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COOPERATIVE DISTRIBUTED

TRANSMISSION AND RECEPTION

Min Ni, Ph.D.

Worcester Polytechnic Institute 2013

In telecommunications, a cooperative scheme refers to a method where two

or more users share or combine their information in order to increase diversity

gain or power gain. In contrast to conventional point-to-point communications,

cooperative communications allow different users in a wireless network to share

resources so that instead of maximizing the performance of its own link, each user

collaborates with its neighbours to achieve an overall improvement in performance.

In this dissertation, we consider different models for transmission and reception and

explore cooperative techniques that increase the reliability and capacity gains in

wireless networks, with consideration to practical issues such as channel estimation

errors and backhaul constraints.

This dissertation considers the design and performance of cooperative commu-

nication techniques. Particularly, the first part of this dissertation focuses on the

performance comparison between interference alignment and opportunistic trans-

mission for a 3-user single-input single-output (SISO) interference channel in terms

of average sum rate in the presence of channel estimation errors. In the case of

interference alignment, channel estimation errors cause interference leakage which

consequently results in a loss of achievable rate. In the case of opportunistic

transmission, channel estimation errors result in a non-zero probability of incor-
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rectly choosing the node with the best channel. The effect of these impairments

is quantified in terms of the achievable average sum rate of these transmission

techniques. Analysis and numerical examples show that SISO interference align-

ment can achieve better average sum rate with good channel estimates and at high

SNR whereas opportunistic transmission provides better performance at low SNR

and/or when the channel estimates are poor.

We next considers the problem of jointly decoding binary phase shift keyed

(BPSK) messages from a single distant transmitter to a cooperative receive clus-

ter connected by a local area network (LAN). An approximate distributed receive

beamforming algorithm is proposed based on the exchange of coarsely-quantized

observations among some or all of the nodes in the receive cluster. By taking into

account the differences in channel quality across the receive cluster, the quantized

information from other nodes in the receive cluster can be appropriately combined

with locally unquantized information to form an approximation of the ideal re-

ceive beamformer decision statistic. The LAN throughput requirements of this

technique are derived as a function of the number of participating nodes in the

receive cluster, the forward link code rate, and the quantization parameters. Using

information-theoretic analysis and simulations of an LDPC coded system in fading

channels, numerical results show that the performance penalty (in terms of out-

age probability and block error rate) due to coarse quantization is small in the low

SNR regimes enabled by cooperative distributed reception. An upper/lower bound

approximation is derived based on a circle approximation in the channel magni-

tude domain which provides a pretty fast way to compute the outage probability

performance for a system with arbitrary number of receivers at a given SNR.

In the final part of this dissertation, we discuss the distributed reception tech-
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nique with higher-order modulation schemes in the forward link. The extension

from BPSK to QPSK is straightforward and is studied in the second part of this

dissertation. The extension to 8PSK, 4PAM and 16QAM forward links, however,

is not trivial. For 8PSK, two techniques are proposed: pseudobeamforming and

3-bit belief combining where the first one is intuitive and turns out to be sub-

optimal, the latter is optimal in terms of outage probability performance. The

idea of belief combining can be applied to the 4PAM and 16QAM and it is shown

that better/finer quantizer design can further improve the block error rate perfor-

mance. Information-theoretic analysis and numerical results are provided to show

that significant reliability and SNR gains can be achieved by using the proposed

schemes.
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Chapter 1

Introduction

The purpose of a communications network is to enable the exchange of messages

between its nodes. With the surging demand for wireless services such as HD video

streaming, real-time gaming, etc., the conventional point-to-point communication

can no longer meet the needs for such a large variety of high-data-rate multimedia

services. Therefore, an intense research effort on more diversified communication

technologies has been made to maximize the system performance under the respec-

tive resource constraints. However, due to the uneven resource distribution or the

diverse channel quality among users, the effectiveness of some solutions could be

limited. Interestingly, some of these problems can be alleviated or resolved if users

are willing to share their local resources and cooperative in exchanging messages

among their neighbours. This is the essence of cooperative communication.

1.1 Motivation

It has been understood in the information theory community for over three decades

that wireless communication, such as cellular network, sensor networks, and ad-hoc

networks can benefit from the cooperation of nodes that overhear the transmis-

sion [5–9]. Different from conventional point-to-point communications, coopera-

tive communication and networking allows different users or nodes in a wireless

network to share resources to create collaboration through distributed transmis-

sion/reception where each user’s information is transmitted not only by its lo-

1
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cal user, but also by its neighbours. It presents a new communication paradigm

promising significant improvement in system capacity and reliability.

Since wireless networks are becoming denser with the deployment of small and

low-power cellular base stations such as femto, pico and micro cells [10–12], neigh-

bouring base stations have to operate on the same or overlapping pieces of spec-

trum. Naturally, it leads to interference, which if not properly managed, can sig-

nificantly harm network performance and eliminates the gain of moving to smaller

cells. Figure 1.1 shows an example of interference in a relay-aided cellular system.

desired signals

interference

BS1

BS2

BS3

Figure 1.1: A typical relay-aided cellular system. In addition to the desired signal

from the home base station, each relay or user receives interference from other-cell

base stations or relays.

In conventional multiuser systems, it is often assumed that each user is only

interested in retrieving information from its own sources, thus competing for the

channel resources. As summarized in [1], current wireless system designs either

treat interference as noise [13,14], which degrades system performance when the in-
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terference becomes strong, or orthogonalize interferences from desired signals [15],

which might cause shortage of resources when the number of interferers grows.

The latter approach which assigns users orthogonal subchannels of the available

spectrum turns out to be the most commonly adopted in practice, for example,

TDMA, FDMA, CDMA etc. By using this approach each user gets a slice of the

pie. As can be expected, when the density of users in the system increases, the

spectral efficiency of each user diminishes quickly since each user gets a smaller

slice of pie.

Despite the enormous amount of research on interference-aware receivers in

the past twenty years and the large performance improvements promised by the

multiuser techniques, traditional wireless system still generally treat interference

as background noise [16–18]. This is mainly due to the lack of fundamental un-

derstanding of interference channel. To understand the performance limit of inter-

ference channels, the simplest information-theoretic model–a two-user interference

system is studied in 1961 [19]. However, except for some special cases [20,21], the

capacity region for a two-user interference channel has remained an open question

for 50 years. The largest achievable rate region we know so far was published

in [22] 1981 and a generalized degrees of freedom characterization that identifies

different operational regimes for such channels is provided in [13] in 2006. However,

for interference channels with more than two users, even the degrees of freedom

characterizations remains unknown.

Recently, it has been shown that the sum capacity per user for the K user

interference channel is

1

2
log2(SNR) + o(log2(SNR))
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which means that “everyone gets half of the cake” [1]. The mechanism that ap-

proaches this capacity is referred as interference alignment (IA). In general, IA is

a technique that aligns the interference into a reduced dimensional subspace by

linear precoding so that simultaneous communications among many users over a

small signal space can be achieved while keeping the desired signal separable from

the interference [23]. This idea was first crystallized by Jafar and Shamai in [24]

and later a general principle was established in [1].

To illustrate the idea of IA, we borrowed the toy example from [1]. In the 3-

user interference network shown Figure 1.2, each channel has a propagation delay

associated with it where the propagation delay equals to 1 symbol duration for each

desired transmit-receive pair and it equals to 2 symbol durations for all interference

pairs. At time n, the channel output at receiver k is defined as

yk[n] =
∑
j �=k

xj [n− 2] + xk[n− 1] + zk[n]

where zk[n] is i.i.d zero mean unit variance Gaussian noise. If no interference is

present, each user would achieve a capacity of C = log2(1+P ) where E[|xk[n]|2] ≤
P . Now if the transmitter only transmits according to the schedule shown in the

figure, which is only half the time, with power 2P . The desired signal can be

received free from interference half of the timeslots. Hence the rate achieved at

each user is R = 1
2
log2(1 + 2P ) where the pre-log factor 1/2 denotes the degrees

of freedom.

The example shown above aligns the signals in time. Actually IA can align sig-

nals in any dimension, including time, frequency or space. It is a linear precoding

technique that can compact interfering signals into small dimensional subspaces at

each receiver leaving the desired signal interference free, if properly designed. IA
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Figure 1.2: Illustration of interference alignment: Everyone gets half the cake [1].

can be viewed as a cooperative approach since the transmitters neglect the perfor-

mance of their own link to allow other users to perfectly cancel interference [25].

While IA promises substantial theoretical gain in wireless networks, it comes

with challenges in implementation. First, it requires extensive channel state in-

formation to be exchanged over the backhaul between the transmitters. From a

practical point of view, obtaining CSI at the receivers is an estimation problem

which in general is not error-free. Hence, it is crucial to understand the effect of

channel estimation error on the capacity region [26–29]. Also, the integration of IA

with other system issues such as scheduling needs to be addressed [30,31]. There-

fore it is necessary to compare the traditional interference avoidance approaches

with IA in more practical scenarios and thus get a better understanding of the

challenges that stand in the way of realizing such systems in real world.

If no cooperative transmission techniques can be employed, it is still possible to

improve the system performance and combat fading by reducing the fluctuations in

the power gain seen by the transmitted signal. Since for different receive antenna
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elements spaced widely enough apart, it is unlikely for all of them to fade badly

at the same time. The idea, in which the receiver gets multiple versions of the

transmitted signal that has low probability of experiencing severe fading at the

same time is referred as receive diversity [32,33]. In [34–38], diversity reception is

shown to be a powerful technique for reducing the effects of delay spread as well as

for reducing the effects of AWGN, co-channel interference and random FM noise,

if the rms delay spread is small compared to the symbol duration.

Cooperative reception is a technique where multiple receivers in a wireless net-

work combine their observations to increase diversity and power gain and, conse-

quently, improve the probability of successfully decoding noisy transmissions. The

idea of cooperative reception can be dated back to 1983 where it was applied in the

context of aperture synthesis for radio astronomy, e.g. the Very Large Array [39].

Results show that better resolution and SNR gains can be achieved by forwarding

observations over a high-speed optical backhaul network to a processing center for

subsequence alignment and combining.

More recently, cooperative reception has been used for wireless networks with

limited backhaul capabilities. For example, soft handoff [40, 41] has been success-

fully used in the cellular systems in 1990s. Recent information-theoretic stud-

ies [42–45] have shown that more sophisticated cooperative reception techniques

have significant potential to increase diversity, improve capacity, and improve inter-

ference rejection, even with tight backhaul constraint. Several techniques have been

proposed to achieve these gains including link-layer iterative cooperation [46–48],

distributed iterative receiver message-passing [49], and most-reliable/least-reliable

bit exchange iterative decoding [50–55].
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In general, all these techniques considered a scenario where multiple nodes

receive independent copies of the same message. Since the nodes in a receive cluster

are fully-connected, if any node in the cluster successfully decodes the message from

the distant transmitter, it broadcasts the decoded message to other receive nodes.

A more interesting case is that none of the receive nodes is able to decode the

broadcasted message and this is where the cooperative reception comes into play.

For example, in [53], an iterative distributed decoding method is introduced where

each nodes requests additional information from other nodes for the decoded bits

whose soft outputs magnitudes are the lowest x%. This later is referred as the

least reliable bits (LRB)-based scheme and a simple extension of it is to broadcast

the soft information to all the receive nodes so that each of the node can make

use of this a priori in the next iteration of soft-input and soft-output decoding.

By using the LRB-based collaborative decoding schemes, more than 5 dB can be

achieved over conventional maximal rate combining (MRC) for a packet of 900

bits and a cluster size of 8 nodes. Since the overhead per receiver grows linearly

with the size of the cluster, the overhead soon exceeds MRC with large N . To

make the overhead independent of the number of receivers, a most reliable bits

(MRB) exchange scheme is presented in [53] where each node sends out the most

reliable bits only once. Improvements of the MRB-based collaborative decoding

such as adding memory to the node and sending hard-decisions of MRBs are proven

to achieve 7 dB antenna gain while maintaining a fixed per-receiver overhead.

Performance analysis of the LRB/MRB-based collaborative decoding schemes are

studied in [55] and an upper bound for the error performance is developed based

on a density-evolution model. Another stream of work based on belief propagation

(BP) algorithm is proposed in [43, 56]. In both papers, BP is employed for an
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inference problem which involves the choice of the graphical representation and the

order of activation of nodes and message passings on the graph. It is shown that

near single user performance can be achieved with moderate amount of message

passing between the nodes.

A limitation of all of these techniques is that they are based on iterative trans-

missions and decoding. As such, the backhaul requirements are variable and the

decoding latency can be significant if the number of iterations is large. The focus

of these studies is also often on achieving diversity gains, rather than SNR gains.

SNR gains through distributed receive beamforming are particularly appealing

since they can be linear in the number of receivers and allow for longer-range

and/or higher-data rate communication as well a reduction in the size, weight,

power and cost of the transmitter.

This dissertation focuses on particular distributed transmission and reception

techniques for cooperative networks. The simplest form of distributed transmission

is opportunistic transmission [4, 57, 58] where the transmit nodes send messages

opportunistically at each instant in time based on the feedback of the channel

quality from the receive nodes. An advantage of opportunistic transmission is that

it can be implemented with moderate computational complexity and only a small

amount of feedback is required from the receive nodes. We compare opportunistic

transmission and the more recent approach, i.e. interference alignment for a 3-

user single-input and single-output interference channel in terms of average sum

rate in the presence of channel estimation errors. In addition to the study on

distributed transmission, this dissertation also addresses the problem of jointly

decoding messages from a single distant transmitter to a cooperative receive cluster
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with a conventional LAN comprising the backhaul and we extend the results to

more spectrally efficient forward link modulation schemes.

1.2 Dissertation Overview

The main body of this dissertation is organized into three chapters:

• A performance comparison of opportunistic transmission and interference

alignment with channel estimation errors (Chapter 2)

• Distributed reception with coarsely-quantized observation exchanges (Chap-

ter 3)

• Distributed reception with higher-order forward link modulation (Chapter

4)

and is followed by a conclusion and a discussion of potential research directions.

The contents of these chapters are described in more detail below.

Chapter 2 mainly compares the average sum rate performance between oppor-

tunistic transmission and interference alignment with channel estimation errors.

Since recent analysis on IA showing that the sum rate of a SISO interference chan-

nel can scale linearly with the number of users in the system, it is of interest to

study its performance under imperfect CSI assumption. Starting with a brief re-

view of interference management approaches, we present a 3-user SISO interference

channel model that will be used throughout this chapter. Due to its simplicity,
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opportunistic transmission is discussed in the first place where the average sum

rate performance with perfect/imperfect CSI is given explicitly. Then the IA is

discussed in detail. In addition to the closed-form solution we found for SISO IA

which is originally introduced in [1], we present the simulation results of several

modified IA solutions with perfect CSI. Then a causal implementation procedure

for the SISO IA is developed and the performance is evaluated with imperfect CSI.

Finally, we present the simulation results of opportunistic transmission and SISO

IA which suggest that SISO IA can achieve better average sum rate with good

channel at high SNR whereas opportunistic transmission tends to provide better

performance at low SNR and/or when the channel estimates are poor which is

more robust to estimation errors.

Chapter 3 of this dissertation considers methods to improve the probability

of successfully decoding binary phase shift keyed (BPSK) messages from a single

distant transmitter to a cooperative receive cluster connected by a local area net-

work (LAN). Although much has been written recently on distributed decoding

method that requires only small amount of information exchange between the re-

ceive nodes while getting huge diversity gains, most of these methods are iterative

which makes the backhaul requirements variable and thus result in significant de-

coding latency if the number of iterations is large. In this chapter, we develop

an approximate distributed receive beamforming algorithm based on the exchange

of coarsely-quantized observations among some or all of the nodes in the receive

cluster. We show that for BPSK, summing unquantized LLRs is equivalent to

beamforming which sheds some light on exchanging quantized LLRs. Information

theoretic analysis and simulation results show that the performance penalty (in

terms of outage probability and block error rate) due to coarse quantization is
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small in the low SNR regimes enabled by cooperative distributed reception. We

also demonstrate via bound analysis and simulations that the gap between the

beamforming and the proposed technique is no more than 2.1483 dB for any num-

ber of receive nodes.

Chapter 4 of this dissertation applies the idea in chapter 3 with more spectrally

efficient forward link modulation schemes. Though similar to the BPSK, direct ap-

plication of exchanging quantized LLRs among the receive nodes does not seem to

be the optimal approach for MPSK in general. An intuitive cooperative distributed

reception method, i.e., pseudobeamforming is developed based on exchanging hard

decisions of the observations and fed it to a customerized demodulator according

to the statistics of the aggregate quantization error. Then we introduce the be-

lief combining which is shown to be the optimal distributed reception technique

based on exchanging coarsely quantized observations. Both information-theoretic

analysis and simulation results demonstrate that the belief combining with 8PSK

forward link modulation can preserve the merits we have seen for the BPSK case

i.e., significant reduction in LAN throughput requirement can be achieved while

the performance penalty due to coarse quantization is small in the low SNR regime.

Similar idea is applied to the 4PAM and 16QAM forward link modulations with

minor modifications due to the different types of symmetry of the constellations.

Since quantizer designs have great influence on outage probability performance for

4PAM and 16QAM, optimal quantizer design is discussed in this chapter where

we show that the optimal quantizer amplitude threshold can be found by numer-

ical maximization of the mutual information between the channel input and the

quantized channel output. The results of LDPC code are also demonstrated which

suggests that the achievable performance with real block codes can be close to the
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information-theoretic predictions.

Chapter 5 of this dissertation summarizes the results from the prior chapters

and concludes with a discussion of potential problems stemming from this work

for future research.

1.3 Dissertation Contributions

The main contributions of this dissertation are listed as follows:

• Chapter 2

– Exact expressions for computing the average sum rate of the opportunistic

transmission under the 3-user SISO interference system model.

– Exact and approximate expressions for computing the average interference

leakage and the average sum rate of the 3-user SISO interference system

model.

– Development of a causal implementation procedure of SISO IA together

with a circularly symmetric and a non-i.i.d amplitude/phase channel estima-

tion error model.

– A numerical average sum rate performance comparison between opportunis-

tic transmission and SISO IA for the 3-user SISO interference system with

channel estimation errors showing that SISO IA can achieve better average

sum rate with good channel at high SNR whereas opportunistic transmission

tends to provide better performance at low SNR and/or when the channel

estimates are poor which means more robust to estimation errors [59].
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• Chapter 3

– Development of a distributed reception protocol [60] based on the exchange

of coarsely-quantized observations among some or all of the nodes in the

receive cluster with BPSK forward link modulation.

– Explicit estimates of backhaul throughput requirements as a function the

forward link information rate, and demonstrating the efficacy of the technique

with full and limited receiver participation.

– An information-theoretic analysis of the corresponding distributed recep-

tion system, an exact expressions for the mutual information with observa-

tions arbitrarily quantized or unquantized.

