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Abstract

This work presents a guidance strategy for an autonomous underwater vehicle

to localize, in real-time, an underwater oil plume released in the environment as a

Gaussian pulse. For this purpose, it is necessary to select a vehicle design to meet

the mission requirements. Therefore, after considering multiple vehicles designs,

the OUTLAND-1000, due to its specific configuration, has shown to be a suitable

fit for the main purpose of this work. Consequently, a reliable dynamical model

is developed from physical principles to include the effects of inertial, hydrostatic,

hydrodynamic, and control forces. In addition, as a case study, a synthetic oil spill

governed by the advection-diffusion partial differential equation is proposed to de-

scribe the dispersion of oil in shallow water. Thus, numerical and analytical schemes

are studied to generate a concentration spectrum over a given domain. Regarding

guidance and control, reference commands are defined as functions of the localized

concentration values and their respective localized gradients. Therefore, the prob-

lem is simplified to trajectory tracking problem so that a Lyapunov-based control

law capable of dealing with the system nonlinearities and performance requirements

is designed. The control method is numerically validated through various source

trajectories using existing UAUV specifications while accessing local concentration

values and gradients throughout a previously measured pollutant concentration field.

“Certain materials are included under the fair use exemption of the U.S. Copyright

Law and have been prepared according to the fair use guidelines and are restricted

from further use.”
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Chapter 1

Introduction

Since the ancient Greek era, underwater vehicles have been widely explored, pass-

ing through Roberto Valturio, and even Leonardo Da Vinci seemed to have worked

on a deadly underwater military vessel [1]. Eventually, these ideas arrived at one

of the most intimidating weapons of the whole time, the submarine. As T.I Fossen

defines in [4] the submarine as “any naval vessel that is capable of propelling itself

beneath the water as well as on the water’s surface”. However, submarines carry a

significant limitation; these vessels are human-crewed operated vehicles. There have

been several reports that describe a series of events that involve manned underwa-

ter vehicles, unfortunately ending up in tragedy and millions in losses of load and

equipment [1]. Remotely operated and autonomous underwater vehicles (ROVs

and UAUVs), on the other hand, have shown to be able to achieve the same mission

goals as manned vehicles and even more efficiently. These vehicles are currently

being used in missions such as ocean and pipeline surveys, the rescue of manned un-

derwater vessels, and off-shore structure maintenance, among large set applications

that can be mentioned.
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1.1 Objectives

The objectives of this work are:

• To develop a reliable dynamical model that appropriately describes the motion

of an autonomous underwater vehicle.

• To generate a robust control law based on hierarchical Lyapunov structures

for trajectory tracking and guidance.

• To apply numerical and analytical schemes to generate a realistic unsteady

pollutant dispersion in a 2-dimensional domain.

• To localize and track in real-time the source of a pollutant released in marine

environments.

1.2 Background

Autonomous underwater vehicles are classified into remotely operated vehicles

(ROVs) and unmanned autonomous underwater vehicles (UAUVs). The ROV is

an underwater vehicle whose power and control action is given throughout a cable,

transmitting information from the user to the vehicle. In contrast, the UAUV relies

entirely on the inboard power and control system [1]. This work is exclusively

dedicated to deal with the modeling, control, and performance of UAUVs.

A significant amount of research has been done within the field of autonomous

underwater vehicles. In general, these vehicles attempt to have a torpedo-shaped

body acted by thrusters and hydrodynamic fins (control surface). Nonetheless, this

classical configuration could vary depending on design and modeling simplicity, mis-

sion and task requirements, or simply the control strategy that could be studying at

2



the time. Therefore, in sections 1.1,1.2, and 1.3, some current UAUVs are described

and studied to make a suitable selection of geometry and actuation configuration

that yields the best fit for the proposes of this work.

1.2.1 Phoenix and NPS ARIES

Phoenix is an underwater robot built for student research at the Postgraduate Naval

(NPS) School Monterrey, California. Indeed, this vehicle has a torpedo-shaped body

but with a rectangular cross-section that simplifies its dynamic and hydrodynamics

analysis. In addition, The Phoenix counts with a set of multiple propellers in charge

of giving the right amount of thrust to move forward and backward depending on

what is required. Moreover, hydrodynamic control surfaces ( Fins) are placed on

strategic spots around the structure of the vessel to control the six degrees of freedom

of the vehicle [11]. Furthermore, the NPS-ARIES, which is the next generation of

the Phoenix UAUV developed by the Naval Postgraduate School at Monterrey, Cal-

ifornia, introduces the implementation of new computer architecture and extended

Kalman filter to make the vehicle capable of operating as a network server using

acoustic, and radio communication links [12].

Figure 1.1: NPS-ARIES c©Naval Postgraduate School at Monterrey, California.
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1.2.2 The C-SCOUT AUV

Canadian Self-Contained Off-the-shelf Underwater Testbed (C-SCOUT) as it is

described in [8] is a UAUV that follows the typical design and actuation as it is

described in 1.2. Nonetheless, this particular vessel is designed to be assembled by

interchangeable modules as it is shown in [8] and [14]. The versatility of this con-

struction allows the vehicle to reach a good performance in multiple missions since it

could be adapted to the mission requirements. In the light of this building approach,

two main configurations can be presented regarding the actuation mode, which are

the baseline configuration (BC) and the fully actuated configuration (FAC).

The baseline configuration shares with Phoenix and ARIES described in 1.2.1

with the implementation of rear control module based on two horizontal control

surfaces coupled with two independent actuators to control their motion.

On the other hand, the FAC adds to the BC a second control module paced at

the vehicle’s front. In addition, two propulsive modules are also placed through the

vessel’s body. Each module has two horizontal and one vertical thruster to improve

the maneuverability of the vehicle and to make the vehicle capable of hovering in a

cross flow [8].

4



Figure 1.2: C-SCOUT AUV c©Memorial University of Newfoundland.

1.2.3 HippoCampus UAV

The Hippocampus UAV finds its inspiration in the sea animal with the same Greek

name, the hippo-campus, better known as a seahorse. In addition, to its animal

conception, the Hippocampus UAUV is also an attempt to replicate the perfor-

mance of one of the most popular air autonomous vehicles, the quadrotor aircraft.

Quadrotors are well studied autonomous aircraft that able to achieve complicated

tasks and maneuvers by themselves. Likewise, the Hippocampus is capable of im-

pressive acrobatic maneuvers and other autonomous operations due its onboard

processing system [7] [10] [15] [16]. Regarding its configuration, the Hippocampus

is a streamlined-shaped body with a circular cross area that has coupled four hori-

zontal thrusters disposed in crossed shape at the vehicle’s rear. This configuration

allows that the turning ratio to be independent of the surge motion providing an

advantage over a typical UAUV that is controlled by plane surfaces and propellers

§1.2.1,§1.2.2. However, it turns out the fact that this vehicle is highly more energy

inefficient than the classical ones due to the number of required motors; therefore,

due to its high energy requirements and for some other structural limitations, it is

recommended to keep the dimensional and hydrostatics parameters of this vehicle

within the range defined for micro UAUV.

5



Figure 1.3: HippoCampus c©E. Solowjow, D. A. Duecker, A. Hackbarth, V. Rausch,
A. R. Geist, and T. Johannink, “HippoCampus - Project”, 2018.

1.2.4 OUTLAND-1000-ROV

OUTLAND-1000 is a four-thruster model manufactured by Outland Technology,

capable of reaching 300 m. The Outland ROV 1000 has a two-camera video system.

The properties of these cameras are critical for obtaining high-quality photographs

for the project’s goals. The video signal from the cameras is transmitted through a

wire to the Outland ROV 1000’s control system for recording purposes [81], [82].

In addition, even though it is conceived as a remotely operated vehicle (ROV), the

proposes of this work OUTLAND-1000 is considered a UAUV, so a similar control

architecture as the HippoCampus has to be implemented on this particular robot.

Base on objectives and modeling simplicity, The OUTLAND-1000 UAUV is the

selected UAUV due to its convenient design. Further comments on OUTLAND-

1000 configuration and design will be made in Chapter 3.
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Figure 1.4: OUTLAND-1000 side top view c©2021 Outland Technology, Inc.

Figure 1.5: OUTLAND-1000 side front side view c©2021 Outland Technology, Inc.

7



Chapter 2

Mathematical Model for Mean

Concentration of Species in

Turbulence

2.1 General Review on Oil Spills

Sea oil slicks devastatingly affect marine environments and human culture in the

encompassing waterfront regions. The 2010 Deep Water Horizon spill in the Gulf

of Mexico endured 87 days and is assessed to have delivered more than 3 million

barrels of oil. It affected more than 1,600 miles of coastline, slaughtered more than

8000 marine creatures/seabirds, and caused direct financial misfortune from fishing

and visit enterprises assessed at a considerable number of dollars. Likewise, the

effects on the long haul general well-being and personal satisfaction of millions of

individuals are as yet unclear.
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The spreading of oil spilled into the sea is a measure that depends mainly on the

flow, wind, temperature, and synthetic structure of the oil and seawater. In addition,

Oil spills are genuine natural dangers that regularly show long-term impacts. To

control the harms brought about by oil contamination, it is expected that real-time

predictions to give an ongoing forecast of the transport and destiny of the spill.

2.2 Advection and turbulent diffusion

The primary processes involved with oil transport on the water surface are the

shifts in weather conditions and turbulent dispersion. The shift in weather condi-

tions is basically because of the breeze, surface current, and waves. In this study,

a two-dimensional two-phase numerical model is developed to predict the transport

and fate of oil slicks in seawater environments.

This work considers a Fickian model, which states that the flux of solute mass,

that is, the mass of a solute crossing a unit area per unit time in a given direction,

is proportional to the solute concentration gradient in that direction [48]. This

generally can be expressed through the total rate of mass transport given by the

addition of an advective flux and a diffusive flux.

q = [βx, βy, βz]
TC +

[
αx
∂C

∂x
, αy

∂C

∂y
, αz

∂C

∂z

]T
(2.1)

This equation is referred to as the Advection-Diffusion equation, where αi and

βi for i = x, y, z are correspondingly the directional diffusivities and flow velocity

components defined in Cartesian reference frame.

9



Figure 2.1: Solute Control Volume

Therefore, in order to satisfy the continuity principle the rate of change in concen-

tration per unit volume inside the control volume is given by the following transport

equation:

∂C

∂t
+ βx

∂C

∂x
+ βy

∂C

∂y
+ βz

∂C

∂z
= αx

∂2C

∂x2
+ αy

∂2C

∂y2
+ αz

∂2C

∂z2
(2.2)

2.3 Governing Equations of Mean Concentration

of Mixing in Rivers Turbulent Diffusion and

Dispersion

In the introductory part of this chapter, the advection-diffusion PDE has been

defined. However, it is vital to consider that such a formulation only deals with

molecular diffusion under laminar flows regimes. Therefore, an analogous Fickian

turbulent mixing model is described in [47], and [48] in order to get in count the

effects of turbulent components.
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Following [46], [47], [48], [49] we present underneath a process model which is ad-

dressed by the 3D advection-diffusion under turbulent operation conditions. Think

about a wellspring of oil discharge, which is moving along an obscure direction inside

a spatial zone defined by Ω : x ∈ [0, Lx], y ∈ [0, Ly], z ∈ [0, Lz] subject to turbulent

flow velocity components U, V,W projected respectively on the x, y, z directions.

