
 
Kinematics Design and Analysis for Recovery Evaluation of 

Spinal Cord Injury (KARESCI 2) 

A Major Qualifying Project report 

submitted to the faculty of  

WORCESTER POLYTECHNIC INSTITUTE  

in partial fulfillment of the requirements for the  

degree of Bachelor of Science 

By: 

Apollinaris Rowe, Landen Kovens 

Advisors:  

Prof. Yuxiang Liu, Prof. Michael Engling 

External Collaborator: 

Prof. Wei Wu, Indiana University 

Date: 

3/25/2024 
 

 

 

 

This report represents the work of one or more WPI undergraduate students submitted to the 
faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports 
on the web without editorial or peer review. For more information about the project’s program at 
WPI, see http://www.wpi.edu/Academics/Project  

http://www.wpi.edu/Academics/Project


 2 

Abstract 
This report iterates on a previous MQP, improving the design for a kinetic rehabilitative-assisted 
mechanism for recovery from spinal cord injury (SCI) induced paralysis, with an accompanying 
artificial intelligence model to track the joint positions and obtain data on healing progress. This 
AI (Artificial Intelligence) model tracks the hand of the mouse without markers to analyze the 
movement pattern of the mouse to understand the recovery process.  The design is adjustable to fit 
mice of varied sizes, and the linkage motion path and range of motion can be adapted for mice in 
various stages of the healing process. 

We believe that the novel combination of disciplines has the potential to increase the understanding 
and process of recovery from spinal cord injuries, as well as encourage future developments for 
applying a similar rehabilitative-assisted mechanism for use on humans.   

  



 3 

Acknowledgements 
First and foremost, we would like to thank Prof. Yuxiang Liu and Prof. Michael Engling for their 
continuous support and advisory throughout the year, both in and out of the project.   

Additionally, we greatly appreciate all external collaborators from Indiana University, especially 
Prof. Wei Wu, for dedicating their time to provide generous feedback and testing.  

We are incredibly grateful for the dedication it takes to provide guidance throughout such a 
project, and we greatly appreciate all guidance that was provided throughout.     



 4 

Authorship 
Chapter / Section # Author(s) 

1. Apollo & Landen 

2. Apollo & Landen 

2.3. Apollo 

2.4. Landen 

3. Apollo & Landen 

4. Apollo 

5. Landen 

6. Apollo & Landen 

7. Apollo & Landen 

8. Apollo & Landen 

 

  



 5 

Table of Contents 
Abstract ........................................................................................................................................... 2 

Acknowledgements ......................................................................................................................... 3 

Authorship ...................................................................................................................................... 4 

List of Figures ................................................................................................................................ 7 

1. Introduction .......................................................................................................................... 10 

2. Literature Review .................................................................................................................. 11 

2.1. KARESCI-1, Previous Years’ MQP Report – Findings and Summary ................. 11 

2.2. Research Direction and Division ................................................................................. 13 

2.3. CS Literature Review ................................................................................................... 14 
2.3.1. Mouse Anatomy and Spinal Coord Injury ......................................................................................... 14 
2.3.2. Machine Learning with DeepLabCut ................................................................................................ 14 

2.4. ME Literature ............................................................................................................... 18 
2.4.1. Additional Linkage Investigation ...................................................................................................... 18 
2.4.2. Rodent Limb Kinematic Investigations ............................................................................................. 20 
2.4.3. Summary of ME Reserach ................................................................................................................. 23 

3. CS + ME Goal and Divergence Point .................................................................................. 25 

4. The CS Side of the MQP Work - Machine Learning-Based Image Analysis Based on 
DeepLabCut Codes for Injured Mouse Recovery Evaluation .................................................... 26 

4.1. Previous Years’ Work .................................................................................................. 26 

4.2. Goals, Requirements, and Design Specifications ...................................................... 26 

4.3. First Iteration ................................................................................................................ 27 
4.3.1. Setup .................................................................................................................................................. 27 
4.3.2. Results ................................................................................................................................................ 28 
4.3.3. Lessons .............................................................................................................................................. 29 

4.4. Second Iteration ............................................................................................................ 30 
4.4.1. Setup .................................................................................................................................................. 30 
4.4.2. Results ................................................................................................................................................ 34 
4.4.3. Lessons .............................................................................................................................................. 35 

4.5. Third Iteration .............................................................................................................. 37 
4.5.1. Setup .................................................................................................................................................. 37 
4.5.2. Results ................................................................................................................................................ 39 
4.5.3. Lessons .............................................................................................................................................. 40 

4.6. Fourth Iteration ............................................................................................................ 41 
4.6.1. Setup .................................................................................................................................................. 41 
4.6.2. Results ................................................................................................................................................ 42 
4.6.3. 3D Triangulation ................................................................................................................................ 44 

4.7. Application .................................................................................................................... 45 



 6 

4.8. Summary and Recommendation ................................................................................ 45 

5. The ME Side of the MQP Work - Design, Prototyping, and Testing of Kinematic Linkage 
System for Assisted Mouse Movement and Recovery ................................................................. 46 

5.1. Previous Years’ Work .................................................................................................. 46 

5.2. Goals, Requirements, and Design Specifications ...................................................... 48 

5.3. Brainstorming ............................................................................................................... 50 
5.3.1. Motion Path of the Joints ................................................................................................................... 50 
5.3.2. Initial Linkage Brainstorming ............................................................................................................ 52 

5.4. First Design Iteration ................................................................................................... 55 
5.4.1. Mechanical Design ............................................................................................................................ 55 
5.4.2. Evaluation .......................................................................................................................................... 58 

5.5. Second Design Iteration ............................................................................................... 59 
5.5.1. Mechanical Design ............................................................................................................................ 59 
5.5.2. Electrical Design ................................................................................................................................ 62 
5.5.3. Evaluation .......................................................................................................................................... 62 

5.6. Third Design Iteration (Prototype 1) .......................................................................... 64 
5.6.1. Mechanical Design ............................................................................................................................ 64 
5.6.2. Electrical Design ................................................................................................................................ 71 
5.6.3. Evaluation and Feedback ................................................................................................................... 74 

5.7. Fourth Design Iteration (Prototype 2) ........................................................................ 77 
5.7.1. Mechanical Design ............................................................................................................................ 77 
5.7.2. Electrical Design ................................................................................................................................ 82 
5.7.3. Summary and Recommendations ...................................................................................................... 88 

6. CS + ME Convergence Point ............................................................................................... 89 

7. Social Implications ............................................................................................................... 90 

8. Conclusion ............................................................................................................................ 90 

References .................................................................................................................................... 91 

Appendix A: Arduino Code for Mechanism Control .................................................................. 93 

Appendix B: DeepLabCut Python Script .................................................................................. 104 

Appendix C: Compute Cluster Shell Script ............................................................................... 109 

Appendix D: Compute Cluster Shell Script Generator ............................................................ 110 

Appendix E: Nunif Shell Script ................................................................................................. 111 

 
 

 

  



 7 

List of Figures 
Figure 2-1: Wiring diagram of previous years' project [3] ........................................................... 12 
Figure 2-2: Final linkage mechanism from the previous year [3] ................................................ 12 
Figure 2-3: Previous years' entire mechanism [3] ........................................................................ 13 
Figure 2-4: DeepLabCut machine learning model creation workflow [8] ................................... 15 
Figure 2-5: Example frame from an initial video from the Indiana University Team. ................. 15 
Figure 2-6: Decision tree of a neural network with three hidden layers [9] ................................. 16 
Figure 2-7: Example image of a mouse hand with data points fitted based on a neural network 
specified to track a mouse’s hand (Sourced from Ahnsei Shon of Indiana University). The points 
correspond to joints in the hand of the mouse. ............................................................................. 17 
Figure 2-8: Gradual simplification of a horse hindlimb into a 'pantograph' mechanism [14] ...... 18 
Figure 2-9: (A-C) is horse motion, (D-F) is dog motion [14] ....................................................... 19 
Figure 2-10: Notation used for a 5-bar linkage [15] ..................................................................... 19 
Figure 2-11: The motion paths of the foot of wild mice and laboratory mice, and how this motion 
is affected by electrical stimulus [16] ........................................................................................... 20 
Figure 2-12: Plot showing the motion of the entire hind limb during walking [16] ..................... 21 
Figure 2-13: Difference in limb size and joint angles from the large vs. small mice [17] ........... 22 
Figure 2-14: Three separate experiments for hindlimb joint deflection [18] ................................ 22 
Figure 2-15: Complete kinematic analysis of rat hind limb [19] .................................................. 23 
Figure 2-16: Step-by-step simplification of rat hind limb kinematics [19] .................................. 23 
Figure 4-1: Joints to be tracked by the first neural network with a connection in a skeletal structured 
pattern. .......................................................................................................................................... 27 
Figure 4-2: Code Representation of skeletal structure up to the front right limb joints (All 4 limbs 
and spine joints were included, 55 total joints) ............................................................................. 27 
Figure 4-3: Example of the first labeled frame in the labeling software (Napari – A Plugin for 
DeepLabCut) ................................................................................................................................. 28 
Figure 4-4: Results of the evaluation of the first model. .............................................................. 29 
Figure 4-5: Output of the cluster failing to utilize GPU acceleration. .......................................... 30 
Figure 4-6: Code of the shell script (sh file) that was used to run this model. ............................. 31 
Figure 4-7: Code snippet of the training function of the run.py file ............................................. 32 
Figure 4-8: Joints circled in red are the joints to be tracked by the second model. ...................... 33 
Figure 4-9: Cropped Example of the hand (without vs with labels) during a grabbing motion. (Dots 
represent the joint son the mouse hand) ........................................................................................ 33 
Figure 4-10: Log of the training step running for 10,000 iterations. ............................................ 34 
Figure 4-11: Evaluation of the model from the second iteration. ................................................. 34 
Figure 4-12: Full size frame of a picture from the labeling set with the subject circled in red. ... 35 
Figure 4-13: Joint probability graph for a video from the training dataset. .................................. 35 
Figure 4-14: Crops of the top view videos. ................................................................................... 37 
Figure 4-15: The same subjects at 1x scale, 2x scale and, 4x scale. 2x and 4x are with noise level 
0 meaning the background has no noise. ...................................................................................... 38 
Figure 4-16: Same frame of the mouse from the side and top views (without labels) ................. 39 



 8 

Figure 4-17: Evaluation of the mobilenet_v1 and resnet_50 architecture model in sequential 
shuffles. ......................................................................................................................................... 39 
Figure 4-18: Joint probability graph for the side view using the mobilenet_v1 model. ............... 40 
Figure 4-19: Joint probability graph for the top view of the same video using the resnet_50 model.
....................................................................................................................................................... 40 
Figure 4-20: Checkerboard print visible in the sideview camera. ................................................ 41 
Figure 4-21: Frames from sideview videos in different environments (left frame was flipped across 
the y axis and labeled) ................................................................................................................... 42 
Figure 4-22: Evaluation results from model iteration 4. ............................................................... 42 
Figure 4-23: Video of the mouse with trackers from the side point of view ................................ 43 
Figure 4-24: Trajectory plot mouse hand movement of the same video ...................................... 43 
Figure 4-25: DeepLabCut triangulation example versus an example of a side view calibration 
image. ............................................................................................................................................ 44 
Figure 4-26: Previous calibration image with blocked out grid. .................................................. 44 
Figure 5-1: Previous years’ final linkage design [3] ..................................................................... 50 
Figure 5-2: Previous years' idea for a more complete but complex linkage [3] ........................... 50 
Figure 5-3: Previous years’ plotted motion path of the mouse’s knee with respect to its hip [3] 51 
Figure 5-4: Image above overlaid with approximated trajectories for knee, ankle, and foot from 
image 2-8 ...................................................................................................................................... 51 
Figure 5-5: Plotted positions of each joint from image 2-12 ........................................................ 52 
Figure 5-6: Initial idea for dual 5-bar linkage ............................................................................... 53 
Figure 5-7: Rough sketch of the motion path for the toes and ankles and their associated dummy 
legs ................................................................................................................................................ 54 
Figure 5-8: Initial linkage design with the corresponding coupler curves of both the knee and ankle
....................................................................................................................................................... 55 
Figure 5-9: Progression showing linkage design, CAD model, and 3D print .............................. 56 
Figure 5-10: CAD model of the initial design of the linkage mechanism .................................... 57 
Figure 5-11: The pivoting tension system .................................................................................... 58 
Figure 5-12: Inside the second iteration, showing the recessed bearings and one pulley ............ 59 
Figure 5-13: CAD drawing showing the split pulley and crank design and how it sandwiches 
around the bearing ......................................................................................................................... 60 
Figure 5-14: CAD drawing of second model's entire linkage mechanism ................................... 61 
Figure 5-15: Image of the second trial's entire 3D printed linkage mechanism ........................... 61 
Figure 5-16: Rough idea for the mechanism adjustment .............................................................. 62 
Figure 5-17: CAD model of the internal pulleys in the first prototype's linkage mechanism ...... 64 
Figure 5-18: CAD model of the entire first prototype’s linkage mechanism ............................... 65 
Figure 5-19: The left and right 3D printed linkage mechanisms from the first prototype with the 
adjustment slider screws inserted .................................................................................................. 66 
Figure 5-20: View of all adjustment sliders on CAD model of first prototype ............................ 66 
Figure 5-21: Front view of CAD model of first prototype ........................................................... 67 
Figure 5-22: Magnetically securing the leg attachment piece to the mechanism ......................... 68 
Figure 5-23: The completed leg attachment piece with felt and Velcro ....................................... 68 



 9 

Figure 5-24: Progression of images showing the process of sliding the body attachment piece in to 
the mechanism .............................................................................................................................. 69 
Figure 5-25: Mouse secured in body attachment piece ................................................................ 70 
Figure 5-26: Inserting the securing piece into the mechanism ..................................................... 70 
Figure 5-27: Front image of the 3D printed first prototype .......................................................... 71 
Figure 5-28: Bottom image of the 3D printed first prototype ....................................................... 71 
Figure 5-29: External view of the first prototype electronics box ................................................ 73 
Figure 5-30: Internal view of the first prototype electronics box ................................................. 73 
Figure 5-31: Image showing the properly adjusted alignment lines ............................................. 74 
Figure 5-32: Image of the mouse in the Indiana University lab, with the technician struggling to 
position the leg correctly ............................................................................................................... 75 
Figure 5-33: Arrow pointing to the specific area of the mouse dubbed the 'pants' ....................... 76 
Figure 5-34: Previous linkage is shown on the left, new linkage is shown on the right.  The new 
linkage is scaled down 25% compared to the previous version. ................................................... 77 
Figure 5-35: Combination of all possible joint locations and their effects on their corresponding 
coupler curves ............................................................................................................................... 79 
Figure 5-36: View of all adjustment sliders on CAD model of second prototype ....................... 79 
Figure 5-37: Front view of CAD model of second prototype ....................................................... 80 
Figure 5-38: Front image of 3D printed second prototype ........................................................... 80 
Figure 5-39: Bottom image of 3D printed second prototype ........................................................ 81 
Figure 5-40: Mouse secured to back attachment device outside of mechanism ........................... 81 
Figure 5-41: Mouse slid into mechanism while secured to back attachment device .................... 82 
Figure 5-42: External view of the second prototype electronics box ........................................... 83 
Figure 5-43: Internal view of the second prototype electronics box ............................................ 84 
Figure 5-44: Image of the Alignment screen and, the alignment line, and the corresponding 
vertically aligned crank ................................................................................................................. 85 
Figure 5-45: Image of the Partial Rotation screen and the corresponding linkage motion .......... 85 
Figure 5-46: Image of the Adjusting Zero screen and an example of what occurs when assigning a 
new zero location .......................................................................................................................... 86 
Figure 5-47: Image of the Full Rotation screen and the corresponding linkage motion .............. 87 
Figure 5-48: Image of the WAIT... RE-ZEROING screen during a menu screen change ........... 87 

  



 10 

1. Introduction 
In contemporary society, most people are familiar with the adoption of ChatGPT and other similar 
programs.  However, the applications of Artificial Intelligence (AI) extend far beyond chatbots 
and image generation, as its ability to recognize patterns in data proves invaluable to researchers, 
both for spotting structures in complex data and for combing through vast quantities of data.   

