
Project Number: MB1-1234

PORTFOLIO RISK MINIMIZATION USING HISTORICAL DATA

A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Brian Duncan

Date: April 24, 2008

Approved:

Professor Marcel Blais

Project Advisor

ACKNOWLEDGMENTS

I would like to thank Professor Marcel Blais, Mathematical Sciences De-
partment, Worcester Polytechnic Institute, as well as everyone who helped
contribute to my success in this project.

i

ABSTRACT

Data from 1999 was gathered for 90 stocks in the S&P 500. The first 6 months
of data was used to create a portfolio with the minimum risk while given an
expected rate of return. Constraints were then added to limit short selling
and limit the number of shares of certain stocks. The resulting portfolios
were then tested to see if their future performance for the next 6 months
would have produced a profit.

ii

Contents

1 Introduction 1

2 Background 3

3 Data 4

4 Optimization 7

4.1 Unconstrained Problem . 7
4.1.1 Problem Formulation 7
4.1.2 Results . 14

4.2 Constrained Problem . 21
4.2.1 Problem Formulation 21

5 Conclusions 29

6 Appendix 31

6.1 Daily Prices Routine . 31
6.2 Calculate All Prices and Std Dev’s 33
6.3 Splits . 36
6.4 Half . 39
6.5 Length Check . 40
6.6 Timeframe . 41
6.7 Returns . 42
6.8 Covariance Matrix . 43
6.9 Positive Definiteness . 44
6.10 Optimization Routine . 45
6.11 Calculate Proportions . 47
6.12 Future Performance . 48

iii

List of Figures

1 AA 2-1 Stock Split . 6
2 Efficient Frontier Optimal . 16
3 Efficient Frontier . 17
4 Daily Value for Portfolio with Minimum Variance 19
5 Daily Returns for Portfolio with Minimum Variance 20
6 Daily Value . 21
7 Daily Value2 . 22
8 Daily Returns . 23
9 Daily Returns2 . 24
10 S&P 500, all of 1999 . 25
11 S&P 500, second half of 1999 25

iv

List of Tables

1 Tick Data . 4
2 Minimum Variance Portfolios 15
3 Portfolio Proportions Part1 50
4 Portfolio Proportions Part2 51
5 Portfolio Proportions Part3 52
6 Future Performance . 52

v

1 Introduction

Investing in the stock market can potentially be a way to make a lot of

money; however, there is a certain level of risk involved. When dealing with

riskless investments such as money market accounts, investors are guaranteed

a certain return without having to worry about losing their capital. On the

other hand, when investing in the stock market, investors can lose money

if their stocks lose value. There is a potential for a large reward, especially

when investing in more risky stocks.

The stock market is ever-changing, and patterns can be difficult to dis-

cern. There may be trends, and there are many strategies to try and predict

how stocks will perform, but we can never be certain. One way to decrease

the risk associated with a stock portfolio is by using diversification. This

means that we spread out our capital into many different stocks. Since there

is a very low probability that each of the stocks will drop significantly in

price at the same time, diversification gives us a mechanism to reduce the

volatility of our portfolio’s value.

The phrase “high-risk, high-reward” means that the riskier stocks have

a higher potential reward associated with them. If we invest in stocks that

fluctuate greatly, the large jumps in price can be very beneficial, but the large

drops in price can also decrease our portfolio’s value a great deal. Portfolio

risk minimization involves taking stock price historical data and calculating

past returns and their variances [1]. This will separate certain stocks which

1

2

have a tendency to fluctuate greatly from day to day and those that have

more consistency. If a stock’s price over the last six months continued to

gradually rise without any sharp changes, it might be in our best interest to

invest a large percentage of our capital in this stock. Using historical data,

the algorithm will be able to give us the portfolio with the minimum variance

for each expected return. By varying the expected return, we construct an

efficient frontier [1]. The efficient frontier is a term used for the infinite num-

ber of combinations of the mean rate of returns and corresponding minimum

variances. For any mean rate of return that we choose, there is a minimum

variance portfolio associated with it.

On the surface and to an inexperienced investor the stock market is a

risky forum, but using Markowitz Theory [1] and minimizing our portfolio

variance can give us a fairly stable return. Since we are using historical data,

it is very important to gather data as recent as possible. Even then, over

time that data will become less useful, and we will again have to perform

this optimization routine to update our portfolio. When our main concern

is to make a profit, this is an effective strategy. We can always set a high

expected rate of return, and even though the portfolio variance will be high,

the optimization routine will minimize it. This strategy could thus be used

by both the conservative investor and the aggressive investor. In this project

we implement this theory using historical data from the first six months of

1999 to find the optimal portfolio and then computing how much return we

would have gotten in the next six months using a buy and hold strategy.

2 Background

Harry Markowitz is an economist who is best known for his work in modern

portfolio theory. In 1952 he wrote a paper called “Portfolio Selection” which

appeared in the Journal of Finance [7]. He later won a Nobel Prize for his

contributions related to portfolio theory and his revolutionary ideas described

in his 1952 work. He suggested that instead of investing primarily in low risk

securities, to diversify stock portfolios and minimize the risk in those.

The returns are thought of as random variables that can follow a trend

which can be estimated using historical data. It is assumed that past trends

are indicative of future behavior, so past volatility can be a good representa-

tion of future volatility. The theory produces a portfolio with the minimum

variance given an expected return. This is where the risk-reward relationship

comes into play, and we quantify the minimal additional risk associated with

a higher expected return by constructing the efficient frontier. Markowitz

introduced the efficient frontier curve which represents all of the calculated

optimal portfolios. Each point on the curve represents a portfolio with the

minimum variance for a given expected return.

Modern portfolio theory and risk minimization has made trading in the

stock market a more sophisticated investment than it was in the past. Stock

portfolios can create a large profit for investors, and optimization techniques

can be used to minimize risk. Procedures such as data cleaning and problem

formulation are necessary for portfolio optimization to be effective.

3

3 Data

Data gathering and cleaning is a vital component of portfolio optimization.

We started with a pool of 90 stocks, where each has its own tick data file.

Each line of the tick data represents one trade for that particular stock.

There was three years of data in total, and we focused on 1999. The first

six months of data was used for calculating the optimal portfolios, and the

second six months was used to test the future performance of our portfolios.

Our first step involved extracting the useful data from the information

gathered. Table 1 shows a sample of the tick data for stock AA. Column 1 is

the stock symbol. Columns 3 and 7 were used as an ID number. In column 2,

the date was given in Julian format, where the value represents the number

of days since January 1, 1900. Column 4 is the time of day. For stock AA

the first trade occured on 1/4/99 at 9:31 AM. Column 5 is the number of

shares and column 6 is the price of the stock for that particular trade. The

number of shares is not important to us, but the prices will be used to find

the mean price of each day.

Table 1: Tick Data

Stock Symbol Date Time Shares Price
AA 36164 4912 93100 13400 74.56 2130
AA 36164 4912 93200 1200 74.5 2130
AA 36164 4912 93200 500 74.5 2130

We set our timeframe to be one year, from 1/4/99 to 1/3/00. We chose

4

5

to eliminate trades occuring at the beginning and end of each day when

computing the average daily price. Many traders in the market often face the

additional constraint of opening and closing large positions at the beginning

and end of the trading day, respectively. This causes dramatic fluctuations

in stock prices that are typically not indicative of the true market value of

the stock. We set a timeframe from 10 AM to 3 PM for each day to calculate

the average daily stock price. After calculating a stock price for each day, we

calculated the standard deviation of the daily prices for each stock to help

find errors in the data.

