

Smart Thermostat using FPGA

A Major Qualifying Project Report

Submitted to the Faculty of Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Bachelor of Science in Electrical & Computer Engineering

Khoa Nguyen
December 31st, 2015

Advisor: Professor R. James Duckworth

Acknowledgements
I would like to express my sincere gratitude to Professor Duckworth for his indispensable

and invaluable guidance throughout the project. His inputs insightful comments had encouraged

me to broaden my views and explore different aspects of the project.

I also would like to thank Professor Bitar for advising me to complete analog circuits.

I would also like to thank Drew Vojslavek from Omron Electronic Components LLC, and

Steve Courcy from CTC Associates. Inc. fir sending me samples to help me finish the prototype

of this project.

Table of Acronyms

AXI Advanced eXtensible Interface

LUT Look-up table

FPGA Field Programmable Gate Array

HVAC
Heating, Ventilating and Air

Conditioning

OLED Organic Light-Emitting Diode

PL Programmable Logic

PS Processing System

SoC System-on-Chip

GPIO General peripheral in/out

FOV Field of view

ADC Analog digital converter

SDA Serial data

SCL Serial clock

WPI Worcester Polytechnic Institute

Abstract
 The focus of this project is to develop a smart thermostat that used a human detection to

automatically adjust desired indoor temperatures. The system was implemented on the Zybo, a

development board with a Xilinx Zynq All Programmable System-on-Chip (Soc), which

integrates a dual-core ARM Cortex-A9 processor with a Xilinx 7-series Field Programmable

Gate Array (FPGA) logic. The completed design was able to receive pre-set desired temperature

values from users and automatically control the heating, ventilating and air conditioning

(HVAC) system to maintain the comfort zone and maximize energy saving. The smart

thermostat was supplied by real-time embedded software running on the ARM microprocessor.

All communications between peripherals and the smart thermostat were designed in Verilog and

implemented on programmable logic.

Table of Contents
Acknowledgements ... 2

Table of Acronyms .. 3

Abstract ... 4

Table of Contents .. 5

Table of Figures ... 8

Table of Tables .. 10

1. Introduction .. 11

2. Background ... 13

2.1 Heating, Ventilation and Air Conditioning (HVAC) .. 13

2.2 Smart thermostat .. 15

2.2.1 Characteristics of a smart thermostat ... 15

2.2.2 Smart thermostats on the market ... 15

2.2.3 Smart Thermostat Advantage .. 17

2.3 Comfort zone .. 17

2.4 Zybo (Xilinx Zynq 7010) Development Board .. 18

2.5 Omron thermal sensor D6T series .. 20

2.6 Digilent temperature sensor ... 22

2.7 Register booster fan .. 23

2.8 Digilent OLED screen ... 24

2.9 Human Detection Algorithm ... 26

2.9.1 Visual cameras and thermal cameras .. 26

2.9.2 Human detection algorithms ... 27

2.9.3 Human temperature .. 27

3. Project Design ... 29

3.1 System Block Diagram ... 29

3.2 Zynq SoC and Architecture .. 30

3.3 AXI Peripheral Interconnect .. 31

3.4 The processing system on ARM Cortex-A9 processor. ... 32

3.5 IP Module Generation for FPGA Processing ... 32

3.6 Temperature Sensor and Data Transmission to FPGA .. 33

3.7 Thermal Sensor and Thermal Data Transmission to FPGA ... 40

3.8 OLED display nethod ... 47

3.10 Four push-buttons .. 49

3.11 HVAC unit transmission to Zybo ... 50

3.11 Register Booster Fan ... 53

3.12 Human Detection Algorithm ... 53

3.12.1 Received data ... 53

3.12.2 Temporal changes of data.. 54

3.12.3 Analysis .. 58

3.13 HVAC controlling algorithm .. 66

3.13.1 Hysteresis ... 66

3.13.2 HVAC mode .. 68

4. Implementation .. 70

4.1 HVAC Modes ... 70

4.1.1 Cool mode .. 70

4.1.2 Heat mode.. 72

4.1.3 Auto heat&cool mode .. 74

4.2 User Interface ... 77

4.2.1 Default screen: information display ... 77

4.2.2 User input ... 79

4.3 Software program ... 81

4.4 Cost ... 81

5. Testing and Results ... 83

5.1 Hardware testing .. 83

5.1.1 Oscilloscope ... 83

5.1.2 Resource utilization.. 86

5.2 System setup ... 86

5.2.1 Test environment ... 87

5.2.2 Equipment setup .. 88

5.2.2 Data collection ... 93

5.3 Tests and Results ... 94

5.3.1 Human detection algorithm ... 94

5.3.2 Functional testing... 95

5.3.4 Result analysis .. 103

5.3.5 Comparison with Nest thermostat .. 104

6. Conclusion ... 107

References .. 108

Appendix A: Development Code ... 112

Verilog code of thermal sensor module ... 112

Verilog code of temperature sensor module .. 112

Appendix B: Embedded Software Excerpts .. 113

Table of Figures
Figure 2-1 Residential HVAC System [8] ... 14

Figure 2-2 Basic Thermostat Circuit [9] ... 15

Figure 2-3 Relative humidity (RH)/temperature (T) diagram [14] .. 18

Figure 2-4 Zynq 7010 (Zybo) Development Board [16] .. 19

Figure 2-5 Overview of Zynq block design and its architecture [18] .. 20

Figure 2-6 Omron thermal sensor D6T-44L [19] ... 21

Figure 2-7 Difference between pyroelectric and non-contact temperature sensor [19] 21

Figure 2-8 Sensitivity characteristics: FOV image [19] .. 21

Figure 2-9 Digilent temperature sensor Pmod TMP2 [20].. 22

Figure 2-10 The Back side of a customized register booster fan. ... 23

Figure 2-11 A register booster fan was attached to the duct register. .. 24

Figure 2-12 Digilent Pmod Organic LED Graphic Display [23] ... 24

Figure 2-13 The OLED graphic display panel (UG2832) [25] ... 25

Figure 2-14 Logical division of the OLED display module [26] .. 26

Figure 3-1 Overall system block diagram .. 30

Figure 3-2 Zynq SoC interface ... 31

Figure 3-3 AXI Interconnect .. 32

Figure 3-4 Pull-up resistors for each I2C bus ... 33

Figure 3-5 I2C bus extender P82B715 and pull-up resistors ... 34

Figure 3-6 Net pull-up resistors on the cable bus ... 34

Figure 3-7 Pull-up resistors between a temperature sensor and the bus extender................................... 35

Figure 3-8 The interface between a temperature sensor and an I2C bus extender 35

Figure 3-9 Overall temperature sensor interface circuits connected to Zybo .. 36

Figure 3-10 Top level of a temperature sensor on programmable logic .. 37

Figure 3-11 Reading back data from the temperature value MSB and LSB register [46] 38

Figure 3-12 Finite state machine of temperature sensor module .. 39

Figure 3-13 Pull-up resistors for the connection between Zybo, I2C bus repeater and bus extender 40

Figure 3-14 Pull-up resistors on a cable bus. .. 41

Figure 3-15 Thermal sensor interface circuit with the I2C bus repeater, bus extender and pull-up resistors

 .. 42

Figure 3-16 Pull-up resistors between the I2C bus extender and the thermal sensor. 42

Figure 3-17 Thermal sensor with the I2C bus extender .. 43

Figure 3-18 Overall thermal sensor interface circuit .. 44

Figure 3-19 Top-level of thermal sensor module ... 45

Figure 3-20 – Signal chart of the Omron D6T-44L thermal sensor ... 46

Figure 3-21 Top-level wrapper of pmod_OLED_v1_0 ... 47

Figure 3-22 Bitmaps of letter “A” in CharLib.coe [50]. ... 48

Figure 3-23 Data register and its relation to the physical OLED screen [26]. ... 49

Figure 3-24 Four push-buttons attached on Zybo .. 50

Figure 3-25 4-channel relay interface board used to control the HVAC system [55]. 51

Figure 3-26 HVAC relay block diagram ... 51

Figure 3-27 3rd and 4th indicated LED showed Zybo turned on heating mode ... 52

Figure 3-28 Omron thermal sensor generated thermal image with 16 pixels. .. 53

Figure 3-29 Data points of a test result .. 55

Figure 3-30 Calculated values from the thermal sensor before normalizing. .. 57

Figure 3-31 Calculated values from the thermal sensor after normalizing. ... 57

Figure 3-32 Heat map showed a bright spot indicating the human pixel ... 58

Figure 3-33 Heat map showed invisible bright spot with human presence ... 59

Figure 3-34 Calculated values from thermal images of test 3 in room 1 with human presence................ 59

Figure 3-35 Calculated values from thermal images of test 2 in room two without human presence 60

Figure 3-36 Histogram of human pixels’ mean brightness ... 61

Figure 3-37 Histogram of non-human pixels’ mean brightness.. 61

Figure 3-38 Histogram of all pixel’s mean brightness ... 62

Figure 3-39 Histogram of non-human pixels’ brightness volatility ... 63

Figure 3-40 Histogram of human pixels’ brightness volatility .. 63

Figure 3-41 Histogram of all pixels’ brightness volatility .. 64

Figure 3-3-42 Hysteresis of cool mode with the desired temp at 230C .. 67

Figure 3-43 Hysteresis for heat mode with the desired temperature at 230C ... 68

Figure 3-44 Preset comfort zone .. 69

Figure 4-1 Standard information display on the OLED screen for a single mode. 78

Figure 4-2 Standard information display on the OLED screen for auto heat&cool mode. 78

Figure 4-3 Four push-buttons and its functions. ... 79

Figure 4-4 Thermostat’s setting options ... 80

Figure 4-5 OLED screen when a user was selecting HVAC mode.. 80

Figure 5-1 An oscilloscope with programmable logic analyzer [57] ... 83

Figure 5-2 Hardware testing using an oscilloscope .. 84

Figure 5-3 Using an oscilloscope to measure the frequency on SCL of a temperature sensor 85

Figure 5-4 The oscilloscope showed I2C bus signals of the temperature sensor .. 86

Figure 5-5 Real system prototype used to perform the HVAC system. .. 87

Figure 5-6 Floorplan and the thermostat’s location ... 88

Figure 5-7 Position of thermal sensor and its detecting dimension in room 2 .. 93

Figure 5-8 Smart operation with booster fans .. 96

Figure 5-9 Smart operation without booster fans .. 98

Figure 5-10 Non smart operation without booster fans. .. 100

Figure 5-11 Original thermostat with basic function. ... 102

Table of Tables
Table 2-1 Smart thermostats and their features on the current market [11] .. 16

Table 3-1 Output data format to the processing system .. 46

Table 3-2 HVAC relay truth table .. 52

Table 3-3 HVAC indicated LEDs truth table ... 52

Table 3-4 Truth table of booster fan relay module ... 53

Table 3-5 Format of data point ... 55

Table 3-6 Statistics of human and non-human pixels mean brightness values in 60 seconds 60

Table 3-7 Statistics of human and non-human pixels brightness volatility in 60 seconds 62

Table 3-8 Accuracy of the human detection algorithm based on minimum brightness and volatility 66

Table 3-3-9 Hysteresis of controlling algorithm .. 66

Table 4-1 Cool Mode ... 71

Table 4-2 Night mode of the cool mode ... 72

Table 4-3 Heat mode operation .. 73

Table 4-4 Night mode of the heat mode .. 74

Table 4-5 Auto heat&cool mode when no human presence in room 1 and 2 ... 75

Table 4-6 Auto heat&cool mode when human was present in a room.. 76

Table 4-7 Auto heat&cool mode when human appears in both room 1 and 2 .. 77

Table 4-8 Smart thermostat prototype cost. .. 81

Table 4-9 Hardware cost for each additional room .. 82

Table 5-1 System resource utilization ... 86

Table 5-2 Different combinations of mean brightness and brightness volatility 94

Table 5-3 Combinational result of human detection algorithm after running 28 samples and 20 tests. .. 95

Table 5-5 Statistics of HVAC runs in smart operation without booster fans .. 99

Table 5-6 Statistics of HVAC runs in non-smart operation. .. 101

1. Introduction
Thermoregulation is an essential part of human survival needs; thus heating and cooling

have always been two imperative factors in our everyday life. There are numerous

technologies that have been developed to support these needs by using different sources of

energy. For instance, in residential units, the majority of energy expenses is for heating and

cooling. According to the U.S. Department of Energy, “Space heating is likely the largest

energy expense in a house, accounting for about 45% of the average American family’s

energy bill [1], while home cooling is 6% of the average household’s energy use [2].”

Moreover, according to the U.S. Energy Information Administration (EIA), Massachusetts

households spent 22 percent more on energy than the U.S. average, paying about $2500/year

[3]. The EIA reported, “Since the weather in Massachusetts and New England is cooler than

other areas of the United States, space heating makes up a greater portion of energy use in

homes (59%) compared to the U.S. average, and air conditioning makes up only 1% of energy

use” [4].

In the current market, every available residential heating, ventilating and cooling (HVAC)

system needs a thermostat to measure temperatures and control the starting and stopping of

the HVAC. Therefore, the thermostat plays a crucial role in regulating indoor temperatures,

which in turns determines the level of energy consumed by the HVAC. A traditional

thermostat comes with a built-in thermometer and an interface to receive input temperature

from users. It is usually mounted on a wall indoor, thus its measured temperatures are mostly

temperatures of the surrounding area. If a measured temperature is not the same as the

temperature set by the user, the thermostat will start the HVAC system and let it run until the

measured temperature reaches the desired level.

A residential unit such as a family house, or an apartment, usually has only one HVAC

system and one thermostat to control it. It is very common for such unit to be divided into

multiple rooms, such as living room, bedroom, and kitchen. Depending on the construction of

the unit, there is always a difference in temperature level across the rooms. The larger the unit

is, the greater of such difference will be. However, it is impossible for the thermostat to

accurately measure temperature of every room, leading to insufficient energy usage and

creating discomfort for residents. People usually work around the issue by either offsetting the

temperature set in the thermostat or they use a portable heating or cooling device. Both

approaches do not solve the inherent issues surrounding the thermostat, and at the same time

cause more energy consumption.

To resolve the issues, modern HVAC systems have built-in technologies to regulate

temperature. A zoning system [citation] treats a room in a residential unit as a zone, which has

its own thermostat and vent with a controller damper. Such systems allow regulated air to

flow only to zones that are in need. However, such zoning system is hard to install into an

existing HVAC system and is usually expensive. Moreover, since there might be multiple

thermostats in multiple zones, the resident needs to frequently adjust temperatures across the

thermostats to prevent the HVAC from operating inefficiently. Modern thermostats come with

timers which allow users to maintain different temperature levels at different times. Even so,

the user needs to put a lot of effort into the initial configuration setup and the efficiency of the

system depends on the timer.

Recently, there are multiple thermostats developed to help users to have better control of

indoor temperatures, as well as saving energy bills. They are easier to install than the zoning

systems, and they come with interfaces using mobile applications users are able to control the

thermostat without having to go to its location even when he or she is away. However, these

thermostats do not fully solve the problem of temperature differences across rooms or allow

users to set their desired temperatures. Without using a thermostat’s timer, if a user wants to

save on his energy bill, he or she still needs to change temperature levels when leaving and

arriving home. Even with the help of a timer, the user does not always stay at his desired

temperature level if he changes the routine set in the timer.

In this project, I propose a system design to help solve the aforementioned problem by

using Zybo as a thermostat, along with a set of peripherals. The system includes sets of

sensors, each is placed in a room of a home to detect the presence of a human and to measure

the temperature of the room. Zybo would receive data from the sensors, analyze it and control

the HVAC system accordingly. This report describes the system design in details. Chapter 2

introduces background knowledge of relevant technologies and terminologies, chapter 3

describes the detailed design of the entire thermostat’s component. Chapter 4 explains how

the design is implemented, and chapter 5 reports the testing procedures as well as the results.

2. Background
In this project, a Zync-7010 (Zybo) development board was used as a central controlling

unit along with add-on components: thermal sensors for human detection, temperature sensors

for temperature measurement, booster fans for enhanced air circulation, relays for HVAC

control and an OLED screen for information display. This chapter introduces the concept and

background of heating, ventilation and air conditioning (HVAC) system, a smart thermostat,

comfort zone and add-on components listed above.

2.1 Heating, Ventilation and Air Conditioning (HVAC)

 “The purpose of a heating, ventilating and air conditioning (HVAC) system is to provide

and maintain a comfortable environment within a building for the occupants or a suitable

environment for the process being conducted” [5]. The principal functions of an HVAC

system were to provide desired cooling and heating outputs regardless of affecting factors.

Besides, the system maintained comfortable conditions using as little energy as possible while

providing a healthy environment for occupants and safe conditions for equipment [5].

An HVAC system often includes a cooling system to cool indoor air and a hot furnace to

warm up the air pictured in Figure 2-1. Modern HVAC systems use a heat pump to supply

both cool air and hot air because they have a special valve in the refrigeration piping that

allows the refrigeration cycle operate in reverse [6]. According to an explanation of the U.S.

Department of Energy, “In heating mode, liquid refrigerant in the outside coils extracts heat

from the air and evaporates into a gas. The indoor coils release heat from the refrigerant as it

condenses back into a liquid. A reversing valve, near the compressor, can change the direction

of the refrigerant flow for cooling as well as for defrosting the outdoor coils in winter” [7].

