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ABSTRACT 
 

The effects of molecular weight (Mw) and concentration (c) on the structure of 

electrospun PVA have been studied.  Experiments have been conducted for Mw values 

ranging from 9000 g/mol to 124,000 g/mol.  The concentration was varied from 5 to 35 

wt %.  Data were acquired for several solvents including water, Dimethyl Sulfoxide, 

Ethylene Glycol and N-Methyl Pyrrolidone.  The transient phenomena occurring during 

jet breakdown were examined by high speed digital photography.  The structure in the 

electrospun polymer was analyzed by scanning electron microscopy.  The fiber diameter 

distribution for various conditions was characterized by optical image analysis.  The 

effects of additives such as NaCl and Poly Ethylene Glycol on the structure have been 

studied.  The results indicate that a minimum Mw and c corresponding to [η]c ∼ 5 or 

Capillary number, Ca ∼ 0.5 is necessary for forming a fibrous structure. As Mw or c 

increase, the fiber diameter becomes larger and a broader distribution of fibers may be 

obtained.  The average diameter of the fiber, D, follows a Power law relationship: D (nm) 

= 18.6([η]c)1.11.  Round fibers may be obtained at low Mw and c, while flat fibers are 

observed at high Mw and c. The transition from round to flat fibers appears to begin at 

[η]c ∼ 12.  At any [η]c, there is a minimum Capillary and Ohnesorge numbers at which 

fibers are stabilized and a maximum at which viscous effects become dominant.  The 

addition of NaCl lowers the average fiber diameter in PVA samples with a high 

molecular weight.  Electrospinning can be used to produce nanofibers of PVA with 

various architectures.   
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1. INTRODUCTION 

 

Porous polymeric structures are used in a wide range of applications including wound 

dressings, vascular grafts, tissue engineering scaffolds, and controlled drug delivery 

systems. A primary requirement for most of these applications is the ability to control the 

macroscopic structure in the base polymer (e.g. fibrous, woven, non-woven etc.).  In 

addition, it is also necessary to control the amount, size, and the degree of 

interconnectivity in the pores.  In tissue engineering scaffolds, for example, a porous 

structure with a large amount of interconnected pores of proper size is a key requirement 

for cell attachment and growth.   

 

A variety of techniques have been developed to produce polymeric structures with a high 

degree of porosity and interconnectivity.   The common processes that have been used are 

fiber bonding, phase separation, 3-D printing, and solvent casting with particulate 

leaching. However all these processes have several drawbacks including long or 

complicated procedures for preparation, high processing temperature and residual organic 

solvent in the final polymer. In addition, the control over pore amount, size and 

interconnectivity is not adequate. In most cases, the size of the base polymer and the pore 

are on the order of several µm to hundreds of µm.   

 

In order to circumvent some of these problems, a process called electrospinning has been 

developed and has attracted much attention recently. Electrospinning can be used to 

produce fibrous structures with fiber sizes on the order of 100 nm to 100 µm.  In order to 
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produce the porous structure by electrospinning, the polymer is dissolved in a suitable 

solvent.  The solution is placed in a capillary and is subjected to a high voltage (typically 

between 5 to 30 kV).  A jet with some electrical charge is ejected from the capillary when 

the mutual repulsion of electrical force overcomes the surface tension of the droplet of 

polymer solution.  Thereafter the jet travels towards the grounded collector.  During its 

transit, it undergoes splitting, splaying and branching, thereby reducing the effective 

diameter of the jet significantly. In addition, the solvent evaporates from the jet before 

reaching the collector until finally sub-micron fibers are collected as a non-woven mat. 

By manipulating the process parameters like the intensity and shape of the applied 

electrical field, surface tension and viscosity of the polymer solution, electrospinning can 

be used to produce highly interconnected porous structures of a wide range of pore sizes.  

Polymers with diverse micro and macro structures can be produced with relative ease. 

 

Electrospinning can be applied to most of the polymers in the form of solutions or melts. 

Polymers that have been electrospun include: polyurethane (PU), polypropylene (PP), 

polylactic acid (PLA), polyglycolic acid (PGA), poly ε-caprolactone (PCL), polyethylene 

oxide (PEO), polyvinyl alcohol (PVA) and collagen, etc.  The objective of this work is to 

produce porous polymeric structures with PVA. This hydrophilic polymer is water 

soluble and is the largest volume synthetic resin produced in the world. The excellent 

chemical resistance, physical properties and biodegradability of PVA have led to the 

development of many commercial products based on this polymer.  The physical and 

solution properties of PVA that are important in electrospinning such as viscosity, 

electrical conductivity and surface tension show strong dependence on molecular weight.  
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Hence, the effects of molecular weight and solution concentration on the electrospinning 

characteristics and on the structure in the electrospun polymer have been studied.   
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2. LITERATURE REVIEW 

 

In recent years, advances in polymer engineering have enabled the production of new 

porous matrices from a variety of polymers for many biomedical applications [1,2]. The 

development of such macromolecular networks has led to major advancements in tissue 

engineering, drug delivery, orthopedics, wound healing, and medical textiles.  Many of 

these polymers degrade by hydrolysis and have a range of mechanical and physical 

properties.  Their degradation characteristics may depend on several parameters including 

their molecular structure, crystallinity, microgeometry and pore structure.  Basic 

information on some of the typical biomedical polymers is presented in the following 

sections.   

 

2.1 Polymeric biomaterials 

 

Polymers are the most commonly used group of materials for biomedical applications [3]. 

Polymers are used in products ranging from low risk, noninvasive devices such as blood 

bags and surgical gloves through to high risk applications for cardiovascular and 

orthopedic implants.  The advantages of biopolymers, both synthetic and natural, over 

other biomaterials lie in their outstanding physical and chemical properties [4]. The 

polymers can be manipulated by a variety of fabrication techniques to exhibit fairly good 

tensile strength and excellent ductility. A list of typical biopolymers is given in Table I 

[5].  The polymers used in medical applications can be classified as degradable and non-

degradable polymers.  The typical examples of non-degradable polymers include 
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polyvinyl chloride (PVC), polyethylene (PE), polyurethane, Nylon, and Teflon etc. These 

polymers are important in many clinical applications including hip implants, artificial 

lenses, large diameter vascular grafts, and catheters, etc. [6]. 

 

Table I List of biopolymers used in tissue engineering and drug deliveryapplications [5]. 

 

 

Biodegradable polymers are designed to undergo extensive chain scission to form small 

soluble oligomers or monomers. Degradation may proceed by a biologically active 

process or by passive hydrolytic cleavage [7]. Biodegradable polymers can be 

manipulated to exhibit different degradation rate and mechanical properties for various 
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applications. In drug delivery, the polymer could degrade and release the incorporated 

drug at a controlled rate over certain duration, while in tissue engineering it is often 

required to have certain micro and macro morphologies and appropriate mechanical 

strength for the best incorporating of the implanted structure with the local tissue.  

Typical properties of biodegradable polymers are shown in the Table II [4].   It can be 

seen from Table II that biodegradable polymers exhibit great diversity in their mechanical 

properties.   

 

Table II Typical Properties of common Biodegradable Polymers [4] 

 

 

Synthetic aliphatic polyesters such as polylactic acid (PLA), poly glycolic acid (PGA) 

and their copolymers have been used widely in many applications [8].  In addition, other 

polyesters such as polycaprolactone (PCL) have been used in applications requiring a 

lower rate of degradation than PLA or PGA.  Hydrophilic polymers have attracted as 

much interest due to their distinctive water-solubility [9,10]. The most commonly used 

ones include: poly ethylene glycol (PEG), poly ethylene oxide (PEO), PVA and poly 
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acrylic/mechacrylic acid (PAA/PMAA). The mer structures for these polymers are shown 

in the Fig. 1. 

 

PEG and PEO have the same monomer unit, while PEO repeats this unit in the whole 

molecular chain; PEG has a hydroxyl group at one end and a hydrogen atom at the other. 

Also, the monomer of PVA is isomeric with that of PEO. The difference between them 

and the special characteristics will be discussed in detail in the following sections.      

 

                     

                                PEG      PEO 

                       

 

Fig. 1 mer structures of PEG, PEO, PVA, PAA and PMAA [11] 

 

2.2 Polyvinyl alcohol (PVA)  
 
 
PVA as a hydrophilic polymer is water soluble and is the largest volume synthetic resin 

produced in the world [12]. The excellent chemical resistance, physical properties and 
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biodegradability of PVA have led to the development of many commercial products 

based on this polymer.  PVA is used as an emulsifier and as a stabilizer for colloid 

suspensions, as a sizing agent and coating in the textile and paper industries, and as an 

adhesive [12].  PVA is a truly biodegradable polymer with the degradation products 

being water and carbon dioxide.  Hence, it is used in many biomedical and 

pharmaceutical applications, due to its advantages such as: nontoxic, noncarcinogenic, 

and bioadhesive characteristics with the ease of processing [11].   

 

2.2.1 Molecular structure and physical properties of PVA 

Commercial PVA is typically made by the hydrolysis of poly (vinyl acetate) or PVAC in 

the reaction as shown in Fig. 2 [13].  

 

 

Fig. 2 Hydrolysis of PVAC to produce PVA [13] 

 
 
As seen from Fig. 2, its monomer unit is isomeric with that of PEO. However, while 

oxygen forms etheric bonds with two neighboring carbons (C-O-C) in the backbone of 

PEO, it is located in -OH side groups in PVA. The hydroxyl groups could be a source of 

hydrogen bonding (-H), which readily formed between PVA chains in aqueous solutions 

[14]. The percentage of acetate groups converted to alcohol groups determines the 

hydrolysis level of PVA, which affects the degree of polymer crystallinity [15]. For high 

 8



  

hydrolysis PVAs, the hydroxyl groups on one polymer chain can form hydrogen bonding 

with hydroxyl groups of another chain as illustrated in Fig. 3 (a). Consequently, the 

polymers will line up with each other and produce orientation. The acetyl groups in PVA 

with partial hydrolysis PVA act as spacers, which limit the crystallinity by preventing 

molecular chains from close approach as illustrated in Fig. 3 (b) [14].  

 

 (a) 

 

(b) 

 

Fig. 3 Hydrogen bonding in commercial PVA (a) at high hydrolysis many secondary 
hydrogen bonds can be established.  (b) at low hydrolysis, acetate groups act 
as spacers and restrict the level of hydrogen bonding. [14] 

 
 
Due to the difficulty of carrying the reaction to completion without more drastic 

treatment, there is always an appreciable proportion (commonly, 2 mol % or less) of 

residual acetate groups from the parent poly (vinyl acetate) [17]. 
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The percentage hydrolysis of PVA refers to the amount of the acetate groups replaced by 

the hydroxyl groups in the reaction and can be calculated according to the following 

equation [12]: 

      (1) 

, where x and y are the molar fractions of the hydroxyl and the acetate groups, 

respectively, specified in the following stoichiometric formula: 

 

The higher the degree of hydrolysis, the fewer the acetate groups that remain in the 

molecules. In contrast, O atoms in the backbone of PEO increase the stiffness of the 

chain, and hence make the melting point and glass transition temperature significantly 

lower compared to that of pure PVA of comparable chain length [16,17]. Accordingly the 

tensile strength achievable (typically, 13-16 MPa) is much lower than that of PVA 

(typically, 67-100 MPa) [16,17].   

