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Abstract 

Space exploration has provided many benefits to humanity and has the potential to 

continue delivering technological advancements to society. In this paper, a rationale for human 

space exploration is presented that includes preserving the human species, developing innovative 

technologies that are applicable to Earth, and increasing our understanding of the universe. The 

technical challenges of establishing a Mars colony are evaluated, and solutions are proposed to 

overcome these obstacles in order to provide recommendations for the future colonization of 

Mars. 
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1. Executive Summary 

Space exploration has had a profound impact on humanity, an influence that is often 

overlooked or understated by scientists, engineers, and civilians. This IQP works to understand 

the relationship between humanity and space through identification of space travel’s extensive 

past and future benefits, in order to provide a rationale for this endeavor. Space travel has 

directly and indirectly produced many innovative technologies that have improved life on Earth, 

and it holds vast potential benefits that may save humanity in the future. A human colony on 

another planet would ensure the survival of the human species in case of an event that destroyed 

Earth, such as the asteroid that altered Earth’s climate and led to the dinosaurs’ extinction. 

Specifically, Mars provides a reliable site for colonization because of its similarities to Earth and 

the availability of resources that can be extracted and used to sustain humans, such as oxygen, 

water, and methane. A station on Mars would also provide a gateway to exploring the outer 

planets such as Saturn and Jupiter, other stars, and potentially exoplanets. Traveling to Mars 

would provide a deeper understanding of the universe we live in and teach us about Mars’ 

potential for life, and thus the potential for life outside our solar system.  

After evaluating the benefits human space exploration provides, this paper focuses on the 

primary technical challenges that must be overcome for Mars colonization, including radiation 

exposure, food and water, low gravity, and Mars robotics. Radiation is one of the most 

significant obstacles for long-term human space exploration, but may be mitigated with methods 

such as passive shielding, active shielding, and human gene alteration. Food and water 

production on Mars is another challenge for Mars colonization, as enough food and water cannot 

be brought from Earth to sustain a large human colony. This paper explores the challenges plants 

may face on the Mars surface and proposes innovative ways to overcome these obstacles. Lower 

gravity on Mars poses a challenge for humans, systems, and plants, but studies are being 

performed in space and on the ISS that can lead to potential solutions, such as artificial gravity. 

Robots will greatly help a Martian colony; however it is critical that the integration of robots and 

humans is properly utilized to leverage the talents of both in an advantageous manner.   

An evaluation of potential locations for a Mars colony is then performed for areas that may 

be a suitable outpost location. Finally, recommendations for future work are proposed to 

continue overcoming the societal and technical challenges of a Mars colony.   
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2. Introduction 

Space exploration has provided humanity with great benefits which justify the time, effort, 

and risk that has been invested. This IQP will identify and evaluate these advancements in order 

to justify why space exploration is important to society. In the last century, deploying space 

systems has advanced the quality of human life in many areas, such as in human health, weather 

predictions and disaster response, and various innovative technologies. The demanding nature of 

space exploration requires top-tier developments and innovations that are more environmentally 

friendly, longer-lasting, more reliable, and more self-sustaining than current systems on Earth. 

This push for new technologies, which has been driven by the desire to discover our universe, 

has led to the development of innovative technologies that have potential applications on Earth.   

Informing the public of the vast benefits space travel provides is essential to gaining their 

interest and approval, which is ultimately what provides the money and resources to pursue 

space missions. As we explore the past benefits space travel has had on humanity, potential 

benefits an extraterrestrial colony would bring, the challenges associated with this feat, and 

potential solutions for these challenges, we will better understand the technical and societal 

impacts of an extraterrestrial colony on society, both positive and negative. This interaction 

between science, engineering, technology, and humanity makes this an excellent IQP topic, as it 

evaluates the ways in which these different areas interact to affect society.   

As an aerospace engineering student who is deeply passionate about the advancement of 

human space exploration, particularly the mission to Mars, one of the most common questions I 

am asked is “why explore space?” Truthfully, I have always had a difficult time answering this 

question beyond the justification that it is intriguing and interesting to me. Justifying even to 

myself why human space exploration is necessary and why the work I do every day is valuable 

has always been a challenge. This IQP has given me the opportunity to further understand the 

tangible and potential benefits that space exploration provides. This has allowed me to gain an 

understanding of why this work is important and why the general public should care about space 

travel. Bridging the gap between my technical work and the effects it has on humanity has 

enabled me to become a more well-rounded engineer.  
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3. Benefits of Space Travel to Humanity 

3.1. Human Health [1] 

Technologies developed for applications on the International Space Station (ISS) have led to 

advancements in medical fields on Earth. NeuroArm is a medical technology that enables the 

completion of surgeries previously thought to be impossible and makes difficult surgeries easier. 

More precise and tremor-free than the human hand, NeuroArm has saved many lives by 

successfully performing brain surgery and other operations that were too difficult for doctors. 

Another medical technology arose from the Eye Tracking Device experiment, which studied how 

humans’ reference frames are altered in space with the absence of gravity. This device is now 

used on Earth to track the eye’s movement during laser eye surgery, which has led to surgical 

improvements. NIOX MINO® controls and monitors nitric oxide levels for humans living in 

space, which is essential because elevated levels can cause inflammation of the airways, 

decompression sickness, and other adverse health effects. Nitric oxide is also an important 

indicator for people with asthma, and monitoring nitric oxide levels can help provide more 

accurate dose requirements, leading to fewer asthma attacks and a better quality of life. 

Technology from NIOX MINO® was utilized to monitor asthma patients’ nitric oxide levels and 

minimize their attacks.  

3.2. Earth Observation and Disaster Response [1] 

The ISS monitors environmental conditions all over the globe to help resolve environmental 

problems that threaten our planet. RapidSCAT measures the ocean’s surface wind speed and 

direction, and this data is used for determining weather patterns and performing weather 

predictions. The Cloud Aerosol Transport System (CATS) takes vertical profiles of the clouds 

and aerosols in our atmosphere. Clouds and aerosols are significant in the way that they reflect 

the sun’s radiation differently, and more knowledge about how these clouds and aerosols exist in 

the atmosphere allows us to better model the atmosphere, climate, and air quality of Earth.   

Water resupply is not an option for long-term space travel, so water must be cleansed and 

recycled in space. In 2006, the first NASA ground-based water filtration system was put in Iraq 

in a town that had no access to clean drinking water. A 2000-liter water tank was delivered to the 

village and was cleaned and iodinated regularly. Similar systems have been used in India, 
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Mexico, Central America, and South America that have provided clean water to these developing 

areas.  

3.3. Innovative Technology 

There are other space technologies in development with potential applications on Earth. 

Robotic systems are being developed to perform mining, determine composition of the 

atmosphere and regolith, and discover other important features. These autonomous systems 

have the potential to improve life on Earth and reduce exploration risks by automating 

processes and performing dangerous excursions, such as exploring sites of radiation accidents, 

gas leaks, or other dangerous areas where human health could be at risk.   

In addition, power systems need substantial improvement to become sufficient for a Mars 

mission. Power methods that utilize fuel with a limited supply are not an option for space 

systems; therefore, scientists and engineers are forced to develop more viable power solutions. 

Specifically, for human exploration missions, the power systems for long-term habitats, rovers, 

and other systems have to be designed to be robust, self-reliant, and long-lasting. Earth systems 

will soon need to shift towards these more sustainable power methods as time progresses and 

finite resources diminish. Learning how to produce more efficient power for space systems can 

help improve the power systems on Earth, such as car batteries, by making them more 

environmentally friendly, longer-lasting, more reliable, or more self-sustaining. Similarly, 

systems deployed to space have to be extremely reliable since astronauts will have limited tools, 

time, and knowledge to make critical repairs. Specifically, planetary systems often will need to 

remain dormant for long periods of time, withstand significant radiation and micrometeorite 

orbital debris (MMOD), and function without being regularly serviced. The progress and 

solutions made through overcoming these challenges for planetary systems can be applied to 

systems on Earth, such as cars and airplanes, to make them more reliable.  
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4. Benefits of Mars Colonization 

Establishing a human presence on Mars is an expensive and time-consuming endeavor that 

comes with many benefits, risks, and challenges. In order to justify spending the time and money 

to pursue this feat, the benefits should have a significant impact to people on Earth. Three of the 

primary benefits of a Mars mission include utilizing Mars as a backup planet safe haven to 

ensure the survival of mankind, developing technologies that can be used to improve the quality 

of life on Earth, and gaining a better understanding of the universe based on the chemicals and 

potential lifeforms found on Mars.   

