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Abstract 
 The focus of this project is to develop a smart thermostat that used a human detection to 

automatically adjust desired indoor temperatures. The system was implemented on the Zybo, a 

development board with a Xilinx Zynq All Programmable System-on-Chip (Soc), which 

integrates a dual-core ARM Cortex-A9 processor with a Xilinx 7-series Field Programmable 

Gate Array (FPGA) logic. The completed design was able to receive pre-set desired temperature 

values from users and automatically control the heating, ventilating and air conditioning 

(HVAC) system to maintain the comfort zone and maximize energy saving. The smart 

thermostat was supplied by real-time embedded software running on the ARM microprocessor. 

All communications between peripherals and the smart thermostat were designed in Verilog and 

implemented on programmable logic. 
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1. Introduction 
Thermoregulation is an essential part of human survival needs; thus heating and cooling 

have always been two imperative factors in our everyday life. There are numerous 

technologies that have been developed to support these needs by using different sources of 

energy. For instance, in residential units, the majority of energy expenses is for heating and 

cooling. According to the U.S. Department of Energy, “Space heating is likely the largest 

energy expense in a house, accounting for about 45% of the average American family’s 

energy bill [1], while home cooling is 6% of the average household’s energy use [2].” 

 

Moreover, according to the U.S. Energy Information Administration (EIA), Massachusetts 

households spent 22 percent more on energy than the U.S. average, paying about $2500/year 

[3]. The EIA reported, “Since the weather in Massachusetts and New England is cooler than 

other areas of the United States, space heating makes up a greater portion of energy use in 

homes (59%) compared to the U.S. average, and air conditioning makes up only 1% of energy 

use” [4].  

 

In the current market, every available residential heating, ventilating and cooling (HVAC) 

system needs a thermostat to measure temperatures and control the starting and stopping of 

the HVAC. Therefore, the thermostat plays a crucial role in regulating indoor temperatures, 

which in turns determines the level of energy consumed by the HVAC. A traditional 

thermostat comes with a built-in thermometer and an interface to receive input temperature 

from users. It is usually mounted on a wall indoor, thus its measured temperatures are mostly 

temperatures of the surrounding area. If a measured temperature is not the same as the 

temperature set by the user, the thermostat will start the HVAC system and let it run until the 

measured temperature reaches the desired level. 

 

A residential unit such as a family house, or an apartment, usually has only one HVAC 

system and one thermostat to control it. It is very common for such unit to be divided into 

multiple rooms, such as living room, bedroom, and kitchen. Depending on the construction of 

the unit, there is always a difference in temperature level across the rooms. The larger the unit 

is, the greater of such difference will be. However, it is impossible for the thermostat to 

accurately measure temperature of every room, leading to insufficient energy usage and 

creating discomfort for residents. People usually work around the issue by either offsetting the 

temperature set in the thermostat or they use a portable heating or cooling device. Both 

approaches do not solve the inherent issues surrounding the thermostat, and at the same time 

cause more energy consumption. 

 

To resolve the issues, modern HVAC systems have built-in technologies to regulate 

temperature. A zoning system [citation] treats a room in a residential unit as a zone, which has 

its own thermostat and vent with a controller damper. Such systems allow regulated air to 

flow only to zones that are in need. However, such zoning system is hard to install into an 

existing HVAC system and is usually expensive. Moreover, since there might be multiple 

thermostats in multiple zones, the resident needs to frequently adjust temperatures across the 



thermostats to prevent the HVAC from operating inefficiently. Modern thermostats come with 

timers which allow users to maintain different temperature levels at different times. Even so, 

the user needs to put a lot of effort into the initial configuration setup and the efficiency of the 

system depends on the timer. 

 

Recently, there are multiple thermostats developed to help users to have better control of 

indoor temperatures, as well as saving energy bills. They are easier to install than the zoning 

systems, and they come with interfaces using mobile applications users are able to control the 

thermostat without having to go to its location even when he or she is away. However, these 

thermostats do not fully solve the problem of temperature differences across rooms or allow 

users to set their desired temperatures. Without using a thermostat’s timer, if a user wants to 

save on his energy bill, he or she still needs to change temperature levels when leaving and 

arriving home. Even with the help of a timer, the user does not always stay at his desired 

temperature level if he changes the routine set in the timer. 

 

In this project, I propose a system design to help solve the aforementioned problem by 

using Zybo as a thermostat, along with a set of peripherals. The system includes sets of 

sensors, each is placed in a room of a home to detect the presence of a human and to measure 

the temperature of the room. Zybo would receive data from the sensors, analyze it and control 

the HVAC system accordingly. This report describes the system design in details. Chapter 2 

introduces background knowledge of relevant technologies and terminologies, chapter 3 

describes the detailed design of the entire thermostat’s component. Chapter 4 explains how 

the design is implemented, and chapter 5 reports the testing procedures as well as the results.  

 



2. Background  
In this project, a Zync-7010 (Zybo) development board was used as a central controlling 

unit along with add-on components: thermal sensors for human detection, temperature sensors 

for temperature measurement, booster fans for enhanced air circulation, relays for HVAC 

control and an OLED screen for information display. This chapter introduces the concept and 

background of heating, ventilation and air conditioning (HVAC) system, a smart thermostat, 

comfort zone and add-on components listed above. 

2.1 Heating, Ventilation and Air Conditioning (HVAC) 

 “The purpose of a heating, ventilating and air conditioning (HVAC) system is to provide 

and maintain a comfortable environment within a building for the occupants or a suitable 

environment for the process being conducted” [5]. The principal functions of an HVAC 

system were to provide desired cooling and heating outputs regardless of affecting factors. 

Besides, the system maintained comfortable conditions using as little energy as possible while 

providing a healthy environment for occupants and safe conditions for equipment [5].  

 

An HVAC system often includes a cooling system to cool indoor air and a hot furnace to 

warm up the air pictured in Figure 2-1. Modern HVAC systems use a heat pump to supply 

both cool air and hot air because they have a special valve in the refrigeration piping that 

allows the refrigeration cycle operate in reverse [6]. According to an explanation of the U.S. 

Department of Energy, “In heating mode, liquid refrigerant in the outside coils extracts heat 

from the air and evaporates into a gas. The indoor coils release heat from the refrigerant as it 

condenses back into a liquid. A reversing valve, near the compressor, can change the direction 

of the refrigerant flow for cooling as well as for defrosting the outdoor coils in winter” [7]. 

 

 



Figure 2-1 Residential HVAC System [8] 

 

There are two types of HVAC systems: single-stage and multi-stage. A single stage 

HVAC system have five basic wires with preset standard colors that are red (R) for power, 

black (C) for common, yellow (Y) for cooling system, white (W) for heating system and green 

(G) for blower/fan [9]. In case the HVAC system has a second stage of cooling and heating, 

there is another set of wires to connect to the thermostat. An HVAC system has a 24VAC 

transformer to transform high-voltage to low-voltage source. 

 

Along with the HVAC system, a thermostat is used as a controller. A basic thermostat 

allows user to select a desired temperature and switches between cooling or heating mode. In 

a forced-air HVAC system, the thermostat is connected to an air compressor, furnace and a 

blower via the five basic wires. When the thermostat calls for cooling, both the air compressor 

and the blower are activated simultaneously. When the thermostat calls for heating, only the 

furnace is activated. However, there is a model of thermostat that activates both the hot 

furnace and blower when calling. In such case, the thermostat has to call for either the heating 

or cooling system; it is not allowed to run both systems at the same time. Figure 2-2 shows a 

basic thermostat circuit and its connection to an existing HVAC system.  

 



 Figure 2-2 Basic Thermostat Circuit [9] 

2.2 Smart thermostat 

A smart thermostat is defined as a device that shows intelligence or good judgment in 

automatically adjusting a room’s temperature to a desired level [10].  While a user has to 

adjust the desired temperature manually on a regular thermostat, a smart thermostat has 

programmable functions that can maintain the desired level automatically. Using a smart 

thermostat, the user does not have to worry about forgetting to turn off his or her HVAC 

system when leaving home nor feeling uncomfortable when coming back waiting for it to turn 

on. A smart thermostat saves its user from repeated manual tasks such as turning on/turning 

off, temperature setting or timing.  

2.2.1 Characteristics of a smart thermostat 

A smart thermostat can save energy by controlling an HVAC system efficiently with 

programmable functions and automatic operations. Such features save a user from repeating 

the task of turning the HVAC on and off while intelligently controlling the system to maintain 

a desired temperature level. In addition, there is also an energy-saving feature which a user 

can turn on when he or she is not at home for an extended period of time, such as going to 

work or on vacation. If an HVAC system has multiple cooling or heating stages, the smart 

thermostat is able to use these stages to improve humidity control and maintain the comfort 

zone by circulating just enough indoor air when necessary. 

2.2.2 Smart thermostats on the market 

There are many smart thermostats on the market developed with a variety of 

technologies, but almost all of them have common core features. Depending on its design, 

each smart thermostat has different temperature swings. With the swing, the HVAC runs to 

maintain indoor temperature at a desired level when the room drifts a given number of degrees 

away from the given range. The smart thermostat can also control a whole-house fan and 

auto-change heating/cooling mode to keep indoor air fresh and increase efficiency of the air 

conditioning cycles. It may also have a keypad lock to avoid accidental modifications from 

unexpected users.  

Besides the common functionalities, designs of the “smart” features vary from one brand 

to another. Current state-of-the-art thermostats usually require users to manually control it for 

seven-day before setting a running schedule automatically.  This feature creates a personal 

schedule based on the temperature changes and input date/time from users. By doing this, a 

thermostat know when users are away as well as when they are home, and adjust indoor 

temperatures accordingly. How the personal schedule is set up, and how the thermostat use 

the schedule to control the HVAC system is proprietary to the manufacturer. Moreover, some 

thermostats even have motion sensors to automatically turn on away/vacation mode. 

Nowadays, smart thermostats have Wi-Fi connectivity that let users control an HVAC system 

and adjust desired temperatures remotely. With that function, the users are able to pre-



heat/pre-cool the house before they come home. Table 2-1 lists five popular smart thermostats 

currently on the market.  

 

 

 

 

 

 

 

 

 

 

 

 

 Nest 

Learning 

Thermostat 

Ecobee3 Honeywell 

Lyric 

Radio 

Thermostat 

CT-80 

Honeywell    

Wi-Fi 

Smart 

Temperature Control  

Heating Stages 3 4 3 3 3 

Cooling Stages 2 2 2 2 2 

Temperature Swing +/- 10F +/- 10F +/- 10F +/- 0.50F +/- 10F 

Programmable Fan Yes Yes Yes Yes Yes 

Keypad Lock Yes Yes Yes Yes Yes 

Auto Changeover Yes Yes Yes Yes Yes 

Energy Management  

Seven-day scheduling Yes Yes Yes Yes Yes 

Away/Vacation Features Yes Yes Yes Yes Yes 

Auto-Schedule Yes Yes Yes Yes Yes 

Sensors  

Weather Conditions Yes Yes Yes No Yes 

Humidity Sensor Yes Yes Yes Yes Yes 

Motion Sensor Yes Yes Yes No No 

Design & Setup  

Wi-Fi Yes Yes Yes Yes Yes 
Table 2-1 Smart thermostats and their features on the current market [11] 



2.2.3 Smart Thermostat Advantage 

A 2007 Gas Networks study showed savings of 6.2% of total household annual natural gas 

consumption associated with the installation of an ENERGY STAR rated programmable 

thermostat [12]. A smart thermostat automates energy saving behaviors, such as lowering the 

temperature during work hours, when users are most likely not at home, which in turn helps 

deliver on that 6.2% actual saving.  

 

In conclusion, a thermostat is marketed as “smart” if it provides at least one of the 

following two features: (1) Wi-Fi connection for remote access to the thermostats, even when 

users are not at home; (2) Automatic HVAC system control to maintain a preset temperature 

level without the need of repeating human attention. Almost all smart thermostats on the 

market have a Wi-Fi connection, while only the Nest, ecobee3, and Honeywell Lyric smart 

thermostats have built-in motion sensors to sense when no one is home and adjust indoor 

temperature accordingly.  

2.3 Comfort zone 

In this project, a comfort zone is defined as a temperature range in which humans feel 

comfortable. In a person’s comfort zone, he or she should not feel uncomfortable by being 

cold nor hot. The American Society of Heating, Refrigerating and Air-Conditioning 

Engineers’ (ASHRAE’s) publication on “thermal environmental conditions for human 

occupancy” defined comfort zones for summer and winter season [13]. Assuming normal 

indoor clothing, it pointed out that a person’s age, activity level, and physiology affected the 

ideal thermal comfort for that individual. “Air speed and thermal radiation are predominantly 

outdoor effects that are difficult to measure and control. As a result, literature on thermal 

comfort concentrates on temperature and humidity. Although temperature ranges are specified 

per season, the relative humidity is set between 70%RH and 30%RH in summer and winter 

time, respectively” [14]. Figure 2-3 below shows comfort zones of winter and summer season, 

where temperatures are between 73.00F and 76.00F, while humidity varies from 23.0% to 

79.5%. The average comfort temperature is 74.50F and the average humidity is 51%. If the 

temperature is above 760F, the perceived air quality is worse regardless of the actual air 

quality. Similarly, high relative humidity might make users feel hotter and promote the growth 

of mold and mildew, while low relative humidity causes discomfort due to drying of the nose, 

throat, mucous membranes and skin.  



 

Figure 2-3 Relative humidity (RH)/temperature (T) diagram [14]  

2.4 Zybo (Xilinx Zynq 7010) Development Board 

Zybo (Xilinx Zynq 7010) is a development board produced by Xilinx. Zybo is based on 

the Xilinx All Programmable System-on-Chip (AP SoC) architecture, which tightly integrates 

a dual-core ARM Cortex-A9 processor with a Xilinx 7-series Field Programmable Gate Array 

(FPGA) logic [15] pictured in Figure 2-4. This device features four binary slider switches, 

LEDs, push-buttons and a USB UART1 connectivity. Additionally, Zybo has totally six Pmod 

connectors, available for communication with add-on sensors, OLED screen and relay. 

                                                           
1 UART stands for Universal Asynchronous Receiver/Transmitter 



 

Figure 2-4 Zynq 7010 (Zybo) Development Board [16] 

The 650MHz dual-core Cortex-A9 processor can be used as an embedded microprocessor, 

while the Artix-7 FPGA with 17,600 LUTs (Look-Up Tables2) and 35,200 flip-flops can be 

used to create complex digital logic [17]. On the Zynq board, the Cortex-A9 communicates 

with the FPGA using the Advanced eXtensible Interface (AXI) Interconnect. The clock speed 

for both Programmable Logic (PL) and Processing System (PS) is 100MHz, which is also 

used to run add-on peripherals. Figure 2-5 showes the overview of Zynq block design and its 

architecture, containing the processing system and programmable logic. 

