achieve the expected return rate, μ. The second constraint says that the portfolio weights add up to one, so 100% of our capital is invested into stock.

$$
\begin{equation*}
\min \sigma_{\Pi}^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N} \Pi_{i} \Pi_{j} \sigma_{i j} \tag{1}
\end{equation*}
$$

s.t.

$$
\begin{gather*}
\sum_{i=1}^{N} \Pi_{i} R_{i}=\mu \tag{2}\\
\sum_{i=1}^{N} \Pi_{i}=1 \tag{3}
\end{gather*}
$$

We can then use Lagrange Multipliers λ_{1} and λ_{2} to make a Lagrangian function [1]. This method is a form of nonlinear optimization which enables us to identify the minimum portfolio. The new equation becomes

$$
\begin{equation*}
L=\sum_{i=1}^{N} \sum_{j=1}^{N} \Pi_{i} \Pi_{j} \sigma_{i j}-\lambda_{1}\left(\sum_{i=1}^{N} \Pi_{i} R_{i}-\mu\right)-\lambda_{2}\left(\sum_{i=1}^{N} \Pi_{i}-1\right) \tag{4}
\end{equation*}
$$

Now we need to differentiate the Lagrangian and set the derivatives equal to zero [1]. Since we only have two constraints, the general form is

$$
\begin{equation*}
\nabla f=\lambda_{1} \nabla g+\lambda_{2} \nabla h \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla f-\lambda_{1} \nabla g-\lambda_{2} \nabla h=0 \tag{6}
\end{equation*}
$$

where f is our original objective function and g and h are the constraints. Now to differentiate we need to factor out a Π_{k},

$$
\begin{aligned}
& L=\sum_{i=1}^{N}\left(\Pi_{i} \sum_{j=1}^{N} \Pi_{j} \sigma_{i j}\right)-\lambda_{1}\left(\sum_{i=1}^{N} \Pi_{i} R_{i}-\mu\right)-\lambda_{2}\left(\sum_{i=1}^{N} \Pi_{i}-1\right) \\
& =\sum_{\substack{i=1 \\
i \neq k}}^{N}\left(\Pi_{i}\left(\sum_{\substack{j=1 \\
j \neq k}}^{N} \Pi_{j} \sigma_{i j}+\Pi_{k} \sigma_{i k}\right)\right)+\Pi_{k}\left(\sum_{\substack{j=1 \\
j \neq k}}^{N} \Pi_{j} \sigma_{k j}+\Pi_{k} \sigma_{k k}\right) \\
& -\lambda_{1}\left(\sum_{\substack{i=1 \\
i \neq k}}^{N} \Pi_{i} R_{i}+\Pi_{k} R_{k}-\mu\right)-\lambda_{2}\left(\sum_{\substack{i=1 \\
i \neq k}}^{N} \Pi_{i}+\Pi_{k}-1\right)
\end{aligned}
$$

After making this adjustment to the equation, the next step is to differentiate with respect to Π_{k},

$$
\begin{aligned}
& \frac{\partial L}{\partial \Pi_{k}}=\sum_{\substack{i=1 \\
i \neq k}}^{N} \Pi_{i} \sigma_{i k}+\sum_{\substack{j=1 \\
j \neq k}}^{N} \Pi_{j} \sigma_{k j}+2 \Pi_{k} \sigma_{k k}-\lambda_{1} R_{k}-\lambda_{2} \\
& =2 \sum_{i=1}^{N} \Pi_{i} \sigma_{i k}-\lambda_{1} R_{k}-\lambda_{2}
\end{aligned}
$$

If we repeat this process for all k from 1 to N and set the derivative equal to 0 , we get

$$
\begin{equation*}
\frac{\partial L}{\partial \Pi_{i}}=2 \sum_{j=1}^{N} \Pi_{j} \sigma_{i j}-\lambda_{1} R_{i}-\lambda_{2}=0, \quad i=1, \ldots, N \tag{7}
\end{equation*}
$$

This gives us N equations, but we have $\mathrm{N}+2$ unknowns $\left(\Pi_{i}, \lambda_{1}\right.$, and $\left.\lambda_{2}\right)$. Therefore, we need two more equations to be able to solve this optimization problem. These two equations come from the initial constraints [1]. So, our
first-order conditions are

$$
\begin{gather*}
2 \sum_{j=1}^{N} \Pi_{j} \sigma_{i j}-\lambda_{1} R_{i}-\lambda_{2}=0, \quad i=1, \ldots, N \tag{8}\\
\sum_{i=1}^{N} \Pi_{i} R_{i}=\mu \tag{9}\\
\sum_{i=1}^{N} \Pi_{i}=1 \tag{10}\\
\lambda_{1} \geq 0 \tag{11}\\
\lambda_{2} \geq 0 \tag{12}
\end{gather*}
$$

or

```
\(2\left(\Pi_{1} \sigma_{11}+\Pi_{2} \sigma_{12}+\ldots+\Pi_{N} \sigma_{1 N}\right)-\lambda_{1} R_{1}-\lambda_{2}=0\)
\(2\left(\Pi_{1} \sigma_{21}+\Pi_{2} \sigma_{22}+\ldots+\Pi_{N} \sigma_{2 N}\right)-\lambda_{1} R_{2}-\lambda_{2}=0\)
\(\vdots\)
\(2\left(\Pi_{1} \sigma_{N 1}+\Pi_{2} \sigma_{N 2}+\ldots+\Pi_{N} \sigma_{N N}\right)-\lambda_{1} R_{N}-\lambda_{2}=0\)
\(\Pi_{1} R_{1}+\Pi_{2} R_{2}+\ldots+\Pi_{N} R_{N}=\mu\)
\(\Pi_{1}+\Pi_{2}+\ldots+\Pi_{N}=1\)
\(\lambda_{1} \geq 0\)
```

$\lambda_{2} \geq 0$

To solve this system numerically we convert it into matrix form. First we will identify all of the known variables and unknown variables.

$$
\begin{aligned}
& \sigma=\left(\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \ldots & \sigma_{1 N} \\
\sigma_{21} & \sigma_{22} & \ldots & \sigma_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{N 1} & \sigma_{N 2} & \ldots & \sigma_{N N}
\end{array}\right) \\
& \underline{\Pi}=\left(\begin{array}{c}
\Pi_{1} \\
\vdots \\
\Pi_{N}
\end{array}\right) \\
& \underline{R}=\left(\begin{array}{c}
R_{1} \\
\vdots \\
R_{N}
\end{array}\right) \\
& \underline{\lambda}=\left(\begin{array}{c}
\\
\lambda_{1} \\
\lambda_{2}
\end{array}\right)
\end{aligned}
$$

To create the one-line equations in matrix form we will need some additional matrices. These will be used to adjust the dimensions of the R_{i} 's. So, our vectorized first-order equations are

$$
\begin{gather*}
2 \sigma \underline{\Pi}-R^{*} R^{* *} \underline{\lambda}=\underline{0} \tag{13}\\
\underline{\Pi}^{T} \underline{R}=\mu \tag{14}\\
\underline{\Pi}^{T} \underline{1}=1 \tag{15}
\end{gather*}
$$