– Simulations of information-theoretic analysis and an LDPC coded system

in fading channels demonstrating that the performance penalty in terms of

outage probability due to coarse quantization is small in the low SNR regimes

enabled by cooperative distributed reception.

– An analysis of a conjectured upper and lower bound on the distributed

reception technique with BPSK forward link modulation which offers a fast

way of predicting the outage probability performance for a given rate r. The

gap between the ideal beamforming and 1-bit belief combining is at most

2.1483 dB for any number of receive nodes N .

• Chapter 4

– Development of a general framework for distributed reception with higher

order forward link modulations (8PSK, 4PAM and 16QAM).

– Development of pseudobeamforming which is an intuitive distributed re-

ception technique for 8PSK forward link modulation.
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– Simulations of an LDPC coded system in fading channels demonstrating

the pseudobeamforming is suboptimal compared with the belief combining

in terms of outage probability.

– Optimal quantizer designs for 4PAM with 2-bit/3-bit per observation and

16QAM with 4-bit/6-bit per observation showing that improvement in the

outage probability performance can be achieved by maximizing the mutual

information between the channel input and the quantized channel output via

numerical simulations.



Chapter 2

A Performance Comparison of

Opportunistic Transmission and

Interference Alignment with Channel

Estimation Errors

This chapter compares interference alignment and opportunistic transmission for

a 3-user single-input single-output (SISO) interference channel in terms of average

sum rate in the presence of channel estimation errors. In the case of interference

alignment, channel estimation errors cause interference leakage which consequently

results in a loss of achievable rate. In the case of opportunistic transmission, chan-

nel estimation errors result in a non-zero probability of incorrectly choosing the

node with the best channel. The effect of these impairments is quantified in terms

of the achievable average sum rate of these transmission techniques. Analysis and

numerical examples for independent and identically distributed fading channels

show that SISO interference alignment can achieve better average sum rate with

good channel estimates and at high SNR whereas opportunistic transmission pro-

vides better performance at low SNR and/or when the channel estimates are poor.

15
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2.1 Background

Wireless networks are interference-limited due to the increasing number of users

that need to share the spectrum to achieve the high-rate communication. The

problem of achieving efficient communication in an interference channel has at-

tracted much research activity in recent years. The growing demands on wireless

networks, for example, 4G networks including WiMAX and 3GPP Long Term Evo-

lution (LTE), to support high data rates and high capacity has driven the need to

develop efficient interference management techniques [16, 61].

Conventional interference management approaches such as interference avoid-

ance divide the channel resources among the transmitters, e.g. using time division

such that only one node transmits at a time [62–64]. When the receive nodes can

measure and feedback the channel quality, the transmit nodes can transmit op-

portunistically by using the best available channel at each instant in time [4]. An

advantage of opportunistic transmission is that this technique can be implemented

with moderate computational complexity and only a small amount of feedback is

required from the receive nodes.

Another more recent interference management approach is to use interference

alignment (IA). It is shown in [1] that by using IA, the capacity of a K-user

single-input and single-output interference channel with frequency selective or

time-varying channel coefficients is

C(SNR) =
K

2
log2(SNR) + o(log2(SNR))

which approaches the Shannon capacity of interference networks at high SNR. The

main idea of IA is to align the interference into a reduced dimensional subspace by
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linear precoding so that simultaneous communications among many users over a

small signal space can be achieved while keeping the desired signal separable from

the interference [23].

Since both opportunistic transmission and IA require feedback, and this feed-

back is typically based on noisy estimates and is often coarsely quantized, it is

of interest to understand how these systems perform in the presence of channel

estimation or quantization errors. For example, an opportunistic transmission

scheduling policy is proposed in [65] which is shown to be robust to estimation er-

rors from both stochastic approximation algorithm and imperfect measurement of

channel conditions. However, no explicit expression is given to evaluate the aver-

age sum rate performance for the SISO interference channel by using opportunistic

transmission. Another study [66] considers a broadcast channel with estimation

errors where the transmit node sends to the user with the highest estimated SNR

but backs off on the transmit rate based on the variance of the estimation error.

However, the performance of such scheme relies heavily on the duration of train-

ing period and the effects of channel estimation error is not explicitly quantified.

Compared with opportunistic transmission, finding a closed-form SISO IA solution

is non-trivial in the first place. The majority of recent IA-inspired solutions are

either non-unique [67–70] or initialization dependent due to iterative nature of the

algorithm [71–79]. Besides, most of the aforementioned work focuses on MIMO

interference channels with full knowledge of CSI whereas our work mainly focuses

on the performance of SISO channels and non-iterative solutions in the presence

of channel estimation errors. Hence, the study on the simplest case would provide

insights on IA prototyping [80–82].
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In this chapter, the performance of opportunistic transmission and IA with

channel estimation errors is compared for a 3-user SISO interference system. A

simple opportunistic transmission strategy is employed where only the transmit-

receive pair with the largest channel magnitude estimate can communicate at each

instant in time. For IA, a closed-form solution of a suboptimal subspace design [3]

is used which avoids the initialization considerations inherent in iterative IA al-

gorithms [25, 72]. Our analysis and simulation results for independent identically

fading channels show that IA can achieve higher average sum rate only at high

SNR and with accurate channel information whereas opportunistic transmission

can provide better performance at low SNR and/or with relatively bad channel

estimates.

2.2 System Model

We assume a system with K = 3 single-antenna transmitters and 3 single-antenna

receivers where each transmitter wishes to send messages only to its associated

receiver as shown in Figure 2.1. Let hkj(t)
i.i.d.∼ CN (0, I) denote the channel from

transmitter j to receiver k at time t where j, k ∈ {1, 2, 3}. We assume that all

channels are additive and that there is no intersymbol interference. A coarse level

synchronization is assumed among the transmitters and receivers so that symbols

arrive at the same time at the receivers.
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TX1

TX2

TX3

RX1
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h11(t)

h12(t)

...

h22(t)

...

h33(t)

Figure 2.1: A 3-user interference channel.

2.3 Opportunistic Transmission

Opportunistic transmission is a simple strategy that can improve average rate

through by selecting the best available channel for transmission and only using

this channel while the other transmitters remain silent. In the context of the sys-

tem model in Section 2.2, this means that only the transmitter with the maximum

|hkk(t)| transmits at time t. Unlike interference alignment, as discussed in Sec-

tion 2.4, opportunistic transmission only requires feedback of three channel states.

We consider a scenario here with only spatial opportunism and no temporal op-

portunism. The transmitter with the best channel to its receiver transmits with

fixed energy E in that timeslot. Under our i.i.d channel assumption, note that the

average transmit energy for each transmitter is E/K in opportunistic transmission.
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For all j, k ∈ {1, 2, 3}, we have

f|hkj(t)|(x) =
x

σ2
e

−x2

2σ2 , and

F|hkj(t)|(x) = 1− e−
x2

2σ2

where σ2 = 0.5. Figure 2.2 shows an example of histogram of the absolute value of

complex Gaussian random variables and its theoretical Rayleigh pdf with σ2 = 0.5.
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Figure 2.2: An example of histogram of the absolute value of complex Gaussian

random variables and its theoretical Rayleigh pdf with σ2 = 0.5.

Letting

λ(t) = max(|h11(t)|, |h22(t)|, |h33(t)|),

we can write the distribution of the best channel as [83]

fλ(t)(x) =
3x

σ2
e−

x2

2σ2

(
1− e−

−x2

2σ2

)2

. (2.1)
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Figure 2.3 shows an example of histogram of the absolute value of complex Gaus-

sian random variables and its theoretical Rayleigh pdf with σ2 = 0.5.
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Figure 2.3: An example of histogram of the order statistic random variables and

its theoretical pdf with σ2 = 0.5.

Under our fixed transmit energy assumption, the average sum rate of the op-

portunistic transmission with perfect CSI can then be written as

Rave−OT = E
[
log2

(
1 + Eλ2(t)

)]
(2.2)

=

+∞∫
0

fλ(t)(x) log2
(
1 + Ex2

)
dx. (2.3)

Note that Rave−OT corresponds to the average sum rate of opportunistic transmis-

sion with perfect CSI.

When CSI is imperfect, there is a non-zero probability that the transmitter with

the best channel is not selected for transmission. Let ĥkk(t) denote the channel
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estimates from transmitter k to receiver k where k ∈ {1, 2, 3}. Define

k̂ = arg max
k∈{1,2,3}

|ĥkk(t)|

and λ̂(t) = |hk̂k̂(t)|. Note that λ̂(t) ≤ λ(t) for all t. Then the average sum rate of

the opportunistic transmission with imperfect CSI can be written as

R̂ave−OT−est = E
[
log2

(
1 + E λ̂2(t)

)]
. (2.4)

2.4 Three-user SISO Interference Alignment

This section describes the symbol extended channel model used for a 3-user SISO

IA scheme, the associated performance metrics, and a closed-form solution for SISO

IA precoding vectors. It is worth mentioning here that SISO IA requires feedback

of all nine of the channels to all of the transmitters to allow computation of the

precoding vectors. Channel estimation error can result in interference leakage. We

also point out that, unlike opportunistic transmission where the transmit energy

was fixed in each timeslot, the IA scheme described below is based on an average

energy constraint for each symbol-extended block transmission.

2.4.1 Symbol extended channel model

To provide the required dimensionality for aligning interference subspaces in the

SISO IA context, it is necessary to consider a symbol extended channel model in

which each transmitter sends a block of precoded symbols over the channel. Let Xj

denote theN -symbol extension of the transmitted symbol xj =

[
xj(t + 1) · · · xj(t+ lj)

]�



23

from transmitter j where lj represents the number of independent streams at the

jth transmitter. It has been shown in [1] that (l1, l2, l3) = (n+1, n, n) is achievable

on the N -symbol extended channel when N = 2n + 1. The elements of xj are as-

sumed to be i.i.d zero mean complex circularly symmetric Gaussian with variance

E
K
, i.e., xj ∼ CN (0, E

K
Ilj ). Hence, Xj can be written as

Xj = Vjxj =

[
v
[1]
j v

[2]
j · · · v

[lj ]
j

]
xj (2.5)

where Vj is a N × lj precoding matrix and v
[i]
j represents the ith column of Vj,

i ∈ {1, 2, · · · , lj}. Let V †
j Vj =

N
lj
Ilj . Since each transmitter access the channel N

times in a block transmission, the transmit energy at transmitter j is constrained

such that E[‖Xj‖2] = NE
K
.

Since the symbols from each transmitter are transmitted over N time slots as

a “supersymbol”, the extended channel Hkj (note that Hkj is not MIMO channel)

is defined as

Hkj :=

⎡
⎢⎢⎢⎢⎣
hkj(t+ 1) 0 · · · 0

0 hkj(t+ 2) · · · 0

0 0 · · · hkj(t+N)

⎤
⎥⎥⎥⎥⎦ (2.6)

where hkj is a scalar at each channel use and hkj(t) and hkj(s) are independent for

all t �= s. The received signal vector at receiver k is then

yk := HkkXk +

K∑
j �=k

HkjXj +wk

= HkkVkxk +
K∑
j �=k

HkjVjxj +wk (2.7)

where yk is the N ×1 received signal vector and wk is the additive white Gaussian

noise at receiver k distributed as wk ∼ CN (0, IN) at receiver k.
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At the receiver side, we assume zero-forcing decoders. Let Uk be an N × lk

matrix whose columns are orthogonal to the interference signal subspace at the kth

receiver. The filtered received signals can then be written as

zk = U †
kyk

= U †
kHkkVkxk +

K∑
j �=k

U †
kHkjVjxj + U †

kwk. (2.8)

2.4.2 Performance metrics

The formula for computing average sum rate can be of different forms based on the

types of receivers employed in the system and for different purposes. For example,

zero forcing decoders are deployed in [2, 71, 78] whereas MMSE receivers are used

in [3].

If perfect knowledge of CSI is assumed at the transmitter and receiver, the

individual sum rate at user k derived with receivers deploying zero-forcing decoders

can be written as

Rk = log2

∣∣∣∣∣∣Ilk +
E
K

H̄kkH̄
†
kk

(∑
k �=j

E
K

H̄kjH̄
†
kj + Ilk

)−1
∣∣∣∣∣∣

in units of bits per block, where H̄kj = U †
kHkjVj , ∀(k, j). The average sum rate

with perfect CSI is then

Rave−IA =
1

N
E

[
K∑
k=1

Rk

]

in units of bits per channel use.

When MMSE receivers are deployed, the individual rate for user k is defined
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as

Rk := log2

∣∣∣∣∣IN +
∑
j

E
K
HkjVjV

†
j H

†
kj

∣∣∣∣∣∣∣∣∣∣IN +
∑
j �=k

E
K
HkjVjV

†
j H

†
kj

∣∣∣∣∣
(2.9)

for j = {1, 2, · · · , K}. Simulations in section 2.4.4 show that these two type of

receivers give close performance for the given system. Hence unless otherwise

stated, zero forcing decoders are applied through the entire dissertation.

When CSI is imperfect, we can denote the channel estimate as Ĥkj. Then the

precoding and decoding matrices V̂j and Ûk, respectively, are computed based on

the estimated CSI rather than the actual CSI. Hence the resulting individual sum

rate will be

R̂k = log2

∣∣∣∣∣∣Ilk+
E
K

ˆ̄Hkk
ˆ̄H†
kk

(∑
k �=j

E
K

ˆ̄Hkj
ˆ̄H†
kj + Ilk

)−1
∣∣∣∣∣∣ (2.10)

in units of bits per block, where ˆ̄Hkj = Û †
kHkjV̂j, ∀(k, j). The corresponding average

sum rate with imperfect CSI is then

R̂ave−IA−est =
1

N
E

[
K∑
k=1

R̂k

]
(2.11)

in units of bits per channel use.

Another metric to evaluate the quality of alignment is the average interference

leakage [77]. Unlike sum rate, the average interference leakage reveals more details

about how well the interference is aligned and suppressed at each receiver. It

measures the power in the leakage interference at each receiver, i.e., the interference

power remaining in the filtered received signal and thus serves as a better indicator

of the quality of interference alignment.
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Introduced in [77], the average interference leakage is defined as

Iave−IA =
1

N
E

[
K∑
k=1

Ik

]
(2.12)

where the individual interference leakage at the kth receiver is

Ik = Tr
[
U †
kQkUk

]
(2.13)

where

Qk =

K∑
j=1,k �=j

E
K

HkjVjV
†
j H

†
kj (2.14)

is the interference covariance matrix at receiver k. The decoding vectors Uk can

usually be obtained by using Gram-Schmidt process. Details can be found in

Appendix A. When interference is perfectly aligned and suppressed the leakage

will be zero. Hence the average interference leakage can be written as

Iave−IA =
1

N
E

[
K∑
k=1

Ik

]

=
1

N
E

[
K∑
k=1

Tr
[
U †
kQkUk

]]

=
1

N
E

[
K∑
k=1

Tr

[
U †
k

(
K∑

j=1,j �=k

E
K

HkjVjV
†
j H

†
kj

)
Uk

]]

=
1

N
E

[
K∑
k=1

K∑
j=1,j �=k

E
K

Tr

[(
U †
kHkjVj

)(
U †
kHkjVj

)†]]
. (2.15)

When imperfect CSI is assumed, the precoding matrices V̂j and the decoding

matrices Ûk are computed based on Ĥkj. The estimated interference leakage at

user k are computed as

Îk = Tr
[
Û †
kQ̂kÛk

]
(2.16)

where

Q̂k =
K∑

j=1,j �=k

E
K

HkjV̂jV̂
†
j H

†
kj.
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Hence the average interference leakage can be obtained by

Îave−IA =
1

N
E

[
K∑
k=0

Îk

]
. (2.17)

2.4.3 Closed-form solutions for SISO IA

Many algorithms for computing optimal IA precoding matrices are iterative and,

since convergence depends on the initialization, this makes them unattractive when

it comes to studying the performance of IA with imperfect CSI. In this section, a

handful of non-iterative IA algorithms with closed-form solutions will be discussed

and used as a basis for our comparison with opportunistic transmission in the

sequel.

SISO interference alignment with lk streams from transmitter k requires

U †
kHkjVj = 0 for j �= k

rank(U †
kHkkVk) = lk. (2.18)

The first closed-form solution for the precoding vectors in a 3-user SISO interfer-

ence channel was given in [1] in which the precoding vectors are defined as

H12V2 = H13V3

H23V3 ≺ H21V1

H32V2 ≺ H31V1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⇒

V1 = A

V2 = (H32)
−1H31C

V3 = (H23)
−1H21B

(2.19)
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where

T : = H12(H21)
−1H23(H32)

−1H31(H13)
−1 (2.20)

A : =

[
ω Tω · · ·T nω

]
N×(n+1)

B : =

[
Tω T 2ω · · · T nω

]
N×n

C : =

[
ω Tω · · · T n−1ω

]
N×n

.

In [1], ω =

[
1 1 · · · 1

]�
.

The idea of the IA scheme for three-user interference alignment can be ex-

tended for K-user cases and details of the solutions and examples can be found

in Appendix B. As stated in [23], this scheme is primarily of theoretical interest

because of its strong asymptotic character which limits its practical use. However,

it is one of the most powerful theoretical IA constructions that can be applied to

many scenarios.

Based on this scheme, it is showed in [84] that a global optimal solution ω̃∗

exists which maximizes the sum rate while preserving the achievable degrees of

freedom. An alternative suboptimal improved subspace design is proposed in [3]

where the suboptimal precoding vector is

Vk(ω) = W (ω)Γk (2.21)

ω̃i = 3

(∑
k

γkiγ
†
ki

)−1

where W̃ := W †W , ω̃i = |ωi|2 which is the ith element of theN×N diagonal matrix

W̃ and γki is the ith row vector of matrix Γk (which is defined in [84]). Both CJ

and KT schemes can be further improved by SHV orthonormalization [67].
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2.4.4 Performance of SISO IA with perfect CSI

In this section, we compare the average sum rates obtained by the SISO IA schemes

with perfect CSI. The SNR in these numerical results is defined as SNR = E
K
.

In the first example, we compare the average sum rates by using different

receivers discussed in section 2.4.2. The channel is assumed to have i.i.d complex

Gaussian distribution, i.e., Hkj
i.i.d.∼ CN (0, IN) where each transmitter has N = 3

symbol extensions.

Figure 2.4 shows the average sum rate comparison between the CJ scheme with

ZF decoder and MMSE decoder after 1000 channel realizations. The ideal average

sum rate curve Dn log2(snr) is plotted as reference where in case D1 = 4
3
. It is

shown in this figure that the average sum rates with these two decoders are very

close to each other at high SNRs. Both decoders achieve almost 10 bits/sec/Hz

gain at 50 dB compared with the random precoding vectors scheme. Hence ZF

decoder is deployed in the rest of the simulations.

The next example compares the performance of CJ scheme and the suboptimal

improved subspace schemes, i.e., KT for a three-user SISO interference channel

with N = 3. Figure 2.5 shows the average sum rates of various IA schemes after

1000 channel realizations. Observations from this figure show that the KT scheme

outperforms the CJ around 1.33 bits/sec/Hz at high SNRs. The gap between the

ideal average sum rate curve and KT is around 1.23 bits/sec/Hz.

