
Predictive Analysis: Machine Learning Models 
for URL Classification 

 

A Major Qualifying Project  

Submitted to the Faculty of  

Worcester Polytechnic Institute in partial  

fulfillment of the requirements for the   

Degree in Bachelor of Science in  

Computer Science  

By   

 

__________________________________  

Robert A. Dwan Jr. 

 

__________________________________  

Alex M. Tavares 

  

 

Date: 10/9/2019  

Sponsoring Organization:  

MIT Lincoln Laboratories  

Project Advisor:   

 

___________________________________  

Professor George Heineman, Major Advisor 

 
 

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree 
requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more 

information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. 
  

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported under Air Force Contract No. FA8702-15-D-0001. 
Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force. 



1 

Table of Contents 
Table	of	Contents	.......................................................................................................................................	1	

Table	of	Figures	.........................................................................................................................................	3	

Table	of	Tables	...........................................................................................................................................	4	

Abstract	........................................................................................................................................................	5	

Acknowledgements	...................................................................................................................................	6	

Executive	Summary	..................................................................................................................................	7	

1.	Introduction	..........................................................................................................................................	10	

2.	Background	..........................................................................................................................................	12	

2.1			Cyber	Attacks	Using	Malicious	URLs	.............................................................................................	12	

2.1.1			Social	Engineering	..............................................................................................................................................................	13	

2.1.2			Malware	Distribution	........................................................................................................................................................	14	

2.1.3			Other	Types	of	Cyber	Attacks	........................................................................................................................................	15	

2.2			Non-Machine	Learning	Approaches	..............................................................................................	15	

2.3			Machine	Learning	................................................................................................................................	16	

3.	Methodology	.........................................................................................................................................	19	

3.1	Data	Gathering	.......................................................................................................................................	19	

3.2	Algorithms	...............................................................................................................................................	20	

3.2.1	Support	Vector	Machine	....................................................................................................................................................	21	

3.2.2	Logistic	Regression	..............................................................................................................................................................	21	

3.2.3	Random	Forest	......................................................................................................................................................................	22	



2 

3.3	Feature	Extraction	................................................................................................................................	24	

3.3.1	Lexical	Features	.....................................................................................................................................................................	25	

3.3.2	Host-Based	Features	...........................................................................................................................................................	25	

3.4	Development	...........................................................................................................................................	26	

3.4.1	Tools	Used	...............................................................................................................................................................................	26	

3.4.2	Training	.....................................................................................................................................................................................	27	

3.4.3	Testing	and	Evaluating	.......................................................................................................................................................	27	

3.4.4	Iterate	........................................................................................................................................................................................	29	

4.	Results	....................................................................................................................................................	32	

4.1	Iteration	One	...........................................................................................................................................	32	

4.1.1	Features	....................................................................................................................................................................................	32	

4.1.2	Algorithm	Performance	.....................................................................................................................................................	35	

4.2	Iteration	Two	..........................................................................................................................................	41	

4.2.1	Features	....................................................................................................................................................................................	41	

4.2.2	Algorithm	Performance	.....................................................................................................................................................	44	

5.	Discussion	..............................................................................................................................................	50	

5.1	Limitations	..............................................................................................................................................	51	

5.1.1	Data	.............................................................................................................................................................................................	51	

5.1.2	Features	....................................................................................................................................................................................	51	

5.1.3	Algorithms	...............................................................................................................................................................................	52	

5.2	Future	Work	............................................................................................................................................	52	

6.	Conclusion	.............................................................................................................................................	54	

References	..................................................................................................................................................	55	

 



3 

Table of Figures 

Figure 1. URL Structure [3] .......................................................................................................... 13	

Figure 2. Overview of the Machine Learning Process ................................................................. 17	

Figure 3. Bagging Method Overview [29] .................................................................................... 24	

Figure 4. Boosting Overview [29] ................................................................................................ 31	

Figure 5. Correlation Heat Map .................................................................................................... 34	

Figure 6. Accuracy with Varying Number of Decision Trees ...................................................... 36	

Figure 7. Accuracy with Varying Number of Iterations ............................................................... 37	

Figure 8. Accuracy with Varying Number of Iterations ............................................................... 38	

Figure 9. Accuracy with Varying Value for Gamma .................................................................... 39	

Figure 10. Accuracy with Different Training Ratio ...................................................................... 40	

Figure 11. New Correlation Heat Map ......................................................................................... 43	

Figure 12. Tagging Accuracy Results ........................................................................................... 45	

Figure 13. False Positive/Negative Rates ..................................................................................... 45	

Figure 14. AdaBoost Optimization Heat Map .............................................................................. 46	

Figure 15. AdaBoost Optimization Line Chart ............................................................................. 47	

Figure 16. Extra Trees Optimization Heat Map ............................................................................ 48	

Figure 17. Extra Trees Optimization Line Chart .......................................................................... 48	

Figure 18. Ensemble Method Accuracies ..................................................................................... 49	

  



4 

Table of Tables 

Table 1. Malicious Data Gathered ................................................................................................ 20	

Table 2. Preliminary Feature List ................................................................................................. 25	

Table 3. Example of True Positives and Negatives, and False Positives and Negatives .............. 28	

Table 4. Features Changed ............................................................................................................ 29	

Table 5. Final Feature List ............................................................................................................ 30	

Table 6. Chi-Squared Test Results ................................................................................................ 33	

Table 7. ANOVA F-Value Test .................................................................................................... 33	

Table 8. New Chi-Squared Test Results ....................................................................................... 41	

Table 9. New ANOVA F-value .................................................................................................... 42	

 

 

 

  



5 

Abstract 

The rise of cybercrime has motivated the need for improved early detection and prediction 

mechanisms to prevent cyber-attacks from causing damage to unsuspecting victims. We 

developed and analyzed various machine learning algorithms to tackle one approach for early 

detection, URL classification. Unlike previous research, which focused on binary classification, 

our approach focuses on classifying URLs to their likely attack category. Through testing and 

evaluation, we found that ensemble methods perform the best with our optimal feature set, 

producing accuracies as high as 95%. 
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Executive Summary 

More people than ever before have access to the Internet. Of the billions of Internet users, 

there are some who take advantage of and exploit others, known as cyber criminals. These 

attackers are hard to track, and their attacks can be complex and sophisticated. One avenue of 

attack is through the misuse of Uniform Resource Locators (URL).  