Mars is the most Earth-like planet in our solar system. It has a similar length day to Earth, an 

atmosphere that provides some protection against radiation, an adequate amount of sunlight to 

harness for energy, and a relatively moderate temperature range. Most importantly, Mars has 

resources that humans can utilize to live on Mars for long periods of time. The Martian 

atmosphere is composed of 95% carbon dioxide, as well as smaller amounts of nitrogen, argon, 

oxygen, and carbon monoxide [2]. Although humans cannot breathe this chemical composition, 

these elements are also found on Earth and can be turned into breathable air. MOXIE (Mars 

Oxygen ISRU Experiment), which will be on the Mars 2020 rover, will take carbon dioxide from 

the Martian atmosphere and turn it into oxygen that can be used by future astronauts [3]. It is a 

1/100 scale model of what one day may be deployed to Mars to produce breathable air [4]. In 

addition, water has been proven to exist on Mars. Studies and projects are being pursued that 

strive to develop autonomous systems that can extract this water from the Martian soil. Since 

water is such an important element to the survival of mankind, an environment with water is 

crucial to attaining Earth independence and sustaining a human colony on another planet.   

Similarly, the presence of methane on Mars makes it suitable for in situ resource utilization 

(ISRU) propellant production. Methane and oxygen can be produced from Martian carbon 

dioxide and hydrogen to be used for LOX/Methane propellant [5]. This will enable astronauts to 

leave Mars and travel back to Earth or to other destinations in space without having to bring as 

much propellant from Earth. 
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4.1. Ensure the survival of the human species  

As the fate of Earth becomes increasingly unknown, having a second planet to escape to may 

become necessary for the survival of humanity. Earth may be destroyed by events such as an 

asteroid hitting Earth, nuclear war, a global pandemic, overpopulation, boiling of the Earth’s 

oceans, or a massive fire. Similarly, an event may occur that damages the genes of the human 

species or animal population, and having a DNA bank on Mars may be critical to restoring the 

damaged or destroyed areas of Earth. The sun’s solar flares could also cause the Earth’s 

destruction, as they have already knocked down power grids and communication networks, 

destroyed electronic devices, and increased radiation dose amounts for airline passengers. These 

are just some examples of catastrophes that may occur to Earth, which is why a backup planet is 

advantageous and necessary. Becoming a multi-planet species will help ensure the long-term 

survival of the human population.   

4.2. Gateway to exploring the outer solar system 

Mars is in a premier location to observe and explore the outer solar system, as Mars is 

relatively close to Jupiter, Saturn, and the other outer planets. In addition, Mars is very close to 

the asteroid belt, so putting a telescope or base on Mars would allow for great astronomical 

observations. Moreover, spacecraft could be deployed from Mars to explore the asteroid belt, 

which could facilitate the use of asteroids for resources. Mars is a gateway to exploring these 

outer planet gas giants and eventually leaving the solar system.  

4.3. Understanding the origin of the universe and discovering life on Mars 

Another critical reason to explore Mars is to better understand the universe by determining 

Mars’ potential for life, learning about its current and ancient climate, and discovering its 

geology and geophysics [5]. Mars is the most probable location that scientists believe may 

sustain life. If life is proven to exist on Mars, it would greatly change how humanity views our 

world and the solar system, as the possibilities would be endless for what exists in the universe. 

If humans are serious about fulfilling the desire to know more about the world in which we live, 

a Mars mission is the clear-cut next step to uncovering the truth of our solar system and the 

universe.   
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4.4. Technological advancements that improve the quality of life on Earth  

Technological advancements have greatly improved the quality and productivity of life on 

Earth. Computers are a primary example of a technology that has revolutionized society, as they 

allow people to perform calculations and acquire information more easily than any previous 

generations. For example, programs such as Maple and Matlab enable mathematicians and 

scientists to execute calculations rapidly, whereas primitive calculators were the primary method 

for calculations less than a century ago. Similarly, libraries and books were necessary to gather 

information, and now information can easily be accessed by simply typing a question into a 

cellular phone. In addition to scientific uses, robots now assist humans with chores, such as the 

Roomba which can clean households. Helping humans with monotonous tasks, such as cleaning, 

has led to increased time for more analytically challenging tasks that only humans can 

accomplish.  
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5. Technical Challenges 

5.1. Mars Habitat 

The Mars habitat is one of the most important systems for a Mars mission, as it is what will 

sustain the crew for hundreds of days on the Martian surface. During this time, it will be exposed 

to harsh Martian surface conditions and will need to survive micrometeorite orbital debris 

impacts and high radiation levels. There are several methods being considered to protect against 

MMOD. One of these methods suggests using bulletproof Kevlar as a sacrificial wall by placing 

it between the outer wall and the spacecraft so the actual spacecraft will not be damaged [7]. 

Although this works, it is not practical in the long-term because after a shield is damaged its 

ability to shield the spacecraft is compromised. A similar study looked at a thermal and 

micrometeorite protection system for an unmanned lunar cargo lander, which utilized a 

multilayered thermal insulation blanket [8]. This blanket has layers of Mylar, which act as a 

bumper wall to dissipate MMODs. The needed thickness of this MMOD protection blanket can 

be calculated [8]. First, the diameter of a one-gram micrometeorite can be found, using a 

micrometeorite density of 0.5 g/cm3:  

𝐷𝑚 = 2 ∗ √
3𝑚

4𝜋𝜌

3

= 2 ∗ √
3 ∗ 1𝑔𝑟𝑎𝑚

4𝜋 ∗
0.5𝑔
𝑐𝑚3

3
 

𝐷𝑚 = 1.56 𝑐𝑚 

The bumper thickness for aluminum can be calculated by:  

𝑡𝑏 = 0.04 ∗ 𝐷𝑚 = 0.04 ∗ 1.56 𝑐𝑚  

𝑡𝑏 = 0.0625 𝑐𝑚   

This bumper thickness of 0.0625 cm gives a mass per unit area of 0.175 g/cm2 for aluminum. 

However, MLI protects as well as aluminum, but has only 13.3 percent of the mass per unit area. 

This gives a MLI bumper thickness of 0.023 g/cm2, equating to a bumper thickness of 2.3 

millimeters [8].  

A newer technology currently being developed is a self-healing shield, which is a 

multilayered shield that uses a liquid monomer between two solid polymers [9]. After being 
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punctured, this middle liquid layer of the shield flows into the gaps and solidifies due to an 

interaction with oxygen [9]. One specific example of this self-healing shield uses polyethylene as 

the middle liquid layer [10]. Polyethylene was considered as a potential heat shielding material 

since ancient times, but was not used because it liquefies in the ablation process. This 

liquefaction can be beneficial for repairing damage from MMODs, as polyethylene is an ideal 

material for the middle liquid monomer layer of the shield.  

Radiation  

The crew’s exposure to radiation is another major concern for a long duration human space 

exploration mission. Normally the Earth’s magnetosphere protects the Earth from radiation, but 

interstellar space lacks that protection. There are two types of radiation that can threaten 

astronauts and equipment. Galactic cosmic radiation (GCR) consists of ionized atoms coming 

from outside the solar system that emit a constant background radiation. This will not harm 

astronauts immediately, but rather will build up and cause problems if exposed to for long 

periods of time. Solar particle events (SPE) are the second type of space radiation, which consist 

of solar particles produced by the sun during solar flares. If exposed to this, astronauts would 

likely immediately acquire radiation sickness that could kill them. Although deadly, solar 

particle events can be detected, do not happen frequently, and would likely only last for a few 

hours. They are also much easier to protect against with simple radiation shielding methods, so 

astronauts could hide in a shelter until the event passes. Contrarily, GCR radiation poses less 

immediate danger, but is deadly if built up over time, and it is much more difficult to protect 

against.  

In order to preserve astronaut health, NASA standards limit radiation exposure to a 3% REID 

(Risk of Exposure Induced Death) value based on gender and age [9]. A 3% REID value means 

that astronauts cannot be exposed to an amount of radiation that would make them greater than 

3% more likely to develop cancer as a result of the radiation exposure. Galactic cosmic radiation 

levels are about 0.67 mSv and 1.8 mSv per day on the Mars surface and in interstellar space, 

respectively. These radiation levels will not allow for a long-duration human space exploration 

mission according to NASA Health Standards, unless they are drastically mitigated.  
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There are several passive radiation protection methods that could help reduce radiation 

dosage given to astronauts and the systems. Polyethylene has a high hydrogen content, which is 

effective for deflecting radiation. It is a lightweight fabric, which makes it a good option for 

spacecraft that need to minimize mass and have complex shapes [12]. RFX1 is a specific type of 

polyethylene composed of lightweight carbon and hydrogen atoms. It is 50% and 15% better at 

shielding SPE and GCR than aluminum, respectively [13]. 

Water is another material that is very effective at shielding radiation. It has a high hydrogen 

content and is relatively dense and cheap, but it is much heavier than polyethylene. Unlike 

polyethylene which would primarily just be used for radiation shielding, water has many other 

applications so contingency water can be used to make a radiation shield. Moreover, lunar or 

Martian water produced through ISRU production could be used for shielding, which would 

reduce the water mass launched to Mars.  