Then we extended the number of symbol extensions from N = 3 to N = 5 and

N = 11. The simulation results are shown in Figure 2.6 and 2.7 whereD2 log 2(snr)
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Figure 2.4: Average sum rates of a three-user SISO system with N = 3 by using

IA schemes with ZF decoders and MMSE decoders.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

SNR(dB)

R
at

e(
bi

ts
/s

ec
/H

z)

 

 
D

1
log

2
(snr)

CJ
KT
Random V

Figure 2.5: Average sum rates of a three-user SISO system with N = 3 by using

various IA schemes.
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and D5 log2(snr) are plotted as references and D2 =
7
5
, D5 =

16
11
. When ZF decoder

is deployed, the average sum rate of the KT schemes with N = 5 increases by

0.4981 bits/sec/Hz whereas it decreases by 0.0497 bits/sec/Hz with N = 11 case

compared with N = 3. It means that the average sum rate does not increase

monotonically with N . In fact, there is an optimal size N� for the signal dimension

which is argmin
�N�

|(n+ 1)L + nL −K(K − 1)|, where L = (K − 1)(K − 2)− 1, N =

(n + 1)L + nL and n ∈ N. In this case, N = 5. This optimal signal dimension

size is implicit in the proof that for a fixed tolerance δ around the target value of

1/2 DoF per user, as the number of users, K, grows, the logarithm of the size of

the signal space needed by the CJ scheme expands as Θ(K2). For the details of

the proof, we refer the reader to [23]. The performance of the CJ scheme drops

significantly compared with the previous case. There is more than 5 bits/sec/Hz

loss at 50 dB compared with the CJ in Figure 2.5. Hence for a three-user SISO

interference channel, the KT-based schemes are proved to be near-optimal in the

average sum rate sense.

The last example in this section shows the performance of a four-user SISO

interference channel by using the CJ-based interference alignment schemes. Since

the suboptimal subspace optimal solutions proposed in [84] are derived only for

three-user SISO interference channels, these solutions cannot be used for the cases

where K > 3. Figure 2.8 shows the average sum rate for a four-user SISO inter-

ference channel with N = 33 by using the original CJ (without SHV orthonor-

malization) and CJ schemes. In this case, the slope of the ideal average sum rate

is D1 =
∑4

i di =
35
33

where

[
d1 d2 d3 d4

]
=

[
32
33

1
33

1
33

1
33

]
. It seems to be

surprising that the performance of the original CJ scheme is very close to the ran-

dom precoding vector cases while the CJ still provides significant gain in average
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Figure 2.6: Average sum rates of a three-user SISO system with N = 5 by using

various IA schemes.
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Figure 2.7: Average sum rates of a three-user SISO system with N = 11 by using

various IA schemes.
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sum rate performance. This can be explained by the structure of the solution. For

example, V1 is a 33 × 32 matrix. Even though the interference from other users

can be cancelled at receiver 1, the 32 columns of V1 will end up interfering with

each other when they arrive at receiver 1. The CJ scheme solves this problem by

apply SHV orthonormalization and therefore results in significant improvement in

the performance.
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Figure 2.8: Average sum rates of a four-user SISO system with N = 33 by using

various CJ-based IA schemes.

2.4.5 A causal implementation procedure of SISO IA

Since all discussions so far are under the assumption that global channel state

information is known, it is natural to question the feasibility and robustness of the

suboptimal schemes in the previous sections with imperfect channel information,

for example, imperfect phase estimates and amplitude estimates.
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Starting from a causal implementation procedure of SISO IA and the simplest

channel estimation error model, i.e., circularly symmetric channel estimation er-

rors, we will first compare its average interference leakage performance and the

average sum rate performance with the perfect channel estimation. Then we will

extend the model to have non-i.i.d. amplitude/phase estimation errors.

Recall equation (2.6). It indicates that the closed-form solution for SISO IA

requires the knowledge of the current and the future CSI. The non-causality prop-

erty of this solution makes the implementation impossible. Thus this SISO IA

technique becomes unattractive to many engineers.

In this section, a causal implementation of a three-user SISO IA system with N

symbol extensions will be discussed by using the closed-form solution. Although

only 1
N

of the precoding vectors can be obtained per feedback based on the current

channel estimates, the system is able to compute all the precoding vectors after

the feedback stage and then transmit the symbol.

In order to keep the analysis simple, we assume N = 3 and thus V1 is 3× 2, V2

and V3 are 3 × 1 matrices. Figure 2.9 illustrates the three-stage procedure of the

causal implementation:

1. At the TDMA training stage, each transmit node sends channel tones sepa-

rately to the receivers in order to avoid interference and get better channel

estimates. All receive nodes have the corresponding channel estimates at the

end of the training stage.

2. The receivers start to broadcast the estimated CSI back to the transmit

nodes separately. By the end of the feedback stage, all three transmit nodes
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ĥ11(1)
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ĥ32(1)
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Figure 2.9: A three-stage procedure of the causal three-user SISO IA implementa-

tion.
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have the channel estimates.

3. Based on the feedback CSI, the first row of precoding vectors can be com-

puted according to the closed-form solution. Hence part of the symbol can

be transmitted. After the transmission is complete, the system waits for a

sufficient long period and then repeats stage 1 to 3 to compute the next row

of the precoding vectors until the whole precoding vectors are obtained by

the transmit nodes.

Figure 2.9 helps to explain this procedure in more details. With perfect CSI,

the precoding solutions proposed by CJ for a three-user SISO IA with N = 3 are

as follows

V1 := A

V2 := (H32)
−1H31C

V3 := (H23)
−1H21B

where

T := H12(H21)
−1H23(H32)

−1H31(H13)
−1

A :=

[
ω Tω

]
3×2

,

B :=

[
Tω

]
3×1

,

C :=

[
ω

]
3×1

ω =

[
1 1 1

]�
.

Since Hkj are 3× 3 diagonal matrices, let T = diag(ti) where i ∈ {1, 2, 3}. Vk
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can be further simplified as

V1 =

⎡
⎢⎢⎢⎢⎣
1 t1

1 t2

1 t3

⎤
⎥⎥⎥⎥⎦ , V2 =

⎡
⎢⎢⎢⎢⎣

h31(1)
h32(1)

h31(2)
h32(2)

h31(3)
h32(3)

⎤
⎥⎥⎥⎥⎦ , V3 =

⎡
⎢⎢⎢⎢⎣
t1

h23(1)
h23(1)

t2
h23(2)
h23(2)

t3
h23(3)
h23(3)

⎤
⎥⎥⎥⎥⎦ (2.22)

where Hkj = diag(hkj(i)) and ti =
h12(i)h23(i)h31(i)
h21(i)h32(i)h13(i)

, i ∈ {1, 2, 3}.

Observation of equation (2.22) suggests that the ith row of the precoding vectors

is only relevant to the ith row of the estimated CSI. So after the TDMA training

and the feedback stage, the precoding vectors are

V̂1 =

⎡
⎢⎢⎢⎢⎣
1 t̂1

1 ∗
1 ∗

⎤
⎥⎥⎥⎥⎦ , V̂2 =

⎡
⎢⎢⎢⎢⎣

ĥ31(1)

ĥ32(1)

∗
∗

⎤
⎥⎥⎥⎥⎦ , V̂3 =

⎡
⎢⎢⎢⎢⎣
t̂1

ĥ23(1)

ĥ23(1)

∗
∗

⎤
⎥⎥⎥⎥⎦ , (2.23)

t̂1 =
ĥ12(1)ĥ23(1)ĥ31(1)

ĥ21(1)ĥ32(1)ĥ13(1)
(2.24)

where (̂·) denotes the estimates or quantities computed based on the estimates and

∗ denotes the terms that are temporarily unavailable. But it is clear that all these

precoding vectors can be obtained by repeating the three-stage procedure.

Since after the feedback stage, each transmitter only knows Ĥkj. The precoding

vectors V̂j and the decoding vectors Ûk are computed based on Ĥkj. The estimated

average sum rate can be computed by equations (2.10),(2.11) and the estimated

average interference leakage can be obtained by equations (2.16), (2.17).
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2.4.6 Performance of SISO IA with imperfect CSI

Two channel estimation error models are discussed in this section and simulation

results of SISO IA systems with different channel estimation errors are provided.

Circularly symmetric channel estimation error model

Consider the CSI estimation error follows the circularly symmetric Gaussian dis-

tribution. The estimated channel is

Ĥkj = Hkj +Wkj (2.25)

where Wkj
i.i.d∼ CN (0, σ2

W IN).

The average interference leakage can be written as

Îave−IA =
1

N
E

[
K∑
k=1

K∑
j=1,j �=k

E
K

Tr
[
Û †
kWkjV̂jV̂

†
j W

†
kjÛk

]]
(2.26)

=
1

N
E

[
K∑
k=1

Tr
[
Û †
kQ̂WkÛk

]]
(2.27)

where

Q̂Wk =
K∑

j=1,j �=k

E
K

WkjV̂jV̂
†
j W

†
kj.

Suppose Ûk does not suppress the interference at all. The maximum estimated
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average interference leakage is

Îave−IA−max =
1

N
E

[
K∑
k=1

Tr
[
Q̂Wk

]]

=
1

N
E

[
K∑
k=1

Tr

[
K∑

j=1,j �=k

E
K

WkjV̂jV̂
†
j W

†
kj

]]

=
E

KN

K∑
k=1

E

[
Tr

[
K∑

j=1,j �=k

V̂ †
j W

†
kjWkjV̂j

]]

=
E

KN
KNσ2

W

= Eσ2
W .

Hence the approximation for average interference leakage in dBm/sec/Hz is

Îave−IA−max = 10log
(Eσ2

W

)
+ 30 (2.28)

and it is linear affine with σ2
W .

Non-i.i.d. amplitude/phase estimation error model

Unlike the simple CSI estimation error in (2.25), the new channel estimate is

modelled as

ĥkj(i) = (|hkj(i)|+Wa(i)) e
j(�hkj(i)+Wφ(i)) (2.29)

where Wa(i)
i.i.d.∼ N (0, σ2

Wa
) and Wφ(i)

i.i.d.∼ N (0, σ2
Wφ

), i ∈ {1, 2, · · · , N}.

The rest of this section provides several simulation results of SISO IA systems

with different channel estimation errors.

In the first example, the circularly symmetric channel estimation error model

is considered for a three-user interference system. The channels are assumed to be
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Hkj
i.i.d.∼ CN (0, IN) where the symbol extensions N = 3. After 1000 channel/noise

realizations, the average interference leakage and the average sum rate are plotted

in Figure 2.10 at 40 dB.
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Figure 2.10: The average interference leakage and average sum rate of a three-user

SISO system with N = 3 at 40 dB.

Observation of the average interference leakage curves show that when perfect

CSI is assumed, all the schemes achieve almost zero interference leakages. The

maximum estimated average interference leakages with channel estimation errors

are shown to have the greatest leakage compared with other schemes.

In the average sum rate plot, noticeable improvements can be observed by us-

ing CJ scheme rather than using the original CJ scheme. These improvements can

be found in both perfect CSI case and the imperfect CSI case. Further improve-
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ments are made by using the KT scheme. The gap between the KT-est and the

original CJ-est is approximately 0.2129 bits/sec/Hz at σ2
W = 0.1. The difference

between KT and KT-est is about 10.0185 bits/sec/Hz at σ2
W = 0.1. The sum rate

performance of all three schemes decrease with increasing σ2
W .

Like that of the previous figure, plots in Figure 2.11 show the average interfer-

ence leakage and the average sum rate performance of the N = 3 SISO IA system

at SNR=15 dB. It can be seen that the maximum estimated average interference

leakages preserves the linear affine feature at lower SNR and the leakage is around

30 dBm/sec/Hz less than that of the 40 dB case. The average sum rate perfor-

mance seems to be 10 bits/sec/Hz worse than the 40 dB case. Hence better sum

rate performance can be achieved at higher SNR. We can also conclude that the

average sum rate is more sensitive to the estimation error at high SNR. Among the

three IA schemes, the R̂ave of KT-est outperforms the other two schemes by ap-

proximately 0.3615 bits/sec/Hz and 0.6738 bits/sec/Hz respectively at σ2
W = 0.1.

Next, we examine the average interference leakage and average sum rate per-

formance of KT scheme with different number of symbol extensions N = 3, 5, 11.

The results in Figure 2.12 show that the interference leakage curves increase with

growing σ2
W and gradually flatten out. The interference leakages with N = 3, 5, 11

are almost the same. The average sum rate plots suggest that the KT with N = 5

yields the best performance while N = 3 outperforms N = 11. For N = 5, the gap

between the KT and KT-est at σ2
W = 0.1 is 12.7158 bits/sec/Hz.

Now consider non-i.i.d. amplitude/phase estimation error model for a three-

user SISO system with N = 3 and the variances of the estimation errors are

generated as



42

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

−150

−100

−50

0

50

σ2
W

I av
e(d

B
m

/s
ec

/H
z)

 

 

original CJ
CJ
KT
original CJ−est
CJ−est
KT−est
Max

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

2.5

3

3.5

4

4.5

5

5.5

6

σ2
W

R
at

e(
bi

ts
/s

ec
/H

z)

 

 

orignal CJ
CJ
KT
original CJ−est
CJ−est
KT−est

Figure 2.11: The average interference leakage and average sum rate of a three-user

SISO system with N = 3 at 15 dB.
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SISO system with N = 3, 5, 11 at 40 dB.
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1. 30 equally logspaced σ2
Wa

(i) ∈ [0.5× 10−6, 0.05],

2. 30 equally logspaced σ2
Wφ

(i) ∈ [0.5× 10−6, 0.05].

After 100 iterations are performed for each
(
σ2
Wa

(i), σ2
Wφ

(i)
)

pair, the contours

of the average interference leakage and the sum rates by using the KT scheme

are shown in Figure 2.13. While Îave grows with increasing
(
σ2
Wa

(i), σ2
Wφ

(i)
)
, R̂ave

decreases. It seems thatWa(i) andWφ(i) have similar effects on the IA performance

and the worse of Wa(i),Wφ(i) dominates the performance.
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Figure 2.13: The contour plot of the average interference leakage and the average

sum rate of KT-est with N = 3 and 40 dB.

To confirm that the performance of IA depends on the worse of σ2
Wa

(i), σ2
Wφ

(i),

we check two cases: σ2
Wa

� σ2
Wφ

and σ2
Wa

� σ2
Wφ

. Therefore, with the same
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simulation setup, the following parameters are used:

1. When σ2
Wa

� σ2
Wφ

: 30 equally logspaced σ2
Wa

(i) ∈ [0.1, 0.5]; 30 equally

logspaced σ2
Wφ

(i) ∈ [10−6, 10−4].

2. When σ2
Wa

� σ2
Wφ

: 30 equally logspaced σ2
Wφ

(i) ∈ [0.1, 0.5]; 30 equally

logspaced σ2
Wa

(i) ∈ [10−6, 10−4].
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Figure 2.14: The contour plots of the average interference leakage and the average

sum rate by using KT scheme. (Notice that the x-axis and the y-axis are switched

for the top and bottom plots.)

Figure 2.14 shows the average interference leakage and the average sum rate
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of KT scheme. The interference leakage plots on the left-hand side suggest that

the worse error variance dominates the leakage performance since almost the same

performance can be achieved on the y-axis and the leakage curves mainly vary

along the x-axis. We can see that the greater the error variance, the greater the

interference leakage is. A similar trend can be observed in the average sum rate

plots but the rate grows in a reverse way. Comparing the top and bottom cases in

the same range, we can conclude that the error variance of the amplitude σ2
Wa

has

more impact on the IA performance than the phase σ2
φ.

2.5 Comparison between Opportunistic Transmission and

the SISO IA

In this section, we compare the average sum rates obtained by opportunistic trans-

mission and the SISO IA schemes by using ZF decoders with imperfect CSI. The

SNR in these numerical results is defined as SNR = E
K

with K = 3 in all of the

tested cases.

In the first example, a 3-user SISO interference channel is assumed in the

system where each transmitter has N = 3 symbol extensions. Channel coefficients

are drawn temporarily and spatially i.i.d. from a complex Gaussian distribution,

i.e., hkj(t)
i.i.d.∼ CN (0, IN). Independent circularly symmetric complex channel

estimation errors denoted wkj(t)
i.i.d.∼ CN (0, σ2

W ) as are assumed. 1000 channel

realizations are generated and 1000 noise realizations are generated for each σ2
W

value.
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As shown in Figure 2.15 forN = 3, the KT SISO IA scheme achieves the highest

average sum rate as 16.03 bits/sec/Hz which has a gain of 0.57 bits/sec/Hz over

the OT and a gain of 1.35 bits/sec/Hz over CJ respectively at 40 dB SNR. When

channel estimation error is considered, the average data rate performance decreases

as expected. Compared with KT-est, OT-est is about 1 bits/sec/Hz worse when

σ2
W ≤ 10−4. However, the OT-est outperforms KT-est when the channel estimates

get worse. When σ2 > 10−4, OT-est starts to outperform KT-est and is also

robust to the bad channel estimates. As σ2
W increases, OT-est converges to the

RND scheme which picks a random user to transmit at full energy. The two SISO

IA schemes shown in Figure 2.15 perform worse than RND when σ2
W > 0.1.

Figure 2.16 shows the same simulation as Figure 2.15 except the SNR is now

set to 15 dB. Here we see opportunistic transmission performing better than both

SISO IA schemes. The average sum rate for KT is almost 1.76 bits/sec/Hz worse

than the OT. This gain maintains for the imperfect CSI cases, i.e., OT-est always

at least 1 bits/sec/Hz better than KT-est. Again, OT-est converges to RND as

σ2
W increases.

Figure 2.17 shows the average sum rate performance for the 3-user SISO IA

with N = 5 symbol extensions at 40 dB. Compared with Figure 2.15, KT is about

0.45 bits/sec/Hz better than the N = 3 case and OT-est starts to outperform

KT-est around σ2
W = 10−4. The CJ, however, is 1.47 bits/sec/Hz worse than that

in the N = 3 case. Hence increasing the number of symbol extensions N does

not always improve the average sum rate performance. Even for the KT scheme,

the average sum rate will drop when N is greater than the number of sources of

interference, i.e. K(K − 1).
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Figure 2.15: Average sum rate versus channel estimation error variance for 3-user

opportunistic transmission and SISO IA with N = 3 symbol extensions at 40 dB

SNR.
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opportunistic transmission and SISO IA with N = 3 symbol extensions at 15 dB

SNR.
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opportunistic transmission and SISO IA with N = 5 symbol extensions at 40 dB
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In the remaining results, we directly compare the sum rate of different schemes

by varying SNR from 0 to 40 dB and channel estimation error variance σ2
W ∈[

10−6, 1

]
. 1000 channel/noise realizations are performed for each (SNR, σ2

W ) pair.