The goal for this project is to develop sensors for publicly available data sources to detect 

for indications of techniques or traces left behind by an attacker during their planning and/or 

reconnaissance activities in order to predict for cyber-attacks that may be targeted against an 

organization. More specifically, we developed one particular sensor to classify URLs to their 

likely attack method type based on opensource data. We tested several machine learning 

algorithms and ensemble methods in order to identify the optimal model, hyperparameters, and 

feature set to classify the URLs. 

Our development process included data gathering, feature extraction, and algorithm 

implementation. We gathered data from several sources including: PhishTank, URLhaus, and 

Alexa Top 1 Million. The selected features were based on previous research for URL 

classification. We implemented the following algorithms using the Scikit-Learn Python library: 

Random Forest, Logistic Regression, Support Vector Machine (SVM) with a linear kernel, and 

SVM with a Radial Basis Function kernel. Random Forest is an ensemble method, while the 

others are single classifiers. Ensemble methods use the decisions from several classifiers to 

improve predictive performance. 

After developing our code, we tested features. We implemented two types of features: 

lexical and host-based. Lexical features were those gathered from the textual characteristics of 

the URL, and host-based features were those gathered from the network information related to 
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the host domain. We evaluated the full lexical feature set but were unable to test the host-based 

features due to time constraints and the fact that many URLs in our data set were no longer 

active. Through tests for feature independence (Chi-Squared and ANOVA F-value), we found 

the class labels to be dependent on all of the features in the lexical feature set. This tells us that 

the value of the feature has an effect on the class label, therefore it can be an indicator of class 

type. Features being independent show that the value of the feature has no effect on the class 

label, therefore it cannot be used as an indicator of class type. Through our feature independence 

testing, we determined the full lexical feature set to be the best choice.  

We also analyzed the performance of the algorithms. Random Forest consistently had the 

highest accuracy and the lowest false positive rate. Along with testing for accuracy, we 

performed tests to optimize for the best parameter values for the various algorithms. Random 

Forest performed best with a parameter value of 40 decision trees.  

The results from running these algorithms revealed phishing and malware URLs were 

often mislabeled as the other. Random Forest had the most success differentiating these two 

classes, while the complicated boundaries between the class types limited the success of the 

single classifiers. Therefore, we implemented 2 more ensemble methods using Scikit-Learn. 

We implemented the Extra Trees and AdaBoost algorithms. They performed well, with 

accuracy scores comparable to Random Forest. In addition to testing for accuracy, we ran tests to 

optimize for the ensemble method parameters. The ideal parameters for the Extra Trees 

algorithm were a minimum sample split of 6 and the number of estimators equal to 91. The ideal 

parameters for the AdaBoost algorithm were a learning rate of 1 and the number of estimators 

equal to 66. We found that all of these methods produced accuracies above 90%.  
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To build on this research we recommend delving deeper into semi-supervised algorithms, 

to test their performance. There is substantially more unlabeled URL data than labeled URL data 

and semi-supervised algorithms can take advantage of that. These algorithms would be able to 

train on massive datasets and generate models that can better handle real world internet traffic. 

We also recommend expanding the variety of features beyond lexical and host-based. Due to the 

risk of compromising our systems, we were unable to use content-based features. One final 

recommendation is to look into modifying existing supervised machine learning algorithms to 

develop a stronger algorithm for URL classification. 
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1. Introduction 

Advancements in technology have led society to shift towards a greater online presence. 

With more people and businesses online, it is difficult to protect the private information that is 

stored on the internet and our computers. Technology is constantly evolving and changing, so 

security measures must also adapt to continue to protect users. Cybersecurity is a field in 

computer science with the goal of creating secure systems and securing existing systems from 

cyber-attacks. 

Cybercrime is the fastest growing crime, with an estimated $6 trillion annual cost to 

individuals and organizations by 2021. This cost includes, but is not limited to, damage to 

infrastructure and data, theft, fraud, and lost productivity [1]. With 1.9 billion websites and more 

than 4 billion Internet users it is becoming increasingly difficult to monitor this criminal activity. 

This has led to an increase in cybersecurity spending as many companies and individuals try to 

protect themselves [1]. 

Cyber-attacks are defined as “any attempt to expose, alter, disable, destroy, steal or gain 

unauthorized access to or make unauthorized use of an asset” [2]. An asset is something of worth 

to an organization or individual. As new software is developed there is the potential for new 

vulnerabilities that can be exploited. Combating this issue and preventing attacks requires better 

monitoring of systems and networks. This has led to research into preventing potential attacks by 

monitoring publicly available data to find traces of cyber-criminal activity.  

There are many different publicly available data sources available that require 

monitoring. Our project focused on developing one of the sensors to detect for indications of 

techniques or traces left behind by an attacker. The resulting data will be used as part of a larger 
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analysis pipeline to build an improved awareness of the existing Internet threats. This paper aims 

to look at one of those threats: malicious Uniform Resource Locators (URL). 

Malicious URLs exist in all facets of the Internet and any user can come across them. 

URL links are embedded in emails, appear on web sites, and are posted on social media sites, 

among other areas of the Internet. It is challenging for the average user to distinguish between 

legitimate and illegitimate URLs. This paper focuses specifically on classifying URLs to their 

likely cyber-attack category. We will research the characteristics of malicious URLs which 

distinguish them from normal ones. We will then develop a program that will learn from these 

characteristics to classify URLs, using machine learning. 
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2. Background 

Malicious URLs make up one third of all publicly accessible URLs [3]. With the vast 

quantity and increased sophistication of malicious URLs online, it is becoming increasingly 

difficult to distinguish between legitimate and illegitimate URLs. Artificial intelligence, more 

specifically machine learning, is a field of study that has yielded highly accurate classifiers to 

address this issue [4,5, 6]. Past research has explored a variety of algorithms and feature sets to 

determine effective machine learning models to classify URLs as malicious or benign and have 

produced binary classifiers with over 90% accuracy [4,5,6]. There is still much work to be done 

with URL classification and many researchers aim to improve the accuracy of existing 

classifiers. 

2.1   Cyber Attacks Using Malicious URLs 

A URL is an address that corresponds with a web page. The structure of a normal URL 

can be seen in Figure 1. Malicious URLs are illegitimate Internet addresses used by cyber 

criminals to take advantage of users who visit the page [5]. Cyber criminals trick unsuspecting 

users to click these URLs to retrieve personal information, for financial gain, or to download 

malware. Common cyber-attack categories include social engineering and malware distribution 

[7]. 
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Figure 1. URL Structure [3] 

2.1.1   Social Engineering 

Social engineering encompasses a variety of techniques, where the attacker imitates 

legitimate sites and email addresses to retrieve private or personal information. The most 

notorious and well-known attacks in this category are phishing attacks [8]. Phishing methods 

mimic legitimate URLs or websites to coerce users into unknowingly divulging their personal 

information. Attackers stimulate their victim’s emotions such as curiosity and fear, which tricks 

the user into clicking the URL [9]. 