If the standard deviation of the daily prices was very large, this often

indicated that there could be an error in the data. Sometimes we found

that some of the columns were permuted. If the shares column and the

price column were switched, the daily price could be off by several orders

of magnitude, which would set off a red flag. These cases were easy to

identify and fix. Sometimes the prices in some trades seemed nonsensical

were extremely large. In this case, we needed to delete some trades and even

some entire days. We did, however, have to be careful that we did not falsely

identify an error in the data when there actually was a stock split.

When a company performs a stock split, they decrease the price of the

stock while increasing the number of shares. Some common stock splits are

2-1, 3-1, and 3-2. For example, in the case of a 2-1 stock split, the price is

cut in half while the number of shares is doubled. A stockholder keeps the

same amount of market capital (shares times price). A company may want

6

to have a stock split to decrease the price and make their stock look more

attractive to a consumer. In our situation, if there is a sudden large decrease

in price, this may indicate a stock split. Figure 1 shows a 2-1 stock split for

Alcoa. The price steadily fluctuates around $60 and then suddenly drops to

$30. Matlab was used to identify the splits, and new files were created where

the prices after the split were adjusted to eliminate these jumps in price. For

example, in the case of AA, we multiplied all the prices after the stock split

by 2.

Figure 1: AA 2-1 Stock Split

After fixing the splits and errors, we needed to eliminate five more stocks.

We needed 126 days of data for the optimization and 126 days of data for the

portfolio testing. However, five stocks had days that needed to be deleted

because of errors in the data so they could not be used in the optimization.

We were thus left with 85 stocks.

4 Optimization

In this optimization problem we have N stocks, a fixed expected return rate

µ, and portfolio weights denoted by Πi. Our objective is to minimize the

variance (risk) of the portfolio returns. We use Ri as the mean return rate

for each stock. Generally, the higher the expected return rate is, the higher

the risk is going to be. The problem formulation will be split into two parts.

The first will be the “unconstrained problem”, where we require only that

the portfolio weights sum to 1 and that the expected return is µ. The second

part will be the constrained problem, where lower and upper bounds will be

imposed on the portfolio weights for each stock. In both cases, short selling

is allowed, and thus Πi ∈ (−∞,∞).

4.1 Unconstrained Problem

4.1.1 Problem Formulation

We formulate a standard risk minimization problem with the given price and

return data. The goal is to minimize the portfolio variance, σ2

Π
, while satis-

fying two initial constraints. The first constraint assures that the portfolio

will achieve the expected return rate, µ. The second constraint says that the

portfolio weights add up to one, so 100% of our capital is invested into stock.

min σ2

Π
=

N
∑

i=1

N
∑

j=1

ΠiΠjσij (1)

7

8

s.t.
N

∑

i=1

ΠiRi = µ (2)

N
∑

i=1

Πi = 1 (3)

We can then use Lagrange Multipliers λ1 and λ2 to make a Lagrangian

function [1]. This method is a form of nonlinear optimization which enables

us to identify the minimum portfolio. The new equation becomes

L =

N
∑

i=1

N
∑

j=1

ΠiΠjσij − λ1(

N
∑

i=1

ΠiRi − µ) − λ2(

N
∑

i=1

Πi − 1) (4)

Now we need to differentiate the Lagrangian and set the derivatives equal

to zero [1]. Since we only have two constraints, the general form is

∇f = λ1∇g + λ2∇h (5)

or

∇f − λ1∇g − λ2∇h = 0 (6)

where f is our original objective function and g and h are the constraints.

Now to differentiate we need to factor out a Πk,

9

L =
N

∑

i=1

(Πi

N
∑

j=1

Πjσij) − λ1(
N

∑

i=1

ΠiRi − µ) − λ2(
N

∑

i=1

Πi − 1)

=
N

∑

i=1

i6=k

(Πi(
N

∑

j=1

j 6=k

Πjσij + Πkσik)) + Πk(
N

∑

j=1

j 6=k

Πjσkj + Πkσkk)

−λ1(
N

∑

i=1

i6=k

ΠiRi + ΠkRk − µ) − λ2(
N

∑

i=1

i6=k

Πi + Πk − 1)

After making this adjustment to the equation, the next step is to dif-

ferentiate with respect to Πk,

∂L
∂Πk

=

N
∑

i=1

i6=k

Πiσik +

N
∑

j=1

j 6=k

Πjσkj + 2Πkσkk − λ1Rk − λ2

= 2

N
∑

i=1

Πiσik − λ1Rk − λ2

If we repeat this process for all k from 1 to N and set the derivative

equal to 0, we get

∂L

∂Πi

= 2
N

∑

j=1

Πjσij − λ1Ri − λ2 = 0, i = 1, ..., N (7)

This gives us N equations, but we have N+2 unknowns (Πi, λ1, and λ2).

Therefore, we need two more equations to be able to solve this optimization

problem. These two equations come from the initial constraints [1]. So, our

10

first-order conditions are

2

N
∑

j=1

Πjσij − λ1Ri − λ2 = 0, i = 1, ..., N (8)

N
∑

i=1

ΠiRi = µ (9)

N
∑

i=1

Πi = 1 (10)

λ1 ≥ 0 (11)

λ2 ≥ 0 (12)

or

2(Π1σ1 1 + Π2σ1 2 + ... + ΠNσ1 N) − λ1R1 − λ2 = 0

2(Π1σ2 1 + Π2σ2 2 + ... + ΠNσ2 N) − λ1R2 − λ2 = 0

...

2(Π1σN 1 + Π2σN 2 + ... + ΠNσN N) − λ1RN − λ2 = 0

Π1R1 + Π2R2 + ... + ΠNRN = µ

Π1 + Π2 + ... + ΠN = 1

λ1 ≥ 0

11

λ2 ≥ 0

To solve this system numerically we convert it into matrix form. First we

will identify all of the known variables and unknown variables.

σ =

σ1 1 σ1 2 ... σ1 N

σ2 1 σ2 2 ... σ2 N

...
...

. . .
...

σN 1 σN 2 ... σN N

Π =

Π1

...

ΠN

R =

R1

...

RN

λ =

λ1

λ2

12

To create the one-line equations in matrix form we will need some addi-

tional matrices. These will be used to adjust the dimensions of the Ri’s. So,

our vectorized first-order equations are

2σΠ − R∗R∗∗λ = 0 (13)

ΠT R = µ (14)

ΠT 1 = 1 (15)

Now we combine the three equations into Ax = b form. This will isolate

x as the vector of all N+2 unknowns. Since A is invertible, the equation

becomes x = A−1b, which can be solved in Matlab. After some rearranging

of terms, the equations become

2σ −R −1

RT 0 0

1T 0 0

Π

λ1

λ2

=

0

µ

1

13

or

2σ1 1 2σ1 2 ... 2σ1 N −R1 −1

2σ2 1 2σ2 2 ... 2σ2 N −R2 −1

...
...