For N = 3 symbol extensions, the difference of the average sum rate between

OT and CJ and OT and KT are compared in Figure 2.18 and 2.19, respectively.

A positive contour indicates that the OT outperforms IA techniques in terms of

average sum rate, whereas a negative contour indicates that IA is better. Between

the two IA schemes, KT achieves slightly larger performance advantage area over

OT in the regime of good channel estimates and high SNR, i.e., σ2
W < 10−4 and

SNR>30 dB. With low SNR and/or poor channel estimates, i.e., SNR<30 dB

and/or σ2
W > 10−4, OT has the best sum rate performance amongst all schemes

considered here. Figure 2.20 shows the difference of the average sum rate between

OT and KT for the case with N = 5 symbol extensions. As can be seen, KT

has slightly better performance than the N = 3 case at high SNR and in the low

σ2
W regime. Otherwise, the results are similar to those seen in the N = 3 case.

When the SNR is low or the channel estimates are bad, opportunistic transmission

achieves better sum rate performance than either SISO IA scheme.

2.6 Conclusions

In this chapter, we have compared opportunistic transmission with a low com-

plexity subspace suboptimal IA technique based on the 3-user SISO IA scheme

proposed in [1]. In the case of interference alignment, channel estimation errors

cause interference leakage which consequently results in a loss of achievable rate

whereas in the case of opportunistic transmission, channel estimation errors result
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in a non-zero probability of incorrectly choosing the node with the best channel.

Simulation results show that opportunistic transmission outperforms SISO IA

in low SNR conditions and when channel estimates are poor. SISO IA based on [1]

or [3] with SHV orthonormalization tends to perform better at high SNR with

good channel estimates.



Chapter 3

Distributed Reception with

Coarsely-Quantized Observation

Exchanges

This chapter considers the problem of jointly decoding binary phase shift keyed

(BPSK) messages from a single distant transmitter to a cooperative receive clus-

ter connected by a local area network (LAN). An approximate distributed receive

beamforming algorithm is proposed based on the exchange of coarsely-quantized

observations among some or all of the nodes in the receive cluster. By taking into

account the differences in channel quality across the receive cluster, the quantized

information from other nodes in the receive cluster can be appropriately combined

with locally unquantized information to form an approximation of the ideal re-

ceive beamformer decision statistic. The LAN throughput requirements of this

technique are derived as a function of the number of participating nodes in the

receive cluster, the forward link code rate, and the quantization parameters. Using

information-theoretic analysis and simulations of an LDPC coded system in fading

channels, numerical results show that the performance penalty (in terms of outage

probability and block error rate) due to coarse quantization is small in the low SNR

regimes enabled by cooperative distributed reception. An analytical approxima-

tion of upper/lower bound for the outage probability are discussed which provide

a pretty fast way to compute the outage probability for a system with arbitrary

number of receive nodes at given SNR value.

53
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3.1 Background

Originated from the idea of diversity reception [32,85–87], distributed reception is a

technique where multiple receivers in a wireless network combine their observations

to increase diversity and power gain and, consequently, improve the probability of

successfully decoding noisy transmissions. Distributed reception has been used

historically in the context of aperture synthesis for radio astronomy, e.g. the Very

Large Array [39], where each antenna typically forwards observations over a high-

speed optical backhaul network to a processing center for subsequent alignment

and combining. The advantages of this approach are well-documented and include

improved resolution as well as signal-to-noise (SNR) gains.

More recently, the idea of distributed reception has been considered for wireless

networks with limited backhaul capabilities. A simple form of distributed recep-

tion, i.e. soft handoff [40], has been successfully used in cellular systems since the

1990s. Recent information-theoretic studies [42–45] have shown that more sophisti-

cated distributed reception techniques have potential to increase diversity, improve

capacity, and improve interference rejection, even with tight backhaul constraints.

Several techniques have been proposed to achieve these gains including link-layer

iterative cooperation [46,47,88], distributed iterative receiver message-passing [49],

and most-reliable/least-reliable bit exchange iterative decoding [50–55]. A limita-

tion of all of these techniques is that they are based on iterative transmissions

and decoding. As such, the backhaul requirements are variable and the decoding

latency can be significant if the number of iterations is large. The focus of these

studies is also often on achieving diversity gains, rather than SNR gains. SNR gains

through distributed receive beamforming are particularly appealing since they can
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be linear in the number of receivers and allow for longer-range and/or higher-data

rate communication as well a reduction in the size, weight, power and cost of the

transmitter.

In this dissertation, we consider the problem jointly decoding binary phase

shift keyed (BPSK) messages from a single distant transmitter to a cooperative

receive cluster with a conventional LAN comprising the backhaul. We show that

exchanging quantized observations among the nodes in the receive cluster can pro-

vide a simple but powerful approach for non-iterative, fully-distributed reception

over a LAN with limited capacity. Unlike most-reliable/least-reliable bit exchange

techniques in which information is transmitted over the backhaul/LAN based on

requests from other receivers, our approach is for receivers to quantize each de-

modulated bit (prior to decoding) and broadcast all of these quantized values to

the other receivers in the cluster. A naive implementation with fine-grained quan-

tization of the observations at each receiver can generate large amounts of LAN

traffic. For example, in a 10 node cluster with a rate r = 1/2 forward link code

and b = 16 bits per observation, the LAN would need to support a normalized

throughput of approximately 320 bits per forward link information bit. Our ap-

proach is based on coarse quantization and adapts to LAN throughput constraints

by allowing for different quantization parameters as well as allowing a subset of the

receivers in the cluster to participate in the broadcast of quantized observations.

The numerical results from information-theoretic analysis, as well as simula-

tions of an LDPC-coded system, show that exchanging just one bit per forward-

link coded bit (i.e., hard decisions based on the sign of the observation) typically

results in outage probability performance within 1.5 dB of ideal receive beamform-
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ing, while two bits per coded bit (one sign bit and one amplitude bit) performs

within 0.5 dB of ideal receive beamforming. Our results lead to the intuitively

pleasing observation that the low (per node) SNR regimes enabled by cooperative

distributed reception limit the performance loss caused by coarse quantization. We

also provide explicit estimates of backhaul throughput requirements as a function

of the forward link information rate, and demonstrate the efficacy of the technique

with full and limited receiver participation.

3.2 System Model

We consider the scenario shown in Figure 3.1 where we have a single transmitter

and a cluster of N receive nodes. The goal is to communicate common broadcast

messages over the forward link from the distant transmitter to all of the receive

nodes. As one example, the scenario in Figure 3.1 could correspond to a long-range

downlink in which the receive cluster jointly processes messages from a distant base

station.

distant
transmitter fully-connected

receive cluster

forward link

Figure 3.1: Distributed reception scenario.

The forward link complex channel from the distant transmitter to receive

node i is denoted as hi for i = 1, . . . , N and we denote the vector channel h =
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[h1, . . . , hN ]
�. It is assumed that the receive cluster has already established a LAN

backhaul, either ad-hoc or through infrastructure such as an access point, and that

LAN transmissions are reliable. The LAN is also assumed to support broadcast

transmission in which any single node can send a message to all other nodes si-

multaneously. The LAN and the forward link are assumed to operate on different

frequencies so that the receive cluster can transmit/receive on the LAN while also

receiving signals from the distant transmitter over the forward link. The LAN is

also assumed to support a larger throughput than the coded bitrate of the forward

link.

For ease of exposition, we assume the distant transmitter uses binary phase

shift keying (BPSK) modulation and that messages are (n, k) block coded where n

and k correspond to the block length the message length, both in bits, respectively.

The forward link code rate is denoted as r = k/n. A mechanism for detecting a

correctly decoded block, e.g. a CRC check, is assumed. The forward link channels

are assumed to be block fading, where each hi is constant over a block and is

independent and identically distributed (i.i.d.) in each block. The channels are

also assumed to be spatially i.i.d.

Given a channel input of X = ±1, the phase-corrected signal received at the

ith receive node is given as

Yi =
√
ρiX +Wi (3.1)

where ρi = 2|hi|2Es/N0, Es is the energy per coded forward link bit, N0/2 is the

additive white Gaussian noise power spectral density, and Wi ∼ N (0, 1). The

noise realizations are assumed to be spatially and temporally i.i.d. The quantity

ρi corresponds to the signal-to-noise ratio (SNR) of the coded forward link bits at
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receive node i.

3.3 Distributed Reception Protocol

This section first provides an overview of the main idea behind the proposed dis-

tributed reception protocol, followed by additional details pertaining to a specific

implementation.

In the low per-node SNR regimes of interest for large receive clusters, individ-

ual nodes are typically unable to successfully decode messages from the distant

transmitter. Thus, while receiving a block over the forward link, each node in the

receive cluster locally demodulates the transmission and generates LLRs for each

of the n coded bits in the current block. These LLRs are not immediately used

for decoding. Rather, all of the receive nodes (or a subset of nodes with better

channel quality) quantize their soft demodulator outputs and broadcast all of their

quantized values, along with quantized SNR estimates, over the LAN to the other

receive nodes in the cluster. Each receive node then combines the information re-

ceived over the LAN with their locally unquantized LLRs and passes these results

to their local block decoder for decoding. If any receive node successfully decodes

the message, it then forwards the decoded message over the LAN to the other

receive nodes in the cluster. If two or more nodes successfully decode the message

and attempt to broadcast the successfully decoded block, it is assumed the LAN

has a mechanism for contention resolution.

An important constraint is that the LAN has limited capacity. If the LAN had

unlimited capacity, all of the nodes in the receive cluster could effectively forward
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unquantized LLRs to the other receive nodes in the cluster and each node could

simply sum these LLRs to realize an ideal receive beamformer, as shown in the

Appendix C. While this case serves as an important benchmark, this chapter

considers the achievable performance of distributed reception with limited LAN

capacity.

As a specific example of how distributed reception can be performed with lim-

ited LAN capacity, consider the timeline shown in Figure 3.2. After receiving and

locally demodulating a block, the following steps are performed by the receive

cluster over the LAN:

1. All N nodes exchange estimates of their channel magnitudes |hi| or received
SNRs ρi.

2. The M ≤ N nodes with the strongest channel magnitudes or SNRs partic-

ipate1 by forwarding all of their quantized observations over the LAN. As

quantized messages are received over the LAN, each receive node (including

those that do not participate) scale this quantized information (based on the

previously exchanged channel magnitudes/SNRs, as discussed in Section 3.5)

and combine it with their locally unquantized LLRs.

3. If any receive node successfully decodes the message, it broadcasts the de-

coded message over the LAN to the other receive nodes in the cluster.

1A “participating” node is a node that broadcasts its quantized observations
over the LAN to the other nodes in the receive cluster. We consider the general
case where, due to poor channel conditions or LAN capacity constraints, some
nodes in the receive cluster may not broadcast quantized observations.
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forward
link
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participating
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one node
broadcasts

decoded block

Block m Block m+ 1

Figure 3.2: Distributed reception protocol timeline example.

The number of participating nodesM can be selected to satisfy a LAN through-

put constraint. To determine M , we assume the number of quantization bits per

coded bit is fixed for all receive nodes and is denoted as b. The normalized LAN

throughput, in units of LAN bits per forward link information bit, can be calcu-

lated as

ηLAN =
No1 +Mbn + k + o2

k
≈ Mb

r
+ 1 ≤ CLAN (3.2)

where No1 is the overhead of exchanging SNR estimates and determining which

nodes will participate, o2 is the contention overhead in disseminating the success-

fully decoded block, and CLAN is the maximum normalized LAN throughput. It is

assumed that n and k are sufficiently large such that the overheads are negligible.

Given r, b, and CLAN, it follows that selecting M ≤ min{N, r(CLAN−1)/b} satisfies

(3.2).

3.3.1 Distant transmitter functionality

Figure 3.3 shows a block diagram of the distant transmitter. The base functionality

of the distant transmitter is to encode messages and modulate encoded blocks for
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wireless transmission to the receive cluster. Encoding must include provisions for

error correction and error detection. To support the error detection functionality,

each forward link message includes some number of checksum bits for detecting

incorrectly decoded messages. This could be, for example, a CRC check or an

MD5 hash. The number of information bits plus checksum bits is k, with the

number of checksum bits typically being a very small fraction of k. To support

Distant Transmitter

information bits

CRC Gen

block encoder
(rate r=k/n)

coded
bits

modulation
power

control ...

channel 1

channel 2

channel N

Figure 3.3: Distant transmitter functional block diagram. Upper layer functions

such as addressing, packet sequencing, and encryption are not shown.

the error correction functionality, a rate r = k/n block code is employed at the

transmitter. The number of message bits (k) and the number of codeword bits

(n) are both assumed to be large (at least a few thousand bits). Additionally, the

distant transmitter may employ power control if feedback from the receive cluster

is available.

3.3.2 Receive node functionality

It is assumed that the receive cluster has already established a LAN, either ad-

hoc or through infrastructure such as an access point, such that each node in the

receive cluster has a unique address, knows the addresses of the other nodes in the
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receive cluster, and can communicate directly with all other nodes in the receive

cluster. LAN transmissions are assumed to be reliable. The LAN is assumed to

support broadcast transmission in which any single node can send a message to all

other nodes simultaneously.

compute
likelihood 

soft-input
hard-output

block decoder

message bits

quantizer

RECEIVE NODE

forward link
from distant
transmitter

CRC / hash
checker

LAN

wait for
timeslot

hard decisions from other nodes
compute

likelihoods

local hard decisions

channel SNRs from other nodes

local channel SNR

log( ) 

Figure 3.4: Receive node functional block diagram.

After receiving a block over the forward link, each node in the receive cluster

quantizes and forwards its n coded bit hard decisions over the LAN. As quantized

coded-bit hard decision messages are received over the LAN, each receive node

computes the likelihoods based on the hard decisions from other nodes and com-

bine these likelihoods with the one generated based on the locally unquantized

observations to form the aggregate likelihoods. After receiving and combining all

of the likelihood messages, each receive node attempts to decode the block based

on the LLRs. The CRC/hash checker is used to determine if the block was success-

fully decoded. Any node that successfully decodes the block then broadcasts the

decoded k-bit message over the LAN via a successfully decoded block message. If

two or more nodes successfully decode the packet and attempt to send successfully

decoded block messages, it is assumed the LAN has a mechanism for contention
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resolution.

Figure 3.4 shows a functional block diagram of a receive node. The functional

blocks include the forward link soft-input soft-output demodulator, the LLR quan-

tizer and codebook generator, the quantized LLR scaler and combiner, the soft-

input hard-output decoder, and the block error detector (CRC/hash checker).

3.3.3 Advantages

Since each receive node in the system has identical functionality as shown in Fig-

ure 3.4, no single receive node is designated as a collection point. There are a few

advantages of this distributed approach including:

1. less overhead (no electing and maintaining the best collection point).

2. all receive nodes can run identical firmware.

3. diversity gain from slightly different decoder inputs at each receive node.

4. robustness to node failure.

5. robustness to LAN unreliability.

6. Average LAN traffic could be potentially reduced by having each receive

node attempt to first decode the block using only the local unquantized

LLRs and then only forward quantized LLRs if the decoded message has

errors. Decoding latency for large block codes may be high, however, hence

the proposed technique reduces latency by only performing decoding after

all of the quantized LLRs have been exchanged over the LAN.



64

3.4 Information Theoretic Analysis

This section develops an information-theoretic framework for quantifying the per-

formance of the proposed distributed reception scheme where each node in the

receive cluster combines their local unquantized LLRs with quantized observa-

tions from other nodes in the receive cluster. Figure 3.5 shows an example of an

information-theoretic model for a three-node cluster with full participation using

one-bit quantization. This model corresponds to the situation at node 3 since it

combines the quantized observations from nodes 1 and 2 with the unquantized

information at node 3.

binary
input X

AWGN channel
h1, W1

AWGN channel
h2, W2

AWGN channel
h3, W3

continuous
outputs Yi

quantizers

Q1

Q2

Q3

mixed
continuous/discrete

outputs Zi

1-bit
quantized

unquantized

vector
channel
output Z

1-bit
quantized

Figure 3.5: N = 3 node information-theoretic model example.

Given equiprobable binary channel inputs X drawn from {x0, x1}, the channel

realization h, the vector channel output Z = [Z1, . . . , ZN ]
� with elements arbitrar-

ily quantized or unquantized, and denoting p(z|k) = pZ|X(z|X = xk), the mutual
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information Ih(X;Z) can be expressed as

Ih(X;Z) = H(X)−Hh(X|Z)

= 1 +
1

2

1∑
k=0

∫ ∞

−∞
p(z|k) log2

{
p(z|k)1

2

pZ(z)

}
dz

= 1− 1

2

1∑
k=0

∫ ∞

−∞
p(z|k) log2

{∑1
�=0 p(z|�)
p(z|k)

}
dz

= 1− 1

2

1∑
k=0

E

[
log2

{∑1
�=0 p(z|�)
p(z|k)

} ∣∣∣X = xk

]

where all distributions are conditioned on h and the conditional expectation is

over the quantized vector channel output Z given a scalar channel input X = xk.

Based on the symmetry of the input constellation and the noise, this conditional

expectation is identical for X = x0 and X = x1, hence we can write

Ih(X;Z) = 1− E

[
log2

{∑1
�=0 p(z|�)
p(z|0)

}∣∣∣X = x0

]

= 1− E
[
log2 {1 + L(Z)}

∣∣∣X = x0

]
(3.3)

where

L(Z) =
p(z|1)
p(z|0) =

pZ|X(Z|X = x1)

pZ|X(Z|X = x0)
=

Prob(X = x1 |Z)

Prob(X = x0 |Z)
.

Conditioning on X = xk, the elements of Z are conditionally independent and we

can write

pZ|X(z|X = xk) =
N∏
i=1

pZi|X(zi|X = xk).

Hence

L(z) =
N∏
i=1

pZi|X(zi|X = x1)

pZi|X(zi|X = x0)
=

N∏
i=1

Li(zi) (3.4)

and the log-likelihood �(z) =
∑N

i=1 �i(zi).
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In the proposed distributed reception system, since one or more of the outputs

in the vector channel is unquantized, the expectation in (3.3) must be approximated

numerically, either by numerical integration or by Monte-Carlo simulation.

3.4.1 Unquantized channel outputs

For an equiprobable binary input and an unquantized ith output, we have Zi =

Yi =
√
ρiX +Wi, hence

Li(zi) =
pZi|X(zi|X = x1)

pZi|X(zi|X = x0)
= exp {2zi√ρi} . (3.5)

The log-likelihood ratio in this case is then �i(zi) = 2zi
√
ρi.