 

                                                           
2 Look-Up Table (LUT) implements truth table to define outputs for any given combinational logics of inputs 



 

Figure 2-5 Overview of Zynq block design and its architecture [18] 

I chose the Zybo as a central controlling unit because it could host a whole system design 

that connected hardware components and software programs together. The AXI Interconnect 

was convenient and flexible to transfer data and signals between Cortex-A9 and 

programmable logic. Additionally, the Zybo had enough Pmod connectors to communicate 

with sensors and to control the HVAC unit. All prebuilt sliders switches and push buttons 

acted like an interaction module of a thermostat. 

2.5 Omron thermal sensor D6T series 

This project used Omron D6T-44L thermal sensors pictured in Figure 2-6 with a 4x4 pixel 

resolution for human detection. “The product measures the surface temperature of the material 

by detecting intensity of the infrared radiation” [19]. Different from pyroelectric sensors 

which only detected human presence by change of signal, the Omron thermal sensor could 

catch the signal of a stationary person by continuously detecting the far-infrared ray of an 

object [19]. Figure 2-7 shows a difference between a pyroelectric sensor and an Omron 

thermal sensor. 



 

Figure 2-6 Omron thermal sensor D6T-44L [19] 

 

Figure 2-7 Difference between pyroelectric and non-contact temperature sensor [19] 

This component performed its sensitivity characteristics over an object view angle by 

using a silicon lens. The Field Of View (FOV) was generally specified as an area of 50% for 

maximum sensitivity [19]. Figure 2-8 shows the Omron thermal sensor’s FOV image and 

sensitivity.  

 

Figure 2-8 Sensitivity characteristics: FOV image [19] 



An Omron thermal sensor communicated with Zybo (master device) via an I2C interface3. 

This module was driven by a 5V power source, its I2C data and clock lines used the same 

voltage power. Since Zybo did not support 5V tolerant, an I2C level translating IC was used to 

connect Zybo and the sensor. Usage of I2C level translating IC would be discussed later in 

section 3.6. 

2.6 Digilent temperature sensor  

The Pmod TMP2 is a temperature sensor and thermostat control board built around the 

Analog Devices ADT7420 pictured in Figure 2-9. 

 

Figure 2-9 Digilent temperature sensor Pmod TMP2 [20] 

This sensor uses an 8-pin connector that allows communication via I2C. It also provides 

two 2-pin headers for the I2C chip address selection, and two 2-pin headers for controlling 

external devices based on temperature thresholds [21]. The ADT7420 is a high accuracy 

digital temperature sensor. It contains a 16-bit ADC to monitor and digitize the temperature to 

0.00780C resolution. By default, the ADC resolution is set to 13-bits (0.06250C). In this 

project, the temperature sensor was used with default 13-bit resolution only because it was 

sufficient to get indoor temperature values. This item has a typical accuracy of around than 

0.250C and 240ms continuous conversion time.   

                                                           
3 The I2C (Inter-IC) bus is a bi-directional two-wire serial bus that provides a communication link between 
integrated circuits (ICs). Philips introduced the I2C bus 20 years ago for mass-produced items such as televisions, 
VCRs, and audio equipment. Today, I2C is the de-factor solution for embedded applications. [61] 



The Pmod TMP2 temperature sensor acted as a slave device using an I2C interface. Zybo 

had to specify a slave address (0x4B)4 to communicate with this sensor and a flag indicating 

the communication was read only. Using I2C interface standard, this communication used two 

signal lines for I2C data and I2C clock. Based on the data sheet of the ADT7420 chip, these 

signals mapped to the serial data (SDA) and serial clock (SCL) respectively on the ADT 7420 

[22]. 

2.7 Register booster fan 

 The purpose of a register booster fan was to increase air circulation from the HVAC 

system to a room when the distance between them was long. In the test environment section 

described in 5.3.1, each room in the apartment has one ceiling register to which three booster 

fans were attached. Each fan operated at 12VDC with a maximum power consumption of 2 

Watts. The fan had the speed of approximately 3200 rounds per minute (RPM) and airflow of 

41 Cubic feet per minute (CFM). A ceiling register with three booster fans might supply up to 

123 CFM. In the thermostat design, the register booster fan of a room was turned on only if 

this room had positive human detection and its desired temperature needed to be maintained. 

Figure 2-10 below shows the back of a combined register booster fan. This was a register 

booster fan prototype with three attached 80mm fans powered by an external 12VDC power 

supply. The blue tape was used to cover an empty hole of the register. This combined register 

booster fan was attached to the ceiling duct register shown in Figure 2-11. 

 

Figure 2-10 The Back side of a customized register booster fan. 

                                                           
4 The Pmod TMP2 temperature sensor has four slave addresses from 0x48 – 0x4B. This project uses 0x4B for the 
communication between the master device and the Pmod TMP2 sensor.  



 

Figure 2-11 A register booster fan was attached to the duct register. 

2.8 Digilent OLED screen 

 PmodOLED is a monochrome Organic LED graphic display produced by Digilent Inc 

pictured in Figure 2-10. This module uses a 128x32 OLED graphic display panel, measured 

0.9” and was write-only (pictured in Figure 2-11). 

 

Figure 2-12 Digilent Pmod Organic LED Graphic Display [23] 



In this project, the PmodOLED communicated with the Zybo via a standard SPI 

interface5. Zybo used this interface to configure the display, and then sent the bitmap data to 

the PmodOLED. The OLED graphic display panel could keep displaying the last image on the 

screen until it was turned off or cleared out [24]. This module was write-only, hence it only 

used Master Out Slave In (MOSI)6 data method to draw bitmap data on the screen.  

 

Figure 2-13 The OLED graphic display panel (UG2832) [25] 

As mentioned, this OLED panel has 128x32 pixels that could be divided logically into 4 

pages/ 4 rows. Each page can display up to 16 characters, where each character is represented 

by 8x8 bitmap showed in figure 2-12 [26]. The method used to display information to the 

screen will be explained in more details in section 3.7. 

                                                           
5 Serial Peripheral Interface (SPI) interface is an interface bus commonly used to send data between 
microcontrollers and small peripherals. The SPI master controller uses separate four basic wires, clock, data and 
select lines to communicate with slave peripherals [62] 
6 Master Out Slave In (MOSI) signal is generated by a master device and is sent to a slave device as a recipient 



 

Figure 2-14 Logical division of the OLED display module [26] 

2.9 Human Detection Algorithm 

2.9.1 Visual cameras and thermal cameras 

Visual cameras are a standard in general imaging purposes, serving a huge range of 

applications from personal and commercial to military. Modern visual cameras capture scenes 

and place them into colored images, thus the images’ qualities depend on the scenes’ 

illumination. If there is not enough lighting at a scene captured by a camera, the resulted 

image might appear darker than reality. In contrast, using the same camera configuration, if 

there is too much lighting, the resulted image might appear saturated. In both cases, actual 

color differences among objects in the scene are reduced, resulting in a lower image quality. 

Although visual cameras are becoming more affordable than before, this inherent limitation 

makes them less ideal when chosen for applications that need night vision. 

 

Thermal cameras, on the other hand, do not require illumination. They are sensors that 

produce images based on object surface temperatures in the captured scene. Particularly, a 

thermal camera “captures the infrared radiation emitted by all objects with a temperature 

above absolute zero” [27]. Since there is no dependency on the scene’s lighting condition, this 

type of sensors do not have the mentioned problem of visual cameras. However, they have 

their own limitations, which Fang et al. [28] summarize into three different types: First, it is 

impossible to distinguish between human and other heat sources based only on their 

brightness. Second, image intensities are not uniform across a human body, due to clothes, 

accessories or orientation, making detection tasks more difficult. Third, intensity ranges in 

most thermal images are smaller than those of comparable visual cameras, which lead to 

lower image quality.  

 

Another important characteristic of a thermal camera is, it is generally much more 

expensive than a visual camera. It is because a special detector is required to capture thermal-

infrared radiation [27]. The detector was first only used for the military before being 



commercialized [27]. Some of the thermal cameras available in the U.S. market are Omron 

D6T-44L, Panasonic AMG8832, Melexis MLX90260ESF, which were priced $32, $39 and 

estimated $55 respectively. Among available options, Omron D6T-44L is the cheapest 

version, which makes it an ideal choice for a residential smart thermostat in term of price.  

 

2.9.2 Human detection algorithms 

Since thermal cameras are only available commercially recently [27], human detection 

research based on them is not as popular and plentiful as the one based on visual cameras. 

Most thermal image based research results are based on human shape templates [29] [30] [31] 

[32]. These methods are found common between thermal and visual images. They usually 

leverage different techniques to extract region of interests, such as the use of contour maps 

[33] [34], human features [33] [35]. The regions are then put through a classifier to identify 

whether the object inside is human or not. Classifiers used include but not limited to support 

vector machines [35], AdaBoost [36] [34] or Naive Bayers [37] [38].  

Meanwhile, the only shape-independent method found were proposed by Fang et al. [28]. 

In this research, regions of interests were extracted using a strategy based on image intensity 

differences among pixels. The regions were then passed through a classifier to be compared 

against a generic template.  

Existing research efforts inspired me to apply similar methods in detecting a human. 

However, the exact implementation was different, since the target environment of this project 

was indoor with a fixed setup, and the Omron sensor had unique characteristics that 

negatively affected detection results. 

 

2.9.3 Human temperature 

Human body is known to have a temperature of 98.60F/370C [39]. Research efforts also 

found out that human body temperature remains fairly constant regardless of changes in 

surrounding environments, including seasonal changes [40]. The average human skin 

temperature is also found to be 330C [41]. In multiple tested environments, the forehead and 

the back are parts that maintain the most stable and highest temperatures [41]. 

 

In spite of constant body temperature, skin temperatures actually change when the 

surrounding environment gets colder or hotter. Y.Liu et al. [42] found that when a room 

temperature changed from 250C to 320C, facial skin temperature changed from 34.50C to 

35.50C. The research also showed that the average outer surface temperatures of clothes worn 

on human also increased from 30.50C to 33.50C when the same room temperature change 

happened. 

 

The findings imply that, regardless of a room temperature, when a thermal image is 

captured, pixels containing human are usually brighter than other objects’ pixels. Testing 

results of this project also confirmed the implication, made it a key factor in the human 

detection algorithm used in this project. 

 

This chapter reviewed the concepts of an HVAC system, the characteristics of a smart 

thermostat and its benefits in controlling an HVAC unit. The concepts of comfort zone, a key 

factor in designing a smart thermostat, were also explained. This chapter also introduced all 

main hardware components and how they were connected together to be a smart thermostat. 



The smart thermostat designed in this project took a different approach from others available 

on the market, by using a human detection algorithm to automatically identify human 

presence and control the HVAC system accordingly without repeated user manual input. 

 

The next chapter describes the smart thermostat design, including temperature and 

thermal sensors, an OLED display and a relay module, system block diagrams, system 

implementation on Zybo and embedded software development. The HVAC controller and 

human detection algorithm were parts of the software written in C. 



3. Project Design  
This chapter describes the theory and methods of the overall smart controller design and 

how the peripherals were implemented in the programmable logic and in the processing 

system of the smart controller. The hardware, software designs and controlling algorithm are 

discussed to clarify the roles of each module and its application in this project. 

3.1 System Block Diagram 

There were three main components in the system: a peripheral unit, a programmable logic 

unit and a processing system. The system was designed for two rooms in a residential 

property. The system layout of this project is defined graphically by the diagram shown in 

Figure 3.1. 

The peripheral unit consisted of two sets of sensors, each included a thermal sensor and a 

temperature sensor to detect human presence and measure room temperature in a room. The 

unit also had push buttons on Zybo to receive configuration inputs such as mode selection, 

temperature choice, etc.  

The programmable logic unit was responsible for receiving, processing and passing data 

from peripherals to the processing system. In the unit, a thermal data processing module read 

thermal data from two rooms, stored them in an input buffer before sending to the processing 

system. Similarly, a temperature data processing module read temperature data from two 

rooms via I2C interface, saved to it another input buffer, and then sent them to the processing 

system. Additionally, a user could set configuration data through push buttons. Signals from 

the buttons were also sent through the corresponding module toward the processing system. 

All input data was sent and received in real time.  

In the processing system, the human detection algorithm used thermal data to detect 

human presence and sent result to the HVAC controlling algorithm. The controlling 

algorithm used it in combination with user configuration data to control the HVAC 

automatically. In order to turn the HVAC on and off, the microprocessor sent a low voltage 

signal to a relay module in the programmable logic. The controlling algorithm also sent 

output information to an OLED display through the programmable logic. 



 

Figure 3-1 Overall system block diagram 

3.2 Zynq SoC and Architecture 

As mentioned, the general architecture of Zynq comprised both the Processing System 

(PS) and the Programmable Logic (PL). The Zynq SoC offered substantial flexibility to 

implement such a design mentioned in 3.1, as it allowed access to a microcontroller and 

programmable logic on one chip. Parallel high-speed logic signals received from sensors 

were processed by the FPGA of the PL, while human detection, HVAC control, and OLED 

display tasks were completed by the microprocessor of the PS. Figure 3.2 shows the primary 

communication interface of the Programmable Logic and Processing System via an AXI 

Peripheral Interconnect. 



 

Figure 3-2 Zynq SoC interface 

3.3 AXI Peripheral Interconnect 

The Advanced eXtensible Interface (AXI) interconnect was introduced as a 

communication interface between the programmable logic component and the processing 

system powered by an ARM Cortex-A9 hard processor. Particularly, in this project, an AXI 

Interconnect module was implemented to receive input data from temperature sensors, 

thermal sensors and other peripherals and send output data to the processing system. 

Additionally, the AXI module was used to get data back from the software and to send it to 

the output of the programmable logic to the OLED display, HVAC controller relay and 

booster fan controller relay. The AXI Interconnect utilized transmission data lines in parallel 

at 100MHz bus. This communication was done through the use of AXI GPIO Peripheral 

modules, where each module used 32-bit channels for communication.  



 

Figure 3-3 AXI Interconnect 

3.4 The processing system on ARM Cortex-A9 processor. 

The Processing System (PS) played several important roles in controlling the smart 

thermostat system. It was a C program run on the ARM Cortex-A9. First, the program had an 

interface connecting itself to the PL. Second, it stored data received every second from the 

PL in memory, for later use by the algorithms. Third, it had two fundamental algorithms to 

run the thermostat: The human detection algorithm which used thermal data to detect human 

presence; the HVAC controlling algorithm which used human detection result, temperature 

data, and configuration data to issue control commands for the HVAC and display data for 

the OLED. Last, the program sent the commands back to the PS, before such it was 

converted into signals and sent to the HVAC unit as well as the display. 

3.5 IP Module Generation for FPGA Processing 

Each component in this project was designed as an independent module using the Verilog 

HDL. Xilinx Vivado Design Suite was also used to create a top-level hardware design of the 

system and seven components as standalone projects called Xilinx IP blocks. The top-level 

design allowed integrating IP blocks easily using a GUI of a system block diagram. Since all 

modules were independent, they could be interchanged, revised and tested without affecting 

other modules.  



3.6 Temperature Sensor and Data Transmission to FPGA  

The Digilent PmodTMP2 temperature sensor used a standard I2C interface that provided 

two I2C signals, serial data (SDA) and serial clock (SCL). The I2C interface needed pull-up 

resistors to ensure that the SDA and SCL wires were pulled to a high logical level in the 

absence of a driving signal.  