. . .
...

...
...

2σN 1 2σN 2 ... 2σN N −RN −1

R1 R2 ... RN 0 0

1 1 ... 1 0 0

Π1

Π2

...

ΠN

λ1

λ2

=

0

0

...

0

µ

1

Before we perform the optimization and test for future performance we

need to make sure this matrix is positive definite. That way we will know

it is invertible and has a unique solution. Since we need the matrix to be

symmetric, and σx y = σy x, an equal form of the optimization equation is

2σ1 1 2σ1 2 ... 2σ1 N R1 1

2σ1 2 2σ2 2 ... 2σ2 N R2 1

...
...

. . .
...

...
...

2σ1 N 2σ2 N ... 2σN N RN 1

R1 R2 ... RN 0 0

1 1 ... 1 0 0

Π1

Π2

...

ΠN

−λ1

−λ2

=

0

0

...

0

µ

1

14

So, the matrix we need to test for positive-definiteness is

A =

2σ1 1 2σ1 2 ... 2σ1 N R1 1

2σ1 2 2σ2 2 ... 2σ2 N R2 1

...
...

. . .
...

...
...

2σ1 N 2σ2 N ... 2σN N RN 1

R1 R2 ... RN 0 0

1 1 ... 1 0 0

There is a theorem that says if all the principal minors of a square sym-

metric matrix are positive, then the matrix is positive definite [3]. After

calculating all of the principal minors in Matlab and confirming they are all

positive, we can say that A is postive definite, is invertible, and has a unique

solution.

4.1.2 Results

The first step when we gathered the results was to find the minimum vari-

ance portfolio, which is the portfolio with the smallest possible variance [1].

This gives us the safest portfolio. The corresponding expected return rate

is very low, but so is the variance. In order to calculate the proportions in

the minimum variance portfolio, we set a range of expected return rates and

calculate the corresponding minimum variances. We then needed to find the

point at which the variances went from decreasing to increasing. We first set

an extremely low expected return and calculated the portfolio variance. Then

15

we increased the expected return by a very small amount, and repeated the

process. The variances gradually decrease as the expected returns increase,

but there is a point where the variances also start to increase. After sorting

through 10,000 trials, we narrowed the search down to the values shown in

Table 2.

Table 2: Minimum Variance Portfolios

Expected Return Rate Portfolio Variance
5.0000000e-004 1.3665251e-005
5.1000000e-004 1.3664817e-005
5.2000000e-004 1.3664476e-005
5.3000000e-004 1.3664229e-005
5.4000000e-004 1.3664075e-005
5.5000000e-004 1.3664015e-005
5.6000000e-004 1.3664048e-005
5.7000000e-004 1.3664175e-005
5.8000000e-004 1.3664395e-005
5.9000000e-004 1.3664709e-005
6.0000000e-004 1.3665116e-005

We see that the minimum variance occurs when the expected return rate

is 5.5000000e-004. This is equal to a return of 0.055%, which is a very small

return and would never logically be a goal for a stockholder; however, this

data can be used to form the efficient frontier, as shown in Figure 2. The

efficient frontier is a curve where each point represents an optimal portfolio,

that is, a portfolio with minimized variance for the given expected return.

The leftmost point on the curve represents the minimum variance portfolio.

16

We ignore the bottom half of the curve, since if we set a certain amount of

risk, we will always prefer the portfolio with the higher expected return. It

is clear that if the expected return rises, so does the portfolio variance.

1.3664 1.3664 1.3664 1.3665 1.3665 1.3665 1.3665 1.3665

x 10
−5

5.2

5.4

5.6

5.8

6

6.2
x 10

−4

Variance

E
xp

ec
te

d
R

et
ur

n

Efficient Frontier

Figure 2: Efficient Frontier Optimal

If we expand the range of expected returns to include more reasonable

values, the variances also rise, but not significantly. Figure 3 shows the effi-

cient frontier when the expected return ranges up to 50%.

17

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Variance

E
xp

ec
te

d
R

et
ur

n
Efficient Frontier

Figure 3: Efficient Frontier

Since the minimum variance portfolio gave an unreasonably low expected

return, we need to calculate some optimal portfolios with some realistic ex-

pected returns. We chose to use 1%, 5%, 10%, 25%, and 50%. Tables 3, 4,

and 5 show the optimal portfolios for the given expected returns. Each of

the stocks holds a proportion of the portfolio. If the proportion is negative,

that means the optimization suggests short selling and we would sell shares

18

of these stocks that we don’t own, while hoping the stocks’ prices go down

so we can buy them back at a lower price.

For the 5% expected return optimal portfolio, all 85 stocks held a non-

zero proportion of the portfolio. 43 stocks were held long, and 42 stocks were

held short. The stock with the proportion closest to zero was GM (General

Motors) at 0.006. The stock with the greatest long proportion was JNJ

(Johnson & Johnson) at 2.989. The stock with the greatest short proportion

was AEP (American Electric Power) at -3.977. All of these proportions are

shown in tables 3, 4, and 5.

Since we now have the optimal portfolios based on historical data of

the first six months of 1999, we now need to test their future performances

for the next six months to see if they actually would have made a profit.

We set a starting captial of $10,000 for each of the portfolios. We then used

the computed optimal portfolios to set the proportions of that $10,000 into

the various stocks. A buy and hold strategy for six months was tested. For

the minimum variance portfolio, where the expected return was 0.055%, the

actual return was -12.88%, as shown by figures 4 and 5. Even though we

would have lost money with this portfolio, our expected rate of return was

so close to 0 that this result is not a surprise. The daily value and return

stayed fairly steady except for one day, where an abnormal jump in price for

one stock occured.

19

0 20 40 60 80 100 120 140
8000

8500

9000

9500

10000

10500

11000

11500

Day

V
al

ue

Daily Value

Figure 4: Daily Value for Portfolio with Minimum Variance

After testing each of the six portfolios for the next six months of data, it

was shown that each one made a profit significantly larger than the expected

return indicated. Figure 7 shows the progress and the gradual increase in

value over time for each of the six portfolios. Figure 6 is a zoomed in look

at the portfolios of 0.055%, 1%, and 5%. Figure 9 shows the daily returns

for each of the portfolios, while figure 8 shows the three smallest expected

returns. From these figures, it is evident how the increased expected return

rate produced an increased variance in the actual performance of the port-

folio. Table 6 shows the large profits the theoretical portfolios made in the

second half of 1999.

20

0 20 40 60 80 100 120 140
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Day

R
et

ur
n

Daily Returns

Figure 5: Daily Returns for Portfolio with Minimum Variance

Figures 10 and 11 show the performance of the S&P 500 index during

1999. The stock market was booming during this time, and the S&P 500

was doing very well. One of the reasons for the boom was that the dot-

com bubble was rapidly growing at this time. Internet companies and other

technologically based stocks were thriving during this year. Stock prices were

rising, and this led to our portfolios to doing extremely well. Also, this was

the period right before Y2K, when the U.S. spent an estimated $300 billion

[6] on preparations for the potential problems that the new year could have

caused.