Figure 2-1 Residential HVAC System [8]

There are two types of HVAC systems: single-stage and multi-stage. A single stage

HVAC system have five basic wires with preset standard colors that are red (R) for power,

black (C) for common, yellow (Y) for cooling system, white (W) for heating system and green

(G) for blower/fan [9]. In case the HVAC system has a second stage of cooling and heating,

there is another set of wires to connect to the thermostat. An HVAC system has a 24VAC

transformer to transform high-voltage to low-voltage source.

Along with the HVAC system, a thermostat is used as a controller. A basic thermostat

allows user to select a desired temperature and switches between cooling or heating mode. In

a forced-air HVAC system, the thermostat is connected to an air compressor, furnace and a

blower via the five basic wires. When the thermostat calls for cooling, both the air compressor

and the blower are activated simultaneously. When the thermostat calls for heating, only the

furnace is activated. However, there is a model of thermostat that activates both the hot

furnace and blower when calling. In such case, the thermostat has to call for either the heating

or cooling system; it is not allowed to run both systems at the same time. Figure 2-2 shows a

basic thermostat circuit and its connection to an existing HVAC system.

 Figure 2-2 Basic Thermostat Circuit [9]

2.2 Smart thermostat

A smart thermostat is defined as a device that shows intelligence or good judgment in

automatically adjusting a room’s temperature to a desired level [10]. While a user has to

adjust the desired temperature manually on a regular thermostat, a smart thermostat has

programmable functions that can maintain the desired level automatically. Using a smart

thermostat, the user does not have to worry about forgetting to turn off his or her HVAC

system when leaving home nor feeling uncomfortable when coming back waiting for it to turn

on. A smart thermostat saves its user from repeated manual tasks such as turning on/turning

off, temperature setting or timing.

2.2.1 Characteristics of a smart thermostat

A smart thermostat can save energy by controlling an HVAC system efficiently with

programmable functions and automatic operations. Such features save a user from repeating

the task of turning the HVAC on and off while intelligently controlling the system to maintain

a desired temperature level. In addition, there is also an energy-saving feature which a user

can turn on when he or she is not at home for an extended period of time, such as going to

work or on vacation. If an HVAC system has multiple cooling or heating stages, the smart

thermostat is able to use these stages to improve humidity control and maintain the comfort

zone by circulating just enough indoor air when necessary.

2.2.2 Smart thermostats on the market

There are many smart thermostats on the market developed with a variety of

technologies, but almost all of them have common core features. Depending on its design,

each smart thermostat has different temperature swings. With the swing, the HVAC runs to

maintain indoor temperature at a desired level when the room drifts a given number of degrees

away from the given range. The smart thermostat can also control a whole-house fan and

auto-change heating/cooling mode to keep indoor air fresh and increase efficiency of the air

conditioning cycles. It may also have a keypad lock to avoid accidental modifications from

unexpected users.

Besides the common functionalities, designs of the “smart” features vary from one brand

to another. Current state-of-the-art thermostats usually require users to manually control it for

seven-day before setting a running schedule automatically. This feature creates a personal

schedule based on the temperature changes and input date/time from users. By doing this, a

thermostat know when users are away as well as when they are home, and adjust indoor

temperatures accordingly. How the personal schedule is set up, and how the thermostat use

the schedule to control the HVAC system is proprietary to the manufacturer. Moreover, some

thermostats even have motion sensors to automatically turn on away/vacation mode.

Nowadays, smart thermostats have Wi-Fi connectivity that let users control an HVAC system

and adjust desired temperatures remotely. With that function, the users are able to pre-

heat/pre-cool the house before they come home. Table 2-1 lists five popular smart thermostats

currently on the market.

 Nest

Learning

Thermostat

Ecobee3 Honeywell

Lyric

Radio

Thermostat

CT-80

Honeywell

Wi-Fi

Smart

Temperature Control

Heating Stages 3 4 3 3 3

Cooling Stages 2 2 2 2 2

Temperature Swing +/- 10F +/- 10F +/- 10F +/- 0.50F +/- 10F

Programmable Fan Yes Yes Yes Yes Yes

Keypad Lock Yes Yes Yes Yes Yes

Auto Changeover Yes Yes Yes Yes Yes

Energy Management

Seven-day scheduling Yes Yes Yes Yes Yes

Away/Vacation Features Yes Yes Yes Yes Yes

Auto-Schedule Yes Yes Yes Yes Yes

Sensors

Weather Conditions Yes Yes Yes No Yes

Humidity Sensor Yes Yes Yes Yes Yes

Motion Sensor Yes Yes Yes No No

Design & Setup

Wi-Fi Yes Yes Yes Yes Yes
Table 2-1 Smart thermostats and their features on the current market [11]

2.2.3 Smart Thermostat Advantage

A 2007 Gas Networks study showed savings of 6.2% of total household annual natural gas

consumption associated with the installation of an ENERGY STAR rated programmable

thermostat [12]. A smart thermostat automates energy saving behaviors, such as lowering the

temperature during work hours, when users are most likely not at home, which in turn helps

deliver on that 6.2% actual saving.

In conclusion, a thermostat is marketed as “smart” if it provides at least one of the

following two features: (1) Wi-Fi connection for remote access to the thermostats, even when

users are not at home; (2) Automatic HVAC system control to maintain a preset temperature

level without the need of repeating human attention. Almost all smart thermostats on the

market have a Wi-Fi connection, while only the Nest, ecobee3, and Honeywell Lyric smart

thermostats have built-in motion sensors to sense when no one is home and adjust indoor

temperature accordingly.

2.3 Comfort zone

In this project, a comfort zone is defined as a temperature range in which humans feel

comfortable. In a person’s comfort zone, he or she should not feel uncomfortable by being

cold nor hot. The American Society of Heating, Refrigerating and Air-Conditioning

Engineers’ (ASHRAE’s) publication on “thermal environmental conditions for human

occupancy” defined comfort zones for summer and winter season [13]. Assuming normal

indoor clothing, it pointed out that a person’s age, activity level, and physiology affected the

ideal thermal comfort for that individual. “Air speed and thermal radiation are predominantly

outdoor effects that are difficult to measure and control. As a result, literature on thermal

comfort concentrates on temperature and humidity. Although temperature ranges are specified

per season, the relative humidity is set between 70%RH and 30%RH in summer and winter

time, respectively” [14]. Figure 2-3 below shows comfort zones of winter and summer season,

where temperatures are between 73.00F and 76.00F, while humidity varies from 23.0% to

79.5%. The average comfort temperature is 74.50F and the average humidity is 51%. If the

temperature is above 760F, the perceived air quality is worse regardless of the actual air

quality. Similarly, high relative humidity might make users feel hotter and promote the growth

of mold and mildew, while low relative humidity causes discomfort due to drying of the nose,

throat, mucous membranes and skin.

Figure 2-3 Relative humidity (RH)/temperature (T) diagram [14]

2.4 Zybo (Xilinx Zynq 7010) Development Board

Zybo (Xilinx Zynq 7010) is a development board produced by Xilinx. Zybo is based on

the Xilinx All Programmable System-on-Chip (AP SoC) architecture, which tightly integrates

a dual-core ARM Cortex-A9 processor with a Xilinx 7-series Field Programmable Gate Array

(FPGA) logic [15] pictured in Figure 2-4. This device features four binary slider switches,

LEDs, push-buttons and a USB UART1 connectivity. Additionally, Zybo has totally six Pmod

connectors, available for communication with add-on sensors, OLED screen and relay.

1 UART stands for Universal Asynchronous Receiver/Transmitter

Figure 2-4 Zynq 7010 (Zybo) Development Board [16]

The 650MHz dual-core Cortex-A9 processor can be used as an embedded microprocessor,

while the Artix-7 FPGA with 17,600 LUTs (Look-Up Tables2) and 35,200 flip-flops can be

used to create complex digital logic [17]. On the Zynq board, the Cortex-A9 communicates

with the FPGA using the Advanced eXtensible Interface (AXI) Interconnect. The clock speed

for both Programmable Logic (PL) and Processing System (PS) is 100MHz, which is also

used to run add-on peripherals. Figure 2-5 showes the overview of Zynq block design and its

architecture, containing the processing system and programmable logic.

2 Look-Up Table (LUT) implements truth table to define outputs for any given combinational logics of inputs

Figure 2-5 Overview of Zynq block design and its architecture [18]

I chose the Zybo as a central controlling unit because it could host a whole system design

that connected hardware components and software programs together. The AXI Interconnect

was convenient and flexible to transfer data and signals between Cortex-A9 and

programmable logic. Additionally, the Zybo had enough Pmod connectors to communicate

with sensors and to control the HVAC unit. All prebuilt sliders switches and push buttons

acted like an interaction module of a thermostat.

2.5 Omron thermal sensor D6T series

This project used Omron D6T-44L thermal sensors pictured in Figure 2-6 with a 4x4 pixel

resolution for human detection. “The product measures the surface temperature of the material

by detecting intensity of the infrared radiation” [19]. Different from pyroelectric sensors

which only detected human presence by change of signal, the Omron thermal sensor could

catch the signal of a stationary person by continuously detecting the far-infrared ray of an

object [19]. Figure 2-7 shows a difference between a pyroelectric sensor and an Omron

thermal sensor.

Figure 2-6 Omron thermal sensor D6T-44L [19]

Figure 2-7 Difference between pyroelectric and non-contact temperature sensor [19]

This component performed its sensitivity characteristics over an object view angle by

using a silicon lens. The Field Of View (FOV) was generally specified as an area of 50% for

maximum sensitivity [19]. Figure 2-8 shows the Omron thermal sensor’s FOV image and

sensitivity.

Figure 2-8 Sensitivity characteristics: FOV image [19]

An Omron thermal sensor communicated with Zybo (master device) via an I2C interface3.

This module was driven by a 5V power source, its I2C data and clock lines used the same

voltage power. Since Zybo did not support 5V tolerant, an I2C level translating IC was used to

connect Zybo and the sensor. Usage of I2C level translating IC would be discussed later in

section 3.6.

2.6 Digilent temperature sensor

The Pmod TMP2 is a temperature sensor and thermostat control board built around the

Analog Devices ADT7420 pictured in Figure 2-9.

Figure 2-9 Digilent temperature sensor Pmod TMP2 [20]

This sensor uses an 8-pin connector that allows communication via I2C. It also provides

two 2-pin headers for the I2C chip address selection, and two 2-pin headers for controlling

external devices based on temperature thresholds [21]. The ADT7420 is a high accuracy

digital temperature sensor. It contains a 16-bit ADC to monitor and digitize the temperature to

0.00780C resolution. By default, the ADC resolution is set to 13-bits (0.06250C). In this

project, the temperature sensor was used with default 13-bit resolution only because it was

sufficient to get indoor temperature values. This item has a typical accuracy of around than

0.250C and 240ms continuous conversion time.

3 The I2C (Inter-IC) bus is a bi-directional two-wire serial bus that provides a communication link between
integrated circuits (ICs). Philips introduced the I2C bus 20 years ago for mass-produced items such as televisions,
VCRs, and audio equipment. Today, I2C is the de-factor solution for embedded applications. [61]

The Pmod TMP2 temperature sensor acted as a slave device using an I2C interface. Zybo

had to specify a slave address (0x4B)4 to communicate with this sensor and a flag indicating

the communication was read only. Using I2C interface standard, this communication used two

signal lines for I2C data and I2C clock. Based on the data sheet of the ADT7420 chip, these

signals mapped to the serial data (SDA) and serial clock (SCL) respectively on the ADT 7420

[22].

2.7 Register booster fan

 The purpose of a register booster fan was to increase air circulation from the HVAC

system to a room when the distance between them was long. In the test environment section

described in 5.3.1, each room in the apartment has one ceiling register to which three booster

fans were attached. Each fan operated at 12VDC with a maximum power consumption of 2

Watts. The fan had the speed of approximately 3200 rounds per minute (RPM) and airflow of

41 Cubic feet per minute (CFM). A ceiling register with three booster fans might supply up to

123 CFM. In the thermostat design, the register booster fan of a room was turned on only if

this room had positive human detection and its desired temperature needed to be maintained.

Figure 2-10 below shows the back of a combined register booster fan. This was a register

booster fan prototype with three attached 80mm fans powered by an external 12VDC power

supply. The blue tape was used to cover an empty hole of the register. This combined register

booster fan was attached to the ceiling duct register shown in Figure 2-11.

Figure 2-10 The Back side of a customized register booster fan.

4 The Pmod TMP2 temperature sensor has four slave addresses from 0x48 – 0x4B. This project uses 0x4B for the
communication between the master device and the Pmod TMP2 sensor.

Figure 2-11 A register booster fan was attached to the duct register.

2.8 Digilent OLED screen

 PmodOLED is a monochrome Organic LED graphic display produced by Digilent Inc

pictured in Figure 2-10. This module uses a 128x32 OLED graphic display panel, measured

0.9” and was write-only (pictured in Figure 2-11).

Figure 2-12 Digilent Pmod Organic LED Graphic Display [23]

In this project, the PmodOLED communicated with the Zybo via a standard SPI

interface5. Zybo used this interface to configure the display, and then sent the bitmap data to

the PmodOLED. The OLED graphic display panel could keep displaying the last image on the

screen until it was turned off or cleared out [24]. This module was write-only, hence it only

used Master Out Slave In (MOSI)6 data method to draw bitmap data on the screen.

Figure 2-13 The OLED graphic display panel (UG2832) [25]

As mentioned, this OLED panel has 128x32 pixels that could be divided logically into 4

pages/ 4 rows. Each page can display up to 16 characters, where each character is represented

by 8x8 bitmap showed in figure 2-12 [26]. The method used to display information to the

screen will be explained in more details in section 3.7.

5 Serial Peripheral Interface (SPI) interface is an interface bus commonly used to send data between
microcontrollers and small peripherals. The SPI master controller uses separate four basic wires, clock, data and
select lines to communicate with slave peripherals [62]
6 Master Out Slave In (MOSI) signal is generated by a master device and is sent to a slave device as a recipient

Figure 2-14 Logical division of the OLED display module [26]

2.9 Human Detection Algorithm

2.9.1 Visual cameras and thermal cameras

Visual cameras are a standard in general imaging purposes, serving a huge range of

applications from personal and commercial to military. Modern visual cameras capture scenes

and place them into colored images, thus the images’ qualities depend on the scenes’

illumination. If there is not enough lighting at a scene captured by a camera, the resulted

image might appear darker than reality. In contrast, using the same camera configuration, if

there is too much lighting, the resulted image might appear saturated. In both cases, actual

color differences among objects in the scene are reduced, resulting in a lower image quality.

Although visual cameras are becoming more affordable than before, this inherent limitation

makes them less ideal when chosen for applications that need night vision.

Thermal cameras, on the other hand, do not require illumination. They are sensors that

produce images based on object surface temperatures in the captured scene. Particularly, a

thermal camera “captures the infrared radiation emitted by all objects with a temperature

above absolute zero” [27]. Since there is no dependency on the scene’s lighting condition, this

type of sensors do not have the mentioned problem of visual cameras. However, they have

their own limitations, which Fang et al. [28] summarize into three different types: First, it is

impossible to distinguish between human and other heat sources based only on their

brightness. Second, image intensities are not uniform across a human body, due to clothes,

accessories or orientation, making detection tasks more difficult. Third, intensity ranges in

most thermal images are smaller than those of comparable visual cameras, which lead to

lower image quality.

Another important characteristic of a thermal camera is, it is generally much more

expensive than a visual camera. It is because a special detector is required to capture thermal-

infrared radiation [27]. The detector was first only used for the military before being

commercialized [27]. Some of the thermal cameras available in the U.S. market are Omron

D6T-44L, Panasonic AMG8832, Melexis MLX90260ESF, which were priced $32, $39 and

estimated $55 respectively. Among available options, Omron D6T-44L is the cheapest

version, which makes it an ideal choice for a residential smart thermostat in term of price.

2.9.2 Human detection algorithms

Since thermal cameras are only available commercially recently [27], human detection

research based on them is not as popular and plentiful as the one based on visual cameras.

Most thermal image based research results are based on human shape templates [29] [30] [31]

[32]. These methods are found common between thermal and visual images. They usually

leverage different techniques to extract region of interests, such as the use of contour maps

[33] [34], human features [33] [35]. The regions are then put through a classifier to identify

whether the object inside is human or not. Classifiers used include but not limited to support

vector machines [35], AdaBoost [36] [34] or Naive Bayers [37] [38].

Meanwhile, the only shape-independent method found were proposed by Fang et al. [28].

In this research, regions of interests were extracted using a strategy based on image intensity

differences among pixels. The regions were then passed through a classifier to be compared

against a generic template.

Existing research efforts inspired me to apply similar methods in detecting a human.

However, the exact implementation was different, since the target environment of this project

was indoor with a fixed setup, and the Omron sensor had unique characteristics that

negatively affected detection results.

2.9.3 Human temperature

Human body is known to have a temperature of 98.60F/370C [39]. Research efforts also

found out that human body temperature remains fairly constant regardless of changes in

surrounding environments, including seasonal changes [40]. The average human skin

temperature is also found to be 330C [41]. In multiple tested environments, the forehead and

the back are parts that maintain the most stable and highest temperatures [41].