Now we combine the three equations into $A \underline{x}=\underline{b}$ form. This will isolate \underline{x} as the vector of all $\mathrm{N}+2$ unknowns. Since A is invertible, the equation becomes $\underline{x}=A^{-1} \underline{b}$, which can be solved in Matlab. After some rearranging of terms, the equations become

$$
\left(\begin{array}{ccc}
2 \sigma & -\underline{R} & -\underline{1} \\
\underline{R}^{T} & 0 & 0 \\
\underline{1}^{T} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\underline{\Pi} \\
\lambda_{1} \\
\lambda_{2}
\end{array}\right)=\left(\begin{array}{c}
\underline{0} \\
\mu \\
1
\end{array}\right)
$$

or

$$
\left(\begin{array}{cccccc}
2 \sigma_{11} & 2 \sigma_{12} & \ldots & 2 \sigma_{1 N} & -R_{1} & -1 \\
2 \sigma_{21} & 2 \sigma_{22} & \ldots & 2 \sigma_{2 N} & -R_{2} & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
2 \sigma_{N 1} & 2 \sigma_{N 2} & \ldots & 2 \sigma_{N N} & -R_{N} & -1 \\
R_{1} & R_{2} & \ldots & R_{N} & 0 & 0 \\
1 & 1 & \ldots & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\Pi_{1} \\
\Pi_{2} \\
\vdots \\
\Pi_{N} \\
\lambda_{1} \\
\lambda_{2}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\mu \\
1
\end{array}\right)
$$

Before we perform the optimization and test for future performance we need to make sure this matrix is positive definite. That way we will know it is invertible and has a unique solution. Since we need the matrix to be symmetric, and $\sigma_{x y}=\sigma_{y x}$, an equal form of the optimization equation is

$$
\left(\begin{array}{cccccc}
2 \sigma_{11} & 2 \sigma_{12} & \ldots & 2 \sigma_{1 N} & R_{1} & 1 \\
2 \sigma_{12} & 2 \sigma_{22} & \ldots & 2 \sigma_{2 N} & R_{2} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
2 \sigma_{1 N} & 2 \sigma_{2 N} & \ldots & 2 \sigma_{N N} & R_{N} & 1 \\
R_{1} & R_{2} & \ldots & R_{N} & 0 & 0 \\
1 & 1 & \ldots & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\Pi_{1} \\
\Pi_{2} \\
\vdots \\
\Pi_{N} \\
-\lambda_{1} \\
-\lambda_{2}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\mu \\
1
\end{array}\right)
$$

So, the matrix we need to test for positive-definiteness is

$$
A=\left(\begin{array}{cccccc}
2 \sigma_{11} & 2 \sigma_{12} & \ldots & 2 \sigma_{1 N} & R_{1} & 1 \\
2 \sigma_{12} & 2 \sigma_{22} & \ldots & 2 \sigma_{2 N} & R_{2} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
2 \sigma_{1 N} & 2 \sigma_{2 N} & \ldots & 2 \sigma_{N N} & R_{N} & 1 \\
R_{1} & R_{2} & \ldots & R_{N} & 0 & 0 \\
1 & 1 & \ldots & 1 & 0 & 0
\end{array}\right)
$$

There is a theorem that says if all the principal minors of a square symmetric matrix are positive, then the matrix is positive definite [3]. After calculating all of the principal minors in Matlab and confirming they are all positive, we can say that A is postive definite, is invertible, and has a unique solution.

4.1.2 Results

The first step when we gathered the results was to find the minimum variance portfolio, which is the portfolio with the smallest possible variance [1]. This gives us the safest portfolio. The corresponding expected return rate is very low, but so is the variance. In order to calculate the proportions in the minimum variance portfolio, we set a range of expected return rates and calculate the corresponding minimum variances. We then needed to find the point at which the variances went from decreasing to increasing. We first set an extremely low expected return and calculated the portfolio variance. Then
we increased the expected return by a very small amount, and repeated the process. The variances gradually decrease as the expected returns increase, but there is a point where the variances also start to increase. After sorting through 10,000 trials, we narrowed the search down to the values shown in

Table 2.
Table 2: Minimum Variance Portfolios

Expected Return Rate	Portfolio Variance
$5.0000000 \mathrm{e}-004$	$1.3665251 \mathrm{e}-005$
$5.1000000 \mathrm{e}-004$	$1.3664817 \mathrm{e}-005$
$5.2000000 \mathrm{e}-004$	$1.3664476 \mathrm{e}-005$
$5.3000000 \mathrm{e}-004$	$1.3664229 \mathrm{e}-005$
$5.4000000 \mathrm{e}-004$	$1.3664075 \mathrm{e}-005$
$5.5000000 \mathrm{e}-004$	$1.3664015 \mathrm{e}-005$
$5.6000000 \mathrm{e}-004$	$1.3664048 \mathrm{e}-005$
$5.7000000 \mathrm{e}-004$	$1.3664175 \mathrm{e}-005$
$5.8000000 \mathrm{e}-004$	$1.3664395 \mathrm{e}-005$
$5.9000000 \mathrm{e}-004$	$1.3664709 \mathrm{e}-005$
$6.0000000 \mathrm{e}-004$	$1.3665116 \mathrm{e}-005$

We see that the minimum variance occurs when the expected return rate is $5.5000000 \mathrm{e}-004$. This is equal to a return of 0.055%, which is a very small return and would never logically be a goal for a stockholder; however, this data can be used to form the efficient frontier, as shown in Figure 2. The efficient frontier is a curve where each point represents an optimal portfolio, that is, a portfolio with minimized variance for the given expected return. The leftmost point on the curve represents the minimum variance portfolio.

We ignore the bottom half of the curve, since if we set a certain amount of risk, we will always prefer the portfolio with the higher expected return. It is clear that if the expected return rises, so does the portfolio variance.

Figure 2: Efficient Frontier Optimal

If we expand the range of expected returns to include more reasonable values, the variances also rise, but not significantly. Figure 3 shows the efficient frontier when the expected return ranges up to 50%.

Figure 3: Efficient Frontier

Since the minimum variance portfolio gave an unreasonably low expected return, we need to calculate some optimal portfolios with some realistic expected returns. We chose to use $1 \%, 5 \%, 10 \%, 25 \%$, and 50%. Tables 3, 4, and 5 show the optimal portfolios for the given expected returns. Each of the stocks holds a proportion of the portfolio. If the proportion is negative, that means the optimization suggests short selling and we would sell shares
of these stocks that we don't own, while hoping the stocks' prices go down so we can buy them back at a lower price.

For the 5\% expected return optimal portfolio, all 85 stocks held a nonzero proportion of the portfolio. 43 stocks were held long, and 42 stocks were held short. The stock with the proportion closest to zero was GM (General Motors) at 0.006 . The stock with the greatest long proportion was JNJ (Johnson \& Johnson) at 2.989. The stock with the greatest short proportion was AEP (American Electric Power) at -3.977. All of these proportions are shown in tables 3,4 , and 5 .

Since we now have the optimal portfolios based on historical data of the first six months of 1999, we now need to test their future performances for the next six months to see if they actually would have made a profit. We set a starting captial of $\$ 10,000$ for each of the portfolios. We then used the computed optimal portfolios to set the proportions of that $\$ 10,000$ into the various stocks. A buy and hold strategy for six months was tested. For the minimum variance portfolio, where the expected return was 0.055%, the actual return was -12.88%, as shown by figures 4 and 5 . Even though we would have lost money with this portfolio, our expected rate of return was so close to 0 that this result is not a surprise. The daily value and return stayed fairly steady except for one day, where an abnormal jump in price for one stock occured.

Figure 4: Daily Value for Portfolio with Minimum Variance

After testing each of the six portfolios for the next six months of data, it was shown that each one made a profit significantly larger than the expected return indicated. Figure 7 shows the progress and the gradual increase in value over time for each of the six portfolios. Figure 6 is a zoomed in look at the portfolios of $0.055 \%, 1 \%$, and 5%. Figure 9 shows the daily returns for each of the portfolios, while figure 8 shows the three smallest expected returns. From these figures, it is evident how the increased expected return rate produced an increased variance in the actual performance of the portfolio. Table 6 shows the large profits the theoretical portfolios made in the second half of 1999.