21

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6
x 10

4

Day

V
al

ue

Daily Value

.055%
1%
5%

Figure 6: Daily Value

4.2 Constrained Problem

4.2.1 Problem Formulation

In the second optimization problem we add upper and lower bounds to the

portfolio weights, Πi, to prevent the portfolio from taking large long and short

positions. It also allows us to disallow short selling. The process of forming a

Lagrangian is similar to the unconstrained problem. Now we have additional

constraints and additional unknowns which make the problem more involved.

Our goal is still to minimize the portfolio variance, σ2

Π
. ui is the upper bound,

or the maximum long position, and li is the lower bound, or the maximum

short position. If we set the lower bounds equal to zero for all stocks, this

eliminates short selling because we will never have a negative proportion of

22

0 20 40 60 80 100 120 140
−1

0

1

2

3

4

5

6
x 10

5

Day

V
al

ue

Daily Value

.055%
1%
5%
10%
25%
50%

Figure 7: Daily Value2

one stock in our portfolio. Our new optimization problem is

min σ2

Π
=

N
∑

i=1

N
∑

j=1

ΠiΠjσij (20)

s.t.
N

∑

i=1

ΠiRi = µ (21)

N
∑

i=1

Πi = 1 (22)

Πi ≥ li, i = 1, ..., N (23)

Πi ≤ ui, i = 1, ..., N (24)

23

0 20 40 60 80 100 120 140
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Day

R
et

ur
n

Daily Returns

.055%
1%
5%

Figure 8: Daily Returns

We then introduce Lagrange Multipliers λ1, λ2, γi, and θi to form a La-

grangian function [1].

L =

N
∑

i=1

N
∑

j=1

ΠiΠjσij−λ1(

N
∑

i=1

ΠiRi−µ)−λ2(

N
∑

i=1

Πi−1)−

N
∑

i=1

γi(Πi−li)−

N
∑

i=1

θi(ui−Πi)

(25)

Now to differentiate we need to factor out a Πk,

L =

N
∑

i=1

(Πi

N
∑

j=1

Πjσij) − λ1(

N
∑

i=1

ΠiRi − µ) − λ2(

N
∑

i=1

Πi − 1)

−

N
∑

i=1

γi(Πi − li) −
N

∑

i=1

θi(ui − Πi)

=

N
∑

i=1

i6=k

(Πi(

N
∑

j=1

j 6=k

Πjσij + Πkσik)) + Πk(

N
∑

j=1

j 6=k

Πjσkj + Πkσkk)

24

0 20 40 60 80 100 120 140
−80

−60

−40

−20

0

20

40

Day

R
et

ur
n

Daily Returns

.055%
1%
5%
10%
25%
50%

Figure 9: Daily Returns2

− λ1(

N
∑

i=1

i6=k

ΠiRi + ΠkRk − µ) − λ2(

N
∑

i=1

i6=k

Πi + Πk − 1)

− (

N
∑

i=1

i6=k

Πiγi + Πkγk − liγi) − (

N
∑

i=1

i6=k

uiθi − Πiθi + Πkθk)

Now we need to differentiate with respect to Πk,

∂L
∂Πk

=
N

∑

i=1

i6=k

Πiσik +
N

∑

j=1

j 6=k

Πjσkj + 2Πkσkk − λ1Rk − λ2 − γk − θk

= 2
N

∑

i=1

Πiσik − λ1Rk − λ2 − γk − θk

25

Figure 10: S&P 500, all of 1999

Figure 11: S&P 500, second half of 1999

If we repeat this process for all k from 1 to N and set the derivative equal to

0, we get our first order constraints

∂L

∂Πi

= 2

N
∑

j=1

Πjσij − λ1Ri − λ2 − γi − θi = 0, i = 1, ..., N (26)

This gives us 3N equations, but we have 3N+2 unknowns (Πi, λ1, λ2, γi,

and θi). Therefore, we need two more equations to be able to solve this

26

optimization problem. These two equations come from the initial constraints

[1]. So, our first order constraints are

2

N
∑

j=1

Πjσij − λ1Ri − λ2 − γi − θi = 0, i = 1, ..., N (27)

N
∑

i=1

ΠiRi = µ (28)

N
∑

i=1

Πi = 1 (29)

γi(Πi − li) = 0, i = 1, ..., N (30)

θi(ui − Πi) = 0, i = 1, ..., N (31)

Πi ≥ li, i = 1, ..., N (32)

Πi ≤ ui, i = 1, ..., N (33)

γi ≥ 0, i = 1, ..., N (34)

θi ≥ 0, i = 1, ..., N (35)

λ1 ≥ 0 (36)

λ2 ≥ 0 (37)

or

2(Π1σ1 1 + Π2σ1 2 + ... + ΠNσ1 N) − λ1R1 − λ2 − γ1 − θ1 = 0

27

2(Π1σ2 1 + Π2σ2 2 + ... + ΠNσ2 N) − λ1R2 − λ2 − γ2 − θ2 = 0

...

2(Π1σN 1 + Π2σN 2 + ... + ΠNσN N) − λ1RN − λ2 − γN − θN = 0

Π1R1 + Π2R2 + ... + ΠNRN = µ

Π1 + Π2 + ... + ΠN = 1

γ1(Π1 − l1) = 0

...

γN(ΠN − lN) = 0

θ1(u1 − Π1) = 0

...

θN(uN − ΠN) = 0

Π1 ≥ l1

...

ΠN ≥ lN

Π1 ≤ u1

...

28

ΠN ≤ uN

γ1 ≥ 0

...

γN ≥ 0

θ1 ≥ 0

...

θN ≥ 0

λ1 ≥ 0

λ2 ≥ 0

5 Conclusions

Our optimization proved very successful with the extremely high realized

returns. Part of this was because of the booming stock market at the time,

but another part was because of the effectiveness of the risk minimization.

The data cleaning and fixing of all of the errors was essential to get an

accurate representation of the stock market at the time. We needed to delete

some stocks from the project because of the errors, but saved others by fixing

their stock splits. After formulating the portfolio optimization problem using

Lagrange multipliers, Matlab was used to calculate the minimum variance

portfolios and other portfolios with various expected returns. After the effi-

cient frontier was graphed, the future performances of some of the portfolios

were calculated using the next six months of data. We used a buy and hold

strategy. The minimum variance portfolio lost money, but the rest greatly

outperformed their respective expected returns.

This project went through the whole process of gathering data, data clean-

ing, problem formulation, optimization, and calculating future performances.

All of the aspects are essential parts of the process. After completing this

project I have a better understanding of optimization and the tasks that are

involved with it.

29

References

[1] Cvitanić, J. and F. Zapatero, Introduction to the Economics and Math-

ematics of Financial Markets, MIT Press: Cambridge, 2004.

[2] Nocedal, J. and S. Wright, Numerical Optimization, Springer: New
York, 1999.

[3] Peressini, A., F. Sullivan, and J. Uhl, The Mathematics of Nonlinear

Programming, Springer, 1988.

[4] Daye, Z., K. Leow, and S. Ding, “Empirical Evaluation of Volatility
Estimation”, paper, 2001.

[5] Stewart, J., Calculus, Brooks Cole, 5th Edition, 2002.