Phishing attacks are not limited to gaining one individual's data, they can also be used to gain 

access to an entire organization’s data. For example, Presbyterian Healthcare in New Mexico 

was the victim of a phishing attack on May 9, 2018. Employees from the company fell victim to 

a phishing email that gave the attackers access to their accounts. The attackers were able to 

gather healthcare plan data from 183,370 patients including patient names, dates of birth, and 

social security numbers. The company did not know that they had been a victim of an attack until 

June 26, 2018, over one month later [10]. This example shows how cybercrimes can affect a 

large number of people. Had the emails been filtered for malicious URLs the attack could have 

been prevented. 
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2.1.2   Malware Distribution 

The term malware comes from the combination of the words malicious and software. 

Malware is a general term used to describe any software developed for the purpose of damaging, 

disrupting, or gaining access to another user’s system. Popular examples of malware include: 

• Ransomware – The victim is locked out of their system until a ransom is paid to the 

attacker. 

• Spyware – Software that allows the attacker to see what the victim is doing on their 

computer [11]. 

Ransomware is increasing in frequency and can cost companies and the government a significant 

amount of money to resolve. In 2016, there was an estimated ransomware attack every 40 

seconds. With this frequency and the cost per attack, global ransomware is predicted to cost 

$11.5 billion in 2019 [1].  

In August of 2019, there was a significant ransomware attack on a hospital in Aberdeen, 

Washington. Grays Harbor Community Hospital and the Grays Harbor Medical Group, 

consisting of eight clinics, were attacked and patient information was locked. The cyber 

criminals held 85,000 patient records hostage for the Bitcoin equivalent of $1 million. While this 

attack was ongoing, the clinics involved were forced to keep records on paper which resulted in 

delays for appointments. It is thought that this attack started with a phishing email which 

triggered the malware download. This could have been prevented if the URL was detected earlier 

[12]. Because of the risks associated with malware it is important to be able to identify malicious 

URLs to prevent attacks and keep users’ information safe. 
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2.1.3   Other Types of Cyber Attacks 

Another category of malicious URLs are botnet command and control (C&C) server 

URLs. These servers are the command centers for botnets. Botnets are a network of systems that 

have been infected with malware distributed from the C&C server. The C&C servers are able to 

communicate with these systems, steal information, and control the computers to use to achieve 

their objectives [13]. Botnets can be used for different types of cyber-attacks. They can be used 

to steal information, hold the victim for ransom, and execute Distributed Denial of Service 

(DDoS) attacks. A DDoS attack is used to flood the target  with Internet traffic causing the target 

to lose availability of their system [13, 14]. Detecting URLs related to existing and potential 

botnets can prevent future DDoS and other attacks by shutting down or preventing 

communication between the systems and server. 

2.2   Non-Machine Learning Approaches 

 A frequently used method for malicious URL detection is blacklisting. Blacklists are lists 

of known malicious URLs that can be used to check if a URL is already known to be malicious. 

Blacklists need to be constantly updated as new sites are discovered; they cannot protect against 

unknown URLs. Previous research has looked into creating a predictive blacklist specific for 

users on a network. This algorithm uses user-defined data and determines the likelihood that a 

specific network or user would be attacked in the future. Using this information, a final blacklist 

specific for each user is produced. This algorithm produced high attacker hit-rates, good “new 

attacker” predictions, and stability for the future [15].  

 There are existing commercial products on the market that focus on the problem of 

malicious URLs. For example, WebAdvisor from McAfee is a browser plugin that attempts to 
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protect users from malware and phishing attacks as the user browses the Internet [16]. Another 

example of a commercial product is the SafeLink feature on Microsoft Outlook. This feature 

checks to see if any links or emails contain phishing attacks, malware, or viruses. If links or 

emails are deemed suspicious or malicious then the users are unable to click on the link [17]. 

These products rely on existing blacklists, user feedback, and proprietary research done by the 

companies. This reactive approach cannot keep up with the volume of new attacks being 

generated, therefore a more proactive solution, such as machine learning, is required. 

2.3   Machine Learning 

Artificial intelligence (AI) is the study of intelligent machines that are able to perceive 

the world around them and make decisions based on that input. Machine learning is one of the 

many subfields of artificial intelligence that exist today. In a famous quote by Arthur Samuel, an 

early pioneer in the field, he said machine learning gives “computers the ability to learn without 

being explicitly programmed” [18]. The foundations of machine learning can be traced back to 

1950, when Alan Turning developed a test to determine if a computer had real intelligence called 

the “Turing Test”. To pass the test the computer must deceive a human into thinking it is also 

human. In 1952, Arthur Samuel wrote the first computer learning program. The program played 

checkers and it improved after every game it played [19]. More than 50 years since the field first 

emerged, we have seen huge advancements in machine learning and AI. In March 2017, the 

company OpenAI reported that the AI agents they created, developed a new language to achieve 

their goals more efficiently. Also, soon after that, Facebook reported that AI agents they 

developed were able to negotiate and lie [20]. 
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Machine learning gives computers the ability to learn on their own. These programs are 

not developed to perform specific tasks but to learn about data and the patterns that exist in the 

data. An overview of the machine learning process can be found in Figure 2. Machine learning 

can be broken down into three main categories: supervised, semi-supervised, and unsupervised. 

 

Figure 2. Overview of the Machine Learning Process 

 

Supervised machine learning models are trained on labeled data, where the model knows 

the input and desired output. Using this data, the model develops a function to describe the 

relationship between the input and output data. This function can then be used with new inputs to 

predict the desired output. A popular use for supervised learning is classification problems. 

Classification is a machine learning approach where the model learns from input data to classify 

and categorize new data. An example of a classification problem is image recognition, such as 

classifying an image as containing a car or not containing a car [22, 23]. 

Unsupervised machine learning models take input data with no output data. These 

methods detect patterns within the data, which can be useful when experts do not know what 

they are looking for or where output data is unavailable. This type of learning is used mainly for 

clustering and association. An example of a clustering problem is customer segmentation. In this 

problem, an organization would discover clusters of customers within their customer base that 
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may not have been obvious to them previously. This gives the organization more information 

about their customers, aiding in advertising and sales. An example of an association problem is 

market basket analysis. An organization would analyze the contents of customers’ shopping cart 

to determine associations between products. This can be used to discover the correlation between 

products, which can aid in designing the layout of stores, sales, and marketing [22, 23]. 