In order to study turbulence, let us consider a representation of the fluid ve-

locity consisting of the summation of deterministic and stochastic components as

follows [47], [49] :

βx = U = U + U ′, βy = V = V + V ′, βz = W = W +W ′ (2.3)

Then for convenience proposes:

Ui = [U.V,W ]T = Ūi + U ′i (2.4)

This approach is known as the Reynolds decomposition. To derive an advective

diffusion condition for disturbance, we substitute the Reynolds decomposition into

the typical advection-diffusion PDE and examine the outcomes. However, Before

we can do that, we need a Reynolds deterioration similarity for the concentration

as follows [50]:

C(xi, t) = C(xi, t) + C ′(xi, t) (2.5)

∂(C + C ′)

∂t
+
∂((Ui + u′i)(C + C ′))

∂xi
=

∂

∂xi

(
αi
∂(C + C ′)

∂xi

)
(2.6)

In addition, at this point, this work is only focused on the long-term mean be-

havior of a tracer cloud. Therefore all terms in the resultant Reynolds decomposed

11



advection-diffusion PDE must be time-averaged:

1

T

∫ t+T

t

{
∂(C + C ′)

∂t
+
∂(Ui + u′i)

∂xi
=

∂

∂xi

(
αi
∂(C + C ′)

∂xi

)}
dτ (2.7)

Therefore,

∂(C + C ′)

∂t
+
∂(UiC + UiC ′ + U ′iC + U ′iC

′)

∂xi
=

∂

∂xi

(
αi
∂(C + C ′)

∂xi

)

(2.8)

Now having that C ′ = 0, hence the terms UiC ′ = U ′iC = 0. Thus,

∂C

∂t
+ Ui

∂C

xi
= −∂(U ′iC

′)

∂xi
+

∂

∂xi

(
αi

C

∂xi

)
(2.9)

Now, it necessary to deal with the turbulent flux term U ′iC
′ , that for this propose

Reynolds portrays this turbulent component qualitatively as a form of rapid mixing

[50]; hence, it is possible to make a similarity with molecular diffusion. Taylor, in

his work, inferred part of this relationship by scientifically following a haze of tracer

particles in a turbulent flow and approximating the Lagrangian correlation showing

that for times greater than T , the cloud of tracer given U ′iC
′ grows linearly in time.

This procedure is used in [48] by Fischer to come up with an analogous model to

molecular diffusion to study the uncertain flux term. This is known as the mixing

length model, which describes the most extreme distance in the fluid over which the

speed variances are related. Then, for turbulent diffusion the length scale is given

by LD = (KiiT )1/2 and advective length scale by LA = UiT , so to assured that the

process works under mixing length conditions then Kii = (UiT )2

T
. Thus, for a time

12



greater than T , Fick’s law is used to establish that :

U ′iC
′ = Kii

∂C

∂xi
(2.10)

Where Kii is the principal eddy diffusivity tensor. Hence, the process model

simplifies to :

∂C

∂t
+ Ūi

∂C

x̄i
=

∂

∂xi

(
Kii

∂C

∂xi

)
+

∂

∂xi

(
αi

C

∂xi

)
(2.11)

In addition, it has been proven in most literature [48], [49], [50] that molecular

diffusion is negligible compared with the turbulent diffusion. Then the averaged

process model end up as follows:

∂C

∂t
+ Ui

∂C̄

xi
=

∂

∂xi

(
Kii

∂C

∂xi

)
(2.12)

2.4 Problem formulation

Let us consider an instantaneous initial Gaussian pulse released in a 2D domain given

constant fluid velocity components U and V and eddy diffusivities Kxx and Kyy. In

addition, it is considered that the UAUV dimensions are small with respect to the

size of the concentration spectrum, so the UAUV can be considered a point mass.

Therefore, oil droplets propagation and plume deformation due to fluid-structure

interaction can be neglected. Then, the resulting advection-diffusion equation is

said to be written in a strong conservative form:

∂C

∂t
+ U

∂C

∂x
+ V

∂C

∂y
= Kxx

∂2C

∂x2
+Kyy

∂2C

∂y2
(2.13)

For supplementary Dirichlet and Neuman boundary conditions perform as fol-

13



lows:

C̄(0, y, t) = C(x, 0, t) = 0 (2.14)

∂C

∂x
(Lx, y, t) =

∂C

∂x
(x, Ly, t) = 0 (2.15)

And for initial Gaussian pulse given such that:

C(x, y, 0) = exp

[
−(x− ax)2

Kxx

− (y − ay)2

Kyy

]
(2.16)

2.4.1 Gaussian Pulse Analytical Solution

According with most of literature, and specifically [51], [63], [64] and [67] the

analytical solution of the two-dimensional advection-diffusion equation, at a given

time t for an initial Gaussian pulsed released at point A(ax, ay) on the domain

Ω : x ∈ [0, Lx], y ∈ [0, Ly] is given by:

C(x, y, t) =
1

4t+ 1
exp

[
−(x− ax − Ut)2

Kxx(4t+ 1)
− (y − ay − V t)2

Kyy(4t+ 1)

]
(2.17)

This solution models a dispersive moving plume on the aforementioned domain.

For future application proposes two simulations have been run over a domain defined

by Lx = 1000m and Ly = 1000m for time t = 300sec, subject firstly to an horizontal

velocity field U = 1.0m/s, and for equivalent dispersion coefficient Kxx = Kyy =

11.68m2/s [48], and secondly to an velocity field [U, V ]T = [1.0m/s, 1.0m/s].

14



Figure 2.2: Advection-Diffusion PDE Guassian pulse Exact Solution Horizontal
Velocity Field.

Figure 2.3: Advection-Diffusion PDE Guassian pulse Exact Solution 2-D Velocity
Field.
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2.5 Numerical Schemes for the Solution of the

Advection–Diffusion Equation

Partial differential equations are the basis for numerous numerical models of phys-

ical, substance, and biological phenomena. Thus, it is fundamental to approximate

the solution of these partial differential equations mathematically in request to ex-

plore the forecasts of the numerical models, as the analytical solutions are generally

inaccessible.

In this section finite difference schemes are developed based on modified equivalent

partial differential equation as described in [51], and [54]. Only explicit numerical

schemes will be considered due to the high number of calculations required for the

proposed domain, at which implicit schemes could become unfeasible because of the

limited computational power available.

2.5.1 The Forward-Time Centered-Space Scheme

This scheme uses the forward-difference form for the time-derivative and centered-

difference forms for all spatial derivatives.

∂C̄

∂t

∣∣∣∣n
i,j

+ Ū
∂C̄

∂x

∣∣∣∣n
i,j

+ V̄
∂C̄

∂y

∣∣∣∣n
i,j

= Kxx
∂2C̄

∂x2

∣∣∣∣n
i,j

+Kyy
∂2C̄

∂y2

∣∣∣∣n
i,j

(2.18)

Utilizing these approximations for the three-dimensional advection-diffusion equa-

tion at the (i, j)th grid point ends up in the following two-level finite difference

formula:
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Cn+1
i,j = (sx + cx/2)Cn

i−1,j + (sy + cy/2)Cn
i,j−1 + (sx − cx/2)Cn

i+1,j

+ (sy − cy/2)Cn
i,j+1 + (1− 2sx − 2sy)C

n
i,j

(2.19)

where

cx = U
∆t

∆x
, cy = V

∆t

∆y
(2.20)

and

sx = Kxx
∆t

(∆x)2
, sy = Kyy

∆t

(∆y)2
(2.21)

The stability criterion of this finite-difference technique is evaluated through the

Von Neumann method, which in this case is given by:

sx + sy ≤
1

2
(2.22)

and

c2
x

sx
+
c2
y

sy
≤ 3 (2.23)

The modified partial differential equation (MDE) of this method is given by:

∂C

∂t
+ U

∂C

∂x
+ V

∂C

∂y
+ [−Kxx + U

∆xcx
2

]
∂2C

∂x2
+ [−Kyy + V

∆ycy
2

]
∂2C

∂y2

+O[(∆x)2, (∆y)2] = 0

(2.24)

From this MDE, it can be seen that this method is only first-order accurate and

induces numerical diffusion.
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2.5.2 The forward-Time Backward-Space Centered-Space Scheme

This scheme uses forward-difference for the time derivative,centered-difference for

the diffusive derivatives, and backward differences for the spatial derivatives in the

advective terms. Then the explicit FTBSCS formula is given as follows:

Cn+1
i,j = (sx + Cx)C

n
i−1,j + (sy + cy)C

n
i,j−1 + (sx)C

n
i+1,j + (sy)C

n
i,j+1

+ (1− 2sx − 2sy − cx − cy)Cn
i,j

(2.25)

Similarly, as it was done for the FTCS scheme, a Von Neumann stability analysis

is performed. Thus, the stability required for this method is given by:

2(sx + sy) + cx + cy ≤ 1 (2.26)

Moreover, the correspondent MDE for this method is given as follows:

∂C̄

∂t
+ Ū

∂C̄

∂x
+ V̄

∂C̄

∂y
+ [−Kxx + U

∆x(cx − 1)

2
]
∂2C̄

∂x2
+

[−Kyy + V
∆y(cy − 1)

2
]
∂2C̄

∂y2
+O[(∆x)2, (∆y)2] = 0

(2.27)

Showing newly that FTBSCS is first order accurate as well as FTCS scheme.

2.5.3 The Lax–Wendroff Scheme

Lax–Wendroff is a weighted scheme that approximates the time and spatial deriva-

tives in the advection-diffusion PDE as follows:

∂C

∂t

∣∣∣∣n
i,j

≈
Cn+1
i,j − Cn

i,j

∆t
(2.28)
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∂C

∂x

∣∣∣∣n
i,j

≈ cx
Cn
i,j − Cn

i−1,j

∆x
+ (1− cx)

Cn
i+1,j − Cn

i−1,j

2∆x
(2.29)

∂C

∂y

∣∣∣∣n
i,j

≈ cy
Cn
i,j − Cn

i,j−1

∆y
+ (1− cy)

Cn
i,j+1 − Cn

i,j−1

2∆y
(2.30)

∂2C

∂x2

∣∣∣∣n
i,j

≈
Cn
i+1,j − 2Cn

i,j + Ci−1,j

(∆x)2
(2.31)

∂2C

∂y2

∣∣∣∣n
i,j

≈
Cn
i,j+1 − 2Cn

i,j + Ci,j−1

(∆y)2
(2.32)

Then, this approximation lead to the following explicit finite difference formula:

Cn+1
i,j =

1

2
(2sx + cx(1 + cx))C

n
i−1,j +

1

2
(2sx + cx(cx − 1))Cn

i+1,j+

1

2
(2sy + cx(1 + cy))C

n
i,j−1 +

1

2
(2sy + cy(cy − 1))Cn

i,j+1+

(1− c2
x − c2

y − 2sx − 2sy)Ci, j
n

(2.33)

The stability Von Neumann condition for this method is defined such that:

2(sx + sy) + c2
x + c2

y ≤ 1 (2.34)

and,

c2
xc

2
y ≤ 8sxsy (2.35)
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The respective MDE for this scheme yields as follows:

∂C

∂t
+ U

∂C

∂x
+ V

∂C

∂y
−Kxx

∂2C

∂x2
−Kyy

∂2C

∂y2
+

U
(∆x)2

6
(1− 6sx − c2

x)
∂3C

∂x3
+ V

(∆y)2

6
(1− 6sy − c2

y)
∂3C

∂y3
+

O[(∆x)3, (∆y)3] = 0

(2.36)

From the Lax-Wendroff MDE, it can be concluded that this scheme does not

introduce any level of numerical diffusion, which makes out it an interesting choice

to come up with an approximate solution of the advection-diffusion PDE.