[6] http://news.bbc.co.uk/2/hi/talking point/586938.stm

[7] http://www.riskglossary.com/link/portfolio theory.htm

30

6 Appendix

6.1 Daily Prices Routine

function [priceMatrix] = daily(stock,numberOfDays)

%load stock data

stockMatrix = load(stock);

%start on 1/4/99, end after specified number of days

day = 36164;

dayEnd = 36164+numberOfDays;

%take prices between 10am and 3pm

timeStart = 100000;

timeEnd = 150000;

%vector of prices between 36164 and dayEnd, and between timeStart and

%timeEnd

validPrices = 0;

%column1 is the mean price, column2 is the std dev of the prices, and each

%row is a day

priceMatrix = [0;0];

%counters

dayCounter = 1;

priceCounter = 1;

finalPriceCounter = 1;

trade = 0;

%while day is within timeframe

while (day < dayEnd),

%find all prices on certain day

while (stockMatrix(dayCounter,1) == day),

%find all prices within timeframe

if ((stockMatrix(dayCounter,2)>=timeStart)&&

(stockMatrix(dayCounter,2)

31

32

<=timeEnd)),

%take out error prices that are greater than $1000

if (stockMatrix(dayCounter,4) < 1000),

%store price in a vector

validPrices(priceCounter) = stockMatrix(dayCounter,4);

priceCounter = priceCounter+1;

trade = 1;

end;

end;

dayCounter = dayCounter+1;

end;

%exclude this error

if (strcmp(stock,’HON.dat’)),

if (day == 36495),

trade = 0;

end;

end;

%exclude these errors

if (strcmp(stock,’VIAB.dat’)),

if ((day >= 36242)&&(day <= 36251)),

trade = 0;

end;

end;

%if there was a trade on this day, store mean/std dev in the price

%matrix

if (trade == 1),

priceMatrix(finalPriceCounter,2) = mean(validPrices);

priceMatrix(finalPriceCounter,1) = stockMatrix(dayCounter-1,1);

%priceMatrix(finalPriceCounter,3) = day;

finalPriceCounter = finalPriceCounter+1;

end;

%reset variables

trade = 0;

validPrices = 0;

priceCounter = 1;

33

day = day+1;

end;

%clear stock from workspace

clear stockMatrix;

6.2 Calculate All Prices and Std Dev’s

function allStocks(excludeStocks, numOfDays)

%stock names

ticker1 = ’AA’ ;

ticker2 = ’AEP’ ;

ticker3 = ’AES’ ;

ticker4 = ’AGC’ ;

ticker5 = ’AIG’ ;

ticker6 = ’AMGN’ ;

ticker7 = ’AOL’ ;

ticker8 = ’ATI’ ;

ticker9 = ’AVP’ ;

ticker10 = ’AXP’ ;

ticker11 = ’BA’ ;

ticker12 = ’BAC’ ;

ticker13 = ’BAX’ ;

ticker14 = ’BCC’ ;

ticker15 = ’BDK’ ;

ticker16 = ’BHI’ ;

ticker17 = ’BMY’ ;

ticker18 = ’BNI’ ;

ticker19 = ’C’ ;

ticker20 = ’CCU’ ;

ticker21 = ’CI’ ;

ticker22 = ’CL’ ;

ticker23 = ’CPB’ ;

ticker24 = ’CSC’ ;

ticker25 = ’CSCO’ ;

ticker26 = ’DAL’ ;

ticker27 = ’DD’ ;

34

ticker28 = ’DIS’ ;

ticker29 = ’DOW’ ;

ticker30 = ’EK’ ;

ticker31 = ’EMC’ ;

ticker32 = ’ENE’ ;

ticker33 = ’EPG’ ;

ticker34 = ’ETR’ ;

ticker35 = ’EXC’ ;

ticker36 = ’F’ ;

ticker37 = ’FDX’ ;

ticker38 = ’G’ ;

ticker39 = ’GD’ ;

ticker40 = ’GE’ ;

ticker41 = ’GM’ ;

ticker42 = ’GX’ ;

ticker43 = ’HAL’ ;

ticker44 = ’HCA’ ;

ticker45 = ’HD’ ;

ticker46 = ’HET’ ;

ticker47 = ’HIG’ ;

ticker48 = ’HNZ’ ;

ticker49 = ’HON’ ;

ticker50 = ’HWP’ ;

ticker51 = ’IBM’ ;

ticker52 = ’INTC’ ;

ticker53 = ’IP’ ;

ticker54 = ’JNJ’ ;

ticker55 = ’JPM’ ;

ticker56 = ’KO’ ;

ticker57 = ’LEH’ ;

ticker58 = ’LTD’ ;

ticker59 = ’LU’ ;

ticker60 = ’NSC’ ;

ticker61 = ’NSM’ ;

ticker62 = ’NT’ ;

ticker63 = ’NXTL’ ;

ticker64 = ’ONE’ ;

ticker65 = ’ORCL’ ;

35

ticker66 = ’PEP’ ;

ticker67 = ’PFE’ ;

ticker68 = ’PG’ ;

ticker69 = ’PHA’ ;

ticker70 = ’RAL’ ;

ticker71 = ’ROK’ ;

ticker72 = ’RSH’ ;

ticker73 = ’RTNB’ ;

ticker74 = ’S’ ;

ticker75 = ’SLB’ ;

ticker76 = ’SLE’ ;

ticker77 = ’SO’ ;

ticker78 = ’T’ ;

ticker79 = ’TOY’ ;

ticker80 = ’TXN’ ;

ticker81 = ’TYC’ ;

ticker82 = ’UIS’ ;

ticker83 = ’USB’ ;

ticker84 = ’UTX’ ;

ticker85 = ’VIAB’ ;

ticker86 = ’VZ’ ;

ticker87 = ’WFC’ ;

ticker88 = ’WMB’ ;

ticker89 = ’WMT’ ;

ticker90 = ’WY’ ;

ticker91 = ’XOM’ ;

ticker92 = ’XRX’ ;

%matrix with stddev’s of each stock’s prices

volatilityMatrix = [0,0];

volatilityCounter=0;

index = 1;

%92 stocks to run through

while index<=92,

%used to look ticker1-ticker92

currentIndexedTicker = cat(2,’ticker’,num2str(index));

36

%finds if stock should be excluded

skipStock=0;

for excludeCounter=1:length(excludeStocks),

if index==excludeStocks(excludeCounter),

skipStock = 1;

end

end

if skipStock==1,

index=index+1;

else

volatilityCounter=volatilityCounter+1;

stockName = [eval(currentIndexedTicker),’.dat’];

%create matrix of stock’s daily prices and stddev’s

prices = daily(stockName,numOfDays);

stockSave = [eval(currentIndexedTicker),’Daily.dat’];

%save price matrix as i.e. AADaily.dat

save(stockSave,’prices’,’-ASCII’);

%volatilityMatrix(volatilityCounter,1) = eval(currentIndexedTicker);

%create matrix where first column if stock number, second column is

%stddev of all its prices

volatilityMatrix(volatilityCounter,1) = index;

volatilityMatrix(volatilityCounter,2) = std(prices(:,2));

save(’volatilityMatrix.dat’,’volatilityMatrix’,’-ASCII’);

%keep track of which stocks are completed

fprintf(’stock %s is done.\n’,eval(currentIndexedTicker));

index=index+1;

end

end

6.3 Splits

function splits()

%set ticker values

37

index = 1;

volatilityCounter = 0;