Figure 5: Daily Returns for Portfolio with Minimum Variance

Figures 10 and 11 show the performance of the S\&P 500 index during 1999. The stock market was booming during this time, and the S\&P 500 was doing very well. One of the reasons for the boom was that the dotcom bubble was rapidly growing at this time. Internet companies and other technologically based stocks were thriving during this year. Stock prices were rising, and this led to our portfolios to doing extremely well. Also, this was the period right before Y2K, when the U.S. spent an estimated $\$ 300$ billion [6] on preparations for the potential problems that the new year could have caused.

Figure 6: Daily Value

4.2 Constrained Problem

4.2.1 Problem Formulation

In the second optimization problem we add upper and lower bounds to the portfolio weights, Π_{i}, to prevent the portfolio from taking large long and short positions. It also allows us to disallow short selling. The process of forming a Lagrangian is similar to the unconstrained problem. Now we have additional constraints and additional unknowns which make the problem more involved. Our goal is still to minimize the portfolio variance, $\sigma_{\Pi}^{2} \cdot u_{i}$ is the upper bound, or the maximum long position, and l_{i} is the lower bound, or the maximum short position. If we set the lower bounds equal to zero for all stocks, this eliminates short selling because we will never have a negative proportion of

Figure 7: Daily Value2
one stock in our portfolio. Our new optimization problem is

$$
\begin{equation*}
\min \sigma_{\Pi}^{2}=\sum_{i=1}^{N} \sum_{j=1}^{N} \Pi_{i} \Pi_{j} \sigma_{i j} \tag{20}
\end{equation*}
$$

s.t.

$$
\begin{gather*}
\sum_{i=1}^{N} \Pi_{i} R_{i}=\mu \tag{21}\\
\sum_{i=1}^{N} \Pi_{i}=1 \tag{22}\\
\Pi_{i} \geq l_{i}, \quad i=1, \ldots, N \tag{23}\\
\Pi_{i} \leq u_{i}, \quad i=1, \ldots, N \tag{24}
\end{gather*}
$$

Figure 8: Daily Returns

We then introduce Lagrange Multipliers $\lambda_{1}, \lambda_{2}, \gamma_{i}$, and θ_{i} to form a Lagrangian function [1].

$$
\begin{equation*}
L=\sum_{i=1}^{N} \sum_{j=1}^{N} \Pi_{i} \Pi_{j} \sigma_{i j}-\lambda_{1}\left(\sum_{i=1}^{N} \Pi_{i} R_{i}-\mu\right)-\lambda_{2}\left(\sum_{i=1}^{N} \Pi_{i}-1\right)-\sum_{i=1}^{N} \gamma_{i}\left(\Pi_{i}-l_{i}\right)-\sum_{i=1}^{N} \theta_{i}\left(u_{i}-\Pi_{i}\right) \tag{25}
\end{equation*}
$$

Now to differentiate we need to factor out a Π_{k},

$$
\begin{aligned}
& L=\sum_{i=1}^{N}\left(\Pi_{i} \sum_{j=1}^{N} \Pi_{j} \sigma_{i j}\right)-\lambda_{1}\left(\sum_{i=1}^{N} \Pi_{i} R_{i}-\mu\right)-\lambda_{2}\left(\sum_{i=1}^{N} \Pi_{i}-1\right) \\
& -\sum_{i=1}^{N} \gamma_{i}\left(\Pi_{i}-l_{i}\right)-\sum_{i=1}^{N} \theta_{i}\left(u_{i}-\Pi_{i}\right) \\
& =\sum_{\substack{i=1 \\
i \neq k}}^{N}\left(\Pi_{i}\left(\sum_{\substack{j=1 \\
j \neq k}}^{N} \Pi_{j} \sigma_{i j}+\Pi_{k} \sigma_{i k}\right)\right)+\Pi_{k}\left(\sum_{\substack{j=1 \\
j \neq k}}^{N} \Pi_{j} \sigma_{k j}+\Pi_{k} \sigma_{k k}\right)
\end{aligned}
$$

Figure 9: Daily Returns2

$$
\begin{aligned}
& -\lambda_{1}\left(\sum_{\substack{i=1 \\
i \neq k}}^{N} \Pi_{i} R_{i}+\Pi_{k} R_{k}-\mu\right)-\lambda_{2}\left(\sum_{\substack{i=1 \\
i \neq k}}^{N} \Pi_{i}+\Pi_{k}-1\right) \\
& -\left(\sum_{\substack{i=1 \\
i \neq k}}^{N} \Pi_{i} \gamma_{i}+\Pi_{k} \gamma_{k}-l_{i} \gamma_{i}\right)-\left(\sum_{\substack{i=1 \\
i \neq k}}^{N} u_{i} \theta_{i}-\Pi_{i} \theta_{i}+\Pi_{k} \theta_{k}\right)
\end{aligned}
$$

Now we need to differentiate with respect to Π_{k},

$$
\begin{aligned}
& \frac{\partial L}{\partial \Pi_{k}}=\sum_{\substack{i=1 \\
i \neq k}}^{N} \Pi_{i} \sigma_{i k}+\sum_{\substack{j=1 \\
j \neq k}}^{N} \Pi_{j} \sigma_{k j}+2 \Pi_{k} \sigma_{k k}-\lambda_{1} R_{k}-\lambda_{2}-\gamma_{k}-\theta_{k} \\
& =2 \sum_{i=1}^{N} \Pi_{i} \sigma_{i k}-\lambda_{1} R_{k}-\lambda_{2}-\gamma_{k}-\theta_{k}
\end{aligned}
$$

Figure 10: S\&P 500, all of 1999

Figure 11: S\&P 500, second half of 1999

If we repeat this process for all k from 1 to N and set the derivative equal to 0 , we get our first order constraints

$$
\begin{equation*}
\frac{\partial L}{\partial \Pi_{i}}=2 \sum_{j=1}^{N} \Pi_{j} \sigma_{i j}-\lambda_{1} R_{i}-\lambda_{2}-\gamma_{i}-\theta_{i}=0, \quad i=1, \ldots, N \tag{26}
\end{equation*}
$$

This gives us 3 N equations, but we have $3 \mathrm{~N}+2$ unknowns $\left(\Pi_{i}, \lambda_{1}, \lambda_{2}, \gamma_{i}\right.$, and θ_{i}). Therefore, we need two more equations to be able to solve this
optimization problem. These two equations come from the initial constraints [1]. So, our first order constraints are

$$
\begin{gather*}
2 \sum_{j=1}^{N} \Pi_{j} \sigma_{i j}-\lambda_{1} R_{i}-\lambda_{2}-\gamma_{i}-\theta_{i}=0, \quad i=1, \ldots, N \tag{27}\\
\sum_{i=1}^{N} \Pi_{i} R_{i}=\mu \tag{28}\\
\sum_{i=1}^{N} \Pi_{i}=1 \tag{29}\\
\gamma_{i}\left(\Pi_{i}-l_{i}\right)=0, \quad i=1, \ldots, N \tag{30}\\
\theta_{i}\left(u_{i}-\Pi_{i}\right)=0, \quad i=1, \ldots, N \tag{31}\\
\Pi_{i} \geq l_{i}, \quad i=1, \ldots, N \tag{32}\\
\Pi_{i} \leq u_{i}, \quad i=1, \ldots, N \tag{33}\\
\gamma_{i} \geq 0, \quad i=1, \ldots, N \tag{34}\\
\theta_{i} \geq 0, \quad i=1, \ldots, N \tag{35}\\
\lambda_{1} \geq 0 \tag{36}\\
\lambda_{2} \geq 0 \tag{37}
\end{gather*}
$$