Regolith can also provide protection against radiation, which would be beneficial since it is 

already on Mars. However, a great deal of regolith would be needed to provide adequate 

radiation protection, so robots to move the regolith would be needed. Researchers are currently 

searching for a polymer binder to combine with regolith for a thinner radiation shield [14]. In 

this case, only the polymer would need to be launched from Earth for the radiation protection.  

An innovative idea is to use plastic packaging from recycled trash to make tiles that will 

shield radiation. NASA Ames developed a compactor that turns a day’s garbage into an 8-inch 

diameter tile half an inch thick [15]. It compresses the trash to at least ten times smaller than its 

original size, and the high hydrogen content provides a good radiation shield. This would help 

solve the radiation exposure problem, as well as provide a use for trash. However, it may be 

difficult to bring the compactor to Mars and to make it operate properly in the Martian 

environment.  
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Below is a set of graphs that compare different radiation shielding materials by areal density 

and shielding thickness, respectively [16]. Polyethylene, water, and regolith all provide 

comparable radiation shielding, so a material should be chosen based on what is most convenient 

for the mission.  

 

Finding or formulating astronauts who are more resistant to radiation is also being 

considered. Potential astronauts can be tested and chosen based on who is more genetically 

predisposed to radiation. In addition, techniques to modify and improve the human ability to 

handle radiation may also be used, such as genetic editing, gene therapy, cryopreservation, and 

biobanking [17]. There is also research being done to develop medications that can reduce the 

effects of radiation [18]. For example, the University of California, San Francisco found a drug, 

PLX5622 developed by Plexxikon, that can be used to mitigate memory loss from cosmic 

radiation [19]. PLX5622 was tested on mice and proved effective; mice exposed to radiation that 

received the drug did not show cognitive deficits, while the control group did [19].  

Active radiation shielding is another method that could protect a Mars colony. Active 

radiation shielding creates an electromagnetic field around a spacecraft or habitat to protect from 

radiation like Earth’s magnetosphere [20]. Rather than mitigate the impact of radiation, the field 

diverts particles so that they never hit the spacecraft. A key aspect of this concept is making sure 

the field can divert the particles, but also not harm the astronauts. Electrostatic shielding creates 

a large electric field around a habitat. It is relatively lightweight, and there are no major 

physiological issues from humans in electrostatic fields. However, their voltage is limited, which 
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limits the energy level of particles that can be deflected. Magnetic shielding generates a large 

magnetic field around the spacecraft, which produces no current and can protect against all 

radiation levels. Unfortunately, negative physiological affects exist for humans in strong 

magnetic fields. To counteract this, the design would have to contain a “habitable area” within 

the magnetic field where the field is weak so that astronauts could live in that area. Plasma 

shielding consists of a mass of ionized particles in electromagnetic fields that deflect charged 

particles. This shielding is the most lightweight and uses the least power; however, it is still in 

the experimental phase and needs significant research and testing before it could be considered 

for a Mars mission.  

5.2. Food and Water 

Previous human space exploration missions have been short in duration or close to Earth, 

which eliminated the need for long-term independent food and water solutions. Trips to the 

moon only lasted about a week, so adequate consumables could be brought in the spacecraft 

without adding too much mass. Although astronauts live on the ISS for long durations of time, it 

is close enough to Earth that it can be resupplied with food and other necessities several times 

per year. Contrarily, a crewed mission to Mars would be long in duration and far from Earth, so 

bringing all needed food or performing frequent resupply are not viable options.  

Humans generally need between 1500 and 2000 calories per day; however, this varies 

based on metabolism, exercise level, temperature, and other factors [21]. Some people estimate 

that each astronaut should be allocated approximately 3000 calories a day due to the intensive 

responsibilities of crew members and different environment of Mars [21]. Currently on the ISS, 

each meal (including packaging) weighs about 0.83 kilograms [41]. At this level, a four-crew 

three-year mission to Mars where astronauts eat three meals a day would require over 10,866 

kilograms of food to sustain them [41]. Even if packaging and calories could be somewhat 

decreased, the mass is still unreasonably high. It would cost an estimated one billion dollars per 

person per year to send food from Earth to Mars, which is unsustainable, especially for a large 

human colony [22].  

However, for initial missions, some food will need to be brought from Earth until a 

sustainable food system is implemented. Astronaut food must be nutritious, and a major concern 

is that food sent from Earth will lose its nutritional value over time [23]. NASA has partnered 
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with the US military to evaluate how to preserve the nutritional value of foods over time, as this 

is a problem with food storage for both astronauts and military troops. In addition to nutrition, 

another important aspect of an astronaut’s diet is diversity of the menu. “Menu fatigue” is a 

studied phenomenon that occurs when people become bored with their food options because the 

menu lacks variety [23]. This causes people to eat only enough to survive, which will make them 

weak and unable to perform necessary job functions. On the ISS there are 200 menu options; 

however, not all of these options can survive the duration of a Mars mission. Because of the cost 

it would take to send food from Earth to Mars, as well as the shortcomings in nutrition and 

variety, it is essential for the long-term presence of humans on Mars that astronauts learn to grow 

their own food.  

Many challenges come with farming on Mars, which researchers are currently working to 

overcome. Mars only receives about half the sunlight that Earth does, which presents problems 

for many plants [21]. Two potential solutions are to provide extra artificial lighting for the plants, 

or choose plants that are able to grow with less sunlight. The Martian atmospheric pressure is 

another problem for plants, since it is extremely low at only .6% of Earth’s atmospheric pressure. 

Pressurized greenhouses can be used; however, it is difficult to contain high pressures, so 

growing plants in a lower pressure is a more practical option [21]. Plants can grow regularly in 

one tenth of Earth’s atmospheric pressure, but considerations must be made for the Martian 

farmers that will be exposed to these conditions. Wearing a spacesuit while farming is not ideal, 

and preferably farmers will not need any protection in the greenhouses, so an appropriate 

atmospheric pressure should be chosen. The Armstrong limit is the lowest pressure the human 

body can withstand before our blood starts to boil, and it is about 6.6% of normal atmospheric 

pressure (6.3 kPa) [21]. Some recommendations say that an atmospheric pressure 50% of 

Earth’s, which is about that of Mount Everest, would be a good compromise. This would make 

the greenhouse’s pressurization closer to Mars’ atmospheric pressure, enable plant success, and 

provide enough pressure for farmers to work comfortably, however research is still being 

conducted to find the optimal atmospheric pressure [21].  

Controlling the carbon dioxide (CO2) levels in a greenhouse also pose a problem for 

Martian farming. In a closed greenhouse environment, plants deplete CO2 levels, so CO2 

constantly has to be added. Fortunately, the Mars atmosphere consists of 95% CO2, so this CO2 
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can be harnessed and added to the greenhouse as needed.  For reference, normal CO2 levels on 

Earth are 300 – 500 parts per million (ppm) [21]. However, studies have shown that plants grow 

better with increased CO2 levels. A graph from a paper studying how potatoes grow in different 

CO2 levels is shown below [24], which reveals that potatoes have the highest stomatal 

conductance at a CO2 level of 10,000 ppm followed by 400 ppm and then 100 ppm.  

 

 

 

 

 

 

 

 

 

 

Although elevated levels of CO2 increase plant performance, consideration must be 

shown for the farmers who will work in these greenhouses. Humans can handle CO2 levels of up 

to 10,000 ppm (1% CO2) before they start feeling dizzy or lightheaded, and up to 20,000 ppm 

(2% CO2) before they experience difficulty breathing [21]. Concentrations of CO2 become 

completely toxic at 50,000 (5% CO2) [21]. These are upper bounds for what humans can survive 

in, so levels should be kept lower than 10,000 ppm. This paper suggests that 1500 ppm is a 

reasonable level for the plant life to thrive and farmers to survive [21]. However, farmers 

spending long durations of time in the greenhouses should still use breathing gear to prevent 

negative long-term effects of increased CO2 exposure [21]. Oxygen levels in greenhouses are 

also a concern, not only because they can gradually kill humans, but also because they increase 

fire risk [21]. The Apollo 1 fire was a result of the pure oxygen environment in which the ground 

test was conducted, which led to future ground tests being conducted in a nitrogen-oxygen mixed 
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environment [25]. According to OSHA, air composition should have between 19.5 and 22% 

oxygen [21]. When higher oxygen levels are present, more nitrogen is needed to counter these 

levels, which may not be available in large quantities on Mars [21]. A potential solution is to 

filter out the oxygen; however, currently oxygen cannot be filtered out without also losing 

nitrogen [21].  