2.5.4 Numerical Models Validation

It is necessary to compare the model results with analytical solutions, to validate

the developed numerical models. Therefore, numerical results for FTCS, FTBSCS,

and Lax Wendroff schemes are compared against results obtained in subsection 2.4.1.

For the propose of comparing the accuracy of each scheme, let us define the

Root mean square error as the reason between the L2 norm of the absolute error

E = |Caprox − Cexact| and the exact solution as follows:

RMSE =
(
∑N

i=1

∑M
j=1E

2
i,j)

1/2

(
∑N

i=1

∑M
j=1Cexact

2
i,j)

1/2
(2.37)

In addition, in order to achieve stability and make schemes to be feasibly com-

puted, the grid size and time step are ∆x = ∆y = 10m , and ∆t = 0.9s, so that

c = 0.09 and s = 0.1051 which hold for the three stability conditions defined above

for the studied schemes.
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Figure 2.4: Advection-Diffusion PDE Guassian pulse Aproximated Solution Hori-
zontal Velocity Field.

Figure 2.5: Root Mean Square Error Horizontal Velocity Field.
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Figure 2.6: Advection-Diffusion PDE Guassian pulse Aproximated Solution 2-
Dimensional Velocity Field.

Figure 2.7: Root Mean Square Error 2-Dimensional Velocity Field.
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The three schemes seem to produce decent results even though the given large

grid size. Showing that proposed explicit methods are straightforward to implement

and economical to use, being very efficient and needing less CPU time than the

fully implicit finite difference methods. Unfortunately, it can be seen that even for

such a big grid size, the number of calculations results to be way too large to run

simultaneously with another ODE model to come up with a decent estimation model

for guidance and localization. For this work, it is considered that the pollutant

concentration field has been measured and estimated a priori by a super-user so

that a decent concentration can be produced for purposes of UAUV guidance and

localization.
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Chapter 3

UAUV Dynamics and Guidance

In this chapter, the respective equations of motions of a general UAUV are de-

rived, which will be represented in terms of a state vector and state-space sets of

equations that can be differentiated either from the classical mechanics or Lagrange’s

formulation. The model that is addressed is given in the form of the general state-

space structure ẋ = f(x, t) where x is the state vector. The state vector contains

the principal variables needed to describe the motion of a UAUV.

Figure 3.1: State Variables Description.
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The reason for representing the dynamical model in the state-space is that the

control approach applied in this work is based on Lyapunov methods defined in

terms of state-variable representation.

3.1 Coordinate system

Regardless of the modeling approach to be used to model the system dynamics of

the UAUV, it is essential to be able to define a generalized set of coordinates on

which acting forces and moments will be described. Similarly, as it is shown in [1],

[3], [4], [6] this work defines E := OE, XE, YE.ZE as the inertial reference frame

which is by definition attached to a reference fixed point in the control volume and

B := OB, XB, YB.ZB as the body-fixed frame which is usually attached to the center

of gravity of the vehicle. In addition, a set of unit vectors pointing respectively in the

direction of both reference frames are stated as eEx , e
E
y .e

E
z for the inertial reference

frame and eBx , e
B
y .e

B
z for the body-fixed frame.

Figure 3.2: Frames and elementary vehicle’s motion [83].
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Forces and Moments ν η

Motion in the x-body fixed direction surge τx u Xe

Motion in the y-body fixed direction Sway τy v Ye

Motion in the z-body fixed direction Heave τz w Ze
Rotation about x-body fixed axis Roll τK p φ
Rotation about y-body fixed axis Pitch τM q θ
Rotation about z-body fixed axis Yaw τN r ψ

Table 3.1: Nomenclature for marine vehicle’s motion [1].

3.2 UAUV’s Kinematics

In general terms, the motion of a vehicle is described by its kinematic variables

(position, velocity, and acceleration) concerning a reference frame which either an

inertial or noninertial frame. Equation 3.1 is a vector representation of the posi-

tions and orientations, including its respective derivatives that respect the inertial.

Similarly, 3.2 is the translational and angular velocities vector for the body-fixed

frame

η =



xe

ye

ze

φ

θ

ψ


⇒ η̇ =



ẋe

ẏe

że

φ̇

θ̇

ψ̇


⇒ η̈ =



ẍe

ÿe

z̈e

φ̈

θ̈

ψ̈


, (3.1)
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ν =



u

v

w

p

q

r


⇒ ν̇ =



u̇

v̇

ẇ

ṗ

q̇

ṙ


. (3.2)

In order to define the relation between kinematic variables of both reference

frames(inertial and body fixed frame) the η and ν vector are rewritten so that η =

[η1, η2]T and ν = [ν1, ν2]T where η1 = [xe, ye, ze]
T ,η2 = [φ, θ, ψ]T ,ν1 = [u, v, w]T ,ν2 =

[p, q, r]T . Therefore, as it is well developed in most of robot and vehicle dynam-

ics literature the position of an arbitrary point on the vehicle is obtained by only

applying a real time transformation of coordinates which is given as follows:

η̇1 = Re
bν1 (3.3)

Re
b =


c (ψ) c (θ) c (ψ) s (φ) s (θ)− c (φ) s (ψ) s (φ) s (ψ) + c (φ) c (ψ) s (θ)

c (θ) s (ψ) c (φ) c (ψ) + s (φ) s (ψ) s (θ) c (φ) s (ψ) s (θ)− c (ψ) s (φ)

−s (θ) c (θ) s (φ) c (φ) c (θ)


(3.4)

Similarly, the vector η̇2 is the respective derivative of the η2 which does not have

a physical meaning but it can be indeed studied as a function of the corresponding

angular velocities in the body fixed frame and a transformation rule as describe [1],

[3], [4], [6]

η̇2 = Jk
−1
o (η2)ν2 (3.5)
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where:

Jko(η2) =


1 0 −s (θ)

0 c (φ) c (θ) s (φ)

0 −s (φ) c (φ) c (θ)

⇒ Jk
−1
o =


1 s(φ) s(θ)

c(θ)
c(φ) s(θ)
c(θ)

0 c (φ) −s (φ)

0 s(φ)
c(θ)

c(φ)
c(θ)

 (3.6)

By collecting both kinematic analysis in one 6-dimensional vector, it can be shown

that:

η̇ = Je(R
e
b)ν (3.7)

where:

Je(R
e
b) =

 Re
b O3x3

O3x3 Jko−1

 (3.8)

In fact, the reader may notice that( 3.6 )is not invertible for every angular position

specifically when θ = (2n+1)π/2 for n = 1, 2, 3, ..... at which Jko−1(η2) is singular.

This can be prevented if quaternion representations are applied. However, in this

work, it will be shown that for the chosen UAUV (OUTLAND1000), this will not

represent a problem, so the Euler angle attitude representation can still be applied.

3.3 UAUV’s Dynamics

As it was shown in Section 3.2 the kinematics problem tackles the description of

motion regardless of what causes the motion itself. Thus, a complementary analysis

that includes a description of what phenomena cause the motion is required to get

an entire picture of how and why the motion is occurring. In literature, this pro-

cedure is called dynamical formulation. Multiple approaches might be considered

when it comes to generating a reliable dynamical model. For instance, the classi-
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cal mechanics’ approach is based on Newtonian and Eulerian formulations, and the

variational approach is based on Lagrangian and energy formulations. To summa-

rize, regardless of the formulation method, the main goal of the dynamical analysis

of a generic system is to characterize the resultant forces and moments acting over

the system. I this section, external forces and moments acting over an underwater

vehicle will be defined and written as a function of η and ν to derive the governing

equations of motion of a General marine vehicle.

3.3.1 Newton-Euler Equations of Motion (General form)

As it is specifically developed in [1] and [2] Newton-Euler equations of motion

can be written in matrix form as follows:

MRB ν̇ + CRB(ν)ν = τν

where:

MRB = inertial matrix (constant, symmetric, and positive definite)

CRB = Coriolis matrix

τ = [τ1, τ2]T = total 6-Dimensional external forces and moments vector(3.9)

MRB and CRB are given by:

MRB =

 mI −mS(rbc

mS(rbc Jo


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CRB =

 O33 −mS(ν1)−mS(ν2)S(rbc)

−mS(ν1) +mS(ν2)S(rbc) S(Joν2)

 (3.10)

where m is the total mass of the vehicle, I = diag[Ixx, Iyy, Izz] is the moment

of inertia respect the principal axes of inertia (longitudinal, lateral and normal

symmetry axes of the vehicle), I3 is the 3-dimensional identity matrix and, S(x)

is the skew symmetric operator matrix performing the cross product of two (3x1)

vectors which is given as follows:

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (3.11)

An expanded version of (3.9), and (3.10) is found at [2].

3.3.2 Added Mass and Inertia

When a rigid body is moving in a fluid, the additional inertia of the fluid surround-

ing the body that is accelerated by the movement of the body has to be considered

hence the force required to accelerate the body increases. This phenomenon is de-

fined as added mass and inertial effect.

For simplicity, consider the classic one-dimensional second-order system, which

contains inertia, damping, and stiff forces effects to describe motion in general terms.

mẍ+ bẋ+ kx = f(t) (3.12)
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where m is the system mass, b is the linear damping, k is the system stiffness,

and f(t) is the force acting on the mass, while x is the displacement of the mass.

In a physical sense, added mass is the weight added to a system because an

accelerating or decelerating body must move some volume of surrounding fluid with

it as it moves. It can prove that he added mass force opposes the motion and can

be included in the model as it is shown below:

mẍ+ bẋ+ kx = f(t)−maẍ (3.13)

In addition, added mass forces depend on the motion; hence these forces can arise

in more than just one direction; therefore, in a three-degree of freedom system, the

term ma will become a 3x3 matrix or, in the most general case for spatial motion

(six-degree of freedom) will end 6x6 added mass coefficients matrix. Thus, the added

forces moments written in matrix form are presented as follows:

FA =



m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m31 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66





u̇1

u̇2

u̇3

u̇4

u̇5

u̇6


(3.14)
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MA =



m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m31 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66


(3.15)

Extrapolating a similar approach to the submarine vessel problem, it can be

shown that hydrodynamic added forces and moments along body-fixed frame axes

are defined by the structure given in [1].