or
$2\left(\Pi_{1} \sigma_{11}+\Pi_{2} \sigma_{12}+\ldots+\Pi_{N} \sigma_{1 N}\right)-\lambda_{1} R_{1}-\lambda_{2}-\gamma_{1}-\theta_{1}=0$

```
2(\Pi}\mp@subsup{\Pi}{1}{}\mp@subsup{\sigma}{21}{}+\mp@subsup{\Pi}{2}{}\mp@subsup{\sigma}{22}{}+\ldots+\mp@subsup{\Pi}{N}{}\mp@subsup{\sigma}{2N}{})-\mp@subsup{\lambda}{1}{}\mp@subsup{R}{2}{}-\mp@subsup{\lambda}{2}{}-\mp@subsup{\gamma}{2}{}-\mp@subsup{0}{2}{}=
2(\Pi}\mp@subsup{\Pi}{1}{}\mp@subsup{\sigma}{N1}{}+\mp@subsup{\Pi}{2}{}\mp@subsup{\sigma}{N2}{}+\ldots+\mp@subsup{\Pi}{N}{}\mp@subsup{\sigma}{NN}{})-\mp@subsup{\lambda}{1}{}\mp@subsup{R}{N}{}-\mp@subsup{\lambda}{2}{}-\mp@subsup{\gamma}{N}{}-\mp@subsup{0}{N}{}=
\Pi}\mp@subsup{}{1}{}\mp@subsup{R}{1}{}+\mp@subsup{\Pi}{2}{}\mp@subsup{R}{2}{}+\ldots+\mp@subsup{\Pi}{N}{}\mp@subsup{R}{N}{}=
\Pi}+\mp@subsup{\Pi}{2}{}+\ldots+\mp@subsup{\Pi}{N}{}=
\gamma1(\Pi}\mp@subsup{\Pi}{1}{}-\mp@subsup{l}{1}{})=
\vdots
\gammaN}(\mp@subsup{\Pi}{N}{}-\mp@subsup{l}{N}{})=
0}(\mp@subsup{u}{1}{}-\mp@subsup{\Pi}{1}{})=
\vdots
0N
\Pi
\vdots
\Pi}\mp@subsup{\Pi}{N}{}\geq\mp@subsup{l}{N}{
\Pi
```

$$
\begin{aligned}
& \Pi_{N} \leq u_{N} \\
& \gamma_{1} \geq 0 \\
& \vdots \\
& \gamma_{N} \geq 0 \\
& \theta_{1} \geq 0 \\
& \vdots \\
& \theta_{N} \geq 0 \\
& \lambda_{1} \geq 0 \\
& \lambda_{2} \geq 0
\end{aligned}
$$

5 Conclusions

Our optimization proved very successful with the extremely high realized returns. Part of this was because of the booming stock market at the time, but another part was because of the effectiveness of the risk minimization.

The data cleaning and fixing of all of the errors was essential to get an accurate representation of the stock market at the time. We needed to delete some stocks from the project because of the errors, but saved others by fixing their stock splits. After formulating the portfolio optimization problem using Lagrange multipliers, Matlab was used to calculate the minimum variance portfolios and other portfolios with various expected returns. After the efficient frontier was graphed, the future performances of some of the portfolios were calculated using the next six months of data. We used a buy and hold strategy. The minimum variance portfolio lost money, but the rest greatly outperformed their respective expected returns.

This project went through the whole process of gathering data, data cleaning, problem formulation, optimization, and calculating future performances. All of the aspects are essential parts of the process. After completing this project I have a better understanding of optimization and the tasks that are involved with it.

References

[1] Cvitanić, J. and F. Zapatero, Introduction to the Economics and Mathematics of Financial Markets, MIT Press: Cambridge, 2004.
[2] Nocedal, J. and S. Wright, Numerical Optimization, Springer: New York, 1999.
[3] Peressini, A., F. Sullivan, and J. Uhl, The Mathematics of Nonlinear Programming, Springer, 1988.
[4] Daye, Z., K. Leow, and S. Ding, "Empirical Evaluation of Volatility Estimation", paper, 2001.
[5] Stewart, J., Calculus, Brooks Cole, 5th Edition, 2002.
[6] http://news.bbc.co.uk/2/hi/talking_point/586938.stm
[7] http://www.riskglossary.com/link/portfolio_theory.htm

6 Appendix

6.1 Daily Prices Routine

```
function [priceMatrix] = daily(stock,numberOfDays)
%load stock data
stockMatrix = load(stock);
%start on 1/4/99, end after specified number of days
day = 36164;
dayEnd = 36164+numberOfDays;
%take prices between 10am and 3pm
timeStart = 100000;
timeEnd = 150000;
%vector of prices between 36164 and dayEnd, and between timeStart and
%timeEnd
validPrices = 0;
%column1 is the mean price, column2 is the std dev of the prices, and each
%row is a day
priceMatrix = [0;0];
%counters
dayCounter = 1;
priceCounter = 1;
finalPriceCounter = 1;
trade = 0;
%while day is within timeframe
while (day < dayEnd),
        %find all prices on certain day
        while (stockMatrix(dayCounter,1) == day),
        %find all prices within timeframe
            if ((stockMatrix(dayCounter,2)>=timeStart)&&
            (stockMatrix(dayCounter,2)
```

```
    <=timeEnd)),
    %take out error prices that are greater than $1000
    if (stockMatrix(dayCounter,4) < 1000),
            %store price in a vector
            validPrices(priceCounter) = stockMatrix(dayCounter,4);
            priceCounter = priceCounter+1;
            trade = 1;
        end;
    end;
    dayCounter = dayCounter+1;
end;
%exclude this error
if (strcmp(stock,'HON.dat')),
        if (day == 36495),
        trade = 0;
    end;
end;
%exclude these errors
if (strcmp(stock,'VIAB.dat')),
    if ((day >= 36242)&&(day <= 36251)),
        trade = 0;
    end;
end;
%if there was a trade on this day, store mean/std dev in the price
%matrix
if (trade == 1),
    priceMatrix(finalPriceCounter,2) = mean(validPrices);
    priceMatrix(finalPriceCounter,1) = stockMatrix(dayCounter-1,1);
    %priceMatrix(finalPriceCounter,3) = day;
    finalPriceCounter = finalPriceCounter+1;
end;
%reset variables
trade = 0;
validPrices = 0;
priceCounter = 1;
```

```
    day = day+1;
```

end;
\%clear stock from workspace
clear stockMatrix;