In spite of constant body temperature, skin temperatures actually change when the

surrounding environment gets colder or hotter. Y.Liu et al. [42] found that when a room

temperature changed from 250C to 320C, facial skin temperature changed from 34.50C to

35.50C. The research also showed that the average outer surface temperatures of clothes worn

on human also increased from 30.50C to 33.50C when the same room temperature change

happened.

The findings imply that, regardless of a room temperature, when a thermal image is

captured, pixels containing human are usually brighter than other objects’ pixels. Testing

results of this project also confirmed the implication, made it a key factor in the human

detection algorithm used in this project.

This chapter reviewed the concepts of an HVAC system, the characteristics of a smart

thermostat and its benefits in controlling an HVAC unit. The concepts of comfort zone, a key

factor in designing a smart thermostat, were also explained. This chapter also introduced all

main hardware components and how they were connected together to be a smart thermostat.

The smart thermostat designed in this project took a different approach from others available

on the market, by using a human detection algorithm to automatically identify human

presence and control the HVAC system accordingly without repeated user manual input.

The next chapter describes the smart thermostat design, including temperature and

thermal sensors, an OLED display and a relay module, system block diagrams, system

implementation on Zybo and embedded software development. The HVAC controller and

human detection algorithm were parts of the software written in C.

3. Project Design
This chapter describes the theory and methods of the overall smart controller design and

how the peripherals were implemented in the programmable logic and in the processing

system of the smart controller. The hardware, software designs and controlling algorithm are

discussed to clarify the roles of each module and its application in this project.

3.1 System Block Diagram

There were three main components in the system: a peripheral unit, a programmable logic

unit and a processing system. The system was designed for two rooms in a residential

property. The system layout of this project is defined graphically by the diagram shown in

Figure 3.1.

The peripheral unit consisted of two sets of sensors, each included a thermal sensor and a

temperature sensor to detect human presence and measure room temperature in a room. The

unit also had push buttons on Zybo to receive configuration inputs such as mode selection,

temperature choice, etc.

The programmable logic unit was responsible for receiving, processing and passing data

from peripherals to the processing system. In the unit, a thermal data processing module read

thermal data from two rooms, stored them in an input buffer before sending to the processing

system. Similarly, a temperature data processing module read temperature data from two

rooms via I2C interface, saved to it another input buffer, and then sent them to the processing

system. Additionally, a user could set configuration data through push buttons. Signals from

the buttons were also sent through the corresponding module toward the processing system.

All input data was sent and received in real time.

In the processing system, the human detection algorithm used thermal data to detect

human presence and sent result to the HVAC controlling algorithm. The controlling

algorithm used it in combination with user configuration data to control the HVAC

automatically. In order to turn the HVAC on and off, the microprocessor sent a low voltage

signal to a relay module in the programmable logic. The controlling algorithm also sent

output information to an OLED display through the programmable logic.

Figure 3-1 Overall system block diagram

3.2 Zynq SoC and Architecture

As mentioned, the general architecture of Zynq comprised both the Processing System

(PS) and the Programmable Logic (PL). The Zynq SoC offered substantial flexibility to

implement such a design mentioned in 3.1, as it allowed access to a microcontroller and

programmable logic on one chip. Parallel high-speed logic signals received from sensors

were processed by the FPGA of the PL, while human detection, HVAC control, and OLED

display tasks were completed by the microprocessor of the PS. Figure 3.2 shows the primary

communication interface of the Programmable Logic and Processing System via an AXI

Peripheral Interconnect.

Figure 3-2 Zynq SoC interface

3.3 AXI Peripheral Interconnect

The Advanced eXtensible Interface (AXI) interconnect was introduced as a

communication interface between the programmable logic component and the processing

system powered by an ARM Cortex-A9 hard processor. Particularly, in this project, an AXI

Interconnect module was implemented to receive input data from temperature sensors,

thermal sensors and other peripherals and send output data to the processing system.

Additionally, the AXI module was used to get data back from the software and to send it to

the output of the programmable logic to the OLED display, HVAC controller relay and

booster fan controller relay. The AXI Interconnect utilized transmission data lines in parallel

at 100MHz bus. This communication was done through the use of AXI GPIO Peripheral

modules, where each module used 32-bit channels for communication.

Figure 3-3 AXI Interconnect

3.4 The processing system on ARM Cortex-A9 processor.

The Processing System (PS) played several important roles in controlling the smart

thermostat system. It was a C program run on the ARM Cortex-A9. First, the program had an

interface connecting itself to the PL. Second, it stored data received every second from the

PL in memory, for later use by the algorithms. Third, it had two fundamental algorithms to

run the thermostat: The human detection algorithm which used thermal data to detect human

presence; the HVAC controlling algorithm which used human detection result, temperature

data, and configuration data to issue control commands for the HVAC and display data for

the OLED. Last, the program sent the commands back to the PS, before such it was

converted into signals and sent to the HVAC unit as well as the display.

3.5 IP Module Generation for FPGA Processing

Each component in this project was designed as an independent module using the Verilog

HDL. Xilinx Vivado Design Suite was also used to create a top-level hardware design of the

system and seven components as standalone projects called Xilinx IP blocks. The top-level

design allowed integrating IP blocks easily using a GUI of a system block diagram. Since all

modules were independent, they could be interchanged, revised and tested without affecting

other modules.

3.6 Temperature Sensor and Data Transmission to FPGA

The Digilent PmodTMP2 temperature sensor used a standard I2C interface that provided

two I2C signals, serial data (SDA) and serial clock (SCL). The I2C interface needed pull-up

resistors to ensure that the SDA and SCL wires were pulled to a high logical level in the

absence of a driving signal.

A Pmod connector was able to drive bus signals on cables up to 18” in length [43], while

almost all the sensors in this project were located far away from Zybo (longer than 18”).

Since sensors used in the project were mounted far away from Zybo, I used a P82B715 I2C

bus extender to drive I2C bus signals on long cables. The P82B715 was a bipolar IC intended

for application in I2C bus and derivative bus systems [44]. This component kept all operating

modes and features of the I2C bus, while offered extension of I2C bus signals across a long

distance between components by buffering the data and clock lines [44]. Besides, the I2C bus

extender supported up to approximately 50 meters distance or 3000 pF [44] and it operated at

the frequency from 100 kHz – 400 kHz with supply voltage from 3V to 12V. These

specifications was suitable to drive the I2C bus signal for the temperature sensor.

Based on the instruction of the I2C bus extender [45], when the I2C bus operated at the

frequency 100 kHz, the pull-up resistor for each I2C bus was 3 kΩ as shown in Figure 3-4.

Figure 3-4 Pull-up resistors for each I2C bus

 Figure 3-5 shows the interface between Zybo and the I2C bus extender P82B715 and the pull-up

resistors.

Figure 3-5 I2C bus extender P82B715 and pull-up resistors

Additionally, the net pull-up resistors on the cable bus could be smaller than 235Ω. In

this project, the net pull-up resistors were 150Ω for the I2C bus and were placed on each side

of the I2C extender module. Figure 3-6 shows totally four pull-up resistors set on each side of

the bus extender.

Figure 3-6 Net pull-up resistors on the cable bus

Finally, the I2C bus between the bus extender and temperature sensor was 3 kΩ as shown

in Figure 3-7. Also, Figure 3-8 shows the real Digilent PMOD TMP2 temperature sensor

connected to an I2C bus extender with pull-up resistors.

Figure 3-7 Pull-up resistors between a temperature sensor and the bus extender

Figure 3-8 The interface between a temperature sensor and an I2C bus extender

This project used two Digilent Pmod temperature sensors, each located in a room of the

residential property. Both temperature sensor interface circuits were built the same way and

used similar pull-up resistors. Since the net pull-up resistors worked for a cable up to 20

meters long, the temperature sensor interface circuits worked fine with a Cat5e twisted pair

cable with the average length of about 4 meters. Figure 3-9 shows the overall temperature

sensor interface circuits connected to Zybo.

Figure 3-9 Overall temperature sensor interface circuits connected to Zybo

A temperature sensor module was generated on the programmable logic as a slave AXI-

peripheral. It was used to acquire temperature data from the sensor and to allow the processor

system access to the data through memory-mapped registers. This module had one 32-bit

access register used to hold 13-bit data from temperature sensor. This register was controlled

by the software in the processing system.

The temperature sensor module was a hierarchical design that delegated different

functionalities to different blocks. Figure 3-10 showed the top level of the temperature

sensor. The top-level wrapper module connected to the Zynq processing system and used the

100 MHz clock supplied by the processing system. The temp_sensor_v1_0_S00_AXI

interconnect connected the programmable logic and the processing system. This module

stored the measured temperature value in a 32-bit access register, and output the data to the

processing system. Additionally, the AXI module could receive data from the processing

system and output bus signals to the peripherals. The temp_ctrl module at the innermost level

was set to receive measured temperature data (in this project) from the peripherals through

the Pmod connection. The temp_ctrl module generated a slower serial clock 100 kHz for I2C

bus from the clock 100 MHz of the processing system. Since the top level temperature sensor

module was generated as an IP module, it could be reused for the second temperature sensor

in the second room.

Figure 3-10 Top level of a temperature sensor on programmable logic

In the programmable logic unit, Zybo, as a master device, had to specify 7-bit address

0x4B to access the sensor. Once addressed, Zybo could issue commands, such as writing to

or reading from the slave’s registers on the temperature sensor. The logical procedure used

for writing address to the sensor and reading measured data was implemented as finite state

machine (FSM) to fit measured time intervals. Figure 3-11 shows a data read-back procedure

from the temperature value’s most significant byte and least significant byte register.

Figure 3-11 Reading back data from the temperature value MSB and LSB register [46]

The temperature sensor module was built on the programmable logic unit based on an

open source code “I2C simple master for typical 7-bit EEPROM” [47]. This module was

customized to fit I2C timing specifications and conditions for writing and reading data. The

communication between Zybo and the temperature sensor was implemented as a finite state

machine in the following order:

 In pre_start_up state, the master device waited for debounced SDA input signal to go

high while clocking SCL as necessary. The pre_start_up and start_up state only initialized

the temperature sensor module at the beginning shown in step 1 and 2 of Figure 3-12. After

that, the master device transitioned to the main states to get measured data.

 Zybo checked the status of the temperature sensor in idle_state, if the sensor was not

busy, Zybo would transitioned to start_state showed in step 3 of Figure 3-12. At this state,

when SDA input signal was driven low, Zybo assigned a control frame that addressed the

ADT7420 device address at 0x4B to access the sensor. A write bit (R/W bit was set to zero)

was added accordingly that indicated Zybo would write to the slave device next and the

address of the most significant byte (MSB) register within the ADT7420 that was going to be

read from. And then, the master device transitioned to spin_state (step 4) to wait for an I2C

timing specification before jumping to the clock_low state (step 5). The current state sent

timers based on I2C timing specification from the data sheet of ADT7420 to spin_state for

counting time period and then returning back to the next state.

 In clock_low, the SCL was asseted to low and wait for t_hold (step 6) before changing

the SDA signal. When the counter completed, the master device moved to the shift_data state

(step 7) to shift each bit of the control frame out to the temeprature sensor. When the

transaction finished, this state had to wait for the timing specification (step 8) before

transitioning to clock_high state.

 The clock_high state released low drive on SCL and when the SCL input signal went

high, the master device would sampled SDA signals and moved on to next state that showned

in step 9, 10 and 11 of Figure 3-12. Also, in this state, a bit_count flag and write_cycle flag

were used to keep track when the temeprature sensor was in write cycle and when it was in

read cycle. If it was in the write cycle, the master device would come back stop_state and

return to start_state to start sending a control frame that addressed the ADT7420 device and a

read bit (R/W bit was a one) before reading data. If the temperature sensor was in read cycle,

the master device would received the 13-bits measured data from temprature sensor and

moved on to the stop_state. After reading the temperature value from the MSB register, the

address pointer of the ADT7420 automatically increased to the least significant byte (LSB)

register to read the rest of temperature value

 In stop_state, if the write_cycle was one, the master device had to return to start_state to

start a new cycle with write_cycle was zero as described above. If the write_cycle already

was zero, Zybo would output 13-bits data to the temp_sensor_v1_0_S00_AXI module and

store in a 32-bits accessed register.

Figure 3-12 Finite state machine of temperature sensor module

The temp_sensor_v1_0_S00_AXI module used a 32-bit access register to store measured

data into 13 LSBs of the register. Other bits within 32-bits were set to a zero. This assigned

value was convenient when the software used a pointer to get value from this 32-bit register.

These binary values were converted to Celsius degree by multiplying with 0.0625, a 13-bit

temperature resolution. The measured temperature was updated every second in the software.

3.7 Thermal Sensor and Thermal Data Transmission to FPGA

The Omron D6T-44L-06 thermal sensor also output measured value through an I2C bus.

The thermal sensor used power source at 5V for both SDA and SCL buses, while the

maximum output voltage of the Zybo was 3.3V. Therefore, a PCA9517 level-translating I2C

was added to provide bidirectional voltage level translation between low voltages (0.9V –

5.5V) and high voltages (2.7V – 5.5V) in mixed-mode application [48].

Similar to the case of the temperature sensor, since the Pmod could not drive bus signal

on long cables, the thermal sensor interface circuit need a pair of I2C bus extender to drive

boost I2C bus on the cable. Per the standard I2C system, pullup resistors were required to

provide the logic-high levels on the buffered bus. Based on the instruction of quick design

multi-point circuit from NXP semiconductor [44], this design was applied to build the

thermal sensor module interface.

A 4.7 kΩ pull-up resistor was chosen for the connection between the master device, the

level translating I2C-bus repeater PCA9517 and the I2C bus extender when the thermal sensor

operated at 100 kHz. Figure 3-13 shows how the pull-up resistors were attached to the

interface circuit. Note that the level translating I2C bus repeater had an active high enable

(EN) output to allow Zybo to select when the repeater was active. One side of the bus

repeater was connected to Zybo with voltage power at 3.3V, while the other side used

voltage powered at 5V coming from a 5V external power source. The rest of the components

could operate at 5V, so the external power source could drive 5V power signals over a long

cable to the thermal sensor. Figure 3-13 shows how the pull-up resistors were connected to

I2C buses between Zybo, the bus repeater and the bus extender.

Figure 3-13 Pull-up resistors for the connection between Zybo, I2C bus repeater and bus extender

Two pairs of 470Ω pull-up resistors were chosen for the connection between two I2C bus

extender. The 470Ω pull-up resistors set a cable bus limit at 5000pF [49]. Figure 3-14

showed net pull-up resistors on a long cable with the power voltage at 5V. Besides, Figure 3-

15 indicated the 5V power connector from an external power source to the circuit. The I2C

bus extenders and two pairs of 470Ω resistors were placed in the front of the prototype board,

while the I2C bus repeater with 4.7KΩ pull-up resistors were placed in the back.

Figure 3-14 Pull-up resistors on a cable bus.

Figure 3-15 Thermal sensor interface circuit with the I2C bus repeater, bus extender and pull-up resistors

A pair of 4.7 kΩ pull-up resistors were connected between the bus extender and the

Omron thermal sensor. As a result, the longest cable used to connect Zybo over the I2C bus

repeater and the bus extender was 15 meters. The interface circuit worked well without

losing the connection. Figure 3-16 shows the connection between the bus extender and the

thermal sensor with two pull-up resistors for I2C bus. Figure 3-16 also demonstrates the real

thermal sensor connection with an I2C bus extender.

Figure 3-16 Pull-up resistors between the I2C bus extender and the thermal sensor.

Figure 3-17 Thermal sensor with the I2C bus extender

Another similar interface circuit was generated for another thermal sensor located in the

second room. Figure 3-18 indicates the overall connection between Zybo and two thermal

sensors.

Figure 3-18 Overall thermal sensor interface circuit

In the programmable logic unit, the thermal sensor module was generated based on the

Verilog code of the temperature sensor. The hierarchy of the thermal sensor module was

similar to the temperature sensor module. It had a top-level wrapper contained a

thermal_sensor_v1_0_S00_AXI interconnect and a thermal controller module. The thermal

controller module received measured data from the thermal sensor. The AXI module would

store data from the controller into nine 32-bit access registers and send them to the software

on processing system component. Figure 3-19 shows the top-level of the thermal sensor

module.

Figure 3-19 Top-level of thermal sensor module

The communication method of the thermal sensor and Zybo was similar to the one of the

temperature sensor. The process in sending a control frame that addressed the device address,

read/write bit, and command bits to write data to or read data from thermal sensor was

similar to what described in chapter 3.6. However, there were some differences in the amount

of receiving bus signals and an enable input to let Zybo select when the level-translating I2C

bus repeater was active. In the thermal sensor controller, this module needed a register to

hold 35-bytes bus signals from the thermal sensor. Additionally, the enable input was

activated in Idle state, just before starting the start state. Figure 3-20 shows the signal of the

thermal sensor. After initial steps of writing device address, the transaction would return

back to the start state when the master device recognized no-acknowledge reply. A bit

counter operated during a data read-back from the thermal sensor to keep track of when the

master should read output data from the thermal sensor. The output data format of the Omron

thermal sensor had 16-bit width for each temperature value. There were totally 17 such

values, with the first one being a PTAT, a reference temperature value only used internally

by the sensor. The last 8-bit data of the output was a packet error check code (PEC) that only

worked for SM bus interface.