Semi-supervised learning sits between the previous two. It is particularly useful in 

scenarios where labeled data is hard to get. The labeled data is used to help the algorithm find 

patterns rather than model relationships. This learning type is mainly used for classification and 

clustering, as described above [22, 23]. 

Our problem focuses on classification of data, URLs, with known outputs, attack 

category; therefore, we will research and test existing classification algorithms. There are several 

classification algorithms that have been used for malicious URL classification such as Random 

Forest, Support Vector Machine (SVM), and Logistic Regression [4,5,6]. 

All machine learning models use features—properties or attributes of the data—extracted 

from the input data sets to create their models. In the context of URL classification, there are 

three feature types: host-based, lexical, and content-based. Host-based features are those that 

define the identity, location, and other network information about the host. Lexical features are 

textual properties obtained from the URL itself. Lastly, content-based features come from the 

web pages linked to the URLs themselves. Content-based features require a more in-depth 

analysis of the content and are more computationally expensive. They also present an inherent 

risk as our systems could become compromised during exploration of the web pages related to 

the URLs we are trying to classify [3,5]. The content-based feature set falls outside the scope of 

our research, due to the associated risks and greater time requirement. 
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3. Methodology 

The necessary steps to construct an accurate URL classifier began with gathering a 

representative data set for training and testing the models. Next, we developed supervised 

machine learning models using several algorithms. Once the models were implemented, we 

trained and tested them using different feature sets. We then evaluated these models and feature 

sets to find areas for improvement. Finally, using the performance evaluations of our feature sets 

and models, we iterated over our tests to develop more accurate classifiers. 

3.1 Data Gathering  

The first step to acquire a representative data set was to gather data. To collect this data set, 

we used several open-source databases and sites. The data comes from 5 different attack 

categories: normal, phishing, malware, ransomware, and botnet. We required representative data 

from each of the 5 categories. 

Our normal data came from two sources: Canadian Institute for Cybersecurity (CICS) and 

research done by Frantisek Strasak [17, 18]. The CICS obtained data by passing URLs from 

Alexa Top websites into a Heritrix web crawler to extract the URLs. Once the URLs were 

extracted and duplicates were removed, the data set was left with 35,300 URLs classified as 

normal [17]. Frantisek Strasak recorded his web traffic for 3 days while accessing secure sites in 

the Alexa Top 1000. He created several packet capture files from this web traffic. He was able to 

verify that the sites visited in the capture files were normal after scanning his computer for 

malware [18]. We used his capture files to extract all the URLs. We then removed duplicates and 

added them to our data set. The malicious URLs came from four different sources; each is a 
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blacklist for the specific threat type. Table 1 shows the source and date retrieved for the data 

gathered. 

 

Class Source Count Date Retrieved  Description 

Phishing PhishTank [19] 21,979 July 30, 2019 - August 
20, 2019 

A blacklist containing 
phishing URLs 

Malware Abuse.ch, URLhaus 
[20] 

217,818 May 22, 2019 - August 
20, 2019 

A blacklist containing 
malware URLs 

Ransomware Abuse.ch, 
Ransomware Tracker 
[21] 

1,903 May 16, 2019 - August 
20, 2019 

A blacklist containing 
ransomware URLs 

BotnetC&C CyberCrime [22] 16,292 August 20, 2019 A blacklist containing 
botnet URLs 

Table 1. Malicious Data Gathered 

 

Our data gathering effort produced significantly more malicious data than normal data. As a 

result, the training and testing sets were created by varying ratios of normal to malicious URLs 

to allow for a more realistic distribution. Even with this measure in place, there is still a 

possibility that our training and testing data set is skewed and does not represent realistic traffic. 

The normal data gathered from CICS and Frantisek Strasak is assumed to be composed of 

completely normal data, with no malicious URLs, and consist of a representative sample of the 

normal URL population. 

3.2 Algorithms 

We identified several supervised machine learning algorithms in our background research 

that performed well in URL classification. Much of this previous research was on binary URL 
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classification, but we worked towards creating a multiclass URL classifier. A binary classifier 

categorizes data into two separate classes, in this case classifying URLs as normal or malicious. 

A multiclass classifier categorizes data into three or more classes, we aim to classify URLs as 

normal, phishing, malware, ransomware, and botnet. The benefits of a multiclass classifier are it 

provides more context about the URL and potential attacks. This can be greatly beneficial for 

planning for and preventing attacks detected over public data sources. The algorithms we 

implemented were: Support Vector Machine (SVM), Logistic Regression, and Random Forest. 

3.2.1 Support Vector Machine 

A support vector machine is a discriminative classifier that, given labeled training data, 

produces an optimal hyperplane to classify new data. SVMs use kernels which are functions that 

transform data into a higher dimensionality space. This is essential for classification in complex, 

non-linear data sets, such as the data generated from URL feature extraction. This allows the 

model to generate a mapping function that separates the data points into their respective classes. 

We tested two different kernels in our models: the linear kernel and the Radial Basis Function 

(RBF) kernel. The value of gamma defines the distance between the boundary data points and 

the separation line; this parameter was tuned to increase the accuracy of the model. A 

consideration when tuning this parameter is that a high gamma value can lead to a more 

complicated decision boundary and over-fitting [4, 23, 24]. 

3.2.2 Logistic Regression 

Logistic regression determines the likelihood an input belongs to a specific class.  This is 

done by using the logit function. The logit function is defined as: 
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𝑙𝑜𝑔𝑖𝑡(𝑝) 	= 	𝑙𝑜𝑔(
𝑝

1 − 𝑝), 𝑤ℎ𝑒𝑟𝑒	𝑝	𝑖𝑠	𝑡ℎ𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

This gives a value between 0 and 1, representing the probability that an inputted data point 

belongs to a class. The closer the value is to one, the more likely an input belongs to a class. This 

probability is then used to fit a line used for predicting new data. The model learns by altering 

coefficients representing the line to fit the data. As the model learns, the coefficients change to 

produce the maximum likelihood of predicting the correct category [25, 26].  