XA = −Xu̇u̇⇒ Xu̇ =
∂τx
∂u̇

(3.16)

Following this particular procedure all other 35 elements of MA matrix are ap-

proximated. In fact, This coefficients can be also estimated experimentally as it

was done in [16] where parameter identification for the UAUV Hippocampus was

developed. For futher analysis in added mass effects formulation, calculations and

properties the reader may take look into [1], [2], [4], [17], and [18].

To summarize, added mass effects over UAUVs have been demonstrated in [1],

[2], and most of the literature in underwater vehicle dynamics that inertial added

mass effects can be modeled if and only if the velocity is low, the three planes of

symmetry are considered within the design phase of the vehicle.

MA = −diag[Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ] (3.17)
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Not only inertial forces and moments are affected by added mass, but also Coriolis

and centripetal forces are also influenced by the motion of a rigid body through an

ideal fluid. In fact, Coriolis forces and centripetal matrix CA(ν) can be characterized

by affirming that CA(ν) is skew symmetrical [2]:

CA(ν) = −CT
A(ν) (3.18)

CA =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


(3.19)

3.3.3 Hydrodynamic Damping

At the end end of subsection 3.3.2 implies that (3.9) becomes :

MRV ν̇ + CRB(ν)ν = τν −MAν̇ − CA(ν)ν (3.20)

Similarly, in order to consider the effects of hydrodynamic forces and moments,

an additional term is added to (3.20) RHS such that:

MRB ν̇ + CRB(ν)ν = τν −MAν̇ − CA(ν)ν −D(ν)ν (3.21)

where the term D(ν)ν represents the hydrodynamic damping forces due to fluid

viscous dissipative effects. As it is mentioned in [2] multiple causes of hydrodynamic

dissipation can be described so that the hydrodynamic damping matrix can be
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decoupled as a function of different hydrodynamic phenomena as follows:

D(ν) = DP (ν) +DS(ν) +DW (ν) +DM(ν) (3.22)

DP (ν): is the radiation-induced potential damping due to forced body oscillations.

Ds(ν): is the linear skin friction due to boundary layers effects.

DW (ν): is the wave drift damping.

DM(ν): is the damping ratio due to vortex shedding

In addition, further commentaries and analysis regarding the drag and lift forces

and moments as functions of the angle of attack, side-slip angle, and the geometry

of the vehicle are developed in [19] for further revisions of literature on hydrody-

namic damping effects. However, the proper development of these specific external

perturbations goes beyond the scope of this work; therefore, applying a typical

simplification of the model considering only linear and quadratic damping terms

according to what is done in [1], [2], [6], [16], [19] would represent a representa-

tion reliable enough to proof the objectives of this work. Therefore hydrodynamic

damping components yield to:

DRB(ν) = −diag[Xu, Yv, Zw, Kp,Mq, Nr]

− diag[Xuu|u|, Yvv|v|, Zw|w|, Kpp|p|,Mqq|q|, Nrr|r|]
(3.23)

where DRB(ν) elements are a function of drag and lift forces and moments.

Moreover, drag depends on the fluid density ρ, submarine vehicle frontal area Af
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and lies in the direction of the fluid velocity whereas lift forces action point is on the

center of pressure of the vehicle acting in a perpendicular orientation with respect

to the flow [19].

3.3.4 Hydrostatic Forces and Moments

Better known in marine and ocean engineering as restoring or alignment forces

and moments since usually watercraft is designed to hold a stable position in the

transversal(y-z) and longitudinal(x-z) body frame. In fact, the problem of keep-

ing a fixed roll (φ ∼= φ1) and (θ ∼= θ1) by only applying hydrostatic components

represents by itself a whole study field within the naval architecture and marine

engineering sciences. Further in this work, this property applied to the chosen ve-

hicle (OUTLAND-1000) will be substantially helpful for the development of the

mathematical and control model.

In general, hydrostatic effects can be regarded to one of the most basic principles

of physics, which is the Archimedes’ principle which states ” any body completely or

partially submerged in a fluid (gas or liquid) at rest is acted upon by an upward, or

buoyant, force, the magnitude of which is equal to the weight of the fluid displaced

by the body. The volume of displaced fluid is equivalent to the volume of an object

fully immersed in a fluid or to that fraction of the volume below the surface for an

object partially submerged in a liquid. The weight of the displaced portion of the

fluid is equivalent to the magnitude of the buoyant force. The buoyant force on a

body floating in a liquid or gas is also equivalent in magnitude to the weight of the

floating object and is opposite in direction”
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Following a similar approach as [1] let us define g = 9.81m/s2 as the magnitude of

the earth’s gravity field, W = mg to be the weight of the body, and ∆ as the volume

of fluid displaced by the body so that the Buoyancy force is given by B = ρg∆. In

addition, it necessary to define rBG = [xg, yg, zg]
T and rBB = [xB, yB, zB]T which are

the position of the center of gravity and center of buoyancy, respectively, which are

the locations over the vehicle where gravitational forces are acting. For design and

stability proposes, the center of mass and the center of gravity are said to coincide

so that rBC = rBG

From these definitions the vector form of the forces mentioned above are given

as follows:

g(η) =



− (W −B) sin (θ)

(W −B) cos (θ) sin (φ)

(W −B) cos (θ) cos (φ)

−(ygW − yBB)cos(θ)cos(φ) + (zgW − ZBB)cos(θ)sin(φ)

(zgW − ZB)sin(θ) + (xgW − xBB)cos(θ)cos(φ)

−(xgW − xBB)cos(θ)sin(φ)− (ygW − yBB)sin(θ)


(3.24)

Correspondingly, the effect of these hydrostatic external forces and moments vec-

tor is added to model (3.21) to obtain:

MRB ν̇ + CRB(ν)ν = τν −MAν̇ − CA(ν)ν −D(ν)ν − g(η) (3.25)

Hence:

(MRB +MA)ν̇ + (CRB + CA)(ν)ν +D(ν)ν + g(η) = τν (3.26)
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where: τν = τ + ∆τ being τ recognized as the input dynamics vector and ∆τ a

quantity that further in this work will be considered as an equivalent uncertainty

that gathers the effects of different external perturbations due to random physical

processes or non considered uncertainties on the dynamical formulation itself. The

definition of these two last components depends on the time, geometry, architecture,

and actual state values of the vehicle and will be studied later in this chapter.

Let us consider M = MRB + MA and C = CRB + CA as the total inertia and

Coriolis matrices so that (3.26) finally becomes into the vector representation of the

dynamical equations of motion of the general underwater vessel, which is presented

as follows:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τν (3.27)

where parameter matrices M,C and D must hold for the following proper-

ties [1], [2], [6], [7] [17] [18]:

• the inertia matrix is symmetric and positive definite, i.e., M = MT > 0

• the damping matrix is positive definite, i.e., D(ν) > O

• the damping matrix is positive definite, i.e., D(ν) > O the matrix C(ν) is

skew-symmetric, i.e.,C(ν) = C(ν)T ,∀ν ∈ R6

3.4 OUTLAND-1000 Dynamics

Up to this point, the reader may infer that the analysis is moving towards to

state the actual control problem, so it is important to mention that the mentioned

control problem for underwater autonomous vessels can be analyzed either in the
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body-fixed or earth-fixed representation. In [1], [2] particular rules of transforma-

tion are applied to project the UAUV dynamics between both coordinate systems

while [21], [22] are good examples of how to tackle the UAUV earth-fixed dynamics

and control problem.

As mentioned above in previous sections, most marine vehicles(surface or under-

water) are usually designed based on transverse and longitudinal stability, as can be

respectively seen in Figure 3.3. The main goal of this analysis is essentially defined

by the ship hydrostatics with the unique objective to maintain a static position in

both planes. Therefore, it can be concluded that aligning moments and symmetri-

cal design over the three planes ensure hydrostatic stability, so that roll and pitch

moments are neglected, i.e.,φ = θ ≈ 0 and consequently p = q ≈ 0 to finally arrive

to the assumption that OUTLAND-1000 can be treated as a 4 degrees of freedom

Figure 3.3: Hydrostatic stability planes [84].

In this section the 4DOF kinematics and dynamics of OUTLAND-1000 are de-

scribed as it is done in [20]-[30] and [34].
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3.4.1 4DOF Reduced Kinematics

From the assumptions above regarding roll and pitch motion, the new position

and orientation vector, as well as the translational and angular velocities vector, are

now given as follows:

η =



xe

ye

ze

ψ


⇒ ν =



u

v

w

r


(3.28)

In addition, the spatial transformation matrix Je(R
e
b) is also simplified into:

J =



cos (ψ) − sin (ψ) 0 0

sin (ψ) cos (ψ) 0 0

0 0 1 0

0 0 0 1


(3.29)

Thus, the kinematic model is represented as:

η̇ = J(η)ν (3.30)

3.4.2 4DOF Reduced Dynamics

The reduced form of total matrices M,C,D ∈ R4x4 and g ∈ R4 are expressed as

follows:

M =



m11 0 0 0

0 m22 0 0

0 0 m33 0

0 0 0 m44


, (3.31)
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m11 = m−Xu̇,m22 = m− Yv̇,m33 = m− Zẇ,m44 = Iz −Nṙ (3.32)

C =



0 c12 0 0

c21 0 0 0

0 0 0 0

c41 0 0 c44


, (3.33)

c12 = −mr, c21 = −mr, c41 = mv, c44 = −mu (3.34)

D =



d11 0 0 0

0 d22 0 0

0 0 d33 0

0 0 0 d44


, (3.35)

d11 = −Xu, d22 = −Yv, d33 = −Zw, d44 = −Nr (3.36)

g =



g11

g21

g31

g41


, (3.37)

g11 = −Xuuu|u|; g21 = −Yvvv|v|; g31 = −Zwww|w|; g41 = −Nrrr|r| (3.38)

3.4.3 Uncertain Dynamics Characterization

At the end of Section 3.3 equation (3.26) introduces the vector τν = τ +∆τ which

is basically a representation of the interaction of system control inputs and system

uncertainties.
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In real life, a vehicle operates under the effects of unknown environmental condi-

tions and estimation error of actual dynamical parameters and states due to noisy

hardware components such as sensors that generate an external perturbation that

has to be handled by the control inputs. These perturbations are usually called in

literature as uncertain dynamics. For example, in [20], and [34] uncertain com-

ponents associated with each acting force on the vehicle and the vehicle kinematics

are defined such that the overall magnitude of the ∆τ vector is less or equal than

the 20% of the magnitude of τ . In addition, uncertain kinematics must also hold

for some other requirements regarding the control approach that is applied in this

work which is going to be described further in Chapter 4.