 

The degree of hydrolysis influences the polymer behavior in the solution.  In aqueous 

PVA solutions, a part of the inter-chain hydrogen bonding remains, in addition to the 

hydrogen bonding between the PVA chains and the water molecules formed newly upon 

dissolution [12]. The extent of both inter and intra chain hydrogen bonding and solute–

solvent hydrogen bonding is mainly determined by the degree of hydrolysis in the PVA 

chains.  Thus viscosity, surface tension and other solution properties can be related to the 

degree of hydrolysis.  The effect of the degree of hydrolysis on solution viscosity and 

solubility are schematically illustrated in Fig. 4 [12].  The physical and mechanical 

properties of PVA are shown in Appendix I.   
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Fig. 4 Schematic diagram of the interrelationship between apparent viscosity and 
degree of hydrolysis, and between solubility and degree of hydrolysis for 
aqueous PVA solution [12].   

 

2.2.2 Crystallinity and specific gravity 

Despite the fact that by and large, samples of common PVA are found to be essentially 

atactic, due to the small size of the hydroxyl group, the molecular chains of PVA can fold 

up easily in an organized manner [15]. PVA is then one of the few polymers that can 

achieve high crystallinity, which is mostly within the narrow range of 20% to 55% as 

shown in Fig. 6.  The crystalline structure of PVA is found to be monoclinic with β angle 

(see Fig. 5(a)) equals 92.2 (0.3) ° or hexagonal, and is orthorhombic for quenched 

samples [18].  The density of PVA varies from 1.19 g/cm3 for completely amorphous 

sample to 1.31 g/cm3 for completely crystalline sample while generally it will be found to 

lie within the limits of 1.28 to 1.31 g/cm3 [17,18]. The crystallinity of PVA tends to 

decrease with increasing molecular weight and decreasing hydrolysis. Long molecular 

chains involve impeded segmental motion and thus make it more difficult for the 

molecules to fold up into crystalline structures. Hydrolysis decreased with increasing the 

number of residual acetate group in the molecules. The bulky size of the pendent acetate 

group prevents the molecular chains to closely fold up to form crystalline. 

±
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(a)      (b)     

Fig. 5 (a) Schematic illustration of the structure of monoclinic lattice; (b) Crystal 
structure of PVA.  PVA chains are projected on the (101) plane. The circles in 
descending order of size represent oxygen, carbon and hydrogen atoms, 
respectively. The dashed and solid circles distinguish between hydrogen 
atoms on opposite sides of the chains [19]. 

 
 

 

Fig. 6 Density of PVA as a function of crystallinity.  Data are shown for Mw =14000, 
31000, 57000, 10000, and 20000 g/mol. [15] 
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2.2.3 Solution behavior of PVA 

The solubility, viscosity, and surface tension of PVA depend on temperature, 

concentration, % hydrolysis and molecular weight of the material. PVA is soluble in 

highly polar and hydrophilic solvents, such as water, Dimethyl Sulfoxide (DMSO), 

Ethylene Glycol (EG), and N-Methyl Pyrrolidone (NMP) [17,20]. Water is the most 

important solvent for PVA and the aqueous properties of PVA solutions will be reviewed 

in the following sections. The solubility of PVA in water depends on the degree of 

polymerization (DP), hydrolysis, and solution temperature [13]. Any change in these 

three factors affects the degree and character of hydrogen bonding in the aqueous 

solutions, and hence the solubility of PVA and other solution properties.  

 

The intra and inter molecular hydrogen bonding in aqueous PVA solutions was discussed 

previously. Due to the existence of the hydrogen bonding, it is always difficult to achieve 

molecularly dispersed PVA solutions, especially for PVA of large molecular weight. In 

such cases, stirring and/or heating could help the dissolution. The effect of temperature 

on the solubility of PVA is shown in Fig. 7 [17] for various values of DP.  At low DP and 

low degree of hydrolysis, complete solubility can be achieved even at low temperatures 

(B) [17].  As the DP increases at high degree of hydrolysis, the temperature needs to be 

increased to improve the solubility (C and D).  Temperatures as high as 80 to 90 °C may 

be required to obtain complete solubility.  At very high DP and low degree of hydrolysis, 

the polymer starts to gel at room temperature and the solubility decreases rapidly (A).   

 

 13



  

 

Fig. 7 Solubility of PVA in water as a function of temperature.  Data for various 
grades of PVA are shown.  A, 78–81 mol% hydrolyzed, DP = 2000–2100; B, 
87–89 mol% hydrolyzed, DP = 500–600; C, 98–99 mol% hydrolyzed, 
DP = 500–600; D, 98–99 mol% hydrolyzed, DP = 1700–1800 [17]. 

 

For PVA of a certain molecular weight, the extent of both inter and intra chain hydrogen 

bonding, and the solute-solvent hydrogen bonding are mainly determined by the degree 

of hydrolysis of PVA and the solution temperature [17]. For PVA of low % hydrolysis, 

due to the bulky size and hydrophobic character of the remaining acetate groups in the 

molecules, OH groups on neighboring chains are prevented from getting close enough to 

form inter chain hydrogen bonds [12,17]. The solubility of partially-hydrolyzed PVA is 

thus high at room temperature while fully-hydrolyzed PVA is essentially insoluble in 

water at the same situation. 

 

On the other hand, in the solution of higher temperature, the extent of inter and intra 

chain hydrogen bonding is disrupted by the higher mobility of the molecules and the ones 

between PVA and water are thus enhanced. As a result, the solubility of highly-

hydrolyzed PVA increases dramatically as seen in the Fig. 7. The hydrophobic nature of 
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the acetate groups results in a negative heat of solution, which increases as the number of 

acetate groups is increased [17]. This means that the solubility decreases as the 

temperature increases and/or the percentage of hydrolysis decreases (curve A).  

 

Tacx et al [20] have identified 4 regions during the dissolution of PVA as shown in Fig. 8 

[20].  As the polymer dissolves, ηsp/c increases (Region I).  After a certain time, ηsp/c 

reaches a peak value and starts to decrease. This decrease may be caused by the 

dissolution of some entangled molecules (Region II). Subsequently, ηsp/c is constant 

(Region III) indicating that dissolution is essentially complete.  At large time, ηsp/c may 

decrease due to oxidation or hydrolysis (Region 4).   

 

 

Fig. 8 Schematic illustration of the dissolution of PVA as a function of time [20]. 

 

2.2.4 Viscosity of PVA solutions 

PVA solutions are generally shear thinning and may exhibit significant thixotropy [21]. 

The viscosity of aqueous PVA solutions increases with the molecular weight and 
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concentration.  The dependence of solution viscosity on DP, concentration, hydrolysis, 

and temperature is as shown in Figs. 9 and 10 [17,13]. Clearly, the viscosity decreases 

with increasing temperature and is directly proportional to DP (Fig. 9).  The activation 

energy, Q, based on the Arhenius equation: 







=

RT
Qexp0ηη         (2) 

can be calculated to be on the order of 20 kJ/mol.   

 

 

Fig. 9 Solution viscosity of PVA as a function of temperature. A, DP=2200; B, 
DP=1500; C, DP=550; D, DP= 220. (Concentration = 16 wt %, 87-89% 
hydrolyzed)[17].   
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The DP and concentration have a stronger effect on viscosity than temperature and the 

degree of hydrolysis (Fig. 9,10).  This result indicates that the degree of hydrogen 

bonding is affected more by DP and concentration.  The viscosity of the solution is 

increased because the existence of longer chains or higher molecular weight, and/or more 

chains or higher concentration enhances the formation of inter and intra molecular 

hydrogen bonding.  As a result, water becomes a poorer solvent and hence the viscosity 

of the solution increases. The temperature and % hydrolysis have a weaker effect on the 

solution viscosity because the amount of residual acetic groups or more active molecular 

mobility does not help as much as molecular weight or concentration on reducing the 

hydrogen bonding within and between chains [13]. 

 

 

Fig. 10 Solution viscosity at 60°C as a function of concentration.  Data for various 
grades of PVA are shown.  Information on the different grades of PVA used in 
this investigation are given in III [13]. 
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Table III DP and %hydrolysis for the various grades of PVA in Fig. 10. 

Grade of PVA Degree of polymerization % hydrolysis 
1-90 99% 

20-90 
2400-2500 

87-89 % 
1-60 99% 

20-60 
1700-1800 

87-89 % 
1-30 99% 

20-30 
500-600 

87-89 % 
 
 
For most polymers, the dependence of intrinsic viscosity [η] on Mw can be described by 

the Mark-Houwink equation: 

[ ] a
wKM=η           (3) 

where K and a are constants for a given polymer solution.  The relationship between [η] 

and Mw for a PVA solution is shown in Fig. 11 [22].  It can be seen that the rheology of 

PVA solutions can be described by the Mark-Houwink equation.  Tacx et al [20] obtained  

 

 

Fig. 11 Typical plot of the Mark-Houwink equation for an aqueous PVA solution [22]. 
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the following constants in the Mark-Houwink equation for dissolution in water at 30°C: 

[ ] 628.041051.6 wMx −=η   (4) 

In dilute aqueous PVA solutions, the Huggins equation can be used to describe the 

specific viscosity, ηsp, as a product of [η]c: 

[ ] [ ] [ ] ......33
2

22 +++= ckckc Hsp ηηηη   (5) 

where κH is the Huggins viscosity coefficient, which reflects both hydrodynamic and 

thermodynamic interactions of polymer molecules [23].  The Huggins viscosity 

coefficient is generally between 0.35 and 0.45, although higher values have been 

measured in PVA due to the existence of hydrogen bonding [23]. 

 

2.2.5 Surface tension 

The addition of PVA to water effectively lowers the surface tension, γ, of water as shown 

in Table IV [17].  The surface tension of the solution drops further as the concentration of 

PVA is increased.     

 

Table IV Surface tension of solutions containing various amounts of PVA [17]. 

 
Solution γ (mN/m) 

Water 72 

1 g of PVA in 100 g of water 48.6 

2 g of PVA in 100 g of water 46.1 

4 g of PVA in 100 g of water 45.4 

8 g of PVA in 100 g of water 44.6 
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The surface tension of aqueous solution of PVA varies with molecular weight or DP, % 

hydrolysis and concentration [17]. The data in Fig. 12 show that at constant DP, the 

surface tension increases with increasing level of hydrolysis.  Similarly at constant level 

of hydrolysis, the surface tension increases with DP (Fig. 13).  For all DP and hydrolysis, 

between 0% to around 0.1% concentration, the surface tension drops quickly from about 

73 mN/m to 48 mN/m and decreases slightly after that. The surface tension decreases 

throughout the range of polymer concentration considered. The decrease in the surface 

tension is due to the increased adsorption of the available polymer molecules at the air-

aqueous solution interface as the polymer concentration increases [24,25]. 

 

 

Fig. 12 Surface tension of aqueous PVA solutions 20°C as a function of 
concentration.  The degree of polymerization in the PVA was 1700. A, 98-99% 
hydrolyzed; B, 87-89% hydrolyzed; C, 78-81% hydrolyzed [17]. 

 
 
Additives to the solution may change the surface tension values.   It has been shown that 

adding NaCl to the polymer solution increases its surface activity [25]. The  data shown 

in Fig. 14 [25] show that the surface tension of the aqueous PVA solution decreases 
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Fig. 13 Surface tension of aqueous PVA solutions 20°C as a function of 
concentration.  The degree of hydrolysis in the polymer was 87-89 mol%.  A, 
DP = 1700; B, DP = 550. [17]. 