Researchers have been using AI to identify specific individuals in a photo from a population of 
animals, specifically whales, at an 87% accuracy.  From this, the scientists are hoping to expand 
recognition to all whales in all regions, allowing scientists everywhere to spend less of their energy 
identifying individuals and more time on their research [1].  Similarly, there has also been a push 
to translate the language of sperm whales to English, again with AI being at the forefront of this 
investigation [2].   

With these far-reaching scientific applications in mind, we wanted to explore the application of 
machine learning to identify mice with spinal cord injury (SCI) and how it could be used in the 
rehabilitation process, using machine learning to augment the data analysis aspect of the research.  
Though a previous years’ MQP investigated the use of a linkage for mechanical rehabilitation of 
mice with an SCI, the addition of AI analyzation would allow for a more complete understanding 
of the recovery process and the mechanisms at play, allowing for the potential of a more complete 
recovery compared to previously implemented methods.  

By analyzing videos of mice with and without spinal cord injury, two machine learning models 
could be run in parallel to identify whether the mouse has a spinal cord injury or not, and 
potentially, which vertebrae the injury occurred at.  Additionally, the model could also potentially 
quantify the recovery, specifying what sort of rehabilitation method provides the greatest recovery 
benefit.  The mechanism could then be adjusted to fit this ideal motion, allowing the mice to reach 
as complete of a recovery as possible.   

The goal was for this project to build on the accomplishments of last year, combining computer 
science, mechanical engineering, and neuroscience disciplines.  We aim to refine the kinetic 
adjustability and overall function of the physical mechanism while also introducing the use of 
machine learning to quantify rehabilitation results and maximize regained kinetic function, 
hopefully providing the groundwork for further research and accomplishments as the technology 
advances.   

  



 11 

2. Literature Review 

2.1. KARESCI-1, Previous Years’ MQP Report – Findings and Summary 
While unfortunately, as will be further discussed later, the previous years’ team failed to 
accomplish their original goal of designing a complete functioning rehabilitation mechanism, their 
work proved invaluable in summarizing previous research, narrowing down hardware and design 
decisions, and giving lessons of their successes and failures. 

First, and most importantly, their pre-project literature research concluded that rehabilitation-
assisted motion devices have been shown to be effective in certain cases where mobility is lost.  
These devices are not only valuable to those whose movement can be rehabilitated, but also to 
neuroscientists and researchers hoping to better understand the neurorehabilitation process [3]. 

Since WPI is unable to perform laboratory experiments related to spinal cord injuries on rodents, 
the previous years’ team had gained a working relationship with Indiana University, collaborating 
with them for videos, guidance, and testing.  Neuroscience labs predominantly make use of 
laboratory mice because of their general medical similarity to humans and the broad genetic 
modifications they can exhibit [3].  While the larger size of rats could make the mechanism's design 
more forgiving and capable, Indiana Universities use of mice constrained the scale of the 
mechanism to fit only mice.   

From their research, they concluded that optimum locomotive rehabilitation occurs when the 
animal is moving in its natural orientation, or in the case of this project with mice, quadrupedally.  
Additionally, while previous locomotive designs do exist, they are often rendered inadequate for 
complete testing as they were manufactured to fit only a single specific rodent, or they are simply 
designed as a concept without any physical mechanism being created [3].  These downfalls are 
part of what drove their project in the first place, attempting to mitigate the downfalls of these 
other devices with their own kinematic mechanism.   

Their research throughout the term eventually settled to using stepper motors because of their high 
torque, accurate rotational positioning, and excellence at low speeds.  An EWA2-CW3C encoder 
was attached to the steppers to integrate feedback into the system, with all of these being wired to 
an Arduino Uno because of its simplicity and effectiveness [3].   



 12 

 
Figure 2-1: Wiring diagram of previous years' project [3] 

Their mechanism consisted of a small linkage attached to the stepper motor, with gears connecting 
the stepper to the encoder.  This linkage follows the motion path of the midpoint of a mouse’s 
tibia, sliding along beams across each axis for adjustability to different sized mice.  Every part of 
this design was 3D printed because of its low cost and ease of prototyping [3]. 

 
Figure 2-2: Final linkage mechanism from the previous year [3] 



 13 

 
Figure 2-3: Previous years' entire mechanism [3] 

While the team aspired to integrate automated data collection and other deeper computer science 
related behaviors, this aspect of their project ultimately fell through.  Ultimately, the 
accomplishments of the CS team came down to programming the Arduino and assisting in the 
electronics control [3].  The previous mechanism functioned to the extent of providing mechanical 
motion to a specified part of a mouse’s leg, however, the general motion, adjustability, mouse 
attachment, and measurement of rehabilitation effectiveness resulted in a device that was unfit for 
laboratory testing on injured mice. 

 

2.2. Research Direction and Division 
With the previous project in mind, the research going forward aimed to mitigate gaps in the 
previous years’ research or accomplishments.  These research duties would be split between the 
CS and the ME teams, with each focusing on the topics deemed relevant to their respective aspects 
of the project.   

  



 14 

2.3. CS Literature Review 
Before building a machine, learning model there were many different topics, we desired to research 
to build a robust and accurate model. Due to the previous group’s focus on the mechanism, there 
was little to build off for creating a machine learning model. 

2.3.1. Mouse Anatomy and Spinal Coord Injury 

To support the knowledge of the team research into spinal cord injury was done to understand how 
to perform motion analysis. The reason for using a machine learning model to automate the motion 
analysis was to analyze a large amount of video data quickly and create a deterministic result. 
Previously, motion analysis done to determine spinal cord injury was done by a team of 
neuroscientists observing a mouse repeatedly accomplishing different tasks   

For the classification of the mouse by its joints it was necessary to understand the anatomy of a 
mouse and what all the different joints were. So, by using the four major sections of the spine and 
the key features of both front and hind limbs a general skeletal model was created to guide the 
creation of the machine learning model [4]. 

Additionally, a general understanding of the spinal cord injury recovery process might be 
beneficial to the formation of the machine learning model. Knowing which motions to track and 
what the different motions of a mouse with and without spinal cord injury will be beneficial 
towards reinforcing the model during the training. So, by being familiar with the mouse locomotive 
process and what neurons help aid the recovery process of mice with spinal cord injury were useful 
for the creation of the model [5] [6]. 

2.3.2. Machine Learning with DeepLabCut 

A general understanding of machine learning was also required to accomplish the goal of this 
project mentioned in the introduction. The Indiana University collaborators recommended a 
software package called DeepLabCut for marker less pose estimation of the mice. The software 
package is highly reputable for its accuracy and ease of use, however being to ensure that the right 
decision was being made more research into machine learning was needed [7]. DeepLabCut (DLC 
for short) creates and trains a machine learning model in the following workflow. 



 15 

 
Figure 2-4: DeepLabCut machine learning model creation workflow [8] 

Training a neural network requires three main steps, collection of data initially, label the data 
manually, and finally train the network. Collection of the data needed to train a model was done 
by the team at Indiana University since they had the laboratory set up to record mice initially from 
a top-down point of view. Later, the Indiana University team created a lab set up to record side 
and top-down views of the mice performing an action simultaneously. All instances of the video 
recordings for this project would be of a mouse performing a grabbing action. 
 

 
Figure 2-5: Example frame from an initial video from the Indiana University Team. 



 16 

The data is then separated into a training data set and a testing data set. The training data set is 
then labeled by the user manually. Going through the skeleton that is defined in the configuration 
file the user will then manually put dots at each of the joints defined. A training data set is then 
created with a split of training to testing data which is defined in a project configuration file. The 
structure of the training data set can also vary, however the most common model architecture that 
was used was a resnet_50 architecture [9]. The training process of the neural network tunes the 
parameters of the model to track according to the labeled data. The resnet architecture contains 48 
convolution layers which are transformation matrices full of parameters that transform the input 
layer into trackers on the output layer [10]. The size of each matrix is equivalent to the length of 
the input video times the width of the output frame. The output layer then is a probability matrix 
having the probabilities that the joint is in each part of the input video [11]. For the DeepLabCut 
software package, there are many dependencies that are used in the creation of the machine 
learning model. The package Tensorflow is the main machine learning package that does all the 
computation of training and processing a machine learning model [12]. 
 

 
Figure 2-6: Decision tree of a neural network with three hidden layers [9] 

Another key dependency that was research was Scikit-Learn, a statistics library that was used to 
create many of the summary statistics and tuning of the model [13]. When analyzing a video, the 
input frame is broken down and fitted to be the same size as the input layer of the model. Then 
running the input through the convolution layers the output is collected. The region with highest 
probability on each layer of tensor is then filtered into a data sheet. Those coordinates on the 
datasheet can be fitted back onto the input video. 

 



 17 

 
Figure 2-7: Example image of a mouse hand with data points fitted based on a neural network specified to track a mouse’s hand 

(Sourced from Ahnsei Shon of Indiana University). The points correspond to joints in the hand of the mouse. 

 

 

 

  



 18 

2.4. ME Literature 
While the CS aspect of the project focuses predominantly on machine learning and is therefore 
entirely computer-based, the ME aspect is primarily physical with a kinematic mechanism.  This 
mechanism consists of linkages, a mechanical system of interconnected beams which transmit 
motion along a predictable path.  This path, or the coupler curve, can be designed to follow a 
specific trajectory that fulfills specific requirements, which in this instance, governs the motion 
path of a specific point on the mouse’s limb.   

2.4.1. Additional Linkage Investigation 

Since the previous years’ research confirmed the viability of a kinematic rehabilitation device for 
spinal cord injury induced paralysis in mice, while additionally investigating previously developed 
devices to emphasize the need for a new device and additional studies to fill in the shortcomings 
in previous research, the new research had the goal of confirming and refining the previously 
information.  This research initially consisted of obtaining a better understanding of the native 
motion of mammalian limbs, the hopes of which would guide more specific direction of the 
smaller-limbed mice.   

While specific classification of the function of a leg is possible, the complex interactions between 
each of the many components in a leg can often make simplification difficult.  However, one model 
by which this simplification can be executed is by adapting a leg into a linkage, specifically two 
four-bar linkages connected into what’s known as a ‘pantograph’ mechanism [14].   

 
Figure 2-8: Gradual simplification of a horse hindlimb into a 'pantograph' mechanism [14] 

The foot can be positioned by adjusting the angle of the femur and the angle of the tibia with 
respect to the femur.  While employing much less control than is required in a real leg, this 
simplified mechanism accurately mimics the movement of the limb it is based on, allowing for 
realistic motion to be interpreted and recreated without understanding the precise positioning of 
each individual section of the hindlimb [14].  Additionally, the specific limb lengths in this 
linkage can be modified to accurately imitate the hindlimb motion of other animals, as was 
demonstrated with a dog [14]. 



 19 

 
Figure 2-9: (A-C) is horse motion, (D-F) is dog motion [14] 

As last years’ research shows, complex mechanisms with multiple degrees of freedom already 
exist for kinematic rehabilitation, however, these all lack either versatility or a proper physical 
implementation [15].  Outside of the scope of rodent rehabilitation though, many 5-bar linkage 
designs already exist with their capabilities and limitations being well established.   

 
Figure 2-10: Notation used for a 5-bar linkage [15] 



 20 

2.4.2. Rodent Limb Kinematic Investigations 

While general mammalian motion has been investigated, the exact motion path of the mouse hind 
limb still required additional investigation, especially the variance that occurs between individual 
mice.  This information is vital to understanding the degree to which adjustability must be 
considered, as well as the predictability of a specific mouse’s expected gait.   

Comparing wild mice to a specific breed of lab mice which lack muscle spindles (EGR3-KO), not 
only were there large differences in gait between the breeds, but there was a variance between the 
motion path of each mouse’s hind limb, this being especially evident in the laboratory mice.  The 
way each mouse reacts to an electrical stimulus also varies depending on the individual, with the 
motion similarly being more closely clustered in the wild mice than the laboratory mice [16].  
Though this is an extreme example since muscle spindles provide sensory and positional feedback 
for the limbs, this study at least shows the variance that can be expected through different mice, 
especially since mice recovering from a spinal cord injury could have a changing sensitivity in 
their muscle spindles as their kinematic capability increases.   

 
Figure 2-11: The motion paths of the foot of wild mice and laboratory mice, and how this motion is affected by electrical stimulus 

[16] 



 21 

 
Figure 2-12: Plot showing the motion of the entire hind limb during walking [16] 

Similarly, when the gait characteristics of a species of mice is compared to the same species bred 
for longer limbs, increasing the tibia length from 18.75mm to 21.44mm, some interesting changes 
were observed.  The step length for the larger mice increased, as did the time each limb spent in 
contact with the ground, however, the swing duration remained consistent between all mice.  This 
difference in stride frequency remained at the same 7-8% throughout all walking speeds.  
Similarly, there was no difference in gait sequence or relative timing of limb activation between 
the mice.  There is a substantial difference in the limb angles throughout the motion range though, 
as the walking kinematics of the larger mice are not simply scaled up compared to the smaller mice 
[17].  This variance is important to keep in mind during the design to ensure that mice of varying 
walking patterns can be accounted for.   



 22 

 
Figure 2-13: Difference in limb size and joint angles from the large vs. small mice [17] 

Another study, which set out to create a muscular simulation of the hindlimb in mice, compared 
the data they gathered on joint deflection and variation to similar data from other studies.  While 
the walking speed of their testing was higher than the other studies, resulting in slight variations 
in their data compared to others, the results of their experiments show how the data between each 
of these trials varies [18].   

 
Figure 2-14: Three separate experiments for hindlimb joint deflection [18] 

While this particular study investigated the kinematics of a rat instead of a mouse, the data is even 
more comprehensive compared to the previously mentioned articles, and the variance in results 



 23 

still prove valuable in understanding how gait varies depending on the particular rodent being 
investigated.  Even in the larger rats, a significant variation between individuals exists, and while 
it is more present in certain movements than others, the hip flexion, knee flexion, and ankle 
dorsiflexion, all the movements most important to a kinematic linkage mechanism, experience a 
large amount of variance throughout the entire gait cycle.  Additionally, the article provides a 
frame by frame drawing of the limb movement, something many other articles fail to include [19]. 