6.2 Calculate All Prices and Std Dev's

```
function allStocks(excludeStocks, numOfDays)
%stock names
ticker1 = 'AA' ;
ticker2 = 'AEP' ;
ticker3 = 'AES' ;
ticker4 = 'AGC' ;
ticker5 = 'AIG' ;
ticker6 = 'AMGN' ;
ticker7 = 'AOL' ;
ticker8 = 'ATI' ;
ticker9 = 'AVP' ;
ticker10 = 'AXP' ;
ticker11 = 'BA' ;
ticker12 = 'BAC';
ticker13 = 'BAX' ;
ticker14 = 'BCC' ;
ticker15 = 'BDK' ;
ticker16 = 'BHI' ;
ticker17 = 'BMY' ;
ticker18 = 'BNI' ;
ticker19 = 'C' ;
ticker20 = 'CCU' ;
ticker21 = 'CI' ;
ticker22 = 'CL';
ticker23 = 'CPB' ;
ticker24 = 'CSC' ;
ticker25 = 'CSCO' ;
ticker26 = 'DAL' ;
ticker27 = 'DD' ;
```

```
ticker28 = 'DIS' ;
ticker29 = 'DOW' ;
ticker30 = 'EK' ;
ticker31 = 'EMC' ;
ticker32 = 'ENE' ;
ticker33 = 'EPG' ;
ticker34 = 'ETR' ;
ticker35 = 'EXC' ;
ticker36 = 'F' ;
ticker37 = 'FDX' ;
ticker38 = 'G' ;
ticker39 = 'GD' ;
ticker40 = 'GE' ;
ticker41 = 'GM' ;
ticker42 = 'GX' ;
ticker43 = 'HAL' ;
ticker44 = 'HCA' ;
ticker45 = 'HD' ;
ticker46 = 'HET' ;
ticker47 = 'HIG';
ticker48 = 'HNZ' ;
ticker49 = 'HON' ;
ticker50 = 'HWP' ;
ticker51 = 'IBM' ;
ticker52 = 'INTC' ;
ticker53 = 'IP' ;
ticker54 = 'JNJ' ;
ticker55 = 'JPM' ;
ticker56 = 'KO' ;
ticker57 = 'LEH';
ticker58 = 'LTD' ;
ticker59 = 'LU';
ticker60 = 'NSC' ;
ticker61 = 'NSM' ;
ticker62 = 'NT' ;
ticker63 = 'NXTL' ;
ticker64 = 'ONE' ;
ticker65 = 'ORCL' ;
```

```
ticker66 = 'PEP' ;
ticker67 = 'PFE' ;
ticker68 = 'PG';
ticker69 = 'PHA' ;
ticker70 = 'RAL' ;
ticker71 = 'ROK' ;
ticker72 = 'RSH' ;
ticker73 = 'RTNB' ;
ticker74 = 'S' ;
ticker75 = 'SLB' ;
ticker76 = 'SLE' ;
ticker77 = 'SO' ;
ticker78 = 'T' ;
ticker79 = 'TOY' ;
ticker80 = 'TXN' ;
ticker81 = 'TYC' ;
ticker82 = 'UIS' ;
ticker83 = 'USB' ;
ticker84 = 'UTX' ;
ticker85 = 'VIAB' ;
ticker86 = 'VZ' ;
ticker87 = 'WFC' ;
ticker88 = 'WMB' ;
ticker89 = 'WMT' ;
ticker90 = 'WY' ;
ticker91 = 'XOM' ;
ticker92 = 'XRX' ;
%matrix with stddev's of each stock's prices
volatilityMatrix = [0,0];
volatilityCounter=0;
index = 1;
%92 stocks to run through
while index<=92,
        %used to look ticker1-ticker92
        currentIndexedTicker = cat(2,'ticker',num2str(index));
```

```
    %finds if stock should be excluded
    skipStock=0;
    for excludeCounter=1:length(excludeStocks),
    if index==excludeStocks(excludeCounter),
        skipStock = 1;
    end
end
    if skipStock==1,
    index=index+1;
else
    volatilityCounter=volatilityCounter+1;
    stockName = [eval(currentIndexedTicker),'.dat'];
    %create matrix of stock's daily prices and stddev's
    prices = daily(stockName,numOfDays);
    stockSave = [eval(currentIndexedTicker),'Daily.dat'];
    %save price matrix as i.e. AADaily.dat
    save(stockSave,'prices','-ASCII');
    %volatilityMatrix(volatilityCounter,1) = eval(currentIndexedTicker);
    %create matrix where first column if stock number, second column is
    %stddev of all its prices
    volatilityMatrix(volatilityCounter,1) = index;
    volatilityMatrix(volatilityCounter,2) = std(prices(:,2));
    save('volatilityMatrix.dat','volatilityMatrix','-ASCII');
    %keep track of which stocks are completed
    fprintf('stock %s is done.\n',eval(currentIndexedTicker));
    index=index+1;
end
end
```


6.3 Splits

```
function splits()
```

\%set ticker values

```
index = 1;
volatilityCounter = 0;
%92 stocks to run through
while index<=92,
    %load stocks except CSCO and INTC
    if ((index }\mp@subsup{}{~}{~}=25)&&(index ~ =52))
        currentIndexedTicker = cat(2,'ticker',num2str(index));
        stockName = [eval(currentIndexedTicker),'Daily.dat'];
        dailyMatrix = load(stockName);
    end;
    %don't include stocks that appear to have a split but don't
    if ((index==73)||(index==25)||(index==52)||(index==65)),
        split=0;
    else
        split = 1;
    end;
    while (split > 0),
        split = 0;
        previous = 1;
        splitDate=10000;
        for counter=2:length(dailyMatrix),
            %to avoid false-positive split detections
            if (dailyMatrix(previous,2)>25),
                %detect 3-2 split
                    if (dailyMatrix(counter,2)-5 < dailyMatrix(previous,2)/1.5)&&
                    (dailyMatrix(counter,2)+5 > dailyMatrix(previous,2)/1.5),
                    split=32;
                    splitDate=counter;
                    counter=length(dailyMatrix)+1;
                    end;
                    if (counter <= length(dailyMatrix)),
                        %detect 2-1 split
                        if (dailyMatrix(counter,2)-5 < dailyMatrix(previous,2)/2)&&
```

```
    (dailyMatrix(counter,2)+5 > dailyMatrix(previous,2)/2),
        split=21;
        splitDate=counter;
        counter=length(dailyMatrix)+1;
        end;
    end;
    if (counter <= length(dailyMatrix)),
        %detect 3-1 split
        if (dailyMatrix(counter,2)-5 < dailyMatrix(previous,2)/3)&&
        (dailyMatrix(counter,2)+5 > dailyMatrix(previous,2)/3),
            split=31;
            splitDate=counter;
            counter=length(dailyMatrix)+1;
        end;
        end;
        previous=previous+1;
    end;
end;
if (split > 0),
    for index2=1:length(dailyMatrix),
        price = dailyMatrix(index2,2);
        %recalculate prices by reversing splits
        if (index2>=splitDate),
            if (split==32),
                dailyMatrix(index2,2)=price*1.5;
            end;
            if (split==21),
                dailyMatrix(index2,2)=price*2;
            end;
            if (split==31),
                dailyMatrix(index2,2)=price*3;
            end;
        end;
    end;
```

end;
end;
if ((index $\left.{ }^{\sim}=25\right) \& \&\left(\right.$ index $\left.\left.^{\sim}=52\right)\right)$,
\%save price matrix as i.e. AADailySplits.dat
stockSave = [eval(currentIndexedTicker), 'DailySplits.dat']; save(stockSave,'dailyMatrix','-ASCII');
\%save std's of prices of each stock in one matrix volatilityCounter=volatilityCounter+1;
volatilityMatrix(volatilityCounter,1) = index;
volatilityMatrix(volatilityCounter,2) = std(dailyMatrix(:,2));
save('volatilityMatrixSplits.dat', 'volatilityMatrix','-ASCII');
fprintf('stock \%s is done. \n', eval(currentIndexedTicker));
end;
\%loop to next stock
index=index+1;
clear dailyMatrix;
end;