 
 

significantly with increasing NaCl concentration up to 7.0 wt %. This behavior has been 

attributed to the increased adsorption of the polymer molecules at the air-aqueous 

solution interface as the NaCl is added. In other words, NaCl is making the aqueous 

phase less favorable for the polymer molecules, causing more molecules to go to the 

interface and consequently reducing the surface tension [25].  Note, however, that the 

addition of NaCl increases the viscosity of the solution indicating that water becomes less 

favorable as a solvent (Fig. 15) [12].  The addition of 1.2 Molar NaCl almost doubles the 

apparent viscosity of the solution.  The maximum value of viscosity is observed at about 

1.2 wt % NaCl.  Increasing the NaCl concentration beyond 1.2% lowers the apparent 

viscosity.  The addition of electrolytes disrupts the hydrogen bonding and causes a 

decrease in viscosity for both water and the corresponding aqueous polymer solution. It 

can be expected that the electrical conductivity of the solution will also be affected by the 

addition of NaCl.  It has been reported that ionic additions to polymer solutions may 

improve conductivity of polymer solutions [26].  Further, additions of NaCl to the 
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solution may also improve crystallinity in the polymer [27].  It should be noted that all 

these parameters may be significant in electrospinning as will be discussed in the 

following sections. 

 

 

Fig. 14 Effect of NaCl additions to aqueous PVA (Mw=72,000 g/mol) on the surface 
tension of the solution at 30°C [25]. 

 
 

 

Fig. 15 Effect of salt concentration upon apparent viscosity for a 10% PVA, 
Mw=100000, 88% hydrolyzed aqueous solution, T=25°C, shear rate=46/s 
[12]. 
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2.2.6 Physical Properties 

PVA is a polymer with good hydrogen bonding and a high degree of crystallinity.    The 

melting point of PVA depends on Mw, degree of hydrolysis, %crystallinity and tacticity 

of the polymer.   Typical melting points are on the order of 228 to 240°C for atactic, 212 

to 235°C for isotactic and 230 to 267°C for syndiotactic structures [15].  The glass 

transition temperature is 85°C for highly hydrolyzed PVA and 58°C for 87%-89% 

hydrolyzation [17].  PVA is usually crosslinked for several applications, especially for 

biomedical and pharmaceutical applications such as blood contact, artificial kidney, and 

drug delivery. PVA is used extensively as a membrane material in soft tissue 

replacements, articular cartilage, artificial organs and membranes because of its high 

water content, tissue-like elasticity, adequate mechanical strength, and relative 

biocompatibility [11].  PVA has an excellent ability to form hydrogels. PVA gels can be 

made by cross-linking chemically by a difunctional agent and physically by UV light 

with photo-initiators, electron-beam or gamma radiation. The physical methods have 

advantages over the chemical cross-linking as they do not leave behind toxic agents. [11] 

 

The polymer can exhibit a high tensile strength as shown in Appendix I.  The mechanical 

properties are a strong function of molecular weight and the relative humidity as shown 

in Fig. 16 [11].  It can been seen from the Fig. 16 that the tensile strength of PVA varies 

from 30 MPa to 110 MPa, depending on Mw and relative humidity. The ability to obtain 

such a wide range of tensile strength values makes the polymer appropriate for diverse 

applications. The dielectric behavior of the polymer is determined by the charge 

distribution and also by statistical thermal motion of its polar group. Since dielectric 
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properties of polar materials will depend on whether or not the dipoles are attached to the 

main chain [28], as the structure of PVA is, dipole polarization will depend on segmental 

 

 

Fig. 16 Tensile strength as a function of relative humidity for fully hydrolyzed 
poly(vinyl alcohol) films. A, Degree of polymerization=2400; B, 1700; C, 500 
[11]. 

 
 
mobility and is thus low at temperatures below the glass transition temperature.  Polar 

molecules have high electric constant. The value of dielectric constant is dependent on 

temperature and frequency. 

 

2.3 Porous Structure 

 

Polymeric fibers, particles, membranes and porous scaffolds have attracted great interest 

in the recent research of biomedical engineering [1,2]. The practical applications of these 

structures of biopolymers vary from wound dressing, drug delivery, vascular grafts to 

tissue engineering scaffolds. An example of a porous polymeric structure used in tissue 
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engineering is shown in Fig. 17 [1].  A majority of these, although not all, involve the use 

of three-dimensional polymeric scaffolds implanted at a tissue defect site to both replace 

the function of the tissue temporarily and help the body to regenerate or repair it. The 

scaffolds must therefore provide a suitable substrate for cell attachment, proliferation, 

differentiated functions and, in certain cases, cell migration [1,2]. Such applications place 

strict requirements on the physical and chemical properties of the specific polymeric 

scaffolds.  The porous structure must provide space for cell to grow in and facilitate the 

transport of cells and nutrients to maintain normal cellular activities.  The loss in 

mechanical properties of the resorbable polymer should match the temporal development 

of the strength in the native tissue.  The polymer scaffolds can also serve as carriers for 

cells, growth factors, and/or other bio-molecular signals in order to obtain targeted and 

controlled release of these active ingredients [2] 

 

 

 
Fig. 17 Photograph of a porous PLGA scaffold used for tissue engineering.  The 

porosity was induced by a porogen, sodium chloride of size range 300-
500μm [1]. 
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The key characteristics of the scaffolds include high porosity and surface area, structural 

strength, and specific three-dimensional shapes, which are determined by the scaffold 

fabrication techniques and the polymeric materials used [1]. Many techniques have been 

developed to produce porous structures with high interconnected porosity.  The 

characteristics differentiating various techniques include the use of solvents, heat, 

pressure, or pore creating additives. The majors processing techniques to produce porous 

structures include: Fiber bonding, Solvent casting and particulate leaching, Gel casting, 

Phase separation and Three-dimensional printing [1, 2]. They differ from one another in 

the means to produce the porous microstructures. Fiber bonding achieves highly 

interconnected pores by adding and later removing an insoluble nonwoven mesh of some 

polymer to the primary polymer solution, leaving voids where was previously occupied 

by the nonwoven mesh.  Solvent casting and particulate leaching can achieve the same 

results by adding to (and later removing) the polymer solution small insoluble particles as 

porogens.   Sodium Chloride particles between 300-500 µm are typically used as 

porogens. Gel casting is similar to solvent casting, but it produces micro-porous structure 

by processing the initial gel through several stages of solvent exchanges in mixtures of 

acetone, ethanol, and water.  Phase separation is a process primarily to address the 

problem of drug delivery by avoiding harsh chemical or thermal environments in the 

process. The solution of the polymer and the bioactive molecules with liquid-liquid phase 

separation is quenched to produce a solid and the solvent component is removed by 

sublimation, leaving behind a porous structure.  Three-dimensional printing is a solid 

free-form fabrication process that produces components by inkjet printing a binder onto 

sequential powder layers. Other processes to produce porous structures are Extrusion, 
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Membrane Lamination, gas foaming, etc.  The advantages and disadvantages of some of 

the principal techniques to produce porous polymers are summarized in Table V [29].   

 

2.4 Electrospinning 

 

Recently, the process of electrospinning has attracted much attention because it can 

consistently produce polymer fibers that range from 5 to 500 nm in diameter [30]. This 

process is a variation of the better known electrospray process, which produces small 

particles using electrical force [31]. In this process, a polymer solution or melt held by its 

surface tension at the end of a capillary tube is subject to an electrical field. Initially the 

polymer solution forms a droplet at the end of the capillary tube. As the voltage 

increases, charge is induced on the fluid surface, and the droplet is distorted to form a 

conical shape known as Taylor cone. When a critical voltage is reached a jet is ejected 

from the apex of the cone. As the jet accelerates and thins in the electric fields, radical 

charge repulsion results in splitting of the primary jet into multiple filaments by splaying 

[31-33]. By comparison, in the electrospray process, the jet is broken into small droplets 

and sub-micron beads are obtained (Fig. 18). For high viscosity liquids ( ∼1 to 10 Pa.s), 

the jet does not break up, but travels as a jet to the grounded target. It undergoes thinning, 

splaying and bending as it travels, and the solvent evaporates leaving behind a charged 

fiber deposited on a grounded collector to form a nonwoven mesh [31]. The electrospun 

fibers may have a sizable static charge making it possible to manipulate them into three-

dimensional (3-D) structures during their deposition with the help of electrical field.  
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Table V Advantages and Disadvantages of various processes currently used to 
produce porous polymers [29] 
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Depending on the solution viscosity, electrical field strength and other process 

parameters, porous structures of varying morphologies can be obtained.  The process can  

be conducted vertically and horizontally as in Figs. 18 and 19 [31,34].  The viscoelastic 

behavior of the polymer solution keeps the elongated jet from breaking into beads and 

helps to maintain fibers with relatively uniform diameters. 

 

 

Fig. 18 Schematic illustration of electrospinning and electrospray processes [31] 

 

 

Fig. 19 Schematic illustration of the set-up for producing 3-D structures [34]. 
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Electrospinning or electrospraying can have several advantages.  Sub-micron particles or 

fibers can be produced with very high surface areas as shown in Fig. 20 [35].  

Electrospun 3-D structures may have small pore sizes and very high surface areas, highly 

suitable for tissue engineering.  The degree of crystallinity and orientation in the polymer 

can be controlled.  Drugs, growth factors and/or other biomolecules can easily be added 

to the solution and be incorporated in the fiber or particle.  Multiple solutions can be used 

to produce graded or layered structures.  Organic and inorganic solutions can be used 

produce polymer ceramic nano-composites.  

 

 

Fig. 20 Surface area in the porous structure as a function of fiber diameter for 
various processing techniques [35]. 

 

The fibers produced by electrospinning belong to non-woven fabrics. More than 40 

different types of polymer fibers have been generated by electrospinning including 

Collagen [36], poly (ethylene-co-vinyl alcohol0 [34], SLPF[37], nylon 66 [38] and PCL 

[39]   
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2.4.1 Basic Operating Mechanisms 

Electrospinning is a process in which the solution jet is broken down into smaller jets by 

an appropriate balance between surface tension forces which hold it together and 

electrical forces which try to break it apart.  Initially the polymer solution is held by its 

surface tension in the form of a droplet at the end of the capillary tube. As the voltage is 

increased, charge is induced on the fluid surface, sessile and pendant droplets of the 

polymer solution acquire stale shapes, known as Taylor cone, at equilibrium of the 

electric forces and surface tension. When the intensity of the electrical fields rises beyond 

a critical point, a single jet is ejected from the apex of the cone. This occurs because the 

surface tension is overcome by electrical repulsion between the mutual charges on the 

surface of the drop [37].  Taylor identified a critical voltage at which this breakdown 

would occur [40]: 

( R
R
L

L
HVC πγ117.0

2
32ln4 2

2
2 






 −= )                                     (6) 

where Vc is the critical voltage, H, the separation between the capillary and the ground, 

L, the length of the capillary, R, the radius of the capillary, and γ is the surface tension of 

the liquid. A similar relationship was developed by Hendricks et al. [41] for the potential 

required for the electrostatic spraying from a hemispherical drop pendant from a capillary 

tube: 

rV πγ20300=                                                               (7) 

where r is the radius of the pendant drop [41]. In his seminal work on the behavior of an 

isolated charged drop of a range of fluids, Taylor determined that at an half angle of 49.3° 

of the apex of the droplet, surface tension balances electrostatic forces[40, 42].  Taylor 
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cones are the critical points of the equilibrium between these two forces, above which, 

i.e., when V > Vc , non-equilibrated electrical forces on the droplet causes a thin jet of 

solution to eject from the surface of the cone and travel toward the nearest electrode of 

opposite polarity, or electrical ground. A schematic illustration of the various physical 

phenomena occurring during electrospinning is shown in Fig. 21 [43]. 