3.4.2 Quantized channel outputs

Quantization of the soft demodulator outputs at receive node i induces a discrete

memoryless channel from the distant transmitter to that receiver, as shown in

Figure 3.5. In general, for a quantized ith output, the quantizer partition at the ith

receive node specifies a mapping from continuous observations Yi =
√
ρiX+Wi to a

codebook index Zi ∈ {0, . . . , Ki−1}. The conditional distribution pZi|X(zi|X = xk)

in this case is a probability mass function with probabilities

Prob(Zi = zi |X = xk) = p(i)

zi|k

for zi = 0, . . . , Ki − 1. Hence, for equiprobable binary inputs and arbitrarily

quantized outputs, we have

Li(zi) =
pZi|X(zi|X = x1)

pZi|X(zi|X = x0)
=

p(i)

zi|1
p(i)

zi|0
.
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The quantity p(i)

zi|k can be thought of as the probability of observing quantizer

output Zi = zi at node i given a channel input X = xk, i.e., p
(i)

zi|k is the discrete

memoryless channel transition probability from input k to output zi.

For the specific case of one-bit quantized channels, since the symbols and noise

are symmetric, we will assume the one-bit quantizer partition is based on the sign

of the observation at receiver i. Hence, at receiver i we have

zi =

⎧⎪⎪⎨
⎪⎪⎩
0 yi < 0

1 yi ≥ 0.

Observe that one-bit quantization induces a binary symmetric channel (BSC) at

the ith receiver. The transition probability for the resulting BSC is the error

probability

p = p(i)

0|1 = p(i)

1|0 = Q (
√
ρi) . (3.6)

The likelihood ratio is then

Li(zi) =
p(i)

zi|1
p(i)

zi|0
=

⎧⎪⎪⎨
⎪⎪⎩

p
1−p

zi = 0

1−p
p

zi = 1

(3.7)

and the LLR is given as

�i(zi) =

⎧⎪⎪⎨
⎪⎪⎩
ln p

1−p
zi = 0

ln 1−p
p

zi = 1.

(3.8)

3.4.3 Numerical example

Figure 3.6 shows an example of the mutual information for distributed reception

with N = 10 receive nodes and fixed channels h = [1, . . . , 1]�. All receive nodes
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are assumed to participate in the distributed reception protocol. The binary-

input, all unquantized outputs result corresponds to the capacity of ideal receive

beamforming. Since the forward link channels to each receive node are the same in

this example, the performance when one output is unquantized and N −1 outputs

are one-bit quantized is the same for all receive nodes (this is not the case for general

h, however). These results show that distributed reception can provide significant

capacity gains with respect to single-receiver processing and that receiving just one

bit of information from each of the other nodes in the receive cluster can result

in performance within approximately 2 dB of ideal receive beamforming for fixed,

equal-gain channels.
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Figure 3.6: Mutual information for a binary-input distributed reception system

with N = 10 receive nodes, full participation, and h = [1, . . . , 1]�.
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3.5 Combining Quantized Observations

During the distributed reception protocol, each node receives quantized observa-

tions from all of the participating nodes in the receive cluster. These quantized

observations are then scaled and combined with each other as well as with the

local likelihoods to generate aggregate LLRs for input to the local block decoder.

To compute the aggregate likelihoods, it is sufficient for each node to use its

knowledge of the participating nodes’ SNRs (exchanged prior to the quantized

observations as shown in Figure 3.2) and quantizer partitions. For example, for

one-bit quantization, knowledge of the SNR allows for calculation of the BSC error

probability in (3.6) and subsequent reconstruction of the marginal BSC output

LLRs via (3.8). Denoting the set of participating nodes as M, once the quantized

observations received over the LAN have been converted to LLRs, they can be

combined directly with the locally unquantized LLR at node j by computing �(z) =

�j(zj) +
∑

i∈M\j �i(zi).

The log-likelihood ratio of the combined quantized observation at receive node

j can be written as

�(z) = ln

{
exp{2zj√ρj}

∏N
i=1,i �=j p

(i)

zi|1∏N
i=1,i �=j p

(i)

zi|0

}
.

Note that, in general, the log-likelihood sum �(z) will be different at each

node in the receive cluster since the unquantized element in z is different at each

receive node. Also, if node j does not participate (j /∈ M), it will have one more

element in the log-likelihood sum than if it does participate (j ∈ M). Hence,

unlike ideal receive beamforming where the decision statistic is identical at all of
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the receive nodes, the different decision statistics in a distributed reception system

with quantized observation exchanges makes it possible that some nodes will be

able to decode the received message while others will not. This motivates the

broadcast of successfully decoded blocks as discussed in Section 3.3.

3.6 Numerical Results

This section provides numerical results demonstrating the efficacy of distributed

reception with coarse quantization. All of the results in this section assume spa-

tially and temporally i.i.d. block fading channels with hi ∼ CN (0, 1).

Figure 3.7 shows the outage probability of distributed reception versus Es/N0

for N = 1, 2, 5, 10 and full participation (M = N). These results are obtained from

the information-theoretic analysis in Section 3.4 with 10000 channel realizations

per receive node and 10000 noise realizations for each channel realization. An

outage event occurs when Ih(X;Z) < rout =
1
2
at all of the receive nodes. The

two-bit quantizer results used the partition2

zi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 yi < −qi

1 −qi ≤ yi < 0

2 0 ≤ yi < qi

3 yi ≥ qi

where qi is the quantizer amplitude threshold selected to maximize the marginal

mutual information I(X;Zi). These results show that significant improvements in

2Due to the symmetry of the input constellation and noise, this quantizer is
intuitively reasonable but we make no claim as to its optimality.
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outage probability can be obtained through combining locally unquantized LLRs

with quantized observations from other nodes in the receive cluster and that the

gap between exchanging ideal receive beamforming (unquantized LLRs) and ex-

changing just one bit per coded bit is less than 1.5 dB in the cases tested. Two

bits per coded bit reduces this gap to better than 0.5 dB at the expense of approx-

imately doubling the LAN throughput requirements.
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Figure 3.7: Outage probability versus Es/N0 for distributed reception with quan-

tized observations, outage rate rout = 1/2, and full participation (M = N).

Figure 3.8 shows outage probability and normalized LAN throughput ηLAN from

(3.2) versus the number of participating nodes M for N = 10 and Es/N0 set to

−8 dB. The set of participating nodes was selected by choosing the M receive

nodes with the strongest channel magnitudes/SNRs. The simulation parameters

in Figure 3.8 were otherwise identical to those in Figure 3.7. Even with M = 0,
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distributed reception provides a diversity gain since the marginal mutual informa-

tions must all be less than rout for an outage event to occur. This diversity gain

can be seen by the fact that the outage probability when M = 0 and N = 10

(corresponding to no exchange of quantized observations over the LAN) is approx-

imately 0.7 in Figure 3.8, whereas the outage probability at Es/N0 = −8 dB and

N = 1 in Figure 3.7 is close to one. The results in Figure 3.8 show the tradeoff

between improved performance and increased LAN throughput for a fixed cluster

size N , since the normalized LAN throughput scales linearly with M and b. In this

example, the performance gain obtained by doubling the number of participating

nodes tends to be better than the performance gain obtained by doubling the num-

ber of bits per observation when M is small. For larger values of M , e.g. M = 5,

using two bits per observation gives a slightly better performance improvement

than doubling M .

Figure 3.9 shows the outage probability and block error rate (BLER) perfor-

mance of an LDPC code implementation of the distributed reception protocol with

one-bit quantization. The rate r = 1/2 LDPC code was selected from proposed

codes for DVB-S2 in [89, 90] with n = 8100 and k = 4050. These results demon-

strate that the achievable performance with real block codes can be close to the

information-theoretic predictions.
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Figure 3.8: Outage probability and normalized LAN throughput (in LAN bits

per forward link information bit) versus number of participating nodes M for

distributed reception with quantized observations, outage rate rout = 1/2, Es/N0 =

−8 dB, and N = 10.
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Figure 3.9: Outage probability and block error rate versus Es/N0 for distributed

reception with quantized observations, outage rate rout = 1/2, and M = N = 10.
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3.7 Bounds Approximations on Distributed Reception with

BPSK Forward Link Modulation

So far, all results shown in the previous section are obtained through massive

Monte-Carlo simulations. Typically, to show the outage probability performance

on the order of 10−3 which corresponds to high SNR cases, the results need to

be averaged over 10000 channel/noise realizations. To circumvent massive simula-

tions, it is instructive to derive certain bounds or approximations for such system.

However, current literature mainly focuses on bounds for “information combining”

which is defined in a very strict sense [91–94] and the optimum way of doing such

combining is often simply addition of the LLRs [95]. Therefore, it is of interest to

derive bounds for the distributed reception technique proposed in this chapter.

In this section, a conjectured lower bound and an upper bound on the dis-

tributed reception technique with BPSK forward link modulation is presented

which offers an efficient way of predicting the performance of distributed reception

systems with coarsely-quantized observation exchange.

3.7.1 Single-receiver case

This section begins with the simplest scenario where only single receiver is as-

sumed with one-bit channel inputs and outputs, and soft inputs and outputs. It

shows that, in this case, a pretty fast way can be found to compute the outage

probabilities given a rate r.
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1-bit channel inputs and outputs

Starting with the single-receiver case, we know that given a binary channel input

of X = ±1, the phase-corrected signal received at receive node is given as

Y =
√
ρX +W

where ρ = 2|h|2Es/N0, Es is the energy per coded forward link bit, N0/2 is the

additive white Gaussian noise power spectral density, |h| is the channel magnitude,

and W ∼ N (0, 1). The noise realizations are assumed to be temporally i.i.d.

Conditioning on the channel and given hard decisions at the output, the error

probability of the BSC is

p = Prob(sign(Y ) �= X)

= Q(
√
ρ) =

∫ +∞

√
ρ

1√
2π

e−t2/2dt

and the mutual information with single receiver is

I(1)ρ (X; Y ) = g(p)

= 1 + p log2(p) + (1− p) log2(1− p).

The function g : [0, 0.5] �→ [0, 1] is one-to-one. Hence g−1 : [0, 1] �→ [0, 0.5] exists.

|h| =
√

ρ

2Es/N0

=
Q−1(p)√
2Es/N0

=
Q−1(g−1(r))√

2Es/N0

= f(r).
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The function f : [0, 1] �→ [0,+∞). The channel magnitude realization are assumed

to be Rayleigh distributed with

p|h|(u) = 2ue−u2

. (3.9)

Hence the outage probability can be written as

Prob(I(1)ρ (X; Y ) < r) = Prob(|h| < f(r))

=

∫ f(r)

0

2ue−u2

du

= 1− exp(−f 2(r)).

This provides a fast way to compute outage probabilities for this case without

Monte-Carlo simulation.

Soft channel inputs and outputs

Conditioning on the channel, the mutual information with single receiver, soft

inputs and outputs can be written as

I(1)ρ (X ; Y ) =
1

2
log2(1 + ρ).

Given a rate r ∈ [0,+∞), the SNR can be computed as

ρ = 22r − 1

|h| =
√

22r − 1

2Es/N0

.

Since the |h| follows Rayleigh distribution, i.e., Rayleigh(σ) where σ2 = 0.5,
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the outage probability for a soft inputs and soft outputs channel can be written as

Prob(I(1)ρ (X ; Y ) < r) = Prob(|h| < f(r))

=

∫ √
22r−1
2Es/N0

0

2ue−u2

du

= 1− exp

(
−22r − 1

2Es/N0

)
.

which provides a fast way to compute outage probabilities without Monte-Carlo

simulation.

In fact, this result can be easily extended to the N -receiver case where the

outage probability equals to the CDF of a Gamma distribution, i.e.,
N∑
i=1

|hi|2 ∼
Γ(N, 1) with integration interval from 0 to 22r−1

2Es/N0
:

Prob(I(N)
ρ (X; Y ) < r) =

∫ 22r−1
2Es/N0

0

1

Γ(N, 1)
uN−1e−udu

= 1−
N−1∑
i=0

1

i!

(
22r − 1

α2

)i

exp

[
−
(
22r − 1

α2

)]
(3.10)

= 1−
N−1∑
i=0

1

i!

(
1

α

)2i

exp

[
−
(
1

α

)2
]

(3.11)

where α =
√
2Es/N0

3.7.2 Two-receiver case

Following the analysis for the single-receiver system, we provide a similar analysis

for the two-receiver case where conjectures can be illustrated in a two-dimensional

space which helps extending to more complicated situations.
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1-bit channel inputs and outputs

Since two receivers are assumed, the system model is defined as the follows

Yk =
√
ρkX +Wk

where ρk = 2|hk|2Es/N0, Es/N0 is the energy per coded forward link bit, N0/2

is the additive white Gaussian noise power spectral density, |hk| is the channel

magnitude and Wk
i.i.d.∼ N (0, 1). The noise realizations are assumed to be spatially

and temporarily i.i.d.

Conditioning on the channel and given hard decisions at the output, the error

probability of each BSC is

pk = Prob(sign(Yk) �= X)

= Q(
√
ρk)

=

∫ +∞

√
ρk

1√
2π

e−t2/2dt.

Since two receive nodes are assumed, the model corresponds to a two-input

four-output system. The mutual information of this system can be written as

I(2)ρ (X; Y ) = g(p1, p2)

= 1− (1− p1)(1− p2) log2

(
1 +

p1p2
(1− p1)(1− p2)

)
−

p1(1− p2) log2

(
1 +

p2(1− p1)

p1(1− p2)

)
− p2(1− p1) log2

(
1 +

p1(1− p2)

p2(1− p1)

)

− p1p2 log2

(
1 +

(1− p1)(1− p2)

p1p2

)
.

Let Λ = [0, 0.5]2 denote the two-dimensional transition probability space. Given

a value of rate r ∈ [0, 1], there is an associated inverse image Λr in the transition

probability space Λ such that I
(2)
ρ (X; Y ) ≤ r.
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Several remarks about function g and its inverse function: first of all, if (p1, p2) ∈
Λr, (p2, p1) ∈ Λr; g is a monotonic function of pk. For example, given g(p1, p2) = r,

g(q1, q2) < r when p1 < q1 ≤ 0.5 and p2 ≤ q2 ≤ 0.5, or p1 ≤ q1 ≤ 0.5 and

p2 < q2 ≤ 0.5.

In order to show the outage/no outage region on a two-dimensional plain Λ,

assume that the rate is fixed at 0.5, i.e., r = I
(2)
ρ (X ; Y ) = 0.5. It means that all

(p1, p2) on the curve C satisfy I
(2)
ρ (X; Y ) = 0.5. Figure 3.10 shows the boundary

of the outage/no outage region when r = 0.5.
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Figure 3.10: Outage/no outage region when r = 0.5 in Λ domain.
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Lower bound Approximation R1

In order to map the boundary C from the transition probability domain Λ to the

magnitude domain Γ, define

h̃1 = Q−1(p1) =

√
2Es
N0

|h1|

h̃2 = Q−1(p2) =

√
2Es
N0

|h2|

where (h̃1, h̃2) ∈ Γ.

Thus the corresponding boundary in Γ domain is shown in Figure 3.11 where

the blue solid curve is the direct mapping of the boundary.

The dashed green curve shown in the same figure is a circle approximation of

the boundary with radius R1 equals to the solution of I
(2)
ρ (X ; Y ) = 0.5 in Γ domain

when setting one transition probability to be 0.5, i.e.,

R1 =

√
h̃2
1 + h̃2

2 = h̃1 (3.12)

since p2 = 0.5, i.e., h̃2 = Q−1(p2) = 0, R1 = h̃1 = Q−1(p1) and p1 satisfies the

following equation

I(2)ρ (X; Y ) = 1− p1 log2(1 +
1− p1
p1

)− (1− p1) log2(1 +
p1

1− p1
) (3.13)

= 0.5.

Observation from Figure 3.11 shows that the dashed curve is inside the bound-

ary which implies that integration in that area may provide us a lower bound

approximation of the outage probability. To prove this idea, the outage probabil-

ity inferred by the circle approximation needs to be calculated.
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Figure 3.11: Outage/no outage region when I
(2)
ρ (X ; Y ) = 0.5 in Γ domain.

Recall equation (3.9), the PDF of h̃1 and h̃2 can be written as

ph̃1
= ph̃2

= p|h1|
(u
α

) 1

α

= 2
(u
α

)
exp

[
−
(u
α

)2] 1

α
.

The outage probability can thus be written as

Prob(I(2)ρ (X; Y ) ≤ 0.5) =

∫ R

0

(∫ √
R2−u2

1

0

ph̃2
(u2)du2

)
ph̃1

(u1)du1

=

∫ R

0

(∫ √
R2−u2

1

0

2
(u2

α

)
exp

[
−
(u2

α

)2] 1

α
du2

)

2
(u1

α

)
exp

[
−
(u1

α

)2] 1

α
du1

= 1−
(
1 +

(
R

α

)2
)
exp

[
−
(
R

α

)2
]
. (3.14)
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From equation (3.13), we have p1 = 0.11 and thus R1 = Q−1(p1) = 1.226.

Therefore, for the circle approximation with radius R1 shown in Figure 3.11, the

lower bound approximation for the outage probability can be written as

Prob(Iρ(X; Y ) ≤ 0.5) > 1−
(
1 +

(
R1

α

)2
)
exp

[
−
(
R1

α

)2
]

which provides a fast way to compute the conjectured lower bound for the outage

probability for a given Es/N0 value.

Upper bound Approximation R2

The upper bound approximation can be obtained by the circle approximation as

well only with different radius. The radius R2 is equal to
√
2 times h̃ = Q−1(p)

where p is the solution when I
(2)
ρ (X; Y ) = r and p = p1 = p2.

By using equation (3.14), the upper bound approximation for the outage prob-

ability with 2-receiver is

Prob(I(2)ρ (X; Y ) ≤ 0.5) < 1−
(
1 +

(
R2

α

)2
)
exp

[
−
(
R2

α

)2
]
.

3.7.3 N-receiver case

For N -receiver systems, to get the outage probability, we need to integrate inside

the boundary as follows

Prob(I(N)
ρ (X; Y ) ≤ 0.5) =

∫ ∫
· · ·
∫
ΓN

ph̃1
(u1)ph̃2

(u2) · · ·ph̃K
(uK)du1du2 · · · duK.
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Using the multi-dimensional sphere to approximate the boundary, i.e.,

N∑
i=1

u2
i = R2,

the general circle approximation for the N -receiver outage probability is

Prob(I(N)
ρ (X; Y ) ≤ 0.5) = 1−

N−1∑
i=0

1

i!

(
R

α

)2i

exp

[
−
(
R

α

)2
]

(3.15)

which is the CDF of Gamma distribution, i.e., Γ(N, 1) with integration interval

from 0 to
(22r−1)h2

0

2Es/N0
=

h2
0(22r−1)

α2 .

Hence the corresponding lower and upper bound conjecture based on this ap-

proximation can be obtained by substituting R1 and R2 where R1 is the Q inverse

of the solution of I(N)(X; Y ) = r when setting N − 1 transition probabilities to

0.5; R2 is equal to
√
N times the Q inverse of the solution of I(N)(X ; Y ) = r when

setting p = p1 = p2 = · · · = pN .

Recall the outage probability for the N -receiver soft inputs and soft output

system:

Prob(Iρ(X; Y ) ≤ 0.5) = 1−
N−1∑
i=0

1

i!