After training, the model uses the final coefficients to predict new data. The predictions use a 

classification threshold to determine which category the data point belongs to. For example,  if 

the threshold for a binary classifier is set at 0.5,  any value 0.5 or greater will be classified as 

normal, and any value below 0.5 will be classified as non-normal. Logistic regression is 

traditionally a binary classifier and we are implementing a multiclass classifier; therefore we 

used the multinomial version of the algorithm. This method works similarly to the binary 

version, except it uses multiple one-vs-all binary classifiers. The one-vs-all method compares 

one class type against the rest; for example, normal vs not normal would classify the data as 

either normal or not [25, 26]. Another example would be, phishing vs not phishing. The 

algorithm would then combine the binary classifiers generated from each type into one model. 

When the model is run, each binary classifier is run on the input and the class with the highest 

probability is the selected classification. 

3.2.3 Random Forest 

The Random Forest algorithm is a classification algorithm. That works as follows:  
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1. The data set is randomly divided into ‘L’ subsets with ‘k’ entries each. This is done with 

replacement, meaning subsets can contain the same entries. This method of data sampling 

is called bootstrapping. 

2. Each subset is then used to train a decision tree. A decision tree works by having several 

splits where the data is separated based on a feature. The feature is randomly selected 

from all the features of the data. The value of the feature dictates which direction down 

the tree it will travel. 

3. After training the trees, new inputs go through all of the trees to get a prediction. For 

classification, the final prediction is based on a majority vote from all of the trees.  

 

This algorithm improves on a single decision tree and creates robustness of the model as it 

prevents overfitting the data and is able to make splits on randomly chosen features, as opposed 

to using only the best features to split the data [27, 28]. Random Forest is a bagging type 

ensemble method. Ensemble methods combine the decisions from other algorithms to give a less 

biased, more accurate prediction [29]. In particular, bagging methods run several algorithms in 

parallel and aggregate their results to create a prediction. An overview of bagging can be found 

in Figure 3. 
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Figure 3. Bagging Method Overview [29] 

 

3.3 Feature Extraction 

Our background research provided us with a wealth of features and feature sets to test. The 

features we focused on for our implementation were lexical and host-based. Previous research 

shows that these features are sufficient to create an accurate classifier. Content-based features 

may provide value but present risk to the integrity of our systems due to potentially malicious 

web page content related to the URLs; therefore they were not evaluated. We implemented 32 

features in total, 29 of them being lexical. The features can be found in Table 2.  
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3.3.1 Lexical Features 

The lexical features are text-based characteristics of the URL. We split the URL into its 

protocol, host name and path. From there we analyzed the textual features in each. We used the 

Python libraries tldextract and urllib to parse the URLs and extract features. The lexical features 

we implemented were based on features described in previous research [2, 4, 30, 31].  

3.3.2 Host-Based Features 

Host-based features are composed of the network information about the URL host. We used 

a combination of features identified from our background research. The extracted features 

Table 2. Preliminary Feature List 
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include: the IP address location, the registered country of the host, and the amount of time the 

host has been registered. We used the Python package ipwhois and socket to get the host 

information [2, 4]. The full feature list can be found in Table 2. The last three features in the list 

are the three host-based features. These features are useful because they can identify URLs with 

hosts located in suspicious areas and identify inconsistencies between the hosts and where they 

are registered. Also, malicious URLs tend to be registered more recently, therefore the length of 

time for domain registration can be a good indicator for detecting malicious URLs [2,4]. 

3.4 Development 

We first determined the set of existing tools and libraries appropriate for our use case. Then, 

we implemented and trained several models using a training data set. After the models were 

trained, they were tested with a test data set to determine the models’ performance. Finally, we 

optimized the parameters and train/test data set ratios to maximize the accuracy of the models. 

3.4.1 Tools Used 

We decided to use Python as our coding language because it is useful for processing large 

amounts of data and has readily available open source machine learning libraries. We assessed 

and selected a suitable machine learning library. 

The three main Python libraries for machine learning are: PyTorch, TensorFlow, and Scikit-

Learn. Scikit-Learn is an easy to use Python library that comes with out-of-the-box algorithm 

implementations. Scikit-Learn is more of a general-purpose machine learning library that 

includes implementations of many classic algorithms. TensorFlow and PyTorch are deep 

learning frameworks. They are more flexible and allow for the integration of custom code. We 
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decided to use Scikit-Learn for the beginning implementations of our models because it 

contained models for all the aforementioned algorithms. TensorFlow and PyTorch are excellent 

alternative libraries to Scikit-Learn, but due to our algorithms of choice and the ease of use we 

selected Scikit-Learn. Nonetheless, it is possible to replicate what we have implemented using 

models from TensorFlow and PyTorch. 

We also needed a way to extract the features we discussed previously. Thus, we created our 

own tool. Our tool takes a URL as input and returns a numerical array containing values for the 

features previously mentioned 

3.4.2 Training 

We split the training data into normal and malicious URLs and varied the split ratios of these 

two categories. We trained using a 50/50, 60/40, 70/30, and 80/20 normal/malicious splits. We 

trained the model on each of these split ratios in order to find the optimal training split between 

normal and malicious data that would produce the best performing model given a real scenario. 

3.4.3 Testing and Evaluating 

We used several methods to test and evaluate the models. We evaluated the performance of 

the features, along with an evaluation of the models’ performance. We used built-in Scikit-Learn 

functions as well as some other mathematical tools to test the effectiveness of our features. We 

used two methods to test the relationship between the feature variables and classes: a chi-square 

test and ANOVA F-Value test.  

The chi-square test is used to test for independence of categorical features. A chi-squared 

value is calculated for each categorical feature. If the chi-score is greater than or equal to the 

threshold value, then the feature affects the URL class. Otherwise, if the chi-score is less than the 
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threshold, the feature is most likely not useful. The ANOVA F-Value test is similar to the chi-

square test in that it is a test for independence, except it is used for numerical values. Similarly, if 

the F-Value is greater than or equal to the threshold value, then the feature affects the URL class, 

and vice versa. We also used a heatmap plot from the Python library, Seaborn, to visualize the 

correlation between features. The heatmap plot required a correlation matrix which was 

generated using the Python library, Pandas. These techniques reduced the complexity of the 

data, which led to faster and more accurate classification. 

To analyze the performance of our models we examined several metrics. We first looked at 

the overall accuracy of the model. The accuracy is a percent-value based on the number of true 

positives over the total number of predictions. A true positive is a correctly classified URL. 

Table 3 describes true positives in the case of a ‘Normal’ URL.  