Figure 3-20 – Signal chart of the Omron D6T-44L thermal sensor

In the thermal sensor AXI module, a 280-bit register named thermal_value was created to

hold the input data from the thermal sensor. Besides, this module used nine 32-bit access

registers to send the input data to processing system. Table 3-1 shows the output data format

of the software in the processing system.

Accessed

registers

thermal_value bits position Relevant pixels

slv_reg0 thermal_value[279:248] PTAT low & high - P0 low & high

slv_reg1 thermal_value[247:216] P1 low & high - P2 low & high

slv_reg2 thermal_value[215:184] P3 low & high - P4 low & high

slv_reg3 thermal_value[183:152] P5 low & high - P6 low & high

slv_reg4 thermal_value[151:120] P7 low & high - P8 low & high

slv_reg5 thermal_value[119:88] P9 low & high - P10 low & high

slv_reg6 thermal_value[87:56] P11 low & high - P12 low & high

slv_reg7 thermal_value[55:24] P13 low & high - P14 low & high

slv_reg8 thermal_value[23:8],

thermal_value[7:0], 8'b0

P15 low & high – PEC and 8 bit 0

Table 3-1 Output data format to the processing system

In the processing system, the software program used a loop to get all data from nine 32-

bits registers and parsed it accordingly. The data was then converted to Celsius degree

values. The final results were saved into an array for further use in human detection

algorithm. The Omron thermal sensor could capture data four times per second. However, the

software only updated data from thermal sensor one time per second.

3.8 OLED display nethod

As mentioned in chapter 2.6, this module used a 128x32 OLED graphic display panel

with write mode only. An OLED controller was built as a slave AXI peripheral to allow the

processor system to access to the OLED display buffer through memory-mapped registers.

This controller had seventeen 32-bit access registers, where sixteen of them were data

registers and the seventeenth register was used for commands to display data or clear screen.

Values of these registers were controlled by the software in the processing system.

Zybo communicated with the Digilent PmodOLED screen through a standard SPI

interface. Similar to temperature and thermal sensor modules, the OLED controller had a

hierarchical design where it delegated its functionalities to different blocks. Figure 3-21

shows the OLED controller design. The top-level wrapper module connected to the Zybo

processing system. Additionally, the top level got the 100 MHz clock supplied by the

processing system, and then generated slower serial clock in sub-modules. The following

paragraphs will explain the sub-modules in more details.

Figure 3-21 Top-level wrapper of pmod_OLED_v1_0

In the programmable logic component, the OLED controller was implemented using

Verilog from the PmodOLED open source code of Digilent [50]. The original example code

was developed on a Spartan-6 based Nexys3 board so it had to be retargeted to the

programmable logic unit of Zybo in this project. The OLED controller was responsible for

initializing the OLED display panel according to the manufacturer’s specifications. The

OLED delay block, SPI Control block and Characters Library from the manufacturer were

applied to initialize the OLED display panel. All modules in the programmable logic were

implemented as a finite state machine (FSM) to fit measured time intervals. This SPI

interface had an enable D/C pin for data/command control. This pin was set high for display

buffer access and low for command access [51]. Therefore, when D/C pin was set low, the

initialization was done by the OLED controller sending bursts of bytes as commands, and

then when D/C pin was set high, the OLED controller would send bursts of bytes as display

data to the OLED panel. These steps were separated by measured time intervals [52].

To communicate and transfer data from the OLED controller to the OLED screen panel,

this controller used a SPI Control block developed by Digilent to perform an SPI transaction.

This module used the 100 MHz clock from the processing system to generate a 3.125 MHz

serial clock (SCLK) as a data clock [50]. The SPI Control waited until an SPI_EN was on,

then it switched to “Send” state. The module then started shifting out data byte hold in

SPI_DATA to serial data out (SDO) on the rising edge of SCLK. Once it finished, the

module transitioned to “Done” state and the SPI_FIN was pulled high. The module waited at

“Done” state until the SPI_EN was off, and then it transitioned back to its “Idle” state.

The OLED controller also used a delay module which used a100 MHz clock supplied

from the processing system to generate a 1 kHz counter to count in milliseconds. This

module supplied precise timing capabilities for other modules within the OLED controller.

When the DELAY_EN of this module was asserted, the counter started counting until it

reached the delay value. The DELAY_FIN was pulled high when the delay module

transitioned to “Done” state [50].

In order to render received data correctly as ASCII characters, Character library

(CharLib), a block memory contained pre-built bitmaps was used. Digilent built this

character library and made it open-source for users [50]. Since each character in this library

was an 8x8 bitmap, it was stored as 8-byte parts in hexadecimal notation. These pre-built

contents were found in CharLib.coe, a coefficient file for the block memory, and it was

implemented in the programmable logic component. Figure 3-22 shows the bitmaps of letter

“A” stored in 8 bytes in hexadecimal notation in CharLib.coe. The ASCII value of letter “A”

was 65 [53]. The fixed offset of the coefficient file was 3 because of the heading [54].

Therefore, the address of letter “A” was 68.

Figure 3-22 Bitmaps of letter “A” in CharLib.coe [50].

Pmod_OLED_v1_0_S00_AXI module was the connection between the programmable

logic and processing system components. It contained the major parts of the controller

including the AXI interface, sixteen data registers, and a control register. This module used a

FSM to implement all required initialization states of the PmodOLED after the screen was

turned on and before displaying information on the screen. Once all initialization states were

finished, the OLED controller waited for a trigger on the control register. When the software

set the display trigger on, the OLED control could display characters on the screen. If the

software set clear trigger on, the OLED control would clear the screen.

In the processing system component, after the initialization was completed, the controller

provided the processor system access to the OLED display buffer through a memory-mapped

register. As mentioned, the OLED Controller used sixteen 32-bit data registers to store

character addresses in the coefficient file and a control register as a trigger to display

information on the screen or clear the screen. Each data register could hold four characters, 8

bits for each. Figure 3-7 shows these data registers and their display location on the OLED

screen. A driver was developed similar to the driver of ZedboardOLED used to communicate

with the OLED Controller [26]. The driver implemented the functions to print a message,

print a character and clear the screen. The software program sent the data from sixteen data

registers and display/trigger of control register over the SPI interface to the OLED screen. To

display new information on the screen, the OLED screen had to be cleared before sending

new characters.

Figure 3-23 Data register and its relation to the physical OLED screen [26].

3.10 Four push-buttons

The push buttons were implemented in the programmable logic to allow users to input

configuration options to the thermostat. The push buttons controller got signals from four

buttons and then sent these signal values over a debounce button module to make sure the

buttons were definitely pressed and to avoid unpredictable results. The push button controller

also dedicated a 32-bit access register for each button. The push button AXI module would

send an output signal to the processing system via AXI interconnect interface. In the

processing system, the software used a 32-bit value of the pressed button to receive user

configuration input. Figure 3-24 shows the push-buttons on Zybo.

Figure 3-24 Four push-buttons attached on Zybo

3.11 HVAC unit transmission to Zybo

Zybo has a maximum output voltage at 3.3V while the HVAC system uses the

transformed low-voltage source at 24V to connect to the thermostat. As mentioned in section

2.1, a single stage HVAC system has five main wires. The red wire drives the power at 24V

to yellow wire (AC), the white wire (Heater) or green wire (Fan) if necessary. The black wire

is terminated to yellow, white and green wires to complete the circuit. For Zybo to control

the HVAC system, a four channel relay interface board was used. Input ports of the relay

received controlling signals from the Zybo (active-low signals) while the output ports of the

relay connected to the air compressor (Yellow), the heater (White) and the fan (Green).

Figure 3-25 shows a 4-channel relay interface board used in this project.

Figure 3-25 4-channel relay interface board used to control the HVAC system [55].

An HVAC relay module was implemented as a slave AXI peripheral on the

programmable logic component, with one 32-bit access register for control. Figure 3-26

shows a block diagram of the relay model used to implement the HVAC system.

Figure 3-26 HVAC relay block diagram

When a certain temperature level needed to be maintained, the software assigned a 32-bit

value to the control register based on the appropriate HVAC mode. The HVAC relay module

on programmable logic would read this data from the processing system component, and map

Boolean expression in low active to relevant output pins on the programmable logic. Table 3-

2 shows a truth table of the HVAC relay module. This table explains how Zybo converted

input signal data from the processing system and to low active output signals and sent to the

relay.

HVAC relay truth table in active-low signal

Input (32 bits) OUT_HEAT OUT_AC OUT_FAN
Appropriate

HVAC Mode

0x00000000 1 1 1 Off

0x0000000F 1 1 0 Fan

0x000000F0 1 0 0 Cool

0x000000FF 0 1 0 Heat

 Table 3-2 HVAC relay truth table

In the HVAC relay module, the 32-bit data from the processing system used to operate

the HVAC system was also used to control indicated built-in LEDs on Zybo. Table 3-3

shows the LEDs for each relevant mode when the HVAC relay module received an

appropriate input value from the processing system. Figure 3-27 below demonstrates how

Zybo operated the HVAC system in the heating mode indicated by the 3rd and 4th green LED.

HVAC indicated LEDs truth table in active-high signal

Input (32 bits) LED[3:0] HVAC Mode Indicated LEDs

0x00000000 4’b0001 Off 1st LED

0x0000000F 4’b0010 Fan 2nd LED

0x000000F0 4’b0110 Cool 2nd & 3rd LED

0x000000FF 4’b1100 Heat 3rd & 4th LED

Table 3-3 HVAC indicated LEDs truth table

Figure 3-27 3rd and 4th indicated LED showed Zybo turned on heating mode

3.11 Register Booster Fan

Since the register booster fan operated at high voltage mentioned in Chapter 2-5, Zybo

used a 4-channel relay interface board to control two register booster fans. The

booster_fan_relay top module was generated similarly to the HVAC_Relay module. The top

module connected to the processing system to receive bus signals from the software. The

booster_fan_relay_v1_0_S00_AXI stored the data in an accessed register, and then it sent to

the booster_fan_relay_ctrl to check conditions of the truth table. Based on the result shown in

Table 3-4, Zybo would send a active-low output signal to the booster fan relay to turn on the

true fan.

In data from the

software

Fan 1

(active low signal)

Fan 2

(active low signal)

Operation

32’h00000000 1’b1 1’b1 No fans

32’h0000000F 1’b0 1‘b1 Fan 1

32’h000000F0 1’b1 1’b0 Fan 2

32’h000000FF 1’b0 1’b0 Fan 1 & Fan 2

Table 3-4 Truth table of booster fan relay module

3.12 Human Detection Algorithm

3.12.1 Received data

Data received from a thermal sensor was a 4x4 matrix, containing temperatures of objects

in a room. The thermal sensor captured temperatures of different objects in a region, and

presented them as one average temperature value in the 4x4 matrix. Figure 3-28 below shows

an Omron thermal sensor that generates a thermal image contained 16 pixels.

Figure 3-28 Omron thermal sensor generated thermal image with 16 pixels.

For convenience, the following terms are going to be used in the report:

 The 4x4 matrix is called ‘thermal image’ and a value in the matrix is called

‘pixel’.

 When a pixel is called bright, its temperature value is higher than room

temperature. Respectively, a pixel is dim when its temperature value is lower than room

temperature.

 A pixel containing human is called a human pixel.

 A pixel not containing human is called a non-human pixel. It can contain any

other objects, including heat sources.

Naturally, since objects in a room have different properties, their surface temperatures are

also different. Objects in a living room typically include but not limited to tables, chairs,

sofa, TVs, computers, lights, made from some materials: wood, leather, fabric, metal, plastic,

etc. Objects in a bedroom usually include a bed with a mattress covered with bedding sheets,

a dresser, a wardrobe closet and a light. Other objects such as fans, lights, portable A/C unit

or heater, might be found in different rooms of the house.

Although human skin temperature tends to be stable at 33 0C, data received from the

thermal sensors does not show the same degree. In some cases, the data shows that pixels

containing human are brighter than pixels without a human. However in other cases,

especially when a human is far from a thermal sensor, human pixels may have temperatures

lower than room temperatures. This factor leads to a conclusion that, one instance of data

taken does not show much information, and I should look at how the data change throughout

a period of time.

In order to obtain a training sample dataset, I set up a test environment as described in

Chapter 5. After setup, a series of samples were taken. Every sample was 5- minute long,

during which data was taken from thermal and temperature sensors of 2 rooms every second.

A sample featured 1 of these 3 cases: (1) an empty room, (2) at least a sedentary human or

(3) a moving human. In total, fourteen pairs of samples were obtained in preparation for

analysis.

3.12.2 Temporal changes of data

3.12.2.1 Sample data

In a sample, a data point was taken every second in a room, which made up to 300 data

points for the whole 5 minutes. Each data point contained 19 comma-separated numbers, in

the following order shown in Figure 3-29. Table 3-4 shows the format of a data point.

Position Description

1 Time count in second, starting from 300 and ending at 1.

2 Temperature value read by temperature sensor

3 PTAT (from thermal sensor, not used)

4-19 Thermal values read by thermal sensors

20 PEC (from thermal sensor, not used)

Table 3-5 Format of data point

The two important set of values were numbered at position 2 and 4-19:

 Temperature value: Indoor temperature of the room in a test at a moment. The indoor

temperature was taken in Celsius degree.

 Thermal values: pixel values in the room in the test. The values were also taken in

Celsius degree. Pixel indices were conventionally marked from 0-15.

For each sample where at least a human was present, its human pixel locations were

manually marked for further analysis. Below is an example of a sample. The temperature and

thermal values at position 2 and 4-19 were highlighted in yellow:

Figure 3-29 Data points of a test result

A sample had the following format:

 Line 1: room number, test number, and a short description.

 Line 2: A single character: Y if the room had a human presence, N if the room

was empty. This character was input manually after the sample was taken.

 Line 3: A comma separated list of human pixel indices in the sample. If the room

was empty, the list contained a single number -1.

 Rest of the lines: Each line was a data point in the described format.

3.12.2.2 Data normalization

Another observation that I had was, every sample had a different room temperature,

which made analysis tasks much more difficult when comparing pixel values across different

samples. Therefore, all data points were normalized using the following formula:

𝑃𝑖_𝑡 = 𝑃𝑖_𝑡 − 𝑟𝑜𝑜𝑚_𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ [1]

Where:

 𝑃𝑖_𝑡: value of pixel i in time t.

 𝑟𝑜𝑜𝑚_𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: average room temperature during the 5-minute period.

3.12.2.3 Descriptive statistics of sample data

To observe how data was formed throughout the test, and what statistical distribution of

the data might be, I calculated the mean and standard deviation values every pixel in the

thermal image, based on the following formulas:

𝑖�̅� =
P[𝑖1] + P[𝑖2] + ….+ P[𝑖299] + P[𝑖300]

300
 [2]

𝜎𝑖 =
√(P[𝑖1]− 𝑖1̅)2+⋯+ (P[𝑖300]− 𝑖̅300)2

300
 [3]

Where:

 𝑖 : a pixel in the thermal image, i = 1 to 16.

 𝑖�̅� : mean value of pixel i in 5 minutes (300 values).

 𝜎𝑖: standard deviation of the 300 pixel i values.

The following two graphs are of the same sample. The x-axis is the pixel number from 1

to 16. The y-axis is the mean temperature of the pixel in 5 minutes. Figure 3-30 shows the

data before normalization, and Figure 3-31 shows the data after normalization. The

normalization process not only preserved descriptive statistics of samples, but also helped

further analysis in comparing thermal values across samples.

Figure 3-30 Calculated values from the thermal sensor before normalizing.

Figure 3-31 Calculated values from the thermal sensor after normalizing.

3.12.3 Analysis

3.12.3.1 Temporal changes versus spatial changes of data

After taking descriptive statistics of all pixels in all samples, each pixel was represented

by two values:

 Mean brightness: the mean value of the pixel during the 5-minute period. It was 𝑖�̅� in

formula [2].

 Brightness volatility: the standard deviation value of the pixel during the 5-minute period.

It was 𝜎𝑖 in formula [3].

Spatial change was captured in a heat map of a thermal image, which showed the

mean brightness of all pixels at a moment. By looking at a heat map, one should be able to

identify a bright spot in an image. The heat maps below shows two thermal images, all of

which contained a human. The heat map values were the mean brightness. Figure 3-32

shows the heat map with a bright spot, indicating the human pixel. In Figure 3-33 the heat

map does not show any visible bright spot.

Figure 3-32 Heat map showed a bright spot indicating the human pixel

Figure 3-33 Heat map showed invisible bright spot with human presence

Temporal change was change of one-pixel brightness through time. In this project,

temporal change corresponded to brightness volatility. The figures below shows the

difference in temporal changes between two images, one with human shown in Figure 3-34

and one without human in Figure 3-35.

Figure 3-34 Calculated values from thermal images of test 3 in room 1 with human presence

Figure 3-35 Calculated values from thermal images of test 2 in room two without human presence

Figure 3-34 and 3-35 show that human pixels have much higher brightness volatility than

non-human pixels. This finding leads to a conclusion that in the sample collection process,

the Omron thermal sensor was able to capture subtle temperature changes caused by natural

human movements. Temporal changes of pixel values greatly contributed in detecting human

presence in a room. Natural human movements included ones made by a sedentary person,

such as typing, a hand or leg movement, a head turn, etc.