 

At a relatively low concentration of the polymer solution and/or a low applied electrical 

field, three different operation modes for electrospray have been classified [44-46] as (a) 

dripping mode, (b) spindle mode, (c) oscillating jet mode, which describe the shape and 

motion of the droplet forming and disintegration; (d) the precession mode, in which a 

rapidly whipping jet is emitted from the nozzle, before it breaks into droplets. The last 

two modes are qualitatively close to the whipping mode in electrospinning in the 

existence of a twisted or rapidly whipping jet. 

 

Typically in the electrospinning of a polymer solution, as the voltage increases above the 

critical value, initially a straight jet was formed from the Taylor cone. The electrically 

charged jet travels towards the grounded collector in a straight line for few centimeters 

and at the end of this segment a conical shape can be observed, which is believed to be 

the complicated path taken by the jet. Electrospinning process is quite rapid.  After an 

elapsed time of 1ms, only the conical envelopes of splaying subfilaments from the jet 

have been observed due to the extremely fast whipping of the jet [46].  
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The electrospinning jet can be characterized by 4 regions [43]: (a) Base, a region where 

the jet emerges from the polymer solution, typically the Taylor cone (Fig. 21) (b) Jet, the 

region beyond the base, where the electrical force stretches the jet and accelerates the 

polymer liquid. The diameter of the jet decreases and the length increases as the jet 

 

 

Fig. 21 A schematic illustration of the various physical phenomena occurred during 
electrospinning a viscoelastic polymer [43]. 
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moves towards the collector. (c) Splitting and Splaying region: Splitting refers to the 

breakup of the jet into two equal parts, while splaying occurs when a single jet divides 

into many charged jets with approximately equal diameters and charge per unit length.   

 

Viscoelastic 
Solution 

Capillary
Taylor’s cone 

E 

Distance 

Whipping/ 
Bending 

Varicose/ 
Axisymmetric 

Rayleigh 
 
 

Fig. 22 Various instabilities that may be induced in the viscoelastic jet that is ejected 
from the Taylor’s cone [43]. 

 
 

Various instabilities that may lead to the breakdown of a viscoelastic jet are summarized 

in Fig. 22 [43].  The bending and the varicose instabilities play a major role in the 

electrospinning process.  Hohman et al [45,46] predicted the growth rate of varicose 

instability, in which radius of the jet varies continuously while the centerline of the jet 
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remains straight, and a whipping or bending instability, in which the centerline of the jet 

is constant and the diameter of the jet is modulated. Also demonstrated are three different 

unstable modes: (1) the Rayleigh mode is driven by the electrical counterpart of the 

surface tension and is the axisymmetric extension of the classical Rayleigh instability; (2) 

the axisymmetric conducting mode and (3) the whipping conducting mode may occur 

when the conductivity of the solution is finite. The last two conducting modes are 

enhanced when increased electrical fields or surface charge density suppressed the 

classical Rayleigh instability. Bending instability plays a central role in the 

electrospinning process.  When the electrical conductivity of the fluid is finite, the 

whipping or the axisymmetric mode of the jet becomes unstable. The instability is caused 

by an imbalance in the tangential stress on the interface, caused by the interaction of the 

induced surface charge density and the tangential electric field. 

 

Table VI Various factors associated with electrospinning of polymers from solution [43]. 

Polymer Solution Process 

Molecular weight Type of solvent Applied field strength 

Polydispersity Index Concentration Deposition distance 

Tg Viscosity Flow rate 

isomeric structure Electrical conductivity Deposition time 

crosslinking Dielectric strength Solvent evaporation rate 

 Surface tension Size of capillary 

 Additives Collection technique 

 Temperature Relative Humidity 
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2.4.2 Morphologies produced by electrospinning 

In the process of electrospinning different morphologies of fibers and/or beads can be 

produced due to specific combinations of solution properties and experimental settings.  

The list of variables that can be controlled to produce various structures is shown in 

Table VI [43].  Flat or round fibers can be produced by controlling the processing 

conditions (Fig. 23).  Round fibers are typically produced when the solvent evaporates 

completely before the splayed jet reaches the collector.  Ribbon-shaped flat fibers, shown 

in Fig. 23 (b), are obtained when the solvent evaporation rate is low and the wet fibers 

reaching the collector are flattened upon impact. [47] Hollow fibers can be produced by 

forming a skin rapidly.  The remaining solvent has to escape by diffusion through the 

skin [47].  The hardened skin prevents the shrinkage of the jet as the solvent gradually 

evaporates and thereby results in hollow fibers.   Significant branching and splitting can 

also be observed in many structures (Fig. 24) [47].    

 

      
(a)        (b) 

Fig. 23 Photographs showing round (a) and flat (b) fibers in electrospun PEO [44,47].  
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           (a)      (b) 

Fig. 24 Photographs showing branching (a) and splitting in electrospun HEMA [47]. 

 

 
 

Fig. 25 Photographs showing bead-on-string morphology in the electrospun polymer [48]. 
 
 
In some cases, a so-called ‘bead on fiber’ structure is produced, mostly with solutions of 

low concentration as shown in Fig. 25 [48]. A probable reason for the formation of beads 

on the fiber is that if the surface tension of the solution is large and not negligible 

compared to the tangential electrical force for some poorly conducting solutions, it tends 

to resist the stretching force of electrical repulsion and form beads. At higher viscosity, 

smooth and thick fibers are produced as a result of extensive entanglement between the 

macromolecules. Mesh-like structures with the right pore characteristics can be produced 

by adjusting the collection technique as shown in Fig. 26 [48].  When the solvent is not 
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completely evaporated from the fibers, the intersections of two fibers will merge together 

by nucleation and growth and form a mesh-like microstructure with each fibers bonded 

with many other at their intersection points. 

 

Many parameters can influence the structure and properties of the electrospun polymer as 

shown in Table VI.  These variables can be related to the base polymer, the solution and 

the operating conditions.  Among these, the effects of applied field strength, solution 

concentration and deposition rate have been studied extensively in the literature.  The 

effects of various parameters on the morphology in the electrospun polymer are 

summarized in Fig. 27 [37].  In general, the diameter of the fiber decreases as the applied 

field strength is increased.  The solution 

 

 

Fig. 26 Mesh-like structure in electrospun EVOH [34]. 

 
concentration has a major effect on the structural morphology and fineness of the 

electrospun polymer.  The concentration may affect the viscosity and surface tension 
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significantly as described previously.  There is a minimum concentration needed to 

stabilize the fibrous jet.  There is also a maximum concentration at which the solution 

viscosity is too high for jet splaying to be effective.  Between this minimum and 

maximum, the fiber diameter increases with concentration.  The effects of viscosity of the 

solution on the electrospun structures are extensive. Higher solution viscosity generally 

results in smooth fibers as discussed above. Due to the evaporation and solidification in 

its path, the jet becomes more viscous with time and its elastic modulus increases. This 

increase in viscosity increases the shear stress for splaying and hence, may gradually 

make bending instability more difficult.   Low deposition distances can lead to collapse, 

flattening and coalescence of the fibers.  At high deposition distance, in contrast, the  

 

 

Fig. 27 Schematic illustration of the effects of process parameters on the the structure 
of the electrospun product [37]. 
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solvent may evaporate completely and consequently round fibers with a highly open 

structure may be obtained.  However, as the deposition distance increases, the electrical 

field strength/unit length can be reduced and this may affect the fiber morphology. 

 

Surface tension plays a major role in the breakdown on the jet. Surface tension always 

counteracts the bending instability because this instability leads to an increase of the area 

of the jet surface. Higher surface tension generally tends to produce more beaded 

structures.  In order to produce thin fibers, it is desirable to have as small a value of 

surface tension as possible.  Thinner fibers with fewer beads are produced in more 

conductive solutions as shown in Fig. 28 [48].  As the electrical conductivity increases, 

the surface charge densities are higher, which result in stronger repulsion between 

adjacent segments. This enhanced the elongation stress counteracting the viscous effects 

and leads to thinner fibers with fewer beads [48]. 

 

     
(a) (b) 
 

Fig. 28 Photographs showing the structure in electrospun PEO (a) solution 
conductivity 1.23 Coulomb/liter (b) solution conductivity 28.2 Coulomb/liter 
[48]. 
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2.4.3 Structure in the Electrospun Polymer 

Electrospinning can be used to produce novel fibers with the diameters in the range from 

100 nm to 10 µm.  As the solvent evaporates, the polymer molecules can come together 

by either a phase separation through a spinodal reaction or through classic nucleation and 

growth of the crystalline phase [49]. As a result, the structure in the polymer deposited on 

the collector can consist of a totally amorphous, an oriented, a spherulitic or a textured 

fibrillar structure.  In electrospinning, jets are stretched along their axis by the external 

electrical field and are elongated further by the repulsive force between charges on 

adjacent segments. The resulted area reduction rate and the associated high longitudinal 

strain rate imply that the macromolecules in the fibers should be stretched and axially 

oriented [50].  It is generally recognized that electrospinning may lower the degree of 

crystallinity in the polymer [37, 51-53].  The exact reasons for this behavior are not clear.  

It has been suggested that the development of structure in electrospinning occurs much 

more rapidly than other processes and this kinetic effect may result in lower crystallinity 

[53].  A high degree of orientation may also be observed in the fibrils.  The degree of 

orientation of the molecules in the amorphous regions is directly proportional to the 

amount of extensional flow. 

 

In summary, electrospinning is a novel technique that can be used to produce nano-scale 

porous structures with a variety of morphologies.  The fiber size and distribution, and 

inter-fiber spacing (i.e. porosity) and distribution can be varied significantly by 

controlling the process parameters. Drugs and growth factors can be incorporated easily 

into the structure for biomedical applications.  The porous structure produced by 
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electrospinning can have a very high ratio between surface area and volume and is ideally 

suited in applications such as drug delivery and tissue engineering.  The effects of 

variables associated with the electrospinning process have been studied extensively in the 

literature.  However, the variables associated with the polymer such as molecular weight, 

polydispersity index and crosslinking have not be investigated thoroughly.  The effects of 

molecular weight, crosslinking and extent of hydrolysis are especially important in 

polymers such as PVA.  Even though PVA has good mechanical properties in the dry 

state, its applications are limited by its poor resistance to water.  The water resistance is 

generally improved by crosslinking.  Electrospinning can be a potential technique to 

produce crosslinked nanofibers for many applications.  In order to produce and control 

the structure of these nanofibers, it is imperative that various factors associated with 

structure formation be examined thoroughly. 
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3. OBJECTIVES 

 

The overall objectives of this work are to develop a suitable processing methodology to 

produce porous polyvinyl alcohol structures by electrospinning.  The specific goals are:  

 

♦ to determine the processing conditions to produce porous PVA structures 

 

♦ to study the combined effects of molecular weight and solution concentration on 

the structure of the electrospun polymer 

 

♦ to examine the effects of different solvents on electrospinning characteristics 

 

♦ to determine potential additives to the solution to control the structure in the 

porous polymer 
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4. MATERIALS AND METHODS 

 

PVA with various weight average molecular weights (Mw) was obtained from Aldrich 

Chemical Company, Milwaukee, WI.  The characteristics of the polymers used in the 

study are shown in Table VII.  Several different solvents were used to dissolve the PVA.  

These solvents included water, N-Methyl Pyrrolidone (NMP), Ethylene Glycol (EG) and 

Dimethyl Sulfoxide (DMSO).  All the solvents were obtained from Aldrich Chemical 

Company, Milwaukee, WI.  Relevant properties of these solvents are shown in Table VIII 

[54-56]. 

 

Table VII Weight average molecular weight (Mw) and % hydrolyzation of PVA used in 
this study. 