A Pmod connector was able to drive bus signals on cables up to 18” in length [43], while 

almost all the sensors in this project were located far away from Zybo (longer than 18”). 

Since sensors used in the project were mounted far away from Zybo, I used a P82B715 I2C 

bus extender to drive I2C bus signals on long cables. The P82B715 was a bipolar IC intended 

for application in I2C bus and derivative bus systems [44]. This component kept all operating 

modes and features of the I2C bus, while offered extension of I2C bus signals across a long 

distance between components by buffering the data and clock lines [44]. Besides, the I2C bus 

extender supported up to approximately 50 meters distance or 3000 pF [44] and it operated at 

the frequency from 100 kHz – 400 kHz with supply voltage from 3V to 12V. These 

specifications was suitable to drive the I2C bus signal for the temperature sensor. 

Based on the instruction of the I2C bus extender [45], when the I2C bus operated at the 

frequency 100 kHz, the pull-up resistor for each I2C bus was 3 kΩ as shown in Figure 3-4.  

 

Figure 3-4 Pull-up resistors for each I2C bus 

 Figure 3-5 shows the interface between Zybo and the I2C bus extender P82B715 and the pull-up 

resistors. 



 

Figure 3-5 I2C bus extender P82B715 and pull-up resistors 

Additionally, the net pull-up resistors on the cable bus could be smaller than 235Ω. In 

this project, the net pull-up resistors were 150Ω for the I2C bus and were placed on each side 

of the I2C extender module. Figure 3-6 shows totally four pull-up resistors set on each side of 

the bus extender.  

 

Figure 3-6 Net pull-up resistors on the cable bus  



Finally, the I2C bus between the bus extender and temperature sensor was 3 kΩ as shown 

in Figure 3-7. Also, Figure 3-8 shows the real Digilent PMOD TMP2 temperature sensor 

connected to an I2C bus extender with pull-up resistors. 

 

Figure 3-7 Pull-up resistors between a temperature sensor and the bus extender 

 

Figure 3-8 The interface between a temperature sensor and an I2C bus extender 



This project used two Digilent Pmod temperature sensors, each located in a room of the 

residential property. Both temperature sensor interface circuits were built the same way and 

used similar pull-up resistors. Since the net pull-up resistors worked for a cable up to 20 

meters long, the temperature sensor interface circuits worked fine with a Cat5e twisted pair 

cable with the average length of about 4 meters. Figure 3-9 shows the overall temperature 

sensor interface circuits connected to Zybo. 

 

Figure 3-9 Overall temperature sensor interface circuits connected to Zybo 



 

A temperature sensor module was generated on the programmable logic as a slave AXI-

peripheral. It was used to acquire temperature data from the sensor and to allow the processor 

system access to the data through memory-mapped registers. This module had one 32-bit 

access register used to hold 13-bit data from temperature sensor. This register was controlled 

by the software in the processing system.  

The temperature sensor module was a hierarchical design that delegated different 

functionalities to different blocks. Figure 3-10 showed the top level of the temperature 

sensor. The top-level wrapper module connected to the Zynq processing system and used the 

100 MHz clock supplied by the processing system. The temp_sensor_v1_0_S00_AXI 

interconnect connected the programmable logic and the processing system. This module 

stored the measured temperature value in a 32-bit access register, and output the data to the 

processing system. Additionally, the AXI module could receive data from the processing 

system and output bus signals to the peripherals. The temp_ctrl module at the innermost level 

was set to receive measured temperature data (in this project) from the peripherals through 

the Pmod connection. The temp_ctrl module generated a slower serial clock 100 kHz for I2C 

bus from the clock 100 MHz of the processing system. Since the top level temperature sensor 

module was generated as an IP module, it could be reused for the second temperature sensor 

in the second room.  

 

Figure 3-10 Top level of a temperature sensor on programmable logic 

In the programmable logic unit, Zybo, as a master device, had to specify 7-bit address 

0x4B to access the sensor. Once addressed, Zybo could issue commands, such as writing to 

or reading from the slave’s registers on the temperature sensor. The logical procedure used 

for writing address to the sensor and reading measured data was implemented as finite state 

machine (FSM) to fit measured time intervals. Figure 3-11 shows a data read-back procedure 

from the temperature value’s most significant byte and least significant byte register. 



 

 
Figure 3-11 Reading back data from the temperature value MSB and LSB register [46] 

The temperature sensor module was built on the programmable logic unit based on an 

open source code “I2C simple master for typical 7-bit EEPROM” [47]. This module was 

customized to fit I2C timing specifications and conditions for writing and reading data. The 

communication between Zybo and the temperature sensor was implemented as a finite state 

machine in the following order: 

 In pre_start_up state, the master device waited for debounced SDA input signal to go 

high while clocking SCL as necessary. The pre_start_up and start_up state only initialized 

the temperature sensor module at the beginning shown in step 1 and 2 of Figure 3-12. After 

that, the master device transitioned to the main states to get measured data. 

 Zybo checked the status of the temperature sensor in idle_state, if the sensor was not 

busy, Zybo would transitioned to start_state showed in step 3 of Figure 3-12. At this state, 

when SDA input signal was driven low, Zybo assigned a control frame that addressed the 

ADT7420 device address at 0x4B to access the sensor. A write bit (R/W bit was set to zero) 

was added accordingly that indicated Zybo would write to the slave device next and the 

address of the most significant byte (MSB) register within the ADT7420 that was going to be 

read from. And then, the master device transitioned to spin_state (step 4) to wait for an I2C 

timing specification before jumping to the clock_low state (step 5). The current state sent 

timers based on I2C timing specification from the data sheet of ADT7420 to spin_state for 

counting time period and then returning back to the next state.  

 In clock_low, the SCL was asseted to low and wait for t_hold (step 6) before changing 

the SDA signal. When the counter completed, the master device moved to the shift_data state 

(step 7) to shift each bit of the control frame out to the temeprature sensor. When the 

transaction finished, this state had to wait for the timing specification (step 8) before 

transitioning to clock_high state. 

 The clock_high state released low drive on SCL and when the SCL input signal went 

high, the master device would sampled SDA signals and moved on to next state that showned 

in step 9, 10 and 11 of Figure 3-12. Also, in this state, a bit_count flag and write_cycle flag 



were used to keep track when the temeprature sensor was in write cycle and when it was in 

read cycle. If it was in the write cycle, the master device would come back stop_state and 

return to start_state to start sending a control frame that addressed the ADT7420 device and a 

read bit (R/W bit was a one) before reading data. If the temperature sensor was in read cycle, 

the master device would received the 13-bits measured data from temprature sensor and 

moved on to the stop_state. After reading the temperature value from the MSB register, the 

address pointer of the ADT7420 automatically increased to the least significant byte (LSB) 

register to read the rest of temperature value 

 In stop_state, if the write_cycle was one, the master device had to return to start_state to 

start a new cycle with write_cycle was zero as described above. If the write_cycle already 

was zero, Zybo would output 13-bits data to the temp_sensor_v1_0_S00_AXI module and 

store in a 32-bits accessed register. 

 

 
Figure 3-12 Finite state machine of temperature sensor module 

The temp_sensor_v1_0_S00_AXI module used a 32-bit access register to store measured 

data into 13 LSBs of the register. Other bits within 32-bits were set to a zero. This assigned 

value was convenient when the software used a pointer to get value from this 32-bit register. 

These binary values were converted to Celsius degree by multiplying with 0.0625, a 13-bit 

temperature resolution. The measured temperature was updated every second in the software. 



3.7 Thermal Sensor and Thermal Data Transmission to FPGA 

The Omron D6T-44L-06 thermal sensor also output measured value through an I2C bus. 

The thermal sensor used power source at 5V for both SDA and SCL buses, while the 

maximum output voltage of the Zybo was 3.3V. Therefore, a PCA9517 level-translating I2C 

was added to provide bidirectional voltage level translation between low voltages (0.9V – 

5.5V) and high voltages (2.7V – 5.5V) in mixed-mode application [48].  

Similar to the case of the temperature sensor, since the Pmod could not drive bus signal 

on long cables, the thermal sensor interface circuit need a pair of I2C bus extender to drive 

boost I2C bus on the cable. Per the standard I2C system, pullup resistors were required to 

provide the logic-high levels on the buffered bus. Based on the instruction of quick design 

multi-point circuit from NXP semiconductor [44], this design was applied to build the 

thermal sensor module interface.  

A 4.7 kΩ pull-up resistor was chosen for the connection between the master device, the 

level translating I2C-bus repeater PCA9517 and the I2C bus extender when the thermal sensor 

operated at 100 kHz. Figure 3-13 shows how the pull-up resistors were attached to the 

interface circuit. Note that the level translating I2C bus repeater had an active high enable 

(EN) output to allow Zybo to select when the repeater was active. One side of the bus 

repeater was connected to Zybo with voltage power at 3.3V, while the other side used 

voltage powered at 5V coming from a 5V external power source. The rest of the components 

could operate at 5V, so the external power source could drive 5V power signals over a long 

cable to the thermal sensor. Figure 3-13 shows how the pull-up resistors were connected to 

I2C buses between Zybo, the bus repeater and the bus extender.  

 

Figure 3-13 Pull-up resistors for the connection between Zybo, I2C bus repeater and bus extender 



Two pairs of 470Ω pull-up resistors were chosen for the connection between two I2C bus 

extender. The 470Ω pull-up resistors set a cable bus limit at 5000pF [49]. Figure 3-14 

showed net pull-up resistors on a long cable with the power voltage at 5V. Besides, Figure 3-

15 indicated the 5V power connector from an external power source to the circuit. The I2C 

bus extenders and two pairs of 470Ω resistors were placed in the front of the prototype board, 

while the I2C bus repeater with 4.7KΩ pull-up resistors were placed in the back.  

 

Figure 3-14 Pull-up resistors on a cable bus. 



 

Figure 3-15 Thermal sensor interface circuit with the I2C bus repeater, bus extender and pull-up resistors 

 

A pair of 4.7 kΩ pull-up resistors were connected between the bus extender and the 

Omron thermal sensor. As a result, the longest cable used to connect Zybo over the I2C bus 

repeater and the bus extender was 15 meters. The interface circuit worked well without 

losing the connection. Figure 3-16 shows the connection between the bus extender and the 

thermal sensor with two pull-up resistors for I2C bus. Figure 3-16 also demonstrates the real 

thermal sensor connection with an I2C bus extender. 

 

Figure 3-16 Pull-up resistors between the I2C bus extender and the thermal sensor. 



 

Figure 3-17 Thermal sensor with the I2C bus extender 

Another similar interface circuit was generated for another thermal sensor located in the 

second room. Figure 3-18 indicates the overall connection between Zybo and two thermal 

sensors.  



 

Figure 3-18 Overall thermal sensor interface circuit 

In the programmable logic unit, the thermal sensor module was generated based on the 

Verilog code of the temperature sensor. The hierarchy of the thermal sensor module was 

similar to the temperature sensor module. It had a top-level wrapper contained a 

thermal_sensor_v1_0_S00_AXI interconnect and a thermal controller module. The thermal 



controller module received measured data from the thermal sensor. The AXI module would 

store data from the controller into nine 32-bit access registers and send them to the software 

on processing system component. Figure 3-19 shows the top-level of the thermal sensor 

module. 

 

Figure 3-19 Top-level of thermal sensor module 

The communication method of the thermal sensor and Zybo was similar to the one of the 

temperature sensor. The process in sending a control frame that addressed the device address, 

read/write bit, and command bits to write data to or read data from thermal sensor was 

similar to what described in chapter 3.6. However, there were some differences in the amount 

of receiving bus signals and an enable input to let Zybo select when the level-translating I2C 

bus repeater was active. In the thermal sensor controller, this module needed a register to 

hold 35-bytes bus signals from the thermal sensor. Additionally, the enable input was 

activated in Idle state, just before starting the start state. Figure 3-20 shows the signal of the 

thermal sensor. After initial steps of writing device address, the transaction would return 

back to the start state when the master device recognized no-acknowledge reply. A bit 

counter operated during a data read-back from the thermal sensor to keep track of when the 

master should read output data from the thermal sensor. The output data format of the Omron 

thermal sensor had 16-bit width for each temperature value. There were totally 17 such 

values, with the first one being a PTAT, a reference temperature value only used internally 

by the sensor. The last 8-bit data of the output was a packet error check code (PEC) that only 

worked for SM bus interface.  



 

Figure 3-20 – Signal chart of the Omron D6T-44L thermal sensor 

In the thermal sensor AXI module, a 280-bit register named thermal_value was created to 

hold the input data from the thermal sensor. Besides, this module used nine 32-bit access 

registers to send the input data to processing system. Table 3-1 shows the output data format 

of the software in the processing system.  

Accessed 

registers 

thermal_value bits position Relevant pixels 

slv_reg0 thermal_value[279:248] PTAT low & high - P0 low & high 

slv_reg1 thermal_value[247:216] P1 low & high - P2 low & high 

slv_reg2 thermal_value[215:184] P3 low & high - P4 low & high 

slv_reg3 thermal_value[183:152] P5 low & high - P6 low & high 

slv_reg4 thermal_value[151:120] P7 low & high - P8 low & high 

slv_reg5 thermal_value[119:88] P9 low & high - P10 low & high 

slv_reg6 thermal_value[87:56] P11 low & high - P12 low & high 

slv_reg7 thermal_value[55:24] P13 low & high - P14 low & high 

slv_reg8 thermal_value[23:8], 

thermal_value[7:0], 8'b0 

P15 low & high – PEC and 8 bit 0 

Table 3-1 Output data format to the processing system 

In the processing system, the software program used a loop to get all data from nine 32-

bits registers and parsed it accordingly. The data was then converted to Celsius degree 



values. The final results were saved into an array for further use in human detection 

algorithm. The Omron thermal sensor could capture data four times per second. However, the 

software only updated data from thermal sensor one time per second. 

3.8 OLED display nethod 

As mentioned in chapter 2.6, this module used a 128x32 OLED graphic display panel 

with write mode only. An OLED controller was built as a slave AXI peripheral to allow the 

processor system to access to the OLED display buffer through memory-mapped registers. 

This controller had seventeen 32-bit access registers, where sixteen of them were data 

registers and the seventeenth register was used for commands to display data or clear screen. 

Values of these registers were controlled by the software in the processing system.  

Zybo communicated with the Digilent PmodOLED screen through a standard SPI 

interface. Similar to temperature and thermal sensor modules, the OLED controller had a 

hierarchical design where it delegated its functionalities to different blocks. Figure 3-21 

shows the OLED controller design. The top-level wrapper module connected to the Zybo 

processing system. Additionally, the top level got the 100 MHz clock supplied by the 

processing system, and then generated slower serial clock in sub-modules. The following 

paragraphs will explain the sub-modules in more details. 