 Growing plants in Mars’ gravity, which is 38% of Earth’s gravity, also poses a problem 

for Martian farming. On Earth, plants use gravity to orient themselves, so some plants may be 

unable to grow correctly if they cannot orient themselves under Mars’ lower gravity [26]. Studies 

are being performed on the ISS to determine how plants grow in microgravity, although we have 

not been able to test how plants grow in the 38% gravity on Mars. However, the German 

Aerospace Center (DLR) has developed a greenhouse satellite, Euglena and Combined 

Regenerative Organic-Food Production in Space (Eu:CROPIS), that will be deployed in 2018 to 

study how plants grow under different gravity conditions [27]. Eu:CROPIS will simulate a 

different gravity by rotating about its longitudinal axis while orbiting in LEO at 600 km. It will 

simulate the moon’s gravity, 16% of Earth’s, for the first six months, and for the latter six 

months it will simulate Mars’ gravity, 38% of Earth’s. Inside Eu:CROPIS, microorganisms will 

fertilize, protect, and provide oxygen to tomato seeds, which will be grown in Earth’s 

atmospheric pressure under LED lights with a day/night rhythm [27]. Scientists are hopeful that 

data from this experiment will help them better understand the future for farming on Mars.  

 Plants grown on Mars will most likely need to be contained within a greenhouse, because 

no known plants can survive the Martian cold temperatures, low pressures, and radiation 

exposure [28]. Even within a greenhouse, a major problem is the absence of a soil with organic 

materials on Mars. Instead, Mars contains regolith, which consists of volcanic rock and some 

toxic chemicals [29]. Since it would be too expensive to bring soil from Earth, research is being 

conducted to evaluate how plants can grow in Mars regolith, or how this regolith can be 

enhanced to better support Martian farming [29].  

 North Carolina State University wants to utilize gene splicing to add genes from 

extremophiles to plants, in order to make them better able to survive the Martian environment 

[28]. These researchers performed a proof of concept experiment by inserting a microbe into 

tobacco cells, and next they want to provide plants a gene for cold tolerance. Making plants more 
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resistant to adverse conditions such as cold temperatures and draught can also benefit plants on 

Earth. NASA Kennedy Space Center and Florida Tech Buzz Aldrin Space Institute performed a 

30-day experiment on how crops grow in Martian soil [29]. They tested how lettuce grew in 

Earth potting soil (control group), Martian-like soil (simulated group), and Martian-like soil with 

added nutrients (enhanced simulated group). The simulated group grew some of the lettuce, but 

only half as many survived as in the control group. The lettuce tasted the same, but had longer 

germination rates and weaker root systems. The study is now looking at what added nutrients 

will yield the best results.  

Researchers published a paper in journal PLOS ONE in 2014 that studied how plants can 

grow in simulated Martian soil, simulated lunar soil, and Earth nutrient-poor soil [30]. Simulated 

Martian soil was produced from Hawaiian volcanic ash, based on information from the Viking 

lander and Pathfinder rover. The study grew tomatoes, wheat, cress and mustard in simulated 

Martian soil for 50 days. Of the plants grown in the Martian simulated soil, 79% of each were 

still alive after 50 days. Of the plants grown in lunar simulated soil, the majority were dead after 

50 days. Below is a graph of the performance of crops grown in Martian soil [18]. 

 

 

 

 

 

 

 

 

 

Although many other problems still need to be solved before food can be grown on Mars, the 

success of crops in Martian regolith proves promising for future Martian farming.  
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A certain type of life, methanogens, have the potential to live in Martian conditions 

without a greenhouse. Methanogens are microorganisms that produce methane from carbon 

dioxide, hydrogen, and water. They do not need oxygen, organic nutrients, or light to survive, 

which is why scientists believe they may be the ideal species to live underneath the ground on 

Mars [31]. The University of Arkansas performed a study in 2002 that demonstrated three of four 

tested strains of methanogens successfully grew in Martian simulant with the presence of water 

[32]. A more recent study by the University of Arkansas tested methanogens in the low pressure 

that they would experience on Mars, and the methanogens survived after being in low pressure 

[33]. The University of Arkansas has also previously found that certain species of methanogens 

survived in Martian freeze-thaw cycles [33].  

Other creative ideas for farming include putting astronauts on Phobos, one of Mars’ 

moons, prior to Mars in order to assist with the Mars mission34. Phobos is easier to land on 

because it does not have an atmosphere. A Martian surface station could be constructed while the 

crew is on Phobos and has a great view of Mars’ surface. Another idea is to place many 

inflatable greenhouses on Phobos that will grow crops for the Mars astronauts. When needed, 

this food could be deployed down to the Mars’ surface. Similarly, greenhouses could be 

deployed in interstellar space, much like Eu:CROPIS, to begin growing plants on the journey to 

Mars. Growing food in space would reduce the mass needed to launch from Earth, since only 

seeds would need to launch rather than full-grown crops. Another idea is to integrate 

greenhouses into the crew’s habitat. This would add scenic and familiar views to help with 

psychological stresses, as well as provide oxygen for the astronauts.  

A more aberrant idea to enable Martian farming involves terraforming Mars or 

compressing the Martian atmosphere to create a friendlier environment for plants. Heating up the 

atmosphere would release carbon dioxide that could increase the atmospheric of Mars and create 

atmosphere. The terraforming process can be modeled and explained with the following 

equations [35]. 

First, the mean temperature of the Mars surface can be represented as a function of its 

atmospheric pressure where S is the solar constant, TBB is the black body temperature of Mars 

213.5K, and P is the pressure of Mars in bar: 

𝑇𝑚𝑒𝑎𝑛 = 𝑆0.25 ∗ 𝑇𝐵𝐵 + 20 ∗ (1 + 𝑆) ∗ 𝑃0.5 
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Next, we can find the temperature at the pole where ΔΤ is the difference between the 

mean temperature and the temperature at the pole, which is about 75K for S=1: 

𝑇𝑝𝑜𝑙𝑒 = 𝑇𝑚𝑒𝑎𝑛 −
∆𝑇

1 + 5𝑃
 

A rough approximation can be made for the maximum temperature on Mars:  

𝑇𝑚𝑎𝑥 = 𝑇𝑒𝑞𝑢𝑎𝑡𝑜𝑟 = 1.1 ∗ 𝑇𝑚𝑒𝑎𝑛 

The global temperature distribution can then be given, where Lat is the latitude:  

𝑇(𝐿𝑎𝑡) = 𝑇𝑚𝑎𝑥 − (𝑇𝑚𝑎𝑥 − 𝑇𝑝𝑜𝑙𝑒) ∗ sin1.5 𝐿𝑎𝑡 

To represent the CO2 pressure as a function of the temperature, we can use the approximation of 

the vapor pressure curve for CO2. The results are shown in the graph below [35]. 

𝑃 = 1.23 ∗ 107 ∗ 𝑒−3168/𝑇𝑝𝑜𝑙𝑒 

 

The current state of Mars is represented by point A, which has a 6 mbar pressure and 

147K temperature at the pole. The other equilibrium point is represented by point B, however it 

is unstable. If the temperature of Mars were increased just 4°K, points A and B would move 

closer together until the pole temperature curve would lie entirely above the vapor pressure 

curve. Once this occurs, Mars would experience runaway greenhouse heating that would cause 

the pole to evaporate and create an atmosphere. The current atmospheric pressure on Mars is 6 



21 

 

mbar, and it is estimated that the atmospheric pressure of Mars could reach about 400 mbar, 

which is much closer to Earth’s 1013.25 mbar atmosphere.  

In order to produce this 4°K temperature increase, Elon Musk suggests dropping 

thermonuclear weapons on the Martian poles, which would release the carbon dioxide ice to 

thicken the atmosphere and warm up the planet [13]. Another method involves using solar sail 

orbiting mirrors, which would increase the light that hits Mars and thus increase the temperature 

on Mars. However, a mirror on the order of a 100 kilometer diameter would be needed to 

accomplish this level of heating [36].  Finally, redirecting the path of an ammonia asteroid to hit 

Mars is another suggested way to increase Mars’ temperature. The outer solar system is thought 

to have many of these ammonia asteroids with a mass large enough to release up to 10TW of 

energy if impacted with Mars [35]. Although mathematically feasible, there is much uncertainty 

in if ammonia asteroids are actually prevalent in the solar system and how difficult it would be to 

redirect their orbit into Mars. Moreover, all these options are drastic measures that would cause 

much destruction to Mars that would likely damage its unique environment and geology. Much 

consideration should be taken before deciding to perform one of these actions that can likely not 

be reversed.  

Water 

Since the discovery of water on Mars in 2012, Mars has been viewed as a probable home 

for past life, present life, and future life. Many robotic missions to Mars have suggested or 

confirmed the presence of ice on Mars, and it was previously believed that ice was only present 

far beneath Mars’ surface. However, 2018 NASA images show an abundance of underground 

bands at mid-latitudes that begin only three to six feet under the surface, which scientists believe 

to be ice [71]. Similarly, data from the Mars Reconnaissance Orbiter showed the presence of a 

water ice reservoir larger than New Mexico at Utopia Planita [76]. This ice is not bound to 

minerals like much of the Martian ice is, so it should be relatively easy to access and utilize. 