3.12.3.2 Human pixels versus non-human pixels

In order to identify the differences between human and non-human pixels, pixels of all

samples were classified into two corresponding classes and their mean brightness and

brightness volatility were calculated. The purpose of these statistical values was to know how

the mean brightness and brightness volatility distributed across all samples. The following

subsections describe results of this calculation.

3.12.3.2.1 Mean brightness

Table 3-6 displays descriptive statistics of the mean brightness of all classified pixels in

28 collected samples. Figure 3-36 to 3-38 show its histograms, where each bin is 0.1 0C.

 Min Median Mean Max Volatility

Human -1.764 -0.545 -0.395 2.923 0.806

Non-human -2.928 -0.76 -0.845 5.511 1.140
Table 3-6 Statistics of human and non-human pixels mean brightness values in 60 seconds

Figure 3-36 Histogram of human pixels’ mean brightness

Figure 3-37 Histogram of non-human pixels’ mean brightness

Figure 3-38 Histogram of all pixel’s mean brightness

The histograms above show that human pixels were only slightly brighter than non-

human pixels, hence, if the human detection algorithm were based only on pixel brightness,

its accuracy could only be around 50%.

3.12.3.2.2 Brightness volatility

As mentioned before, since the thermal sensors were very sensitive in capturing

temperature changes resulted from human movements, brightness volatility helped determine

whether a pixel was human or non-human. Table 3-7 displays descriptive statistics of

brightness volatility of all classified pixel in 28 collected samples. Figure 3-39 to 3-40 show

their histograms, where each bin is 0.01 0C.

 Min Median Mean Max Volatility

Human 0.067 0.394 0.442 1.126 0.281

Non-human 0.05 0.085 0.104 3.840 0.203
Table 3-7 Statistics of human and non-human pixels brightness volatility in 60 seconds

Figure 3-39 Histogram of non-human pixels’ brightness volatility

Figure 3-40 Histogram of human pixels’ brightness volatility

Figure 3-41 Histogram of all pixels’ brightness volatility

The histograms show that while non-human pixel brightness volatility was around 0.1
0C, human pixel volatility was significantly higher, around 0.4 0C, depending on human

locations and movements.

3.12.3.2.3 Building a human detection algorithm

Through findings in 3.12.3.2.1 and 3.12.3.2.2, human pixels had mean brightness

ranging from -1.764 to 2.923, taken from Table 3-6 and brightness volatility ranging from

0.067 to 1.126, taken from Table 3-7. A human detection algorithm was built as follows:

1. For second s = 1 to 60:

2. T[s] = room temperature at second s

3. P[][s] = pixel brightness at second s. (16 values)

4. mean_temp = mean(T) // mean of 60 temperature values

5. human = False

6. For each pixel p in the thermal image:

7. mean_brightness[p] = mean(P[p])

8. brightness_volatility[p] = standard_deviation(P[p])

9. if (brightness_volatility[p] > minimum_volatility and

10. brightness_volatility[p] < maximum_volatility and

11. mean_brightness[p] > minimum_brightness and

12. mean_brightness[p] < maximum_brightness):

13. human = True

At line 1-3, data from sensors was collected in 60 seconds, as opposed to 300 seconds (5

minutes) when collecting sample data. This decision was a design choice after analyzing the

sample data. Such data was taken in 5 minutes as an exploration step only to discover the

human detection algorithm. In each sample, there was no big difference in data values among

each 60 seconds in the 5-minute period, since the setup scenario was the same from the

beginning to the end of the period, i.e. an empty room remained empty, a room with human

presence remained the same. Moreover, 60 seconds were long enough to capture natural

human movements, such as head turns, leg or hand or torso movements. There was no need

to collect data for 300 seconds before calculating statistics.

Line 10 and 12 were added to eliminate outliers caused by heat sources other than

human, such as portable heaters, light bulbs, etc. maximum_brightness was 2.923.

maximum_volatility was 1.126.

To identify the best minimum_brightness and minimum_volatility parameter pairs, the

algorithm was run on the samples multiple times, each time with a unique combination of the

two values. Chosen values were based on the statistics in Table 3-6 and 3-7, with

minimum_brightness started from -1.764, and minimum_volatility started from 0.067. In

each of the run, result from the algorithm was compared with the result manually marked, to

identify whether the algorithm was correct or not. Results were classified into the following

four categories:

- True positive: there was at least a human in a room and the algorithm recognized him or

her.

- True negative: there was no human in a room and the algorithm identified no human.

- False positive: there was no human presence in a room, but the algorithm falsely

identified a person.

- False negative: there was a person in a room, but the algorithm did not recognize him or

her.

Among the four categories, false negative results had the most negative impact on the

overall functionality of the smart thermostat, since if it happened, the HVAC would not run even

if a human was present in a room. Therefore, the best strategy in choosing the best parameter

pair was to maximize true detections and minimize false negative detections. Table 3-8 below

displays the most significant results from all the runs. Other results are omitted due to low

accuracy. Each of the cells contains accuracy rate/false negative rate results from the run of the

corresponding parameter pair. In the results table, the best pairs of mean brightness/volatility are

marked in red.

Table 3-8 Accuracy of the human detection algorithm based on minimum brightness and volatility

3.13 HVAC controlling algorithm

The thermostat allowed users to input 3 pre-set temperature values: desired temperature,

low temperature and high temperature. The desired temperature was a level at which a user

wanted the thermostat to maintain. This value was the optimal temperature, where a user

would feel most comfortable. A user also set low and high-temperature values to specify a

temperature range in which the user would feel comfortable. These 3 values could be change

any time as necessary.

3.13.1 Hysteresis

The HVAC system had an on/off control action to turn the unit on/off based on the

desired temperatures. The HVAC control signal outputs from Zybo were frequently changed

when it updated new results each minute. This problem could shorten the life of the four-

channel relay and of the HVAC system. To prevent such issue, the thermostat needed a

temperature band called hysteresis between on and off operations. A user could adjust the

hysteresis by changing the temperature swing value. The hysteresis calculation would be

explained in next couple paragraphs.

 In this project, hysteresis was the sum of the swing value and temperature sensor

accuracy. The accuracy of the temperature sensor was +/- 0.250C mentioned in Chapter 2.5

while the swing values were either 10C or 20C depending on user input. Table 3-1 shows the

calculated hysteresis from different input temperature swing value.

Temperature swings Accuracy Hysteresis

10C +/- 0.250C 1.50C

20C +/- 0.250C 2.50C

Table 3-3-9 Hysteresis of controlling algorithm

The hysteresis of HVAC modes was:

Minimum
volatility

Minimum brightness

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

0.07 0.71/0.00 0.75/0.00 0.82/0.00 0.82/0.00 0.82/0.00 0.82/0.00 0.86/0.00 0.86/0.00 0.86/0.00

0.08 0.79/0.00 0.79/0.00 0.82/0.00 0.82/0.00 0.82/0.00 0.82/0.00 0.86/0.00 0.86/0.00 0.86/0.00

0.09 0.79/0.04 0.79/0.04 0.82/0.04 0.82/0.04 0.82/0.04 0.82/0.04 0.86/0.04 0.86/0.04 0.86/0.04

0.1 0.79/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14

0.11 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21

0.12 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29

0.13 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29

0.14 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29

0.15 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29

𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 = 𝑠𝑤𝑖𝑛𝑔 + 2 ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [4]

Figure 3.5 shows the hysteresis of cool mode with a desired temperature at 230C. The AC

was on when the measured temperature was higher than 24.250C. The AC was off when the

measured temperature was lower than 22.750C. The hysteresis of cool mode was 1.50C.

Figure 3-3-42 Hysteresis of cool mode with the desired temp at 230C

On/off condition of cool mode:

 On condition = desired temperature + (swing + accuracy)

 Off condition = desired temperature – accuracy

Similarly, Figure 3.6 shows the hysteresis of heat mode. The heater was on when

measured temperature was lower than 21.750C, and then it would be off when measured

temperature was higher than 23.250C. The hysteresis for heat mode was also 1.50C.

Figure 3-43 Hysteresis for heat mode with the desired temperature at 230C

On/off condition of heat mode:

 On condition = desired temperature – (swing + accuracy)

 Off condition = desired temperature + accuracy

The smart thermostat would turn on the HVAC system when either room 1 or room 2 did

not satisfy the comfort zone. While the rooms might have different temperatures, the HVAC

system would run until both rooms reached the desired temperature level. It meant that at

least one room might already passed the desired level by a considerable amount of degrees.

There was no need to wait for both rooms to pass such level by a swing value anymore, since

such HVAC run would take a longer time, and at least one room temperature might become

too hot (in heat mode), or too cold (in cool mode).

3.13.2 HVAC mode

The smart thermostat offered three basic modes to maintain desired temperatures in

different weather conditions: heat, cool and auto heat&cool mode. When the thermostat

detected human presence, it maintained indoor temperature at the desired temperature if the

heat mode or the cool mode was on. Meanwhile in the auto heat and cool mode, it maintained

a comfort zone between the preset low and high temperatures.

Figure 3-44 Preset comfort zone

Additionally, the thermostat had a night operation that helped users saving energy in the

evening when using cool or heat mode. A set could set night mode to be on, off or auto.

When the auto night operation was on, the thermostat automatically maintained the comfort

zone within the low and high temperature range from 12 AM to 8 AM only. However, if the

night operation was not auto, the thermostat would keep the indoor temperature within such

temperature range permanently. This night operation option did not work for the auto

heat&cool mode, since operation already keep the indoor temperature within such range.

 To avoid the HVAC from being turned on unnecessarily, the thermostat had an energy

saving state used when there was no positive human detection. Particularly, if the thermostat

detected no human in the house for fifteen consecutive minutes, it automatically activated

this energy saving state to maintain room temperature at larger range, between minimum and

maximum temperature. Based on a guide to energy-efficient heating and cooling of

ENERGY START program, if users set back, at least, 4.40C during winter or set up 4.40C

during summer, they could save about $180 every year in energy costs [56]. Therefore, the

minimum and maximum temperature was calculated in Celsius degree unit as follow:

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐿𝑜𝑤 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 4.4℃ [5]

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐻𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 4.4℃ [6]

No matter what HVAC mode was operated, the thermostat automatically maintained

room temperatures at a minimum and maximum temperature when no human was home. The

thermostat would automatically switch this state off within 5 minutes if it detected human.

The thermostat’s hardware and software designs were explained in chapter 3. The human

detection algorithm and HVAC controlling algorithm and their application in this project

were also discussed. Chapter 3 showed that Zybo could be implemented as a smart

thermostat, where it could detect human presence and automatically adjusted the HVAC

system to maintain a user’s comfort zone. Chapter 4 will explain the actual detailed

implementation of the thermostat modes introduced in 3.13.2, the system user interface and it

software program. Chapter 4 also discuss the total cost of the thermostat prototype, set up in

2 rooms of an apartment.

4. Implementation
Previous chapters described how the peripherals in the project interacted with Zybo as

well as how the developed algorithms were used to control the HVAC system. This chapter

explains how Zybo used human detection results and captured data and from other

peripherals to maintain desired comfort zone automatically. Additionally, this chapter shows

how Zybo received user inputs with four push-buttons and display information onto the

OLED screen. The implementation to be mentioned in this chapter was set up for two rooms,

which were used in testing described in chapter 5.

4.1 HVAC Modes

Zybo was developed as a smart thermostat used to control the HVAC system

automatically based on pre-set desired temperatures from users and measured data from

sensors. It only operated the HVAC system to maintain the comfort zone in rooms with

human presence. In case no human was home after fifteen minutes, the thermostat

automatically changed into energy-saving state regardless of the chosen HVAC mode. The

following sections explain how the smart thermostat controlled the HVAC in each mode:

cool, heat and auto cool/heat.

As mentioned in Chapter 3.13, users were allowed to enter three pre-set values for

desired temperature, low and high temperature. The minimum and maximum temperature

formulas were computed from low and high temperatures explained in 3.13:

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐿𝑜𝑤 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 4.4℃ [5]

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐻𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 4.4℃ [6]

4.1.1 Cool mode

When cool mode was selected, the thermostat only controlled the HVAC’s air

compressor (AC) to cool down indoor temperature. The thermostat turned on AC when

measured temperature of a room was higher than a cutoff temperature. The value of this

cutoff temperature depended on results from the human detection algorithm and the night

mode switch. As explained in 3.13, The HVAC start and stop conditions in cool mode were:

𝑆𝑡𝑎𝑟𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + (𝑠𝑤𝑖𝑛𝑔 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) [7]

𝑆𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑐𝑢𝑡𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [8]

The thermostat used results from human detection algorithm in room 1 and room 2 as the

highest priority to maintaining desired temperatures. There were four particular situations of

human presence.

(1) When no one was at home. This situation was considered as the energy-saving

state of the cool mode shown in case 1 of Table 4-1. The HVAC was not started until

room temperatures went higher than the cutoff value, the maximum temperature.

(2) & (3) When only one room had human presence. The thermostat would run the

HVAC when it needed to bring the room temperatures down to the specified cutoff

values. Note that the cutoff temperatures of the rooms are different, as there was no need

to maintain the desired temperature level in a room without human. In other words, the

thermostat would keep such room’s temperature below the high level, since users may

move between rooms. This design helped users stay within their reasonable comfort zone

as long as possible. Additionally, only the booster fan of the room with human presence

was turned on with a belief that air would be circulated to the room faster, as discussed in

3.11. This situation corresponds to case 2 and 3 of Table 4-1.

(4) When both rooms had human presence, the smart thermostat would maintain the

rooms at the desired temperature level, and started HVAC with all booster fans turned on,

as shown in case 4 of Table 4-1. The smart thermostat would not turn on the AC when in

both rooms’ temperatures were within the comfort zone.

Table 4-1 Cool Mode

While cool mode was selected, if the night operation was set, the thermostat would set

cutoff temperatures as in Table 4-2. Even though temperature of the room without human fell

out of the comfort zone, the operation was designed with an assumption that there would be

limited human activities during night operation, hence human movements between rooms

were at the minimum. In case the night operation was set to be auto, the thermostat would

Cool mode

Case
Human

room 1

Human

room 2

Cutoff

temperature

Room 1

Current

Temperature

room 1 (T1)

Cutoff

temperature

Room 2

Current

Temperature

room 2 (T2)

Fan

room

1

Fan

room

2

HVAC

1 No No
Maximum

temperature

≥ cutoff

Maximum

temperature

≥ cutoff

On On On ≥ cutoff < cutoff

< cutoff ≥ cutoff

< cutoff < cutoff Off Off Off

2 No Yes
High

temperature

≥ cutoff

Desired

temperature

≥ cutoff

Off On On ≥ cutoff < cutoff

< cutoff ≥ cutoff

< cutoff < cutoff Off Off Off

3 Yes No
Desired

temperature

≥ cutoff

High

temperature

≥ cutoff

On Off On ≥ cutoff < cutoff

< cutoff ≥ cutoff

< cutoff < cutoff Off Off Off

4 Yes Yes
Desired

temperature

≥ cutoff

Desired

temperature

≥ cutoff

On On On ≥ cutoff < cutoff

< cutoff ≥ cutoff

< cutoff < cutoff Off Off Off

switch to night operation at midnight and switch back to normal operation at 8:00 AM. This

timeframe was set to support testing in chapter 5.

Table 4-2 Night mode of the cool mode

4.1.2 Heat mode

In heat mode, the thermostat only controlled the heater to warm up room temperatures

until it reached the desired level. The algorithm used in heat mode was similar to the one in cool

mode, with values and conditions changed to support heating instead of cooling. The HVAC start

and stop conditions in heat mode explained in 3.13 were:

𝑆𝑡𝑎𝑟𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑜𝑚_𝑡𝑒𝑚𝑝 < 𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − (𝑠𝑤𝑖𝑛𝑔 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) [9]

𝑆𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑜𝑚_𝑡𝑒𝑚𝑝 < 𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [10]

The cutoff temperature values were also different from the ones in cool mode, depending

on results from the human detection algorithm and the night operation switch. Table 4-3 below

shows all HVAC start and stop conditions in details. They are similar to the ones in Table 4-1,

with changes of cutoff temperature values to support heating. As in cool mode, a booster fan of a

room was turned on only if the room had human presence.

Cool operation – Night operation

Case Human room 1 Human room 2
Cutoff temperature

Room 1

Cutoff temperature

Room 2

1 No No Maximum temperature Maximum temperature

2 No Yes Maximum temperature High temperature

3 Yes No High temperature Maximum temperature

4 Yes Yes High temperature High temperature

Table 4-3 Heat mode operation

Table 4-4 shows HVAC start and stop conditions in night operation. Auto night operation

also turned on night operation at midnight and turned it off at 8:00AM automatically.

Regardless of whether night operation was on, the thermostat switched to an energy-saving

state when no one was at home, by setting to minimum temperature to be the cutoff value.