(
1

α

)2i

exp

[
−
(
1

α

)2
]

(3.16)

which is Γ(N, 1) with integration interval from 0 to 22r−1
2Es/N0

= 22r−1
α2 . The only

difference between (3.15) and (3.16) is the integration interval. To be specific,

the “radius” of the multi-dimensional sphere for the soft inputs and soft outputs

system in Γ domain is 1
α
rather than R

α
.

3.7.4 Numerical results

Figure 3.12 shows the outage probability performance for distributed reception

with unquantized/1-bit quantized observations, full participation and r = 0.5 by
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Monte-Carlo simulations and analytical predictions. It is shown in this figure that

the analytical predictions for soft inputs and soft output are very close to the

Monte-Carlo simulation results. The analytical lower/upper bounds approxima-

tions for the 1-bit quantized observation get better and better when the number

of receivers increases. As expected, the outage probability with 1-bit quantized

observations obtained by Monte-Carlo simulations lie between the conjectured

lower/upper bounds. Only when the outage probability becomes very small (close

to 10−3) may the Monte-Carlo simulation results tend to perform worse the con-

jectured upper bound due to lack of number of channel/noise realizations. It is

reasonable to believe that the Monte-Carlo simulations will be strictly bounded by

the conjectured lower/upper bound when the number of channel/noise realizations

goes to infinity (> 106).

In [96], it is shown that R2 does not grow unbounded but goes to some constant

and thus the gap between the ideal beamforming and 1-bit belief combining is at

most 20 log(R2) = 2.1483 dB for any number of receive nodes N .

3.8 Conclusion

We have shown in this chapter that, in the low SNR regimes enabled by receiver

cooperation, coarse quantization of observations followed by LLR reconstruction

and combining across receivers results in little loss of performance relative to ideal

beamforming, which is equivalent to summing unquantized LLRs for BPSK. Thus,

good performance can be achieved with significant reduction in LAN throughput

requirements relative to sharing conventionally quantized LLRs. Our information-
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Figure 3.12: Outage probability versus Es/N0 for distributed reception with

unquantized/1-bit quantized observations, outage rate r = 1/2 and full partici-

pation (N = 1, 2, 5, 10) by Monte-Carlo simulations and analytical predictions.
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theoretic framework provides quick performance estimates that agree with that of

LDPC-coded systems.

While the results in this chapter extend immediately to Gray-coded QPSK,

we are currently investigating extension of this approach to systems with forward

links with higher-order, more spectrally efficient, constellations.



Chapter 4

Distributed Reception with Higher-order

Forward Link Modulation

In order to improve the spectrum efficiency, we extend the approach in the previous

chapter to system with forward link with higher-order modulations such as QPSK,

8PSK, 4PAM and 16QAM.

Under the same distributed reception scenario, the extension from BPSK to

QPSK is simple, it uses both I and Q channels so that the attainable rate for a

given bandwidth is doubled. For 8PSK however, it is easy to show that summing

the unquantized LLRs is no longer equivalent to ideal beamforming which means

exchanging the quantized LLRs does not provide similar SNR gain as BPSK and

QPSK. Hence new combining strategy is needed in order to maintain the nice

properties obtained by cooperative distributed reception. We will first introduce a

suboptimal combining technique for 8PSK and then discuss the optimal combining

approach which establishes a general framework for any forward link modulation.

Numerical results of the info-theoretic analysis and LDPC code suggest that in the

low SNR regimes enabled by receiver cooperation, coarse quantization of observa-

tions followed by likelihood reconstruction and combining across receivers results

in little loss of performance relative to ideal receive beamforming.

88
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4.1 Distributed Reception with MPSK Forward Link Mod-

ulation

In this section, info-theoretic analysis is provided for systems with MPSK (BPSK,

QPSK and 8PSK) forward link modulation and the optimal belief combining strat-

egy is discussed together with a suboptimal combining approach.

4.1.1 Information theoretic analysis

Based on the same information-theoretic model in section 3.4, we compute the mu-

tual information with discrete-input, continuous/discrete-output for a fixed real-

ization of the channels h = [h1, · · · , hN ]
� and equiprobable inputs. Fading channel

performance metrics such as ergodic capacity or outage capacity can be obtained

by computing Ih(X;Z) over multiple draws of h. This later can be used as up-

per/lower bound for the belief combining.

Capacity of the AWGN channel

The mutual information, i.e. capacity, of an AWGN channel with Gaussian dis-

tributed input [97] is given as

C1−dim =
1

2
log2(πeσ

2
Y ′)− 1

2
log2(πeσ

2
N ′) =

1

2
log2

(
1 + 2

Es
N0

)
(4.1)

C2−dim = log2(πeσ
2
Y)− log2(πeσ

2
N )

= log2

(
σ2
X + σ2

N
σ2
N

)
= log2

(
1 +

Es
N0

)
(4.2)
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where σ2
X ′ = σ2

X = 2BEs and σ2
N ′ = 1

2
σ2
N = BN0. Since Es = rEb = k

n
Eb, we have

C1−dim =
1

2
log2

(
1 + 2r

Eb
N0

)
(4.3)

C2−dim = log2

(
1 + r

Eb

N0

)
. (4.4)

The highest spectral efficiency in maintaining an error-free transmission is ob-

tained for C = r, hence

Eb

N0
=

22C − 1

2C

lim
C→0

Eb

N0

= lim
C→0

22C+1 log 2

2
= −1.59 dB. (4.5)

This means that no reliable communication can be achieved below -1.59 dB.

When the output is discrete, the capacity of an AWGN channel is

C = Ih(X;Z)

= H(X)−Hh(X|Z)

= log2(|X |)− 1

|X |
∫
Y

∑
μ

pY |Xμ(y) log2

∑
l pY |Xl

(y)

pY |Xμ(y)
dy

= log2(K)− 1

K

K−1∑
k=0

+∞∫
−∞

pZ|X(z|X = xk) log2

⎛
⎜⎜⎜⎝

K−1∑
�=0

pZ|X(z|X = x�)

pZ|X(z|X = xk)

⎞
⎟⎟⎟⎠ dz

= log2(K)− 1

K

K−1∑
k=0

E

⎡
⎢⎢⎢⎣log2

⎛
⎜⎜⎜⎝

K−1∑
�=0

pZ|X(z|X = x�)

pZ|X(z|X = xk)

⎞
⎟⎟⎟⎠
∣∣∣∣∣X = xk

⎤
⎥⎥⎥⎦ (4.6)

If all of the outputs are quantized, Z is drawn from a finite set and the mutual

information can be exactly calculated by computing and cycling through the condi-

tional probabilities for all possible Z. If one or more of the outputs is unquantized,



91

then Z is drawn from an infinite set and this expectation must be approximated

numerically, either by numerical integration or by Monte-Carlo simulation.

Figure 4.1 shows the capacity versus Es/N0 with fixed h for various modulation

schemes. As can be seen, while the BPSK curves are bounded by the real Gaussian

input and continuous output curve, other complex-valued modulation schemes are

bounded by the complex Gaussian input and continuous output curve. The discrete

input, discrete output exact results match the corresponding Monte-Carlo results

except for 8PSK since a high SNR approximated error probability is used for 8PSK.
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Figure 4.1: Channel capacity versus Es/N0 with fixed h for various modulation

schemes.

Similar to Figure 4.1, figure 4.2 shows the capacity versus Eb/N0 with fixed

h. As expected, all of the discrete input schemes are bounded either by the real
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Gaussian input or the complex Gaussian input curves. It also agrees with the

Shannon limit in (4.5) that no reliable communication can be achieved below -

1.59 dB.
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Figure 4.2: Channel capacity versus Eb/N0 with fixed h for various modulation

schemes.

Since BPSK has already been discussed in the previous chapter, we will start

with QPSK here. If we assume QPSK channel input and no quantization, the

optimum receiver computes Zbf = hHY . The channel from X to Zbf is effectively

a SISO QPSK-input continuous-output channel. The capacity of this channel can

only be computed numerically via

C = 2− 1

4

∑
k=0,1,2,3

E

⎡
⎢⎢⎣log2

⎛
⎜⎜⎝

3∑
�=0

pZ|X(Z|X = x�)

pZ|X(Z|X = xk)

⎞
⎟⎟⎠
∣∣∣∣∣ X = xk

⎤
⎥⎥⎦ (4.7)
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where X =
{
x0 = +‖h‖√2Es/No, x1 = +j‖h‖√2Es/No , x2 = −‖h‖√2Es/No,

x3 = −j‖h‖√2Es/No

}
.

Unlike BPSK/QPSK, the bit error rate of 8PSK is an approximated value

which might result in loose or even misleading lower bound for the one-bit belief

combining. More accurate probability transition matrix can be obtained by using

Pe = Q(d/σ) = Q(|hi|
√
2Es/N0 sin

π

8
). (4.8)

under high SNR assumption which means that the symbol can only be wrongly

detected as its nearest neighbours. In other words, given one of the 8 inputs, only 3

possible outputs can be observed: either the correct input or its two nearest neigh-

bours. We can also run Monte-Carlo simulations to get the probability transition

matrix.

Figure 4.3 shows the mutual information versus Es/N0 with fixed and the av-

erage mutual information with fading channels. As can be seen in the figure,

the average mutual information of the discrete channel outputs by using approxi-

mated channel transition matrix is greater than the continuous outputs case until it

reaches 4 dB for the fixed channel case and 8 dB for the fading channels case. The

average mutual information of the discrete channel outputs with channel transi-

tion matrix obtained by Monte-Carlo simulations is always less than the continuous

channel outputs case at low SNR and then gradually converges to 3 bits/channel

use when SNR approaches infinity.

Figure 4.4 shows the outage probability versus Es/N0 with Co = 1.5 and N = 1.

While the outage probabilities of the discrete outputs with MC is worse than

the continuous outputs which makes sense, the outage probability of the discrete
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Figure 4.3: Mutual information versus Es/N0. LHS is with fixed channels and RHS

is with fading channels.

outputs with approximated channel transition probability behaves unexpectedly.

It is obvious that the approximated channel transition probability does not hold

at low SNR which explains the bump at -2 dB but it still does not explain why

it outperforms the continuous output case at high SNR since in figure 4.3, the

average mutual information of the discrete output MC is lower than that of the

continuous outputs.

The only possible explanation for this is that the average mutual information of

the discrete outputs with APPROX is greater than that of the continuous outputs,

but the distribution is skewed somehow such that the probability of the mutual

information being less than 1.5 is less for the discrete outputs with APPROX.

To confirm this, figure 4.5 shows a histogram of the average mutual informa-
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Figure 4.4: Outage probability (BLER) versus Es/N0 for 8PSK with Co = 1.5 and

N = 1.

tion obtained by the continuous channel outputs, discrete channel outputs with

APPROX and with Monte-Carlo simulations. 5000 channel realizations are per-

formed and each is averaged over 2000 noise realizations. From this figure we can

see that while the average mutual information of the continuous outputs is spread

over 0 to 3, the distribution of the discrete output with APPROX is skewed. Most

of the average mutual information is around or above 1.5 which agrees with our

hypothesis. Hence, the approximation alone cannot be used as the lower bound

for the one-bit belief combining.

In order to move forward on this and achieve our main goal of understanding

how close the 3-bit belief combining for 8PSK is to the information-theoretic re-

ceive beamforming, we used a hybrid approach to compute the channel transition

matrices (LUT+APPROX) which is described as follows:
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proximated channel transition matrix and Monte-Carlo simulations.
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1. Set up a separate simulation to generate channel transition matrices via the

Monte-Carlo method for a set of |h|2Es/N0 ∈ [0 : 0.01 : 10]. Store the result

in an 8× 8× 1001 array table.

2. In the main simulation, depending on Es/N0 and the channel realization

compare |h|2Es/N0 with 10:

(a) if |h|2Es/N0 < 10, look up one of these channel transition matrices from

the table we generated in step 1 and use it.

(b) if |h|2Es/N0 > 10, use the approximated channel transition matrices.

3. Compute the average mutual information and the outage probability.
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Figure 4.6: Mutual information and the outage probability for 8PSK with hybrid

approach (LUT+APPROX).
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Figure 4.6 shows the mutual information computed by the hybrid algorithm. It

matches the discrete channel outputs with transition matrix obtained by Monte-

Carlo simulations and it is always less than the continuous output case. The outage

probability indicates that this hybrid approach can yield a reliable and efficient

lower bound for the 3-bit belief combining with 8PSK forward link modulation.

4.1.2 Pseudobeamforming for 8PSK forward link modula-

tion

In Appendix C, it is shown that summing LLRs of unquantized observations is

equivalent to ideal receive beamforming for BPSK and QPSK and thus combining

the quantized LLRs results in little loss of performance and significantly reduces

the LAN throughputs. However, for 8PSK �bf(xki|z) =
N∑
i=1

�unquantized(xki|zi) no

long holds true. Detailed explanations are provided in Appendix D.

The main idea of pseudobeamforming is to map the quantized LLRs to the

8PSK constellation and combine the mapped outputs from neighbouring nodes

with the local unquantized observation as beamforming. Figure 4.7 illustrates the

pseudobeamforming process.

The protocol is almost the same as that in 3.3 for the BPSK, except that instead

of forwarding their quantized LLRs over the LAN, the receive nodes participate

by forwarding their pseudo symbols which is a scaled version of the mapped con-

stellation points.

In real implementation, the combined pseudo symbols are fed into the demod-
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Figure 4.7: Pseudobeamforming receive node functional block diagram.

ulator and turn into LLRs. If correct LLRs are fed into the LDPC decoder, few

block errors will occur. Hence, it is crucial to feed the demodulator the correct

statistics of the quantization noise. Conventional demodulator considers that the

noise has zero-mean, independent and identically distributed real/imaginary parts

and is independent of transmitted signal. However, none of these assumptions are

true for the aggregate quantization noise at the output of the pseudobeamformer.

To study the statistics of the quantization noise, we assume that for large

enough receive clusters, the aggregate quantization error (after combining by the

pseudobeamfomer) will be Gaussian. For example, suppose N receive nodes par-

ticipate the pseudobeamforming and all observations are quantized (no locally

unquantized observations). The analytical mean and covariance conditioned on a
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transmitted symbol s and channel state h are

μ(s,h) = E [si|s,h]

= E

[
1

‖h‖2
N∑

n=1

|hn|2siPr(si|s, hn)

]

=
1

‖h‖2
7∑

i=0

N∑
n=1

|hn|2siPr(si|s, hn) (4.9)

σ2
x(s,h) = E

[(|hn|2Re(si)− μx(s, hn)
)2 |s,h]

=
1

‖h‖2
N∑

n=1

7∑
i=0

Pr(si|s, hn)
(|hn|2Re(si)− μx(s, hn)

)2
(4.10)

σ2
y(s,h) = E

[(|hn|2Im(si)− μx(s, hn)
)2 |s,h]

=
1

‖h‖2
N∑

n=1

7∑
i=0

Pr(si|s, hn)
(|hn|2Im(si)− μy(s, hn)

)2
(4.11)

ρ(s,h) = E
[(|hn|2Re(si)− μx(s, hn)

) (|hn|2Im(si)− μx(s, hn)
) |s,h]

=
1

‖h‖2
N∑

n=1

7∑
i=0

Pr(si|s, hn)
(|hn|2Re(si)− μx(s, hn)

) (|hn|2Im(si)− μy(s, hn)
)

(4.12)

where Σ(s,h) =

⎡
⎢⎣σ2

x(s,h) ρ(s,h)

ρ(s,h) σ2
y(s,h)

⎤
⎥⎦ and Pr(si|s, hn) is channel transition matrix

conditioned on s and |hn|2Es/N0 according to the lookup table.

Figure 4.8 shows the combined 8PSK pseudo symbols conditioned on s0 and

a particular channel h after 10,000 noise realizations with N = 100 receive nodes

at 0 dB. The analytical mean and variances of the real/imaginary parts of the

combined pseudo symbols are also plotted on top of the simulated results.

The relationship between the pseudobeamforming with h = 1/fixed h chan-

nels can be demonstrated more clearly in Figure 4.9. For this particular channel
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Figure 4.8: Combined quantized symbols conditioned on s0 and a particular h

with N = 100 and fading channels at 0 dB.

realization h, we can see that the pseudobeamforming with fading channels are

located further away from the origin than with h = 1.

Therefore instead of using the conventional demodulator, the demodulator func-

tion for pseudobeamforming with different channels to each receiver is designed as

llrIQ = IQ8PSK demod(r, EsNo, h)

which first computes the analytical mean and covariance according to equation (4.9),

(4.10), (4.11) and (4.12), then feeds them to the demodulator as follows

llrIQ(b|r,h) = ln

{
Pr(b = +1|r,h)
Pr(b = −1|r,h)

}

= ln

⎧⎪⎨
⎪⎩
∑
s∈S0

1
|Σ(s,h)|1/2 e

− 1
2
(r−µ(s,h))�Σ−1(s,h)(r−µ(s,h))

∑
s∈S1

1
|Σ(s,h)|1/2 e

− 1
2
(r−µ(s,h))�Σ−1(s,h)(r−µ(s,h))

⎫⎪⎬
⎪⎭ . (4.13)
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Figure 4.9: Combined quantized symbols conditioned on a particular h with N =

100 at 0 dB. The blue clusters indicate the pseudobeamforming with independent

fading channels and the cyan “+” is the corresponding analytical mean prediction;

the magenta clusters indicate the pseudobeamforming with fixed channels and the

yellow “+” is the corresponding analytical mean prediction.
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4.1.3 Three-bit belief combining for 8PSK forward link

modulation

This section presents an optimal distributed reception scheme for 8PSK forward

link modulation where each node in the receive cluster combines their local un-

quantized observations with quantized observations from other nodes in the receive

cluster.

Recall equation (4.6), the symmetry of the input constellation and the noise

can be exploited to simplify this equation. Since the conditional expectation in

(4.6) is identical for all X = xk, we can write

Ih(X;Z) = log2(K)− E

[
log2

{∑K−1
�=0 p(z|�)
p(z|0)

}∣∣∣X = x0

]

= log2(K)− E
[
log2 {1 + L(Z)}

∣∣∣X = x0

]
(4.14)

where

L(z) =

∑K−1
�=1 p(z|�)
p(z|0) =

∑K−1
�=1 pZ|X(z|X = x�)

pZ|X(z|X = x0)

=

∑K−1
�=1 Prob(X = x� |Z = z)

Prob(X = x0 |Z = z)
. (4.15)

Note that the numerator of L(Z) is a sum of all of the conditional probabilities

except p(z|0). Since the elements of Z are conditionally independent, we can write

pZ|X(z|X = xk) =

N∏
i=1

pZi|X(zi|X = xk) (4.16)

hence

L(z) =

∑K−1
�=1

∏N
i=1 pZi|X(zi|X = x�)∏N

i=1 pZi|X(zi|X = x0)
. (4.17)
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Unquantized channel outputs

For QPSK and 8PSK, the likelihood ratio for the unquantized outputs can be

computed by equation (4.17) where

pZi|X(zi|X = x�) =
1

2π
exp

{
−|zi −√

ρix�|2
2

}
. (4.18)

Quantized channel outputs

Quantization of the soft demodulator outputs at receive node i induces a discrete

memoryless channel from the distant transmitter to that receiver, as shown in

Figure 3.5. In general, for a quantized ith output, the quantizer partition at the ith

receive node specifies a mapping from continuous observations Yi =
√
ρiX+Wi to a

codebook index Zi ∈ {0, . . . , Ki−1}. The conditional distribution pZi|X(zi|X = xk)

in this case is a probability mass function with probabilities

Prob(Zi = zi |X = xk) = p(i)

zi|k

for zi = 0, . . . , Ki − 1. The quantity p(i)

zi|k can be thought of as the probability

of observing quantizer output Zi = zi at node i given a channel input X = xk,

i.e., p(i)

zi|k is the discrete memoryless channel transition probability from input k to

output zi.