In order to come up with an uncertain dynamics mathematical model that holds

for the description above [20] and [34] have chosen to go with a set of perturbations

given as follows:

Uncertain Equivalent Kinematic Matrix

∆J =



∆J11 ∆J12 0 0

∆J21 ∆J22 0 0

0 0 ∆J33 0

0 0 0 ∆J44


(3.39)
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∆J11 = J11(0.02 cos(10t)− 0.3 sin(100txe)),

∆J12 = J12(0.02 cos(10t)− 0.3 sin(100txe)),

∆J21 = J21(−0.03 cos(2t) + 0.4 sin(200t)),

∆J22 = J22(−0.03 cos(2t) + 0.4 sin(200t)),

∆J33 = J33(−0.5 sin(300t)),

∆J44 = J44(0.04 cos(0.1t))

(3.40)

Uncertain Equivalent Inertia Matrix

∆M =



∆m11 0 0 0

0 ∆m22 0 0

0 0 ∆m33 0

0 0 0 ∆m44


(3.41)

∆m11 = M11(−0.02 cos(5t) + 0.2 sin(50tu)),

∆m22 = M22(0.02 sin(t)− 0.3 sin(40t)),

∆m33 = M33(0.03 cos(0.1t)− 0.4 cos(60w)),

∆m44 = M44(−0.02 sin(0.5tr) + 0.3 cos(80t))

(3.42)

Uncertain Equivalent Coriolis Matrix

∆C =



0 ∆c12 0 0

∆c21 0 0 0

0 0 0 0

∆c41 0 0 ∆c44


(3.43)
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∆c12 = C12(−0.02 cos(5t) + 0.2 sin(50tu)),

∆c21 = C21(0.02 sin(5t)− 0.3 cos(40t)),

∆c41 = C41(0.03 cos(0.1t)− 0.4 cos(60w)),

∆c44 = C44(−0.02 sin(0.5tr) + 0.3 cos(80t))

(3.44)

Uncertain Equivalent Hydrodynamic Damping Matrix

∆D =



∆d11 0 0 0

0 ∆d22 0 0

0 0 ∆d33 0

0 0 0 ∆d44


(3.45)

∆d11 = D11(−0.02 cos(5t) + 0.2 sin(50tu)),

∆d22 = D22(−0.02 cos(5t) + 0.2 sin(50tu)),

∆d33 = D33(0.03 cos(0.1t)− 0.4 cos(60w)),

∆d44 = D44(−0.02 sin(0.5tr) + 0.3 cos(80t))

(3.46)

Uncertain Equivalent Hydrodynamic Hydrostatic Vector

∆g =



∆g11

∆g21

∆g31

∆g41


(3.47)
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∆g11 = g11(−0.02 cos(5t) + 0.2 sin(50tu)),

∆g21 = g21(0.02 sin(t)− 0.3 cos(40t)),

∆g31 = g31(0.03 cos(0.1t)− 0.4 cos(60w)),

∆g41 = g41(−0.02 sin(0.5tr) + 0.3 cos(80t))

(3.48)

Hence, the composed nominal and uncertain dynamics is given now given by:

η̇ = (J + ∆J)ν

(M + ∆M)ν̇ + (C(ν) + ∆C)ν + (D(ν) + ∆D)ν + (g(η) + ∆g) = τ(3.49)

For convinience let us define Mc = M + ∆M,Cc = C(ν) + ∆C,Dc = D(ν) +

∆D, gc = g(η) + ∆g.

3.4.4 OUTLAND 1000 Input Dynamics

Coming up to the last section of this chapter, let us recall comments done in chap-

ter 1 and section 3.3 about input dynamics, which stated and described the influence

of the vehicle geometry, architecture, and installed hardware over the relation of ac-

tuators control inputs and the desired forces and torques. The OUTLAND-1000 is

designed such that the actual dynamics and kinematics of the robot can be reduced

from a 6DOF to a 4DOF; therefore, the control problem of the OUTLAND-1000 is

also simplified from an underacted to a fully acted control problem. In figure 3.1 it

can be observed the actuator (thrusters) configuration of the studied robot.
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Figure 3.4: Thrusters configuration taken from [34] c©2021 Outland Technology,
Inc.
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In [1] it is mentioned that thrusters inputs (voltage) and thrust force given by the

actuators are highly nonlinear. This relation is usually needed to be estimated ex-

perimentally and then modeled by applying data analysis and model approximation

techniques. However, for the proposes of this work, according to [34] the generated

force FT is directly proportional to the square of motor rotational speed(ω). More-

over, generated moments by thrusters are given are said to be MT = r × FT where

r = [rx, ry, rz]
T is the position of the actuator respect the origin of the body-fixed

reference frame. Therefore the ith forces and moments are given by:

FT i = k1ω
2
i = ku2

i ⇒ ωi = k2ui ⇒ λ = k1k
2
2 ⇒MT i = ri × ku2

i (3.50)

Therefore the total input vector adapted to given OUTLAND-1000 configuration

presented above is given as follows:

τ =



τX

τY

τZ

τN


=



λ λ 0 0

0 0 λ 0

0 0 0 λ

aλ
2
−aλ

2
λ (b− 21) 0





u1
2

u2
2

u3
2

u4
2


≡ Bu (3.51)

In order to give a conclusive remark to this chapter, the nonlinear state-space

model that is going to be used later in this work for control proposes is finally

presented as follows:

η̇ = Jcν (3.52)

ν̇ = M−1
c (−Ccν −Dcν − gc + τ + ∆τ) (3.53)
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Chapter 4

Guidance and Control

In Chapter 3 it was developed the dynamical model of a UAUV.In fact, from

work done in this chapter, the reader may already have an idea of what are the

challenges to be addressed by the control scheme that will be proposed in this

chapter 4. The chosen control strategies must be advanced enough to handle the

highly nonlinear UAUV dynamics and robust enough to deal with unpredictable

external disturbances. Such as the one produced by ocean currents, waves, wind,

and vortex shedding.

In this chapter, further comments on guidance and control of UAUV’s will be

stated, and suitable control strategies for trajectory and source tracking will be

studied for them to be implemented on the dynamics of the OUTLAND-1000.

4.1 System Stability of Underwater Vehicles

There exists some kind of confusion when marine vehicle stability is on the table.

For instance, a naval architect is asked to give some notions on ships stability which

with a high level of certainty, he/she will come up with concepts, such as stability

plane, healing angles, and aligning moments which are all associated with the ships
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hydrostatics. In contrast, a mechanical engineer would give up some comments

on the boundedness of the kinematics and dynamics of the vehicle. Indeed both

approaches are right depending on the study area; however, both are complementary

to each other. Therefore, for nomenclature convenience for now on in this work,

stability will be accepted as the ability of the vehicle to return to an equilibrium state

of motion after a disturbance without any corrective action; whereas the capability

to carry out specific maneuvers will be defined as maneuverability, [2] [3].

A more general study would be to study the system behavior under two specific

conditions defined as controls-fixed stability and controls-free stability.

4.1.1 Controls-Fixed Stability

This stability study, also known as open-loop stability analysis considers the re-

sponse of the vehicle when actuators (thrusters and surfaces) set in a constant

position. Since the dynamics of a UAUV is nonlinear, a stability analysis based on

Lyapunov’s direct method is applied.

In order to study open-loop stability for marine vehicles, the total mechanical

energy is said to be a suitable Lyapunov candidate to define the region under the

system as stable at a constant input condition.

V (η, η̇) =
1

2
η̇TMηη̇ +

∫ η

0

gTη (z) dz (4.1)

for τη = τ(η) + ∆τ(η, t) = 0, and Mη, gη(z) are the inertia matrix and hydrostatic

vector represented in the earth fixed coordinate system.
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An extensive and detailed analysis and manipulations regarding open-loop stabil-

ity are made in [2] to end up with the following conditions for the system to achieve

open-loop stability:

• V = 0 for η̇ = η = 0

• For V > 0,∀η̇, η ∈ Rn the inertia matrix is symmetric and positive definite,

i.e., M = MT > 0

• V̇ < 0, ∀ν ∈ Rn if and onlu if the damping matrix is positive definite, i.e.,

D(ν) > O

• V →∞ as ||η|| → ∞ and ||η̇|| → ∞

4.1.2 Controls-Free Stability

Also known as closed-loop stability considers the dynamics of the control inputs

have to be considered in the stability analysis. A typical way to come up with a

description of this analysis is to consider a tracking problem.

Let us define eν = ν(t)−νd(t) as the kinematic tracking error function where νd(t)

is the desired state vector.Moreover, the following Lyapunov function is proposed:

V (e, t) =
1

2
eTMe (4.2)

Taking the first time derivative of equation (4.2)

V̇ = eTMė (4.3)
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substitute equation (3.53) into (4.3) , so that:

V̇ = eT [τ −Mν̇d − C(ν)νd −D(ν)νd − g(η]− eTD(ν)e (4.4)

By invoking Coriolis matrix skew-symmetric property, then, eTC(ν)e = 0, ∀e ∈

Rn can be also concluded. Therefore, in order to meet Lyapunov’s stability criteria,

the control law can be primarily suggested as follows:

τ = Mν̇d + C(ν)νd +D(ν)νd + g(η)−Kde (4.5)

where Kd is non negative gain matrix. Hence,

V̇ = −eT [D(ν) +Kd]e ≤ 0 (4.6)

where Kd > 0 is known as the “Slotine and Li algorithm” regulator gain matrix.

This Lyapunov-based analysis shows a typical structure for the control input τ

that handles to linearize the dynamics of the vehicle since the velocity gives the

reference commands and angular velocity vector ν = [ν1, ν2]T . However, the main

interest of this work is to control the variables inside the position vector η = [η1, η2]T .

Therefore, the control strategies to be presented in this work will be based on a

combination of exact linearization and backstepping techniques.
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4.2 State Feedback Stabilization Based on Back-

stepping

In this section, theoretical background on backstepping is presented to summa-

rize the foundations and structures required to formulate a backstepping feedback

stabilization control so that for this proposal, the same nomenclature that is used

by Khalil in [36] is implemented for consistency interests. Yet, in further sections

of this work, every control formulation will be adapted to the notation used up to

this point.

Consider a cascade nonlinear dynamical system which form definition is said to

be the system that one of its states is the control input of the following state in the

subsequent dynamical system. In other words, consider the following system:

η̇ = fa(η) + ga(η)ξ (4.7)

ξ̇ = fb(η, ξ) + gb(η, ξ)u (4.8)

where η ∈ Rn, ξ ∈ R1 is the virtual input and u ∈ R1 is the actual control

input. Moreover, it is assumed the ξ is stabilized by a smooth state feedback control

ξ = φ(η) with φ(0) = 0 which allows the origin of 4.9 to be asymptotically stable.