 
Sample # Mw (g/mol) % Hydrolyzation 

A 9,000 – 10,000 98-99% 
B 13,000 – 23,000 98% 
C 31,000 – 50,000 98-99% 
D 50,000 – 85,000 97% 
E 89,000 – 98,000 98-99% 
F 124,000 – 186,000 99+% 

 

 

The experimental set-up consisted of a 50 ml syringe and an 18-gauge stainless steel 

needle that were positioned vertically on a clamp as shown in Fig. 29.  The metal 

electrode and the collector plate were made of copper.  The collector plate was covered 

with aluminum foil.  The plate was positioned at a distance of 10 cm from the needle.   

About 1 to 6 g of the polymer was dissolved in the solvent (typically distilled water) at 

the desired temperature (80ºC for water) to produce solutions with concentration ranging 

from 5 to 35 wt %.  The specific values of concentration used with each molecular weight 
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are summarized in Table IX.  The solution was heated and stirred for 20 to 60 minutes to 

complete the dissolution. About 15 ml of the solution was added into the syringe at 80º C.  

In some experiments, other solvents were used to study the effects of solvents on 

electrospinning.  The conditions used during electrospinning with solvents other than 

water are summarized in Table X.  The effects of additives to the solution were studied in 

some experiments.  Two types of additives were examined: (a) NaCl and (b) poly 

ethylene glycol.  NaCl (99%) was obtained from Morton table salt.  Appropriate amounts 

of the additive were added directly to the aqueous solutions.  Experiments were 

conducted for NaCl additions of 0.5,1, and 3 wt %.  In the case of poly ethylene glycol, 

the material was supplied by Aldrich with Mn = 400 g/mol and viscosity of 8.12 mPa s at 

37º C. Experiments were conducted at concentrations of 5 and 10 wt %. 

 

The syringe and the needle were enclosed in a chamber in order to control the 

evaporation rate of the solvent.  A voltage of 30 kV was applied to the solution and the 

solution jet emerging from the needle was collected on the aluminum foil.  The electrical 

field was applied for a predetermined duration.  In different experiments, the voltage was 

applied for a time ranging from 2 min to 2 hr.  Subsequently, the aluminum foil was 

removed from the collecting plate, and the samples were dried for at least 24 hr.  

Specimens for microscopic examination were obtained at the center (X) of the jet cone as 

shown in Fig. 29.  The samples were sputter coated with gold-palladium and examined in 

a JSM-840 scanning electron microscope.  The images from the scanning electron 

microscope were analyzed with Microsun 2000/s image analysis software to  
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Table VIII Relevant properties of the solvents used in this study [54-56]. 

Solvent Molecular 
structure Grade Viscosity 

(mPa s) T (ºC)
Surface 
tension 
(mN/m)

T 
(ºC)

Dielectric 
constant

Tm 
(ºC)

Tb 
(ºC)

Heat of 
vaporizatio
n (KJ/mol)

Density 
(g/cm3)

1.793 0 74.23 10
0.89 25 71.99 25 80.1

0.547 50 67.94 50
0.378 75 63.57 75
0.282 100 58.91 100
2.47 20 10

1.987 25 42.92 25 47.24
1.29 50 40.06 50

75 75
100 100

26/ 21 15/ 20 47.99 25 41.4
16.1 25 48.4 28

6.554 50 45.76 50
3.34 75 43.54 75

1.975 100 41.31 100
10 10

1.65 25 40.7 25 32.55
50 50
75 75

100 100

99+%

99.8%

99.9%

100% 
Distilled

40.65 at 
100º C

DMSO (CH3)2SO 18 189 43.1 at 
189º C

Water H2O 0 100

50.5 at 
197.3º C

NMP
HOCH2-
CH2OH -24 82 52.8

EG
HOCH2-
CH2OH -13 197

1

1.033

1.113

1.101

 

 

obtain data on the distribution of fibers and particles in the electrospun PVA.  This image 

analysis was conducted at magnifications of 5000 X and 1000 X.  The high magnification 

was needed to clearly demarcate each of the thin fibers.  At least three images obtained at 

various locations in the sample were analyzed under each condition.  More than 100 

fibers were examined under each condition. 

 

High speed digital photography was used to record the transit of the polymer from the 

capillary to the grounded collector.  A SONY video camera (DCR-TRV900) was used to 

record the process at a speed of 30 frames/sec. A magnification 1.5 to 2 x was used 
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during data collection. The Avid software was used to analyze the images obtained every 

33.3 ms.   

 High Voltage 
Power Supply  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grounded 
Collector 

V

Needle

Polymer 
Solution 

Jet of  
solution

X

Copper
electrode

 Syringe 

 Deposition Area 
 
 
Fig. 29 Schematic of the experimental set-up.  Samples for microscopic examination 

were obtained from the center(X) of the deposition area.  The diameter of the 
deposition area was generally on the order of 2 cm in most experiments. 
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Table IX Summary of concentrations used for each molecular weight.  Only those 
concentrations at which a fibrous structure could be obtained was selected for 
each molecular weight.  The solvent was distilled water at 80°C. 

 
 
 
 

 

Solvent T ( ºC) Concentration (wt %)
22%
25%
27%
30%
33%
35%
21%
23%
25%
27%
29%
31%
18%
20%
22%
24%
26%
9%

11%
13%
15%
17%
10%
12%
14%
16%
18%
5%
6%
7%
8%
9%

10%

F

B

C

D

E

Mw (g/mol)

80Water

89000-98000

124000-186000

9000-10000

13000-23000

31000-50000

50000-85000

A
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Table X Summary of conditions used to produce porous polymers with solvents other 
than water. 

 
Solvent T ( ºC) Mw (g/mol) Concentration (wt %)

3%
8.5%
7.5%
12%

124000-186000 8%
9%

11%
50000-85000

DMSO 65

EG 140

NMP

50000-85000

30 124000-186000
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5. RESULTS AND DISCUSSION 

 

The breakup of polymer jets into droplets and fibers is strongly influenced by rheological 

properties of the solution.  High molecular weight polymers added to solutions may 

suppress the breakup and atomization of the solution.  In many commercial applications, 

macromolecules are intentionally added to control misting or suppress the formation of 

droplets less than 5 µm [57].  For example, high molecular weight polyisobutylene is 

intentionally added to machining fluids and jet fuels to prevent spray formation.  It may 

also be added in spray paints to increase the overall drop size.  Numerous studies have 

shown that the breakdown of solutions containing polymers is strongly influenced by the 

rheological properties of the solution [58].  Salient aspects of solution rheology with 

respect to PVA solutions are discussed in the following sections.   

 

5.1 Viscosity of PVA solutions 

 

The viscosity of PVA solutions (η) depends on the molecular weight (Mw), concentration 

(c), degree of hydrolysis and the type of solvent.   The dependence of zero shear viscosity 

on Mw in many polymers can be described by the following Power law equation [59]: 

( ) 4.3'
wMK=η         (8) 

In general, the effects of Mw and c on solution viscosity can be modeled as [59]: 

( ) ( )βαρη wMcK=         (9) 
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The measured viscosity data for PVA solutions in water [13] has been fitted to the above 

power law equation.  The exponents α and β were calculated to be 4.39 and 2.90 

respectively.  Equation (9) was then used to generate viscosity data for the molecular 

weights and concentrations used in this study as shown in Fig. 30.  Note that the viscosity 

of the solution depends strongly on Mw and concentration.  The intrinsic viscosity [η] for 

polymer solutions can be related to Mw by the Mark-Houwink equation: 

( )a
wMK ''][ =η        (10) 

The Mark-Houwink constants (K” and a) for PVA reported in the literature for various 

conditions are summarized in Table XI.  The product of [η] and c can be used to define  
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Fig. 30 Variation of solution viscosity with molecular weight and con
measured viscosity data from the literature has been fitted 
[13].  This equation was then used to predict the viscosit
weights and concentrations used in this study.  The letter
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[η]c, a dimensionless concentration.  The typical variation of [η]c with c for the values 

of Mw  and c at which stable fibrous structures were obtained is plotted in Fig. 31.  As can 

be expected, [η]c increases with c for various molecular weights.  As Mw increases, the 

slope of lines in Fig. 31 increases.  This result suggests that Mw has a greater effect on the 

rheological properties of the solution than the concentration.  The viscoelastic behavior of 

polymer solutions can be divided into various regions depending on the value of [η]c. In 

dilute solutions, [η]c < 1 and the viscosity does not change much with concentration.  

The entanglements become significant for [η]c > 4.   For [η]c > 4, the viscosity begins to  

 

Table XI Mark-Houwink constants for PVA solutions obtained from various sources in 
the literature. 

 
Solven

t Mw (g/mol)
Temperature(

°C)
K       

(10-4 dl/g) a Reference
Water NA 80 9.4 0.56 [61]
Water 6x103< M < 160x103 30 6.66 0.66 [61]
Water 6•103< M < 21•103 25 2.0 0.76 [61]
Water NA 30 4.53 0.64 [61]
Water NA 20-30 5.38 0.63 [15]
Water NA 20-30 7.31 0.616 [15]
Water NA 20-30 4.35 0.64 [15]
Water NA 20-30 6.7 0.64 [15]
Water NA 20 6.25 0.65
Water NA 80 7.4 0.61
Water 69•103< M < 690•103 30 6.51 0.628 [20]
Water 86.8% hydrolysis NA 8.00 0.58
Water 93.5% hydrolysis NA 7.40 0.6
Water 96.4% hydrolysis NA 6.90 0.61
Water 100 % hydrolysis NA 5.95 0.63
DMSO NA 1.6 0.84 [15]
DMSO 69•103< M < 690•103 65 1.51 0.804 [20]

EG 69•103< M < 690•103 140 3.54 0.692 [20]
NMP NA 30 1.69 0.79 [61]

[15]

[17]
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increase significantly and viscous effects become important.  The data shown in Fig. 31 

indicate that a minimum level of entanglement is necessary (or [η]c > 4) for stable 

fibrous structures to be produced.  Polymer solutions can also exhibit greater resistance to 

elongational flow than shear flow [60].  The tensile or elongational viscosity, λ, in 

Troutonian fluids is almost 3 times the shear viscosity, η.  Many polymer solutions 

exhibit non-Troutonian tensile thickening behavior.  The behavior of the solution under 

extensional flow may have a significant effect on the breakup of the solution jet during 

electrospinning as will be discussed in the following sections. 

 

0
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 [η
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Mw=9000-10000
Mw=13000-23000
Mw=31000-50000
Mw=50000-85000
Mw=89000-98000
Mw=124000-186000

 

Fig. 31 Variation of dimensionless concentration [η]c with the concentration of PVA 
in aqueous solutions.  Data have been plotted for experimental conditions 
under which stable fiber structures were produced.  The intrinsic viscosity has 
been calculated from the Mark-Howink equation. 
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5.2 Structures in the Electrospun Polymer 
 

The structure in the electrospun polymer may consist of beads, fibers and a combination 

of beads and fibers, depending on the conditions used during the experiment.  Most 

experiments were conducted to obtain a fibrous structure in the polymer.  At low 

concentration and MW, many beads were observed in the structure along with fibers.  This 

type of structure has been typically referred to as the ‘bead on string’ morphology in the 

literature.  The shapes of the beads varied from spherical to spindle-like, as seen in Fig. 