6.4 Half

function half()
\%set ticker values
index=1;
$\% 92$ stocks to run through
while index<=92, \%load stocks except CSCO and INTC if ($\left(\right.$ index $\left.{ }^{\sim}=25\right) \& \&\left(\right.$ index $\left.^{\sim}=52\right)$), currentIndexedTicker = cat(2,'ticker', num2str(index)); stockName = [eval(currentIndexedTicker),'DailySplits.dat']; dailyMatrix = load(stockName); $\mathrm{x}=1$; \%split the prices into files for first 6 months and second 6 months for counter=1:length(dailyMatrix),
if (counter<=126),
half1 (counter,1)=dailyMatrix(counter,1);
half1 (counter, 2) =dailyMatrix (counter, 2) ;
end;
if (counter>126), half2 $(x, 1)=$ dailyMatrix (counter, 1) ; half2(x,2)=dailyMatrix (counter,2) ; $\mathrm{x}=\mathrm{x}+1$;
end;
end;
\%save price matrix as i.e. AAPrices1.dat
stockSave = [eval(currentIndexedTicker),'Prices1.dat'];
save(stockSave,'half1','-ASCII');
stockSave = [eval(currentIndexedTicker),'Prices2.dat']; save(stockSave,'half2', '-ASCII');
fprintf('stock \%s is done.\n',eval(currentIndexedTicker));
end;
index=index+1;
clear dailyMatrix;
clear half1;
clear half2;
end;

6.5 Length Check

```
function lengthCheck()
%set ticker values
index=1;
%85 stocks to run through
while index<=85,
    currentIndexedTicker = cat(2,'ticker',num2str(index));
    stockName = [eval(currentIndexedTicker),'Returns2.dat'];
    stock = load(stockName);
    %make sure length is 126 days
    lengthVector(index,1)=index;
    lengthVector(index,2)=length(stock)-126;
```

```
    save('lengthVector.dat','lengthVector','-ASCII');
    fprintf('%d is done.\n',index);
    index=index+1;
end;
```


6.6 Timeframe

```
function timeFrame()
%set ticker values
index1=1;
index2=1;
currentIndexedTicker1 = cat(2,'ticker',num2str(index1));
stock1Name = [eval(currentIndexedTicker1),'Prices2.dat'];
stock1 = load(stock1Name);
%85 stocks to run through
while index2<=85,
    currentIndexedTicker2 = cat(2,'ticker',num2str(index2));
    stock2Name = [eval(currentIndexedTicker2),'Prices2.dat'];
    stock2 = load(stock2Name);
    %check if lengths of all stocks are the same
    check(:,index2)=stock1(:,1)-stock2(:,1);
    save('check2.dat','check','-ASCII');
    fprintf('%d is done.\n',index2);
    index2=index2+1;
end;
counter1=1;
counter2=1;
checkStock=zeros(85,1);
%if length isn't the same, identify with a '1'
for counter1=1:85,
    for counter2=1:126,
        if (check(counter2,counter1) ~ = 0),
```

```
            checkStock(counter1)=1;
            counter2=126;
        end;
    end;
end;
save('checkStock.dat','checkStock','-ASCII');
```


6.7 Returns

```
function returns()
%set ticker values
index=1;
returnCounter=0;
%85 stocks
while index<=85,
    %don't include CSCO and INTC
    %if ((index }=25)&&(index~=52))
        %load stock
        currentIndexedTicker = cat(2,'ticker',num2str(index));
        stockName = [eval(currentIndexedTicker),'Prices2.dat'];
        dailySplitsMatrix = load(stockName);
```

 previous=1;
 for counter=2:length(dailySplitsMatrix),
 \(\% 1\) st column for date, 2nd column for return
 returnMatrix(previous,1)=dailySplitsMatrix (counter,1);
 returnMatrix(previous,2)=(dailySplitsMatrix(counter,2)-
 dailySplitsMatrix(previous,2))/dailySplitsMatrix(previous,2);
 previous=previous+1;
 end;
 \%save price matrix as i.e. AAReturns.dat
 stockSave = [eval(currentIndexedTicker),'Returns2.dat'];
    ```
    save(stockSave,'returnMatrix','-ASCII');
    %find mean/std of all returns for each stock, store in a matrix
    returnCounter=returnCounter+1;
    allReturns(returnCounter,1) = index;
    allReturns(returnCounter,2) = mean(returnMatrix(:,2));
    allReturns(returnCounter,3) = var(returnMatrix(:,2));
    save('allReturns2.dat','allReturns','-ASCII');
    fprintf('stock %s is done.\n',eval(currentIndexedTicker));
    %end;
    %loop to next stock
    index=index+1;
    clear dailySplitsMatrix;
    clear returnMatrix;
end;
```


6.8 Covariance Matrix

```
function covMatrix()
```

```
%set ticker values
covMatrix=0;
index1=1;
%85 stocks to run through
while index1<=85,
        index2=1;
        while index2<=85,
            currentIndexedTicker1 = cat(2,'ticker',num2str(index1));
            currentIndexedTicker2 = cat(2,'ticker',num2str(index2));
            stock1Name = [eval(currentIndexedTicker1),'Returns1.dat'];
            stock2Name = [eval(currentIndexedTicker2),'Returns1.dat'];
            stock1 = load(stock1Name);
            stock2 = load(stock2Name);
            %calculate covariance matrix between each stock's returns
            covValue=cov(stock1(:,2),stock2(:,2));
```

```
        covMatrix(index1,index2)=covValue(1,2);
        save('covMatrix.dat','covMatrix','-ASCII');
        fprintf('%d-%d is done.\n',index1,index2);
        index2=index2+1;
    end;
    index1=index1+1;
end;
```


6.9 Positive Definiteness

```
function posDef()
%num of stocks
N=85;
%define A
A=zeros(N+2,N+2);
%load covariance matrix
covar = load('covMatrix.dat');
%assign covariances to matrix A
for row=1:N,
    for column=1:N,
        A(row,column)=2*covar(row, column);
    end;
end;
%load returns
returns = load('allReturns1.dat');
%assign returns to matrix A
for row=1:N,
    A(row,N+1)=returns(row,2);
end;
```

```
for column=1:N,
    A(N+1,column)=returns(column,2);
end;
%finish creating matrix A with proper values
for row=1:N;
    A(row,N+2)=1;
end;
for column=1:N;
    A(N+2,column)=1;
end;
determinants=zeros(N,2);
%calculate principal minors
for counter=1:85,
    determinants(counter,1)=det(A(1:counter,1:counter));
end;
%make sure all principal minors are positive
for counter=1:85,
    if (determinants(counter,1)>0),
        determinants(counter,2)=1;
    end;
end;
save('A.dat','A','-ASCII');
save('determinants.dat','determinants','-ASCII');
```


6.10 Optimization Routine

```
function [x,variance] = optRoutine(mu)
```

function [x,variance] = optRoutine(mu)
%num of stocks
%num of stocks
N=85;
N=85;
%define A

```
```

A=zeros(N+2,N+2);
%load covariance matrix
covar = load('covMatrix.dat');
%assign covariances to matrix A
for row=1:N,
for column=1:N,
A(row, column)=2*covar(row, column);
end;
end;
%load returns
returns = load('allReturns1.dat');
%assign returns to matrix A
for row=1:N,
A(row,N+1)=-returns(row,2);
end;
for column=1:N,
A(N+1, column)=returns(column, 2);
end;
%finish creating matrix A with proper values
for row=1:N;
A(row,N+2)=-1;
end;
for column=1:N;
A(N+2, column)=1;
end;
%create matrix b
b=zeros(N+2,1);
b}(N+1,1)=mu