 

 Predicted Class Actual Class 

True Positive Normal Normal 

True Negative  Not Normal (e.g. phishing, malware) Not Normal (e.g. phishing, malware) 

False Positive Normal Not Normal (e.g. phishing, malware) 

False Negative Not Normal (e.g. phishing, malware) Normal 
Table 3. Example of True Positives and Negatives, and False Positives and Negatives 

 

We also examined the confusion matrices to calculate the number of false positives and the 

number of false negatives for specific classifications, also defined in Table 3. This information 

gave insight into how well the model can classify new data, based on the training data. We also 

looked at the time it took to train and test the models. Although our focus was on creating more 

accurate models, the speed of training is an additional factor to consider.   



29 

Once we determined the accuracy of the model, we began improving upon it. We used three 

methods to improve the model: modifying the tuning parameter, changing the dataset volume, 

and changing the ratio in the training dataset. The specific tuning parameter differed for each 

algorithm. For example, in the Random Forest algorithm we varied the number of decision trees 

produced, and in the SVM algorithm we varied the value of gamma. Lastly, we tested the models 

using various ratios of malicious to normal URL data in order to determine the optimal ratio of 

training data that would produce the most accurate model.  

3.4.4 Iterate 

Upon evaluation of our preliminary results, we found that the algorithms had difficulty 

discerning between phishing and malware URLs. This led us to explore additional features as 

well as additional algorithms.  

After looking at the results of our feature evaluation and results of the features used in 

previous research, we added 2 features and changed 4 features. The two features we added were: 

‘Number ~ in URL’ and ‘Number # in URL’. The features we changed can be found in Table 4. 

We made the changes to these features to increase the amount of textual information they 

provide about a URL. In addition, we made changes to the names of many features to add more 

consistency to the feature names. In total we implemented 34 features, 31 lexical and 3 host-

based. The final list of features can be found in Table 5.  

 

 

Table 4. Features Changed 
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We observed that many of the URLs belonged to multiple classes; this was the case for many 

of the malware and phishing URLs. Thus we implemented a tagging method, which tagged the 

URL with class labels above a certain threshold. This allowed URLs to have multiple 

classifications. Also, we implemented several ensemble methods based on the success of the 

previous algorithms and the complicated decision boundaries presented by the data. 

For the tagging algorithm, we used the functions already built into the models to return class 

probabilities instead of a single class prediction. Using these probabilities, the URLs were tagged 

as belonging to a particular class if the class probability for the URL is above a configurable 

threshold. This allowed URLs to have multiple classifications. The output of the tagging was 

then output to a file for visual verification. A correct prediction was one that contained the true 

Table 5. Final Feature List 
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label in the list of tags. We also calculated the false positive and false negative rates of each run. 

A false positive is any normal URL that was given a malicious tag. A false negative is any 

malicious URL that was given a normal tag. The tagging method was tested on the 4 training 

ratios previously mentioned.  

We implemented a boosting and an additional bagging ensemble method. Boosting methods 

run algorithms sequentially, with each model learning from the previous one. An overview of 

boosting can be found in Figure 4. The bagging algorithm we implemented is called the Extra 

Trees classifier and it uses a decision tree model as its underlying classifier. The boosting 

algorithm we implemented is the AdaBoost classifier and it uses an Extra Trees model as its 

underlying classifier. Both algorithms were optimized for accuracy and tested on the 4 training 

ratios previously used. The AdaBoost algorithm was optimized for the following parameters: 

n_estimators and learning_rate. The Extra Trees algorithm was optimized for the following 

parameters: n_estimators and min_samples_split. 

 

 

Figure 4. Boosting Overview [29] 
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4. Results 

4.1 Iteration One 

4.1.1 Features 

From the preliminary list of 32 features, we analyzed the 29 lexical features implemented 

using three methods: a chi-squared test for categorical features, a calculation of ANOVA F-

values for numerical features, and a correlation heatmap. The results of the chi-squared test can 

be found in Table 6, the computed ANOVA F-values can be found in Table 7, and the 

correlations between the features can be found in Figure 5. Due to many of the malicious URLs 

in our dataset being inactive and time constraints with this project, we were unable to run an 

analysis on the 3 host-based features implemented. 

4.1.1.1 Chi-squared test  

The null hypothesis for the chi-squared test is that the features are independent of the class 

labels. With a significance level of 95%, any feature that had a p-value below 0.05 could reject 

the null hypothesis. Rejecting the null hypothesis means that the class labels are dependent on 

that feature. Our analysis of the lexical features revealed that all but one categorical feature 

rejected the null hypothesis, which means that the value of the feature had an effect on the class 

label. The feature “Check TLD” (TLD = Top Level Domain) had a chi-score value below the 

threshold and p-value below 0.05, which means it could not reject the null hypothesis; therefore 

we cannot say whether or not the value of that feature affects the class label. 
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Table 6. Chi-Squared Test Results 

4.1.1.2 ANOVA F-Values 

We looked at the results of the ANOVA F-test with the same hypothesis and a 95% 

confidence level. All of the numerical features we implemented had a p-value below 0.05. 

Therefore, with 95% confidence we can say the class labels are dependent on all the numerical 

features, which means the value of the feature affected the class label. 

 

Table 7. ANOVA F-Value Test 
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4.1.1.3 Correlation Heat map  

The correlation heatmap in Figure 5 shows us how heavily correlated features are to one 

another. This tells us which features are redundant and add unnecessary complexity to the feature 

set. There are a few features such as number of ‘.’ in URL and number of ‘.’ in hostname, as well 

as the count of ‘/’ in path and the length of the path. These features are highly correlated, which 

means they may be expressing some of the same information about the URL. The other features 

are not highly correlated meaning these features are providing helpful information to the model.  

  

 

Figure 5. Correlation Heat Map 
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4.1.2 Algorithm Performance 

4.1.2.1 Model Parameter Optimization 

With the best feature set identified as the full lexical feature set, we began to tune certain 

parameters for each algorithm to find the highest accuracy. The parameters tuned were the 

number of decision trees in the Random Forest, the maximum number of training iterations for 

both Logistic Regression and SVM linear, and the value of gamma for SVM-RBF. All tuning 

tests were run on a training set with 50% normal URLs and 50% malicious URLs and a testing 

set containing 70% normal URLs and 30% malicious URLs. 