 
Figure 2-15: Complete kinematic analysis of rat hind limb [19] 

 
Figure 2-16: Step-by-step simplification of rat hind limb kinematics [19] 

2.4.3. Summary of ME Reserach 

Thankfully, the research done by the previous year immensely narrowed down the work required 
of the ME side.  Having a basis from which to begin research and begin prototyping proved to be 
invaluable in making the project progress quickly and smoothly.   



 24 

The new research done aids in clarifying how to approach the adjustability aspect of the 
mechanism, since that is one of the items stressed as being lacking from both previous mechanical 
designs and last years’ final product.  The results of this research seem to confirm the importance 
of adjustability, as individual walking kinematics can vary extremely from individual to individual 
with no way to predict or calculate the expected motion path.   

Because of this, the primary focus of the ME aspect of this project will be to build on the lessons 
learned last year, designing and producing a product that is functional for kinematic testing, and 
ensuring the mechanism is adjustable to rodents of various sizes and gaits.   

  



 25 

3. CS + ME Goal and Divergence Point 
Expanding the scope of the project compared to the previous year, work began with an agreement 
on the goal of the project previously mentioned in the introduction, being a divergence point 
between the CS and ME teams.  This was done to allow the CS team to focus on the machine 
learning goals of the project and the ME team to focus on improving the previous years’ kinematic 
mechanism.   

This goal was for a kinematic rehabilitation mechanism to be used on a mouse, with an 
accompanying software package to interpret the motion of the mice and quantify their recovery in 
terms of motor function.  The approach to accomplish the goals separately was to approach the 
problems freely during the divergence yet constraining each other enough to ensure each team’s 
work would support the other and mesh during the eventual reconvergence. 

For the CS side of the project, the general direction was to create a robust machine learning model. 
The next step in the process during the divergence would be to test the model in the lab scenario 
and make changes if necessary. Then would converge back together with the ME side to implement 
the machine learning model onto the mechanism. 

  



 26 

4. The CS Side of the MQP Work - Machine Learning-Based 

Image Analysis Based on DeepLabCut Codes for Injured Mouse 

Recovery Evaluation 

4.1. Previous Years’ Work 
The 2022-23 team had made little progress on the CS side of things since the earlier team focused 
on the Arduino code used by the mechanism of the previous year’s ME side. Most of the 
developments towards the goal of this year were made by the Indiana University team researching 
what processes and methodologies that a future computer science major could research. 

The Indiana University team had done some surface level investigation into a tracker-less neural 
network training program called “DeepLabCut”. Their investigation into how to use the tool to 
train a neural network model that could detect and track points on an image at a high-level.  

The CS part of this MQP work will be described below and organized in the sequence of goals, 
requirements, specifications, a few iterations of different approaches to satisfy the goal, results, 
and key points that would be changed in future iterations and a brief conclusion.  

 

4.2. Goals, Requirements, and Design Specifications 
The high-level goal of the CS side is to classify whether a mouse has spinal cord injury or not. The 
secondary goal to during the convergence of the CS and ME sides was to include a live analysis 
of the movement pattern of a specific mouse using the trackers of the neural network model. With 
the analysis the movement pattern could be used to adjust different parameters in the mechanism. 
Additionally, the movement pattern could be used as a comparison point against the healthy mice 
to judge their recovery process with the mechanism and note any possible improvements. 

While the high-level goal of the CS side is broad, it was broken down into further goals as 
complications arose during the project with major discoveries and refinements along the way. 
Requirements for completion include: 

1. A neural network model to track a mouse. 
a. The neural network was specified to hand movements of mice since seeing and analyzing 

the locomotive process as well as all the limbs of a mouse can be quite difficult and beyond 
the limitations of a single person. 

b. A two-camera system was also used to observe two different perspectives of the mouse, 
therefore two different models had to be trained. Then using a 3D calibration and 
triangulation system, a 3D neural network model of the hand movement of the mouse. 

2. A data refinement pipeline to extract the raw tracker data from the model and process into a 
movement pattern that can be processed and implemented by the ME side. 

  



 27 

4.3. First Iteration 

4.3.1. Setup 

The first neural network that was created encompassed data points for the whole mouse body’s 
skeletal structure. This was done since the assumption was that the videos were to be eventually 
of the entire mouse’s body, and making a model where all the different points of the mouse could 
be tracked might save time in the future. A general skeleton model was drawn to visualize the 
skeletal structure of the mouse. 

 
Figure 4-1: Joints to be tracked by the first neural network with a connection in a skeletal structured pattern. 

 
Figure 4-2: Code Representation of skeletal structure up to the front right limb joints (All 4 limbs and spine joints were included, 

55 total joints) 

Only one video was entered and split into multiple frames using k means clustering with thirty-
nine frames to detect major changes between frames. All visible joints were labeled manually, 
and the x and y coordinates of the labels were recorded into a data table. The training to testing 



 28 

split was 95 percent training data and 5 percent testing data for the dataset with a resnet 50 
network architecture. In this case since all the frames were labeled, the testing data set would 
consist of random frames that were not included in the mean value clustering. The network was 
then trained for 100,000 iterations adjusting the parameters over each iteration. The DLC 
training parameters such as the alpha, and loss ratio. The total time to train took around 12 hours. 

 
Figure 4-3: Example of the first labeled frame in the labeling software (Napari – A Plugin for DeepLabCut) 

 

4.3.2. Results 

Since the model was primitive and had low error values the reasoning for the results is that the 
train and test errors should be the same since none of the frames were left unlabeled. This is 
reflected in the p-cutoff error since the values are relatively the same (being 2.49% for train and 
2.36% for test). The formula for the p-cutoff for train and test is how far off was the average 
prediction subtracted from the actual value in the form of a percentage based on 10000 guesses for 
both the testing dataset and the training dataset. Since this model was just a test to get a feel for 
the DeepLabCut program no further testing was done. Additionally, there were no further videos 
in the lab setup to test out the model on since the video used in the model was a couple months 
old. 

 

 

 

 



 29 

Training 
Iterations 

Percent 
of 

Training 
Data 

Shuffle 
Number 

Training 
Error 
(in 

pixels) 

Test 
Error 
(in 

pixels) 

P-Cutoff Train error 
(as 

percentage) 

Test Error 
(as 

percentage) 

100,000 95% 1 2.82 5.94 60% 2.49% 2.36% 
 

Figure 4-4: Results of the evaluation of the first model. 

 

 

4.3.3. Lessons 

Since the first iteration was just a testing to get used to the DeepLabCut interface and user 
experience, the model was crude, due to the low amount of training data, even though it had a low 
error. Replicating that low error would be crucial in the future for a high acuity model. I also 
believed that in the moment the wide view of the camera might pose an issue without cropping 
since the dead space on the sides of the video might hamper the training process and result in a 
low acuity model.  

When trying to run the training process on a non-machine learning optimized training system 
significantly increases the time to train. Since the initial environment used to train the model had 
a compute power acceleration of 0, training 1000 iterations took one hour. However, training in 
an environment with a computer power acceleration of 7.5 decided not to wait 100 hours (about 4 
days) to finish training took only 12 hours to complete. Also, there was an option of training on a 
computer cluster hosted by WPI investigated for the second model. The computer cluster would 
allow multiple models to be trained and re-trained at the same time, allowing better streamlining 
of the training process. 

  



 30 

4.4. Second Iteration 

4.4.1. Setup 

The second iteration was setup using the compute cluster hosted by WPI. This was done to offload 
the processing so that the local environment wouldn’t be blocked during regular hours due to the 
training of a network having a high demand of compute resources. The compute cluster was hosted 
in a Linux environment only usable from a command line interface. Multiple scripts created to 
help facilitate and to run the required code from DeepLabCut, however the GPU acceleration was 
not used to the fullest potential due to issues with the drivers being recognized by TensorFlow.  

 

 
Figure 4-5: Output of the cluster failing to utilize GPU acceleration. 

The two primary scripts that were used to run a certain step of the DeepLabCut workflow such as 
the creation of a training dataset or running the training of the model. Steps like the labeling of 
frames could not be done in the environment of the compute cluster since there is no graphical 
user interface. A script for was created for initializing the variables to be used by the python script 
and for activating the python virtual environment. The virtual environment had all the dependency 
libraries for DeepLabCut such as TensorFlow. The shell script file for this iteration only ran the 
python program [Appendix B] with the parameter for the amount iterations the model would train 
for. 

 



 31 

 
Figure 4-6: Code of the shell script (sh file) that was used to run this model. 

The version of the python program used for this iteration would handle some of the edge cases 
with the DeepLabCut program then train the model for the specified number of iterations by the 
run.sh script. This was done since the major time-consuming part of up to this point was the 
training of the model since training a model for 100,000 iterations would take over 3 days. 



 32 

 
Figure 4-7: Code snippet of the training function of the run.py file 

For the pretraining steps: a set of thirty-four top-down view videos were sent by the Indiana 
University team and were split into frames with an average of nineteen frames per video using the 
k means clustering algorithm. The skeletal structure was trimmed down to only include the hand 
of the mouse since the videos were top down of the mouse’s hand doing a grabbing motion of 
food. 



 33 

 

 
Figure 4-8: Joints circled in red are the joints to be tracked by the second model. 

The videos were uncropped and all possible joints of the hand up until the elbow joint were labeled 
with finger 1 being the pinky finger and finger 5 being the thumb finger to be consistent across the 
right and left hands. The training dataset had a resnet_50 model architecture with a 95 – 5 training 
to testing split, however as like the previous iteration all possible frames were labeled so the testing 
data were randomly selected frames not included by the k means clustering. The training of the 
model was done twice in two different experiments, once for 100,000 iterations and another for 
10,000 iterations on the cluster. This was done to find the sweat spot for iterations to find the point 
at which the acuity of the model no longer increased significantly. That point would be a difference 
of 1% or less. 

           
Figure 4-9: Cropped Example of the hand (without vs with labels) during a grabbing motion. (Dots represent the joint son the 

mouse hand) 

  



 34 

4.4.2. Results 

The model training that ran for 100,000 iterations on the cluster did not complete since there was 
a hard limit on the amount of time that a single program that can run for on the cluster (24 hours). 
The 10,000 iterations took about 20 hours to complete. 

 
Figure 4-10: Log of the training step running for 10,000 iterations. 

The model had a low accuracy due to a lot of parameters that I thought of. The main parameter 
was the number of iterations that the model was trained for. 10,000 iterations were not nearly 
enough iterations to lower the error enough passed the p-cutoff (60%) and was reflected in the 
train error being 5 times higher than the first iteration with 100,000 iterations.  

 

Training 
Iterations 

Percent of 
Training Data 

Shuffle Number Training Error 
(in pixels) 

Test Error 
(in pixels) 

10,000 95% 1 11.04 10.98 
 

Figure 4-11: Evaluation of the model from the second iteration. 

Another reason was due to the noise of the background of the images. With the subject of the frame 
being a small portion of each frame, the background could cause the model to not train efficiently. 
It also became an issue causing mistakes during the labeling process due to the subject being very 
small. 



 35 

 
Figure 4-12: Full size frame of a picture from the labeling set with the subject circled in red. 

Due to the high error, none of the videos could be tested and relabeled according to the p-cutoff 
since all joint’s probabilities were less than 50% (p-cutoff was 60%). Lowering the p-cutoff to fit 
the data made the model produce results with high error. 

 

 
Figure 4-13: Joint probability graph for a video from the training dataset. 

 

4.4.3. Lessons 

The model had low acuity and would not be usable to identify a mouse. Several lessons could be 
adapted from these iterations such as the low amount of training iterations needed to be resolved 



 36 

either by adjusting the compute cluster environment or using the local environment to train the 
model. Additionally cropping could solve the issue of the background becoming noise in a dataset 
where every frame has the same background as well as upscaling the resolution of each frame 
could allow the labeling process to be easier for each image. All these lessons were adapted to be 
included in the third iteration. 

  



 37 

4.5. Third Iteration 

4.5.1. Setup 

In accordance with the previous iteration’s lessons, two new preprocessing techniques were 
adapted for this iteration. This was in addition to running the model for more iterations locally. 
The first preprocessing technique is cropping the frames. Each video is recorded at 1080p, having 
a resolution of 1920x1080 (1920 pixels wide by 1080 pixels high). The crop would then be 
manually determined by looking at each set of videos and calculating the area the subject would 
reside in during the whole video. The crop is defined as a rectangle with x1, x2, y1, y2 parameters. 

 
Figure 4-14: Crops of the top view videos. 

The other preprocessing technique was image upscaling using an upscaling program called nunif. 
This program used another machine learning model to fill in pixels and upscale an image from 
native resolution to 2x or 4x native resolution. A virtual environment was also created to host all 
the package dependencies and an accompanying script file was used to create the batches of 
upscaled images [Appendix D]. The group decided to upscale the image 4x native resolution with 



 38 

a noise level of 0. The noise level, which is on a scale of 0 to 4, is the blurriness of the low-
resolution objects. 

 

   
Figure 4-15: The same subjects at 1x scale, 2x scale and, 4x scale. 2x and 4x are with noise level 0 meaning the background has 

no noise.  

The videos provided for this iteration were also different with the ability to have a 3D triangulation 
with a side point of view camera and a top point of view camera. Both side and top views were 
split into frames by the k means algorithm with an average of 19 frames per video. Frames for both 
side and top views were all labeled for all visible joints according to the second iteration’s skeletal 
structure. The training to testing data split was 95 - 5 again. Both the side and top view frames 
were used in the training dataset. Another test for this iteration was to see the difference that a 
network architecture change would make for time vs accuracy. The model architectures that were 
tested were the resnet_50 architecture vs the mobilenet_v1 architecture. Both datasets were trained 
for 100,000 iterations with the mobilenet_v1 taking 4 hours and the resnet_50 dataset taking 9-10 
hours. 

 



 39 

 
Figure 4-16: Same frame of the mouse from the side and top views (without labels) 

 

4.5.2. Results 

The mobilenet_v1 architecture network had a higher error and a lower p-cutoff (40%) due to the 
increase in error. Due to the increased speed the cost of accuracy was too high. Thus, the model 
that was used for this iteration was the model with the resnet_50 architecture. However, to save in 
efficiency a shuffling of the training data was done and a sequential training step with a resnet 
architecture was done. 

 

Training 
Iterations 

Percent 
of 

Training 
Data 

Shuffle 
Number 

Training 
Error 
(in 

pixels) 

Test 
Error 
(in 

pixels) 

P-Cutoff Train error 
(as 

percentage) 

Test Error 
(as 

percentage) 

100,000 95% 1 4.77 21.4 40% 3.86% 21.07% 
100,000 95% 2 4.59 38.75 40% 4.2% 25.92% 

 

Figure 4-17: Evaluation of the mobilenet_v1 and resnet_50 architecture model in sequential shuffles. 

The assumption for the high testing error for the first model run was due to the mobilenet_v1 
architecture and its’ handling of testing data. Additionally, it is possible due to the training vs 
testing splits. For the second shuffle of the model changing the network architecture could also 
affect the testing error with higher testing errors for the resnet_50 architecture with similar training 
errors. 