Heat mode

Case
Human

room 1

Human

room 2

Cutoff

temperature

Room 1

Current

Temperature

room 1 (T1)

Cutoff

temperature

Room 2

Current

Temperature

room 2 (T2)

Fan

room

1

Fan

room

2

Operation

1 No No
Minimum

temperature

≤ cutoff

Minimum

temperature

≤ cutoff

On On On ≤ cutoff > cutoff

> cutoff ≤ cutoff

> cutoff > cutoff Off Off Off

2 No Yes
Low

temperature

≤ cutoff

Desired

temperature

≤ cutoff

Off On On ≤ cutoff > cutoff

> cutoff ≤ cutoff

> cutoff > cutoff Off Off Off

3 Yes No
Desired

temperature

≤ cutoff

Low

temperature

≤ cutoff

On Off On ≤ cutoff > cutoff

> cutoff ≤ cutoff

> cutoff > cutoff Off Off Off

4 Yes Yes
Desired

temperature

≤ cutoff

Desired

temperature

≤ cutoff

On On On ≤ cutoff > cutoff

> cutoff ≤ cutoff

> cutoff > cutoff Off Off Off

Table 4-4 Night mode of the heat mode

4.1.3 Auto heat&cool mode

Different from cool and heat modes which maintained room temperatures at the desired

temperature only, the auto heat&cool mode automatically kept the room in a comfort zone

between a cutoff temperatures range. This mode was useful at places with extreme weather,

where temperatures could be very high during daytime but were very low at night. The

HVAC start and stop conditions of this mode were as follow:

𝐻𝑒𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑤_𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − (𝑠𝑤𝑖𝑛𝑔 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) [11]

𝐻𝑒𝑎𝑡 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑤_𝑐𝑢𝑡𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [12]

𝐶𝑜𝑜𝑙 𝑠𝑡𝑎𝑟𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = ℎ𝑖𝑔ℎ_𝑐𝑢𝑡𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + (𝑠𝑤𝑖𝑛𝑔 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) [13]

𝐶𝑜𝑜𝑙 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = ℎ𝑖𝑔ℎ_𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [14]

In this mode, when both rooms were empty, the thermostat switched to its energy-saving

state by maintaining room temperatures at a larger range between the minimum and

maximum temperatures, avoiding unnecessary HVAC starts and stops. Table 4-5 shows the

detailed conditions of each HVAC operation.

Heat mode – Night operation

Case
Human room

1

Human room

2

Cutoff temperature

Room 1

Cutoff temperature

Room 2

1 No No
Minimum

temperature

Minimum

temperature

2 No Yes
Minimum

temperature
Low temperature

3 Yes No Low temperature
Minimum

temperature

4 Yes Yes Low temperature Low temperature

Table 4-5 Auto heat&cool mode when no human presence in room 1 and 2

On the other hand, the thermostat would maintain the comfort zone between low and

high-temperature range if it detected human presence in at least one room. This mode was

different from the two previous modes, since it did not use different cutoff values for a room

with human presence and a room without human presence. This designed was made to help

users stayed in their comfort zone longer while avoiding starting and stopping the HVAC

multiple times. Nevertheless, the thermostat would only run the booster fan of the room with

human presence. Table 4-6 shows the auto heat&cool mode with human presence in a room.

Auto heat&cool mode when both rooms are empty

Case
Human

room 1

Human

room 2

Cutoff

temperature

Room 1

Current

Temperature

room 1 (T1)

Cutoff

temperature

Room 2

Current

Temperature

room 2 (T2)

Fan

room

1

Fan

room

2

Operation

Heat No No
Minimum

temperature

≤ cutoff

Minimum

temperature

≤ cutoff

On On On ≤ cutoff > cutoff

> cutoff ≤ cutoff

> cutoff > cutoff Off Off Off

Cool No No
Maximum

temperature

≥ cutoff

Maximum

temperature

≥ cutoff

On On On ≥ cutoff < cutoff

< cutoff ≥ cutoff

< cutoff < cutoff Off Off Off

Table 4-6 Auto heat&cool mode when human was present in a room

 When the smart thermostat detected human presence in both rooms, it would maintain the

comfort zone similarly to the previous situation in Table 4-6, except that it would run the booster

fans of both rooms. Table 4-8 shows how the smart thermostat handled the auto heat&cool mode

in this situation:

Auto heat&cool mode when either room 1 and room 2 has human presence

Case
Human

room 1

Human

room 2

Cutoff

temperature

Room 1

Current

Temperature

room 1 (T1)

Cutoff

temperature

Room 2

Current

Temperature

room 2 (T2)

Fan

room

1

Fan

room

2

Operation

Heat Yes No
Desired

temperature

≤ cutoff

Low

temperature

≤ cutoff

On Off On ≤ cutoff > cutoff

> cutoff ≤ cutoff

> cutoff > cutoff Off Off Off

Cool Yes No
Desired

temperature

≥ cutoff

High

temperature

≥ cutoff

On Off On ≥ cutoff < cutoff

< cutoff ≥ cutoff

< cutoff < cutoff Off Off Off

Heat No Yes
Low

temperature

≤ cutoff

Desired

temperature

≤ cutoff

Off On On ≤ cutoff > cutoff

> cutoff ≤ cutoff

> cutoff > cutoff Off Off Off

Cool No Yes
High

temperature

≥ cutoff

Desired

temperature

≥ cutoff

Off On On ≥ cutoff < cutoff

< cutoff ≥ cutoff

< cutoff < cutoff Off Off Off

Table 4-7 Auto heat&cool mode when human appears in both room 1 and 2

4.2 User Interface

The user interface of this project’s thermostat was developed to demonstrate the

capabilities of the design described in chapter 3 and section 4.1. Although there were still

limitations to the user interface, the use of four push buttons and an OLED screen were

sufficient to build a proof-of-concept prototype, allowing the thermostat to display

information and receive user input for monitoring and debugging purposes.

4.2.1 Default screen: information display

By default, the thermostat only output information relevant to the current status of HVAC

operation. The first row displayed current time and the name of the mode. The second row

displayed the desired temperature. The third and fourth row displayed current room 1’s and

room 2’s temperatures. Figure 4-1 below shows a default display when the thermostat was in

cool mode.

Auto heat&cool mode when both rooms have human presence

Case
Human

room 1

Human

room 2

Cutoff

temperature

Room 1

Current

Temperature

room 1 (T1)

Cutoff

temperature

Room 2

Current

Temperature

room 2 (T2)

Fan

room

1

Fan

room

2

Operation

Heat Yes Yes
Desired

temperature

≤ cutoff

Desired

temperature

≤ cutoff

On On On ≤ cutoff > cutoff

> cutoff ≤ cutoff

> cutoff > cutoff Off Off Off

Cool Yes Yes
Desired

temperature

≥ cutoff

Desired

temperature

≥ cutoff

On On On ≥ cutoff < cutoff

< cutoff ≥ cutoff

< cutoff < cutoff Off Off Off

Figure 4-1 Standard information display on the OLED screen for a single mode.

When a user set auto heat&cool mode for the thermostat, the word “Auto”, a short title of

the mode, was shown on the first row. Different from the other 2 modes, this mode showed

the pre-set low and high temperatures since the rooms needed to be maintained within this

temperatures range. Other information was displayed similarly to the other modes. Figure 4-5

below shows the default screen of the thermostat in auto heat&cool mode.

Figure 4-2 Standard information display on the OLED screen for auto heat&cool mode.

Since the OLED screen could only display up to 64 characters, with each row up to only

16 characters, the default screen only showed the most relevant information as described

above. Other information, such as night operation or swing value, was not displayed but

could be viewed when a user used four push-buttons, which details are to be discussed in

4.2.2. The temperature values were displayed in integer number instead of floating number to

avoid confusion, and to follow a convention found in other thermostats available on the

market.

4.2.2 User input

This thermostat needed only three input temperature values from users to operate in all

three described modes, along with a few other configuration parameters. Users could set

these values to the thermostat using four push-buttons. Figure 4-1 below displays how four

push-buttons were laid out on Zybo.

Figure 4-3 Four push-buttons and its functions.

The four push-buttons worked as follow:

 A user pressed button 4 (BTN3) to see the setting options.

 The user used button 1 (BTN0) to move up or button 2 (BTN1) to move down the option

list shown in the orange blocks of Figure 4-2.

 The user pressed button 3 (BTN2) to select one of the setting options in the list.

 The user used button 1 or button 2 again to increase/decrease available values of the

selected option, as shown in the purple blocks in Figure 4-2.

 The users pressed button 3 to save his choice.

 Alternatively, the user could pressed button 4 to cancel the current choice. After

cancellation, the thermostat switched back to the default screen.

Figure 4-4 Thermostat’s setting options

The OLED screen displayed information of setting options in real-time. Every command

from the buttons would be shown on the screen immediately to show users the option they

were setting.

 Figure 4-3 below shows an example of the OLED screen when a user was selecting an

HVAC mode. The first row displayed the current option, indicating that the user was

choosing an HVAC mode. The second row displayed the current mode of the thermostat, in

this case was “Heat”. The third row displayed current user’s selection, “Auto”. The user

could press button 1 or 2 to change his selection, button 3 to save, or button 4 to cancel the

selection and go back to the default screen.

Figure 4-5 OLED screen when a user was selecting HVAC mode.

4.3 Software program

To implement the design described in Chapter 3, a software program was written in C

language using Xilinx SDK. The program started as the thermostat turned on, and ran

continuously until the thermostat turned off. Below is a summary of the program:

1. While (true) {

2. D1, D2 = Data from room 1, data from room 2.

3. Human1, Temp1 = Human_detect(D1), Room_temperature(D1)

4. Human2, Temp2 = Human_detect(D2), Room_temperature(D2)

5. if (buttons are pressed)

6. UInput = receive user input

7. Display_to_OLED(Human1, Temp1, Human2, Temp2, UInput)

8. Control_HVAC(Human1, Temp1, Human2, Temp2, UInput)

9. }

The program was indeed an infinite loop that constantly received, processed data and

made HVAC control decisions. At line 2, the program accessed data captured by the sensor

modules by reading from their specified memory addresses. It processed the data, stored

human detection results in Human1, Human2, and current room temperatures in Temp1 and

Temp2 (line 3 and 4). If any of the push buttons were pressed, it would receive user input and

store in UInput (line 5 and 6). It then displayed relevant data to the OLED screen (line 7).

After that the data was used to control the HVAC system, according to the specifications in

3.13 and 4.1 (line 8).

4.4 Cost

In this project, a thermostat prototype was built to test two rooms in an apartments,

with all components and peripherals described in pervious chapters. Overall the cost for the

complete 2-room prototype was USD$404. Table 4-8 shows the breakdown cost of all

components of the prototype.

Products Unit price Quantity Cost

Zybo $129 1 $129

Digilent temperature sensor

TMP2

$24.99 2 $49.98

Omron thermal sensor D6T-

44L-06

$49.99 2 $99.98

4-channel relay $8 2 $16

Register booster fan $25 2 $50

Connection wires $38.92 1000ft/case $38.92

I2C bus extender $1.89 8 $15.12

Translating I2C bus repeater $2.7 2 $5.4

Total $404.4
Table 4-8 Smart thermostat prototype cost.

Hardware for each additional room will cost around $106 shown in Table 4-9.

Products Unit price Quantity Cost

Digilent temperature

sensor TMP2

$24.99 1 $24.99

Omron thermal sensor

D6T-44L-06

$49.99 1 $49.99

Register booster fan $25 1 $25

I2C bus extender $1.89 2 $3.78

Translating I2C bus

repeater

$2.7 1 $2.7

Total $106
Table 4-9 Hardware cost for each additional room

Overall, this chapter explained how hardware and software components were developed

on Zybo and its peripherals to become a smart thermostat. A software program was

developed to use aforementioned algorithms to control the HVAC while receiving user input

and displaying information in real time. Additionally, the prototype cost was quoted and

analyzed, hinting potential rooms for commercialization. Chapter 5 will describe a testing

process conducted to verify the thermostat’s functionalities as well as effectiveness. It also

show collected test results and analysis.

5. Testing and Results
This chapter describes in details how the smart thermostat was tested using several

methods at different stages of the design process. An oscilloscope was used primarily to

verify data bus of the hardware components, including I2C interfaces of the sensors and an

SPI interface of the OLED screen. Software debugging and testing were done through Xilinx

SDK console as well as log data written to a microSD memory card.

5.1 Hardware testing

During the development process of the smart thermostat, the sensors, push-buttons, the

relay and the OLED screen modules were tested individually before integration with the top-

level system design. Each module was tested as a standalone unit through the use of an

oscilloscope. The oscilloscope not only helped in testing the functionality of the digital

circuit but also helped in evaluating the accuracy of input signals from sensors and output

signals to the OLED screen.

5.1.1 Oscilloscope

The oscilloscope was first used to verify I2C signals between Zybo and the sensors. After

the hardware setup and the prototype interface circuit of each sensor had been completed, an

Oscilloscope with a programmable logic analyzer was used to verify device’s address signed

by a master device and I2C buses on SCL and SDA line. Figure 5-1 shows an oscilloscope

with programmable logic analyzer used to verify serial bus signals.

Figure 5-1 An oscilloscope with programmable logic analyzer [57]

The logic analyzer of the oscilloscope was used to determine logic ones and zeroes. After

connecting the analyzer cable to the connection between Zybo and a sensor shown in Figure

5-1, the oscilloscope was turned on to capture data being transferred across the bus. Logic

ones and zeros of SCL and SDA shown on the oscilloscope screen reflected the current I2C

bus signals transmitted between Zybo and the sensor.

Figure 5-2 Hardware testing using an oscilloscope

Figure 5-3 Using an oscilloscope to measure the frequency on SCL of a temperature sensor

Figure 5-3 shows the SCL (channel D2) and SDA (channel D5) bus signals of the

communication between Zybo and a temperature sensor in one SCL clock cycle. In this

figure, a pair of triggers was used to measure the frequency of SCL, which turned out to be

101.21 kHz. The clock speed of the SCL satisfied the requirement from the manufacturer.

Figure 5-4 below shows the logic bytes of SCL (channel D2) and SDA (channel D5). The

SDA line shown on the oscilloscope screen were 0000 1110 0110 1000, equivalent to

28.810C. Although the result displayed on the oscilloscope was 16 bits (2 bytes), this project

only used 13-bit resolution (bit 15-3) of the temperature sensor for conversion.

Figure 5-4 The oscilloscope showed I2C bus signals of the temperature sensor

5.1.2 Resource utilization

Zybo development board contains a Xilinx Zynq chipset that features an Artix-7 FPGA

with 17,600 LUTs and 35,200 flip-flops for generating complex digital logics. Table 5-1

below shows the system resource utilization of the post-implementation from the Vivado

software. The system occupied less than 21% of all Look-up Tables and 14% of Flip Flop

state memory devices. This information represented the logical efficiency implemented in the

design of a complex system. The rest of unused logic cells could be used in future project

development.

Resource Utilization Available Utilization %

FF 5089 35200 14.46

LUT 3577 17600 20.32

Memory LUT 66 6000 1.10

I/O 32 100 32.00

BRAM 0.5 60 0.83

BUFG 2 32 6.25

Table 5-1 System resource utilization

5.2 System setup

All sensors, register booster fans and the HVAC system were connected to Zybo before

testing. Figure 5-5 shows how all peripherals were connected together. Each room had a pair

of temperature and thermal sensors. In each room, a combined booster fan was also attached

to the room’s register vent on the ceiling, as explained in Chapter 2.7. One 4-channel relay

was used to control the HVAC system and another 4-channel relay was used to control the

register booster fans. The black arrows in Figure 5-5 represent the wires connecting between

Zybo and its peripherals.

Figure 5-5 Real system prototype used to perform the HVAC system.

5.2.1 Test environment

A test environment was set up in two rooms of a residential apartment on the first floor of

a 3-floor building. The first room (room 1) was an open living and dining area connected to a

kitchen. This room was where most human activities took place during testing. The second

room (room 2) was an adjacent bedroom, located wall-to-wall with room 1. The room usually

had human presence only during nighttime. The two rooms were connected by a door. Figure

5-5 below shows the apartment floorplan and the location where the original basic thermostat

was placed. All furniture was placed at the same position during the experiment.

Figure 5-6 Floorplan and the thermostat’s location

5.2.2 Equipment setup

The Omron thermal sensor had its own field of view (FOV) specifications in direction X

(vertical) and direction Y (horizontal), which maxima were 44.20 and 45.70 respectively. Figure 5-7

shows the direction of the thermal sensor and specifications of the FOV.

Figure 5-6 Field of View (FOV) in direct X and direction Y of the Omron thermal sensor

Figure 5-7 shows the equipment setup in room 1. In this figure, the blind spots and the

detecting area was sketched based on the horizontal FOV of the thermal sensor. The left

figure shows where the smart thermostat, temperature sensor 1 and thermal sensor 1 were

placed. It also shows the blind and visible areas room 1’s thermal sensor. The right figure

shows the numbered rectangles indicating different spots where human residents usually

occupied. Note that position 10 and 13 were still in the visible area of the thermal sensor.

Positions 1 to 6 were the seats of a dining table. Positions 7 to 12 were sitting areas on the

sofa and near the coffee table. Position 13 and 14 were used to verify the visible area of the

thermal sensor.

Figure 5-7 Testing environment in direction Y of the thermal sensor in room 1

The thermal sensor was placed at the corner of room 1 shown in Figure 5-7 to get achieve

the largest visible area. At this position, the thermal sensor was able to view all the numbered

positions, thus potentially detected human presence. Note that usually there was no human

occupation in the blind area marked in red, as that area was just in front of a TV, and near a

door. Figure 5-8 below shows a picture of room 1 captured by a regular camera placed

precisely at the thermal sensor location.

Figure 5-8 Real testing environment of room 1

The thermal sensor was placed at 7.1ft high, and tilted to a 330 angle from the wall to

achieve the largest visible area, according to its maximum vertical FOV. If the thermal sensor

was placed at a higher position, position 9 and 10 in Figure 5-7 would fall into the blind area.