```
```

b}(N+2,1)=1
%use built-in function to identify unknown proportions and lambda's
x=A^-1*b;
variance=0;
for index1=1:85,
for index2=1:85,
variance=variance+x(index1)*x(index2)*covar(index1,index2);
end;
end;

```

\subsection*{6.11 Calculate Proportions}
```

function lagrange(expReturnStart,expReturnEnd,numOfReturns)
%mean rate of return
mu=expReturnStart;
for counter=1:numOfReturns,
%set expected return
expReturn=mu+(expReturnEnd-expReturnStart)/(numOfReturns-1)*(counter-1);
%perform optimization
[proportions,variance]=optRoutine(expReturn);
%record proportions
proportionMatrix(:,counter)=proportions;
%record min variances
minVariances(counter,1)=expReturn;
minVariances(counter,2)=variance;
allProportions(1,counter)=expReturn;
allProportions(2,counter)=variance;
for index=3:89,
allProportions(index, counter)=proportions(index-2);
end;

```
fprintf( \(\%\) \% \(\% \mathrm{~d}\) is done. \(\mathrm{n}^{\prime}\), counter, expReturn);
end;
```

save('proportionMatrix.dat','proportionMatrix','-ASCII');

```
save('minVariances.dat','minVariances','-ASCII');
save('allProportions.dat', 'allProportions', '-ASCII');

\subsection*{6.12 Future Performance}
```

function futurePerformance2(expReturn)
%set ticker values
N=85;
dailyValue=zeros(126,1);
dailyReturns=zeros(125,1);
totalReturn=0;
allProportions = load('allProportions.dat');
%10000 runs to find min variance, set efficient frontier
for counter1=1:10000,
if allProportions(1,counter1)==expReturn,
for counter2=1:85,
proportions(counter2,1)=allProportions(counter2+2,counter1);
end;
counter1=10000;
end;
end;

```
clear allProportions;
for index=1:N,
        currentIndexedTicker = cat(2,'ticker', num2str(index));
        stockName = [eval(currentIndexedTicker),'Prices2.dat'];
        stockPrices = load(stockName);
        \%set future prices
        futurePrices(:,index)=stockPrices(:,2);
end;
\%for index=1:N,
\% dailyValue(1) = dailyValue(1) + futurePrices(1,index)* (10000*proportions(index))/futurePrices(1,index); \%end;
for day=1:126,
\%calculate daily value
for stockNumber=1:85, dailyValue(day)=dailyValue(day) + futurePrices(day,stockNumber)* (10000*proportions(stockNumber))/futurePrices(1,stockNumber);
end;
\%calculate daily return if day>1, dailyReturns(day-1)=(dailyValue(day)-dailyValue(day-1))/ dailyValue(day-1);
end;
fprintf('day \%d is done. \(\backslash n^{\prime}\),day);
end;
\%calculate total return
totalReturn=(dailyValue(126)-dailyValue(1))/dailyValue(1);
save('dailyValue2.dat','dailyValue','-ASCII');
save('dailyReturns2.dat','dailyReturns','-ASCII');
save('totalReturn2.dat','totalReturn','-ASCII');

Table 3: Portfolio Proportions Part1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Expected Return & 0.0006 & 0.01 & 0.05 & 0.1 & 0.25 & 0.5 \\
\hline Variance & 0 & 0.0001 & 0.0012 & 0.0046 & 0.0291 & 0.1166 \\
\hline AA & 0.0874 & 0.1565 & 0.4491 & 0.8148 & 1.9118 & 3.7401 \\
\hline AEP & 0.1958 & -0.6016 & -3.9768 & -8.1959 & -20.853 & -41.9482 \\
\hline AES & -0.0279 & 0.046 & 0.3589 & 0.75 & 1.9232 & 3.8787 \\
\hline AGC & 0.0281 & 0.0926 & 0.3658 & 0.7074 & 1.7319 & 3.4395 \\
\hline AIG & 0.131 & 0.1009 & -0.0261 & -0.1849 & -0.6613 & -1.4553 \\
\hline AMGN & 0.1056 & 0.0571 & -0.1484 & -0.4053 & -1.1758 & -2.46 \\
\hline AOL & -0.0201 & -0.0481 & -0.1666 & -0.3148 & -0.7592 & -1.4998 \\
\hline AVP & -0.0406 & 0.0357 & 0.3589 & 0.7628 & 1.9745 & 3.994 \\
\hline AXP & -0.106 & 0.3208 & 2.1276 & 4.386 & 11.1613 & 22.4534 \\
\hline BA & -0.0581 & -0.2099 & -0.8525 & -1.6558 & -4.0656 & -8.0818 \\
\hline BAC & 0.0272 & -0.0619 & -0.4394 & -0.9112 & -2.3267 & -4.6857 \\
\hline BAX & -0.0989 & -0.064 & 0.0839 & 0.2687 & 0.8232 & 1.7474 \\
\hline BCC & 0.0496 & 0.4991 & 2.4017 & 4.7799 & 11.9147 & 23.806 \\
\hline BDK & 0.0062 & 0.2138 & 1.0922 & 2.1902 & 5.4843 & 10.9744 \\
\hline BHI & 0.064 & 0.1639 & 0.5867 & 1.1153 & 2.701 & 5.3439 \\
\hline BMY & -0.0034 & -0.012 & -0.0486 & -0.0944 & -0.2316 & -0.4604 \\
\hline BNI & 0.1143 & 0.1375 & 0.2356 & 0.3583 & 0.7264 & 1.3398 \\
\hline C & -0.0992 & 0.067 & 0.7707 & 1.6503 & 4.2889 & 8.6868 \\
\hline CCU & 0.074 & 0.011 & -0.256 & -0.5897 & -1.5907 & -3.2591 \\
\hline CI & -0.0291 & 0.1837 & 1.0843 & 2.2101 & 5.5874 & 11.2163 \\
\hline CL & 0.1189 & -0.1503 & -1.2896 & -2.7139 & -6.9866 & -14.1077 \\
\hline CPB & 0.0418 & 0.115 & 0.4247 & 0.8119 & 1.9735 & 3.9094 \\
\hline CSC & 0.0354 & 0.0993 & 0.3698 & 0.7079 & 1.7222 & 3.4128 \\
\hline DAL & 0.0373 & -0.0656 & -0.5015 & -1.0463 & -2.6807 & -5.4048 \\
\hline DD & -0.0044 & -0.3856 & -1.9991 & -4.016 & -10.0666 & -20.1509 \\
\hline DIS & -0.008 & 0.0584 & 0.3393 & 0.6905 & 1.7441 & 3.5 \\
\hline DOW & 0.1145 & 0.4141 & 1.6822 & 3.2674 & 8.0231 & 15.9491 \\
\hline EK & -0.0472 & -0.129 & -0.4754 & -0.9084 & -2.2073 & -4.3722 \\
\hline EMC & 0.04 & 0.0797 & 0.2478 & 0.4579 & 1.0883 & 2.139 \\
\hline ENE & 0.0934 & 0.2248 & 0.7809 & 1.4761 & 3.5615 & 7.0372 \\
\hline EPG & -0.0139 & -0.0764 & -0.3414 & -0.6725 & -1.6659 & -3.3217 \\
\hline ETR & -0.0823 & -0.246 & -0.9393 & -1.8058 & -4.4055 & -8.7384 \\
\hline EXC & -0.0084 & 0.3212 & 1.7161 & 3.4597 & 8.6906 & 17.4087 \\
\hline F & -0.0387 & -0.3714 & -1.7798 & -3.5402 & -8.8215 & -17.6237 \\
\hline FDX & 0.045 & 0.0741 & 0.1976 & 0.3519 & 0.8149 & 1.5865 \\
\hline G & 0.0296 & 0.0825 & 0.3066 & 0.5868 & 1.4271 & 2.8278 \\
\hline GD & 0.068 & -0.0052 & -0.3151 & -0.7025 & -1.8647 & -3.8017 \\
\hline GE & -0.1319 & -0.3156 & -1.0935 & -2.0657 & -4.9825 & -9.8438 \\
\hline
\end{tabular}