η̇ = fa(η) + gaφ(η), fa(0) = 0 (4.9)

To prove that the statement above is true, suppose that there exists a smooth

and positive definite Lyapunov function Va(η) that satisfies:

∂Va
∂η

η̇ =
∂Va
∂η

[fa(η) + ga(η)φ(η)] ≤ −W (η) (4.10)
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where W (η) is positive definite. Futhermore, applying some algebraic manip-

ulations in (4.7) by adding and subtracting ga(η)φ(η) on the RHS of (4.7) results

in:

η̇ = fa(η) + ga(η)φ(η) + ga(η)[ξ − φ(η)] (4.11)

Now consider the following a new error variable z = ξ− φ(η) which arrives in the

system:

η̇ = fa(η) + ga(η)φ(η) + ga(η)z (4.12)

ż = fb(η, ξ)−
∂φ

∂η
[fa(η) + ga(η)φ(η) + ga(η)z] + gb(η, ξ)u (4.13)

Up to this point, in order to study the overall stability of the system, let us define

the following Lyapunov function candidate:

V (η, ξ) = Va +
1

2
z2 (4.14)

Hence:

V̇ =
∂Va
∂η

[fa(η) + ga(η)φ(η)] +
∂Va
∂η

ga(η)z

+ z[fb(η, ξ)−
∂φ

∂η
[fa(η) + ga(η)φ(η) + ga(η)z]] + zgb(η, ξ)u ≤

−W (η) + z[
∂Va
∂η

ga(η) + fb(η, ξ)−
∂φ

∂η
[fa(η) + ga(η)φ(η) + ga(η)z] + gb(η, ξ)u]

(4.15)

In order to stabilize the system, u is chosen so that V̇ is negative definite in η and

ψ

u = − 1

gb(η, ξ)
[
∂Va
∂η

ga(η) + fb(η, ξ)−
∂φ

∂η
[fa(η) + ga(η)φ(η) + ga(η)z] +Kz], (4.16)
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for K ≥ 0 that yields:

V̇ ≤ −W (η)−Kz2 (4.17)

Therefore, if such a Va(η) and V (η, ξ) can be defined, then the origin (η = 0, z = 0)

is asymptotically stable and since φ(0) = 0, it can be implied that the origin of the

original system (η = 0, ξ = 0) is also asymptotically stable. Additionally, if it is

able to proof that Va(η) is radially unbounded, then the global origin of the system

is globally asymptotically stable.

4.3 Hierarchical Backstepping Control Applied to

OUTLAND-1000

In this section, it is embraced the fact that the implementation sometimes is

unfeasible for some control design purposes, especially for those systems where input

coupling cannot be neglected [37]. This fact is indeed one of the main reasons that

most of the literature states the restriction that the UAUV must be fully actuated

by either control surfaces or thrusters or a combination of both.

In 4.2 the central notions of backstepping Lyapunov-based control are formulated.

The reader may have noticed that input ”u” is defined as a scalar which for our

system, which at least has 4-DOF, is not enough. Nonetheless, plenty of work has

been done in [19] to [37] to evaluate the effectiveness of backstepping approaches

on underwater vehicles showing some promising results in trajectory tracking and

formation maneuvers of multiple UAUV’s.
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Control Problem Formulation for OUTLAND-1000

As it was mentioned in previous sections, all nomenclature exposed by Khalil in

[36] will be updated and adapted to the convention used during most of this work,

and similarly, since the control formulation in this section is based on [20], its

nomenclature and variables will be adjusted as well.

According to the reduced dynamics of the OUTLAND-1000 described in 3 let us

define ηd = [xd, yd, zd, ψd]
T as the reference or desired position vector and its respec-

tive error tracking function e = [ex, ey, ez, eψ]T . In addition, based on kinematics a

desired body-fixed velocity vector νd can be approach from ηd and its derivative as

it can be seen:

ud = ẋd cos(ψd) + ẏd sin(ψd)

vd = −ẋd sin(ψd) + ẏd cos(ψd)

wd = żd

rd = ψ̇d

(4.18)

However, velocities tracking error will be defined as the difference of the actual

velocities of the UAUV respect a virtual control input given as follows:

νc = J−1(η̇d +Ke) (4.19)

Then, the velocity control is said to be eν = νc − ν so that eν = [eu, ev, ew, eψ]T .
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Notice that at this stage of the problem formulation the uncertain kinematic term

∆J has been ignored. In addition, due to OUTLAND-1000 reduced kinematics it

can be concluded the J ∈ R4×4 is a positive, always ivertible matrix and K a positive

definite diagonal Matrix.

Looking at the system exposed in (3.52) and (3.53) it can be observed that the

dynamics and the dynamics of OUTLAND-1000 fits the main structure requirement

of the backstepping control approach. Therefore, to prove that this method can be

applied for this UAUV, the following Lyapunov candidate function is defined for the

system kinematics.

Va =
1

2
eT e (4.20)

Then, by taking the derivative of Va it is obtained:

V̇a = eT (η̇d − Jcν)

V̇a = eT [η̇d − (J + ∆J)J−1(η̇d +Ke)]

V̇a = eT [−Ke−∆JJ−1(η̇d +Ke)]

V̇a = −eTKe− eT∆JJ−1(η̇d +Ke) ≤ −α||e||2 + β||e|| = −α||e||(||e|| − β

α
)

(4.21)

where α = λmin[K + ∆JJ−1K] > 0 and β = max||∆JJ−1η̇d||. Therefore, since

||e|| ≥ β
α

then, V̇a ≤ 0 as t→∞ [20], so it can be shown that Va is bounded as well

it can be implied that e is ultimately unbounded.Hence, this virtual control input

νc can be implemented as the virtual reference velocity input similarly as it is work

out in [20], [34], [37].

Now moving forward, the control input τ in system dynamics (3.53) is designed

to stabilize the virtual reference velocity νc based on the backstepping method as
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follows:

τ = M(ν̇c +K1eν) + C(ν)ν +D(ν)ν + g(η) (4.22)

where K1 is a properly dimensioned positive diagonal matrix, to further proceed

with the stability analysis, the overall Lyapunov function is also defined as the

backstepping method described, then:

V (η, ν) = Va +
1

2
eTν eν (4.23)

To continue the analysis the first time derivative of V is taken:

V̇ (η, ν) = V̇a + eTν [ν̇c − (M + ∆M)−1[M(ν̇c +K1eν)−∆Cν −∆Dν −∆g]

= V̇a + eTν [ν̇c − (M−1 +X)[M(ν̇c +K1eν)−∆Cν −∆Dν −∆g]]

= V̇a + eTν [−(K1 +XMK1)eν −XMν̇c + (M−1 +X)(∆Cν + ∆Dν∆g)]

≤ V̇a − Γ1||eν ||2 + Γ2||eν || ≤ −α||e||(||e|| −
β

α
)− Γ1||eν ||(||eν || −

Γ2

Γ1

)

(4.24)

where X = −(I + M−1∆M)−1M−1∆MM−1. Γ1 = λmin[K1 + XMK1] and Γ2 =

max[||−XMν̇c+(M−1 +X)(∆Cν+∆Dν+∆g)||]. Hence, since ||e|| ≥ β
α

is satisfied

and ||eν || ≥ Γ2

Γ1
implies that ˙V (η, ν) ≤ 0 as t → ∞ then it can be finally concluded

that V (η, ν) is bounded.
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4.4 Backstepping Trajectory Tracking (Numeri-

cal Results)

4.4.1 Circular Trajectory Tracking

In this section, to study the performance and robustness, the proposed Dynamical

model and its control law are simulated. In this section, it can be seen how the

system performs for tracking a circular helical trajectory with disturbances given by

:

ηd(circle) =

[
a sin

(
2πt

Tcircle

)
,−a cos

(
2πt

Tcircle

)
, zd(t), ψd(t)

]T
(4.25)

Where a is the radius of the circle,Tcircle is the circular period,zd is the desired

water depth which for the proposed of following a helical trajectory it should be

defined as a linear function zd(t) = m1t+ b1 and, ψd is desired yaw angle which for

seeking of stability will be given as linear function as well ψd = m2t+ b2

Results that are shown up are gotten from using simulations parameters in Ap-

pendix A.1.2

Let the initial position and orientation of the vehicle to be η(0) = [10, 10, 1, 0] and

the reference desired trajectory and orientation to be chosen as:

ηd = [2 sin(0.5t),−2 cos(0.5t), 0.1t, 0.5t] (4.26)

The tracking responses of trajectory and virtual velocity for the AUV system are

shown in the following set of figures.
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Figure 4.1: Circular helix trajectory-tracking.

Figure 4.2: Circular plane trajectory-tracking.
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Figure 4.3: Tracking responses of reference positions for circular trajectory.
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Figure 4.4: Tracking errors with disturbances for circular tracking.
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Figure 4.5: Tracking responses of virtual reference velocities for circular tracking.
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Figure 4.6: Tracking errors of virtual reference velocities for circular trajectory.
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Figure 4.7: Control signals: Total surge thrust τx, sway thrust τy, yaw torque τN ,
heave thrust τz for circular tracking.
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4.4.2 Spiral Trajectory Tracking

A little more complex spiral trajectory is being tracked in this study to demon-

strate that the control scheme applied in this work produces a well-behaved, smooth

transient response and quick convergence of tracking errors near the origin.

The spiral trajectory that is desired to track in this section is given by:

ηd = [t sin(0.1t),−t cos(0.1t), 0.1t, 0.5t] (4.27)

For the exact same set of initial conditions studied in the circular trajectory

tracking in the last section.

The reader should notice that control gains must be modified to get a feasible

performance of system state variables for the system to follow this new trajectory.

Simulation parameters can be found in Appendix A.1.3

Figure 4.8: Path Trajectory-Tracking for spiral trajectory.
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Figure 4.9: Tracking responses of reference positions for spiral trajectory.
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Figure 4.10: Tracking errors with disturbances for spiral tracking.
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Figure 4.11: Tracking responses of virtual reference velocities for spiral trajectory.
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Figure 4.12: Tracking responses of virtual reference velocities for spiral trajectory.
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Figure 4.13: Control signals: Total surge thrust τx, sway thrust τy, yaw torque τN ,
heave thrust τz for spiral tracking.
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4.4.3 Backstepping Control Simulation results

From figures 4.1,4.2, and 4.8, it can observed the effectiveness of the control strategy

proposed. In addition,regarding system robustness, in Figures 4.3,4.4,4.5,4.6,4.9,4.10,

4.11, and 4.12 it can be also seen that not only the trajectory tracking responses,

but also virtual reference velocities are demonstrated to be satisfactory in terms of

convergence. The system’s performance and stability can be improved by modifying

the control parameters in the respective gains K and K1. However, the main draw-

back of this backstepping control approach becomes evident newly in Figures 4.5,

and 4.11 where it can be implied the instantaneous high energy demand imposed

on the actuators for the system to meet the desired virtual reference velocity val-

ues. Therefore, this side effect could yield the system simulation to reach physically

unfeasible values depending on the control gains proposed and path trajectory com-

plexity. Furthermore, an interesting comparison on how the control inputs behave

with respect to the complexity of the trajectory is shown in Figures 4.7 and 4.13. In

fact, in this study, it can be appreciated that control efforts tend to be larger for the

spiral trajectory than circular trajectory tracking since control grain are required to

be larger for the system to track a spiral trajectory properly.

To provide a closure to this section, it has to be said that if a Hierarchical-

Backstepping control structure is applied, a compromise must be set up for accept-

able ranges of performance and stability due to its robustness and fast convergence.

Further in this work, input and output variables responses under this control ap-

proach will be studied for source tracking and estimation duties.
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4.5 Integrated Backstepping and Sliding Mode Track-

ing Control

For the propose of trajectory tracking, backstepping techniques are widely used;

however, numerical experiments made in the previous section and most of the lit-

erature are agreed when they state the most apparent disadvantage of this kind of

algorithm, which is the fact that the relationship of the velocity control with state

errors generates, physically unfeasible large velocities for significant initial state er-

rors as well as sharp speed jumps for sudden tracking errors. Thus, one can say that

the best feature of the backstepping method is also its principal flaw depending on

the application.