 



 40 

 
Figure 4-18: Joint probability graph for the side view using the mobilenet_v1 model. 

Only one or two joints would be able to be tracked at a time due to the nature of the mouse 
movement as well as the joints looking similar. With the p-cutoff set at 40% it filters out a lot of 
the noise with the model, however only one or two of the data points would be tracked for a certain 
video. 

 

 
Figure 4-19: Joint probability graph for the top view of the same video using the resnet_50 model. 

Additionally with the different architecture of the resnet_50 model the accuracy is slightly higher 
with different peaks when the different body parts are visible from the top view. Unfortunately for 
both cases the model was not accurate enough to track any of the body parts of the mouse on 
playback of the videos. 

4.5.3. Lessons 

The major lesson from this iteration was that preprocessing techniques and network architecture 
are crucial to increasing the accuracy of the model. Resnet_50 would be the best architecture to 
accomplish the goal of this project. Additionally, separating the side and top views of the model 
will also be beneficial since the cameras only capture two angles with the same background, variety 
in the background will muddy the dataset and confuse the model. Also, increasing the testing 
dataset size might also decrease the testing dataset error. Potentially, increasing the dataset size 
might also lower the error.  



 41 

4.6. Fourth Iteration 

4.6.1. Setup 

The final iteration would be using a new set of videos from the Indiana University team this time 
focused on using the 3D triangulation method of DeepLabCut to analyze the mouse in three 
dimensions in accordance with the mechanism. The videos of the top and side view both have a 
cube visible in frame with a checkerboard print aimed at calibrating the camera’s by determining 
the edges on which the camera’s view intersect.  

 
Figure 4-20: Checkerboard print visible in the sideview camera. 

There were 60 side and top view videos in the new dataset that were split into a 75 – 25 training 
to testing dataset split. Additionally, some videos were left unlabeled to help facilitate the testing 
dataset. 

Using the same preprocessing techniques as the third iteration, the video crops were manually and 
individually determined for both the side and top views. The cropped videos were then split into 
frames by the k means algorithm and upscaled. The upscaled images for the side view were then 
labeled and used to create a dataset with the resnet_50 architecture. The side view was then trained 
for 100,000 iterations taking approximately 9-10 hours. 

A new method of adding additional training data to the pool was testing this iteration, using more 
videos in a different environment, and adding them to the dataset with the same preprocessing 
techniques. 



 42 

 
Figure 4-21: Frames from sideview videos in different environments (left frame was flipped across the y axis and labeled) 

 

4.6.2. Results 

The model for this iteration had the highest accuracy out of all models with the lowest training and 
testing errors. The second shuffle lowered the testing errors and slightly increased the training 
errors due to the inclusion of additional data in a different environment and training for more 
shuffles. 

 

Training 
Iterations 

Percent 
of 

Training 
Data 

Shuffle 
Number 

Training 
Error 
(in 

pixels) 

Test 
Error 
(in 

pixels) 

P-Cutoff Train error 
(as 

percentage) 

Test Error 
(as 

percentage) 

100,000 75% 1 3.53 8.52 40% 3.42% 7.66% 
100,000 75% 2 3.93 7.05 40% 3.78% 6.63% 

 

Figure 4-22: Evaluation results from model iteration 4. 

Due to the high accuracy of the model the joints could be tracked, and the trajectory plots of the 
joints could be generated as well. Thus, leading to the successful creation of a machine learning 
model for tracking a mouse. 



 43 

 
Figure 4-23: Video of the mouse with trackers from the side point of view 

 
Figure 4-24: Trajectory plot mouse hand movement of the same video 

 

 



 44 

4.6.3. 3D Triangulation 

Due to the time constraints of this project the main objective of producing a 3D mapping of the 
movement of a mouse could not be completed due to iterations that needed to be done for the sake 
of the DeepLabCut software package. An unobstructed view of the grid is needed for the 
calibration of the camera, however in most images the grid is partially obstructed. Additionally, 
the same grid must be viewable from both the side and top points of view. New videos must have 
been created with unobstructed views from the Indiana University Team, however those videos 
could not have been created in enough time. 

 

 
Figure 4-25: DeepLabCut triangulation example versus an example of a side view calibration image. 

An attempt to block out the obstructed grid and orient the grid so that they would align was made 
to no avail since the grid must be the same from both camera views. 

 
Figure 4-26: Previous calibration image with blocked out grid. 

  



 45 

4.7. Application 
Additionally, in hopes of a convergence with the ME side, an application was made to facilitate 
the usage of the machine learning model created in the fourth iteration. This application had two 
main features, a file input mode, and a live video feed mode. The file input mode would take in a 
file, run the model, and display a trajectory plot. The live video feed mode would display the 
camera input, analyze it, display the trackers on the feed, and display a trajectory plot too. 
Unfortunately, as well due to the inability of the Indiana University team to be able to test the 
application, no results were taken away. [Appendix E] 

4.8. Summary and Recommendation 
After several iterations on the fabrication of the machine learning model, fixing mistakes, and 
crafting a robust model. The process to create a machine learning model to track a mouse with and 
without spinal cord was successful and a substantial iteration from the previous year’s 
accomplishments. 

Unfortunately, due to time constraints of the Indiana University Further completion of the goal of 
a 3D tracking machine learning model and iterations on the application will not be possible. 

Continuation of the iterations of this project could see a full-scale in-depth model with the ability 
to track a mouse and analyze several factors related to spinal cord injury. 

 

 

 

 

  



 46 

5. The ME Side of the MQP Work - Design, Prototyping, and 

Testing of Kinematic Linkage System for Assisted Mouse 

Movement and Recovery 

5.1. Previous Years’ Work 
The 2022-2023 team had the same overall goal as this years’ team; to investigate the impact of a 
kinematic rehabilitation mechanism to aid neuroscientists’ investigation into recovery from spinal 
cord injury.  Their final mechanism consisted of a four-bar linkage connected to the midpoint of a 
mouse's calf with respect to the hip, with motion being driven with a NEMA-8 stepper motor, and 
the rotational orientation of the linkage being interpreted with a rotary encoder.  Anterior/posterior 
and lateral/medial adjustment is handed by I-beams with sliders and screws to allow for use with 
mice of various shapes and sizes.  The electronics are controlled by an Arduino Uno, with code 
linking the rotation of the steppers to the position of the encoders to ensure consistent positional 
accuracy. 

This project had several shortcomings with its design and execution, however, and while it did 
reach many of the goals it set out to achieve, ultimately no experimental data was acquired upon 
its conclusion.   

1. The assembly lacks any way to attach to the mouse, both to the body and to the limb.  Verifying 
the mechanisms function in its current state would be impossible without redesign.   

2. The assembly itself is structurally unsound and risks collapse.  The structure must be robust to 
prevent collapse and harm to the mouse, while also being as rigid as possible to maintain accurate 
and consistent kinetic positioning.   

3. The adjustment mechanism does not remain securely in place.  If the adjustment slips, this could 
cause harm to the mouse by changing the limb trajectory in ways unnatural to its natural gait.   

4. The mechanism only attaches to a single point on the limb.  Control of only a single point creates 
a lack of specific angular control of the joint, while optimally, the mechanism would attach to at 
least two points to more precisely control the position and angle of the overall limb.   

While not as immediately impactful to the mechanism's function, other areas for potential 
improvement were noted as well.   

1. The gears being used to link the stepper to the encoder were beginning to show wear.  A 3D printed 
gear can be durable, but on such a small scale, this strength is more difficult to ensure. 

2. Control of the mechanism requires a computer.  Uploading and running an Arduino sketch in a lab 
environment, while giving total control of the mechanism, might be daunting and out of the realm 
of knowledge for medical students.   

3. The linkage is fixed and only mimics a single fixed gait.  While the physical position of the mouse 
can be adjusted, as well as the position of the attachment point from the linkage to the leg, the 
trajectory of the linkage itself cannot be adjusted to better match the gait of mice of different sizes 
or walking characteristics.  Additionally, the gait itself cannot be made 'smaller’ to ease a paralyzed 
mouse into full motion from complete immobility.   



 47 

  



 48 

5.2. Goals, Requirements, and Design Specifications 
The goal of the ME side is to use the analyzed walking gait of a mouse to design a linkage that 
will closely mimic the natural walking motion.  From this, a larger mechanism will be designed 
that will attach mice of different sizes to the linkage, using driven motion to rehabilitate the loss 
of motor control that results from a spinal cord injury.  The greater intention is that this mechanism 
will aid neuroscientists in the study, understanding, capability, and limitations of how mice and 
other animals recover from spinal cord injuries.   

While the goal remains largely the same as the previous year with similar design requirements, the 
approach will build off the shortcomings of the previous years’ research to improve the design and 
function of the overall mechanism.  Critically, the main objectives will satisfy the following 
overarching requirements: 

1. The gait produced by the linkage is similar to a healthy mouse. 
2. The mouse is positioned quadrupedally and not bipedally to more closely mimic the natural walking 

posture. 
3. The mechanism can fit mice of various shapes and sizes. 

In addition to these main objectives, the machine must also adhere to the following design 
specifications.  These specifications take some ideas from the previous years’ list, stressing the 
importance of improving specific areas within their design, while additionally building on them 
with a few new ideas. 

1. Items from previous year 
a. The mechanism should provide proper support to the mouse and remain securely attached 

to the mechanism at all attachment points during motion; e.g. the body and legs. 
b. The mechanism's design should be modular, easy to assemble and disassemble, and able 

to have replacement parts printed on any readily available 3D printer. 
c. The mechanism must integrate two motor driven linkages to enable gait training for each 

of the mouse’s hind limbs. Each linkage should satisfy the following specifications: 
i. The linkage should have at least one Degree of Freedom to mimic at least one of 

the healthy gait patterns.   
ii. The crank should be driven by a motor that provides the necessary power to drive 

the linkage. 
iii. Links should be connected with shoulder screws for reliability and durability of 

the mechanism. 
2. Improvement areas 

a. The mechanism must be sturdy and stand secure with no risk of collapse or tipping.   
b. The transfer of rotation from the motor to the encoder will be durable and not show signs 

of wear and risk damage. 
c. The mechanism adjustment will hold securely in place and not slip during use. 
d. The electronics must be controlled with a contained unit independent of a computer. 
e. The linkage will be improved in several ways: 

i. The linkage will attach to more than one point on the limb to increase positional 
control. 



 49 

ii. The motion path of the linkage will be adjustable to fit mice of varying gait styles 
and ranges of motion. 

iii. The linkage will integrate some flexibility to ensure the gait isn’t too constrained 
within a single plane of motion. 

3. New items 
a. The mouse will be easy to attach and detach from the mechanism, minimizing the amount 

of effort required from the laboratory technician. 
b. The mechanisms must have accurate and consistent positional control to maintain proper 

kinematic relation between the two linkages. 

As further prototypes are created, progress towards accomplishing each of these goals will be 
attempted, iterated upon, and completed.  As many of these goals will be completed as possible to 
maintain alignment with project expectations.   

  



 50 

5.3. Brainstorming 

5.3.1. Motion Path of the Joints 

Before a new design could be designed and fabricated, a new linkage to fit the updated design 
requirements was required.  The previous year’s group had experimented with other mechanisms 
besides the final rendition which attached to the midpoint of the calf, mainly one which attached 
to both the knee and the foot, but this design was too complex to be feasible within the given 
timeline.   

 
Figure 5-1: Previous years’ final linkage design [3] 

 
Figure 5-2: Previous years' idea for a more complete but complex linkage [3] 



 51 

 

To accomplish this first goal, the trajectory of a rodent limb must first be analyzed, from which an 
associated linkage will be created.  This linkage must be simple enough to function in a compact 
mechanism and have as few links and joints as possible, yet also follow the respective position and 
velocity of the target positions as closely as possible.   

Using a combination of the previous years’ investigation and a few journal articles investigating 
the location of joints during movement, several approximations were created that followed the 
movement of the knee, ankle, and foot of various rodents.   

 
Figure 5-3: Previous years’ plotted motion path of the mouse’s knee with respect to its hip [3] 

 
Figure 5-4: Image above overlaid with approximated trajectories for knee, ankle, and foot from image 2-8 



 52 

 
Figure 5-5: Plotted positions of each joint from image 2-12 

5.3.2. Initial Linkage Brainstorming 

With these images, the was now a more concrete direction to which the project should head.  Like 
the previous year, it was decided that the mechanism must avoid using sliders as they would prove 
exceedingly complex on a small scale compared to the ease of implementing rotationally 
controlled joints.  Otherwise, the mechanism will attach to two points on the mouses leg to 
constrain the movement of two joints to a specified path.   

A four-bar linkage follows a specified coupler curve that cannot be adjusted without physically 
altering the mechanism, and while additional links can result in a more complex motion path, they 
all ultimately follow the same path for each motion cycle.  A five-bar linkage, however, uses two 
motors in tandem to drive a point to a location specified by code, is ideal in achieving unlimited 
adjustability along a planar surface.  As stated in the literature review, a variation of this 
mechanism is already the model by which some scientists simplify the walking motion of animals 
[14].  

Since a traditional 5 bar linkage only controls the position of a single point, and the ideal outcome 
of this project attaches to two points on the mouses limb, two of these linkages would need to be 
placed side by side, with a bar connecting the two to constrain their movement in relation to the 
other.  This would give a stable platform on which one of the limbs could be attached to, and in 
tandem with the CS side of the project, use an input of size and motion path characteristics to tailor 
an individualized walking path for each specific mouse.  Also, this mechanism's flexibility would 
allow for the possibility to control each individual limb segment, slowly progressing rehabilitation 
from the attaching to the calf to attaching to the foot. 

 



 53 

 
Figure 5-6: Initial idea for dual 5-bar linkage 

This approach, however, was decided to be too complex to fit within this project's scope.  The 
synchronization of two separate five-bar linkages, especially on such a small scale, would likely 
take up a large portion of the available project time, without considering the other required design 
aspects required of the project.  Also, it would cost much more than the allocated budget and shift 
the project towards being heavily CS focused.  To make this heavily ambitious idea more realistic, 
it was decided to reapproach the problem with a simpler linkage using only a single driven crank, 
similar to the one used in the previous year's project.   

First, however, it was necessary to decide which segment of the limb the linkage would attach to, 
using image 4-3, 4-4, and 4-5 as references from which to assist in judging the viability of motion 
paths.  While attaching to each end of foot would provide the most complete control over the entire 
limb, it would also be the most difficult, as both the more complex green and blue motion paths 
must both be followed.  After experimentation with possible designs to fit this criterion, a simple 
linkage that could generate each of these motions in sync with each other with just a single driven 
crank quickly fell out of the realm of possibility on such a small scale.   

Instead, a linkage that could generate the motion path of just one of the joints would be far simpler.  
Neither the toe nor the ankle paths themselves are too complex, but this still ignores the vital 
requirement of attaching to two points.  A non-driven dummy leg could be attached to the coupler 
curve of the driven joint, providing accurate motion of the limb segments above the chosen joint 
without much additional complexity.  This would be ideal to combine with a linkage that emulates 
the motion of the toe, however, this resulting three-link dummy leg would be non-deterministic.  
On the other hand, a linkage that emulates the motion of the ankle would only require a two-link 
dummy leg, making this an ideal candidate on which to base further progress.  This linkage also 



 54 

has the added benefit of being the most closely constrained to the mouse’s body, minimizing the 
risk of potential harm to the mouse by limb hyperextension. 