 

Figure 3-21 Top-level wrapper of pmod_OLED_v1_0 

In the programmable logic component, the OLED controller was implemented using 

Verilog from the PmodOLED open source code of Digilent [50]. The original example code 



was developed on a Spartan-6 based Nexys3 board so it had to be retargeted to the 

programmable logic unit of Zybo in this project. The OLED controller was responsible for 

initializing the OLED display panel according to the manufacturer’s specifications. The 

OLED delay block, SPI Control block and Characters Library from the manufacturer were 

applied to initialize the OLED display panel. All modules in the programmable logic were 

implemented as a finite state machine (FSM) to fit measured time intervals. This SPI 

interface had an enable D/C pin for data/command control. This pin was set high for display 

buffer access and low for command access [51]. Therefore, when D/C pin was set low, the 

initialization was done by the OLED controller sending bursts of bytes as commands, and 

then when D/C pin was set high, the OLED controller would send bursts of bytes as display 

data to the OLED panel. These steps were separated by measured time intervals [52].  

To communicate and transfer data from the OLED controller to the OLED screen panel, 

this controller used a SPI Control block developed by Digilent to perform an SPI transaction. 

This module used the 100 MHz clock from the processing system to generate a 3.125 MHz 

serial clock (SCLK) as a data clock [50]. The SPI Control waited until an SPI_EN was on, 

then it switched to “Send” state. The module then started shifting out data byte hold in 

SPI_DATA to serial data out (SDO) on the rising edge of SCLK. Once it finished, the 

module transitioned to “Done” state and the SPI_FIN was pulled high. The module waited at 

“Done” state until the SPI_EN was off, and then it transitioned back to its “Idle” state.  

The OLED controller also used a delay module which used a100 MHz clock supplied 

from the processing system to generate a 1 kHz counter to count in milliseconds. This 

module supplied precise timing capabilities for other modules within the OLED controller. 

When the DELAY_EN of this module was asserted, the counter started counting until it 

reached the delay value. The DELAY_FIN was pulled high when the delay module 

transitioned to “Done” state [50].  

In order to render received data correctly as ASCII characters, Character library 

(CharLib), a block memory contained pre-built bitmaps was used. Digilent built this 

character library and made it open-source for users [50]. Since each character in this library 

was an 8x8 bitmap, it was stored as 8-byte parts in hexadecimal notation. These pre-built 

contents were found in CharLib.coe, a coefficient file for the block memory, and it was 

implemented in the programmable logic component. Figure 3-22 shows the bitmaps of letter 

“A” stored in 8 bytes in hexadecimal notation in CharLib.coe. The ASCII value of letter “A” 

was 65 [53]. The fixed offset of the coefficient file was 3 because of the heading [54]. 

Therefore, the address of letter “A” was 68. 

 

Figure 3-22 Bitmaps of letter “A” in CharLib.coe [50]. 



Pmod_OLED_v1_0_S00_AXI module was the connection between the programmable 

logic and processing system components. It contained the major parts of the controller 

including the AXI interface, sixteen data registers, and a control register. This module used a 

FSM to implement all required initialization states of the PmodOLED after the screen was 

turned on and before displaying information on the screen. Once all initialization states were 

finished, the OLED controller waited for a trigger on the control register. When the software 

set the display trigger on, the OLED control could display characters on the screen. If the 

software set clear trigger on, the OLED control would clear the screen. 

In the processing system component, after the initialization was completed, the controller 

provided the processor system access to the OLED display buffer through a memory-mapped 

register. As mentioned, the OLED Controller used sixteen 32-bit data registers to store 

character addresses in the coefficient file and a control register as a trigger to display 

information on the screen or clear the screen. Each data register could hold four characters, 8 

bits for each. Figure 3-7 shows these data registers and their display location on the OLED 

screen. A driver was developed similar to the driver of ZedboardOLED used to communicate 

with the OLED Controller [26]. The driver implemented the functions to print a message, 

print a character and clear the screen. The software program sent the data from sixteen data 

registers and display/trigger of control register over the SPI interface to the OLED screen. To 

display new information on the screen, the OLED screen had to be cleared before sending 

new characters. 

 

Figure 3-23 Data register and its relation to the physical OLED screen [26]. 

3.10 Four push-buttons  

The push buttons were implemented in the programmable logic to allow users to input 

configuration options to the thermostat. The push buttons controller got signals from four 

buttons and then sent these signal values over a debounce button module to make sure the 

buttons were definitely pressed and to avoid unpredictable results. The push button controller 

also dedicated a 32-bit access register for each button. The push button AXI module would 



send an output signal to the processing system via AXI interconnect interface. In the 

processing system, the software used a 32-bit value of the pressed button to receive user 

configuration input. Figure 3-24 shows the push-buttons on Zybo.  

 

Figure 3-24 Four push-buttons attached on Zybo 

3.11 HVAC unit transmission to Zybo 

Zybo has a maximum output voltage at 3.3V while the HVAC system uses the 

transformed low-voltage source at 24V to connect to the thermostat. As mentioned in section 

2.1, a single stage HVAC system has five main wires. The red wire drives the power at 24V 

to yellow wire (AC), the white wire (Heater) or green wire (Fan) if necessary. The black wire 

is terminated to yellow, white and green wires to complete the circuit. For Zybo to control 

the HVAC system, a four channel relay interface board was used. Input ports of the relay 

received controlling signals from the Zybo (active-low signals) while the output ports of the 

relay connected to the air compressor (Yellow), the heater (White) and the fan (Green). 

Figure 3-25 shows a 4-channel relay interface board used in this project.  



 

Figure 3-25 4-channel relay interface board used to control the HVAC system [55]. 

An HVAC relay module was implemented as a slave AXI peripheral on the 

programmable logic component, with one 32-bit access register for control. Figure 3-26 

shows a block diagram of the relay model used to implement the HVAC system.  

 

Figure 3-26 HVAC relay block diagram 

When a certain temperature level needed to be maintained, the software assigned a 32-bit 

value to the control register based on the appropriate HVAC mode. The HVAC relay module 

on programmable logic would read this data from the processing system component, and map 

Boolean expression in low active to relevant output pins on the programmable logic. Table 3-

2 shows a truth table of the HVAC relay module. This table explains how Zybo converted 

input signal data from the processing system and to low active output signals and sent to the 

relay.  



HVAC relay truth table in active-low signal 

Input (32 bits) OUT_HEAT OUT_AC OUT_FAN 
Appropriate 

HVAC Mode  

0x00000000 1 1 1 Off 

0x0000000F 1 1 0 Fan  

0x000000F0 1 0 0 Cool 

0x000000FF 0 1 0 Heat 

 Table 3-2 HVAC relay truth table 

In the HVAC relay module, the 32-bit data from the processing system used to operate 

the HVAC system was also used to control indicated built-in LEDs on Zybo. Table 3-3 

shows the LEDs for each relevant mode when the HVAC relay module received an 

appropriate input value from the processing system. Figure 3-27 below demonstrates how 

Zybo operated the HVAC system in the heating mode indicated by the 3rd and 4th green LED. 

HVAC indicated LEDs truth table in active-high signal 

Input (32 bits) LED[3:0] HVAC Mode Indicated LEDs 

0x00000000 4’b0001 Off 1st LED 

0x0000000F 4’b0010 Fan 2nd LED 

0x000000F0 4’b0110 Cool 2nd & 3rd LED 

0x000000FF 4’b1100 Heat 3rd & 4th LED 

Table 3-3 HVAC indicated LEDs truth table 

 

Figure 3-27 3rd and 4th indicated LED showed Zybo turned on heating mode 



3.11 Register Booster Fan 

Since the register booster fan operated at high voltage mentioned in Chapter 2-5, Zybo 

used a 4-channel relay interface board to control two register booster fans. The 

booster_fan_relay top module was generated similarly to the HVAC_Relay module. The top 

module connected to the processing system to receive bus signals from the software. The 

booster_fan_relay_v1_0_S00_AXI stored the data in an accessed register, and then it sent to 

the booster_fan_relay_ctrl to check conditions of the truth table. Based on the result shown in 

Table 3-4, Zybo would send a active-low output signal to the booster fan relay to turn on the 

true fan. 

 

In data from the 

software 

Fan 1  

(active low signal) 

Fan 2 

(active low signal) 

Operation 

32’h00000000 1’b1 1’b1 No fans 

32’h0000000F 1’b0 1‘b1 Fan 1 

32’h000000F0 1’b1 1’b0 Fan 2 

32’h000000FF 1’b0 1’b0 Fan 1 & Fan 2 

Table 3-4 Truth table of booster fan relay module 

3.12 Human Detection Algorithm 

3.12.1 Received data 

Data received from a thermal sensor was a 4x4 matrix, containing temperatures of objects 

in a room. The thermal sensor captured temperatures of different objects in a region, and 

presented them as one average temperature value in the 4x4 matrix. Figure 3-28 below shows 

an Omron thermal sensor that generates a thermal image contained 16 pixels. 

 
Figure 3-28 Omron thermal sensor generated thermal image with 16 pixels. 



For convenience, the following terms are going to be used in the report: 

 The 4x4 matrix is called ‘thermal image’ and a value in the matrix is called 

‘pixel’.  

 When a pixel is called bright, its temperature value is higher than room 

temperature. Respectively, a pixel is dim when its temperature value is lower than room 

temperature.  

 A pixel containing human is called a human pixel. 

 A pixel not containing human is called a non-human pixel. It can contain any 

other objects, including heat sources. 

 

Naturally, since objects in a room have different properties, their surface temperatures are 

also different. Objects in a living room typically include but not limited to tables, chairs, 

sofa, TVs, computers, lights, made from some materials: wood, leather, fabric, metal, plastic, 

etc. Objects in a bedroom usually include a bed with a mattress covered with bedding sheets, 

a dresser, a wardrobe closet and a light. Other objects such as fans, lights, portable A/C unit 

or heater, might be found in different rooms of the house. 

 

Although human skin temperature tends to be stable at 33 0C, data received from the 

thermal sensors does not show the same degree. In some cases, the data shows that pixels 

containing human are brighter than pixels without a human. However in other cases, 

especially when a human is far from a thermal sensor, human pixels may have temperatures 

lower than room temperatures. This factor leads to a conclusion that, one instance of data 

taken does not show much information, and I should look at how the data change throughout 

a period of time. 

 

In order to obtain a training sample dataset, I set up a test environment as described in 

Chapter 5. After setup, a series of samples were taken. Every sample was 5- minute long, 

during which data was taken from thermal and temperature sensors of 2 rooms every second. 

A sample featured 1 of these 3 cases: (1) an empty room, (2) at least a sedentary human or 

(3) a moving human. In total, fourteen pairs of samples were obtained in preparation for 

analysis. 

 

3.12.2 Temporal changes of data 

3.12.2.1 Sample data 

In a sample, a data point was taken every second in a room, which made up to 300 data 

points for the whole 5 minutes. Each data point contained 19 comma-separated numbers, in 

the following order shown in Figure 3-29. Table 3-4 shows the format of a data point. 

 

 

 

 

 

 

 

 



Position Description 

1 Time count in second, starting from 300 and ending at 1. 

2 Temperature value read by temperature sensor 

3 PTAT (from thermal sensor, not used) 

4-19 Thermal values read by thermal sensors 

20 PEC (from thermal sensor, not used) 

Table 3-5 Format of data point 

The two important set of values were numbered at position 2 and 4-19: 

 Temperature value: Indoor temperature of the room in a test at a moment. The indoor 

temperature was taken in Celsius degree. 

 Thermal values: pixel values in the room in the test. The values were also taken in 

Celsius degree. Pixel indices were conventionally marked from 0-15. 

 

For each sample where at least a human was present, its human pixel locations were 

manually marked for further analysis. Below is an example of a sample. The temperature and 

thermal values at position 2 and 4-19 were highlighted in yellow: 

 

 
 

Figure 3-29 Data points of a test result  

A sample had the following format: 

 Line 1: room number, test number, and a short description. 

 Line 2: A single character: Y if the room had a human presence, N if the room 

was empty. This character was input manually after the sample was taken. 

 Line 3: A comma separated list of human pixel indices in the sample. If the room 

was empty, the list contained a single number -1. 

 Rest of the lines: Each line was a data point in the described format. 

 



3.12.2.2 Data normalization 

Another observation that I had was, every sample had a different room temperature, 

which made analysis tasks much more difficult when comparing pixel values across different 

samples. Therefore, all data points were normalized using the following formula: 

 

𝑃𝑖_𝑡 = 𝑃𝑖_𝑡  − 𝑟𝑜𝑜𝑚_𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  [1] 

 

Where:   

 𝑃𝑖_𝑡: value of pixel i in time t. 

 𝑟𝑜𝑜𝑚_𝑡𝑒𝑚𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: average room temperature during the 5-minute period. 

 

3.12.2.3 Descriptive statistics of sample data 

To observe how data was formed throughout the test, and what statistical distribution of 

the data might be, I calculated the mean and standard deviation values every pixel in the 

thermal image, based on the following formulas: 

𝑖�̅�  =  
P[𝑖1] + P[𝑖2] + ….+ P[𝑖299] + P[𝑖300]

300
  [2] 

𝜎𝑖 =  
√(P[𝑖1]− 𝑖1̅)2+⋯+ (P[𝑖300]− 𝑖̅300)2

300
  [3] 

Where: 

 𝑖  : a pixel in the thermal image, i = 1 to 16. 

 𝑖�̅� : mean value of pixel i in 5 minutes (300 values). 

 𝜎𝑖: standard deviation of the 300 pixel i values. 

The following two graphs are of the same sample. The x-axis is the pixel number from 1 

to 16. The y-axis is the mean temperature of the pixel in 5 minutes. Figure 3-30 shows the 

data before normalization, and Figure 3-31 shows the data after normalization. The 

normalization process not only preserved descriptive statistics of samples, but also helped 

further analysis in comparing thermal values across samples. 



 

Figure 3-30 Calculated values from the thermal sensor before normalizing. 

 

Figure 3-31 Calculated values from the thermal sensor after normalizing. 



3.12.3 Analysis 

3.12.3.1 Temporal changes versus spatial changes of data 

After taking descriptive statistics of all pixels in all samples, each pixel was represented 

by two values: 

 Mean brightness: the mean value of the pixel during the 5-minute period. It was 𝑖�̅� in 

formula [2]. 

 Brightness volatility: the standard deviation value of the pixel during the 5-minute period. 

It was 𝜎𝑖 in formula [3]. 

Spatial change was captured in a heat map of a thermal image, which showed the 

mean brightness of all pixels at a moment. By looking at a heat map, one should be able to 

identify a bright spot in an image. The heat maps below shows two thermal images, all of 

which contained a human. The heat map values were the mean brightness. Figure 3-32 

shows the heat map with a bright spot, indicating the human pixel. In Figure 3-33 the heat 

map does not show any visible bright spot. 

 

Figure 3-32 Heat map showed a bright spot indicating the human pixel 

 



 

Figure 3-33 Heat map showed invisible bright spot with human presence 

Temporal change was change of one-pixel brightness through time. In this project, 

temporal change corresponded to brightness volatility. The figures below shows the 

difference in temporal changes between two images, one with human shown in Figure 3-34 

and one without human in Figure 3-35. 