%92 stocks to run through

while index<=92,

%load stocks except CSCO and INTC

if ((index~=25)&&(index~=52)),

currentIndexedTicker = cat(2,’ticker’,num2str(index));

stockName = [eval(currentIndexedTicker),’Daily.dat’];

dailyMatrix = load(stockName);

end;

%don’t include stocks that appear to have a split but don’t

if ((index==73)||(index==25)||(index==52)||(index==65)),

split=0;

else

split = 1;

end;

while (split > 0),

split = 0;

previous = 1;

splitDate=10000;

for counter=2:length(dailyMatrix),

%to avoid false-positive split detections

if (dailyMatrix(previous,2)>25),

%detect 3-2 split

if (dailyMatrix(counter,2)-5 < dailyMatrix(previous,2)/1.5)&&

(dailyMatrix(counter,2)+5 > dailyMatrix(previous,2)/1.5),

split=32;

splitDate=counter;

counter=length(dailyMatrix)+1;

end;

if (counter <= length(dailyMatrix)),

%detect 2-1 split

if (dailyMatrix(counter,2)-5 < dailyMatrix(previous,2)/2)&&

38

(dailyMatrix(counter,2)+5 > dailyMatrix(previous,2)/2),

split=21;

splitDate=counter;

counter=length(dailyMatrix)+1;

end;

end;

if (counter <= length(dailyMatrix)),

%detect 3-1 split

if (dailyMatrix(counter,2)-5 < dailyMatrix(previous,2)/3)&&

(dailyMatrix(counter,2)+5 > dailyMatrix(previous,2)/3),

split=31;

splitDate=counter;

counter=length(dailyMatrix)+1;

end;

end;

previous=previous+1;

end;

end;

if (split > 0),

for index2=1:length(dailyMatrix),

price = dailyMatrix(index2,2);

%recalculate prices by reversing splits

if (index2>=splitDate),

if (split==32),

dailyMatrix(index2,2)=price*1.5;

end;

if (split==21),

dailyMatrix(index2,2)=price*2;

end;

if (split==31),

dailyMatrix(index2,2)=price*3;

end;

end;

end;

39

end;

end;

if ((index~=25)&&(index~=52)),

%save price matrix as i.e. AADailySplits.dat

stockSave = [eval(currentIndexedTicker),’DailySplits.dat’];

save(stockSave,’dailyMatrix’,’-ASCII’);

%save std’s of prices of each stock in one matrix

volatilityCounter=volatilityCounter+1;

volatilityMatrix(volatilityCounter,1) = index;

volatilityMatrix(volatilityCounter,2) = std(dailyMatrix(:,2));

save(’volatilityMatrixSplits.dat’,’volatilityMatrix’,’-ASCII’);

fprintf(’stock %s is done.\n’,eval(currentIndexedTicker));

end;

%loop to next stock

index=index+1;

clear dailyMatrix;

end;

6.4 Half

function half()

%set ticker values

index=1;

%92 stocks to run through

while index<=92,

%load stocks except CSCO and INTC

if ((index~=25)&&(index~=52)),

currentIndexedTicker = cat(2,’ticker’,num2str(index));

stockName = [eval(currentIndexedTicker),’DailySplits.dat’];

dailyMatrix = load(stockName);

x=1;

%split the prices into files for first 6 months and second 6 months

for counter=1:length(dailyMatrix),

if (counter<=126),

half1(counter,1)=dailyMatrix(counter,1);

half1(counter,2)=dailyMatrix(counter,2);

40

end;

if (counter>126),

half2(x,1)=dailyMatrix(counter,1);

half2(x,2)=dailyMatrix(counter,2);

x=x+1;

end;

end;

%save price matrix as i.e. AAPrices1.dat

stockSave = [eval(currentIndexedTicker),’Prices1.dat’];

save(stockSave,’half1’,’-ASCII’);

stockSave = [eval(currentIndexedTicker),’Prices2.dat’];

save(stockSave,’half2’,’-ASCII’);

fprintf(’stock %s is done.\n’,eval(currentIndexedTicker));

end;

index=index+1;

clear dailyMatrix;

clear half1;

clear half2;

end;

6.5 Length Check

function lengthCheck()

%set ticker values

index=1;

%85 stocks to run through

while index<=85,

currentIndexedTicker = cat(2,’ticker’,num2str(index));

stockName = [eval(currentIndexedTicker),’Returns2.dat’];

stock = load(stockName);

%make sure length is 126 days

lengthVector(index,1)=index;

lengthVector(index,2)=length(stock)-126;

41

save(’lengthVector.dat’,’lengthVector’,’-ASCII’);

fprintf(’%d is done.\n’,index);

index=index+1;

end;

6.6 Timeframe

function timeFrame()

%set ticker values

index1=1;

index2=1;

currentIndexedTicker1 = cat(2,’ticker’,num2str(index1));

stock1Name = [eval(currentIndexedTicker1),’Prices2.dat’];

stock1 = load(stock1Name);

%85 stocks to run through

while index2<=85,

currentIndexedTicker2 = cat(2,’ticker’,num2str(index2));

stock2Name = [eval(currentIndexedTicker2),’Prices2.dat’];

stock2 = load(stock2Name);

%check if lengths of all stocks are the same

check(:,index2)=stock1(:,1)-stock2(:,1);

save(’check2.dat’,’check’,’-ASCII’);

fprintf(’%d is done.\n’,index2);

index2=index2+1;

end;

counter1=1;

counter2=1;

checkStock=zeros(85,1);

%if length isn’t the same, identify with a ’1’

for counter1=1:85,

for counter2=1:126,

if (check(counter2,counter1)~= 0),

42

checkStock(counter1)=1;

counter2=126;

end;

end;

end;

save(’checkStock.dat’,’checkStock’,’-ASCII’);

6.7 Returns

function returns()

%set ticker values

index=1;

returnCounter=0;

%85 stocks

while index<=85,

%don’t include CSCO and INTC

%if ((index~=25)&&(index~=52)),

%load stock

currentIndexedTicker = cat(2,’ticker’,num2str(index));

stockName = [eval(currentIndexedTicker),’Prices2.dat’];

dailySplitsMatrix = load(stockName);

previous=1;

for counter=2:length(dailySplitsMatrix),

%1st column for date, 2nd column for return

returnMatrix(previous,1)=dailySplitsMatrix(counter,1);

returnMatrix(previous,2)=(dailySplitsMatrix(counter,2)-

dailySplitsMatrix(previous,2))/dailySplitsMatrix(previous,2);

previous=previous+1;

end;

%save price matrix as i.e. AAReturns.dat

stockSave = [eval(currentIndexedTicker),’Returns2.dat’];

43

save(stockSave,’returnMatrix’,’-ASCII’);

%find mean/std of all returns for each stock, store in a matrix

returnCounter=returnCounter+1;

allReturns(returnCounter,1) = index;

allReturns(returnCounter,2) = mean(returnMatrix(:,2));

allReturns(returnCounter,3) = var(returnMatrix(:,2));

save(’allReturns2.dat’,’allReturns’,’-ASCII’);

fprintf(’stock %s is done.\n’,eval(currentIndexedTicker));

%end;