32.  Fibrous structures were stabilized at higher Mw and concentrations as shown in Fig. 

33.  Fibrous structures contained a relatively broad distribution of fibers which were laid 

on each other due to the collection procedure.  Both round and flat fibers were observed 

in the structure.  Round fibers are obtained when the solvent evaporates completely 

before reaching the collector [48].  Flat fibers may be obtained when the solvent does not 

evaporate completely before reaching the collector.  In this case, the wet fibers may 

flatten upon impact.  Flat fibers were typically observed at high Mw and concentrations 

(Fig. 34 (b)).  In some cases, flat and round fibers could be detected in the same structure 

indicating a transition from round to flat fibers at high Mw and concentration.  The fibers 

may exhibit bending, coiling and twisting because of the various stabilites in the jet as 

shown in Fig. 35 (a) [33,45,46].  In addition, long straight fibers are also observed (Fig. 

35 (b)).  These fibers may have undergone splaying and a high degree of extensional 

flow. 
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(a) (b) 

 
Fig. 32 Examples of bead on string structures in the electrospun polymer.  Such 

structures were typically observed at low Mw and concentration (a) Mw  = 
9000-10000, C = 22 wt % and (b) Mw =50000-85000 g/mol, C = 9 wt %. 

 
 

 

  
(a) (b) 

 
Fig. 33 Examples of fibrous structures with round fibers.  (a) Mw = 9000-10000 

g/mol, C = 22 wt % and (b) Mw =50000-85000 g/mol, C = 15 wt %. 
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(a) (b) 

Fig. 34 Examples of fibrous structures with flat fibers.  (a) Mw = 124000-186000 
g/mol, C = 8 wt % and (b) Mw =31000-50000 g/mol, C = 22 wt %. 

 

  
(a) (b) 

Fig. 35 Examples of coiling and bending (a) and extensive elongational flow (b) in 
fibers. 

 

       
         (a)    (b)         (c) 

Fig. 36 Examples of branching.  Note the secondary branching in (b). 
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         (a)      (b)              (c) 
Fig. 37 Examples of fiber splitting.  (a) Splitting into two sub-fibers from a bunch of 

merged fibers; (b) Splitting into two sub-fibers from a single fibers (c) Spliting 
into three sub-fibers, two of which are thinner and travel in the direction of 
the primary fiber, and the other one is similar in diameter with the primary 
fiber but travels at an angle of around 45º with the direction of the primary 
fiber. 

 
 
The fibers may exhibit branching as shown in Fig. 36.  Branched fibers ejecting almost 

perpendicular from the surface of the primary fiber were found for both straight and 

coiled fibers. The branched fibers tend to taper away within a short distance (Fig. 36 (a)) 

or split additional thinner fibers which taper away quickly (Fig. 36 (b)).  Branches may 

also originate from deformed beads as shown in Fig. 36 (c).  Branching is a common 

phenomenon in electrospinning [47]. At high Mw and/or concentrations, some fibers 

were found to branch along its path continuously.  Splitting of the fibers was observed in 

many cases (Fig. 37).  In contrast to branched fibers, split fibers are generally together 

with the primary fiber.  They often take a shape of ‘Y’, with two branched fibers of 

approximately equal diameter emerging from a single fiber. Unlike branched fibers, split 

fibers do not exhibit a taper in their diameter (Fig. 37).   
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5.3 Transient Effects during jet breakdown 
 
 
The physical phenomena occurring during the electrospinning process were observed 

with a high speed digital camera.  Experiments were conducted at several values of Mw 

and c to highlight the jet breakdown mechanisms.  In the absence of any electrical field 

the solution just flew through the capillary.  The rate of drop formation at the tip of the 

needle and the rate of dripping decrease significantly with increasing Mw and c.  The 

dimensionless concentration [η]c will be used to describe combined effects of Mw and c.  

The rate of drop formation and dripping decrease with increasing [η]c.  When a voltage 

is applied, the Taylor cone is generated and at a critical voltage a jet is ejected from the 

tip of the needle.  This critical voltage, Vc, can be calculated from the Taylor equation 

[40]: 

( )R
R
L

L
HVC πγ117.0

2
32ln4 2

2
2 






 −=                 (6) 

The surface tension of PVA solution varies with Mw and c.  Using a typical value of 50 

mN/m [13], the critical voltage is on the order of 6 kV.  Note that in equation (6) 

γ∝cV , indicating a stable jet may form at a lower voltage as γ is reduced.  Since 

γ decreases with increasing [η]c, Vc is inversely proportional to [η]c.  The breakdown of 

the jet emerging from the capillary for two different values of [η]c are shown in Fig. 38. 

 

Sequential photographs illustrating the development of the jet and its breakdown are 

shown in Figs. 39 and 40.  The solution from the capillary forms the Taylor’s cone and 

gradually detaches from the capillary as the jet is formed.  At low [η]c, this detachment 
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is almost instantaneous, while at high [η]c, it may take up to a second for the 

elongational flow to begin.  Note for example, that in Fig. 40, the bead starts to detach 

from the tip after 0.57 s.  Elongational flow is recorded at 0.60 s and at 0.63 s, splaying 

and splitting can be observed in the jet.  After about 0.66 s, the jet undergoes extensive 

splaying as a result of the viscoelastic properties of the solution and the mushroom-like 

pattern shown in Fig. 40 (b) are obtained.  The jet shows some oscillations in the  

 

     
1 cm

(a) (b) 
Fig. 38 Photographs showing the breakdown of a fully formed jet for two different 

values of [η]c. (a) 6.5 (b) 10.  
 
 
breakdown pattern perhaps due to the lack of adequate solution flow rate.  It should be 

noted that at high values of [η]c, the solution flow rate is small, so some of the solvent 

may evaporate from the tip of the needle and further reduce the flow rate.  By 

comparison, at low [η]c, the jet forms almost immediately and splaying and splitting can 

be observed even after 0.03 s.  The electrospinning continues without many changes in 

the jet patterns.   
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The position of a single mini-jet can be monitored as a function of time as shown in Fig. 

41.    This data can then be used to calculate the local jet velocity.  The local jet velocity 

calculated for various mini-jets was averaged to obtain an overall value of jet velocity for 

a specific value of [η]c.  This average velocity is plotted as a function of [η]c in Fig. 42.  

The average velocity generally decreases with increasing values of [η]c.  Hence, as [η]c 

increases, there is a greater level of splaying and the jet breaks down into many small 

mini-jets because of the increased viscoelastic effect (Fig. 40).  However, each of these 

mini-jets takes a longer time to reach the collector. 
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1 cm 

0        0.03    0.06       0.09    0.12  
 

             
0.15        0.18   0.21         0.27      0.30 
 

Fig. 39 Sequential photographs showing the nature of the solution jet for various times (s) after the application of the 
voltage.  The voltage was applied at t = 0 s.  ([η]c = 6.5) 
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1 cm 

 0 0.57 0.60 0.63 0.66 
 

    
 1.0 1.03 1.06 1.09 
 
Fig. 40 Sequential photographs showing the nature of the solution jet for various times (s) after the application of the 

voltage.  The voltage was applied at t = 0 s.  ([η]c = 10)
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Fig. 41 Photographs illustrating the position of a minijet in successive frames.  By 

monitoring the position of a minijet in successive frames, the local jet velocity 
was calculated. 
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Fig. 42 Average jet velocity as a function of [η]c.  The velocity values for before (Y) 
and after (X) the application of the voltage are shown. 
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5.4 Effects of Molecular Weight and Concentration 
 

The effect of varying concentration at a constant molecular weight is shown in Fig. 43.  

At low molecular weights, the fiber diameter increases slightly as the concentration is 

increased.  However, at high Mw, the diameter increases significantly with concentration 

and also flat fibers are observed even at low concentrations.   

 

The distribution of fibers also changes as the molecular weight increases as shown in Fig. 

44.  As Mw increases, a broader distribution of fibers may be obtained (Fig. 45). 

 
(a) Mw = 9000 – 10,000 g/mol 

    
 22 25 30 35 
 

(b) Mw = 31000 – 50,000 g/mol 

       
 18 22 24 26 
Fig. 43 Photographs showing the effect of concentration (wt %) for two different 

values of Mw.   
 
 
The average diameters measured for various conditions used in this study are shown in 

Fig. 46.  As indicated above, the diameter increases with increasing Mw and 

concentration.  The data indicate that the effect of concentration is more pronounced in 
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samples with higher molecular weight. The dimensionless concentration will be used to 

analyze the effects of molecular weight and concentration on the structure.  At 5 < [η]c < 

6, the fibrous structure is not completely stable and a bead on string structure is obtained  

 

     
 (a) (b) 
Fig. 44 Photographs showing the effect of concentration at a constant concentration 

(9 wt %) (a) Mw = 50000-85000 g/mol; (b) Mw = 124000-1860000 g/mol 
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Fig. 45 Distribution of fibers at a  constant concentration (9 wt %) (a) Mw = 50000-

85000 g/mol  (b) Mw = 124000-1860000 g/mol 
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Fig. 46 Variation of average diameter with molecular weight and concentration. 

 

   
 6.4 12.6 

   
 16.9  21.8 
Fig. 47 Photographs showing the changes in the structure with increasing values of [η]c. 
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(Fig. 47).  The fibrous structure becomes stable at [η]c > 6.  As [η]c increases further, 

the fibers become thicker and start to flatten.  The measured diameters of the fibers are 

plotted in Fig. 49 for various values of [η]c.  It can be seen that as [η]c increases, the 

diameter increases.  A power-law relationship between D, the average diameter of the 

fiber, and [η]c can be obtained from the data shown in Fig. 48: 

[ ][ ] 11.16.18 cD η=         (10) 

The low exponent in equation (12) indicates that the average diameter increases almost 

linearly with [η]c.  Further, the effect of molecular weight seems to be greater than the 

effect of concentration.  The transition from extremely dilute to dilute regions in PVA 

aqueous solutions may occur at [η]c ≈ 4.  At this point, although there may be some 

overlap of the hydrodynamic radius, the effects of entanglements are negligible (dilute 

region) [62].  Entanglements start to form between 4 < [η]c < 9 and begin to play an 

important role at [η]c > 9.  At this point, the solution viscosity begins to increase and the 

viscous forces increase appreciably.  Hence, the fiber diameter increases significantly at 

[η]c > 9. 
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Fig. 48 Variation of average fiber diameter with dimensionless concentration [η]c.  

The critical [η]c values for transition from extremely dilute to dilute to highly 
entangled regions are also indicated [62].    

 
 

5.5 Fiber distribution and morphology 
 

A variety of distributions were observed in the fiber diameters as shown in Fig. 49 and 

51.  At low concentration and Mw, a normal distribution was obtained with relatively 

narrow distribution.  However as the molecular weight and concentration increased, 

bimodal or multimodal distributions were observed.  Bimodal and multimodal 

distributions were observed in electrospinning because of the splitting and splaying of the 

fibers that occurs during the transit of the polymer to the collector [63].  The fiber 

distribution becomes broader with increasing values of [η]c as shown in Fig. 52.  This 
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behavior can be attributed to increased viscoelasticity in the solution at high values of 

[η]c.   

 

 
0 2 0 0 4 0

N
um

be
r o

f f
ib

er
s

0

5

1 0

1 5

2 0

            2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 
(a) (b)  

Fig. 49 Fiber distribution of (a) [η]c=4.6 (Mw=9000-10000 g/mol, C=22 wt %); (b) 
[η]c=21.8 (Mw=89000-980000 g/mol, c=16 wt%). 
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Fig. 50 Variation of the aspect ratio with [η]c for various molecular weights. 
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It has been shown that at low values of Mw and c, the fibers are generally round while at 

high concentrations and molecular weights, flat fibers are observed.  In order to analyze 

this transition, the aspect ratio of the fibers was measured.  The measured aspect ratios 

are plotted as a function of [η]c in Fig. 50.  The transition from round to flat fibers 

appears to begin at [η]c ∼ 12.  At high [η]c, the extensive entanglements may lead to 

gelling and trapping of the water.  As a result, the rate of water evaporation decreases.  