For Random Forest, we started with 20 decision trees and stopped at 70, with increments of 5 

each step. After running these tests, the run with 40 decision trees had the highest accuracy with 

94.6% accuracy. Figure 6 shows how the other number of trees performed. All runs with more 

than 40 decision trees stayed around the same accuracy, with no improvement. We determined 

40 trees to be the optimal amount to maximize accuracy and performance.  
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Figure 6. Accuracy with Varying Number of Decision Trees 

 

For logistic regression, we started with 1,000 as the maximum number of iterations and 

increased the number to 20,000 with increments of 1,000. After running these tests, 10,000 

iterations produced the highest accuracy of 88.33%. Figure 7 shows how the other number of 

iterations performed. All runs with more than 10,000 iterations stayed at the same accuracy, with 

no improvement. We determined 10,000 iterations to be the ideal number of iterations. With 

greater than 10,000 iterations, the algorithm was prone to overfitting, leading to lower accuracy. 
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Figure 7. Accuracy with Varying Number of Iterations 

 

For SVM linear, we started with 1,000 as the maximum number of iterations and increased 

the number to 20,000, with iterations of 1,000. We followed the same numbers as logistic 

regression to start. This led to all iterations having the same accuracy. We then shifted the 

starting value to 100 and the maximum value to 1,000, stepping by 100. This again produced the 

same accuracy for all results. We then shifted one more time to a minimum of 10 and a 

maximum of 100, stepping by 10. After running this test, 30 iterations produced the highest 

accuracy of 87.80%. Figure 8 shows how the other number of iterations performed. The model 

converged at 30 iterations, and every additional iteration after that produced the same results. We 

determined 30 to be the best number of iterations. 
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Figure 8. Accuracy with Varying Number of Iterations 

 

Finally, for the SVM-RBF model we varied the gamma value. We tested with gamma values 

that ranged from 1-10 and 0-1. For values between 1 and 10 we incremented gamma by 1 for 

each run. This did not yield high accuracies as most were in the 10-20% range. The test for 

values between 0 and 1, stepping by 0.1, showed significantly higher accuracies. The best value 

was 0.9 and recorded an accuracy of 69.8%. Figure 9 shows the values for the other values 

between 0 and 1.  
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Figure 9. Accuracy with Varying Value for Gamma 

4.1.2.2 Training Ratios  

Next, we determined the ideal ratio of malicious to benign URL samples required in our 

training data. We created 4 data sets which we used to train the models:  one with 50% normal 

and 50% malicious, one with 60% normal and 40% malicious, one with 70% normal and 30% 

malicious, and finally one with 80% normal and 20% malicious. After training our models with 

each of these data set ratios, all models were tested against the same data set used for testing the 

different parameters. 

Our results showed that the ratio of 60% normal to 40% malicious was the best training set 

ratio as it produced the highest accuracy for each algorithm. The results from the testing are 

depicted in Figure 10. 
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Figure 10. Accuracy with Different Training Ratio 

 

Random Forest produced the highest accuracies across all training ratios, with accuracies all 

above 93%. The lowest accuracy for the Random Forest algorithm was obtained using the 80/20 

split training method, while the lowest accuracy for the Logistic Regression algorithm was 

obtained when the 50/50 training method was used. The 80/20 training method also yielded the 

lowest accuracy for the SVM-L algorithm, however the lowest accuracy for the SVM-RBF was 

obtained using the 50/50 split training method. These results indicate that while the 60/40 

training method yields the highest accuracies in malicious URL identification, the 80/20 and the 

50/50 training methods yielded the lowest accuracies. 
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4.2 Iteration Two 

For iteration two we looked more into ensemble algorithms as well a method for tagging. We 

also added features to our feature list and evaluated them. Our goal for iteration two was to 

improve upon the accuracies from iteration one test new methods. 

4.2.1 Features 

The new feature set contained 31 lexical and 3 host-based features. We ran a chi-squared test 

on the 11 categorical-lexical features in the set and calculated ANOVA F-values for the 20 

numerical-lexical features in the set. The results of the chi-squared test can be found in Table 8 

and the results of the ANOVA-F-Value test can be found in Table 9. The correlation heat map 

between all the features in the list can be found in Figure 11. 

4.2.1.1 Chi-Squared Test 

In the previous chi-squared test, the feature ‘Username/Password in URL’ was considered 

significant and could reject the null hypothesis at a 95% confidence level. This is not the case for 

the feature ‘Username/Password in URL’ in the second test. The other 10 features have very low 

p-values and can reject the null hypothesis. The p-value of the ‘Username/Password in URL’ 

Table 8. New Chi-Squared Test Results 
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feature is still low enough to reject the null hypothesis at the 90% confidence level, so we did not 

take it out of our feature set. 

4.2.1.2 ANOVA F-values 

The results of the ANOVA F-value test indicate with 95% confidence that the class labels are 

dependent on all the numerical features. All of the numerical features have very low p-values, 

which also indicates they are strong features. 

 

4.2.1.3 Correlation Heat Map 

The heat map shows fewer highly correlated features than previous results. One exception is 

the high correlation between ‘Fragments in URL’ and ‘Number of # in URL’. These two features 

could be indicative of the same information since fragments often begin with the ‘#’ symbol. We 

remove  ‘Number of # in URL’ as they both indicated the same information about the fragment. 

Table 9. New ANOVA F-value 



43 

There are a few similar cases in the heatmap but most of the other features do not show a high 

correlation with one another. 

 

Figure 11. New Correlation Heat Map 

 



44 

4.2.2 Algorithm Performance 

4.2.2.1 Tagging 

We tested the tagging method using the Random Forest algorithm, since it had the highest 

accuracy among the algorithms in our previous results. We used a 60% Normal / 40% Malicious 

split and 4 different threshold values. The results of this test and the threshold values used can be 

found in Figure 12 and Figure 13. In Figure 13, a false positive refers to a ‘Normal’ URL that 

was given a malicious tag (e.g. ‘malware’, ‘phish’, etc.). A false negative is a malicious URL 

that was given a ‘Normal’ tag. The false positive rates were calculated by counting the number 

of false positives and dividing by the number of URLs. The false negative rate was calculated in 

the same way but using a count of false negatives. The tagging algorithm produced very high 

accuracies. With lower threshold values producing higher accuracies. The higher accuracies 

came with a trade-off as lower thresholds led to higher false positive and negative rates. 
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Figure 12. Tagging Accuracy Results 

 

 

 

Figure 13. False Positive/Negative Rates 
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4.2.2.2 Algorithms Parameters 

We performed a 2-dimensional optimization for the Extra Trees and AdaBoost algorithms on 

a 50% Normal / 50% Malicious split. The results of the AdaBoost optimization can be found in 

Figure 14 and Figure 15. In Figure 14, darker blue represents a higher accuracy. For this test, we 

varied the number of estimators from 40 to 80, stepping by 10. We varied the learning rate from 

1 to 2, stepping by 1. Based on this result we chose to look at the number of estimators in more 

detail. In Figure 15, using a learning rate of 1, we varied the number of estimators from 65 to 75 

and stepped by 1. These results showed the ideal parameters for the AdaBoost algorithm which 

were a learning rate of 1 and the number of estimators equal to 66. 