 

Figure 3-34 Calculated values from thermal images of test 3 in room 1 with human presence 



 

Figure 3-35 Calculated values from thermal images of test 2 in room two without human presence 

Figure 3-34 and 3-35 show that human pixels have much higher brightness volatility than 

non-human pixels. This finding leads to a conclusion that in the sample collection process, 

the Omron thermal sensor was able to capture subtle temperature changes caused by natural 

human movements. Temporal changes of pixel values greatly contributed in detecting human 

presence in a room. Natural human movements included ones made by a sedentary person, 

such as typing, a hand or leg movement, a head turn, etc. 

3.12.3.2 Human pixels versus non-human pixels 

In order to identify the differences between human and non-human pixels, pixels of all 

samples were classified into two corresponding classes and their mean brightness and 

brightness volatility were calculated. The purpose of these statistical values was to know how 

the mean brightness and brightness volatility distributed across all samples. The following 

subsections describe results of this calculation. 

3.12.3.2.1 Mean brightness 

Table 3-6 displays descriptive statistics of the mean brightness of all classified pixels in 

28 collected samples. Figure 3-36 to 3-38 show its histograms, where each bin is 0.1 0C. 

 Min Median Mean Max Volatility 

Human -1.764 -0.545 -0.395 2.923 0.806 

Non-human -2.928 -0.76 -0.845 5.511 1.140 
Table 3-6 Statistics of human and non-human pixels mean brightness values in 60 seconds 



 

Figure 3-36 Histogram of human pixels’ mean brightness 

 

Figure 3-37 Histogram of non-human pixels’ mean brightness 



 

Figure 3-38 Histogram of all pixel’s mean brightness 

The histograms above show that human pixels were only slightly brighter than non-

human pixels, hence, if the human detection algorithm were based only on pixel brightness, 

its accuracy could only be around 50%. 

3.12.3.2.2 Brightness volatility 

As mentioned before, since the thermal sensors were very sensitive in capturing 

temperature changes resulted from human movements, brightness volatility helped determine 

whether a pixel was human or non-human. Table 3-7 displays descriptive statistics of 

brightness volatility of all classified pixel in 28 collected samples. Figure 3-39 to 3-40 show 

their histograms, where each bin is 0.01 0C. 

 Min Median Mean Max Volatility 

Human 0.067 0.394 0.442 1.126 0.281 

Non-human 0.05 0.085 0.104 3.840 0.203 
Table 3-7 Statistics of human and non-human pixels brightness volatility in 60 seconds 



 

Figure 3-39 Histogram of non-human pixels’ brightness volatility 

 

Figure 3-40 Histogram of human pixels’ brightness volatility 



 

Figure 3-41 Histogram of all pixels’ brightness volatility 

The histograms show that while non-human pixel brightness volatility was around 0.1 
0C, human pixel volatility was significantly higher, around 0.4 0C, depending on human 

locations and movements. 

3.12.3.2.3 Building a human detection algorithm 

Through findings in 3.12.3.2.1 and 3.12.3.2.2, human pixels had mean brightness 

ranging from -1.764 to 2.923, taken from Table 3-6 and brightness volatility ranging from 

0.067 to 1.126, taken from Table 3-7. A human detection algorithm was built as follows: 

1. For second s = 1 to 60: 

2. T[s] = room temperature at second s 

3. P[][s] = pixel brightness at second s. (16 values) 

4. mean_temp = mean(T) // mean of 60 temperature values 

5. human = False 

6. For each pixel p in the thermal image: 

7. mean_brightness[p] = mean(P[p]) 

8. brightness_volatility[p] = standard_deviation(P[p]) 

9. if (brightness_volatility[p] > minimum_volatility and 

10. brightness_volatility[p] < maximum_volatility and 

11. mean_brightness[p] > minimum_brightness and 

12. mean_brightness[p] < maximum_brightness): 

13. human = True 

At line 1-3, data from sensors was collected in 60 seconds, as opposed to 300 seconds (5 

minutes) when collecting sample data. This decision was a design choice after analyzing the 

sample data. Such data was taken in 5 minutes as an exploration step only to discover the 

human detection algorithm. In each sample, there was no big difference in data values among 



each 60 seconds in the 5-minute period, since the setup scenario was the same from the 

beginning to the end of the period, i.e. an empty room remained empty, a room with human 

presence remained the same. Moreover, 60 seconds were long enough to capture natural 

human movements, such as head turns, leg or hand or torso movements. There was no need 

to collect data for 300 seconds before calculating statistics. 

Line 10 and 12 were added to eliminate outliers caused by heat sources other than 

human, such as portable heaters, light bulbs, etc. maximum_brightness was 2.923. 

maximum_volatility was 1.126.  

To identify the best minimum_brightness and minimum_volatility parameter pairs, the 

algorithm was run on the samples multiple times, each time with a unique combination of the 

two values. Chosen values were based on the statistics in Table 3-6 and 3-7, with 

minimum_brightness started from -1.764, and minimum_volatility started from 0.067.  In 

each of the run, result from the algorithm was compared with the result manually marked, to 

identify whether the algorithm was correct or not. Results were classified into the following 

four categories: 

- True positive: there was at least a human in a room and the algorithm recognized him or 

her. 

- True negative: there was no human in a room and the algorithm identified no human. 

- False positive: there was no human presence in a room, but the algorithm falsely 

identified a person. 

- False negative: there was a person in a room, but the algorithm did not recognize him or 

her. 

Among the four categories, false negative results had the most negative impact on the 

overall functionality of the smart thermostat, since if it happened, the HVAC would not run even 

if a human was present in a room. Therefore, the best strategy in choosing the best parameter 

pair was to maximize true detections and minimize false negative detections. Table 3-8 below 

displays the most significant results from all the runs. Other results are omitted due to low 

accuracy. Each of the cells contains accuracy rate/false negative rate results from the run of the 

corresponding parameter pair. In the results table, the best pairs of mean brightness/volatility are 

marked in red. 

 



Table 3-8 Accuracy of the human detection algorithm based on minimum brightness and volatility 

3.13 HVAC controlling algorithm 

The thermostat allowed users to input 3 pre-set temperature values: desired temperature, 

low temperature and high temperature. The desired temperature was a level at which a user 

wanted the thermostat to maintain. This value was the optimal temperature, where a user 

would feel most comfortable. A user also set low and high-temperature values to specify a 

temperature range in which the user would feel comfortable. These 3 values could be change 

any time as necessary. 

3.13.1 Hysteresis 

The HVAC system had an on/off control action to turn the unit on/off based on the 

desired temperatures. The HVAC control signal outputs from Zybo were frequently changed 

when it updated new results each minute. This problem could shorten the life of the four-

channel relay and of the HVAC system. To prevent such issue, the thermostat needed a 

temperature band called hysteresis between on and off operations. A user could adjust the 

hysteresis by changing the temperature swing value. The hysteresis calculation would be 

explained in next couple paragraphs.  

 In this project, hysteresis was the sum of the swing value and temperature sensor 

accuracy. The accuracy of the temperature sensor was +/- 0.250C mentioned in Chapter 2.5 

while the swing values were either 10C or 20C depending on user input. Table 3-1 shows the 

calculated hysteresis from different input temperature swing value. 

Temperature swings  Accuracy Hysteresis 

10C +/- 0.250C 1.50C 

20C +/- 0.250C 2.50C 

Table 3-3-9 Hysteresis of controlling algorithm 

The hysteresis of HVAC modes was: 

Minimum 
volatility 

Minimum brightness 

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 

0.07 0.71/0.00 0.75/0.00 0.82/0.00 0.82/0.00 0.82/0.00 0.82/0.00 0.86/0.00 0.86/0.00 0.86/0.00 

0.08 0.79/0.00 0.79/0.00 0.82/0.00 0.82/0.00 0.82/0.00 0.82/0.00 0.86/0.00 0.86/0.00 0.86/0.00 

0.09 0.79/0.04 0.79/0.04 0.82/0.04 0.82/0.04 0.82/0.04 0.82/0.04 0.86/0.04 0.86/0.04 0.86/0.04 

0.1 0.79/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14 0.82/0.14 

0.11 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 0.75/0.21 

0.12 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 

0.13 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 

0.14 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 

0.15 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 0.68/0.29 



𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 =  𝑠𝑤𝑖𝑛𝑔 + 2 ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [4] 

Figure 3.5 shows the hysteresis of cool mode with a desired temperature at 230C. The AC 

was on when the measured temperature was higher than 24.250C. The AC was off when the 

measured temperature was lower than 22.750C. The hysteresis of cool mode was 1.50C.  

 

Figure 3-3-42 Hysteresis of cool mode with the desired temp at 230C 

On/off condition of cool mode: 

 On condition = desired temperature + (swing + accuracy)  

 Off condition = desired temperature – accuracy 

Similarly, Figure 3.6 shows the hysteresis of heat mode. The heater was on when 

measured temperature was lower than 21.750C, and then it would be off when measured 

temperature was higher than 23.250C. The hysteresis for heat mode was also 1.50C. 



 

Figure 3-43 Hysteresis for heat mode with the desired temperature at 230C 

On/off condition of heat mode: 

 On condition = desired temperature – (swing + accuracy)  

 Off condition = desired temperature + accuracy 

The smart thermostat would turn on the HVAC system when either room 1 or room 2 did 

not satisfy the comfort zone. While the rooms might have different temperatures, the HVAC 

system would run until both rooms reached the desired temperature level. It meant that at 

least one room might already passed the desired level by a considerable amount of degrees. 

There was no need to wait for both rooms to pass such level by a swing value anymore, since 

such HVAC run would take a longer time, and at least one room temperature might become 

too hot (in heat mode), or too cold (in cool mode). 

3.13.2 HVAC mode 

The smart thermostat offered three basic modes to maintain desired temperatures in 

different weather conditions: heat, cool and auto heat&cool mode. When the thermostat 

detected human presence, it maintained indoor temperature at the desired temperature if the 

heat mode or the cool mode was on. Meanwhile in the auto heat and cool mode, it maintained 

a comfort zone between the preset low and high temperatures.  



 

Figure 3-44 Preset comfort zone  

Additionally, the thermostat had a night operation that helped users saving energy in the 

evening when using cool or heat mode. A set could set night mode to be on, off or auto. 

When the auto night operation was on, the thermostat automatically maintained the comfort 

zone within the low and high temperature range from 12 AM to 8 AM only. However, if the 

night operation was not auto, the thermostat would keep the indoor temperature within such 

temperature range permanently. This night operation option did not work for the auto 

heat&cool mode, since operation already keep the indoor temperature within such range. 

 To avoid the HVAC from being turned on unnecessarily, the thermostat had an energy 

saving state used when there was no positive human detection. Particularly, if the thermostat 

detected no human in the house for fifteen consecutive minutes, it automatically activated 

this energy saving state to maintain room temperature at larger range, between minimum and 

maximum temperature. Based on a guide to energy-efficient heating and cooling of 

ENERGY START program, if users set back, at least, 4.40C during winter or set up 4.40C 

during summer, they could save about $180 every year in energy costs [56]. Therefore, the 

minimum and maximum temperature was calculated in Celsius degree unit as follow: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  𝐿𝑜𝑤 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 −  4.4℃  [5] 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  𝐻𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 +  4.4℃ [6]  

No matter what HVAC mode was operated, the thermostat automatically maintained 

room temperatures at a minimum and maximum temperature when no human was home. The 

thermostat would automatically switch this state off within 5 minutes if it detected human. 

The thermostat’s hardware and software designs were explained in chapter 3. The human 

detection algorithm and HVAC controlling algorithm and their application in this project 

were also discussed. Chapter 3 showed that Zybo could be implemented as a smart 

thermostat, where it could detect human presence and automatically adjusted the HVAC 

system to maintain a user’s comfort zone. Chapter 4 will explain the actual detailed 

implementation of the thermostat modes introduced in 3.13.2, the system user interface and it 

software program. Chapter 4 also discuss the total cost of the thermostat prototype, set up in 

2 rooms of an apartment. 



4. Implementation 
Previous chapters described how the peripherals in the project interacted with Zybo as 

well as how the developed algorithms were used to control the HVAC system. This chapter 

explains how Zybo used human detection results and captured data and from other 

peripherals to maintain desired comfort zone automatically. Additionally, this chapter shows 

how Zybo received user inputs with four push-buttons and display information onto the 

OLED screen. The implementation to be mentioned in this chapter was set up for two rooms, 

which were used in testing described in chapter 5. 

4.1 HVAC Modes 

Zybo was developed as a smart thermostat used to control the HVAC system 

automatically based on pre-set desired temperatures from users and measured data from 

sensors. It only operated the HVAC system to maintain the comfort zone in rooms with 

human presence. In case no human was home after fifteen minutes, the thermostat 

automatically changed into energy-saving state regardless of the chosen HVAC mode. The 

following sections explain how the smart thermostat controlled the HVAC in each mode: 

cool, heat and auto cool/heat. 

As mentioned in Chapter 3.13, users were allowed to enter three pre-set values for 

desired temperature, low and high temperature. The minimum and maximum temperature 

formulas were computed from low and high temperatures explained in 3.13: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  𝐿𝑜𝑤 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 −  4.4℃ [5] 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  𝐻𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 +  4.4℃ [6]  

4.1.1 Cool mode 

When cool mode was selected, the thermostat only controlled the HVAC’s air 

compressor (AC) to cool down indoor temperature. The thermostat turned on AC when 

measured temperature of a room was higher than a cutoff temperature. The value of this 

cutoff temperature depended on results from the human detection algorithm and the night 

mode switch. As explained in 3.13, The HVAC start and stop conditions in cool mode were:  

𝑆𝑡𝑎𝑟𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + (𝑠𝑤𝑖𝑛𝑔 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) [7] 

𝑆𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑐𝑢𝑡𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [8]  

The thermostat used results from human detection algorithm in room 1 and room 2 as the 

highest priority to maintaining desired temperatures. There were four particular situations of 

human presence.  

(1) When no one was at home. This situation was considered as the energy-saving 

state of the cool mode shown in case 1 of Table 4-1. The HVAC was not started until 

room temperatures went higher than the cutoff value, the maximum temperature. 

(2) & (3) When only one room had human presence. The thermostat would run the 

HVAC when it needed to bring the room temperatures down to the specified cutoff 



values. Note that the cutoff temperatures of the rooms are different, as there was no need 

to maintain the desired temperature level in a room without human. In other words, the 

thermostat would keep such room’s temperature below the high level, since users may 

move between rooms. This design helped users stay within their reasonable comfort zone 

as long as possible. Additionally, only the booster fan of the room with human presence 

was turned on with a belief that air would be circulated to the room faster, as discussed in 

3.11. This situation corresponds to case 2 and 3 of Table 4-1. 

(4) When both rooms had human presence, the smart thermostat would maintain the 

rooms at the desired temperature level, and started HVAC with all booster fans turned on, 

as shown in case 4 of Table 4-1. The smart thermostat would not turn on the AC when in 

both rooms’ temperatures were within the comfort zone.  