At this position, the thermal sensor could detect objects of maximum 3.3ft high at the furthest

position. Figure 5-9 below shows the described calculations in more details.

Figure 5-9 Testing environment in direction X of the thermal sensor in room 1

Similarly, Figure 5-10 shows the equipment setup in room 2 with the specific position of

thermal sensor to achieve the largest visible area in the room. The temperature sensor was

placed near the door as shown in Figure 5-10, far away from the window to avoid outdoor

temperature influence. The right figure showed the numbered rectangles indicating different

spots where the residents usually occupied. The thermal sensor was placed at the corner of

room 2 shown the left figure, to ensure that all human occupied spots were covered. Room 2

had a king-size bed marked at position 1 and 2. Position 3 and 4 were where at least a human

usually sit. A portable heater was located at position 6. Figure 5-11 shows a picture of room

2 captured by a regular camera placed at the thermal sensor’s position.

Figure 5-10 Testing environment in room 2

Figure 5-11 Real testing environment in room 2

In room 2, the thermal sensor was placed at a position higher than different from the one in room

1 in order to detect object of 3.3ft high at the furthest position. Based on the calculations shown in

Figure 5-12, the blind area was only within 3.7ft below the sensor. This area was in right in front of a

bathroom door, hence there was usually no human occupation.

Figure 5-7 Position of thermal sensor and its detecting dimension in room 2

The purpose of this equipment setup in two rooms was to capture and analyze data from

the thermal sensors to build a human detection algorithm. After the algorithm had been built,

the same setup was also used to verify the algorithm’s accuracy rate and to conduct

functional testing. Results of the testing are going to be mentioned in section 5.5.

5.2.2 Data collection

Log data was collected in real time as the thermostat was running during sample

collection and testing. In particular, the software program printed out log messages at

runtime. The messages were stored in files saved to a microSD memory card. They were

used for analysis in section 5.5, and consisted of the following information:

 Values from thermal sensors: logged from both rooms every second, only during

sample collection.

 Values from temperature sensors: logged from both rooms every second during

sample collection and every 60 seconds during testing.

 Mean brightness and brightness volatility: logged from both rooms every 60

seconds, only during testing.

 Human detection algorithm results: logged as soon as there was a new result.

 HVAC start/stop: logged as soon as a start/stop command was issued by the

thermostat.

 Current user input: logged at the moment of HVAC start/stop.

5.3 Tests and Results

5.3.1 Human detection algorithm

To test the human detection algorithm, a set of twenty 5-minute tests were taken,

including both human and non-human presence test cases. In tests where at least a human

were present, the person could either stayed at a location as marked in Figure 5-8 for room 1

and Figure 5-11 for room 2 or moved around the room. As in section 3.12.3.2.3, data from

the tests were run through the detection algorithm using different combinations of mean

brightness and brightness volatility. Table 5-2 below shows results of these runs, with the

best results marked in red.

Table 5-2 Different combinations of mean brightness and brightness volatility

As seen, the lowest accuracy rate was 70% with no false negative results. Moreover,

volatility values larger than 0.13 and mean brightness values smaller than -1.1 yielded an

accuracy rate of 85% with no false negative either. Table 5-3 below shows the combined

results when the algorithm was run on 28 training samples and 20 tests. Highest accuracy

rates were marked in red.

Minimum
volatility

Minimum brightness

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

0.07 0.70/0.0 0.70/0.00 0.70/0.00 0.70/0.00 0.70/0.00 0.70/0.00 0.70/0.00 0.75/0.00 0.75/0.05

0.08 0.75/0.0 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.05

0.09 0.75/0.0 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.05

0.1 0.75/0.0 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.05

0.11 0.75/0.0 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.05

0.12 0.75/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.75/0.050

0.13 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.80/0.050

0.14 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.80/0.050

0.15 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.80/0.050

Table 5-3 Combinational result of human detection algorithm after running 28 samples and 20 tests.

As discussed in 3.12.3.2.3, the mean brightness and volatility value pair served as cutoff

values to distinguish a human pixel from a non-human pixel. The values of these parameters

had to be large enough to yield the highest accuracy rate, but at the mean time they could not

be too large that could yield false negatives. In the above table, among the parameter pairs

with the best rates, the pair of mean brightness = -1.1 and volatility = 0.08 was chosen for use

in functional testing, as they were the maximum values that gave the highest accuracy rate of

81% and no false negative results.

5.3.2 Functional testing

With the minimum brightness and minimum volatility values found in the previous

section, I conducted four tests to verify functionalities of the thermostat design, investigate

the differences in applying smart algorithms to control the HVAC, and examine the role of

booster fans in bringing indoor temperature to the desired level:

a) Smart operation with booster fan: The thermostat used the human detection

algorithm to control the HVAC automatically. It turned on booster fan as necessary. Night

mode automatically switched on at 12:00 AM and switched off at 8:00 AM.

b) Smart operation without booster fan: This test was similar to (a), except that no

booster fan was used.

c) Non-smart operation: The thermostat controlled the HVAC based only on data

taken from room 1’s temperature sensor. This test mimicked functionalities of the original

thermostat.

d) Original thermostat operation: The original thermostat of the apartment was used

instead of this project’s thermostat. This test served as a baseline to compare with other tests.

The tests had a few common configurations: the thermostats were run in heat mode only,

with starting indoor temperatures of around 190C. Each test lasted around 23 hours, from

Minimum
volatility

Minimum brightness

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

0.07 0.71/0.000 0.73/0.000 0.77/0.000 0.77/0.000 0.77/0.000 0.77/0.000 0.79/0.000 0.81/0.000 0.81/0.021

0.08 0.77/0.000 0.77/0.000 0.79/0.000 0.79/0.000 0.79/0.000 0.79/0.000 0.81/0.000 0.81/0.000 0.81/0.021

0.09 0.77/0.021 0.77/0.021 0.79/0.021 0.79/0.021 0.79/0.021 0.79/0.021 0.81/0.021 0.81/0.021 0.81/0.042

0.1 0.77/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.104

0.11 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.146

0.12 0.71/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.71/0.188

0.13 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.73/0.188

0.14 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.73/0.188

0.15 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.73/0.188

12:00 AM to around 11 PM. In (a) and (b), data from thermal sensors and temperature

sensors were recorded. In (c), only data from temperature sensors were recorded. Times of

HVAC starts and stops were also logged along with room temperatures. The desired

temperature was set at 240C, the low temperature was set at 190C and the high temperature

was set at 260C. Below are figures and tables of results collected from the tests.

5.3.2.1 Smart operation with booster fan

Figure 5-7 below shows log data collected from the first test mentioned above. The top left graph

showed data of room 1, the top right graph showed data from room 2, and the bottom left graph

showed both rooms’ temperatures for easy comparison. The HVAC started two times, one in the

morning and one in the evening. Room 1’s temperature was always higher than room 2’s temperature

since residents usually stay in the living area during the day, and the window in room 2 was not tight

even when completely closed, letting cold air to leak in and bring the room temperature down. Note

that in room 2, there were times when the room temperature fell out of comfort zone, but the HVAC

was not started since the room was empty. Table 5-4 represents the runs’ statistics taken from the log

data.

Figure 5-8 Smart operation with booster fans

Table 5-4 Statistics of HVAC runs in smart operation without booster fans

5.3.2.2 Smart operation without booster fan

This test was similar to the previous test, except that there was no booster fan turned on. The test

result was also similar to the test of smart operation with booster fan, where the HVAC was turned on

only if a room temperature fell below the comfort zone and the room had human presence. Figure 5-8

and Table 5-5 below summarize results and log data from the test. The last two rows in the table show

the rooms’ temperature change rates during the runs. These rates give estimation of how many

minutes it took a room to increase temperature by one Celsius degree.

Smart operation with booster fans

Starting temperature at 190C

Run number 1 2

Starting temp R1 22.688 23.562

Ending temp R1 25.5 25.438

Starting temp R2 21.688 22.562

Ending temp R2 24.312 24.312

Start time 8:00:00 22:40:00

End time 8:50:59 23:06:23

Total runtime 0:50:59 0:26:23

R1 temp change 2.812 1.876

R2 temp change 2.624 1.75

R1 rate(min/degree) 0:18:08 0:14:04

R2 rate(min/degree) 0:19:26 0:15:05

Figure 5-9 Smart operation without booster fans

Table 5-4 Statistics of HVAC runs in smart operation without booster fans

5.3.2.3 Non-smart operation

In this test, the smart functionalities of the thermostat such as human detection algorithm and

automatic HVAC control was turned off, and the thermostat operated as a regular device. The purpose

of the test was to investigate the differences between smart and non-smart operations. As a result,

there were more HVAC runs in this test than in the previous tests with the system’s smart features.

The total numbers of HVAC runs were six, compared with two in the smart operations. As seen in

Figure 5-9, room 2’s temperature almost never reached the desired level. The issue was because the

thermostat only retrieved measured temperature values from room 1’s temperature and operated the

HVAC based on such data, which was always higher than room 2’s. Table 5-6 describes the runs in

more details.

Smart operation without booster fans

Starting temperature at 190C

Run number 1 2

Starting temp R1 22.688 23.812

Ending temp R1 24.875 25.375

Starting temp R2 22.375 22.688

Ending temp R2 24.312 24.312

Start time 8:00:00 13:37:00

End time 8:42:48 13:54:24

Total runtime 0:42:48 0:17:24

R1 temp change 2.187 1.563

R2 temp change 1.937 1.624

R1 rate(min/degree) 0:19:34 0:11:08

R2 rate(min/degree) 0:22:06 0:10:43

Figure 5-10 Non smart operation without booster fans.

Table 5-5 Statistics of HVAC runs in non-smart operation.

5.3.2.4 Original thermostat operation

In this test, the original thermostat of the apartment was used to operate the HVAC, and

Zybo was used as a data collection device. The desired temperature was also set to 240C, and

the swing value was 10C. As seen in Figure 5-10, the original thermostat used the swing

value differently, where it would let the HVAC system run until room 1’s temperature

reached 250C before stopping the system. As a result, room 1’s temperature was higher than

the desired level, but room 2’s temperature was able to reach the comfort zone.

Comparable with the non-smart operation in 5.3.2.3, this operation started the HVAC

totally seven times during testing. It also had knowledge of room 1’s temperature only, which

caused the HVAC to fail to run at times when room 2’s temperature fell out of comfort zone.

This issue has been a common drawback of thermostats on the market, in which it was

unable to measure temperature of all areas in a house.

Non smart thermostat using one temperature sensor at room 1 and no booster fans

Starting temperature at 190C

Run number 1 2 3 4 5 6

Starting temp R1 18.875 22.688 22.688 22.688 22.688 22.688

Ending temp R1 24.312 24.312 24.312 24.312 24.312 24.312

Starting temp R2 19.9 21.8 21.8 21.7 21.7 21.8

Ending temp R2 23.3 22.7 22.5 22.9 22.7 23.3

Start time 0:00:24 3:51:25 6:19:07 9:28:05 13:05:15 15:34:55

End time 0:21:30 4:07:48 6:30:49 9:37:31 13:22:22 15:47:28

Total runtime 0:21:06 0:16:23 0:11:42 0:09:26 0:17:07 0:12:33

R1 temp change 5.437 1.624 1.624 1.624 1.624 1.624

R2 temp change 3.4 0.9 0.7 1.2 1 1.5

R1 rate(min/degree) 0:03:53 0:10:05 0:07:12 0:05:49 0:10:32 0:07:44

R2 rate(min/degree) 0:06:12 0:18:12 0:16:43 0:07:52 0:17:07 0:08:22

Figure 5-11 Original thermostat with basic function.

Original thermostat with basic function and no booster fans

Starting temperature at 190C

Run number 1 2 3 4 5 6 7

Starting temp R1 19.50 23.44 23.44 23.37 23.37 23.25 23.50

Ending temp R1 25.44 25.25 25.06 25.06 25.19 25.12 24.56

Starting temp R2 20.50 22.44 22.62 22.56 22.31 22.06 21.81

Ending temp R2 23.81 23.81 23.87 23.88 24.19 24.12 23.25

Start time 00:00:31 02:15:36 04:35:49 07:05:20 10:22:20 12:58:46 17:19:46

End time 00:22:40 02:39:55 05:03:10 07:24:40 10:41:42 13:25:43 17:33:43

Total runtime 00:22:09 00:24:19 00:28:01 00:19:20 00:19:22 00:27:37 00:13:57

R1 temp change 5.94 1.81 1.62 1.69 1.82 1.87 1.06

R2 temp change 3.31 1.37 1.25 1.32 1.88 2.06 1.44

R1 rate(min/degree) 0:03:44 0:13:26 0:17:18 0:11:26 0:10:38 0:14:46 0:13:10

R2 rate(min/degree) 0:06:42 0:17:45 0:22:25 0:14:39 0:10:38 0:13:24 0:09:41

Table 5-7 Statistics of HVAC runs with the original thermostat

5.3.4 Result analysis

Table 5-8 below shows a summary of all the HVAC runs in the tests:

 No booster fan With booster fan Non-smart Original

Total test hours ~23 ~23 ~23 ~23

Total HVAC runs 2 2 6 7

Total HVAC run

hours
2:30:25 3:28:27 3:05:38 2:34:45

Average

temperature change

rate

0:16:04 0:15:27 0:10:59 0:12:09

Table 5-8 Summary of all the HVAC operations in the tests

As summarized, the thermostat in non-smart operation as well as the original thermostat

ran the HVAC many times more than in smart operations, even though the total run hours

were about the same across all operations. These operations without the help of the human

detection algorithm would potentially waste more energy, as an HVAC run required initial

extra overheads to start the system and to produce hot air.

Test results from the non-smart operation of this project’s thermostat and the original

thermostat were fairly similar. There were about 6-7 HVAC runs in 23 hours of testing, twice

as many as the number of runs in smart operations. This is a strong indication that the smart

thermostat helped avoiding multiple HVAC starts and stops, which potentially helped save

energy consumption.

Another remarkable result was, the average temperature change rate in non-smart

operations was 11 to 13 minutes/degree, lower than the rate of around 16 minutes/degree in

smart operations. This result was due to a fact that the thermostat’s night operation turned on

and off automatically in smart operations, which required the HVAC to run longer. During

the test period, indoor temperatures never went below 20 0C, a preset low temperature, hence

the HVAC was never turned on at night. However at 8AM, when night operation switched

off, the thermostat started the HVAC when it detected human, to bring the rooms to 24 0C,

the desired level. These runs at 8AM were longer than other runs, since temperatures in the

morning were well below 240C.

Moreover, the thermostat in smart operations only ended an HVAC run when all rooms

with human presence had reached the desired temperature. Meanwhile, the thermostat in non-

smart operation and the original thermostat had no knowledge of room 2’s temperature,

hence it stopped the HVAC when only room 1 reached the desired temperature. This

operation left room 2 out of comfort zone most of the time during the test. This issue has

been well known with regular thermostats, since most of them only have one temperature

sensor, not enough to capture the whole air condition in different rooms of a house.

Between the two smart operations, the one with booster fans helped increasing the rooms’

temperatures slightly faster than the one without booster fans. This result was not very

reliable and required further testing, since outdoor temperatures had considerable influence

on the temperature change rate.

5.3.5 Comparison with Nest thermostat

In this section, the FPGA thermostat is going to be compared with Nest, one of the best-

selling smart thermostats available on the markets. Table 5-9 below shows the comparison

summary.

This project’s thermostat Nest thermostat

In prototype state, no friendly interface yet Friendly user interface with control wheel

No wifi connection Wifi connection

Uses wires to connect with peripherals Compact hardware design

Thermal sensor and temperature sensor are

placed in each room

Has only one temperature and one motion

sensor

Detects human in real time Learns user habits in 7 days

Does not need repeated input Needs repeated input in 7 days.

All rooms are in pre-set comfort zone Does not guarantee comfort zone in all rooms.
Table 5-9 Comparison with Nest thermostat. Strengths are in blue cells, weaknesses are in yellow cells.

The first drawback of this project’s thermostat is, as described in 4.2, it used four push-

buttons to receive user inputs and displayed information on an OLED screen. Since the

thermostat is now still in prototype phase, it does not have a friendly and intuitive user

interface as the one provided by Nest. Nest includes a LED display with well-presented

information, including current temperature, date-time, user selection, etc. Nest also receives

user input from a control wheel, in which one left turn or one right turn corresponds to one

value of choice. This design makes the Nest thermostat itself a nice decorative addition to a

residential home.

The second drawback is that this project’s thermostat does not have a wireless connection

to receive input and display information to users. The Nest thermostat, on the other hand,

comes with a Wi-Fi connection that allows it to connect to a home’s network. A user could

view Nest’s status and provide inputs through its mobile application. This feature is very

handy especially in case when a user forgets to turn off the HVAC before leaving home, or

wants to start the system in preparation for his arrival at home.

The third drawback comes from wiring across the rooms. Since this project’s thermostat

is still in prototyping phase, it used wires to connect between the main board and all

peripherals. Since each room monitored by the thermostat needed to have a set of thermal

sensors and temperature sensors, there was a considerable amount of wiring between rooms

of the test environment. Meanwhile, a Nest thermostat is self-contained and easy to install, it

has a round shape and can be mounted to a wall.