 
Figure 5-7: Rough sketch of the motion path for the toes and ankles and their associated dummy legs 

  



 55 

5.4. First Design Iteration 

5.4.1. Mechanical Design 

With a general linkage approach in mind using a dummy leg, the mechanism's greater design can 
now begin to be explored.  First, the linkage design must trace the path of the ankle, while also 
ensuring that there is a generous surplus of space within the linkage to allow for the placement of 
the dummy leg.  Additionally, the leg's motion should have a consistent velocity along the entire 
motion range without any sharp accelerations or decelerations, both to mimic the natural motion 
and prevent injury.  This three-bar linkage would extend the coupler far off the axis that connects 
the crank to the rocker to strike a balance between steady ankle velocity, a wide enough and fairly 
accurate coupler curve, and space for the dummy leg. 

Through much trial and error, an initial linkage that satisfied all these design requirements was 
found.  This design used a short crank with a longer offset rocker and a large triangular coupler, 
the far point of the triangle being the ankle.  From this, a dummy leg was attached to the ankle and 
was adjusted until the knee coupler curve closely matched the ones previously generated, making 
sure no interference was generated between the dummy leg and the crank or rocker.   

 
Figure 5-8: Initial linkage design with the corresponding coupler curves of both the knee and ankle 

As seen in the image, the top orange link is the driven crank, the right blue link is the rocker, and 
the large green triangle is the coupler, with the far bottom point acting as the ankle.  The purple 
link is the upper dummy leg while the yellow link is the lower dummy leg, with a slightly offset 
point on the yellow link near their joint acting as the knee.  Each of the black traces are the coupler 
curves of both the ankle and the knee.  Comparing these black traces to previously gathered joint 



 56 

motion data shows that the motion from this linkage is fairly accurate, while additionally, the 
linkage successfully left room for the dummy leg and showed fluid motion, fulfilling each of the 
linkage design requirements.   

From this initial linkage, before an overall mechanism could be designed, the linkage itself had to 
be verified physically.  Each of the three ground joints were bound to a central plane, and the large 
triangular coupler was instead designed to be a wide arcing piece, allowing the linkage to function 
in fewer overlapping layers and removing all worries of interference with the dummy leg.  A 
combination of 3mm and 6mm M2 shoulder screws were used at all the joints, each of them being 
secured into an M2 nut, and all parts being 3D printed. 

https://www.mcmaster.com/products/shoulder-screws/metric-alloy-steel-shoulder-
screws/?s=m2+shoulder+screw 

 
Figure 5-9: Progression showing linkage design, CAD model, and 3D print 

Though this model didn’t complete a full rotation due to unplanned interferences, it did verify the 
function of the linkage and the use of 3D printing as a manufacturing method.  Now, this linkage 
could be implemented into an encompassing mechanism, the first step of which was changing the 
link between the stepper and the encoder from gears to a belt.   

The previous year used a 28 tooth gear on the stepper and a 24 tooth gear on the encoder with a 
smaller gear connecting the two, causing them to both spin in the same direction.  Because of this, 
a similar result could simply be achieved by using a 28 tooth pulley on the stepper and a 24 tooth 
pulley on the encoder, connected by a small GT2 belt.  While this change is not completely 
necessary to the function of the mechanism, the change from small gears to a pulley would provide 
a more durable connection, especially during the long continuous operation expected while the 
mouse undergoes kinematic rehabilitation.   

It was also decided to use the same stepper motors and encoders as the previous year.  This would 
save on hardware costs, save time in researching and waiting for newly ordered parts to arrive, and 
save time in troubleshooting and programming the code to implement this hardware.  Specifically, 
this is a BLANK BLANK stepper motor and a BLANK BLANK encoder. 

https://www.mcmaster.com/products/shoulder-screws/metric-alloy-steel-shoulder-screws/?s=m2+shoulder+screw
https://www.mcmaster.com/products/shoulder-screws/metric-alloy-steel-shoulder-screws/?s=m2+shoulder+screw


 57 

The initial plan was to use laser cut steel front and back plates on which to secure the other 
components, as it would be rigid and easy to manufacture.  The plates would sandwich a 1515 
aluminum extrusion for its combination of availability, rigidity, and the slots which would allow 
for simple sliding adjustment.  The stepper, with four mounting screws, would be secured in place, 
while the encoder, with only two mounting screws, would be allowed to pivot for adjusting the 
belt tension.     

A parametric GT2 pulley design was used to generate the basic design for each of the pulleys, 
which were then modified to fit the overall design.   

https://grabcad.com/library/parametric-gt2-pulley-1 

Each pulley extended through the inner plate to hold it securely in place during motion, with the 
larger 28 tooth pulley acting as the crank for the linkage.  Two of the shoulder screws would screw 
directly into the metal plate, one would screw into the aforementioned 3D printed pulley, and three 
would screw into other 3D printed links. 

The dummy calf, which would attach to the mouse’s leg, was made larger than the other links to 
account for glued padding, and two slots were created so that twist ties or string could slide through 
and secure the leg.   

 
Figure 5-10: CAD model of the initial design of the linkage mechanism 



 58 

 
Figure 5-11: The pivoting tension system 

Though the top and bottom mounting plates were designed to be laser cut steel, all these initial 
parts were 3D printed to check the fitment and overall design.   

5.4.2. Evaluation 

This design, being the first prototype, unsurprisingly had a number of problems.  First, when the 
encoder was swiveled to put the correct amount of tension on the belt, the long arced slot and the 
thin strip below allowed for the encoder to tilt inwards, causing excessive friction in the rotation.  
This tension also caused each pulley to be pulled towards the other, pulling them out of their 
expected location and contacting the inner plate, creating even more friction.  Additionally, with 
no way to maintain their position relative to each other, the slightest misalignment between the top 
and outer plates would result in more contact with the pulleys and additional friction.  Some of the 
links were also made too thin, with the threads of the shoulder screw extending completely through 
the link contacting the plate. Because of this, the mechanism generated far too much friction and 
interference and was therefore unable to rotate.   

Moving forward, it was decided that the mechanism would be entirely 3D printed, ditching the 
laser cut top and bottom pieces for easier repairability and reproducibility.  Additionally, it would 
incorporate bearings to help mitigate the friction from inward pulling of the belt on the pulleys, 
and the belt tensioning system would be removed to improve stiffness.   

  



 59 

5.5. Second Design Iteration 

5.5.1. Mechanical Design 

The second design iteration built on the fundamental ideas brought up during the first iteration, 
using the same hardware but making all the adjustments deemed necessary in the previous section.   

Firstly, the front and back metal plates were changed into a larger 3D printed assembly.  With this, 
readily available skateboard bearings could be implanted within the top section, while thicker 
sections above and below the pulleys could ensure that each plate remains aligned with the other.  
The larger pulley was split into two separate parts that screw together to sandwich the bearing.  
While the pulley adjustment was removed, the inclusion of multiple belt lengths ensured the 
correct tension could still be achieved, with ultimately the 112mm belt being the optimal choice 
for the arbitrarily chosen spacing.  Finally, the links were also thickened so that the shoulder screws 
no longer protruded completely through.   

 
Figure 5-12: Inside the second iteration, showing the recessed bearings and one pulley 



 60 

 
Figure 5-13: CAD drawing showing the split pulley and crank design and how it sandwiches around the bearing 



 61 

 
Figure 5-14: CAD drawing of second model's entire linkage mechanism 

 
Figure 5-15: Image of the second trial's entire 3D printed linkage mechanism 

Though this revision did not incorporate any changes to the leg attachment, a design for the back 
attachment and body adjustment was drafted.  This would appoint a sliding adjustment to each of 
the X, Y and Z axis, allowing total range for the mechanism to adapt to the mouse's body.  A 
curved, padded section would attach to the mouse’s body with straps under the belly, providing 
both cushion and support.   



 62 

 
Figure 5-16: Rough idea for the mechanism adjustment 

5.5.2. Electrical Design 

Using the same hardware as the previous year, the stepper and encoder could simply be plugged 
into the existing electronics to provide motion and gain feedback.  This consisted of an Arduino 
Uno with an Arduino Motor Shield v2.0, programmed with the final code used by the previous 
year.  With the stepper motor plugged into M1 and M2 of the Motor Shield, the stepper completed 
continuous motion in a singular direction.  The wiring for the encoder in their code was unknown, 
so while it would be useful for future tests, it was left unwired for the time being. 

5.5.3. Evaluation 

This revision, while solving the problems of the previous model, introduced many more that would 
necessitate a near complete redesign.  The implementation of bearings, thicker top and outer plates 
with connecting supports, removal of encoder adjustment, and proper thickness links combined to 
fix the friction problem completely.   

However, the previous year's stepper, while sufficient for a smaller linkage, was lacking the torque 
to drive a more complex linkage with a larger lever arm and would stall with even the slightest bit 
of added force.  Additionally, the motor would often backdrive the Arduino because of this, 



 63 

causing it to momentarily freeze until it reset back to its initial state.  This was also likely 
exemplified by a lack of power from USB and subpar cooling without any heatsinks.   

It was also at this point when it was realized that, without the original code used for the Arduino, 
it would be impossible to correctly implement and modify the control for the steppers and 
encoders.  The previous year used serial input to control the steppers and serial output to read the 
state of the motors, and without the code from which to flash the Arduino directly, only the existing 
motion of the mechanism could be obtained using their existing implementation.  When testing 
the stepper motor, it also only worked on a single side of the Motor Shield, meaning that they 
never implemented dual motor control and it would be impossible to drive more than a single 
stepper at a time.   

Because of these issues, a more powerful stepper motor would be used for the next revision to 
overcome the torque issues.  Some method to attach the linkage system to the mouse’s leg still had 
to be developed, as well as a way to attach the linkage system to an overall mechanism, while this 
overall mechanism required refinement from the rough design previously outlined.  A new method 
to power the system would also be implemented, as well as heatsinks to prevent any overheating.  
Additionally, between the previous year's code being controlled only by a computer, not being 
available, and being incomplete, it was necessary to also rewrite the code completely. 

  



 64 

5.6. Third Design Iteration (Prototype 1) 

5.6.1. Mechanical Design 

As this revision was planned to be a working product that would be sent to and used by the Indiana 
University team, more thought was put into this revision to ensure it would fulfill all the 
requirements requested by them.   

While the previous design used a NEMA-8 stepper with 0.02 N-m of holding torque, the new 
design would use a NEMA-17 stepper with 0.4 N-m.  Though this new stepper motor is more than 
twice as large, the mechanism can avoid becoming too large by moving the crank from the stepper 
pulley to the encoder pulley.  To help counteract some of the additional weight and heat generation 
from the new stepper motor, the plates for the linkage mechanism were made thicker, with 
additional contact area securing the top and outer plates together.   

https://grobotronics.com/stepper-motor-8hy2001-10-0.20kg.cm.html?sl=en 

https://azurefilm.com/product/creality-stepper-motor-42-34/ 

The vertical rocker link was changed to recess into the inner plate, allowing the rest of the linkage 
to sit more flush with the top surface, both adding some stability and removing potential 
interference points with the mouse.  All screws to secure the plates together were also moved from 
the outer plate to the inner plate which might help visually simplify the mechanism for the Indiana 
University researchers.   

 
Figure 5-17: CAD model of the internal pulleys in the first prototype's linkage mechanism 

https://grobotronics.com/stepper-motor-8hy2001-10-0.20kg.cm.html?sl=en
https://azurefilm.com/product/creality-stepper-motor-42-34/


 65 

 
Figure 5-18: CAD model of the entire first prototype’s linkage mechanism 

To attach the linkage mechanism to the greater adjustment mechanism, slots along the upper end 
of both the inner and outer plate were added so that nuts could be slid inside, allowing for screws 
to be repeatedly secured vertically.  These screws could be loosed to slide the linkage mechanisms 
inward and outward along a slot, then tightened again to be secured into place, with four on each 
to keep it aligned and secure.  Similar implementations were used for the forward and backward 
adjustment, with nuts being inserted into a center piece and two screws per side protruding through 
slots.  The vertical adjustment, however, has the screws remain stationary and the nuts slide 
through an internal channel.  Each of the slots have gradients placed along their lengths to allow 
for repeatable and symmetrical adjustment.  The section with the inward/outward adjustment is 
extended to each side to allow legs to be attached underneath.   

 



 66 

 
Figure 5-19: The left and right 3D printed linkage mechanisms from the first prototype with the adjustment slider screws inserted 

 
Figure 5-20: View of all adjustment sliders on CAD model of first prototype 



 67 

 
Figure 5-21: Front view of CAD model of first prototype 

As for attaching the mouse, since it might be difficult to navigate around the parts of the 
mechanism while making sure not to harm the delicate mouse limbs, some way to make this 
process easier was required.  It was thought that the mouse could be attached to removable pieces 
outside of the mechanism, with these pieces then magnetizing to their respective places on the 
mechanism after attachment was already completed.  This would give the researchers much better 
access and visibility to ensure the mouse is attached correctly, making them less likely to harm the 
mouse or accidentally damage the mechanism.   

The leg attachment would use four small 3/8” x 1/16” neodymium magnets with 1/8” center holes, 
with two exposed on the linkage and two hidden inside of the removable piece.  A short M3 screw 
was used to keep the removable piece securely centered within the holes of the magnets on the 
linkage, with the screws helping to resist accidental removal from forces in any direction other 
than pulling directly outwards.  Thick felt was cut to the shape of the removable piece a gap 
running down the middle, acting as a channel to hold the leg in place, a small Velcro strap wrapping 
around the calf to easily secure it in place.  This felt piece also has cutouts at each end to allow the 
upper and lower sections of the limb to move without interference.   



 68 

 
Figure 5-22: Magnetically securing the leg attachment piece to the mechanism 

 
Figure 5-23: The completed leg attachment piece with felt and Velcro 

Larger 3/4” x 1/16” magnets were also used on the piece that attaches to the mouse’s body, again 
allowing for easy attachment outside of the mechanism.  This piece was curved to contour to the 
mouse's body, with half of a 3/4” pipe foam insulator providing cushioning and support to the mouse.  
Three pieces of Velcro attach the mouse to this piece; one further forward, one between the legs, and one 
supporting the base of the tail.  A curved cutout was made at the front of this piece to ensure it remained 
centered and correctly positioned when fully inserted, and an optional piece could be placed on the rear to 
lock it in place and prevent any pivoting, again with a magnet to make it easier to secure.  This piece may 
or may not be necessary depending on the amount of side-to-side movement the researchers prefer the 
mechanism to have. 