The wet fibers can then flatten upon impact at the collector.   

 

5.6 Jet Break up in Polymer Solutions 

 

The dynamics of the breakup of viscous liquids emerging from a capillary have been 

studied extensively [64].   The volume of a drop emerging from a capillary increases 

continuously by the addition of liquid.  At a critical volume, the drop necks and breaks 

off from the capillary. In Newtonian fluids, the Weber number, We, is important at low 

Reynolds number: 

We = 
lStressInterfacia
ressInertialSt

γ
ρ dv 2

=      (11) 

where ρ is the density, v is the velocity, γ is the surface tension and d is the diameter of 

the jet.   The drop can deform and disintegrate above a critical Weber number, Wecrit, as 

shown in Fig. 52. 
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Fig. 51 Types of distributions in the fibers for various molecular weights and concentrations.  The [η]c values are also 

indicated.
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Satellite Drops 

Drops

Jet Rayleigh instability 

 
Fig. 52 Jet breakdown of a Newtonian fluid at low Reynolds number (or low η).  Note 

the formation of drops and satellite drops.  Each drop can break down further 
into smaller drops and satellite drops.   

 
 
The breakup of viscous fluid jets occur by the deformation, breakup and coalescence 

under the action of a stress [64]. In Newtonian fluids, Rayleigh instability plays a major 

role in the break up of the jet.  In this case, inertial forces are important and hence the 

Weber number is critical.  Two competitive processes determine the breakup of the 

drops: a) Overall retraction towards a sphere driven the pressure difference b) Growth of 

capillary waves.  At higher Reynolds number, viscous effects become significant.  In this 

case, the Capillary number, Ca, becomes important: 

 

Viscous  stress

Interfacial stressCa =    = 
γ

η
γ

τ vR
=       (12) 

where τ is the shear stress and R is the radius of the jet.  At Ca > Cacrit, Rayleigh 

instability leads to the formation of a long thread that connects drops as shown in Fig. 53.   
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Cacrit, for many Newtonian fluids has been reported to be around 0.2 [59].  The 

deformation and breakup of the jet is further illustrated in Fig. 54 [59].   

 

In Non-Newtonian viscoelastic fluids (such as polymer melts and solutions), the 

Reynolds number is generally large and hence the inertial effects can be neglected.  

Further, the Bond number is small and so buoyancy forces can also be neglected.  In this  

 

 
 

Fig. 53 Jet break-up in a Newtonian fluid at low Reynolds number (or high η) [60]. 

 
 
 
 
 
 
Fig. 54 Deformation, necking and breakup of a highly viscous Newtonian drop of fluid. 

 

case, the Capillary number, Ca, becomes a vital parameter that can be used describe the 

breakup of the jet.  When Ca < Cacrit, the surface tension forces are large and the shape of 

the jet is preserved.  When Ca ~ 1, interfacial disturbances begin to grow, leading to the 
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breakup of the jet into a series of drops (Fig. 55).  Depending on their size, the drops may 

be stretched and broken again.  When Ca>>Cacritical, the effects of viscous shear stresses 

become dominant.  In this case, the jet may be stretched viscoelastically into long threads 

(Fig. 56).  Any drops that may form may also be stretched viscoelastically.  Viscoelastic 

effects important when De > 1 and total strain is large: 

tDe
∗

= ε =
essViscousStr
essElasticStr         (13) 

The break up of the jet is influenced by the buildup of orientational stress.  Strain 

thickening occurs because of the high tensile viscosity then lowers elongational flow.  

The effects of strain thickening are especially important in Non-Troutonian fluids.  

Another important dimensionless number that describes the breakup of viscoelastic jets is 

the Ohnesorge number: 

 
 
  
 
 
 
 
 
 
 
 

 
 
 
 
 

(a) (b) 
 

Fig. 55 Schematic illustration of the breakdown of viscoelastic systems.  (a) Stepwise 
repeated breakup at Cacrit. (b) Affine stretching of drop into a thin liquid 
thread at Ca >> Cacrit and eventual disintegration into droplets. 
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D
WeOh

ργ
η

==
Re

        (14) 

At constant Oh, axisymmetric waves can develop on the surface depending on Re.  A 

combination of Oh and Re can be used to break up polymer solutions into droplets by the 

classic Rayleigh breakup.   

 

 

Newtonian 
Low Re 

Newtonian 
High Re 

Non-Newtonian 
Viscoelastic, De < 1

Non-Newtonian 
Viscoelastic, De > 1

Low Oh 
Ca > Cacrit We > Wecrit Ca > Cacrit 

Ca > Cacrit 

High Oh 
Elongational 
Flow: λ ≈3η 

Strain 
thickening Non-Troutonian 

Effects 

 
Fig. 56 Schematic illustration of the jet breakup for various types of fluids.  The 

important dimensionless numbers are also indicated. 
  

 

The dimensionless numbers described above were used to analyze the data on PVA.  The 

measured Capillary, Reynolds and Ohnesorge numbers are shown in Table XII.  The 

initial Capillary numbers for various conditions ranged from 0.4 to 45.4, while Oh was 
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between 0.1 and 38.5.  It was observed in general that bead on string structures were 

observed for Ca about 0.8.  This value is close to the Cacrit described previously.  The 

variation of the average diameter with Oh is plotted in Fig. 57.  Clearly, the diameter  

 

Table XII Variation of Ca, Re and Oh numbers for various conditions.  The 
corresponding distribution of the fiber diameters is also shown.   

 
Mw c (wt%) D (nm) [η]C Ca Re  Oh Distribution 

22 169 6.0 0.4 23.2 0.1 Unimodal 
25 163 7.0 0.6 12.4 0.2 Unimodal 
27 151 7.8 0.8 8.5 0.3 Unimodal 
30 171 9.0 1.2 5.1 0.5 Unimodal 
33 183 10.4 1.7 3.2 0.7 Unimodal 

A 

35 275 11.4 2.1 2.4 0.9 Unimodal 
21 146 10.0 1.5 3.2 0.7 Unimodal 
23 140 11.3 2.0 2.0 1.0 Unimodal 
25 237 12.6 2.7 1.3 1.4 Unimodal 
27 307 13.9 3.6 0.9 2.0 Multimodal 
29 436 15.4 4.6 0.6 2.7 Bimodal 

B 

31 373 16.9 5.8 0.5 3.5 Multimodal 
18 219 13.1 6.2 0.5 3.6 Unimodal 
20 406 15.0 9.1 0.3 5.7 Unimodal 
22 486 16.9 12.8 0.2 8.5 Bimodal 
24 493 18.9 17.5 0.1 12.3 Bimodal 

C 

26 571 21.0 23.3 0.1 17.3 Multimodal 
9 205 7.9 1.7 2.8 0.8 Unimodal 
11 213 9.9 3.5 1.0 1.8 Unimodal 
13 235 12.0 6.5 0.5 3.8 Bimodal 
15 516 14.2 11.0 0.2 7.0 Unimodal 

D 

17 643 16.4 17.4 0.1 12.0 Multimodal 
10 224 11.0 5.3 0.6 3.0 Unimodal 
12 237 13.6 10.3 0.2 6.7 Unimodal 
16 523 18.9 29.6 0.1 23.2 Unimodal 
18 628 21.8 45.4 0.0 38.5 Multimodal 

E 

14 429 16.2 18.2 0.1 13.1 Unimodal 
5 210 6.8 1.3 3.6 0.6 Unimodal 
6 280 8.2 2.6 1.4 1.4 Bimodal 
7 310 9.7 4.6 0.7 2.6 Multimodal 
8 458 11.2 7.6 0.3 4.7 Multimodal 
9 490 12.7 11.7 0.2 7.9 Multimodal 

F 

10 430 14.3 17.2 0.1 12.5 Multimodal 
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increases as Oh increases because of the dominance of viscous effects.  There appears to 

be a Power-law relationship between D and Oh: 

( ) [ ] 29.0224 OhnmD =        (15) 

 

A similar behavior was observed with Ca, but a better fit was obtained with Oh for the 

present data.  It has been reported that at low Oh numbers, the growth rate of waves in the 

fibers is large [61]. Therefore, the fibers can neck and undergo splitting, splaying or 

disintegration dependingon the local conditions.  At high Oh, the wavelength of the 

perturbation increases significantly and the growth rate of the perturbation decreases [61].  

Under these conditions, the fibers can undergo viscoelastic stretching and fracture at 

extreme stresses.  The fibers were examined at high magnifications and the photographs 

of the fiber at high magnification are superimposed on the data in Fig. 57.  Wavy fibers 

can indeed be observed at low Oh, while at high Oh, the fibers appear to be straight.  The 

Oh number changes during the electrospinning process as the diameter of the fiber 

decreases.  The variation of the initial Oh with [η]c is plotted in Fig.58 for the conditions 

under which the fibers were produced in this study.  The results show that for each 

molecular weight, there appears to be a region (or a combination of Oh and [η]c ) below 

which the jet starts to breakdown. At each [η]c there is a critical Oh above which the jet 

is stable and cannot breakdown easily.  In addition, the Oh number changes significantly 

during the electrospinning process as the diameter of the jet decreases (Fig. 59).  As the 

jet starts to decrease in diameter the surface stresses σ/R become large and the splaying 

becomes difficult.     
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Fig. 57 Variation of average fiber diameter with the Ohnesorge number.  The inserts 
show the wavy fibers at low Oh and straight fibers at high Oh. 
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Fig. 59 Variation of initial (t = 0) and final (t = large) Oh with [η]c.  The Oh varies 

during the process as the jet diameter decreases.   
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Fig. 60 Variation of initial (t = 0) and final (t = large) Oh with [η]c for various 

molecular weights.  The Oh varies during the process as the jet diameter 
decreases.  The letters in the legend correspond to the data shown in Table IX.   
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The large surface stress stabilizes thin filaments and resists further fiber breakdown.  The 

data shown in Fig. 60 indicate that for different values of [η]c, at a limiting Oh number 

the surface stresses become so large that splaying essentially stops as the fiber is 

stabilized. 

 

5.7 Effects of Solvents 

 

A variety of solvents can be used for producing PVA solutions.  These include water, 

DMSO, NMP and ethylene Glycol [20].  Although water has been used extensively as a 

solvent, it is only a moderately good solvent for PVA [20].  Because of aggregation and 

micro-gelling, it is difficult to obtain uniformly dispersed molecular solutions.  As a 

result, dissolution of the PVA is rather difficult.  The temperature has to be increased to 

80°C to achieve dissolution.  The solution viscosity and [η] can also change with the type 

of solvent.  In addition, the rate of evaporation can be different for various solvents.  All 

these factors can influence the electrospinning process.    

 

Attempts to produce fibers with other solvents were not very successful.  Although a 

visible jet was detected with all the solvents, the polymer on the collector tended to 

agglomerate when DMSO, EG or NMP was used as a solvent.  This agglomeration was 

primarily due to the lack of adequate solvent evaporation as shown in Fig. 61. The 

boiling points and the heats of vaporization of DMSO and EG are much higher than 

water.  EG absorbs twice its weight of water at 100% relative humidity [11].  DMSO is 
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Fig. 61 Weight loss as a function of time under ambient conditions. 

 

also very hygroscopic, readily taking up and retaining moisture. Consequently, additional 

means of improving the evaporation rate must be incorporated in the set-up in order to 

use these solvents. 