 

Table 4-1 Cool Mode 

While cool mode was selected, if the night operation was set, the thermostat would set 

cutoff temperatures as in Table 4-2. Even though temperature of the room without human fell 

out of the comfort zone, the operation was designed with an assumption that there would be 

limited human activities during night operation, hence human movements between rooms 

were at the minimum. In case the night operation was set to be auto, the thermostat would 

Cool mode 

Case 
Human 

room 1 

Human 

room 2 

Cutoff 

temperature 

Room 1 

Current 

Temperature 

room 1 (T1) 

Cutoff 

temperature 

Room 2 

Current 

Temperature 

room 2 (T2) 

Fan 

room 

1 

Fan 

room 

2 

HVAC 

1 No No 
Maximum 

temperature 

≥ cutoff 

Maximum 

temperature 

≥  cutoff 

On On On ≥ cutoff <  cutoff 

< cutoff ≥ cutoff 

< cutoff <  cutoff Off Off Off 

          

2 No Yes 
High 

temperature 

≥ cutoff 

Desired 

temperature 

≥  cutoff 

Off On On ≥ cutoff <  cutoff 

< cutoff ≥ cutoff 

< cutoff <  cutoff Off Off Off 

          

3 Yes No 
Desired 

temperature 

≥ cutoff 

High 

temperature 

≥  cutoff 

On Off On ≥ cutoff <  cutoff 

< cutoff ≥ cutoff 

< cutoff <  cutoff Off Off Off 

          

4 Yes Yes 
Desired 

temperature 

≥ cutoff 

Desired 

temperature 

≥  cutoff 

On On On ≥ cutoff <  cutoff 

< cutoff ≥ cutoff 

< cutoff <  cutoff Off Off Off 



switch to night operation at midnight and switch back to normal operation at 8:00 AM. This 

timeframe was set to support testing in chapter 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-2 Night mode of the cool mode 

4.1.2 Heat mode 

In heat mode, the thermostat only controlled the heater to warm up room temperatures 

until it reached the desired level. The algorithm used in heat mode was similar to the one in cool 

mode, with values and conditions changed to support heating instead of cooling. The HVAC start 

and stop conditions in heat mode explained in 3.13 were:  

𝑆𝑡𝑎𝑟𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑜𝑚_𝑡𝑒𝑚𝑝 < 𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − (𝑠𝑤𝑖𝑛𝑔 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) [9] 

𝑆𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑟𝑜𝑜𝑚_𝑡𝑒𝑚𝑝 < 𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [10] 

The cutoff temperature values were also different from the ones in cool mode, depending 

on results from the human detection algorithm and the night operation switch. Table 4-3 below 

shows all HVAC start and stop conditions in details. They are similar to the ones in Table 4-1, 

with changes of cutoff temperature values to support heating. As in cool mode, a booster fan of a 

room was turned on only if the room had human presence. 

 

 

 

 

Cool operation – Night operation 

Case Human room 1 Human room 2 
Cutoff temperature 

Room 1 

Cutoff temperature 

Room 2 

1 No No Maximum temperature Maximum temperature 

2 No Yes Maximum temperature High temperature 

3 Yes No High temperature Maximum temperature 

4 Yes Yes High temperature High temperature 



 

Table 4-3 Heat mode operation 

Table 4-4 shows HVAC start and stop conditions in night operation. Auto night operation 

also turned on night operation at midnight and turned it off at 8:00AM automatically. 

Regardless of whether night operation was on, the thermostat switched to an energy-saving 

state when no one was at home, by setting to minimum temperature to be the cutoff value. 

 

 

 

 

 

 

 

Heat mode 

Case 
Human 

room 1 

Human 

room 2 

Cutoff 

temperature 

Room 1 

Current 

Temperature 

room 1 (T1) 

Cutoff 

temperature 

Room 2 

Current 

Temperature 

room 2 (T2) 

Fan 

room 

1 

Fan 

room 

2 

Operation 

1 No No 
Minimum 

temperature 

≤ cutoff 

Minimum 

temperature 

≤  cutoff 

On On On ≤ cutoff >  cutoff 

> cutoff ≤ cutoff 

> cutoff >  cutoff Off Off Off 

          

2 No Yes 
Low 

temperature 

≤ cutoff 

Desired 

temperature 

≤  cutoff 

Off On On ≤ cutoff >  cutoff 

> cutoff ≤ cutoff 

> cutoff >  cutoff Off Off Off 

          

3 Yes No 
Desired 

temperature 

≤ cutoff 

Low 

temperature 

≤  cutoff 

On Off On ≤ cutoff >  cutoff 

> cutoff ≤ cutoff 

> cutoff >  cutoff Off Off Off 

          

4 Yes Yes 
Desired 

temperature 

≤ cutoff 

Desired 

temperature 

≤  cutoff 

On On On ≤ cutoff >  cutoff 

> cutoff ≤ cutoff 

> cutoff >  cutoff Off Off Off 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-4 Night mode of the heat mode 

4.1.3 Auto heat&cool mode 

Different from cool and heat modes which maintained room temperatures at the desired 

temperature only, the auto heat&cool mode automatically kept the room in a comfort zone 

between a cutoff temperatures range. This mode was useful at places with extreme weather, 

where temperatures could be very high during daytime but were very low at night. The 

HVAC start and stop conditions of this mode were as follow: 

𝐻𝑒𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑤_𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − (𝑠𝑤𝑖𝑛𝑔 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) [11] 

𝐻𝑒𝑎𝑡 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑤_𝑐𝑢𝑡𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [12] 

𝐶𝑜𝑜𝑙 𝑠𝑡𝑎𝑟𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = ℎ𝑖𝑔ℎ_𝑐𝑢𝑡𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + (𝑠𝑤𝑖𝑛𝑔 + 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) [13] 

𝐶𝑜𝑜𝑙 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = ℎ𝑖𝑔ℎ_𝑐𝑢𝑡𝑜𝑓𝑓_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 −  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [14] 

In this mode, when both rooms were empty, the thermostat switched to its energy-saving 

state by maintaining room temperatures at a larger range between the minimum and 

maximum temperatures, avoiding unnecessary HVAC starts and stops. Table 4-5 shows the 

detailed conditions of each HVAC operation.  

 

 

Heat mode – Night operation 

Case 
Human room 

1 

Human room 

2 

Cutoff temperature 

Room 1 

Cutoff temperature 

Room 2 

1 No No 
Minimum 

temperature 

Minimum 

temperature 

2 No Yes 
Minimum 

temperature 
Low temperature 

3 Yes No Low temperature 
Minimum 

temperature 

4 Yes Yes Low temperature Low temperature 



 

Table 4-5 Auto heat&cool mode when no human presence in room 1 and 2 

On the other hand, the thermostat would maintain the comfort zone between low and 

high-temperature range if it detected human presence in at least one room. This mode was 

different from the two previous modes, since it did not use different cutoff values for a room 

with human presence and a room without human presence. This designed was made to help 

users stayed in their comfort zone longer while avoiding starting and stopping the HVAC 

multiple times. Nevertheless, the thermostat would only run the booster fan of the room with 

human presence. Table 4-6 shows the auto heat&cool mode with human presence in a room. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Auto heat&cool mode when both rooms are empty 

Case 
Human 

room 1 

Human 

room 2 

Cutoff 

temperature 

Room 1 

Current 

Temperature 

room 1 (T1) 

Cutoff 

temperature 

Room 2 

Current 

Temperature 

room 2 (T2) 

Fan 

room 

1 

Fan 

room 

2 

Operation 

Heat No No 
Minimum 

temperature 

≤ cutoff 

Minimum 

temperature 

≤  cutoff 

On On On ≤ cutoff >  cutoff 

> cutoff ≤ cutoff 

> cutoff >  cutoff Off Off Off 

          

Cool No No 
Maximum 

temperature 

≥ cutoff 

Maximum 

temperature 

≥  cutoff 

On On On ≥ cutoff <  cutoff 

< cutoff ≥ cutoff 

< cutoff <  cutoff Off Off Off 



 

Table 4-6 Auto heat&cool mode when human was present in a room 

 When the smart thermostat detected human presence in both rooms, it would maintain the 

comfort zone similarly to the previous situation in Table 4-6, except that it would run the booster 

fans of both rooms. Table 4-8 shows how the smart thermostat handled the auto heat&cool mode 

in this situation: 

 

 

 

 

 

 

Auto heat&cool mode when either room 1 and room 2 has human presence 

Case 
Human 

room 1 

Human 

room 2 

Cutoff 

temperature 

Room 1 

Current 

Temperature 

room 1 (T1) 

Cutoff 

temperature 

Room 2 

Current 

Temperature 

room 2 (T2) 

Fan 

room 

1 

Fan 

room 

2 

Operation 

Heat Yes No 
Desired 

temperature 

≤ cutoff 

Low 

temperature 

≤  cutoff 

On Off On ≤ cutoff >  cutoff 

> cutoff ≤ cutoff 

> cutoff >  cutoff Off Off Off 

          

Cool Yes No 
Desired 

temperature 

≥ cutoff 

High 

temperature 

≥  cutoff 

On Off On ≥ cutoff <  cutoff 

< cutoff ≥ cutoff 

< cutoff <  cutoff Off Off Off 

          

Heat No Yes 
Low 

temperature 

≤ cutoff 

Desired 

temperature 

≤  cutoff 

Off On On ≤ cutoff >  cutoff 

> cutoff ≤ cutoff 

> cutoff >  cutoff Off Off Off 

          

Cool No Yes 
High 

temperature 

≥ cutoff 

Desired 

temperature 

≥  cutoff 

Off On On ≥ cutoff <  cutoff 

< cutoff ≥ cutoff 

< cutoff <  cutoff Off Off Off 



 

Table 4-7 Auto heat&cool mode when human appears in both room 1 and 2 

4.2 User Interface 

The user interface of this project’s thermostat was developed to demonstrate the 

capabilities of the design described in chapter 3 and section 4.1. Although there were still 

limitations to the user interface, the use of four push buttons and an OLED screen were 

sufficient to build a proof-of-concept prototype, allowing the thermostat to display 

information and receive user input for monitoring and debugging purposes. 

4.2.1 Default screen: information display 

By default, the thermostat only output information relevant to the current status of HVAC 

operation. The first row displayed current time and the name of the mode. The second row 

displayed the desired temperature. The third and fourth row displayed current room 1’s and 

room 2’s temperatures. Figure 4-1 below shows a default display when the thermostat was in 

cool mode. 

Auto heat&cool mode when both rooms have human presence 

Case 
Human 

room 1 

Human 

room 2 

Cutoff 

temperature 

Room 1 

Current 

Temperature 

room 1 (T1) 

Cutoff 

temperature 

Room 2 

Current 

Temperature 

room 2 (T2) 

Fan 

room 

1 

Fan 

room 

2 

Operation 

Heat Yes Yes 
Desired 

temperature 

≤ cutoff 

Desired 

temperature 

≤  cutoff 

On On On ≤ cutoff >  cutoff 

> cutoff ≤ cutoff 

> cutoff >  cutoff Off Off Off 

          

Cool Yes Yes 
Desired 

temperature 

≥ cutoff 

Desired 

temperature 

≥  cutoff 

On On On ≥ cutoff <  cutoff 

< cutoff ≥ cutoff 

< cutoff <  cutoff Off Off Off 



 

Figure 4-1 Standard information display on the OLED screen for a single mode. 

When a user set auto heat&cool mode for the thermostat, the word “Auto”, a short title of 

the mode, was shown on the first row. Different from the other 2 modes, this mode showed 

the pre-set low and high temperatures since the rooms needed to be maintained within this 

temperatures range. Other information was displayed similarly to the other modes. Figure 4-5 

below shows the default screen of the thermostat in auto heat&cool mode.  

 

Figure 4-2 Standard information display on the OLED screen for auto heat&cool mode. 

Since the OLED screen could only display up to 64 characters, with each row up to only 

16 characters, the default screen only showed the most relevant information as described 

above. Other information, such as night operation or swing value, was not displayed but 

could be viewed when a user used four push-buttons, which details are to be discussed in 

4.2.2. The temperature values were displayed in integer number instead of floating number to 

avoid confusion, and to follow a convention found in other thermostats available on the 

market. 



4.2.2 User input 

This thermostat needed only three input temperature values from users to operate in all 

three described modes, along with a few other configuration parameters. Users could set 

these values to the thermostat using four push-buttons. Figure 4-1 below displays how four 

push-buttons were laid out on Zybo.  

 

Figure 4-3 Four push-buttons and its functions. 

The four push-buttons worked as follow: 

 A user pressed button 4 (BTN3) to see the setting options. 

 The user used button 1 (BTN0) to move up or button 2 (BTN1) to move down the option 

list shown in the orange blocks of Figure 4-2. 

 The user pressed button 3 (BTN2) to select one of the setting options in the list. 

 The user used button 1 or button 2 again to increase/decrease available values of the 

selected option, as shown in the purple blocks in Figure 4-2. 

 The users pressed button 3 to save his choice. 

 Alternatively, the user could pressed button 4 to cancel the current choice. After 

cancellation, the thermostat switched back to the default screen. 



 

Figure 4-4 Thermostat’s setting options 

The OLED screen displayed information of setting options in real-time. Every command 

from the buttons would be shown on the screen immediately to show users the option they 

were setting. 

 Figure 4-3 below shows an example of the OLED screen when a user was selecting an 

HVAC mode. The first row displayed the current option, indicating that the user was 

choosing an HVAC mode. The second row displayed the current mode of the thermostat, in 

this case was “Heat”. The third row displayed current user’s selection, “Auto”. The user 

could press button 1 or 2 to change his selection, button 3 to save, or button 4 to cancel the 

selection and go back to the default screen. 

 

Figure 4-5 OLED screen when a user was selecting HVAC mode. 



4.3 Software program 

To implement the design described in Chapter 3, a software program was written in C 

language using Xilinx SDK. The program started as the thermostat turned on, and ran 

continuously until the thermostat turned off. Below is a summary of the program: 

1. While (true) { 

2. D1, D2 = Data from room 1, data from room 2. 

3. Human1, Temp1 = Human_detect(D1), Room_temperature(D1) 

4. Human2, Temp2 = Human_detect(D2), Room_temperature(D2) 

5. if (buttons are pressed) 

6.   UInput = receive user input 

7. Display_to_OLED(Human1, Temp1, Human2, Temp2, UInput) 

8. Control_HVAC(Human1, Temp1, Human2, Temp2, UInput) 

9. } 

The program was indeed an infinite loop that constantly received, processed data and 

made HVAC control decisions. At line 2, the program accessed data captured by the sensor 

modules by reading from their specified memory addresses. It processed the data, stored 

human detection results in Human1, Human2, and current room temperatures in Temp1 and 

Temp2 (line 3 and 4). If any of the push buttons were pressed, it would receive user input and 

store in UInput (line 5 and 6). It then displayed relevant data to the OLED screen (line 7). 

After that the data was used to control the HVAC system, according to the specifications in 

3.13 and 4.1 (line 8).  

4.4 Cost 

In this project, a thermostat prototype was built to test two rooms in an apartments, 

with all components and peripherals described in pervious chapters. Overall the cost for the 

complete 2-room prototype was USD$404. Table 4-8 shows the breakdown cost of all 

components of the prototype. 