Since the main objective of this work is that our vehicle can track and follow a

moving oil plume on the surface of an open channel, then the probability that the

system encounters significant initial tracking errors and sudden disturbances are

high. Therefore, finding a suitable solution to overcome those impractical speed

jumps result from the backstepping method becomes essential for the proposes of

this work. Throughout the years multiple approaches have been suggested, some

of them in the field of fuzzy logic algorithms, and most recently, neural networks

algorithm [34]. [38], [39], [40], [41]. However, in order to tackle this drawback an

integrated cascaded control for the kinematics and dynamics based on a bio-inspired

backstepping model and sliding mode control is presented for the 4-DOF tacking

control of the OUTLAND-1000.
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4.5.1 Sliding Mode Control

Before going any further, this section will be focused on defining the foundations

of sliding mode control methods. Similarly, as it was done in section4.2 the same

nomenclature utilized by Khalil in [36] is taken to introduce the sliding mode control

method, then it will be adapted to the nomenclature currently used in this work.

In [36] the sliding mode control is motivated through the following example:

Let us consider:

ẋ1 = x2 (4.28)

ẋ2 = h(x) + g(x)u (4.29)

where h and g are unknown locally Lipschitz function and g(x) ≥ g0 > 0∀x. In

this case, a state feedback controller is desired to stabilize the origin. This proposal

assumes that a controller that constrains the trajectory within a manifold s(t) can

be designed. The manifold or time-varying surface is given as follows:

s = ax1 + x2 = 0 (4.30)

Thus, the motion is governed by ẋ1 = −ax1 which by choosing a > 0, then x(t)→ 0

is guaranteed as t → ∞. Additionally, the rate of convergence can be controlled

by the right choice of a. In fact, it can be seen that the motion on the manifold

s = 0 is independent of h and g.Now, the objective that is needed to follow is to

keep the trajectory within the manifold. Hence, the first derivative of the manifold

is studied.

ṡ = aẋ1 + ẋ2 = ax2 + h(x) + g(x)u (4.31)
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where h and g are said to satisfy:

|ax2 + h(x)

g(x)
| ≤ ρ(x),∀x ∈ R2 (4.32)

for some known function ρ(x)

Now let us define the following Lyapunov function candidate:

V (s) =
1

2
s2 (4.33)

Hence,

V̇ = sṡ

= sax2 + sh(x) + sg(x)u = s
ax2 + h(x)

g(x)
g(x) + sg(x)u

≤ |s||ax2 + h(x)

g(x)
|g(x) + sg(x)u ≤ |s|ρ(x)g(x) + sg(x)u

(4.34)

Consequently, control u is chosen such that the term sg(x)u is negative and dom-

inates |s|ρ(x)g(x) whenever |s| 6= 0, so stability is achieved. In addition, the net

negative term to force |s| to zero is wanted to do so in a finite time. This can be

achieved by taking:

u = −β(x) sign(s) (4.35)

Where function β(x) : β(x) ≥ ρ(x) + β0 for β0 > 0 Therefore, whenever |s| 6= 0, we

have:

V̇ ≤ |s|ρ(x)g(x) + sg(x)u = |s|ρ(x)g(x)− g(x)β(x) sign(s)

≤ |s|ρ(x)g(x)− g(x)s(ρ(x) + β0) sign(s)

= g(x)β0|s| ≤ −g0β0|s|

(4.36)

73



Thus, W =
√

2V = |s| satisfies the differential inequality Ẇ ≤ −g0β0. By integra-

tion, it can be seen that:

|s(t)| ≤ |s(0)| − g0β0t (4.37)

Therefore, it is shown that once the trajectory reaches the manifold in finite time

and once on the manifold, trajectory cannot leave letting u = −β(x) sign(s) is the

sliding mode control.

Khalil, in his work presented in [36] describes how the motion consists of the

reaching phase during which the trajectories starting off the manifold s = 0 move

toward it and reach it in a finite time, followed by a sliding phase during which

the motion is confined to the manifold s = 0 and the dynamics of the system are

represented by the reduced-order model ẋ1 = −ax1.

A commonly used sliding mode controller is when β(x) = k, then inequality (4.32)

and control (4.35) simplify to :

|ax2 + h(x)

g(x)
| ≤ k1 (4.38)

and,

u = −k sign(s), k > k1 (4.39)

This simplified form of the sliding mode controller is known as the simple relay

form. Nonetheless, this control structure usually leads to a finite region of attrac-

tion;the condition sṡ ≤ 0 within the set |s| ≤ c makes it positively invariant.

To estimate the region of attraction consider:

ẋ1 = x2 = −ax1 + s, V0 =
1

2
x2

1 (4.40)
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Then,

V̇0 = x1ẋ1 = ax2
1 + sx1 ≤ −ax2

1 + |x1|c = −|x1|(a|x1| − c) ≤ 0,∀|x1| ≥
c

a
(4.41)

Therefore, since |x1(0)| ≤ c
a
⇒ |x1(t)| ≤ c

a
,∀t ≥ 0 , the set Ω = |x1| ≤ c

a
, |s| ≤ c

is positively invariant if inequality (4.38) holds for all x ∈ Ω. Thus, if k is chosen

arbitrarily large, the subsequent control law is able to achieve semi-global stability.

However, for this ideal setup sliding mode control requires the control input to

oscillate with a very high (ideally infinite) frequency which is physically unfeasible

for most actuators. Furthermore, due to imperfections in switching devices/delays

sliding mode control presented in (4.39) may cause the trajectory to oscillate around

the sliding surface instead of staying identically on it. This effect is named chattering

which some basic notions on how this could be handled are developed in [36]. In this

work, chattering effects are considered and managed by implementing an adaptive

control law that replaces the discontinuous term. In further sections, the work done

in [34] and [38] will be presented and integrated into the source tracking problem.

4.5.2 Bio-inspired Neurodynamics Backstepping

Control Model

To overcome the high-speed jump and control constraint problem carried by

backstepping based control laws, a bio-inspired neurodynamics model developed

by Grossberg in [44] is implemented within the design of virtual control velocity

controller. The main characteristic of this model is that it provides shunting features

that make its output bounded to a finite interval and hold a smooth and sharpless

behavior when inputs change suddenly.
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This bio-inspired neurodynamics model was initially derived based on the mem-

brane model developed by Hodgkin and Huxley in [45] for a path of the membrane

using electrical elements. The following state-space model shows the voltage dy-

namics through the membrane:

Cm
dVm
dt

= −(Ep+ Vm)gp + (ENa − Vm)gNa − (Ek + Vm)gk (4.42)

where Cm is the membrane capacitance and the Parameters Ek, ENa and Ep are said

to be the Nernst potentials for potassium, sodium, and passive current leaks across

the membrane while gk, gp and gNa are the respective conductance of potassium and

sodium, the passive channels are functions of time-varying inputs. This modeled

equation is further manipulated by Sun in [34] and [43];, in his work, Sun how this

model can be used to describe an online adaptive behavior of tracking errors. After

the manipulations, it has been able to produce an adjusted model given as follows:

V̇i = −AVi + (B − Vi)f(ei)− (D + vi)g(ei) (4.43)

where parameters A,B and D are positive constants that define respectively the

passive decay rate. In fact, it can be proven that the dynamics describe by equation

(4.43) is restricted to a bounded range [−D,B] for any external input. In addition,

excitatory and inhibitory inputs (external input) are given respectively, such as

f(ei) = max(ei, 0) and g(ei) = max(−ei, 0) where e is the tracking error function

defined previously in section 4.3.

Now the original virtual velocity control law is updated by implementing the bio-

inspired neurodynamic model such that the new virtual velocity control is given

by:
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νc = J−1(η̇d +KV ) (4.44)

Consequently, due to the shunting characteristics of V , now the output of νc is

bounded in a finite and smooth within a finite interval. Hence, the backstepping

controller proposed in section 4.2 has significantly been improved.

4.5.3 Adaptive Sliding-Mode Control

Since velocity has been enhanced, the control forces and moments will now be

generated by the integration of a nonchattering sliding mode controller following

the knowledge presented in [34], [38], and [43]. This control structure has been

chosen because it has shown excellent handling of external disturbances and un-

certain dynamics. In fact, in Section 4.5.1 it has been proven that this control is

entirely independent of the system dynamics and could produce a well-behaved out-

put as long as a suitable way to keep the trajectory within the sliding manifold is

conceived. In this section, the formulation of an adaptive, free chattering sliding

mode control law is presented as follows:

Firstly, it is necessary to define the sliding mode manifold and consequently design

a control law that moves the state trajectory towards the given sliding surface:

s = ėν + 2Λeν + Λ2

∫
eνdt (4.45)

where ν = νc−ν is the virtual velocity tracking, error while Λ is a positive constant.

Taking the derivative of s:

ṡ = ëν + 2Λėν + Λ2eν = ëν + 2Λ(ν̇c − ν̇) + Λ2eν (4.46)
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When the system is operation on the sliding surface then ṡ = 0. Thus,

ëν + 2Λ(ν̇c − ν̇) + Λ2eν = 0 (4.47)

Substituting in (3.53) into (4.47), we obtain:

ëν + 2Λ(ν̇c −M−1(τ − Cν −Dν − g)) + Λ2eν = 0 (4.48)

Then the equivalent control law is given by:

τeq = M(ν̇c +
ëν
2Λ

+
Λ

2
eν) + Cν +Dν + g (4.49)

where M,C,D, and g are the average inertia, Coriolis, hydrodynamic matrices and

hydrostatic vector defined in Chapter 3.

A naive conventional sliding mode control can be proposed such that

τ = τeq + k sign(s) (4.50)

Nonetheless, in previous sections, it was shown that the k sign(s) leads the control

inputs to oscillate at high frequency, generating chattering then and a adaptive term

is added as it is proposed in [38].

τad = τ̃est − (K +
C

2Λ
)s (4.51)

where τ̃est is the adaptive term that estimates the effects of lumped uncertainties

while K is a positive constant intimately related with the convergence rate of the

controller. In addition, the estimation of the lumped uncertainty vector is proposed
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to be given as follows:

˙̃τest = −Γs (4.52)

where Γ is is a positive definite diagonal constant design matrix that determines

the rate of adaptation. This adaptive term relates the error metric s function to the

dynamic uncertainties and acts on the controller in such a way that the estimated

dynamics reflect the unknown dynamics more closely to the actual dynamics [38].

Finally the total control can be stated as it is shown

τ = τeq + τ̃est − (K +
C

2Λ
)s (4.53)

Notice that the presented control variables are a function of tracking errors and

corresponding derivatives, which are difficult to compute. For this work, it will be

considered acceptable the numerical derivatives are computed as follow:

dnx

dtn
= −kc

dn−1x

dtn−1
(4.54)

4.5.4 Bio-Inspired Integrated Sliding Mode Control Trajec-

tory Tracking (Numerical Results)

Similarly, as it was done for the pure backstepping control defined in section

4.2 a numerical experiment is run to show this new bio-inspired integrated sliding

Mode Control (BIISM). In this case, the system is newly asked to track the same

circular trajectory for the same initial values presented in section 4.4.1. In addition,

simulation parameters for this study, case are presented in appendix A.1.4.
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Figure 4.14: Circular helix trajectory-tracking BIISM.