Extracting this ice for use by humans could enable mankind to have a sustained presence on the 

red planet by providing the resources to make drinking water, breathable air, and methane.  

Although valuable, this ice still needs to be extracted and produced into these useful 

resources which presents a challenge. Water cannot be stable in the liquid form because of the 

low temperatures and low pressures on Mars, making its production and storage a challenge. It 
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either exists as ice on or under the surface, or as water vapor in the atmosphere, and this H2O 

also contains many toxic perchlorates [37].  Many researchers are finding ways to extract and 

purify the water from Martian soil, ice caps, or atmosphere to make it usable for humans. 

However, this is a difficult, timely, and costly process, so it will be necessary to recycle the 

extracted water in order to meet the water needs of humans.  

One method to extract the water from Martian soil, although not very efficient, is to 

compress CO2 and put it over the Martian soil [38]. The gas will collect some of the water, and 

once it is allowed to expand it will release clean and purified water [38]. Another method is to 

collect saturated soil and heat it to 500 degrees Celsius, and the water will then convert to steam. 

This steam could be collected and condensed, producing clean and purified water. In addition, 

colonists can desalinate, potentially through reverse osmosis, the areas on Mars that are predicted 

to have seasonal flows of liquid water. In this scenario, the Mars colony would need to be close 

to one of these water flows. Another way to retrieve water is from the Mars ice caps, where 

significant reservoirs of water exist; the northern ice cap has about 1.6 million cubic kilometers 

of ice [38]. Studies suggest mining the ice at the poles and transporting it with autonomous 

vehicles to the colony, where it can be purified and turned to liquid for human colonists [38]. 

Mars One plans suggest extracting water from the soil by evaporating and condensing it. They 

allot 50 liters of water for each astronaut per day and recommend that most water be recycled to 

reduce the amount of water extraction from the soil [40].  

Regardless of how water is retrieved on Mars, the water will need to be recycled 

efficiently in order to support a large human colony. Currently ECLSS systems on the ISS are 

only 80% efficient, which will not be sufficient for a Mars mission. Many studies are looking to 

bring this efficiency closer to 99%, which is what will be needed for a long-term space 

exploration mission [39]. To ensure astronauts will have ample water, water can be stored in 

tanks from old rockets sent down to the Martian surface, and a certain amount of purified water 

may be required to be on the surface before the crew arrives. Moreover, water from mining of 

asteroids near Mars could prove useful if it is harder than scientists expect to mine water from 

the Martian soil.  

Although much research needs to occur prior to farming on Mars and extracting water 

through ISRU capabilities, many important steps are underway, including evaluating plant 
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growth in Mars soil, determining how plants will grow in partial gravity environments, and 

developing drills to mine water. The potential solutions researchers around the world are 

working on may one-day enable space farming to become reality.  

5.3. Lower Gravity 

Microgravity presents many problems to astronaut health, which makes it a significant 

danger for the transit from Earth to Mars. Bone loss and bone demineralization are known 

problems for astronauts, as bone loss in space occurs at a rate of over 1% per month [42]. This 

causes a decrease in bone density and strength and can lead to osteoporosis. Bone 

demineralization increases the risk of bone fractures and kidney stones.  

Cardiovascular changes are also a significant risk to astronauts [43]. The presence of 

gravity causes blood pressure to be lower above the heart and higher below the heart. Without 

gravity, bodily fluids are disrupted and blood pressure remains about the same throughout the 

whole body, which causes changes in cardiovascular physiology. For example, increased blood 

pressure to the eyes can cause vision problems for astronauts [43]. The neurovebistular system 

controls the human balance, vision stabilization, and orientation. Microgravity prevents the body 

from knowing its orientation and direction, which can disrupt the neurovebistular system and 

lead to disorientation [43]. Finally, circadian rhythms will be affected because there is no day 

and night cycle on the transit to Mars. Sleep loss may lead to fatigue and decreased performance 

of crew [43].  

Artificial gravity presents a solution to the dangers that a microgravity environment poses 

to the crew and systems. Artificial gravity can be generated by providing the transit vehicle with 

an acceleration equal to Earth’s gravity [44]. If the linear acceleration of the spacecraft equals 

9.8 m/s2, the astronauts would experience a force equal to that of Earth’s gravity. However, such 

a high linear acceleration cannot be maintained for a long duration spaceflight. Spinning the 

spacecraft to generate a centripetal acceleration can provide the artificial gravity by spinning at a 

constant rate, which is a more reasonable task. The force centrifugal force generated on an object 

can be displayed as a function of the mass of the object, linear velocity of the object, and radius 

of the motion [44]:  

𝐹𝑐 =
𝑚𝑣2

𝑟
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Linear velocity can be written in terms of angular velocity (radians per second) and the radius of 

the curve:  

𝑣 = 𝜔𝑟 

Then, the centrifugal force can be written as:  

𝐹𝑐 = 𝑚𝜔2𝑟 

By setting this force equal to the force of gravity, the relationship between the rate of rotation, 

radius, and gravity can be found:  

𝐹𝑔 = 𝑚𝑔 

𝐹𝑐 = 𝐹𝑔 

𝑚𝜔2𝑟 = 𝑚𝑔 

𝜔 = √
𝑔

𝑟
  

In this equation, the angular velocity is expressed in radians per second. However, revolutions 

per minute is a more convenient way to measure angular velocity. Radians per second can be 

converted to rotations per minute using simple conversions.  

1 𝑟𝑝𝑚 = 
1 𝑟𝑎𝑑

𝑠
∗

1 𝑟𝑒𝑣

2𝜋 𝑟𝑎𝑑
∗

60 𝑠

1 𝑚𝑖𝑛
≈ 9.55

𝑟𝑎𝑑

𝑠
  

Angular velocity in rotations per minute (rpm) can be expressed as Ω, and the equation can be 

rewritten as:  

Ω = 9.55√
𝑔

𝑟
  

𝑟 = 91.2
𝑔

Ω2
 

Substituting in Earth’s gravity for g, the relationship between the radius of the spacecraft and 

angular acceleration can be shown.  
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This graph shows the angular acceleration that is needed to generate Earth’s gravity, as a 

function of the spacecraft radius, ranging from 5 meters to 300 meters. At 5 meters, the angular 

velocity of the spacecraft would need to be about 14.5 rpm to generate 9.8 m/s2, and at 300 

meters it would need to be just under 2 rpm. Based on this graph, a reasonable size spacecraft 

would be about fifty meters. Fifty meters corresponds to a reasonable angular velocity, and it has 

a good return on investment compared to higher radius spacecraft.   

Centripetal acceleration will produce gravity that is not entirely Earth-normal. Using a 

higher rpm distorts the path of objects dropped much more than lower rpm levels of the same 

radius [45]. In addition, some studies suggest that the rpm needs to be below 2 (.21 rad/sec) in 

order to prevent the crew from getting dizzy and sick [46]. This still needs to be confirmed, but 

the case where this is true is shown below:  

𝑟 = 91.2
𝑔

Ω2
= 91.2 ∗

9.81

22
= 223.7 𝑚 
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Using regular centripetal acceleration to achieve Earth’s gravity, a spacecraft that has a 

223-meter radius would be needed. This size spacecraft is extremely large, and most likely 

unfeasible with current technologies.  

However, studies have shown that only about 15% of Earth’s gravity is necessary for 

astronauts to properly orient themselves and to prevent many of the physiological effects that 

come with microgravity [47].  A particular study from PLOS One performed extensive studies 

on ten people with pristine health in order to find the lowest gravity that would be acceptable for 

humans. The 15% they found is very close to the moon’s gravity of 16%; however, it is far 

below Mars’ 38%, which is promising for the upcoming Mars missions. In order to limit the 

difficulty transitioning from transit to the Mars surface, Mars’ gravity could be generated in 

transit so that the astronauts are already accustomed to it upon arrival. Using Mars’ gravity and 

15% gravity in the angular velocity equations, the relationship between angular velocity and 

spacecraft radius can be shown for different gravity levels:  
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Mars’ gravity: 

𝑟 = 91.2
𝑔

Ω2
= 91.2 ∗

3.711

22
= 84.6 𝑚 

15% of Earth’s gravity:  

𝑟 = 91.2
𝑔

Ω2
= 91.2 ∗

1.472

22
= 33.5 𝑚 

A spacecraft that has an 84.6-meter radius and 33.5-meter radius would be needed to 

generate Mars gravity and 15% gravity, respectively. However, these are still very large 

spacecraft.  