Products Unit price Quantity Cost 

Zybo $129 1 $129 

Digilent temperature sensor 

TMP2 

$24.99 2 $49.98 

Omron thermal sensor D6T-

44L-06 

$49.99 2 $99.98 

4-channel relay $8 2 $16 

Register booster fan $25 2 $50 

Connection wires $38.92 1000ft/case $38.92 

I2C bus extender $1.89   8 $15.12 

Translating I2C bus repeater  $2.7  2 $5.4 

Total   $404.4 
Table 4-8 Smart thermostat prototype cost. 



Hardware for each additional room will cost around $106 shown in Table 4-9.  

Products Unit price Quantity Cost 

Digilent temperature 

sensor TMP2 

$24.99 1 $24.99 

Omron thermal sensor 

D6T-44L-06 

$49.99 1 $49.99 

Register booster fan $25 1 $25 

I2C bus extender $1.89   2 $3.78 

Translating I2C bus 

repeater  

$2.7  1 $2.7 

Total   $106 
Table 4-9 Hardware cost for each additional room 

Overall, this chapter explained how hardware and software components were developed 

on Zybo and its peripherals to become a smart thermostat. A software program was 

developed to use aforementioned algorithms to control the HVAC while receiving user input 

and displaying information in real time. Additionally, the prototype cost was quoted and 

analyzed, hinting potential rooms for commercialization. Chapter 5 will describe a testing 

process conducted to verify the thermostat’s functionalities as well as effectiveness. It also 

show collected test results and analysis.  

 

 

 

     



5. Testing and Results 
This chapter describes in details how the smart thermostat was tested using several 

methods at different stages of the design process. An oscilloscope was used primarily to 

verify data bus of the hardware components, including I2C interfaces of the sensors and an 

SPI interface of the OLED screen. Software debugging and testing were done through Xilinx 

SDK console as well as log data written to a microSD memory card. 

5.1 Hardware testing 

During the development process of the smart thermostat, the sensors, push-buttons, the 

relay and the OLED screen modules were tested individually before integration with the top-

level system design. Each module was tested as a standalone unit through the use of an 

oscilloscope. The oscilloscope not only helped in testing the functionality of the digital 

circuit but also helped in evaluating the accuracy of input signals from sensors and output 

signals to the OLED screen.   

5.1.1 Oscilloscope  

The oscilloscope was first used to verify I2C signals between Zybo and the sensors. After 

the hardware setup and the prototype interface circuit of each sensor had been completed, an 

Oscilloscope with a programmable logic analyzer was used to verify device’s address signed 

by a master device and I2C buses on SCL and SDA line. Figure 5-1 shows an oscilloscope 

with programmable logic analyzer used to verify serial bus signals.  

 

Figure 5-1 An oscilloscope with programmable logic analyzer [57] 

The logic analyzer of the oscilloscope was used to determine logic ones and zeroes. After 

connecting the analyzer cable to the connection between Zybo and a sensor shown in Figure 

5-1, the oscilloscope was turned on to capture data being transferred across the bus. Logic 



ones and zeros of SCL and SDA shown on the oscilloscope screen reflected the current I2C 

bus signals transmitted between Zybo and the sensor.    

 

Figure 5-2 Hardware testing using an oscilloscope 

 



 

Figure 5-3 Using an oscilloscope to measure the frequency on SCL of a temperature sensor 

Figure 5-3 shows the SCL (channel D2) and SDA (channel D5) bus signals of the 

communication between Zybo and a temperature sensor in one SCL clock cycle. In this 

figure, a pair of triggers was used to measure the frequency of SCL, which turned out to be 

101.21 kHz. The clock speed of the SCL satisfied the requirement from the manufacturer. 

Figure 5-4 below shows the logic bytes of SCL (channel D2) and SDA (channel D5). The 

SDA line shown on the oscilloscope screen were 0000 1110 0110 1000, equivalent to 

28.810C. Although the result displayed on the oscilloscope was 16 bits (2 bytes), this project 

only used 13-bit resolution (bit 15-3) of the temperature sensor for conversion.     



 

Figure 5-4 The oscilloscope showed I2C bus signals of the temperature sensor 

5.1.2 Resource utilization 

Zybo development board contains a Xilinx Zynq chipset that features an Artix-7 FPGA 

with 17,600 LUTs and 35,200 flip-flops for generating complex digital logics. Table 5-1 

below shows the system resource utilization of the post-implementation from the Vivado 

software. The system occupied less than 21% of all Look-up Tables and 14% of Flip Flop 

state memory devices. This information represented the logical efficiency implemented in the 

design of a complex system. The rest of unused logic cells could be used in future project 

development.    

Resource Utilization Available Utilization % 

FF 5089 35200 14.46 

LUT 3577 17600 20.32 

Memory LUT 66 6000 1.10 

I/O 32 100 32.00 

BRAM 0.5 60 0.83 

BUFG 2 32 6.25 

Table 5-1 System resource utilization 

5.2 System setup 

All sensors, register booster fans and the HVAC system were connected to Zybo before 

testing. Figure 5-5 shows how all peripherals were connected together. Each room had a pair 

of temperature and thermal sensors. In each room, a combined booster fan was also attached 



to the room’s register vent on the ceiling, as explained in Chapter 2.7. One 4-channel relay 

was used to control the HVAC system and another 4-channel relay was used to control the 

register booster fans. The black arrows in Figure 5-5 represent the wires connecting between 

Zybo and its peripherals.  

 

Figure 5-5 Real system prototype used to perform the HVAC system. 

5.2.1 Test environment 

A test environment was set up in two rooms of a residential apartment on the first floor of 

a 3-floor building. The first room (room 1) was an open living and dining area connected to a 

kitchen. This room was where most human activities took place during testing. The second 

room (room 2) was an adjacent bedroom, located wall-to-wall with room 1. The room usually 

had human presence only during nighttime. The two rooms were connected by a door. Figure 

5-5 below shows the apartment floorplan and the location where the original basic thermostat 

was placed. All furniture was placed at the same position during the experiment. 



 

Figure 5-6 Floorplan and the thermostat’s location 

5.2.2 Equipment setup 

The Omron thermal sensor had its own field of view (FOV) specifications in direction X 

(vertical) and direction Y (horizontal), which maxima were 44.20 and 45.70 respectively. Figure 5-7 

shows the direction of the thermal sensor and specifications of the FOV.  

 

Figure 5-6 Field of View (FOV) in direct X and direction Y of the Omron thermal sensor 



Figure 5-7 shows the equipment setup in room 1. In this figure, the blind spots and the 

detecting area was sketched based on the horizontal FOV of the thermal sensor. The left 

figure shows where the smart thermostat, temperature sensor 1 and thermal sensor 1 were 

placed. It also shows the blind and visible areas room 1’s thermal sensor. The right figure 

shows the numbered rectangles indicating different spots where human residents usually 

occupied. Note that position 10 and 13 were still in the visible area of the thermal sensor. 

Positions 1 to 6 were the seats of a dining table. Positions 7 to 12 were sitting areas on the 

sofa and near the coffee table. Position 13 and 14 were used to verify the visible area of the 

thermal sensor.  

 

Figure 5-7 Testing environment in direction Y of the thermal sensor in room 1 

The thermal sensor was placed at the corner of room 1 shown in Figure 5-7 to get achieve 

the largest visible area. At this position, the thermal sensor was able to view all the numbered 

positions, thus potentially detected human presence. Note that usually there was no human 

occupation in the blind area marked in red, as that area was just in front of a TV, and near a 

door. Figure 5-8 below shows a picture of room 1 captured by a regular camera placed 

precisely at the thermal sensor location. 



 

Figure 5-8 Real testing environment of room 1 

The thermal sensor was placed at 7.1ft high, and tilted to a 330 angle from the wall to 

achieve the largest visible area, according to its maximum vertical FOV. If the thermal sensor 

was placed at a higher position, position 9 and 10 in Figure 5-7 would fall into the blind area. 

At this position, the thermal sensor could detect objects of maximum 3.3ft high at the furthest 

position. Figure 5-9 below shows the described calculations in more details. 



 

Figure 5-9 Testing environment in direction X of the thermal sensor in room 1 

Similarly, Figure 5-10 shows the equipment setup in room 2 with the specific position of 

thermal sensor to achieve the largest visible area in the room. The temperature sensor was 

placed near the door as shown in Figure 5-10, far away from the window to avoid outdoor 

temperature influence. The right figure showed the numbered rectangles indicating different 

spots where the residents usually occupied. The thermal sensor was placed at the corner of 

room 2 shown the left figure, to ensure that all human occupied spots were covered. Room 2 

had a king-size bed marked at position 1 and 2. Position 3 and 4 were where at least a human 

usually sit. A portable heater was located at position 6. Figure 5-11 shows a picture of room 

2 captured by a regular camera placed at the thermal sensor’s position. 

 

 

 



 

Figure 5-10 Testing environment in room 2 

 

Figure 5-11 Real testing environment in room 2 



In room 2, the thermal sensor was placed at a position higher than different from the one in room 

1  in order to detect object of 3.3ft high at the furthest position. Based on the calculations shown in 

Figure 5-12, the blind area was only within 3.7ft below the sensor. This area was in right in front of a 

bathroom door, hence there was usually no human occupation. 

 

Figure 5-7 Position of thermal sensor and its detecting dimension in room 2 

The purpose of this equipment setup in two rooms was to capture and analyze data from 

the thermal sensors to build a human detection algorithm. After the algorithm had been built, 

the same setup was also used to verify the algorithm’s accuracy rate and to conduct 

functional testing. Results of the testing are going to be mentioned in section 5.5. 

5.2.2 Data collection 

Log data was collected in real time as the thermostat was running during sample 

collection and testing. In particular, the software program printed out log messages at 

runtime. The messages were stored in files saved to a microSD memory card. They were 

used for analysis in section 5.5, and consisted of the following information: 

 Values from thermal sensors: logged from both rooms every second, only during 

sample collection. 

 Values from temperature sensors: logged from both rooms every second during 

sample collection and every 60 seconds during testing. 

 Mean brightness and brightness volatility: logged from both rooms every 60 

seconds, only during testing. 



 Human detection algorithm results: logged as soon as there was a new result. 

 HVAC start/stop: logged as soon as a start/stop command was issued by the 

thermostat. 

 Current user input: logged at the moment of HVAC start/stop. 

 

5.3 Tests and Results 

5.3.1 Human detection algorithm 

To test the human detection algorithm, a set of twenty 5-minute tests were taken, 

including both human and non-human presence test cases. In tests where at least a human 

were present, the person could either stayed at a location as marked in Figure 5-8 for room 1 

and Figure 5-11 for room 2 or moved around the room. As in section 3.12.3.2.3, data from 

the tests were run through the detection algorithm using different combinations of mean 

brightness and brightness volatility. Table 5-2 below shows results of these runs, with the 

best results marked in red. 

 

Table 5-2 Different combinations of mean brightness and brightness volatility 

As seen, the lowest accuracy rate was 70% with no false negative results. Moreover, 

volatility values larger than 0.13 and mean brightness values smaller than -1.1 yielded an 

accuracy rate of 85% with no false negative either. Table 5-3 below shows the combined 

results when the algorithm was run on 28 training samples and 20 tests. Highest accuracy 

rates were marked in red. 

 

Minimum 
volatility 

Minimum brightness 

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 

0.07 0.70/0.0 0.70/0.00 0.70/0.00 0.70/0.00 0.70/0.00 0.70/0.00 0.70/0.00 0.75/0.00 0.75/0.05 

0.08 0.75/0.0 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.05 

0.09 0.75/0.0 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.05 

0.1 0.75/0.0 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.05 

0.11 0.75/0.0 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.00 0.75/0.05 

0.12 0.75/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.80/0.000 0.75/0.050 

0.13 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.80/0.050 

0.14 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.80/0.050 

0.15 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.85/0.000 0.80/0.050 



 

Table 5-3 Combinational result of human detection algorithm after running 28 samples and 20 tests. 

As discussed in 3.12.3.2.3, the mean brightness and volatility value pair served as cutoff 

values to distinguish a human pixel from a non-human pixel. The values of these parameters 

had to be large enough to yield the highest accuracy rate, but at the mean time they could not 

be too large that could yield false negatives. In the above table, among the parameter pairs 

with the best rates, the pair of mean brightness = -1.1 and volatility = 0.08 was chosen for use 

in functional testing, as they were the maximum values that gave the highest accuracy rate of 

81% and no false negative results. 

5.3.2 Functional testing 

With the minimum brightness and minimum volatility values found in the previous 

section, I conducted four tests to verify functionalities of the thermostat design, investigate 

the differences in applying smart algorithms to control the HVAC, and examine the role of 

booster fans in bringing indoor temperature to the desired level: 

a) Smart operation with booster fan: The thermostat used the human detection 

algorithm to control the HVAC automatically. It turned on booster fan as necessary. Night 

mode automatically switched on at 12:00 AM and switched off at 8:00 AM. 

b) Smart operation without booster fan: This test was similar to (a), except that no 

booster fan was used. 

c) Non-smart operation: The thermostat controlled the HVAC based only on data 

taken from room 1’s temperature sensor. This test mimicked functionalities of the original 

thermostat. 

d) Original thermostat operation: The original thermostat of the apartment was used 

instead of this project’s thermostat. This test served as a baseline to compare with other tests. 

The tests had a few common configurations: the thermostats were run in heat mode only, 

with starting indoor temperatures of around 190C. Each test lasted around 23 hours, from 

Minimum 
volatility 

Minimum brightness 

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1 

0.07 0.71/0.000 0.73/0.000 0.77/0.000 0.77/0.000 0.77/0.000 0.77/0.000 0.79/0.000 0.81/0.000 0.81/0.021 

0.08 0.77/0.000 0.77/0.000 0.79/0.000 0.79/0.000 0.79/0.000 0.79/0.000 0.81/0.000 0.81/0.000 0.81/0.021 

0.09 0.77/0.021 0.77/0.021 0.79/0.021 0.79/0.021 0.79/0.021 0.79/0.021 0.81/0.021 0.81/0.021 0.81/0.042 

0.1 0.77/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.083 0.79/0.104 

0.11 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.125 0.75/0.146 

0.12 0.71/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.73/0.167 0.71/0.188 

0.13 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.73/0.188 

0.14 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.73/0.188 

0.15 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.75/0.167 0.73/0.188 



12:00 AM to around 11 PM. In (a) and (b), data from thermal sensors and temperature 

sensors were recorded. In (c), only data from temperature sensors were recorded. Times of 

HVAC starts and stops were also logged along with room temperatures. The desired 

temperature was set at 240C, the low temperature was set at 190C and the high temperature 

was set at 260C. Below are figures and tables of results collected from the tests. 

5.3.2.1 Smart operation with booster fan 

Figure 5-7 below shows log data collected from the first test mentioned above. The top left graph 

showed data of room 1, the top right graph showed data from room 2, and the bottom left graph 

showed both rooms’ temperatures for easy comparison. The HVAC started two times, one in the 

morning and one in the evening. Room 1’s temperature was always higher than room 2’s temperature 

since residents usually stay in the living area during the day, and the window in room 2 was not tight 

even when completely closed, letting cold air to leak in and bring the room temperature down. Note 

that in room 2, there were times when the room temperature fell out of comfort zone, but the HVAC 

was not started since the room was empty. Table 5-4 represents the runs’ statistics taken from the log 

data. 