%loop to next stock

index=index+1;

clear dailySplitsMatrix;

clear returnMatrix;

end;

6.8 Covariance Matrix

function covMatrix()

%set ticker values

covMatrix=0;

index1=1;

%85 stocks to run through

while index1<=85,

index2=1;

while index2<=85,

currentIndexedTicker1 = cat(2,’ticker’,num2str(index1));

currentIndexedTicker2 = cat(2,’ticker’,num2str(index2));

stock1Name = [eval(currentIndexedTicker1),’Returns1.dat’];

stock2Name = [eval(currentIndexedTicker2),’Returns1.dat’];

stock1 = load(stock1Name);

stock2 = load(stock2Name);

%calculate covariance matrix between each stock’s returns

covValue=cov(stock1(:,2),stock2(:,2));

44

covMatrix(index1,index2)=covValue(1,2);

save(’covMatrix.dat’,’covMatrix’,’-ASCII’);

fprintf(’%d-%d is done.\n’,index1,index2);

index2=index2+1;

end;

index1=index1+1;

end;

6.9 Positive Definiteness

function posDef()

%num of stocks

N=85;

%define A

A=zeros(N+2,N+2);

%load covariance matrix

covar = load(’covMatrix.dat’);

%assign covariances to matrix A

for row=1:N,

for column=1:N,

A(row,column)=2*covar(row,column);

end;

end;

%load returns

returns = load(’allReturns1.dat’);

%assign returns to matrix A

for row=1:N,

A(row,N+1)=returns(row,2);

end;

45

for column=1:N,

A(N+1,column)=returns(column,2);

end;

%finish creating matrix A with proper values

for row=1:N;

A(row,N+2)=1;

end;

for column=1:N;

A(N+2,column)=1;

end;

determinants=zeros(N,2);

%calculate principal minors

for counter=1:85,

determinants(counter,1)=det(A(1:counter,1:counter));

end;

%make sure all principal minors are positive

for counter=1:85,

if (determinants(counter,1)>0),

determinants(counter,2)=1;

end;

end;

save(’A.dat’,’A’,’-ASCII’);

save(’determinants.dat’,’determinants’,’-ASCII’);

6.10 Optimization Routine

function [x,variance] = optRoutine(mu)

%num of stocks

N=85;

%define A

46

A=zeros(N+2,N+2);

%load covariance matrix

covar = load(’covMatrix.dat’);

%assign covariances to matrix A

for row=1:N,

for column=1:N,

A(row,column)=2*covar(row,column);

end;

end;

%load returns

returns = load(’allReturns1.dat’);

%assign returns to matrix A

for row=1:N,

A(row,N+1)=-returns(row,2);

end;

for column=1:N,

A(N+1,column)=returns(column,2);

end;

%finish creating matrix A with proper values

for row=1:N;

A(row,N+2)=-1;

end;

for column=1:N;

A(N+2,column)=1;

end;

%create matrix b

b=zeros(N+2,1);

b(N+1,1)=mu;

47

b(N+2,1)=1;

%use built-in function to identify unknown proportions and lambda’s

x=A^-1*b;

variance=0;

for index1=1:85,

for index2=1:85,

variance=variance+x(index1)*x(index2)*covar(index1,index2);

end;

end;

6.11 Calculate Proportions

function lagrange(expReturnStart,expReturnEnd,numOfReturns)

%mean rate of return

mu=expReturnStart;

for counter=1:numOfReturns,

%set expected return

expReturn=mu+(expReturnEnd-expReturnStart)/(numOfReturns-1)*(counter-1);

%perform optimization

[proportions,variance]=optRoutine(expReturn);

%record proportions

proportionMatrix(:,counter)=proportions;

%record min variances

minVariances(counter,1)=expReturn;

minVariances(counter,2)=variance;

allProportions(1,counter)=expReturn;

allProportions(2,counter)=variance;

for index=3:89,

allProportions(index,counter)=proportions(index-2);

end;

48

fprintf(’%d %d is done.\n’,counter,expReturn);

end;

save(’proportionMatrix.dat’,’proportionMatrix’,’-ASCII’);

save(’minVariances.dat’,’minVariances’,’-ASCII’);

save(’allProportions.dat’,’allProportions’,’-ASCII’);

6.12 Future Performance

function futurePerformance2(expReturn)

%set ticker values

N=85;

dailyValue=zeros(126,1);

dailyReturns=zeros(125,1);

totalReturn=0;

allProportions = load(’allProportions.dat’);

%10000 runs to find min variance, set efficient frontier

for counter1=1:10000,

if allProportions(1,counter1)==expReturn,

for counter2=1:85,

proportions(counter2,1)=allProportions(counter2+2,counter1);

end;

counter1=10000;

end;

end;

clear allProportions;

for index=1:N,

currentIndexedTicker = cat(2,’ticker’,num2str(index));

stockName = [eval(currentIndexedTicker),’Prices2.dat’];

stockPrices = load(stockName);

%set future prices

futurePrices(:,index)=stockPrices(:,2);

49

end;

%for index=1:N,

% dailyValue(1) = dailyValue(1) + futurePrices(1,index)*

(10000*proportions(index))/futurePrices(1,index);

%end;

for day=1:126,

%calculate daily value

for stockNumber=1:85,

dailyValue(day)=dailyValue(day) + futurePrices(day,stockNumber)*

(10000*proportions(stockNumber))/futurePrices(1,stockNumber);

end;

%calculate daily return

if day>1,

dailyReturns(day-1)=(dailyValue(day)-dailyValue(day-1))/

dailyValue(day-1);

end;

fprintf(’day %d is done.\n’,day);

end;

%calculate total return

totalReturn=(dailyValue(126)-dailyValue(1))/dailyValue(1);

save(’dailyValue2.dat’,’dailyValue’,’-ASCII’);

save(’dailyReturns2.dat’,’dailyReturns’,’-ASCII’);

save(’totalReturn2.dat’,’totalReturn’,’-ASCII’);