A solution that can lower the spacecraft radius without increasing the rpm is to connect 

the spacecraft to a large counterweight, such as a rocket booster or second spacecraft [46]. The 

relationship between the masses of the systems and the distance between them can be observed. 

The center of mass of the system must be at a radius r of 223 meters from the spacecraft.  The 

system relationships can be defined in terms of the mass of the spacecraft (Msc), mass of the 

counterweight (Mcw), the length of the tether (L), and the radius of the spacecraft orbit (r)3.  

𝑀𝑠𝑐𝑟 = 𝑀𝑐𝑤(𝐿 − 𝑟) 
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To rewrite in terms of the unknown, L:  

𝐿 = 𝑟 (
𝑀𝑠𝑐

𝑀𝑐𝑤
+ 1) 

Below is a graph of the length of the tether needed to generate Earth’s gravity, as a 

function of spacecraft to counterweight mass ratio. It can be observed that as the counterweight 

mass approaches infinity, the length of the tether approaches 223 meters, which is the distance 

from the spacecraft to the axis of rotation. It linearly increases as the mass ratio increases, and 

when the masses are equal the tether length is equal to exactly twice the radius. The larger the 

counterweight mass, the shorter the tether.  

 

For Mars’ gravity, the tether is 85 meters as the counterweight approaches infinity, and it 

is 170 meters when the masses are equal. For 15% gravity, the tether is 33 meters as the 

counterweight approaches infinity, and it is 66 meters when the masses are equal. Again, these 

options provide much more feasible options for artificial gravity. 
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Artificial gravity provides a solution to many of the problems of microgravity; however, 

it presents problems of its own. Therefore, only the necessary level of artificial gravity should be 

used in order to prevent astronauts from experiencing negative side effects. Before artificial 

gravity can be seriously considered for a human exploration mission, work needs to be done to 

verify exactly how many rpm humans can handle and what gravity level is acceptable for 

humans. Moreover, for the tether and counterweight option, research should be done on how to 

initiate the spinning motion, how to prevent orbital debris from disrupting the spin, and how to 

choose a tether that is strong but also light. As researchers work to solve these problems, 

artificial gravity will become more practical and may one day be a key aspect of human space 

travel.  

5.4. Robots on Mars 

Robots are a critical aspect of space exploration that continue to create the path for future 

human space travel. There are many reasons why sending robots to space is advantageous for 

society. Robotic missions cost significantly less than human missions, so they provide valuable 

information for a lower cost and lower risk than a crewed mission. This information is then used 

to advise scientists what types of missions are worth pursuing. Robotic missions to Mars during 

the last century have informed scientists of Mars’ atmospheric composition, regolith 

composition, pressure, temperature, and many other qualities that have allowed researchers to 
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more accurately determine the accommodations that need to be made to facilitate human survival 

on Mars.   

The Mariner Missions were the first attempts to learn more about Mars, beginning with 

flybys of the planet. Mariner 4 mission, launched in 1964, provided the first close up photos of 

Mars, as well as information on the solar wind environment [48]. Mariners 6 and 7, launched in 

1969, analyzed the Martian atmosphere and surface with remote sensors, and recorded and sent 

to Earth hundreds of pictures [49]. Mariner 9 was the first artificial satellite to enter Mars’ orbit, 

instead of performing a flyby as previous missions. It observed that a dust storm was 

encompassing the planet, and after the dust storm it captured photos of the Martian surface that 

revealed volcanos, a Grand Canyon, and the relics of ancient riverbeds, as well as close up 

photos of Phobos and Deimos [50].   

The Viking Project, launched in 1975, was the first US mission that safely landed on 

Mars and relayed images of the surface [51]. The landers conducted biology experiments to 

search for the possibility of life on Mars, and they found interesting and unexpected results about 

the nature of the soil and its possibility for life. Rover missions, including Pathfinder, the Mars 

Exploration Rovers, and Mars Science Laboratory, have greatly advanced our knowledge of the 

Martian environment, which has allowed scientists to predict what locations of Mars may contain 

water or life and are thus the most promising to explore [52].   

Less than half of missions sent to Mars have been successful (23 out of 54) due to many 

risks such as launching, navigation, and most dangerously entry, decent, and landing (EDL) [53]. 

Robotic missions do not jeopardize human life, which is why they have been able to push the 

boundaries of space exploration through low cost and high risk missions. Robots can scope out 

dangerous situations that are deemed too dangerous for humans. In addition, they require much 

less maintenance and resources than do humans, so they are less expensive missions. 

Nevertheless, now that there is reason to believe Mars is potentially habitable for the human 

species and there is a better understanding of Martian dangers, we are ready to leverage human 

capabilities to deepen our understanding of the Red planet.   
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Humans versus Robots  

Humans have talents that robots do not, such as advanced thought-processes, innovation, 

adaptability, and versatility. Robots can be programmed to perform functions and react to certain 

circumstances; however, they will not be ready for what they do not anticipate. Humans have the 

unique ability to make quick decisions, which will prove especially critical for a Mars mission 

where the roundtrip communication time lag is up to forty minutes. Rovers generally need to 

wait for commands from JPL that are based on information the robot relays to NASA, which 

adds to the sluggishness of robotic surface missions. Humans’ ability to analyze a situation and 

think quickly will enable faster and more frequent exploration, and it could also save a mission 

that is experiencing a time-sensitive failure. Because of both robots and humans’ special 

skillsets, they will both play a critical role for a Mars mission.  

For a round-trip journey to the surface of Mars with six crew, the estimated consumable 

mass is over 100T, up to 200T [54]. Great energy and fuel savings result from robotic missions 

that do not require consumables, which results in a significant cost difference between a robotic 

and crewed Mars mission. The graph below compares the total cost of the two Mars Exploration 

Rovers (MER) Spirit and Opportunity, with the estimated cost of solely the life support system 

for a crewed Mars mission. This estimation was made in a published paper from NASA Ames 

Research Center and was based on ISS life support costs [55]. The total cost of the MER 

program was $800 million, while this study predicts it would cost over $2 billion just for life 

support on a three year crewed Mars mission. This puts into perspective how costly it is to keep 

humans alive in outer space versus the cost of a robotic mission. Therefore, robotic capabilities 

should be used where possible in order to reduce the number of astronauts to sustain.  
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As in any space mission, it is important to evaluate the risks and consequence for the 

overall mission and its divisions. For missions or activities with a high risk or high consequence, 

it is advantageous to send robotic missions so there is the lowest loss in the event of a failure. As 

demonstrated by the Colombia and Challenger accidents, losing human life is a traumatic 

experience for the entire nation, and it can cause major setbacks for human space exploration 

programs. Therefore, careful consideration should be given as to whether or not a mission should 

involve humans. Activities with risks that have a high likelihood or consequence should be 

performed by robots rather than humans.   

My recommendation for a crewed Mars mission is that robots should be used for the 

following occasions:   

1. Activities with risks that have a high likelihood and/or consequence   

2. Exploring new areas  

3. Routine activities   

Humans should primarily monitor, repair, and give direction to the robots based on 

information they receive and their own critical thinking abilities. Human lives should not be 

endangered to explore new areas, since unknown risks of indefinite danger may be present. 

Instead, robotic lives can be expended to gather information that will let scientists know if an 

area is safe to pursue and whether or not it is worth pursuing. In addition, there is no need for 

humans to perform functions that are routine, such as farming, performing ISRU functions, or 

transporting materials. Although these are most likely not high risk endeavors, it is not necessary 
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for astronauts to expend energy or risk an accident doing monotonous tasks that can be easily 

performed by robots. The optimal use of robotic and human abilities on Mars will create an 

optimal robotic-human interface that minimizes risk, reduces cost, and makes great discoveries, 

which will facilitate the success of a Mars mission.   

Proposed Notional Architecture  

Finding the right balance of human and robotic talents that has the optimal cost and 

benefit will be a critical part of the Mars mission. Robots and humans each have a unique role to 

play in space exploration. Utilizing the right attributes of each will enable the safest, most 

efficient, and most cost effective way to explore space, make discoveries, and uncover our past. 

Analyzing the surface architecture and its components can help reveal where robotic and human 

talents can best be used and show the unique interaction between them. Below is a notional idea 

of the unique roles robots and humans may perform for a Mars mission. This idea aims to 

provide a cost-effective solution by utilizing robots where possible to minimize cost, and using 

humans in areas where robots are insufficient, either due to cost or the inability to replace unique 

human qualities. Note that in all of these systems humans will be responsible for monitoring the 

systems and performing regular maintenance in order to enable the robots to last as long as 

possible.   

i. Habitat  

Ideally, the Mars habitat should be constructed prior to the crew’s arrival on Mars. The 

construction of the habitat can be performed by a swarm of robots moving pieces of the habitat 

into place, or it may be an inflatable habitat deployed after landing on Mars. It may also be a 

combination of those options, with inflatable habitats that are covered in Mars regolith or another 

material for radiation shielding.   