 



 69 

 
Figure 5-24: Progression of images showing the process of sliding the body attachment piece in to the mechanism 

 



 70 

 
Figure 5-25: Mouse secured in body attachment piece 

 
Figure 5-26: Inserting the securing piece into the mechanism 

 

 



 71 

 
Figure 5-27: Front image of the 3D printed first prototype 

 
Figure 5-28: Bottom image of the 3D printed first prototype 

5.6.2. Electrical Design 

First, the issues regarding power required addressing.  While USB was unable to provide sufficient 
power to drive the mechanism, especially with the larger stepper motors, a 12V power supply 
plugged directly into the Arduino fixed this issue, at least briefly until the Arduino overheated.  
Even with a heatsink on the MOSFET, function would last less than 10 seconds before thermal 



 72 

protection kicked in.  This same power supply, however, plugged into the Motor Shield, with the 
USB still plugged into the Arduino, solved all the previous power and temperature issues.  
Additional heatsinks were added to the power MOSFET on the Motor Shield and each of the two 
motor control ICs to maintain temperatures during longer operation. 

When switching from computer control to some sort of external control, there needed to be a way 
to visualize the current system state and execute any changes or adjustments.  A 4x20 I2C LCD is 
straightforward to integrate and could display all necessary information, while a singular clickable 
rotary encoder, or knobs, could be used to perform menu navigation and mechanism control.  The 
LCD was wired to SDA and SCL, and CLT, DT, and SW of the knob were wired to pins 8, 9, and 
10 respectively.  The left stepper was wired to M1 and M2, and the right stepper was wired to M3 
and M4.   

The two C6A2-CW3C encoders required 10K pull-up resistors on each of the three phase-
terminals, which were soldered onto the prototyping board built into the Motor Shield.  Phase A, 
B, and Z of the left encoder were wired to pins 7, 6, and 5, while A, B, and Z of the right encoder 
were wired to 4, 3, and 2.   

However, upon testing the encoders, it was found that only one was functional.  Upon 
investigation, it appeared that two out of the three encoders were defective, and no amount of 
troubleshooting resulted in any solution.  With the prototype needing to be shipped out as soon as 
possible, the decision was made to make use of the mechanism as is without ordering new encoders 
to replace the broken ones.  The mechanism could be adapted to operate properly without the 
encoders, and as was realized while programming and testing, not lose any functionality vital to 
the function of the mechanism.  Without the constant feedback from the encoders providing 
positioning data though, it’s crucial to ensure the steppers always remain 180 degrees out of phase 
with each other to mimic realistic walking motion. 

All these parts were secured in a cardboard housing, the LCD and knob accessible through the top, 
and the wires routed through holes in areas convenient relative to their destinations.   



 73 

 
Figure 5-29: External view of the first prototype electronics box 

 
Figure 5-30: Internal view of the first prototype electronics box 

The control box can be cycled between three screens: Alignment, Microstep, and Full Speed.  
Alignment sets the position of the left and right steppers, Microstep allows the mechanism to be 
better adjusted to fit the mouse with as little potential for harm, and Full Speed moves the legs at 
full speed for kinematic rehabilitation. 



 74 

The Alignment screen begins with prompt Aligning Left, with the rotation of the knob 
corresponding to the rotation of the crank.  Once the black line on the crank is aligned with the 
similar line on the inner plate, the knob can be pushed to repeat the same procedure with the right 
leg.  When complete, the left leg will offset 180 degrees from the right leg, and the screen will 
progress to slow rotation. 

 
Figure 5-31: Image showing the properly adjusted alignment lines 

The Microstep screen uses the microstep function within the Arduino Motor Shield PWM Servo 
Driver library to produce slow, fluid motion.  A microstep divides a single step into 16 smaller 
steps, therefore reducing the rotation speed so each motor spins at about 3 rpm.  Pressing the knob 
will start both steppers rotating in the same direction, while pressing the knob again will stop the 
motion.  To keep the stepper motors exactly 180 degrees offset, each stepper takes one step before 
the encoder button state is read, ensuring that they travel the same number of steps before the 
motors are stopped.   

Pressing and holding the knob for more than one second will progress the menu to Full Speed.  
This changes the motors from operating with microsteps to fullsteps, therefore increasing the speed 
by a factor of 16 to about 48rpm.  Like the Microstep screen, pressing the knob will enable the 
motors rotation, while pressing it again will disable their rotation, again ensuring each motor has 
completed an equal number of steps before changing their state.   

A long press of the knob on the Full Speed screen reset back to the Alignment screen, allowing for 
any possible misalignments to be corrected.  While the motors are in motion, the screen will display 
“Running”, while otherwise “Stopped” will be shown.   

5.6.3. Evaluation and Feedback 

As is expected with the first prototype, especially since the WPI and Indiana University teams 
were only collaborating digitally, there were a handful of problems with the design that caused it 
to not be functional during real world tests.  Additionally, there were a handful of minor complaints 



 75 

and changes that, while weren’t as important to address in the next revision, would provide quality 
of life changes during operation.   

First, and most importantly, the mechanism doesn’t fit the mouse for a handful of reasons.  The 
dummy limbs and the overall movement of the mechanism was too large compared to Indiana 
University’s lab mice.  As it turns out, the paper used to investigate the lengths of mouse limbs 
proved to be too long compared to those used in the lab, and therefore, the entire mechanism 
required scaling down by about 25%.  The mechanism doesn’t adjust far back enough for the leg 
to be properly positioned to fit into the mechanism, so the forward backward adjustment needed 
to be extended to remedy this issue.   

 
Figure 5-32: Image of the mouse in the Indiana University lab, with the technician struggling to position the leg correctly 

Lastly, the middle of the leg is unable to attach to the mechanism because it is covered in a thick, 
loose skin that becomes buried in its stomach and interferes with the attachment section of the 
linkage.  This skin, colloquially named the pants, covers nearly the entire lower leg down to the 
ankle.  The current design overlooked the existence of the pants and therefore requires the 
attachment point be shifted from mid-limb to the bald section near the ankle to bypass this skin.   



 76 

 
Figure 5-33: Arrow pointing to the specific area of the mouse dubbed the 'pants' 

There are also a handful of smaller quality of life improvements that could be made to the 
mechanism.  First, the legs felt slightly delicate and could use some reinforcement.  Second, 
reducing the amount of screws required to adjust the mechanism would make the process less 
cumbersome.  Removing the encoder would also allow the mechanism to be more compact, as 
well as simplify the wiring coming out of the control box.   

However, the Indiana University team continued to stress the importance of the adjustability aspect 
of the mechanism, of which this revision completely lacks.  Currently, the coupler curve follows 
only a single set trajectory, continuously tracing the set path at only two set speeds.  With the wide 
variation of mouse sizes, along with the reduction in their limb flexibility post-injury, it is required 
that the mechanism be adjustable to broaden its abilities and be applicable to as many mice and 
stages of healing as possible.   

Electronics wise, the cardboard box feels cheap and flimsy.  The motors are also loud, and when 
on the fullstep mode, vibrate quite a bit.  Even with the checks to ensure the motors remain in sync, 
sometimes spinning the knob will cause them to become misaligned.  On a similar note, sometimes 
the rapid spinning of the knob to align the motors will, for some reason, overload the Arduino, 
briefly causing the screen to turn off. 

Otherwise, the mechanisms function seems promising and was a welcome step up from the 
previous year. 

  



 77 

5.7. Fourth Design Iteration (Prototype 2) 

5.7.1. Mechanical Design 

With the feedback received, the first step was shrinking the linkage by 25%.  This decreased the 
length of the lower dummy leg from 25.30mm to 18.97mm, decreasing the size of the coupler 
curve to something that would better match the size of the mice in the lab.  It seems as if the limb 
length of the initial linkage was accidentally misinterpreted, however, this new smaller linkage is 
more in line with the results from a study by Leah M. Sparrow, with the lower leg of a mouse 
being 18.75mm on the lower end and 21.44mm on the upper end [17].  This smaller linkage, 
coupled with the removal of the encoder, allows for a much more compact linkage assembly with 
fewer pieces.   

 
Figure 5-34: Previous linkage is shown on the left, new linkage is shown on the right.  The new linkage is scaled down 25% 

compared to the previous version. 

 

Without the need for the encoder, each of the pulleys could be removed and the inner and outer 
plates could be combined into one singular piece.  The crank was instead made into a long cone 
that directly connects to the stepper, the slight taper allowing the entire plate to be removed from 
the stepper while ensuring the crank remains correctly positioned.  Similar to the previous design, 
there is a gap to the one side of the crank to give the large arched coupler space to deflect, while a 
recessed section on the other acts as a stable platform for the rocker.  The links themselves, where 



 78 

possible, have also been reinforced around the shoulder screw locations in an attempt to make 
them more durable.   

The same slotted holes with inset nuts were added to the mechanism for slider adjustability, 
however, the number of total adjustment screws was reduced from 16 to 6, just one per axis 
direction on both the left and right side.  A recessed track was added to keep the inward outward 
adjustment mechanisms in line with the fewer screws, the forward backward adjustment piece 
slides along a parallel lower piece to keep it horizontal, and the vertical adjustment piece slides 
through a hole to keep it from rocking.  The gradients remain along each adjustment slot to again 
allow for consistent positioning.   

The forward backward adjustment was increased from 50mm to 100mm, and the upper section 
was reinforced to prevent the larger slot from bending out of shape.  To accommodate this larger 
movement and shifting center of mass, each pair of legs was connected into a singular piece and 
extended outwards to increase the stability.   

Since the way the back attachment functioned properly, the only change made there was the 
removal of the Velcro straps deemed unnecessary.  However, since the leg attachment interfered 
with the mouse pants, the contact area was shifted downwards away from the pants and the wide 
Velcro piece was replaced with a thinner rubber band.  This rubber band can also easily be swapped 
out for a piece of string if the technician believes tying it to the link would be easier than pushing 
it through the band.  Both the back and leg attachment remain magnetically attached, again 
allowing for them to be secured outside of the mechanism.   

The adjustability aspect of the mechanism, however, remained unsolved.  The first idea was to 
replace some of the links with small turnbuckles, though with how compact the 3D printed links 
are, the torque required to adjust the turnbuckles could potentially damage them.  Additionally, 
even the smallest turnbuckles prove to be too large, with the longest section between straight joints 
being just above 20mm.  Instead, the turnbuckle could be replaced for a stiff section of wire, with 
pliers being used to bend the wire, easily adjusting its length.  However, precisely adjusting the 
mechanism using this method would be exceedingly difficult and matching each side to the other 
would prove to cause similar challenges, while bending the wire could cause the linkage to be non-
parallel and move in unplanned ways.   

Because of the difficulties of implementing infinite adjustability into such a small linkage, the 
decision was made to instead have a fixed number of adjustment points, which are switched 
between by adjusting the location of the linkage joints, unscrewing and replacing the shoulder 
screw in a different location.  The total number of these points were limited to reduce the risk of 
thin walls causing weak threads in the plastic, as the extremely small screws and their 
corresponding holes, especially in a 3D printed part, are fairly delicate.   

Two adjustment points, located on the vertical rocker, are designated S for short and L for long.  
While S is the original joint location, L comparatively steepens the motion of the ankle and makes 
the knee swoop down less.  The other two adjustment points, located on the circular crank, are 
designated I for inner and O for outer.  These keep the general shape of the S and L coupler curves 



 79 

but instead adjust their magnitude, allowing for the overall size of the motion path to be 
constrained.   

 
Figure 5-35: Combination of all possible joint locations and their effects on their corresponding coupler curves 

 
Figure 5-36: View of all adjustment sliders on CAD model of second prototype 



 80 

 
Figure 5-37: Front view of CAD model of second prototype 

 
Figure 5-38: Front image of 3D printed second prototype 



 81 

 
Figure 5-39: Bottom image of 3D printed second prototype 

 
Figure 5-40: Mouse secured to back attachment device outside of mechanism 



 82 

 
Figure 5-41: Mouse slid into mechanism while secured to back attachment device 

5.7.2. Electrical Design 

The motor drivers built into the Motor Shield are meant more for small motors than steppers.  
While steppers are able to be driven, their functionality and performance are limited by these 
drivers, as is visible by their loud and jittery motion and lack of control options in code.  The CNC 
Shield, however, designed for homebrew CNC machines and 3D printers, supports swappable 
modern stepper motor drivers, allows for more customizable motion control in code and the ability 
to integrate individually chosen stepper motor drivers.  The TMC2209, a stepper motor driver 
available for the CNC Shield, is advertised to have silent operation, automatic microstepping, and 
lower power consumption and heat generation than similar older drivers.   

With stepper motors on the CNC Shield, a large power supply with ample current is advantageous 
to consistent operation over long periods of time, and therefore the previous 12V 1A power supply 
was upgraded to one with 12V and 10A.  The Arduino, like the last version, is powered separately 
through USB.  Since the encoders were removed for this revision, many pins on the Arduino were 
freed up, and therefore there was now plenty of space to integrate an additional knob to make 
navigation through the menus more intuitive.  All of the electronics are housed in a more durable 
and more aesthetically pleasing plastic container.  The screen and both knobs are accessible from 
above, while the stepper wires and power cables extend out of the back and the front of the box 
respectively.   

While these additions are all advantageous to the function of the mechanism, changing from the 
Motor Shield to the CNC Shield necessitated a near complete rewrite of the underlying code.  
However, this allowed for the feature set to be reconsidered, giving the opportunity to implement 
new motion mechanics. 



 83 

The new electronics implement four unique control screens: Alignment, Partial Rotation, 
Adjusting Zero, and Full Rotation.   

 
Figure 5-42: External view of the second prototype electronics box 



 84 

 
Figure 5-43: Internal view of the second prototype electronics box 

In Alignment, rotating the left knob rotates the left stepper, while rotating the right knob rotates 
the right stepper.  Similar to the first prototype, the two sides are considered aligned when the 
black line on the crank is aligned with the similar line on the housing.  When these lines are close, 
pressing the respective knob will switch from coarse to fine adjustment, allowing for the lines to 
be more accurately positioned.  Pressing the knob again will lock the rotation, allowing for the 
other side to be adjusted without the worry of accidentally moving the completed side.  When each 
side is locked, both knobs can be pressed simultaneously to progress to the Partial Rotation screen. 

Unlike the first prototype, however, where these lines were arbitrarily placed, this line ensures that 
each crank is positioned vertically, ensuring the dummy leg is positioned in its furthest tucked-up 
position that is closest to the body, as this is similar to how a newly paralyzed mouse would have 
its legs positioned.   

 



 85 

 
Figure 5-44: Image of the Alignment screen and, the alignment line, and the corresponding vertically aligned crank 

Partial Rotation is an attempt to mitigate the downfalls of having a mechanism with limited 
adjustability.  Instead of completing continuous rotations to simulate walking, Partial Rotation 
oscillates each leg back and forth along the set zero point to stimulate the mouse’s legs and slowly 
work up from a complete lack of motion to a full motion range.  The left knob controls the gait 
Percentage, adjustable from 0-10, with 0 being no rotation, 10 being 55% of a complete rotation, 
and each number in-between being an equal step between those two values.  Similarly, the right 
knob controls the Rotation Speed, again adjustable from 0-10, with each number increasing the 
number of steps per second by 100, from 0 to 1000.  Since each rotation has 1600 effective steps 
with the built in microstepping from the TMC2209, this corresponds to a max speed of 37.5 RPM.   