50

Table 3: Portfolio Proportions Part1

Expected Return 0.0006 0.01 0.05 0.1 0.25 0.5
Variance 0 0.0001 0.0012 0.0046 0.0291 0.1166
AA 0.0874 0.1565 0.4491 0.8148 1.9118 3.7401
AEP 0.1958 -0.6016 -3.9768 -8.1959 -20.853 -41.9482
AES -0.0279 0.046 0.3589 0.75 1.9232 3.8787
AGC 0.0281 0.0926 0.3658 0.7074 1.7319 3.4395
AIG 0.131 0.1009 -0.0261 -0.1849 -0.6613 -1.4553
AMGN 0.1056 0.0571 -0.1484 -0.4053 -1.1758 -2.46
AOL -0.0201 -0.0481 -0.1666 -0.3148 -0.7592 -1.4998
AVP -0.0406 0.0357 0.3589 0.7628 1.9745 3.994
AXP -0.106 0.3208 2.1276 4.386 11.1613 22.4534
BA -0.0581 -0.2099 -0.8525 -1.6558 -4.0656 -8.0818
BAC 0.0272 -0.0619 -0.4394 -0.9112 -2.3267 -4.6857
BAX -0.0989 -0.064 0.0839 0.2687 0.8232 1.7474
BCC 0.0496 0.4991 2.4017 4.7799 11.9147 23.806
BDK 0.0062 0.2138 1.0922 2.1902 5.4843 10.9744
BHI 0.064 0.1639 0.5867 1.1153 2.701 5.3439
BMY -0.0034 -0.012 -0.0486 -0.0944 -0.2316 -0.4604
BNI 0.1143 0.1375 0.2356 0.3583 0.7264 1.3398
C -0.0992 0.067 0.7707 1.6503 4.2889 8.6868
CCU 0.074 0.011 -0.256 -0.5897 -1.5907 -3.2591
CI -0.0291 0.1837 1.0843 2.2101 5.5874 11.2163
CL 0.1189 -0.1503 -1.2896 -2.7139 -6.9866 -14.1077
CPB 0.0418 0.115 0.4247 0.8119 1.9735 3.9094
CSC 0.0354 0.0993 0.3698 0.7079 1.7222 3.4128
DAL 0.0373 -0.0656 -0.5015 -1.0463 -2.6807 -5.4048
DD -0.0044 -0.3856 -1.9991 -4.016 -10.0666 -20.1509
DIS -0.008 0.0584 0.3393 0.6905 1.7441 3.5
DOW 0.1145 0.4141 1.6822 3.2674 8.0231 15.9491
EK -0.0472 -0.129 -0.4754 -0.9084 -2.2073 -4.3722
EMC 0.04 0.0797 0.2478 0.4579 1.0883 2.139
ENE 0.0934 0.2248 0.7809 1.4761 3.5615 7.0372
EPG -0.0139 -0.0764 -0.3414 -0.6725 -1.6659 -3.3217
ETR -0.0823 -0.246 -0.9393 -1.8058 -4.4055 -8.7384
EXC -0.0084 0.3212 1.7161 3.4597 8.6906 17.4087
F -0.0387 -0.3714 -1.7798 -3.5402 -8.8215 -17.6237
FDX 0.045 0.0741 0.1976 0.3519 0.8149 1.5865
G 0.0296 0.0825 0.3066 0.5868 1.4271 2.8278
GD 0.068 -0.0052 -0.3151 -0.7025 -1.8647 -3.8017
GE -0.1319 -0.3156 -1.0935 -2.0657 -4.9825 -9.8438

51

Table 4: Portfolio Proportions Part2

Expected Return 0.0006 0.01 0.05 0.1 0.25 0.5
Variance 0 0.0001 0.0012 0.0046 0.0291 0.1166
GM 0.0118 0.0107 0.0063 0.0008 -0.0159 -0.0436
GX -0.0134 -0.0453 -0.1802 -0.349 -0.8552 -1.6989
HAL -0.1254 -0.2098 -0.567 -1.0134 -2.3526 -4.5847
HCA 0.0484 -0.0793 -0.62 -1.2958 -3.3233 -6.7025
HD 0.1357 -0.0979 -1.0864 -2.3221 -6.0292 -12.2077
HET -0.0749 0.0571 0.6154 1.3134 3.4074 6.8973
HIG -0.0346 0.0245 0.2745 0.5871 1.5246 3.0872
HNZ 0.0658 0.1463 0.4873 0.9134 2.1919 4.3227
HWP -0.0355 -0.1293 -0.5263 -1.0225 -2.5113 -4.9925
IBM 0.0722 0.2001 0.7416 1.4184 3.4489 6.833
IP 0.0535 -0.0713 -0.5994 -1.2595 -3.2398 -6.5404
JNJ 0.024 0.5907 2.9894 5.9877 14.9826 29.9741
JPM -0.024 0.0934 0.5903 1.2114 3.0746 6.18
KO -0.0049 0.0454 0.2586 0.5251 1.3245 2.657
LEH 0.0308 -0.1338 -0.8305 -1.7014 -4.314 -8.6684
LTD -0.0002 0.3181 1.6656 3.3499 8.4029 16.8246
LU -0.0062 -0.1702 -0.8647 -1.7328 -4.3372 -8.6778
NSC -0.0536 -0.1121 -0.3593 -0.6683 -1.5954 -3.1406
NSM 0.0529 0.057 0.0744 0.096 0.161 0.2693
NT -0.036 0.3492 1.9798 4.018 10.1326 20.3236
NXTL 0.061 0.1897 0.7348 1.4161 3.46 6.8665
ONE -0.0979 -0.1278 -0.2545 -0.4129 -0.888 -1.6798
ORCL -0.0482 -0.0994 -0.3162 -0.5872 -1.4002 -2.7551
PEP 0.0632 0.0376 -0.0706 -0.2059 -0.6118 -1.2882
PFE 0.069 -0.1412 -1.0313 -2.1439 -5.4816 -11.0445
PG 0.0259 0.0506 0.1551 0.2857 0.6774 1.3303
PHA 0.0138 0.0573 0.2412 0.471 1.1607 2.3101
RAL 0.022 -0.204 -1.1607 -2.3565 -5.944 -11.9232
ROK -0.0747 0.0264 0.454 0.9885 2.592 5.2646
RSH 0.0303 0.1925 0.8789 1.7369 4.3109 8.601
S -0.0574 -0.2854 -1.2503 -2.4565 -6.0749 -12.1057
SLB 0.0628 0.0893 0.2015 0.3417 0.7625 1.4637
SLE 0.0304 0.1497 0.6549 1.2864 3.1807 6.338
SO 0.2011 0.4247 1.371 2.5538 6.1024 12.0168
T -0.0246 -0.1098 -0.4703 -0.921 -2.273 -4.5265
TOY -0.0536 -0.0859 -0.2222 -0.3927 -0.9041 -1.7564
TXN -0.0081 0.0991 0.5527 1.1197 2.8207 5.6557
TYC -0.0935 -0.0104 0.3416 0.7815 2.1013 4.3009

52

Table 5: Portfolio Proportions Part3

Expected Return 0.0006 0.01 0.05 0.1 0.25 0.5
Variance 0 0.0001 0.0012 0.0046 0.0291 0.1166
UIS 0.0088 -0.0264 -0.1755 -0.362 -0.9212 -1.8533
USB 0.0505 -0.1832 -1.1727 -2.4095 -6.12 -12.3042
UTX -0.0644 -0.204 -0.7949 -1.5336 -3.7496 -7.443
VZ 0.0868 -0.0409 -0.5812 -1.2567 -3.2832 -6.6606
WFC -0.0637 -0.1392 -0.4588 -0.8582 -2.0564 -4.0534
WMB 0.0553 0.0851 0.2116 0.3697 0.844 1.6345
WMT 0.0217 -0.0255 -0.2252 -0.4748 -1.2237 -2.4718
WY 0.0013 -0.1365 -0.72 -1.4493 -3.6374 -7.2841
XRX 0.0067 -0.2379 -1.2731 -2.5671 -6.4491 -12.9191

Table 6: Future Performance

Expected Return Starting Value Ending Value Value Difference Actual Return
.055% $10000 $8711.52 -$1288.48 -12.88%
1% $10000 $17484.11 $7484.11 74.84%
5% $10000 $54616.77 $44616.77 446.17%
10% $10000 $101032.58 $91032.58 910.33%
25% $10000 $240280.04 $230280.04 2302.80%
50% $10000 $472359.14 $462359.14 4623.59%