To enable the greatest expansion of the Mars colony, there should be small modular 

habitats that can easily be assembled by robots. Ideally, the robots would not need the guidance 

of humans to perform this assembly. One robotic development that would be ideal for this 

construction are “Termes,” which are a swarm of robots developed at Harvard University [57]. 

The key idea behind this design is that there is no one leader; rather Termes observe the behavior 

of each other and place blocks where they observe a vacant space in the structure. Termes are 
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each programmed to follow a set of traffic rules, and they can perform their individual functions 

without knowing the overall plan or state of the structure. This is also beneficial because if one 

stops working, the others can execute the structure as planned without fear of losing the lead 

Terme.  

Similar to other recent robotic developments, Termes were developed as a proof of 

concept without regard to their efficiency or lifetime [57]. The battery can only last for two to 

three minutes, which would evidently not suffice for a Mars mission. In order for swarm robots 

to be utilized for Mars habitat construction, their power lifespan needs vast improvement. Small 

robots for swarms will likely not be large enough to contain solar cells that could harness the 

sun’s energy, so an efficient power system needs to be developed.   

ii. Transportation   

  Several types of robots will be used to facilitate movement of materials and crew 

members on Mars, including unpressurized rovers, pressurized rovers, and innovative robotic 

developments. Robots can move heavy materials during setup operations, either operating 

autonomously or with crew direction. In addition, rovers or robots can be used to perform setup 

operations prior to the crew’s arrival, including installing the power system, assembling the 

habitat, initiating water production, wiring the surface infrastructure, and planting seeds.   

Many unpressurized rovers have been used on the lunar and Martian surfaces, and would 

prove beneficial for transporting materials. For example, the Apollo Lunar Roving Vehicle could 

carry a 490-kilogram payload on the lunar surface, and it traversed up to 20.1 kilometers [66].  

Improvements should be made to minimize weight and cost for a future Mars mission. 

Unpressurized rovers also have the ability to advance scientific exploration by performing their 

own scientific missions to gather data, such as Mars rovers have for decades. It would be 

beneficial to have astronauts on Mars to send commands to these rovers since it would eliminate 

the communication lag time that there is on Earth. It currently takes upwards of forty minutes for 

rovers to send data from Mars to Earth so that scientists can analyze the data and then send back 

instructions for the rover’s next movement. Humans on Mars could provide almost immediate 

direction for the rovers.   
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Pressurized rovers will be utilized on Mars as well, in order to transport astronauts over 

long distances. Specifically, NASA’s Space Exploration Vehicle (SEV) can support astronauts 

for up to two weeks in a pressurized rover and can bring astronauts more than 125 miles [65]. 

This would enable humans to travel much further than they could in an EVA suit.   

In addition to rovers, a four-pound Mars helicopter is currently in development that will 

travel to the red planet on the Mars 2020 rover [70]. It will autonomously begin flight and send 

back images and data to scientists on Earth [53]. Flying a helicopter on Mars is vastly different 

than on Earth for two primary reasons: The Martian atmosphere is only 1% of Earth’s 

atmosphere, which makes gaining lift difficult, and Mars’ gravity is 38 percent of Earth’s, so less 

force is required to overcome the downward gravitational pull. The force from a helicopter can 

be modeled below [70]:  

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 =
 𝜌 ∗ 𝐴 ∗ 𝑣2

2
= 𝑚 ∗ 𝑔 

Where:  

ρ = air density  

A = rotor area 

v = speed the air is pushed down 

m = mass of the helicopter  

g = Mars’ gravitational acceleration 

Because the Martian atmosphere is so thin, the rotor area and/or air speed must be high to 

compensate for the low air density. The Mars helicopter’s blades will rotate at 3,000 rpm, which 

is ten times faster than the typical blade rotation rate of helicopters on Earth. This experiment is a 

proof of concept to determine whether or not helicopters on Mars are a viable technology. If 

successful, helicopters may be the next robotic systems to conquer Mars, and they could 

facilitate in a human Mars exploration mission.   

  In addition, robotic devices can assist humans by improving their strength, agility, and 

overall athletic ability. The “Exoskeleton” is a development for the Army that allows soldiers to 

carry much more weight with less energy [58]. Soldiers are up to twenty-seven times more 

productive using this technology, and it allows them to carry more loads for longer periods of 
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time. This could enable astronauts on Mars to carry more supplies, thus helping the 

transportation robots. Humans are more agile and adaptable than robots, so they can reach areas 

the robots may not be programmed to reach. Leveraging this unique human ability with robotic 

strength can create a superhuman with the ability to excel on Mars. Similar to the Termes and 

other recently developed robotic devices, the power system of the Exoskeleton needs to be 

refined before it is suitable for a Mars mission.   

iii. Power System  

Thorium and uranium are both viable power systems for a Mars colony because of their 

great energy yield per mass and low waste production. Uranium is a fissile isotope that yields 

large amounts of energy when split. Nuclear reactors on Earth are made from uranium, and there 

is an abundance of it on Earth. However, uranium produces harmful radiation as well as 

dangerous waste from which bombs can be made. It also has to be enriched prior to use for a 

nuclear reactor.  

Thorium presents a safer option than uranium because its fuel is more stable than 

uranium-based fuels, and it does not produce as much nuclear bomb waste [59]. However, 

thorium reactors have not been explored and developed nearly as much as uranium reactors, 

primarily because uranium reactors produce waste that is used to make nuclear weapons [59]. In 

addition, they are not a fissile material so they need U-233, U-235 or another fissile material to 

ignite, which makes designing them difficult [61]. Nevertheless, thorium is still an appealing 

option; it has a longer half-life and is much more abundant, and it is estimated that the nuclear 

energy that can be made from all the thorium on Earth is greater than that of all the oil, coal, and 

uranium in the world combined [60]. Thorium nuclear technology needs to be greatly developed 

and tested prior to use during a Mars mission.   

Regardless of the specific type of nuclear power, the first system that should be deployed 

on the surface is the power system, as it is the source of energy for all the other systems. Robots 

should be entirely responsible for the setup and maintenance of the nuclear reactor because of the 

harmful effects and dangers it poses to humans. Robots can autonomously dig a hole and bury 

the nuclear reactor in it, or build up a wall around it to help protect crew members from nuclear 

radiation. Then, robots can connect wires to the other systems on the surface, such as the 

greenhouse, water production, and habitat. RoboClam is a device developed after razor clams, 
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which work by contracting their bodies to develop a vacuum that fluidizes the soil thus making it 

easier to dig through [67]. MIT and the University of Maryland believe that these clam-like 

digging devices can help with laying down submarine data cables [67]. Devices such as the 

RoboClam could potentially assist with digging through Mars regolith and laying down power 

cables for a Martian surface architecture. However, studies would have to be done on how the 

RoboClam would behave digging through Mars regolith in the Martian environment and how 

well it could handle radiation exposure. These unknown dangers could prove fatal to small robots 

that function flawlessly on Earth.   

iv. Food  

Farming on Mars is a challenge that is best suited for both robots and humans. Similar to 

Earth, much of the Martian farming can be automated including the planting, watering, and 

lighting of the plants. There is no need for astronauts to waste time performing these tasks. 

However, botanists will be greatly needed on Mars to ensure successful farming, particularly 

because it will be so new on Mars. Humans will be responsible for monitoring the plant growth 

and making necessary adjustments to soil nutrition, water levels, light levels, and other important 

variables that affect plant growth.   

  Harvest CROO Robotics is an excellent example of what may one day govern farming on 

Mars. Their robot can pick eight acres of strawberry plants in a single day, which would 

normally require 30 human pickers [62]. Tons of food will be needed for a large Mars colony, so 

robots dominating farming will allow the humans to focus on more important colony roles. 

Similarly, Vision Robotics has developed several farming robots with functions including 

thinning, weeding/spraying, mapping, and estimating crop loads [63]. These robots can help 

maintain the greenhouse instead of humans. In addition, the mapping and estimating robots can 

assist astronaut farmers in determining how to improve the performance and efficiency of the 

farm [63].   

v. Water  

Water from the soil will be extracted and purified using ISRU capabilities. Recently, 

water was estimated to be within a few feet of the Martian surface, which would make water 

mining a viable option [64]. Drilling may be performed by instruments such as the Tartan Ice 
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Drilling System developed by Carnegie Melon students, which autonomously drills for ice, 

vaporizes it, and condenses it so that it is clean and ready for astronauts to consume [64]. This 

water will then be stored in tanks and delivered to the habitat, greenhouse, and other areas 

needing water. The water used in these systems will then be recycled to decrease the amount of 

water that needs to be drilled.   

vi. Science   

Science exploration studies have only been performed by robots thus far, but human 

talents can be leveraged to accelerate and advance these discoveries. Robots should make 

preliminary findings and excursions on Mars. A swarm of Martian robots could be sent out, and 

the information could be relayed back to the astronauts in the habitat. The astronauts can then 

analyze the information and take note of areas that may be scientifically interesting so that 

astronaut EVAs can be planned to these areas. Places that are dangerous will also be noted, so 

that they can then be further explored by robots suited for the environment.    