Despite the mentioned drawbacks, the thermostat in this project does have advantages

compared to a Nest device. As described in chapter 5, since there was a pair of thermal and

temperature sensors placed in each room in test, the thermostat had a good knowledge of

current temperatures and human presence in every room it supported. This real-time

knowledge allowed the thermostat to better control the HVAC by starting and stopping it

only when there was human presence in a room, and when temperatures went out of comfort

zone. On the other hand, since Nest only has one pair of built-in motion and temperature

sensors, it can only capture temperature and motion happening around it. As a result, a Nest

thermostat’s efficiency depends on where it is mounted in a house.

Moreover, as described in chapter 5, the sensor pairs mounted in each monitored room

also allowed this project’s thermostat to know specifically what temperature each room had.

Thus, it started and stopped the HVAC accordingly to bring the rooms with human presence

into a preset comfort zone, even though the temperature at the thermostat area was already at

desired level. This feature helped users stayed in their comfort zone longer without the

burden of repeatedly changing temperatures set in the thermostat. On the contrary, the Nest

thermostat only captures temperature of its surrounding space, hence it cannot not start or

stop the HVAC automatically if the temperature of another room in the house goes out of

comfort zone. In this case, if a user wants to bring the other room to comfort zone, he or she

has to adjust the thermostat manually or with the help of a timer. Even though a timer keeps a

user from repeated input, it becomes ineffective if the user’s routine timing changes.

In addition, the Nest thermostat needs initial user inputs for seven days right after it is

connected to an HVAC system. Since it uses a learning algorithm to gain knowledge of a

user’s habits, the algorithm does not work properly until enough data is received.

Alternatively, with this project’s thermostat, the user only needs to set three temperatures one

time: desired, low and high, which define their comfort zone. The thermostat will detect

human presence and make sure that the comfort zone is maintained in rooms where there is

human presence. The real-time knowledge provided by the rooms’ sensors allows the

thermostat to automatically start and stop the HVAC without the need of repeated input from

a user.

This chapter explained how an experiment environment was setup, preparing the

thermostat to get data from thermal sensors, temperature sensors and operate the HVAC

system. To debug the thermostat, an oscilloscope was used to look for hardware issues. To

debug software issues, log data was collected and analyzed. After the setup, multiple testing

efforts were done to verify the thermostat’s functionalities, and results were also reported and

analyzed. Finally, the smart thermostat was compared with Nest thermostat, a famous smart

thermostat on the market, in which both advantages and disadvantages of both systems were

discussed.

6. Conclusion
In this project, I applied different electrical and computer engineering technologies to build a

thermostat that is capable of real time detecting the presence of a person and adjusting the

temperature of the room accordingly. The system was designed on Zybo, a board featuring a

dual-core ARM Cortex-A9 processor with a Xilinx 7-series Field Programmable Gate Array

(FPGA) logic. The peripherals used in this project include two thermal sensors, two temperature

sensors, two booster fans, two relays and an OLED screen. The thermostat was able to detect the

presence of a person and capture the temperature in each of the room that is equipped with the

peripherals. The thermostat used the data from the peripherals to automatically control the

HVAC system allowing users to stay in their comfort zone longer while avoiding multiple

HVAC start/stop routines.

Since the design of the thermostat has limitations as mentioned in 5.3.5, there are several

potential improvements. A keyboard might be added to receive user input, and a screen with

higher resolution can be used to display more information. Also, there are multiple low cost

thermal sensors available on the markets that have resolution higher than 4x4 pixels. They

should potentially yield better human detection results.

The thermostat can be improved by implementing a wireless connection between the

peripherals and Zybo to make the installation simpler. This improvement greatly increases the

flexibility of the thermostat by allowing users to place the sensors wherever they want. It also

allows additional sets of peripherals to link to the Zybo, since wireless connections do not

depend on the number of ports available on the system. If the software program is able to handle

more than two rooms, the thermostat can better assist users by allowing them to stay in their

comfort zone even longer now that there are more sensors to detect human presence.

Additionally, a new management application can be developed to use the wireless connection to

help users manage the thermostat remotely, one that is similar to the mobile app that comes with

the Nest thermostat.

References

[1] S. Gerrity, "Energy saver 101 inforgraphic home heating," 16 12 2013. [Online]. Available: http://energy.gov/articles/energy-saver-101-infographic-home-heating. [Accessed 02 11 2015].

[2] S. Gerrity, "Energy saver 101 infographic home cooling," 13 06 2014. [Online]. Available: http://energy.gov/articles/energy-saver-101-infographic-home-cooling. [Accessed 02 11 2015].

[3] Department of Energy Resources, "Background," [Online]. Available: http://www.mass.gov/eea/energy-utilities-clean-tech/misc/background.html. [Accessed 02 11 2015].

[4] U.S. Energy Information Administration (EIA), "Household Energy Use in Massachusetts," 2009. [Online]. Available:

http://www.eia.gov/consumption/residential/reports/2009/state_briefs/pdf/ma.pdf. [Accessed 04 11 2015].

[5] G. W. J. Gupton, HVAC Controls - Operation and Maintenance (3rd Edition), Fairmont Press, Inc., 2002.

[6] Florida Solar Energy center, "HVAC Systems," [Online]. Available: http://www.fsec.ucf.edu/en/consumer/buildings/commercial/hvac.htm. [Accessed 03 11 2015].

[7] U.S. Department of Energy, "Air source heat pumps," [Online]. Available: http://energy.gov/energysaver/air-source-heat-pumps. [Accessed 04 11 2015].

[8] Advance NRG, "Heating Ventilating and Air Conditioning with Advance NRG," [Online]. Available: http://www.advancenrg.com/hvac.html. [Accessed 07 11 2015].

[9] P. Bob Scaringe Ph.D., "Thermostatic Wiring Principles," [Online]. Available: http://www.epatest.com/store/resources/images/misc/how-a-thermostat-operates.pdf. [Accessed 04 11 2015].

[10] Merriam-Webster, "Dictionary - thermostat," [Online]. Available: http://www.merriam-webster.com/dictionary/thermostat. [Accessed 02 11 2015].

[11] J. Carlsen, "Programmable Thermostats Review," 23 06 2015. [Online]. Available: http://programmable-thermostats-review.toptenreviews.com/. [Accessed 03 11 2015].

[12] RLW Analytics, "Validating the Impact of Programmable Thermostats," Middletown, 2007.

[13] Amerivcan Society of Heating, Refrigerating and Air-Conditioning Engineers, "ANSI/ASHRAE 55a-1995," Atlanta, 1995.

[14] AZoSensors.com Staff Writers, "Determining Thermal Comfort Using a Humidity and Temperature Sensor," [Online]. Available: http://www.azosensors.com/Article.aspx?ArticleID=487. [Accessed 03

11 2015].

[15] Xilinx , "Zybo Reference Manual," 14 02 2014. [Online]. Available: http://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPZYBO/documentation/ZYBO_RM_B_V6.pdf.

[Accessed 06 11 2015].

[16] D. Inc., "ZYBO Zynq™-7000 Development Board," [Online]. Available: http://digilentinc.com/Products/Detail.cfm?NavPath=2,400,1198&Prod=ZYBO. [Accessed 15 11 2015].

[17] D. Inc., "ZYBO Reference Manual," 14 02 2014. [Online]. Available: http://www.xilinx.com/support/documentation/university/XUP%20Boards/XUPZYBO/documentation/ZYBO_RM_B_V6.pdf.

[Accessed 15 11 2015].

[18] julieclarke, "MicroZed Timers, Clocks and Watchdogs: Adam Taylor’s MicroZed Chronicles Part 14," 06 01 2014. [Online]. Available: https://community.arm.com/community/arm-partner-

directory/partner-xilinx/blog/2014/01/06/microzed-timers-clocks-and-watchdogs-adam-taylor-s-microzed-chronicles-part-14. [Accessed 15 11 2015].

[19] Omron Corporation, "Applicatation Note 01 - Usage of D6T-44L Thermal Sensors," 21 07 2015. [Online]. Available: https://www.omron.com/ecb/products/sensor/special/mems/pdf/AN-D6T-

01EN_r2.pdf. [Accessed 04 11 2015].

[20] D. Inc., "PmodTMP2 - Thermometer/thermostat," [Online]. Available: http://www.digilentinc.com/Products/Detail.cfm?Prod=PMOD-TMP2. [Accessed 15 11 2015].

[21] Digilent Inc., "PmodTMP2 - Thermometer/thermostat," [Online]. Available: http://digilentinc.com/Products/Detail.cfm?NavPath=2,401,961&Prod=PMOD-TMP2. [Accessed 02 11 2015].

[22] Analog Devices Inc., "I2C Temperature Sensor - ADT7420," 2012. [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/ADT7420.pdf?ref=ASC-PR-478.

[Accessed 06 11 2015].

[23] D. Inc., "PmodOLED - Organic LED Graphic Display," [Online]. Available: http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,963&Prod=PMOD-OLED. [Accessed 15 11 2015].

[24] Digilent Inc., "PmodOLED reference manual," 19 10 2011. [Online]. Available: https://www.digilentinc.com/Data/Products/PMOD-OLED/PmodOLED_rm.pdf. [Accessed 07 11 2015].

[25] Univision Technology Inc., "OEL Display Module - UG2832HSWEG04," 24 07 2009. [Online]. Available: https://www.adafruit.com/datasheets/UG-2832HSWEG04.pdf. [Accessed 07 11 2015].

[26] Embedded Centric, "Zedboard OLED," [Online]. Available: http://embeddedcentric.com/zedboardoled-v1-0-ip/. [Accessed 07 11 2015].

[27] R. Gade and T. B. Moeslund, "Thermal cameras and applications: a survey," Machine VIsion and Applications, vol. 25, no. 1, pp. 245-262, 2014.

[28] Y. e. a. Fang, "A Shape-Independent Method for Pedestrian Detection with Far-Infrared Images," IEEE Transactions on Vehicular Technology, vol. 53, no. 6, pp. 1679-1697, 2004.

[29] J. &. S. V. Davis, "Robust Detection of People in Thermal Imagery," in 17th International Conference on Pattern Recognition, 2004.

[30] W. Z. J. &. S. C. Wang, "Improved Human Detection and Classification in Thermal Images," in 2010 IEEE International COnference on Image Processing, 2010.

[31] A. e. a. Fernandez-Caballero, "Real-time human segmentation in infrared videos," Expert Systems With Applications, vol. 38, no. 3, pp. 2577-2584.

[32] W. e. a. Wong, "Homw alone faint detection surveillance system using thermal camera," in 2nd International Conference on Computer Research and Development, 2010.

[33] D. &. G. J. Gavrila, "Shape-based pedestrian detection and tracking," p. 8, 2003.

[34] J. &. K. M. Davis, "A Two-Stage Template Approach to Person Detection in Thermal Imagery," vol. 1, p. 364, 2005.

[35] M. e. a. Oren, "Pedestrian detection using wavelet templates," in Computer Vision and Pattern Recognition, 1997.

[36] P. Viola, M. J. Jones and D. Snow, "Detecting Pedestrians Using Patterns of Motion and Appearance," vol. 63, no. 2, pp. 153-161, 07 2005.

[37] T. &. B. N. Elguebaly, "A nonparametric Bayesian approach for enhanced pedestrian detection and foreground segmentation," p. 21, 2011.

[38] L. &. P. K. Fan, "A comparative study of PCA, ICA and class-conditional ICA for naive bayes classifier," p. 16, 2007.

[39] C. A. (. A. Wunderlich, "Medical Thermometry and Human Temperature," 1871.

[40] G. Kelly, "Body temperature variability (part1): A review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging," Alternative Medicine Review,

vol. 11, no. 4, pp. 272-293, 2006.

[41] Z. H. Y. H. J. &. J. L. Wang, "Human skin temperature and thermal responses in asymmetrical cold radiation environments," Building and Environment, vol. 67, pp. 217-223, 2013.

[42] Y. W. L. L. J. &. D. Y. Liu, "A study of human skin and surface temperatures in stable and unstable thermal environments," Journal of Thermal Biology, vol. 38, no. 7, pp. 440-448, 2013.

[43] D. Invcc, "Digilent Pmod Interface Specification," [Online]. Available: https://www.digilentinc.com/Pmods/Digilent-Pmod_%20Interface_Specification.pdf. [Accessed 07 12 2015].

[44] N. Semiconductors, "P82B715 I2C-bus extender," [Online]. Available: http://www.nxp.com/documents/data_sheet/P82B715.pdf. [Accessed 30 11 2015].

[45] NXP, "P82B715 I2C Bus extender," [Online]. Available: http://www.nxp.com/documents/data_sheet/P82B715.pdf. [Accessed 07 12 2015].

[46] A. Devices, "Data sheet of ADT7420," [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/ADT7420.pdf?ref=ASC-PR-478. [Accessed 30 11 2015].

[47] Xilinx, "Xilinx general technical discussion," [Online]. Available: https://forums.xilinx.com/t5/General-Technical-Discussion/I2c-code-in-verilog/td-p/645421. [Accessed 31 09 2015].

[48] T. Instruments, "PCA9517 Level-Translating I2C bus repeater," [Online]. Available: http://www.ti.com.cn/cn/lit/ds/symlink/pca9517.pdf. [Accessed 01 12 2015].

[49] NXP, "I2C bus extender P82B715," [Online]. Available: http://www.nxp.com/documents/data_sheet/P82B715.pdf. [Accessed 07 12 2015].

[50] D. Inc, "PmodOLED Example Code," [Online]. Available: https://reference.digilentinc.com/pmod:pmod:oled:example_code. [Accessed 06 12 2015].

[51] D. Inc, "Pmod OLED," [Online]. Available: https://www.digilentinc.com/Data/Products/PMOD-OLED/PmodOLED_rm.pdf. [Accessed 07 12 2015].

[52] M. Grusin, "Serial Peripheral Interface-SPI," [Online]. Available: https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi. [Accessed 07 12 2015].

[53] ASCIItable.com, "ASCII Table and Description," [Online]. Available: http://www.asciitable.com/. [Accessed 07 12 2015].

[54] T. A. U. a. Qatar, "ZedboardOLED Display Controller IP v1.0," [Online]. Available: https://embeddedcentric.files.wordpress.com/2015/08/reference-manual.pdf. [Accessed 07 12 2015].

[55] 4tronix, "5V 4-channel relay interface board," [Online]. Available: http://4tronix.co.uk/store/index.php?rt=product/product&product_id=153. [Accessed 03 12 2015].

[56] U. E. P. A. (EPA), "A guide to energy-efficient heating and cooling," [Online]. [Accessed 03 12 2015].

[57] K. Cheung, "Tektronix MSO70000 Mixed Signal Oscilloscope," 13 10 2009. [Online]. Available: http://edablog.com/2009/10/13/tek-mso70000/. [Accessed 17 12 2015].

[58] J. Carlsen, "Programmable Thermostats Review," 23 06 2015. [Online]. Available: http://programmable-thermostats-review.toptenreviews.com/. [Accessed 02 11 2015].

[59] Nest Support, "nest.com," 17 06 2015. [Online]. Available: https://nest.com/support/article/What-is-a-multistage-system#!. [Accessed 03 11 2015].

[60] Omron Corporation, "Infrared MEMS Thermal Sensor," [Online]. Available: http://datasheet.octopart.com/D6T8L06-Omron-datasheet-12469928.pdf. [Accessed 04 11 2015].

[61] M. rouse, "I2C bus (Inter-IC bus)," 09 2005. [Online]. Available: http://whatis.techtarget.com/definition/I2C-bus-Inter-IC-bus. [Accessed 06 11 2015].

[62] ELectronics Egnineering Herald, "Module 12 - SPI Bus interface," [Online]. Available: http://www.eeherald.com/section/design-guide/esmod12.html. [Accessed 06 11 2015].

[63] K. Tweed, "Smart Thermostats Begin to Dominate the Market in 2015," 22 07 2015. [Online]. Available: http://www.greentechmedia.com/articles/read/smart-thermostats-start-to-dominate-the-

market-in-2015. [Accessed 07 11 2015].

[64] D. Inc., "Digilent Pmod Interface Specification," [Online]. Available: http://www.digilentinc.com/Pmods/Digilent-Pmod_%20Interface_Specification.pdf. [Accessed 30 11 2015].

[65] Sunon, "MagLev Motor Fan," 24 09 2009. [Online]. Available:

http://portal.sunon.com.tw/pls/portal/sunonap.sunon_html_d_pkg.open_file?input_file_name=7264646F632F3230313430312F3137363538322F28443038303337323130472D3030292D342E706466.

[Accessed 30 11 2015].

[66] C. Mechanical, "Frequently asked questions," [Online]. Available: http://climatemechanical.com/faq.htm. [Accessed 01 12 2015].

[67] Amazon, "JBtek 8-channel relay," [Online]. Available: http://www.amazon.com/JBtek-Channel-Relay-Arduino-Raspberry/dp/B00KTELP3I. [Accessed 2015 26 12].

[68] Digikey, "Omron D6T44L06," [Online]. Available: http://www.digikey.com/product-detail/en/D6T44L06/Z3637-ND/3671589. [Accessed 2015 27 12].

Appendix A: Development Code

Verilog code of thermal sensor module

Verilog code of temperature sensor module

Appendix B: Embedded Software Excerpts