 
Figure 5-45: Image of the Partial Rotation screen and the corresponding linkage motion 



 86 

The zero point about which the Partial Rotation oscillates, by default, is the topmost position of 
the crank; however, the specific location of this zero point can be changed.  After pressing the left 
knob, which progresses the screen to Adjusting Zero, rotating the knob will similarly rotate each 
of the steppers, while pressing the knob again will set the current position as the new zero and 
progress back to Partial Rotation.  This allows for various motion ranges to be individually 
exercised: for example, slowly moving the zero point from the top of the crank to the bottom, and 
therefore easing the mouse from minimum to maximum leg deflection.   

 
Figure 5-46: Image of the Adjusting Zero screen and an example of what occurs when assigning a new zero location 

When the mouse is expected to have regained full limb mobility along its entire walking motion 
path, the right knob can be pressed to progress from Partial Rotation to Full Rotation.  In this, the 
left stepper will offset a half rotation, with each stepper rotating continuously in one direction, 
simulating a walking motion.  Spinning the right knob will adjust the speed from 0-10, again 
increasing by 100 steps per second from 0 to 1000, with the max speed setting 10 being equal to 
37.5 RPM.  While in this mode, pressing the right encoder again will bring the screen back to 
Partial Rotation.   

 



 87 

 
Figure 5-47: Image of the Full Rotation screen and the corresponding linkage motion 

The previous code would move each stepper motor a single step at a time, sequentially outputting 
the movement commands which would sometimes get interrupted by an encoder rotation, leading 
to the motor desync.  The new code instead generates the motion for the left motor relative to the 
stored zero position, while simultaneously driving the right motor to match the current position of 
the left motor.  Additionally, any inputs from the knobs are only executed after each stepper has 
completed its queued movements, and if the menu is ever changed, the motors will slowly reset 
back to their stored zero positions and display WAIT… RE-ZEROING.  These two ideas combine 
to ensure that the motors never lose their zero position or their position relative to the other.   

 
Figure 5-48: Image of the WAIT... RE-ZEROING screen during a menu screen change 



 88 

5.7.3. Summary and Recommendations 

After a number of designs iterating on feedback from team members and collaborators, a final 
version was designed, manufactured, and delivered to the Indiana University team.  This design 
met all the requirements outlined in section 5.2., being a successful and substantial iteration from 
the mechanism created in the previous year.    

Unfortunately, it was at this point where the Indiana University team became too busy performing 
surgeries to complete testing on the mechanism within the required timeframe.  No further 
communications were received from them, and therefore, no feedback was received on this version 
of the mechanism.   

That being said, there are a handful of ideas related to the design that would prove beneficial if 
further iterations were to continue.  First, adapting the mechanism for use in rats would allow for 
greater mechanism precision due to their larger size.  This would potentially allow for an infinitely 
adjustable linkage by use of turnbuckles or similar device, or a more complex linkage to move the 
attachment point from the calf to the foot.  More ambitiously, a 5-bar linkage could be programmed 
via. DLC output data from AI analyzation of a pre-injury walking video, allowing for bespoke 
kinematics to be applied on an individual-by-individual basis.    



 89 

6. CS + ME Convergence Point 
It was at this point that the CS and ME teams reconverged, but the timeline didn’t allow Indiana 
University to provide proper testing, feedback, and results before the term’s end.  It is believed 
that a concrete result could have been reached given additional time and the necessary data from 
Indiana University.    

Several aspects of the project would have benefited from closer communication with the Indiana 
team, as the physical distance and lack of required data from them often made it difficult to 
accomplish the stated goals.   

On the CS side, the lack of videos of wider body motions could’ve provided a more useful model 
in relation to the ME side as the spinal cord rehabilitation mechanism focused on the locomotion 
of a mouse, the machine learning model focused on the grabbing motions of a mouse. Additionally, 
in relation to the 3D model of the mouse an improper lab setup for the specifications of 
DeepLabCut provided a roadblock. 

On the ME side, the lack of having direct walking videos of their mice made creating a linkage 
difficult, since without reference footage of mice in their lab, a motion path instead had to be 
estimated from outside studies.  Additionally, much of the struggle with fitment that arose from 
the first prototype could have been avoided with a mouse on which to intermittently test the sizing.  
While the second prototype was sent in two weeks before the term's end, the Indiana University 
team was so busy with performing surgeries that any further collaboration was unable to occur.   

Because of this, even with communication to ensure each side of the project retained parallel 
trajectories, the paths were diverted just enough so that significant collaborative results within the 
proper timeframe became unattainable.  If the motion of the mechanism were to simply be analyzed 
with the CS software to prove each of their ability, it being in possession of Indiana University 
would make this impossible.  Even if a video were taken, the results would be inconclusive since 
the DLC trained exclusively on the forelimbs of real mice in a specific lab environment.  This 
invariance in training data makes it so the only way to achieve a meaningful collaborative result, 
ranked in order of adherence to the original goal, by: 

1. Doing additional training on the DLC model with similar videos of paralyzed mice.  Then, the 
rehabilitation mechanism could be used on a paralyzed mouse, with its progress in the grabbing 
test being continuously analyzed in DLC during the rehabilitation process.   

2. Retraining the DLC model with full body walking videos, then analyzing the kinematics of a mouse 
in the rehabilitation mechanism in DLC compared to the unconstrained natural movement. 

3. Using a pre-made DLC training dataset to analyze the motion path of the rehabilitation mechanism, 
comparing the results to the pre-generated coupler curves. 

However, lack of the necessary training data, lack of time to perform experiments, and the absence 
of the mechanism itself make obtaining a collaborative result of any degree by the project due date 
of the question.     



 90 

7. Social Implications 
As the previous project group reported, 250,000 to 500,000 people suffer from spinal cord injuries 
worldwide every year, affecting their ability to function in society and completely uprooting their 
previously established lives [20].  While kinematic training remains the preferred method for 
rehabilitation, results continue to be less than optimal, and whether this is because of a lack of 
understanding, technology, or execution remains to be known.  

Though our project group lacked any medical knowledge, our project provided a novel approach 
to the issue of recovery from spinal cord injury, with the potential to use AI to recognize and 
diagnose any minute changes during the recovery process.  If done right, this AI characterization 
paired with the adjustability of the mechanism could lead to breakthroughs in understanding 
exactly how to optimize this recovery process for complete pre-injury recovery.   

Our aspiration is to garner interest in continued research from higher qualified scientists, 
eventually solving the mystery of complete recovery from spinal cord injury.  Additionally, we 
hope to inspire students to participate in interdisciplinary collaboration to solve complex problems 
that would otherwise be out of scope.   

8. Conclusion 
Overall, the MQP team created the groundwork for a novel combination of computer science and 
mechanical engineering for medical research, using AI to analyze the recovery and possible 
effectiveness of an adjustable rehabilitative-assisted mechanism for mice suffering from spinal 
cord injury induced paralysis.   

While, due to time constraints, no animal experiments were conducted to test the effectiveness of 
the combination of the two aspects of the project, the project showed promising progress compared 
to the previous years’ work, giving insight into the potential capability of possible future studies.  
Continuation on the project could focus on the direct results from testing the mechanism, finalizing 
training on the DLC model to diagnose the severity of the SCI and quantify recovery, while also 
enhancing the mechanism to have an infinitely adjustable linkage.  Hopefully, the scope of the 
research can eventually expand to include the exploration of application in human patients. 

  



 91 

References 
 
[1] C. Khan et al., “Artificial intelligence for right whale photo identification: from data 

science competition to worldwide collaboration,” Mammalian Biology, vol. 102, no. 3, 
pp. 1025–1042, Jun. 2022, doi: https://doi.org/10.1007/s42991-022-00253-3. 

 
[2] J. Andreas et al., “Cetacean Translation Initiative: a roadmap to deciphering the 

communication of sperm whales,” arXiv:2104.08614 [cs, eess], Apr. 2021, Available: 
https://arxiv.org/abs/2104.08614. 

 

[3]  Z. Tang, H. Yan, Y. Dai, and X. Jia, “Design of Adjustable Rehabilitative-Assisted 
Mechanism for Rodents Suffering from Spinal Cord Injury,” Digital WPI, Mar. 24, 2023. 
https://digital.wpi.edu/concern/student_works/t722hd21m?locale=en. 

 
[4] Suckow, Mark. The Laboratory Mouse. 3rd ed., CRC Press, 2023. 
 
[5] J. Dienes, B. Hicks, C. Slater, K. D. Janson, G. J. Christ, and S. D. Russell, 

“Comprehensive dynamic and kinematic analysis of the rodent hindlimb during over 
ground walking,” Scientific Reports, vol. 12, no. 1, Nov. 2022, doi: 
https://doi.org/10.1038/s41598-022-20288-3. 

 
[6] Kathe, Claudia, et al. “The Neurons That Restore Walking after Paralysis.” Nature, no. 

7936, Springer Science and Business Media LLC, Nov. 2022, pp. 540–47. Crossref, 
doi:10.1038/s41586-022-05385-7. 

 
[7] Nath, Tanmay, et al. “Using DeepLabCut for 3D Markerless Pose Estimation across 

Species and Behaviors.” Nature Protocols, no. 7, Springer Science and Business Media 
LLC, June 2019, pp. 2152–76. Crossref, doi:10.1038/s41596-019-0176-0. 

 
[8] “DeepLabCut for Multi-Animal Projects — DeepLabCut,” deeplabcut.github.io.  
 https://deeplabcut.github.io/DeepLabCut/docs/maDLC_UserGuide.html (accessed Mar. 
 26, 2024). 

 
[9] Koonce, Brett. “ResNet 50.” Convolutional Neural Networks with Swift for Tensorflow,  
  Apress, 2021, pp. 63–72, http://dx.doi.org/10.1007/978-1-4842-6168-2_6. 
 
[10]  O’Shea, Keiron, and Ryan Nash. “An Introduction to Convolutional Neural Networks.” 

ArXiv, Cornell University, Nov. 2015, doi: https://doi.org/10.48550/arXiv.1511.08458. 

 

[11] Féraud, Raphael, and Fabrice Clérot. “A Methodology to Explain Neural Network 
Classification.” Neural Networks, no. 2, Elsevier BV, Mar. 2002, pp. 237–46. Crossref, 
doi:10.1016/s0893-6080(01)00127-7. 

https://doi.org/10.1007/s42991-022-00253-3
https://arxiv.org/abs/2104.08614
https://digital.wpi.edu/concern/student_works/t722hd21m?locale=en
https://doi.org/10.1038/s41598-022-20288-3
https://deeplabcut.github.io/DeepLabCut/docs/maDLC_UserGuide.html
http://dx.doi.org/10.1007/978-1-4842-6168-2_6
https://doi.org/10.48550/arXiv.1511.08458


 92 

 

[12] Pang, Bo, et al. “Deep Learning With TensorFlow: A Review.” Journal of Educational 
and Behavioral Statistics, no. 2, American Educational Research Association (AERA), 
Sept. 2019, pp. 227–48. Crossref, doi:10.3102/1076998619872761. 

 

[13] Hao, Jiangang, and Tin Kam Ho. “Machine Learning Made Easy: A Review of Scikit-
 Learn Package in Python Programming Language.” Journal of Educational and   
 Behavioral Statistics, no. 3, American Educational Research Association (AERA), Feb.  
 2019, pp. 348–61. Crossref, doi:10.3102/1076998619832248. 

 

[14]  J. R. Usherwood, “Legs as linkages: an alternative paradigm for the role of tendons and 
isometric muscles in facilitating economical gait,” Journal of Experimental Biology, vol. 
225, no. Suppl_1, Mar. 2022, doi: https://doi.org/10.1242/jeb.243254. 

 

[15] B. Gamble, “5-Bar Linkage Kinematic Solver and Simulator 5-Bar Linkage Kinematic 
Solver and Simulator,” 2020. Accessed: Nov. 05, 2022. [Online]. Available: 
https://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=1416&context=hcoltheses. 

 
[16]  W. P. Mayer and T. Akay, “The Role of Muscle Spindle Feedback in the Guidance of 

Hindlimb Movement by the Ipsilateral Forelimb during Locomotion in Mice,” eNeuro, 
vol. 8, no. 6, Nov. 2021, doi: https://doi.org/10.1523/ENEURO.0432-21.2021. 

 
[17]  L. M. Sparrow, E. Pellatt, S. S. Yu, D. A. Raichlen, H. Pontzer, and C. Rolian, “Gait 

changes in a line of mice artificially selected for longer limbs,” PeerJ, vol. 5, p. e3008, 
Feb. 2017, doi: https://doi.org/10.7717/peerj.3008. 

 
[18] J. Charles, Ornella Cappellari, and J. W. Hutchinson, “A Dynamic Simulation of 

Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion,” vol. 6, 
May 2018, doi: https://doi.org/10.3389/fbioe.2018.00061. 

 
[19]  J. Dienes, B. Hicks, C. Slater, K. D. Janson, G. J. Christ, and S. D. Russell, 

“Comprehensive  dynamic and kinematic analysis of the rodent hindlimb during over 
ground   walking,” Scientific Reports, vol. 12, no. 1, Nov. 2022, doi: 
https://doi.org/10.1038/s41598- 022-20288-3. 

 
[20] W. H. Organization and I. S. C. Society, International Perspectives on Spinal Cord 

Injury.  World Health Organization, 2013.   
 