Figure 4.15: Circular plane trajectory-tracking BIISM.
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Figure 4.16: Tracking responses of reference positions for circular trajectory BIISM.
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Figure 4.17: Tracking errors with disturbances for circular tracking BIISM.
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Figure 4.18: Tracking responses of virtual reference velocities for circular tracking
BIISM.
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Figure 4.19: Tracking errors of virtual reference velocities for circular trajectory
BIISM.
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Figure 4.20: Control signals: Total surge thrust τx, sway thrust τy, yaw torque τN ,
heave thrust τz for circular tracking BIISM.
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Giving some remarks on BIISM control, it can be seen that main issues such

as high velocity jumps due to either high initial errors or sudden disturbances have

been corrected due to the boundedness provided by the shunting property of the

bio-inspired velocity control. Additionally, the control input is shown to have been

improved significantly by dropping its order magnitude due to non-chattered sliding

mode control action.

4.6 UAUV Source tracking and Guidance

The concentration field will be defined such that it can serve as reference values to

be tracked by our UAUV. In [46] Tian developed a domain decomposition algorithm

to model a moving plume generated by a moving aerial source. The primary purpose

of this work is to implement a concentration estimator that allows a follower aircraft

to estimate and track the concentration spectrum carried by the moving source in

real-time. Moreover, The guidance strategy presented in [46] is based on two

components. One of them is provided by a concentration sensor mounted on the

aircraft, and the second is given by a PDE estimator of the concentration field.

One may guess the goal is to propose a guidance law to minimize the difference

between the values obtained from the process-state estimator and concentration

sensor. Thus, the following state estimation error function is defined:

ε(t) = e(xe(t), ye(t), ze(t), t) = C(xe(t), ye(t), ze(t), t)− Ĉ(xe(t), ye(t), ze(t), t)

(4.55)

Therefore control inputs given as function of desired Cartesian velocities are said
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to be as [46] follows:

Ud ≡ ẋd = kX sign(ε(t)) sign

(
∂ε(t)

∂(x)

)
(4.56)

Vd ≡ ẏd = kY sign(ε(t)) sign

(
∂ε(t)

∂(y)

)
(4.57)

Wd ≡ żd = kZ sign(ε(t)) sign

(
∂ε(t)

∂(z)

)
(4.58)

Therefore, desired positions the vehicle are obtain by integrating functions (4.60),(4.61),

and (4.62) such that:

xd =

∫
Uddt, yd =

∫
Vddt, zd =

∫
Wddt (4.59)

In [46], the PDE Luenberger estimator is solved using an adaptive parallel pro-

cessing upwinding finite volume method based on domain decomposition. However,

in this work, the concentration field will be known a priori by a super-user, and its

historical data is uploaded and implemented in the dynamical model. Consequently,

modified control velocity commands are proposed as follows:

Ud ≡ ẋd = kX sign (C(xe(t), ye(t), ze(t), t)) sign

(
∂C(xe(t), ye(t), ze(t), t)

∂x

)
(4.60)

Vd ≡ ẏd = kY sign (C(xe(t), ye(t), ze(t), t)) sign

(
∂C(xe(t), ye(t), ze(t), t)

∂y

)
(4.61)

Wd ≡ żd = kZ sign (C(xe(t), ye(t), ze(t), t)) sign

(
∂C(xe(t), ye(t), ze(t), t)

∂z

)
(4.62)

where kX , kY , kZ are positive defined by the user. Desired positions remain as

they were given in equation (4.59).
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4.6.1 Bio-Inspired Integrated Sliding Mode Control for Source

Tracking (Numerical Results)

A 2-dimensional concentration process (moving plume) is modeled. in a domain

LX = 1000m × LY = 1000m as an instantaneous Gaussian pulse released in given

point a = (500, 500)m. In this section, the performance of the UAUV is studied

under high-demand initial error conditions, and as it can be expected in a real-

life operation with high-order disturbances. Therefore, only BIISM control will be

tested out in the following numerical experiment since it has been proven that it is

the most suitable strategy available to handle the requirements of the experiment.

Multiple test runs were done in this section, but for representation proposes, two

runs are presented to compare the effects on the system behavior of 1-D and 2-D

concentration advective components.

1-D advective velocity component

For this study case initial position is set up to be η(0) = [900, 900, 10, 0], and an

horizontal uniform flow velocity is given by uw = U∞ = βx = 0.5m/s. Further

control and simulation parameters can be found in Appendix A.1.5
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Figure 4.21: Horizontal Concentration trajectory-tracking BIISM.
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Figure 4.22: Tracking responses of reference positions for horizontal concentration
BIISM.
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Figure 4.23: Tracking errors with disturbances for horizontal concentration tracking
BIISM.
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Figure 4.24: Tracking responses of virtual reference velocities for horizontal concen-
tration tracking BIISM.
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Figure 4.25: Tracking errors of virtual reference velocities for horizontal concentra-
tion tracking BIISM.
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Figure 4.26: Control signals: Total surge thrust τx, sway thrust τy, yaw torque τN ,
heave thrust τz for horizontal concentration BIISM.
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2-D advective velocity component

For this study case initial position is set up to be η(0) = [100, 900, 10, 0], and an

horizontal uniform flow velocity is given by uw = U∞ = βx = 0.5m/s,vw = V∞ =

βy = 0.5m/s. Further control and simulation parameters can be found in Appendix

A.1.5

Figure 4.27: 2-Dimensional Concentration trajectory-tracking BIISM.
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Figure 4.28: Tracking responses of reference positions for 2-Dimensional concentra-
tion BIISM.
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Figure 4.29: Tracking errors with disturbances for 2-Dimensional concentration
tracking BIISM.
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Figure 4.30: Tracking responses of virtual reference velocities for 2-Dimensional
concentration tracking BIISM.
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Figure 4.31: Tracking errors of virtual reference velocities for 2-Dimensional con-
centration tracking BIISM.
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Figure 4.32: Control signals: Total surge thrust τx, sway thrust τy, yaw torque τN ,
heave thrust τz for 2-Dimensional concentration BIISM.
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Chapter 5

Conclusions

The interaction between the UAUV’s communication system and pollutant con-

centration data represents the piece of resistance of this work. Therefore, mean

oil concentration for dispersion of species on coastal zones has been developed and

supplemented with analytical and explicit numerical schemes to describe a pollutant

moving plume on coastal zones. The numerical schemes work throughout a fixed

computational grid size to achieve stability and computational economy since this is

said to be accessed by the UAUV to generate commanded reference values. Hence,

The control system subsequently interprets these commanded reference values as

actual control forces and moments. This work focused its effort on developing a

robust guidance strategy based on Lyapunov structures that can provide a suit-

able system dynamical response for pollutant source localization, so that desired

commands can be reached out properly. The guidance technique applied is the

bio-inspired integrated sliding mode control. The bio-inspired component of this

strategy found its basis on the backstepping Lyapunov transformation to produce

virtual control velocities and provide a certain level of relaxation to the tracking

errors so that unfeasible initial velocity jumps can be prevented (virtual kinematic
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control). At the same time, the adaptive sliding mode takes care of tracking velocity

errors while providing a robust component able to handle uncertain dynamics and

external disturbances due to turbulence.Results shown in the previous Section 4.6.1

show that the BIISM control provides a feasible control strategy for localization

and tracking of the pollutant source as it can be observed in Figures 4.21 through

4.32. By applying the analytical and numerical schemes mentioned above on the

advection-diffusion model, a super-user has been able to process, estimate, and up-

load a suitable concentration field description into the UAUV system to compute

in real-time localized concentration values with its respective gradients. However,

in realistic operation conditions, accessing such a precise model is usually not avail-

able. Therefore, to come up with realistic input velocity commands, it becomes

imperative the implementation of an estimator model that can compare in real-time

actual concentration localized values against a time-dependent PDE observer as it

is done in [46], [47], [68], and [70]. Nonetheless, this procedure requires that the

UAUV ODE model, the turbulent advection-diffusion time-dependent PDE, and an

output error injection observer PDE have to be solved simultaneously in the same

simulation environment which computationally speaking is extremely demanding.

In fact, in Chapter 2 it is mentioned that not only for stability proposes, but also

for computational feasibility grid size resolution has been set to be large to generate

an approximated scheme that can model a realistically large domain, but somehow

compromising the accuracy of the scheme itself. Therefore, due to computational

limitations, this work only presents a preliminary source localization Lyapunov-

based control law which in future works will be supplemented with a PDE state

estimator by the implementation of more computational power or a certain level of

computational process parallelization.
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Appendix A

A.1 Dynamics and Control Simulation Parame-

ters

A.1.1 OUTLAND-1000 Physical Parameters

m Izz Xu̇

10 kg 30 kg-m2̂ 34
Yv̇ Zẇ Nṙ

75 33 62
Xu Yv Zw
6 6 7

Nr Xuu Yvv

14 18 4
Zww Nrr

4 14

Table A.1: OUTLAND-1000 Inertia and Hydrodynamic Parameters
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A.1.2 Circular Trajectory Tracking Control Parameters (Back-

stepping)

Kx Ky Kz Kψ Ku Kv Kw Kr

2 2 2 5 2 2 2 2

Table A.2: Circular Trajectory Tracking Control Parameters (Backstepping).

A.1.3 Spiral Trajectory Tracking Control Parameters (Back-

stepping)

Kx Ky Kz Kψ Ku Kv Kw Kr

10 10 10 8 2 2 2 2

Table A.3: Circular Trajectory Tracking Control Parameters(Backstepping).

A.1.4 Circular Trajectory Tracking Simulation Parameters

(BIISM control)

Kx Ky Kz Kψ kc Γ Λ K A B D
2 2 2 5 10 5 3 100 2 1 1

Table A.4: Circular Trajectory Tracking Simulation Parameters (BIISM control).
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A.1.5 Concentration Tracking Simulation Parameters (BI-

ISM control)

Kx Ky Kz Kψ kc Γ Λ K A B D
5 2 0.1 0.5 80 50 40 100 2 1 1

Table A.5: Horizontal Concentration Tracking Simulation Parameters(BIISM con-
trol).

Kx Ky Kz Kψ kc Γ Λ K A B D
5 5 0.1 0.5 80 50 30 50 2 1 1

Table A.6: 2-Dimensional Concentration Tracking Simulation Parameters(BIISM
control).
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Appendix B

Control Diagrams

B.1 Hierarchical Backstepping Control

Figure B.1: Backstepping Trajectory Control.
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B.2 Integrated Bio-Inspired Backstepping and Slid-

ing Mode Tracking Control

Figure B.2: BIISM Trajectory Control.

B.3 BIISM Applied to Pollutant Source Tracking

and Localization

Figure B.3: BIISM Pollutant Source Tracking and Localization Control.
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Cient́ıfico de Ciencias Básicas e Ingenieŕıas del ICBI, 7(Especial), 60-70.
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