For the specific case of one-bit quantized channels for BPSK modulation, the

likelihood ratio can be calculated by equation (3.4) by plugging the individual

likelihood ratio at each receive node i.e., (3.7).

Similarly, for QPSK and 8PSK, two-bit and three-bit quantizer partitions can

be specified respectively based on demodulator hard decisions or, equivalently, the
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sign of the demodulator soft LLR outputs. Assume that ui,j is the jth soft LLR

based on the observation yi at receive node i where j = {0, · · · , log2(K) − 1}.
Then, like BPSK, we have

zi,j =

⎧⎪⎪⎨
⎪⎪⎩
0 ui,j < 0

1 ui,j ≥ 0.

Observe that two-bit and three-bit quantization induces a 4×4 and 8×8 symmet-

ric channel for QPSK and 8PSK, respectively, at the ith receiver. The transition

probabilities for the resulting symmetric channels are the usual channel transi-

tion probabilities for channels with discrete inputs and outputs. These transition

probabilities can be computed in terms of Q-functions for QPSK but must be eval-

uated numerically for 8PSK and higher order PSK constellations. By plugging the

appropriate transition probabilities to equation (4.17), we can get the likelihood

ratios and then compute the mutual information by equation (4.14).

4.2 Distributed Reception with 4PAM/16QAM Forward

Link Modulation

Since the PAM and QAM do not have symmetric constellations as the MPSK,

minor changes need to be made when compute the mutual information.

4.2.1 4PAM

Consider the 4PAM constellation: x0 = −3A, x1 = −A, x2 = +A and x3 = +3A.

The middle points x1 and x2, the edge points x0 and x3 are symmetric with respect
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to x = 0 respectively, hence the conditional expectation is identical for X = x0

and X = x3, and is also identical for X = x1 and X = x2. The mutual information

can be written as

Ih(X;Z) = 2− 1
2
E
[
log2

{∑3
�=0 p(z|�)
p(z|0)

} ∣∣∣X = x0

]
− 1

2
E
[
log2

{∑3
�=0 p(z|�)
p(z|1)

} ∣∣∣X = x1

]
= 2− 1

2
E
[
log2 {1 + L0(Z)}

∣∣∣X = x0

]
− 1

2
E
[
log2 {1 + L1(Z)}

∣∣∣X = x1

]
(4.19)

where

L0(Z) =

∑3
�=1 p(z|�)
p(z|0) =

∑3
�=1 pZ|X(Z|X = x�)

pZ|X(Z|X = x0)
=

∑3
�=1Prob(X = x� |Z)

Prob(X = x0 |Z)

(4.20)

L1(Z) =

∑3
�=0,� �=1 p(z|�)
p(z|1) =

∑3
�=0,� �=1 pZ|X(Z|X = x�)

pZ|X(Z|X = x1)
=

∑3
�=0,� �=1Prob(X = x� |Z)

Prob(X = x1 |Z)
.

(4.21)

By using the fact that the pZi|X(zi|X = xk)’s are conditionally independent, we

can substitute these results into (4.16) and then compute (4.20) and (4.21) and

the mutual information in (4.19).

The likelihood ratio for the unquantized outputs can be computed in the same

manner as (4.17). This results in

pZi|X(zi|X = x�) =
1√
2π

exp

{
−(Re(zi)−

√
ρi
5
Re(x�))

2

2

}
. (4.22)

As for the quantized channel outputs, the two-bit quantizer partition is based

on the sign of the soft LLRs. In this case, the quantization induces a 4×4 channel

at the ith receiver with the transition probabilities shown in Table 4.1. Once the

channel transition probabilities are obtained, the likelihood ratio and the mutual

information can be computed.
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x� px�|0 px�|1 px�|3 px�|2

0 1−Q(σ) Q(σ) Q(3σ) Q(5σ)

1 Q(σ)−Q(3σ) 1− 2Q(σ) Q(σ)−Q(3σ) Q(3σ)−Q(5σ)

2 Q(3σ)−Q(5σ) Q(σ)−Q(3σ) 1− 2Q(σ) Q(σ)−Q(3σ)

3 Q(5σ) Q(3σ) Q(σ) 1−Q(σ)

Table 4.1: Channel transition probabilities for 4PAM where σ =
√

ρi
5
.

4.2.2 16QAM

Since the 16QAM has corner, edge and inner points, the conditional expectation

is different for each of the situations. The mutual information can be written as

Ih(X;Z) = 4− 1

2
E

⎡
⎣log2

⎧⎨
⎩
∑
�∈S

p(z|�)
p(z|1)

⎫⎬
⎭
∣∣∣X = x1

⎤
⎦− 1

4
E

⎡
⎣log2

⎧⎨
⎩
∑
�∈S

p(z|�)
p(z|0)

⎫⎬
⎭
∣∣∣X = x0

⎤
⎦

− 1

4
E

⎡
⎣log2

⎧⎨
⎩
∑
�∈S

p(z|�)
p(z|5)

⎫⎬
⎭
∣∣∣X = x5

⎤
⎦ (4.23)

where S denotes the set of the 16QAM constellation points and � = 0 interprets one

of the 4 corner points, � = 1 interprets one of the 8 edge points and � = 5 interprets

one of 4 inner points. As before, the elements of Z are conditionally independent

so p(z|�) can be computed as the product of the marginal distributions and thus

Ih(X|Z) can be subsequently obtained.

For 16QAM, the conditional distribution of the unquantized channel outputs

is

pZi|X(zi|X = x�) =
1

2π
exp

{
−|zi −

√
ρi
10
x�|2

2

}
. (4.24)

The channel transition probabilities of the 16QAM can be computed by using

Table 4.1 since the real and imaginary parts of the observation are independent.
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Figure 4.10 shows the capacity versus Es/N0 for N = 1 with h = 1 which sum-

marizes the mutual information for the forward link modulation schemes discussed

so far. As can be seen, while the BPSK curves are bounded by the real Gaussian

input and continuous output curve, other complex-valued modulation schemes are

bounded by the complex Gaussian input and continuous output curve. These

curves also agree with those in standard information theory and communications

textbooks.

Similar to Figure 4.10, Figure 4.11 shows the capacity versus Eb/N0 for N = 1

with h = 1. The notation Eb denotes the energy per information bit. As expected,

all of the discrete input schemes are bounded either by the real Gaussian input or

the complex Gaussian input curves. It also agrees with the Shannon limit that no

reliable communication can be achieved below -1.59 dB.

4.2.3 Better quantizer design for 4PAM and 16QAM

In Section 3.6, we have seen that by using 2-bit per observation for BPSK and

choosing the proper quantizer amplitude threshold can greatly improve the mu-

tual information and thus yield closer outage probability performance to the beam-

forming case. Although many quantization techniques such as Lloyd-Max [98,99],

scaler quantization [100], vector quantization [101] are available to minimize the

distortion of a signal when the number of output bits is fixed, we consider optimiz-

ing the quantizer amplitude threshold by numerical maximization of the mutual

information between the channel input and the quantized channel. This idea has

been published in [102,103]. In this section, we borrow the same idea and consider
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Figure 4.10: Channel capacity versus Es/N0 for N = 1 with h = 1 for various
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the design of uniform quantization schemes for PAM and QAM.

A PAM constellation with M = 2k constellation symbols is defined as

SPAM2k = {−(2n− 1), · · · ,−(2i− 1), · · · ,−1, 1, · · · , 2i− 1, · · · , 2n− 1}

where i = 1, 2, · · · , n and n = 2k−1. The constellation symbols are selected with

equal probability and Es is given by Es = 4k−1
3

. One can normalize these constel-

lation such that every symbol has unit energy.

Define a uniform interval quantizer with 2m levels (i.e., m-bit quantized) and

spacing q. The set of quantization levels is given by

{Ii : i = 1, · · · , 2m} = {(−∞,−nq], · · · , (−iq,−(i− 1)q], · · · , (−q, 0],

(0, q], · · · , ((i− 1)q, iq], . . . , (nq,+∞)}

where i = 1, 2, · · · , n and n = 2m−1 − 1.

To look at the effect of the quantizer amplitude threshold on the mutual infor-

mation of the m-bit quantized single-receiver channel, we can compute the exact

m-bit capacity for various values of the amplitude threshold and see where the

maximum occurs. We define the normalized quantizer amplitude threshold as

qnorm =
q

|h|√2Es/N0

and vary qnorm over (0, 5) for different values of Es/N0 to see where the maximum

mutual information occurs. The results are shown in Figure 4.12. These results

show that the optimal amplitude threshold decreases as the SNR increases. Fig-

ure 4.13 shows the result obtained by using 6th order polynomial fit over the range

of Es/N0 considered.
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The capacity of the binary-input single-receiver two-bit and three-bit quantized

channel with optimum quantizer amplitude thresholds is shown in Figure 4.14. We

see that the biggest capacity gains occur for Es/N0 between 15 and 20dB. At low

SNR values, the gain is less significant. These results are consistent with the gaps

we see in Figure 4.12.
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Figure 4.14: Capacities of various channels with one receiver and h = 1, including

a receiver with two-bit/three-bit quantized channels and optimum two-bit/three-

bit quantizer normalized amplitude threshold qnorm. The Monte-Carlo results for

the binary-input unquantized-output channel were averaged over 106 realizations.

Similar results can be obtained for 16QAM. Figure 4.15 shows the capacity of

the binary-input single-receiver four-bit and six-bit quantized channel with opti-

mum quantizer amplitude thresholds.
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a receiver with four-bit/six-bit quantized channels and optimum four-bit/six-bit

quantizer normalized amplitude threshold qnorm. The Monte-Carlo results for the

binary-input unquantized-output channel were averaged over 106 realizations.
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4.3 Numerical Results

This section provides numerical results demonstrating the efficacy of distributed

reception with coarse quantization and higher-order forward link modulation. Two

sets of simulations are performed: the information-theoretic and the LDPC code

implementation of the distributed reception protocol withK-bit quantization where

K = log2M .

4.3.1 Information Theoretic Simulation

All of the results in this section assume spatially and temporally i.i.d. block fading

channels with hi ∼ CN (0, 1). The first example in Figure 4.16 shows the outage

probabilities for different modulation schemes by using information-theoretic sim-

ulation when the number of receive nodes N = 1 which means that there is no

information exchanging between neighbouring nodes and each node uses its locally

unquantized observations. 10,000 channel/noise realizations are performed and an

outage event occurs when Ih(X;Z) < rout =
log2(K)

2
at all of the receive nodes.

It is known that 16QAM is 4 times better than the BPSK in the sense of spec-

trum efficiency. From Figure 4.16, it can be seen that this advantage is achieved

at the penalty of 8 dB SNR decrease. Similarly, QPSK and 8PSK are 3 dB and

6 dB worse than BPSK in the outage probability sense but they are twice and

three times more spetrally efficient than BPSK, respectively.

As the number of receive nodes N increases, it should be expected that the

outage probability performance will be largely improved. Figure 4.17 to 4.19
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Figure 4.16: N = 1 node information-theoretic model example by using BPSK,

QPSK, 4PAM, 8PSK and 16QAM.
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Figure 4.17: N = 2 node information-theoretic model example by using BPSK,

QPSK, 4PAM, 8PSK and 16QAM.
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Figure 4.18: N = 5 node information-theoretic model example by using BPSK,

QPSK, 4PAM, 8PSK and 16QAM.
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Figure 4.19: N = 10 node information-theoretic model example by using BPSK,

QPSK, 4PAM, 8PSK and 16QAM.
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demonstrate the improvement by using greater number of receive nodes. From

these figures we can see that the gap between the outage probabilities of the ideal

beamforming, i.e. unquantized observation and the quantized observation increases

as the number of receive nodes increases. These results also show that significant

improvements in outage probability can be obtained through combining locally

unquantized observations with quantized observations from other nodes in the re-

ceive cluster and that the gap between exchanging ideal receive beamforming and

exchanging just log2(K) bits per coded bit is less than 1.5 dB in the cases tested.

As discussed in Section 4.2.3, the outage probability performance with the

4PAM and 16QAM forward link modulations can be further improved by using

better quantizer design and finer quantization levels. Figure 4.20 and 4.21 show

the results. In Figure 4.20, no significant improvement can be observed by using

optimum two-bit quantizer normalized amplitude threshold qnorm. Only when

N = 10 can it perform slightly better than the non-optimum case. However, when

the optimum 3-bit quantizer is applied the outage probabilities almost achieve the

same performance as the beamforming. The gap is no more than 0.2 dB.

Similar results are shown in Figure 4.21 for the 16QAM case. The optimum

6-bit quantizer achieves closest outage probability performance to the ideal beam-

forming with the gap less than 0.5 dB.

4.3.2 LDPC Simulation

In this section the numerical results of the LDPC implementation of the belief

combining system are discussed. The code uses a 32-bit CRC check for block error
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Figure 4.21: Outage probabilities of N = 1, 2, 5, 10 node information-theoretic

model example by using 16QAM at various Es/N0 values, including a receiver

with four-bit quantized channels and optimum four-bit/six-bit quantizer normal-

ized amplitude threshold qnorm.
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detection and a rate r = 1/2 LDPC code with n = 8100 and k = 4050. It performs

Monte-Carlo simulations at various Es/N0 values by generatingM = 5000 messages

with different channel and noise realizations for each message. The block error rate

at each Es/N0 value is estimated by dividing the total number of block errors by

M .

The first example shows the block error rate performance of the LDPC imple-

mentation of the 3-bit belief combining, i.e. 8PSK forward link modulation and

the following observations are made from Figure 4.22:

1. There is a gap between all LDPC implementations and their corresponding

information-theoretic predictions. The greater the number of receive nodes

the larger the gap. When N = 10, the gap between the LDPC result and

the information-theoretic predictions is approximately 1 dB.

2. Inspection of the three distributed reception approaches simulated, i.e. the

receive beamforming, the belief combining and the pseudobeamforming shows

that when N > 1, the receive beamforming always has the best performance

amongst the three while it has the highest throughputs at the same time.

The belief combining achieves satisfying block error rate performance while

has much lower throughput requirement on LAN. The pseudobeamforming

turns out to be a suboptimal approach in the sense of block error rate since

it is approximately 1 dB worse than the belief combining.

3. As the number of receive nodes increases, the gap between the receive beam-

forming and the belief combining becomes larger. When the N = 10, the

gap is approximately 1 dB.
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Figure 4.22: The LDPC implementation of the belief combining with 8PSK forward

link modulation where N = 1, 2, 5, 10.
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Figure 4.23: The LDPC implementation of the belief combining with 4PAM for-

ward link modulation where N = 1, 2, 5, 10.
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Figure 4.24: The LDPC implementation of the belief combining with 16QAM

forward link modulation where N = 1, 2, 5, 10.
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Figure 4.23 and 4.24 show the block error rates by using LDPC codes with

4PAM and 16QAM forward link modulations respectively. Similar observations

can be made as the 8PSK case.

4.4 Conclusion

As an extension to Chapter 3, a more general framework with higher forward link

modulation schemes is proposed in this chapter.

We first provided a suboptimal approximate distributed receive beamforming

algorithm, i.e., pseudobeamforming for 8PSK based on the exchange of the hard

decisions of the observations and fed it to a customized demodulator based on the

statistics of the aggregate quantization error after combining. However, it turns

out to be suboptimal in the outage probability sense. In fact, the likelihood of each

symbol at individual receive node can be inferred from the quantized/unquantized

observations and the channel transition probability so that correct decision statis-

tics can be formed to decode the combined information. Based on this idea, a gen-

eral framework for information combining with 8PSK, 4PAM and 16QAM forward

link modulations is presented which turns out to be optimal in the outage probabil-

ity sense. We also studied the quantizer design for 4PAM and 16QAM and showed

that by choosing the proper quantizer amplitude threshold can greatly improve

the outage probability. Simulation showed that by using 2-bit per observation for

4PAM and 4-bit per observation for 16QAM typically results in outage probability

performance within 1 dB of ideal receive beamforming, while 3-bit/6-bit for 4PAM

and 16QAM respectively performs within 0.5 dB of ideal receive beamforming.
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The simulations of an LDPC coded system showed that achievable performance

with real block codes can be close to the information-theoretic predictions.



Chapter 5

Conclusions and Future Research

5.1 Summary

The idea of cooperative communication, which typically refers to a system where

users share and coordinate their resources to enhance the quality of transmission

and reception is particularly attractive in wireless environments due to the diverse

channel quality and the limited energy and bandwidth resources. As a coopera-

tive distributed transmission technique, interference alignment has been shown to

achieve the maximum capacity scaling, which is known as the degrees of freedom,

of K-user interference channels with perfect channel state information and thus

promises substantial theoretic gain in interference channels. It is of our interest to

investigate its performance compared with the conventional interference manage-

ment approach, i.e., opportunistic transmission under imperfect CSI assumption.

On the receiver side, we developed and tested a belief combining distributed re-

ception technique based on the exchange of coarsely-quantized observations among

the nodes in the receive cluster.

The contributions of Chapter 2 of this dissertation present analytical and nu-

merical results on the average sum rate performance of opportunistic transmission

and SISO IA. In Chapter 3, we proposed and tested the performance of the belief

combining technique with BPSK forward link modulation and showed that the

performance penalty due to coarse quantization is small in the low SNR regimes

enabled by cooperative distributed reception. In Chapter 4 we extended the idea
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of belief combining with BPSK to a more general framework which works for more

spectrally efficient forward link modulation schemes and demonstrated that with

even 1-bit finer quantized observation, near beamforming outage probability per-

formance can be achieved. We summarize our results by chapter below.

Chapter 2. In this chapter, we compared opportunistic transmission and interfer-

ence alignment for a 3-user SISO interference channel in terms of average sum rate

in the presence of channel estimation errors. In the case of interference alignment,

channel estimation errors cause interference leakage which consequently results in

a loss of achievable rate whereas in the case of opportunistic transmission, channel

estimation errors result in a non-zero probability of incorrectly choosing the node

with the best channel. Simulation results show that opportunistic transmission

tends to outperform SISO IA in low SNR conditions and/or when channel esti-

mates are poor whereas the SISO IA can achieve better average sum rate with

good channel estimates and at high SNR.