Table 4: Portfolio Proportions Part2
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Expected Return & 0.0006 & 0.01 & 0.05 & 0.1 & 0.25 & 0.5 \\
Variance & 0 & 0.0001 & 0.0012 & 0.0046 & 0.0291 & 0.1166 \\
GM & 0.0118 & 0.0107 & 0.0063 & 0.0008 & -0.0159 & -0.0436 \\
GX & -0.0134 & -0.0453 & -0.1802 & -0.349 & -0.8552 & -1.6989 \\
HAL & -0.1254 & -0.2098 & -0.567 & -1.0134 & -2.3526 & -4.5847 \\
HCA & 0.0484 & -0.0793 & -0.62 & -1.2958 & -3.3233 & -6.7025 \\
HD & 0.1357 & -0.0979 & -1.0864 & -2.3221 & -6.0292 & -12.2077 \\
HET & -0.0749 & 0.0571 & 0.6154 & 1.3134 & 3.4074 & 6.8973 \\
HIG & -0.0346 & 0.0245 & 0.2745 & 0.5871 & 1.5246 & 3.0872 \\
HNZ & 0.0658 & 0.1463 & 0.4873 & 0.9134 & 2.1919 & 4.3227 \\
HWP & -0.0355 & -0.1293 & -0.5263 & -1.0225 & -2.5113 & -4.9925 \\
IBM & 0.0722 & 0.2001 & 0.7416 & 1.4184 & 3.4489 & 6.833 \\
IP & 0.0535 & -0.0713 & -0.5994 & -1.2595 & -3.2398 & -6.5404 \\
JNJ & 0.024 & 0.5907 & 2.9894 & 5.9877 & 14.9826 & 29.9741 \\
JPM & -0.024 & 0.0934 & 0.5903 & 1.2114 & 3.0746 & 6.18 \\
KO & -0.0049 & 0.0454 & 0.2586 & 0.5251 & 1.3245 & 2.657 \\
LEH & 0.0308 & -0.1338 & -0.8305 & -1.7014 & -4.314 & -8.6684 \\
LTD & -0.0002 & 0.3181 & 1.6656 & 3.3499 & 8.4029 & 16.8246 \\
LU & -0.0062 & -0.1702 & -0.8647 & -1.7328 & -4.3372 & -8.6778 \\
NSC & -0.0536 & -0.1121 & -0.3593 & -0.6683 & -1.5954 & -3.1406 \\
NSM & 0.0529 & 0.057 & 0.0744 & 0.096 & 0.161 & 0.2693 \\
NT & -0.036 & 0.3492 & 1.9798 & 4.018 & 10.1326 & 20.3236 \\
NXTL & 0.061 & 0.1897 & 0.7348 & 1.4161 & 3.46 & 6.8665 \\
ONE & -0.0979 & -0.1278 & -0.2545 & -0.4129 & -0.888 & -1.6798 \\
ORCL & -0.0482 & -0.0994 & -0.3162 & -0.5872 & -1.4002 & -2.7551 \\
PEP & 0.0632 & 0.0376 & -0.0706 & -0.2059 & -0.6118 & -1.2882 \\
PFE & 0.069 & -0.1412 & -1.0313 & -2.1439 & -5.4816 & -11.0445 \\
PG & 0.0259 & 0.0506 & 0.1551 & 0.2857 & 0.6774 & 1.3303 \\
PHA & 0.0138 & 0.0573 & 0.2412 & 0.471 & 1.1607 & 2.3101 \\
RAL & 0.022 & -0.204 & -1.1607 & -2.3565 & -5.944 & -11.9232 \\
ROK & -0.0747 & 0.0264 & 0.454 & 0.9885 & 2.592 & 5.2646 \\
RSH & 0.0303 & 0.1925 & 0.8789 & 1.7369 & 4.3109 & 8.601 \\
S & -0.0574 & -0.2854 & -1.2503 & -2.4565 & -6.0749 & -12.1057 \\
SLB & 0.0628 & 0.0893 & 0.2015 & 0.3417 & 0.7625 & 1.4637 \\
SLE & 0.0304 & 0.1497 & 0.6549 & 1.2864 & 3.1807 & 6.338 \\
SO & 0.2011 & 0.4247 & 1.371 & 2.5538 & 6.1024 & 12.0168 \\
T & -0.0246 & -0.1098 & -0.4703 & -0.921 & -2.273 & -4.5265 \\
TOY & -0.0536 & -0.0859 & -0.2222 & -0.3927 & -0.9041 & -1.7564 \\
TXN & -0.0081 & 0.0991 & 0.5527 & 1.1197 & 2.8207 & 5.6557 \\
TYC & -0.0935 & -0.0104 & 0.3416 & 0.7815 & 2.1013 & 4.3009 \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 5: Portfolio Proportions Part3
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Expected Return & 0.0006 & 0.01 & 0.05 & 0.1 & 0.25 & 0.5 \\
Variance & 0 & 0.0001 & 0.0012 & 0.0046 & 0.0291 & 0.1166 \\
UIS & 0.0088 & -0.0264 & -0.1755 & -0.362 & -0.9212 & -1.8533 \\
USB & 0.0505 & -0.1832 & -1.1727 & -2.4095 & -6.12 & -12.3042 \\
UTX & -0.0644 & -0.204 & -0.7949 & -1.5336 & -3.7496 & -7.443 \\
VZ & 0.0868 & -0.0409 & -0.5812 & -1.2567 & -3.2832 & -6.6606 \\
WFC & -0.0637 & -0.1392 & -0.4588 & -0.8582 & -2.0564 & -4.0534 \\
WMB & 0.0553 & 0.0851 & 0.2116 & 0.3697 & 0.844 & 1.6345 \\
WMT & 0.0217 & -0.0255 & -0.2252 & -0.4748 & -1.2237 & -2.4718 \\
WY & 0.0013 & -0.1365 & -0.72 & -1.4493 & -3.6374 & -7.2841 \\
XRX & 0.0067 & -0.2379 & -1.2731 & -2.5671 & -6.4491 & -12.9191 \\
\hline
\end{tabular}

Table 6: Future Performance
\begin{tabular}{|l|c|c|c|c|}
\hline Expected Return & Starting Value & Ending Value & Value Difference & Actual Return \\
\(.055 \%\) & \(\$ 10000\) & \(\$ 8711.52\) & \(-\$ 1288.48\) & \(-12.88 \%\) \\
\(1 \%\) & \(\$ 10000\) & \(\$ 17484.11\) & \(\$ 7484.11\) & \(74.84 \%\) \\
\(5 \%\) & \(\$ 10000\) & \(\$ 54616.77\) & \(\$ 44616.77\) & \(446.17 \%\) \\
\(10 \%\) & \(\$ 10000\) & \(\$ 101032.58\) & \(\$ 91032.58\) & \(910.33 \%\) \\
\(25 \%\) & \(\$ 10000\) & \(\$ 240280.04\) & \(\$ 230280.04\) & \(2302.80 \%\) \\
\(50 \%\) & \(\$ 10000\) & \(\$ 472359.14\) & \(\$ 462359.14\) & \(4623.59 \%\) \\
\hline
\end{tabular}```