 

5.8 Effects of Additives 

 

Additives can be used to change the viscosity, surface tension, electrical conductivity, 

dielectric strength, and viscoelastic properties of the solution.  The rheological properties 

of PVA can be affected significantly by the addition of electrolytes by reducing the intra-

molecular hydrogen bonding [12].  NaCl is a common additive to aqueous solutions that 

may be used to disrupt hydrogen bonding and enhance dissolution.  The addition of NaCl 

increases the solution viscosity and lowers the surface tension [25,12].  There appears to 

be a maximum concentration of NaCl that can be added before a salting out phenomenon 

is observed.  The salting out phenomenon may be a result of the disruption of the solute 
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and solvent bonding at high NaCl concentrations.  The effect of NaCl additions to PVA 

solutions is shown in Fig. 62.  At a low Mw, the addition of NaCl disrupts the fibrous 

structure.  The fibers can start splaying, but break apart after the initial splaying as shown 

in Fig. 62 (d).  This disintegration may be a result of the reduced viscoelastic behavior in 

the solution.  At NaCl concentrations of about 3 wt%, the salting out effect described 

earlier was also observed as shown in Fig. 63.  At a high Mw however, the addition of  

 

(a)  (b)  

(c)  (d)  

Fig. 62 Photographs showing the effect of NaCl on electrospun PVA (a) 0% (b) 0.5% 
(c) 1% and (d) 3%. (Mw = 9000-10000 g/mol, c=23 wt %). 

 

NaCl has a beneficial effect on the fibrous structure as shown in Fig. 61.  In this case, the 

fiber diameter decreases upon the addition of NaCl. 
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The effects of Polyethylene glycol (PEG) additions to PVA are shown in Fig. 65.  PEG is 

a water soluble polymer that is structurally similar to PVA.  PEG additions generally 

increase the average fiber diameter.  Further, a broader distribution of fibers is observed 

as the amount of PEG is increased (Fig. 66).  PEG increases the solution viscosity and is 

added in many solutions to restrict spraying and droplet formation [64].   

 

 

Fig. 63 Photograph showing the presence of salt crystals on the bead.  Such 
precipitation of salt was observed throughout the sample. 

 

    
 (a) (b)  
Fig. 64 Photographs showing the effects of NaCl additions to PVA (a) 0% (b) 1% (Mw 

= 124000-186000 g/mol, c=7 wt %). 
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 0% 5% 10%. 
Fig. 65 Photographs showing the effects of polyethylene glycol additions to PVA. 
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Fig. 66 Distribution of fiber diameters in electrospun PVA with (a) 5 wt% PEG and 
(b) 10 wt% PEG. 
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6. CONCLUSIONS 
 
 

The breakup of polymer jets into droplets and fibers is strongly influenced by rheological 

properties of the solution.  The molecular weight (Mw) and concentration c have 

significant influence on solution rheology.  In particular, Mw plays a vital role in 

controlling the solution viscosity.  A minimum value of the dimensionless concentration 

[η]c is needed to obtain a fibrous structure.  At 5 < [η]c < 6, the fibrous structure is not 

completely stable and a bead on string structure is obtained.  The stabilization of the 

fibers from the solution corresponds to Capillary number, Ca ∼ 0.4 to 0.8.  This value of 

Ca is close to the critical capillary number of 0.2 reported in the literature.  As Mw or c 

increase, the fiber diameter becomes larger and a broader distribution of fibers may be 

obtained.  The average diameter of the fiber, D, follows a Power law relationship: D (nm) 

= 18.6([η]c)1.11.  The photographs obtained during the electrospinning process indicate 

that at low [η]c, a drop of solution detaches rapidly from the capillary and starts to split 

and splay almost instantly.  At high [η]c, however, it may take up to a second for the 

drop to detach and elongational flow to begin.  Subsequently, the jet may undergo 

extensive splaying because of the viscoelastic properties of the polymer.  The average 

velocity of the jet decreases from about 0.9 m/s at [η]c ∼ 7 to 0.5 m/s at [η]c  ∼ 11.  At 

low molecular weights, the fiber diameter increases slightly as the concentration is 

increased.  However, at high Mw, the diameter increases significantly with concentration 

and also flat fibers are observed even at low concentrations.  Round fibers may be 

obtained at low Mw and c, while flat fibers are observed at high Mw and c. The transition 

from round to flat fibers appears to begin at [η]c ∼ 12.  At low concentration and Mw, a 
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normal distribution of fiber diameters was obtained with relatively narrow distribution.  

However as the molecular weight and concentration increased, bimodal or multimodal 

distributions were observed.  Bimodal and multimodal distributions are observed in 

electrospinning because of the splitting and splaying of the fibers that occurs during the 

transit of the polymer to the collector.  The fiber distribution becomes broader with 

increasing values of [η]c.  The initial Capillary numbers for various conditions ranged 

from 0.4 to 45.4, while the Ohnesorge number, Oh, was between 0.1 and 38.5.  The 

average fiber diameter increases with Oh and a power law relationship between D and Oh 

was observed: .  Wavy fibers were observed at low Oh, while at high 

Oh, the fibers appear to be straight.  Both Ca and Oh number change significantly during 

electrospinning as the diameter of the jet decreases.  For different values of [η]c, at a 

limiting Oh number, the surface stresses become so large that splaying essentially stops 

as the fiber is stabilized.  Hence, at any [η]c, there is a minimum Capillary and 

Ohnesorge numbers at which fibers are stabilized and a maximum at which viscous 

effects become dominant.  Because of the low evaporation rate of DMSO, NMP and EG, 

the splayed fibers which are wet when they reach the collector, tend to agglomerate and 

merge.  Consequently, a blend of solvents may be suitable for lowering the diameter of 

the fibers further.  At a low Mw, the addition of NaCl disrupts the fibrous structure.  The 

jet can start splaying, but break apart after the initial burst.   At high Mw, however, the 

addition of NaCl lowers the average fiber diameter.  A salting out effect, where the NaCl 

precipitates out was observed at about 3 wt%.  Therefore optimum additions of NaCl are 

between 0.5 and 3 wt%.  The average fiber diameter can be increased by the addition of 

( ) [ ] 29.0224 OhnmD =
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polyethylene glycol.  Electrospinning can be used a processing technique to produce 

porous PVA structures with various pore architectures assembled from nano-sized fibers.   
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7. APPENDICES 
 

Appendix I Major Physical Properties of Poly Vinyl Alcohol 
Table A 1 Major Physical Properties of PVA 

 
Property  Value Remarks 
Appearance  White to ivory white 

granular powder 
 

Specific gravity  1.27–1.31 Increases with degree of 
crystallinity 

Tensile strength, MPaa(98–
99% hydrolyzed) 

 67–110 Increases with degree of 
crystallinity (heat treatment), 
and molecular weight, decreases 
with increasing humidity 

Tensile strength, MPa (87–
89% hydrolyzed) 

 24–79 Increases with molecular weight 
and decreases with increasing 
humidity 

Elongation, %  0–300 Increases with increasing 
humidity 

Thermal coefficient of 
expansion per °C 

 7–12 × 10–5  

Specific heat, J/(g·K)b  1.67  
Thermal conductivity, 
W/(m·K) 

 0.2  

Glass-transition 
temperature, K 

 358 98–99% hydrolyzed 

  331 87–89% hydrolyzed 
Melting point, K  503 98–99% hydrolyzed 
  453 87–89% hydrolyzed 
Electrical resistivity, ·cm  (3.1–3.8) × 107  
Thermal stability  Gradual discoloration 

above 100°C; darkens 
rapidly above 150°C; 
rapid decomposition 
above 200°C 

 

Refractive index nD(20°C)  1.55  
Degree of crystallinity  0–0.54 Increases with heat treatment 

and degree of hydrolysis 
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Storage stability (solid)  Indefinite when protected 
from moisture 

 

Flammability  Burns similarly to paper  
Stability in sunlight  Excellent  
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Appendix II Fabrication Techniques to Produce Porous Scaffolds 
 
Fiber bonding technique involves dissolving one polymerA in its solvent and adding the 

solution to a nonwoven mesh of another polymerB, which does not dissolve in this 

solvent. After the evaporation of the solvent, the heat treatment is applied to stabilize the 

matrix before the nonwoven mesh polymerB was removed using another solvent, which 

is nonsolvent for the other. This process is effective to produce highly porous and 

perfectly interconnected structure as show in Fig. A1. But the limitation of it includes 

undesirable stipulations of heating and the choice of solvent, immiscibility of the two 

polymers and their relative melting temperatures 

 

 

Fig. A 1  Porous structure produced by fiber bonding 

 
In this Solvent casting and particulate leaching, a polymer solution dispersed with small 

insoluble particles is cast onto a specific container to produce desired shape of scaffold. 

The solvent is allowed to evaporate and the porogen can be removed by dissolving the 
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structure into water. The typically size of sodium chloride used in here is 300-500um. 

This process can produce structures of controllable crystallinity and controllable pore 

size. The major disadvantage of this process is that it can only be used to produce thin 

wafers or membranes. Three-dimensional structures can be produced by membrane 

lamination or melting molding, but these also involve high temperatures or pressures in 

the process.  

 

Membrane Lamination is to construct three dimensional structures by laminating porous 

membranes of polymers prepared by other processes. It is not applicable for some 

polymers like PGA, which dissolves only in highly toxic solvent. 

 

Gel casting is similar to that of solvent casting in the first stage, i.e., casing a polymer 

solution in a mold to produce a specific structure.  The solution is then allowed to stand a 

room temperature until ti forms a gel. The major difference between them is that gel 

casting technique produce micro-porous structure by processed the initial gel through 

several stages of solvent exchanges in mixtures of acetone, ethanol, and water. The 

advantage of this technique is that it uses low heat(,45C) so the probability of denaturing 

the bioactive agents is low. But protein release from the scaffolds has been found to be 

non-uniform.  

 

Extrusion is developed to produce porous, biodegradable tubular conduits, as shown 

below, for the purpose of peripheral nerve regeneration by combining this process with 

the aforementioned solvent casting technique. Extrusion usually needs high temperature 
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to initiate extrusion at lower pressure. However, at the high temperatures, a decrease in 

molecular weight is most likely caused by thermal degradation of the polymer. Pore 

diameter is also reduced at very high extrusion temperatures due to the increase in 

polymer viscosity. 

 

Three-dimensional printing is a solid free-form fabrication process that produces 

components by inkjet printing a binder into sequential powder layers. This process can 

produces complex-shaped scaffolds in a well controlled fashion. But its drawback lies in 

the relatively complex device and procedures. 

 

 

Fig. A 2 Porous structure produced by Extrusion 

 

Gas foaming avoids the drawback of the use of organic solvent found in the process of 

solvent casting and particulate leaching. the matrices formed have a closed pore 
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morphology, which may be undesirable for tissue engineering applications. In this 

method polymer pellets are compression molded into solid disks, and then the disks are 

exposed to high pressure gas, e.g., CO2 to saturate the polymer. Then the pressure is 

decreased to cause the nucleation and formation of pores in the polymer matrix. However 

the closed pore morphology produced is undesirable for tissue engineering applications. 

 

Phase separation is a process primarily to address the problem of drug delivery. To 

incorporate bioactive molecules into the scaffolds requires to prevent any loss of drug 

activity due to exposure to harsh chemical or thermal environments. The polymer is 

dissolved in a solvent at a low temperature, and the bioactive molecules. The solution is 

then cooled until liquid-liquid phase separation is induced. The resulting structure is then 

quenched to produce a solid and the solvent component is removed by sublimation and 

leave behind a porous structure.  This process is useful as a means of incorporating small 

molecules into polymer scaffolds but not incorporate large protein structures. 
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