 

  

https://doi.org/10.1242/jeb.243254
https://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=1416&context=hcoltheses
https://doi.org/10.1523/ENEURO.0432-21.2021
https://doi.org/10.7717/peerj.3008
https://doi.org/10.3389/fbioe.2018.00061
https://doi.org/10.1038/s41598-022-20288-3


 93 

Appendix A: Arduino Code for Mechanism Control 
#include <Wire.h> 
#include <LiquidCrystal_I2C.h> 
#include <AccelStepper.h> 
 

LiquidCrystal_I2C lcd(0x27, 20, 4); 
 
AccelStepper stepperLeft(AccelStepper::DRIVER, 2, 5); // Pins for left leg stepper 
AccelStepper stepperRight(AccelStepper::DRIVER, 3, 6); // Pins for right leg stepper 
 
const int encoderLeftCLK = 9; 
const int encoderLeftDT = 10; 
const int encoderLeftSW = 11; // Switch pin for left encoder 
int leftLastCLK; 
int leftAdjustmentState = 1; 
int leftStepSize = 100; 
bool leftLegAligned = false; 
 
const int encoderRightCLK = 4; 
const int encoderRightDT = 13; 
const int encoderRightSW = 12; // Switch pin for right encoder 
int rightLastCLK; 
int rightAdjustmentState = 1;  
int rightStepSize = 100; 
bool rightLegAligned = false; 
 
int gatePercentage = 0; 
int rotationSpeed = 0; 
bool movingForward = false; 
 
bool offsetDone = false; 
 
bool menuCheck = false; 
bool motorRunning = false; 
int menuScreen = 1; 
 
///////////////////////////////////////////////////// 
 
void setup() { 
 
  lcd.init(); 
  lcd.backlight(); 
  updateLCD(); 
 
  // Setup encoder pins 
  pinMode(encoderLeftCLK, INPUT); 



 94 

  pinMode(encoderLeftDT, INPUT); 
  pinMode(encoderLeftSW, INPUT_PULLUP); 
  leftLastCLK = digitalRead(encoderLeftCLK); 
 
  pinMode(encoderRightCLK, INPUT); 
  pinMode(encoderRightDT, INPUT); 
  pinMode(encoderRightSW, INPUT_PULLUP); 
  rightLastCLK = digitalRead(encoderRightCLK); 
 
  stepperLeft.setMaxSpeed(3000); 
  stepperLeft.setAcceleration(2000); 
  stepperRight.setMaxSpeed(3000); 
  stepperRight.setAcceleration(2000); 
 
  Serial.begin(9600); 
} 
 
///////////////////////////////////////////////////// 
 
void loop() { 
 
  if (menuScreen == 1) { 
    Alignment(1); 
    Alignment(2); 
    stepperLeft.run(); 
    stepperRight.run(); 
  } else if (menuScreen == 2) { 
    partialRotation(); 
  } else if (menuScreen == 3) { 
    fullRotation(); 
   } else if (menuScreen == 4) { 
    setZero(); 
    stepperLeft.run(); 
    stepperRight.run(); 
  } else { 
    //motorRelease(); 
  } 
} 
 
///////////////////////////////////////////////////// 
 
void Alignment(int encoder) { 
  int CLK, DT, SW, currentCLK, lastCLK; 
   
  if (encoder == 1) { 
    CLK = encoderLeftCLK; 
    DT = encoderLeftDT; 
    lastCLK = leftLastCLK; 



 95 

  } else { // encoder == 2 
    CLK = encoderRightCLK; 
    DT = encoderRightDT; 
    lastCLK = rightLastCLK; 
  } 
   
  currentCLK = digitalRead(CLK); 
  if (currentCLK != lastCLK && currentCLK == HIGH) { 
    if (digitalRead(DT) != currentCLK) { 
      if (encoder == 1) { 
        stepperLeft.move(leftStepSize);  
      } else { 
        stepperRight.move(rightStepSize);  
      } 
    } else { 
      if (encoder == 1) { 
        stepperLeft.move(-leftStepSize); 
      } else { 
        stepperRight.move(-rightStepSize);  
      } 
    } 
  } 
  if (encoder == 1) { 
    leftLastCLK = currentCLK; 
  } else { // encoder == 2 
    rightLastCLK = currentCLK; 
  } 
 
  if (digitalRead(encoderLeftSW) == LOW) { 
    delay(100); // Debounce delay 
    if (digitalRead(encoderRightSW) == LOW) { 
      if (leftAdjustmentState && rightAdjustmentState == 3) { 
        menuScreen = 2; 
        leftStepSize = 100; 
        leftAdjustmentState = 1; 
        rightAdjustmentState = 1; 
        stepperLeft.setCurrentPosition(0); 
        stepperRight.setCurrentPosition(0); 
 
        updateLCD(); 
        exit; 
      } 
    } 
    if (digitalRead(encoderLeftSW) == LOW) { 
      if (leftAdjustmentState == 1) { 
        leftStepSize = 10; 
      } else if (leftAdjustmentState == 2) { 
        leftStepSize = 0; 



 96 

      } else { 
        leftStepSize = 100; 
      } 
      if (leftAdjustmentState == 3) { 
        leftAdjustmentState = 1; 
      } else { 
        leftAdjustmentState++; 
      } 
      updateLCD(); 
    } 
  } 
  if (digitalRead(encoderRightSW) == LOW) { 
    delay(100); // Debounce delay 
    if (digitalRead(encoderLeftSW) == LOW) { 
      if (leftAdjustmentState && rightAdjustmentState == 3) { 
        menuScreen = 2; 
        leftStepSize = 100; 
        leftAdjustmentState = 1; 
        rightAdjustmentState = 1; 
        stepperLeft.setCurrentPosition(0); 
        stepperRight.setCurrentPosition(0); 
 
        updateLCD(); 
        exit; 
      } 
    } 
    if (digitalRead(encoderRightSW) == LOW) { 
      if (rightAdjustmentState == 1) { 
        rightStepSize = 10; 
      } else if (rightAdjustmentState == 2) { 
        rightStepSize = 0; 
      } else { 
        rightStepSize = 100; 
      } 
      if (rightAdjustmentState == 3) { 
        rightAdjustmentState = 1; 
      } else { 
        rightAdjustmentState++; 
      } 
      updateLCD(); 
    } 
  } 
} 
 
///////////////////////////////////////////////////// 
 
void partialRotation() { 
 



 97 

  updatePartialRotation(1); 
  updatePartialRotation(2); 
 
  stepperLeft.setMaxSpeed(rotationSpeed*100); 
  stepperRight.setMaxSpeed(rotationSpeed*100); 
 
  if (movingForward == false) { 
    stepperLeft.moveTo(gatePercentage*45);  
    stepperRight.moveTo(-stepperLeft.currentPosition()); 
  } else { 
    stepperLeft.moveTo(-gatePercentage*45);  
    stepperRight.moveTo(-stepperLeft.currentPosition()); 
  } 
 
  if (stepperLeft.distanceToGo() != 0) { 
    stepperLeft.run(); 
    stepperRight.run(); 
  } else { 
    movingForward = !movingForward; 
  } 
} 
 
///////////////////////////////////////////////////// 
 
void updatePartialRotation(int encoder) { 
  int CLK, DT, SW, currentCLK, lastCLK; 
   
  if (encoder == 1) { 
    CLK = encoderLeftCLK; 
    DT = encoderLeftDT; 
    lastCLK = leftLastCLK; 
  } else { // encoder == 2 
    CLK = encoderRightCLK; 
    DT = encoderRightDT; 
    lastCLK = rightLastCLK; 
  } 
   
  currentCLK = digitalRead(CLK); 
  if (currentCLK != lastCLK && currentCLK == HIGH) { 
    if (digitalRead(DT) != currentCLK) { 
      if (encoder == 1) { 
        if (gatePercentage != 10) 
          gatePercentage++; 
      } else { 
        if (rotationSpeed != 10) 
          rotationSpeed++; 
      } 
    } else { 



 98 

      if (encoder == 1) { 
        if (gatePercentage != 0) 
          gatePercentage--; 
      } else { 
        if (rotationSpeed != 0) 
          rotationSpeed--; 
      } 
    } 
    if ((rotationSpeed == 0) || (gatePercentage == 0)) { 
      motorRunning = false; 
    } else { 
      motorRunning = true; 
    } 
    updateLCD(); 
  } 
  if (encoder == 1) { 
    leftLastCLK = currentCLK; 
  } else { // encoder == 2 
    rightLastCLK = currentCLK; 
  } 
 
  if (digitalRead(encoderLeftSW) == LOW) { 
    delay(100); // Debounce delay 
    if (digitalRead(encoderLeftSW) == LOW) { 
      menuScreen = 4; 
      lcd.clear(); 
      lcd.setCursor(0,0); 
      lcd.print("WAIT... RE-ZEROING"); 
 
      stepperLeft.setMaxSpeed(100); 
      stepperRight.setMaxSpeed(100); 
 
      stepperLeft.moveTo(0); 
      stepperRight.moveTo(0); 
 
      while ((stepperLeft.distanceToGo() != 0) || (stepperRight.distanceToGo() != 0)) { 
        stepperLeft.run(); 
        stepperRight.run(); 
      } 
      gatePercentage = 0; 
      rotationSpeed = 0; 
      updateLCD(); 
    } 
  } 
 
  if (digitalRead(encoderRightSW) == LOW) { 
    delay(100); // Debounce delay 
    if (digitalRead(encoderRightSW) == LOW) { 



 99 

      menuScreen = 3; 
      lcd.clear(); 
      lcd.setCursor(0,0); 
      lcd.print("WAIT... RE-ZEROING"); 
 
      stepperLeft.setMaxSpeed(100); 
      stepperRight.setMaxSpeed(100); 
 
      stepperLeft.moveTo(0); 
      stepperRight.moveTo(0); 
 
      while ((stepperLeft.distanceToGo() != 0) || (stepperRight.distanceToGo() != 0)) { 
        stepperLeft.run(); 
        stepperRight.run(); 
      } 
      gatePercentage = 0; 
      rotationSpeed = 0; 
      motorRunning = false; 
      updateLCD(); 
    } 
  } 
} 
 
///////////////////////////////////////////////////// 
 
void fullRotation() { 
  if (offsetDone == false) { 
    lcd.clear(); 
    lcd.setCursor(0,0); 
    lcd.print("WAIT... RE-ZEROING"); 
    stepperLeft.setMaxSpeed(100); 
    stepperLeft.moveTo(800); 
 
    while (stepperLeft.distanceToGo() != 0) { 
      stepperLeft.run(); 
    } 
    offsetDone = true; 
    updateLCD(); 
  } 
 
  updateFullRotation(2); 
 
  stepperLeft.setMaxSpeed(rotationSpeed*100); 
  stepperRight.setMaxSpeed(rotationSpeed*100); 
  stepperLeft.setSpeed(rotationSpeed*100); 
  stepperRight.setSpeed(rotationSpeed*100); 
 
  stepperLeft.runSpeed(); 



 100 

  stepperRight.runSpeed(); 
     
  stepperLeft.run(); 
  stepperRight.run(); 
   
  if (stepperLeft.currentPosition() == 1600) { 
    stepperLeft.setCurrentPosition(0); 
  } 
  if (stepperRight.currentPosition() == 1600) { 
    stepperRight.setCurrentPosition(0); 
  } 
} 
 
///////////////////////////////////////////////////// 
 
void updateFullRotation(int encoder) { 
  int CLK, DT, SW, currentCLK, lastCLK; 
   
  CLK = encoderRightCLK; 
  DT = encoderRightDT; 
  lastCLK = rightLastCLK; 
 
   
  currentCLK = digitalRead(CLK); 
  if (currentCLK != lastCLK && currentCLK == HIGH) { 
    if (digitalRead(DT) != currentCLK) { 
        if (rotationSpeed != 10)  
          rotationSpeed++; 
    } else { 
        if (rotationSpeed != 0) 
          rotationSpeed--; 
    } 
    if (rotationSpeed == 0) { 
      motorRunning = false; 
    } else { 
      motorRunning = true; 
    } 
    updateLCD(); 
  } 
 
  rightLastCLK = currentCLK; 
 
  if (digitalRead(encoderRightSW) == LOW) { 
    delay(100); // Debounce delay 
    if (digitalRead(encoderRightSW) == LOW) { 
      menuScreen = 2; 
      lcd.clear(); 
      lcd.setCursor(0,0); 



 101 

      lcd.print("WAIT... RE-ZEROING"); 
 
      stepperLeft.setMaxSpeed(100); 
      stepperRight.setMaxSpeed(100); 
      stepperLeft.setSpeed(100); 
      stepperRight.setSpeed(100); 
 
      stepperLeft.moveTo(0); 
      stepperRight.moveTo(0); 
      while ((stepperLeft.distanceToGo() != 0) || (stepperRight.distanceToGo() != 0)) { 
        stepperLeft.run(); 
        stepperRight.run(); 
      } 
      gatePercentage = 0; 
      rotationSpeed = 0; 
      offsetDone = false; 
      motorRunning = false; 
      updateLCD(); 
    } 
  } 
} 
 
///////////////////////////////////////////////////// 
 
void setZero() { 
  int CLK, DT, SW, currentCLK, lastCLK; 
 
  CLK = encoderLeftCLK; 
  DT = encoderLeftDT; 
  lastCLK = leftLastCLK; 
 
  stepperLeft.setMaxSpeed(100); 
  stepperRight.setMaxSpeed(100); 
 
  currentCLK = digitalRead(CLK); 
  if (currentCLK != lastCLK && currentCLK == HIGH) { 
    if (digitalRead(DT) != currentCLK) { 
      stepperLeft.move(25);  
      stepperRight.move(25);  
    } else { 
      stepperLeft.move(-25);  
      stepperRight.move(-25);  
    } 
   } 
  leftLastCLK = currentCLK; 
 
  if (digitalRead(encoderLeftSW) == LOW) { 
    delay(100); // Debounce delay 



 102 

    if (digitalRead(encoderLeftSW) == LOW) { 
      menuScreen = 2; 
      lcd.clear(); 
 
      while ((stepperLeft.distanceToGo() != 0) || (stepperRight.distanceToGo() != 0)) { 
        stepperLeft.run(); 
        stepperRight.run(); 
        lcd.setCursor(0,0); 
        lcd.print("WAIT... RE-ZEROING"); 
      } 
 
      stepperLeft.setCurrentPosition(0); 
      stepperRight.setCurrentPosition(0); 
 
      updateLCD(); 
    } 
  }   
} 
 
///////////////////////////////////////////////////// 
 
void updateLCD() { 
  lcd.clear(); 
  if (menuScreen == 1) { 
    lcd.setCursor(0,0); 
    lcd.print("Alignment:"); 
    lcd.setCursor(0, 1); 
    if (leftAdjustmentState == 1) { 
      lcd.print("Coarse Left"); 
    } else if (leftAdjustmentState == 2) { 
      lcd.print("Fine Left"); 
    } else { 
      lcd.print("Left Adjusted"); 
    } 
    lcd.setCursor(0, 2); 
    if (rightAdjustmentState == 1) { 
      lcd.print("Coarse Right"); 
    } else if (rightAdjustmentState == 2) { 
      lcd.print("Fine Right"); 
    } else { 
      lcd.print("Right Adjusted"); 
    } 
  } else if (menuScreen == 2) { 
    lcd.setCursor(0, 0); 
    lcd.print("Partial Rotation:"); 
    lcd.setCursor(0, 2); 
    lcd.print("Gate Percentage: "); 
    lcd.setCursor (18,2); 



 103 

    lcd.print(gatePercentage); 
    lcd.setCursor(0, 3); 
    lcd.print("Rotation Speed: "); 
    lcd.setCursor (18,3); 
    lcd.print(rotationSpeed); 
    lcd.setCursor(0, 1); 
    if (motorRunning == true) { 
      lcd.print("Running"); 
    } else { 
      lcd.print("Stopped"); 
    } 
  } else if (menuScreen == 3) { 
    lcd.setCursor(0, 0); 
    lcd.print("Full Rotation"); 
    lcd.setCursor(0, 3); 
    lcd.print("Rotation Speed:"); 
    lcd.setCursor (18,3); 
    lcd.print(rotationSpeed); 
    lcd.setCursor(0, 1); 
    if (motorRunning == true) { 
      lcd.print("Running"); 
    } else { 
      lcd.print("Stopped"); 
    } 
  } else if (menuScreen == 4) { 
    lcd.setCursor(0, 0);  
    lcd.print("Adjusting Zero"); 
  } else { 
    lcd.setCursor(0, 0); 
    lcd.print("Motors Released"); 
    lcd.setCursor(0, 2); 
    lcd.print("Realignment Required"); 
  } 
} 
  



 104 

Appendix B: DeepLabCut Python Script 

 



 105 

 



 106 

 



 107 

 



 108 

 

  



 109 

Appendix C: Compute Cluster Shell Script 

 

  



 110 

Appendix D: Compute Cluster Shell Script Generator 

 

  



 111 

Appendix E: Nunif Shell Script  

 



 112 

 