 

Figure 5-8 Smart operation with booster fans 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-4 Statistics of HVAC runs in smart operation without booster fans 

5.3.2.2 Smart operation without booster fan 

This test was similar to the previous test, except that there was no booster fan turned on. The test 

result was also similar to the test of smart operation with booster fan, where the HVAC was turned on 

only if a room temperature fell below the comfort zone and the room had human presence. Figure 5-8 

and Table 5-5 below summarize results and log data from the test. The last two rows in the table show 

the rooms’ temperature change rates during the runs. These rates give estimation of how many 

minutes it took a room to increase temperature by one Celsius degree. 

Smart operation with booster fans 

Starting temperature at 190C 

Run number 1 2 

Starting temp R1 22.688 23.562 

Ending temp R1 25.5 25.438 

Starting temp R2 21.688 22.562 

Ending temp R2 24.312 24.312 

Start time 8:00:00 22:40:00 

End time 8:50:59 23:06:23 

Total runtime 0:50:59 0:26:23 

R1 temp change 2.812 1.876 

R2 temp change 2.624 1.75 

R1 rate(min/degree) 0:18:08 0:14:04 

R2 rate(min/degree) 0:19:26 0:15:05 



 

Figure 5-9 Smart operation without booster fans 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-4 Statistics of HVAC runs in smart operation without booster fans 

5.3.2.3 Non-smart operation 

In this test, the smart functionalities of the thermostat such as human detection algorithm and 

automatic HVAC control was turned off, and the thermostat operated as a regular device. The purpose 

of the test was to investigate the differences between smart and non-smart operations. As a result, 

there were more HVAC runs in this test than in the previous tests with the system’s smart features. 

The total numbers of HVAC runs were six, compared with two in the smart operations. As seen in 

Figure 5-9, room 2’s temperature almost never reached the desired level. The issue was because the 

thermostat only retrieved measured temperature values from room 1’s temperature and operated the 

HVAC based on such data, which was always higher than room 2’s. Table 5-6 describes the runs in 

more details.  

Smart operation without booster fans 

Starting temperature at 190C 

Run number 1 2 

Starting temp R1 22.688 23.812 

Ending temp R1 24.875 25.375 

Starting temp R2 22.375 22.688 

Ending temp R2 24.312 24.312 

Start time 8:00:00 13:37:00 

End time 8:42:48 13:54:24 

Total runtime 0:42:48 0:17:24 

R1 temp change 2.187 1.563 

R2 temp change 1.937 1.624 

R1 rate(min/degree) 0:19:34 0:11:08 

R2 rate(min/degree) 0:22:06 0:10:43 



 

Figure 5-10 Non smart operation without booster fans. 

 

 

 

 

 

 

 

 

 

 



Table 5-5 Statistics of HVAC runs in non-smart operation. 

5.3.2.4 Original thermostat operation 

In this test, the original thermostat of the apartment was used to operate the HVAC, and 

Zybo was used as a data collection device. The desired temperature was also set to 240C, and 

the swing value was 10C.  As seen in Figure 5-10, the original thermostat used the swing 

value differently, where it would let the HVAC system run until room 1’s temperature 

reached 250C before stopping the system. As a result, room 1’s temperature was higher than 

the desired level, but room 2’s temperature was able to reach the comfort zone. 

Comparable with the non-smart operation in 5.3.2.3, this operation started the HVAC 

totally seven times during testing. It also had knowledge of room 1’s temperature only, which 

caused the HVAC to fail to run at times when room 2’s temperature fell out of comfort zone. 

This issue has been a common drawback of thermostats on the market, in which it was 

unable to measure temperature of all areas in a house. 

 

Non smart thermostat using one temperature sensor at room 1 and no booster fans 

Starting temperature at 190C 

Run number 1 2 3 4 5 6 

Starting temp R1 18.875 22.688 22.688 22.688 22.688 22.688 

Ending temp R1 24.312 24.312 24.312 24.312 24.312 24.312 

Starting temp R2 19.9 21.8 21.8 21.7 21.7 21.8 

Ending temp R2 23.3 22.7 22.5 22.9 22.7 23.3 

Start time 0:00:24 3:51:25 6:19:07 9:28:05 13:05:15 15:34:55 

End time 0:21:30 4:07:48 6:30:49 9:37:31 13:22:22 15:47:28 

Total runtime 0:21:06 0:16:23 0:11:42 0:09:26 0:17:07 0:12:33 

R1 temp change 5.437 1.624 1.624 1.624 1.624 1.624 

R2 temp change 3.4 0.9 0.7 1.2 1 1.5 

R1 rate(min/degree) 0:03:53 0:10:05 0:07:12 0:05:49 0:10:32 0:07:44 

R2 rate(min/degree) 0:06:12 0:18:12 0:16:43 0:07:52 0:17:07 0:08:22 



 

Figure 5-11 Original thermostat with basic function. 

 

 

 

 

 

 

 

 

 

 



Original thermostat with basic function and no booster fans 

Starting temperature at 190C 

Run number 1 2 3 4 5 6 7 

Starting temp R1 19.50 23.44 23.44 23.37 23.37 23.25 23.50 

Ending temp R1 25.44 25.25 25.06 25.06 25.19 25.12 24.56 

Starting temp R2 20.50 22.44 22.62 22.56 22.31 22.06 21.81 

Ending temp R2 23.81 23.81 23.87 23.88 24.19 24.12 23.25 

Start time 00:00:31 02:15:36 04:35:49 07:05:20 10:22:20 12:58:46 17:19:46 

End time 00:22:40 02:39:55 05:03:10 07:24:40 10:41:42 13:25:43 17:33:43 

Total runtime 00:22:09 00:24:19 00:28:01 00:19:20 00:19:22 00:27:37 00:13:57 

R1 temp change 5.94 1.81 1.62 1.69 1.82 1.87 1.06 

R2 temp change 3.31 1.37 1.25 1.32 1.88 2.06 1.44 

R1 rate(min/degree) 0:03:44 0:13:26 0:17:18 0:11:26 0:10:38 0:14:46 0:13:10 

R2 rate(min/degree) 0:06:42 0:17:45 0:22:25 0:14:39 0:10:38 0:13:24 0:09:41 

Table 5-7 Statistics of HVAC runs with the original thermostat 

5.3.4 Result analysis 

Table 5-8 below shows a summary of all the HVAC runs in the tests: 

 No booster fan With booster fan Non-smart Original 

Total test hours ~23 ~23 ~23 ~23 

Total HVAC runs 2 2 6 7 

Total HVAC run 

hours 
2:30:25 3:28:27 3:05:38 2:34:45 

Average 

temperature change 

rate 

0:16:04 0:15:27 0:10:59 0:12:09 

Table 5-8 Summary of all the HVAC operations in the tests 

As summarized, the thermostat in non-smart operation as well as the original thermostat 

ran the HVAC many times more than in smart operations, even though the total run hours 

were about the same across all operations. These operations without the help of the human 

detection algorithm would potentially waste more energy, as an HVAC run required initial 

extra overheads to start the system and to produce hot air. 

Test results from the non-smart operation of this project’s thermostat and the original 

thermostat were fairly similar. There were about 6-7 HVAC runs in 23 hours of testing, twice 

as many as the number of runs in smart operations. This is a strong indication that the smart 

thermostat helped avoiding multiple HVAC starts and stops, which potentially helped save 

energy consumption. 



Another remarkable result was, the average temperature change rate in non-smart 

operations was 11 to 13 minutes/degree, lower than the rate of around 16 minutes/degree in 

smart operations. This result was due to a fact that the thermostat’s night operation turned on 

and off automatically in smart operations, which required the HVAC to run longer. During 

the test period, indoor temperatures never went below 20 0C, a preset low temperature, hence 

the HVAC was never turned on at night. However at 8AM, when night operation switched 

off, the thermostat started the HVAC when it detected human, to bring the rooms to 24 0C, 

the desired level. These runs at 8AM were longer than other runs, since temperatures in the 

morning were well below 240C.  

Moreover, the thermostat in smart operations only ended an HVAC run when all rooms 

with human presence had reached the desired temperature. Meanwhile, the thermostat in non-

smart operation and the original thermostat had no knowledge of room 2’s temperature, 

hence it stopped the HVAC when only room 1 reached the desired temperature. This 

operation left room 2 out of comfort zone most of the time during the test. This issue has 

been well known with regular thermostats, since most of them only have one temperature 

sensor, not enough to capture the whole air condition in different rooms of a house. 

Between the two smart operations, the one with booster fans helped increasing the rooms’ 

temperatures slightly faster than the one without booster fans. This result was not very 

reliable and required further testing, since outdoor temperatures had considerable influence 

on the temperature change rate.  

5.3.5 Comparison with Nest thermostat 

In this section, the FPGA thermostat is going to be compared with Nest, one of the best-

selling smart thermostats available on the markets. Table 5-9 below shows the comparison 

summary.  

This project’s thermostat Nest thermostat 

In prototype state, no friendly interface yet Friendly user interface with control wheel 

No wifi connection Wifi connection 

Uses wires to connect with peripherals Compact hardware design 

Thermal sensor and temperature sensor are 

placed in each room 

Has only one temperature and one motion 

sensor 

Detects human in real time Learns user habits in 7 days 

Does not need repeated input Needs repeated input in 7 days. 

All rooms are in pre-set comfort zone Does not guarantee comfort zone in all rooms. 
Table 5-9 Comparison with Nest thermostat. Strengths are in blue cells, weaknesses are in yellow cells. 

The first drawback of this project’s thermostat is, as described in 4.2, it used four push-

buttons to receive user inputs and displayed information on an OLED screen. Since the 

thermostat is now still in prototype phase, it does not have a friendly and intuitive user 

interface as the one provided by Nest. Nest includes a LED display with well-presented 

information, including current temperature, date-time, user selection, etc. Nest also receives 

user input from a control wheel, in which one left turn or one right turn corresponds to one 



value of choice. This design makes the Nest thermostat itself a nice decorative addition to a 

residential home. 

The second drawback is that this project’s thermostat does not have a wireless connection 

to receive input and display information to users. The Nest thermostat, on the other hand, 

comes with a Wi-Fi connection that allows it to connect to a home’s network. A user could 

view Nest’s status and provide inputs through its mobile application. This feature is very 

handy especially in case when a user forgets to turn off the HVAC before leaving home, or 

wants to start the system in preparation for his arrival at home. 

The third drawback comes from wiring across the rooms. Since this project’s thermostat 

is still in prototyping phase, it used wires to connect between the main board and all 

peripherals. Since each room monitored by the thermostat needed to have a set of thermal 

sensors and temperature sensors, there was a considerable amount of wiring between rooms 

of the test environment. Meanwhile, a Nest thermostat is self-contained and easy to install, it 

has a round shape and can be mounted to a wall.  

Despite the mentioned drawbacks, the thermostat in this project does have advantages 

compared to a Nest device. As described in chapter 5, since there was a pair of thermal and 

temperature sensors placed in each room in test, the thermostat had a good knowledge of 

current temperatures and human presence in every room it supported. This real-time 

knowledge allowed the thermostat to better control the HVAC by starting and stopping it 

only when there was human presence in a room, and when temperatures went out of comfort 

zone. On the other hand, since Nest only has one pair of built-in motion and temperature 

sensors, it can only capture temperature and motion happening around it. As a result, a Nest 

thermostat’s efficiency depends on where it is mounted in a house. 

Moreover, as described in chapter 5, the sensor pairs mounted in each monitored room 

also allowed this project’s thermostat to know specifically what temperature each room had. 

Thus, it started and stopped the HVAC accordingly to bring the rooms with human presence 

into a preset comfort zone, even though the temperature at the thermostat area was already at 

desired level. This feature helped users stayed in their comfort zone longer without the 

burden of repeatedly changing temperatures set in the thermostat. On the contrary, the Nest 

thermostat only captures temperature of its surrounding space, hence it cannot not start or 

stop the HVAC automatically if the temperature of another room in the house goes out of 

comfort zone. In this case, if a user wants to bring the other room to comfort zone, he or she 

has to adjust the thermostat manually or with the help of a timer. Even though a timer keeps a 

user from repeated input, it becomes ineffective if the user’s routine timing changes.  

In addition, the Nest thermostat needs initial user inputs for seven days right after it is 

connected to an HVAC system. Since it uses a learning algorithm to gain knowledge of a 

user’s habits, the algorithm does not work properly until enough data is received. 

Alternatively, with this project’s thermostat, the user only needs to set three temperatures one 

time: desired, low and high, which define their comfort zone. The thermostat will detect 

human presence and make sure that the comfort zone is maintained in rooms where there is 



human presence. The real-time knowledge provided by the rooms’ sensors allows the 

thermostat to automatically start and stop the HVAC without the need of repeated input from 

a user. 

This chapter explained how an experiment environment was setup, preparing the 

thermostat to get data from thermal sensors, temperature sensors and operate the HVAC 

system. To debug the thermostat, an oscilloscope was used to look for hardware issues. To 

debug software issues, log data was collected and analyzed. After the setup, multiple testing 

efforts were done to verify the thermostat’s functionalities, and results were also reported and 

analyzed. Finally, the smart thermostat was compared with Nest thermostat, a famous smart 

thermostat on the market, in which both advantages and disadvantages of both systems were 

discussed. 



6. Conclusion 
In this project, I applied different electrical and computer engineering technologies to build a 

thermostat that is capable of real time detecting the presence of a person and adjusting the 

temperature of the room accordingly. The system was designed on Zybo, a board featuring a 

dual-core ARM Cortex-A9 processor with a Xilinx 7-series Field Programmable Gate Array 

(FPGA) logic. The peripherals used in this project include two thermal sensors, two temperature 

sensors, two booster fans, two relays and an OLED screen. The thermostat was able to detect the 

presence of a person and capture the temperature in each of the room that is equipped with the 

peripherals. The thermostat used the data from the peripherals to automatically control the 

HVAC system allowing users to stay in their comfort zone longer while avoiding multiple 

HVAC start/stop routines. 

Since the design of the thermostat has limitations as mentioned in 5.3.5, there are several 

potential improvements. A keyboard might be added to receive user input, and a screen with 

higher resolution can be used to display more information. Also, there are multiple low cost 

thermal sensors available on the markets that have resolution higher than 4x4 pixels. They 

should potentially yield better human detection results. 

The thermostat can be improved by implementing a wireless connection between the 

peripherals and Zybo to make the installation simpler. This improvement greatly increases the 

flexibility of the thermostat by allowing users to place the sensors wherever they want. It also 

allows additional sets of peripherals to link to the Zybo, since wireless connections do not 

depend on the number of ports available on the system. If the software program is able to handle 

more than two rooms, the thermostat can better assist users by allowing them to stay in their 

comfort zone even longer now that there are more sensors to detect human presence. 

Additionally, a new management application can be developed to use the wireless connection to 

help users manage the thermostat remotely, one that is similar to the mobile app that comes with 

the Nest thermostat. 
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