Chapter 3. Unlike the majority of recent distributed reception techniques which

are based on iterative transmission and decoding, this chapter analyzed an approxi-

mate distributed receive beamforming algorithm based on the exchange of coarsely-

quantized observations among some or all of the nodes in the receive cluster. The

numerical results from information-theoretic analysis, as well as simulations of an

LDPC coded system, showed that exchanging just one bit per forward-link coded

bit (i.e., hard decisions based on the sign of the observation) typically results in

outage probability performance within 1.5 dB of ideal receive beamforming, while

two bits per coded bit (one sign and one amplitude bit) performs within 0.5 dB
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of ideal receive beamforming. Our results lead to the intuitively pleasing obser-

vation that the low (per node) SNR regimes enabled by cooperative distributed

reception limit the performance loss caused by coarse quantization. We also pro-

vided explicit estimates of backhaul throughput requirements as a function of the

forward information rate, and demonstrate the efficacy of the technique with full

and limited receiver participation.

Chapter 4. This chapter considered extending the idea in Chapter 3 to a more

general framework with higher forward link modulation schemes. We first pro-

posed a suboptimal approximate distributed receive beamforming algorithm, i.e.,

pseudobeamforming for 8PSK based on the exchange of the hard decisions of the

observations and fed it to a customerized demodulator based on the statistics of

the aggregate quantization error after combining. Then a general framework for

information combining with 8PSK, 4PAM and 16QAM forward link modulations

is presented which turns out to be optimal in the outage probability sense. We also

studied the quantizer design for 4PAM and 16QAM and showed that by choosing

the proper quantizer amplitude threshold can greatly improve the outage proba-

bility. Simulation showed that by using 2-bit per observation for 4PAM and 4-bit

per observation for 16QAM typically results in outage probability performance

within 1 dB of ideal receive beamforming, while 3-bit/6-bit for 4PAM and 16QAM

respectively performs within 0.5 dB of ideal receive beamforming. The simulations

of an LDPC coded system showed that achievable performance with real block

codes can be close to the information-theoretic predictions.
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5.2 Future Research Directions

Future investigation on cooperative distributed transmission and reception could

take several directions. The following is a list of possible research topics that can

be pursued as an extension of this dissertation:

• In Chapter 2, we focused on a closed-form SISO IA solution particularly for

3-user SISO systems. IA solutions of K-user systems based on the structure

of this closed-form solution turns out to be computationally expensive as the

number of users increases. It is of interest to develop an efficient IA solution

for K-user cases.

While in this dissertation we mainly focused on theoretical issues, there is

an increasing amount of work that explores practical challenges faced in

the implementation of available IA schemes. For example, the overhead for

acquiring CSI, impact of channel correlations, etc.

• While full knowledge of CSI is assumed in Chapter 3, it is important to

investigate the effect of channel estimation errors, which may become a sig-

nificant bottleneck at the low per-node receive SNRs of interest. It is also

of interest to extend the simple frequency non-selective fading model here to

more complex propagation environments. We are also interested in exploring

the requirements on quantizer precision for distributed reception of spatially

multiplexed data streams, which is a key concept in hierarchical cooperation

for scaling ad hoc networks.

Another important topic for future work is to apply the idea of space-time

block code, i.e., Alamouti, to the distributed reception technique so that
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spatial diversity can be explored. Similar bound approximations on such

system can be applied so that quick performance evaluation can be done.

• In Chapter 4, a comprehensive bound or bound approximation analysis of

the distributed reception technique with higher order forward link modula-

tions is of great interest as a direction for future work. This is because given

a LAN throughput requirement, it can quickly provide the best strategy of

information combining in the outage probability sense with the most spec-

trally efficient forward link modulation schemes. We would also like to study

the partial participation and bits allocation problems of distributed reception

which are of particular interest in many practical conditions.
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Appendix A

Solution for Decoding Vectors Uk

Given the channel state information and precoding vectors Vk, the decoding vectors

Uk can usually be obtained by using Gram-Schmidt process. For example, if CJ

scheme is applied for a three-user SISO IA system, the corresponding N × lk

decoding vectors Uk, k = {1, 2, 3} can be written as

U1 =

[
u1,1 u1,2 · · · u1,l1

]

U2 =

[
u2,1 u2,2 · · · u2,l2

]

U3 =

[
u3,1 u3,2 · · · u3,l3

]
(A.1)

where uk,i denotes the ith column of Uk. Since ideally we have

U †
kHkjVj = 0

rank(U †
kHkkVk) = lk.

where j �= k which implies

U †
kHkjVj = 0 ⇒ Uk ⊥ HkjVj.

Let HkjVj = A and b = HkkVk. Then by Gram-Schmidt, we have

Uk = b− A(A†A)−1A†b.

However, ill-conditioning problem arises when the number of extensions or the

number of users is large. In other words, we will run into the case where |A†A| ≈ 0

which makes A†A close to singular.
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The simplest ill-conditioning problem arises in a three-user SISO system with

N = 7 extensions. According to the CJ scheme, the DoFs are assigned as (4
7
, 3
7
, 3
7
).

Table A.1 shows the changes in rank in the process of computing decoding vectors

Uk if normal Gram-Schmidt orthogonalization is applied. Let HkjVj = A, so at

receiver 1, i.e., Rx 1, A = H12V2 or A = H13V3 since interference is aligned.

rank(A) rank(A†A) rank(Vi) rank(Vi
†Vi)

Rx 1 3 3 3 3

Rx k 4 1 4 1

Table A.1: An example of rank deficient in computing Uk.

Hence A†A at receiver k, where k �= 1 is not invertible. Direct use of the

Gram-Schmidt process might lead to inaccurate results. This phenomenon can be

interpreted as the interference subspace spanned by transmitter 1 has redundant

dimensions so that the solution to the decoding vectors at receiver k is not unique.

In the specific example shown in table A.1, U2 needs to satisfy

A†U2 = 03×3 (A.2)

rank(b†U2) = l2 (A.3)

where A = H21V1, b = H22V2 and U2 is a 7 × 3 matrix with l1 = 3. In other

words, the columns of U2 ∈ null(A). Therefore, a small modification is made on

the Gram-Schmidt process

Uk = b− Apinv(A†A)A†b. (A.4)

where psuedo-inverse is applied instead of direct inverse of the A†A matrix.



Appendix B

Solutions for K-user SISO IA (K > 3)

The idea of the CJ scheme for three-user interference alignment can be extended

for K user. Recall Theorem 1 in [104]: The number of degrees of freedom per user

for the K-user interference channel is K/2

max
D

d1 + d2 · · ·+ dK = K/2 (B.1)

and a constructive proof of this achievability is provided in the appendix in [1].

The procedure is briefly summarized as follows:

Let L = (K−1)(K−2)−1 where L is the number of distinct ancillary matrices

T
[i]
j , i, j = {2, 3, · · · , K}, i �= j. They show that (d1(n), d2(n), · · · , dK(n)) lies in

the degrees of freedom region of the K-user interference channel for any n ∈ N

where

d1(n) =
(n+ 1)L

(n+ 1)L + nL
(B.2)

di(n) =
nL

(n+ 1)L + nL
, i = 2, 3, · · · , K. (B.3)

The interference alignment scheme uses (n+1)L+nL time slots and the (n+1)L+nL

symbols transmitted over these time slots are denoted as supersymbols. We call

N = (n+ 1)L + nL the symbol extension of the original channel.

As in the K = 3 user case, receiver 1 has to extract (n + 1)L interference free

dimensions from a total of N = (n + 1)L + nL-dimensional received signal vector.

Hence the dimension of the interference should be no more than nL. Similarly,

receiver 2 to K have to extract nL out of N from each of their received signal
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vectors leaving them (n+ 1)L-dimensional interference space. Hence we have

At receiver 1, H12V2 = H13V3 = H14V4 = · · · = H1KVK (B.4)

At receiver 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H23V3 ≺ H21V1

H24V4 ≺ H21V1

...

H2KVK ≺ H21V1

(B.5)

At receiver i, HijVj ≺ Hi1V1 (B.6)

where i = {3, · · · , K} and j �∈ {1, i}.

Since Hij are diagonal matrices and have full rank almost surely, (B.4)-(B.6)

can be equivalently expressed as

At receiver 1, Vj = SjB, j = {2, 3, 4, · · · , K} (B.7)

At receiver 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
[2]
3 B = B ≺ V1

T
[2]
4 B ≺ V1

...

T
[2]
K B ≺ V1

(B.8)

At receiver i, T
[i]
j B ≺ V1

where i, j = {3, · · · , K}, i �= j and

B = (H31)
−1H32V2 (B.9)

Sj = (H1j)
−1H12(H32)

−1H31, j = {2, 3, · · · , K} (B.10)

T
[i]
j = (Hi1)

−1HijSj (B.11)
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where i, j = 2, 3, · · · , K, j �= i. Note that T
[3]
2 = IN×N . The things left to be

determined are B and V1 so that (B.8)-(B.9) can be satisfied, i.e.,

T
[i]
j B ≺ V1 (B.12)

for all i, j = {2, 3, · · · , K}, i �= j. Assuming that ω =

[
1 · · ·1

]�
N×1

, the BN×nL

vector and V1
N×(n+1)L

are as follows

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
m, k ∈ {2, 3, · · · , K},
m �= k, (m, k) �= (3, 2)

(T
[m]
k )αmk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ω : ∀αmk ∈ {0, 1, 2, · · · , n− 1}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.13)

V1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
m, k ∈ {2, 3, · · · , K},
m �= k, (m, k) �= (3, 2)

(T
[m]
k )αmk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ω : ∀αmk ∈ {0, 1, 2, · · · , n}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.14)

Two examples are shown to illustrate this general procedure of computing pre-

coding vetors and its corresponding average sum rate performance.
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Example 1: When K = 3, n = 1, L = 1. B and V1 are chosen as

B =

[
ω T

[2]
3 ω · · · (T

[2]
3 )n−1ω

]
(B.15)

= ω (B.16)

V1 =

[
ω T

[2]
3 ω · · · (T

[2]
3 )nω

]
(B.17)

=

[
ω T

[2]
3 ω

]
(B.18)

where according to equation (B.10), (B.11) T
[2]
3 is defined as

T
[2]
3 = (H21)

−1H23S3 (B.19)

= (H21)
−1H23(H13)

−1H12(H32)
−1H31 (B.20)

= H12(H21)
−1H23(H32)

−1H31(H13)
−1. (B.21)

Recall T equation (4) in [84] which is T := H12(H21)
−1H23(H32)

−1H31(H13)
−1.

Hence the T matrices obtained by the general scheme when K = 3 (base case)

agrees with that in [84], i.e. T : T = T
[2]
3 .

Hence we have

V1 =

[
ω T

[2]
3 ω

]
(B.22)

V2 = S2B (B.23)

= (H12)
−1H12(H32)

−1H31ω (B.24)

= (H32)
−1H31ω (B.25)

V3 = S3B (B.26)

= (H13)
−1H12(H32)

−1H31ω (B.27)

= (H23)
−1H21T

[2]
3 (B.28)

= (H13)
−1H12(H32)

−1H31ω (B.29)
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Example 2: When K = 4, n = 1, we have L = (K − 1)(K − 2)− 1 = 5, N =

(n+ 1)L + nL = 33. Hence

B = [ω]N×nL=33×1 (B.30)

V1 =

[
ω β1ω · · · β(n+1)Lω

]
N×(n+1)L

(B.31)

where βi = (T
[2]
3 )α23(T

[2]
4 )α24(T

[3]
4 )α34(T

[4]
2 )α42(T

[4]
3 )α43 in which α23, α24, α34, α42, α43

take values 0,1. Hence there are 25 combinations. βis are defined in Table B.1.

i α43 α42 α34 α24 α23 βi

1 0 0 0 0 0 1

2 0 0 0 0 1 T
[2]
3

3 0 0 0 1 0 T
[2]
4

4 0 0 0 1 1 T
[2]
3 T

[2]
4

...
...

32 1 1 1 1 1 T
[2]
3 T

[2]
4 T

[3]
4 T

[4]
2 T

[4]
3

Table B.1: βi where i = {1, 2, · · ·32}.

Therefore, V1 can be written as

V1 =

[
ω T

[2]
3 ω T

[2]
4 ω T

[2]
3 T

[2]
4 ω · · · T

[2]
3 T

[2]
4 T

[3]
4 T

[4]
2 T

[4]
3 ω

]
. (B.32)

Use equation (B.7), (B.9), (B.10) and (B.30) , Vi, i = {2, 3, · · · , K} can be deter-
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mined as

V2 = S2B

= (H12)
−1H12(H32)

−1H31B

= (H32)
−1H31B

= (H32)
−1H31ω

V3 = S3B

= (H13)
−1H12(H32)

−1H31B

= (H13)
−1H12(H32)

−1H31ω

V4 = S4B

= (H14)
−1H12(H32)

−1H31B

= (H14)
−1H12(H32)

−1H31ω.

Since the dimension of the solution goes exponentially with the number of users,

the CJ scheme quickly becomes computationally impossible. The significance of

this scheme is mainly theoretical.



Appendix C

Summing LLRs of Unquantized

Observations Is Equivalent to Ideal

Beamforming for BPSK

In this appendix, we show that the log-likelihood ratio of the ideal receive beam-

former decision statistic is equivalent to the sum of the log-likelihood ratios of

the unquantized decision statistics at each node in the receive cluster. Given the

individual unquantized decision statistics Zi for i = 1, . . . , N , the ideal receive

beamformer decision statistic can be written as

Zbf =
1

‖h‖
N∑
i=1

|hi|Zi = ‖h‖
√
2Es/N0X +W ′

where W ′ ∼ N (0, 1). Hence, given the realization Zbf = z, the LLR is �(z) =

2z‖h‖√2Es/N0. But since z = 1
‖h‖
∑N

i=1 |hi|zi, this can be written as

�(z) = 2
√
2Es/N0

N∑
i=1

|hi|zi =
N∑
i=1

2zi
√
ρi =

N∑
i=1

�i(zi).

Hence, the LLR of the ideal receive beamformer decision statistic is equivalent

to the sum of the individual LLRs of the unquantized decision statistics at each

receive node.
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Appendix D

Summing LLRs of Unquantized

Observations Is Not Equivalent to Ideal

Beamforming for 8PSK

In this appendix, we show that for 8PSK, however, summing LLRs of unquantized

observations is not equivalent to beamforming. To see this, recall that the log-

likelihood ratio (LLR) is the logarithm of the ratio of probabilities of a 0 bit being

transmitted versus a 1 bit being transmitted for a received signal. The LLR for a

bit x conditioned on the received signal z is defined as

�(x|z) = log

{
Prob(X = +1|Z = zi)

Prob(X = −1|Z = zi)

}
. (D.1)

Given the 8PSK Gray constellation in Figure D.1 and let �(xki|zi) indicate the

LLR of the kth bit xki given zi, the LLR based on the unquantized observation can

be written as

L(xki|zi) = Prob(xki = +1|Z = zi)

Prob(xki = −1|Z = zi)
(D.2)

where

Prob(xki = +1|Z = zi) =
∑

q∈S(xki=+1)

Prob(si = s(q)|zi) (D.3)

Prob(xki = −1|Z = zi) =
∑

q∈S(xki=−1)

Prob(si = s(q)|zi) (D.4)

where S(xki = +1) and S(xki = −1) are the subsets of symbol indexes correspond-

ing to xi = +1 and xi = −1 respectively.
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100100100

101101101

111111111

110110110

010010010

(+1, 0)(+1, 0)(+1, 0)

(0,+j)(0,+j)(0,+j)

Figure D.1: Symbol set partitioning for each bit in 8PSK Gray constellation where

the red dot indicates −1(1) and blue dot indicates +1(0).

In the case of equiprobable symbols, we have

�(xki|zi) = ln

∑
q∈S(xki=+1)

Prob(si = s(q)|zi)∑
q∈S(xki=−1)

Prob(si = s(q)|zi)

= ln

∑
q∈S(xki=+1)

p(zi|s(q))∑
q∈S(xki=−1)

p(zi|s(q)) . (D.5)

From the assumption on the noise, we have

p(zi|s(q)) = 1√
2π

exp

{
−(zi −

√
2Es/No|hi|s(q))2

2

}
(D.6)

=
1√
2π

exp

{
−(Re(zi)−

√
2Es/No|hi|Re(s(q)))2 + (Im(zi)−

√
2Es/No|hi|Im(s(q)))2

2

}
.
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Therefore the straightforward calculation gives

�(x1i|zi) = log

{[
exp

(
− (Re(zi)+

√
2Es/No|hi|

√
2

2
)2+(Im(zi)−

√
2Es/No|hi|

√
2

2
)2

2

)

+exp

(
− (Re(zi))2+(Im(zi)−

√
2Es/No|hi|)2

2

)

+exp

(
− (Re(zi)−

√
2Es/No|hi|

√
2

2
)2+(Im(zi)−

√
2Es/No|hi|

√
2

2
)2

2

)

+exp

(
− (Re(zi)−

√
2Es/No|hi|)2+(Im(zi))

2

2

)]
/[

exp

(
− (Re(zi)+

√
2Es/No|hi|

√
2

2
)2+(Im(zi)+

√
2Es/No|hi|

√
2

2
)2

2

)

+exp

(
− (Re(zi))2+(Im(zi)+
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. (D.7)

Similarly we can write the expression for �(x2i|zi) and �(x3i|zi).

Since Zi = Yi for unquantized output, i.e. receive beamforming outputs,

�unquantized(xki|yi) = �(xki|zi). An ideal receive beamformer generates the deci-

sion statistic Z =
N∑
i=1

|hi|Yi. It can be shown that the LLR of the beamformer

output realization Z = z is

�bf(xki|z) = ln

{
Prob(xki = +1|Z = z)

Prob(xki = −1|Z = z)

}

= �(xki|z)

where the expression for �bf(xki|z) is similar to equation (D.7) except that now the

LLR is conditioned on Z =
N∑
i=1

|hi|Yi instead of Zi = Yi and
√
2Es/No|hi| becomes
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√
2Es/No

N∑
i=1

|hi|, i.e.,

p(zi|s(q)) = 1√
2π

exp

⎧⎪⎪⎨
⎪⎪⎩−

(z −√2Es/No

N∑
i=1

|hi|s(q))2

2

⎫⎪⎪⎬
⎪⎪⎭ (D.8)

=
1√
2π

exp

{
−1

2

[
(Re(

N∑
i=1

zi)−
√
2Es/No

N∑
i=1

|hi|Re(s(q)))2+

(Im(
N∑
i=1

zi)−
√
2Es/No

N∑
i=1

|hi|Im(s(q)))2

]}
. (D.9)

It is obvious that �bf(xki|z) �=
N∑
i=1

�unquantized(xki|zi).
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