 

 

Figure 14. AdaBoost Optimization Heat Map 
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Figure 15. AdaBoost Optimization Line Chart 

 

Next we optimized the Extra Trees algorithm. In Figure 16, we varied the number of 

estimators from 40 to 90, stepping by 5. We varied the number of minimum sample splits from 2 

to 11, stepping by 1. Based on these results, we decided to look at the number of estimators in 

more detail. In Figure 17, we used a minimum sample split of 6 and varied the number of 

estimators from 70 to 100, stepping by 1. These results showed that the ideal parameters for the 

Extra Trees algorithm were a minimum sample split of 6 and the number of estimators equal to 

91. 
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Figure 16. Extra Trees Optimization Heat Map 

 

 

Figure 17. Extra Trees Optimization Line Chart 

4.2.2.3 Training Ratios 

Next, we tested the algorithms against the 4 different training ratios we used previously. The 

results of this test can be found in Figure 18. Similar to our previous results, the 60/40 split 

yielded the highest accuracies. The Extra Trees classifier had the highest accuracy of 95.10%. 

The 80/20 split had the lowest accuracies for Random Forest and Extra Trees. The 50/50 split 
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had the lowest accuracy for AdaBoost. These results indicate that the 60/40 training method 

yields the highest accuracies in malicious URL identification. 

 

 

Figure 18. Ensemble Method Accuracies 
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5. Discussion 

The major goals of the project were to identify the optimal feature set to use for URL 

classification, as well as test and evaluate the performance of multiple algorithms. We did this 

through an iterative process. In our first iteration, we implemented 29 lexical features and the 

best performing algorithms identified in previous research. The preliminary results from this first 

iteration showed that Random Forest was the best performing algorithm. It also showed that the 

full lexical feature set performed the best. In the second iteration, with the success of Random 

Forest, we implemented several other ensemble methods (i.e. bagging, boosting). These other 

ensemble methods performed similarly to Random Forest. Our findings showed that ensemble 

methods performed the best for this classification problem and that our full feature set gave the 

best performance. 

Our findings showed that ensemble algorithms achieve a high accuracy using our full feature 

set. The ensemble algorithms performed with higher accuracy because they are better suited for 

multi-classification problems. Other algorithms tested, such as SVM linear and Logistic 

Regression, are more useful for binary classification. Another benefit of the ensemble algorithms 

is that they are less prone to overfitting and bias. Instead of relying on one algorithm to produce 

the best fit for the data, ensemble methods use multiple algorithms and the average of their 

results to generate predictions. Due to the nature of the data, we found that there was a lot of 

overlap between the classes of URLs. This leads to a more complex decision boundary which 

can be difficult to produce using one algorithm. We suggest that future research pursue ensemble 

type algorithms for similar multi-class problems. 
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5.1 Limitations 

There were several limitations in our research process. One limitation was the short amount 

of time for the development and analysis of algorithms (i.e. 8 weeks). There were also limitations 

throughout our development process. We describe those limitations in the following sections. 

5.1.1 Data 

Although we were thorough in our data gathering and creating our testing and training sets, 

there are several limitations with our data. One limitation is that URLs labeled as normal may 

potentially not be normal.  We assume that the normal URLs identified as normal by others’ 

publications is correct. There is also the potential that URLs once labeled as normal have since 

been compromised. Another limitation is that our data may not be representative of all the 

categories. For each malicious URL category, data was collected from a single source, which 

may not be representative of all types of URLs in that particular category. Due to limited 

literature about ratios of malicious URLs in real web traffic, our training and testing data sets 

may not reflect real web traffic. This means our results may vary when applied to real world 

traffic. These limitations may have caused variance of our results and findings. 

5.1.2 Features 

Our results are entirely based on lexical features. Although we implemented and tested three 

host-based features, we were unable to evaluate them due to the fact that many of the URLs in 

our data set were no longer active. With our training data sets consisting of more than 50,000 

URLs and the limited time we had to complete the project, the timeout was a huge problem. 

Whenever the feature extractor came across a URL that was no longer active it would take 25 
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seconds for the function to timeout. This issue can be fixed in future research with the gathering 

of more recent URLs that are still active. 

5.1.3 Algorithms 

Algorithmic limitations include the tools used to generate the models and the data used to 

train and test the models. We used the libraries from Scikit-Learn for the implementation of our 

algorithms. Since we did not develop or test our own implementations, we trust the developers at 

Scikit-Learn to develop well tested and reliable code. Also, the limitations mentioned for the data 

sets apply to the algorithm performance. Although the algorithms performed well in our tests, 

applying these models to real world web traffic may yield different results. 

5.2 Future Work 

Many of the limitations described in the previous section can be improved in future research. 

Labeled data sets of URLs are crucial, but difficult to find. Further testing of algorithms using 

more realistic web traffic and a broader sample of URLs could lead to improved models.  

There is more research that can be done with features. Host-based and content-based features 

may provide more context when classifying a URL. There is a substantial risk that comes with 

generating content-based features because the process involves downloading the contents of 

websites which could contain malicious software. If this risk is managed correctly, the 

information gathered using these types of features could greatly improve model performance.  

Another major area for improvement in future research is the models used. We focused our 

research on popular algorithms found in the Scikit-Learn library—mainly supervised algorithms. 

Future work could look into semi-supervised classification algorithms and how neural-networks 
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could be used to better classify URLs. Also, future research in this field could focus on 

researching and developing new supervised algorithms and ensemble methods to tackle this type 

of problem. 
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6. Conclusion 

Cybercrime is on the rise as society shifts to a more online presence. Thus there is a need to 

detect cyber-attacks early to prevent damage to unsuspecting victims. We developed and 

analyzed machine learning algorithms to tackle one approach for early detection—URL 

classification. We gathered data from 5 different categories: normal, phishing, malware, 

ransomware, and botnet C&C. Using characteristics identified in previous research, we 

developed a comprehensive feature set made up of 31 lexical and 3 host-based features. Though 

we were limited to evaluating the lexical features, we found that all of our lexical features were 

relevant. Through development and testing of several algorithms, we discovered that ensemble 

algorithm methods performed the best with our set of lexical features. In particular, the 

algorithms Extra Trees and Random forest performed exceptionally well with accuracy. This 

work is one step in the right direction by allowing URLs to be accurately classified enabling 

early detection and prevention of cyber-attacks.	
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