“Humanoid” Robots  

Robots are increasingly gaining human abilities, such as ones produced by Boston 

Dynamics, which developed a Humanoid robot called Atlas. Atlas is six feet tall, weighs 330 

pounds, and has the ability to run, jump, and do backflips [68]. Applications of Atlas include 

performing dangerous tasks, such as going to a nuclear reactor during a meltdown, shutting off 

an oil spill, or putting out wildfires [68]. A robot like Atlas designed to investigate dangerous 

areas would be greatly beneficial for a Mars mission. However, a lighter robot with the ability to 

make quicker movements and decisions without direction from humans is what is needed next to 

be sufficient for a Mars mission.   

  In 2017, Worcester Polytechnic Institute (WPI) was a finalist for the NASA-sponsored 

Space Robotics Challenge (SRC), which aimed to develop robotic capabilities of a humanoid 

robot to help astronauts during the Mars mission. To qualify, WPI developed a rover that could 

accurately report lights in a simulated environment and could press a button to open a door and 

go through that door without falling. For the virtual competition, teams had to perform tasks that 

would help save a Mars mission: align a communications dish, restore a solar array, and fix a 

habitat leak [69]. The WPICMU team received seventh place in the finals with their robot 
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WARNER (WPI’s Atlas Robot for Nonconventional Emergency Response). Much work like this 

is being done to develop robots capable of performing dangerous and emergency procedures, but 

refinements in their autonomy and translation from an Earth to Martian environment need to be 

made prior to traveling to Mars. In addition, the power systems of many of these robots need to 

be developed and tailored for Mars to make them more self-sustaining or longer lasting.   

Graphical Depiction  

Below is a graphical representation of the roles humans and robots may play in a Martian surface 

architecture.   
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6. Mars Outpost Location 

The location of the Mars outpost is an important aspect of the mission that will determine 

the landing characteristics, access to resources, and proximity to scientifically interesting 

features. Over the past few years, scientists along with members of the community have 

performed trade studies of potential colony locations where humans may first live on Mars. The 

first obstacle to living on the Martian surface, and arguably the most dangerous aspect of space 

travel, is entry, descent, and landing. Therefore, a landing site should be chosen that facilitates 

the EDL process. A flat, 25 square-kilometer area is desired to provide enough landing area for 

other spacecraft to land supplies and future missions [72]. The terrain should not be rocky or it 

could damage the spacecraft, and it should not be too soft since the spacecraft could descend into 

soft Mars regolith and become stuck [72]. In addition, a landing site low in altitude is considered 

advantageous because there is more time and atmosphere for deceleration. Another important 

characteristic of a landing site is its resources, specifically water access. Water has a wide range 

of uses, such as drinking, radiation shielding, oxygen production, methane production, so close 

proximity to a water source is high priority.  

Proximity to scientifically interesting areas is also another important aspect, as the goal is 

to learn more about Mars and the universe. Close to water sources is thought to be the best place 

to discover past, present, or future potential for life. Other scientifically interesting areas include 

near craters, canyons, and outcrops [72]. Another debate is whether to settle near the equator or 

at a higher latitude. Water is more easily accessible at high latitudes; however, cold winter 

temperatures and absence of sun during winter months would make living in these areas very 

difficult [72]. Finally, scientists are inquiring as to whether it is better to settle in a location that 

rovers have already explored or an entirely new area. Sending humans to an area where robots 

have been would mitigate risk and increase probability of success; however, the argument can be 

made that exploration should occur in a new area of the planet to achieve a more complete 

understanding of the Martian environment. Potential colony locations on Mars have been 

assessed based on these criteria.  

Southern Meridiani Planum 

The Meridiani Planum, site of the Opportunity rover, is appealing for many reasons. It is 

a large and flat surface that would be perfect for landing and establishing a human settlement 
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[73]. The possibility for water lies in mining sulphate-rich sediments and heating them to release 

water to be used by the settlement74. The Meridiani Planum is also scientifically interesting; it is 

home to very old Martian rocks that date back to a time when Mars and Earth were similar [73]. 

Moreover, there are ancient salt lake deposits, various craters, and river valleys that are of 

interest to scientists [73].  

Gale Crater  

Gale Crater, home to the Curiosity rover, is another potential location for a human 

outpost. Similar to the Meridiani Planum, scientists are familiar with the area from data and 

images Curiosity has relayed to Earth. The landing site would be at the center of the landing 

ellipse for Curiosity, which has already been thoroughly assessed and analyzed, as well as 

proven through Curiosity’s successful landing [75]. This landing site is located at a very low 

altitude, which is advantageous for entry, decent, and landing operations due to the increased 

atmosphere to help decelerate the spacecraft. It is located at an equatorial altitude, so the 

temperatures would be moderate and the sun pattern would be similar to Earth’s. Gale crater has 

many scientifically interesting areas including evidence of a lake, indigenous Martian carbon, 

and confirmed habitable environments [75]. Unfortunately, water will most likely not exist near 

the surface as in other Martian locations; however, water could be extracted from minerals and 

the atmosphere.  

Protonilus Mensae 

Protonilus Mensae is a high-latitude area not previously explored with rovers that has an 

abundance of ice in glacier [72]. This water could be home to past or present life on Mars, and it 

would also be beneficial for sustaining the astronaut colony. Protonilus Mensae is very close to 

Moreux Crater, an area that holds scientifically interesting geology [75]. Although there is an 

abundance of resources and regions of interest, it would be challenging for astronauts to survive 

in this high latitude. The sun would be absent for months during the winter, and the cold 

temperatures would threaten the survival of the astronauts and space systems. A trade study 

would need to be conducted as to whether or not the area is worth designing the mission to 

survive these harsh conditions.  

 



42 

 

Noachis Terra – Russell Crater 

 Russell Crater, located inside Noachis Terra, is a scientifically interesting area that could 

provide a suitable landing site on Mars. Russell Crater is home to linear gullies, a feature first 

observed by the Mars Reconnaissance Orbiter that has puzzled scientists for over a decade [78]. 

Linear gullies are paths with raised banks along the sides, similar to water flows on Earth. Some 

gullies end with a pit at the end, which scientists believe may be due to a block of ice traveling 

down the gully and sublimating at the end [78]. Sending humans to the Russell Crater would 

provide insight about what causes linear gullies. If ice does exist in these gullies, it could be used 

to supply water for a human colony. Russell Crater is about 134 kilometers in diameter and is at 

a low altitude, which would provide a sufficient landing site for spacecraft [79].  

The Southern Meridiani Planum, Gale Crater, Protonilus Mensae, and Noachis Terra are 

circled in the figure below [77].   
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7. Conclusions/Moving Forward 

Human space exploration has evidently provided many benefits to society, and space 

travel continues to offer novel advancements for humanity. These advancements are in areas 

such as atmospheric modeling, medical technologies, and household chores. A Mars colony 

would produce many other technologies with profound applications here on Earth. However, 

many technical challenges must be overcome before a human Mars colony is feasible. These 

challenges include equipping humans and systems for radiation exposure, overcoming the lack of 

plant necessities on Mars, surviving in a low-gravity environment, integrating robotic and human 

capabilities to complete tasks and solve problems, and choosing a Mars outpost location. Ideas 

such as artificial gravity, in-space gardens, and a human-robotic interaction were analyzed and 

assessed as potential solutions for these challenges. Moreover, factors for choosing a landing 

location were identified and potential landing sites were assessed. Engineers and scientists 

continue to undertake these challenges, and many advancements have been made prove these 

obstacles are surmountable. Based on this progress, further research and recommendations can 

be made that will help further prepare for the journey to Mars.  

There is still much work to be done in preparation for a journey to Mars. Future IQP 

teams may propose solutions for additional challenges a Mars mission will face, such as dust 

mitigation and long-lasting power systems. They may wish to delve deeper into one specific 

challenge and develop a well-thought out and detailed solution for the chosen issue. In addition, 

a more detailed plan of how ISRU capabilities will assist in the Mars mission, such as through 

asteroid mining, should be completed.  

The great benefits to humanity that space exploration has provided justify the time, effort, 

and risk that have been invested. Overcoming the challenges that hinder long-term human space 

exploration is not an easy feat, but has the potential to deliver great advancements to society. By 

building on the significant work that has already been accomplished, the scientific community 

can continue to solve the challenges space colonization presents in order to bring humanity 

closer to Mars.  
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