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Abstract— Here, we demonstrate the use of Al to unlock a 'voice'
for the speech impaired, creating a novel way for people to speak
silently and imperceptibly when in public or otherwise, opening a
new medium of communication for people with speech disorders.
By simply thinking of a number in your mind, our system can
detect with high accuracy what your were planning to say within
a low latency. Minute muscular activation signals occur when a
person intends to speak, which we capture in real-time and map
to the numbers. We argue our machine learning pipeline is
robust and repeatable, and it reaches a classification accuracy
better than 99% for the numbers 1-5 and provide a reproducible
framework for further research.
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I. INTRODUCTION

The concept of "mind reading" has long been
popularized in mainstream media as a futuristic
technology. Although research in this field is
scarce, subvocalization has promise to allow for a
means to decode the thoughts or intentions of an
individual.

Subvocalization 1is the process of silently speaking
to oneself without physically moving any muscles,
vocal cords, or speaking aloud — simply thinking of
a word intentionally. During this process, the
muscles of the vocal cords move imperceptibly,
causing small electrical signals to be generated as
the body prepares to speak the word which is being
thought [1,2]. These electrical signals can be
recorded with the use of electromyography (EMQG)
sensors placed in proximity to the applicable
muscles.

The ability to decode subvocalized words has a
great potential to assist individuals with speech
impairments (e.g. people with vocal cord paralysis,
aphonia, ALS, cancer, stroke, etc.). Additionally, it
can enable seamless human-computer interaction
and silent communication between people.

However, current technologies for subvocalization
are generally limited in their capabilities or
complex and invasive, highlighting the need for
further advancements in this area.

This paper expands upon the limited research and
covers three primary topics:
- Collecting EMG biosignals and important

considerations

- Optimization of sensor placement for
subvocalization

- Signal processing and using machine

learning to decode unspoken words

We aim to demonstrate the viability of using Al to
decipher silent speech and create a framework for
future research and development in this area by
presenting our results and findings on the topic.

II. LITERATURE REVIEW

The concept of subvocalization has been of interest
to researchers for decades. Recent advances in
technology have enabled researchers to explore the
potential of subvocalization in areas such as
human-computer interaction and speech therapy.

There are several related areas of research that
precede the concept of subvocalization, yet
maintain some of the core concepts and application.
Some examples we came across in our research
were eye tracking communication devices, read
aloud technology, movement controlled devices,
and general Augmentative and Alternative
Communication (AAC) devices. AAC refers to
technology that enables communication for
individuals with  physical or  complex
communication impairments. Over the past three
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decades, AAC has expanded from interpersonal
communication to access of information and
services over the internet [3]. However, the limited
use and abandonment of AAC technologies remains
high.

Eye-tracking technology allows individuals with
limited mobility and complex communication needs
to control devices such as augmentative and
alternative communication devices, virtual reality
systems, and video games using their eye
movements [4]. In the ICU, eye-tracking devices
have been found to enhance psychosocial status,
communication ability, and reduce delirium among
patients [5]. Further exploration is needed to
understand the limitations and benefits of the
technology, but eye-tracking technology has been
shown to make a significant impact on the lives of
individuals with complex communication needs and
has the potential to improve outcomes in various
populations [6].

Read aloud devices, which utilize a terminology
called text-to-speech (TTS), is a form of technology
that converts written text into spoken words [7].
ARTIC [8], a Czech TTS system, is one example of
TTS technology we came across in research.. This
type of AAC technology is being widely
implemented to  assist  students' reading
comprehension skills, with studies indicating a

potentially positive effect on  reading
comprehension  for students with reading
difficulties.

Work has also been done exploring teeth-clenching
as a target selection mechanism in AR applications.
The creators of ClenchClick developed a
teeth-clenching detection system [9] and evaluated
its performance in target selection tasks compared
to two baseline methods. ClenchClick outperformed
the other methods in workload, physical load,
accuracy, and speed.

Technologies we have discussed so far have mostly
been used in a professional setting of helping a
certain group of people. There is also an established
market and use case for vocal recognition
technology such as Google Home, Amazon Echo,

Siri, and Cortana. These systems have been
developed across multiple decades and provide a
pathway for subvocalized speech recognition
technologies to become usable and marketable.

Prior studies on human-computer interaction have
focused primarily on physical or vocal input.
However, research on non-physical
human-computer interaction through
subvocalization has been limited and varies in
scope and methodology. Two primary approaches
have been studied: invasive and non-invasive
systems. Invasive systems are typically surgically
implanted and permanent, making them complex
and expensive solutions. Thus, our study focused on
non-invasive alternatives. One such approach was
conducted by a research team at MIT, who used a
limited set of words and demonstrated accurate
results in classification [10]. Other similar
approaches simplified the problem to determining
complexity and focus [11]. We aimed to build on
their findings, but found several elements of their
research to be unclear and difficult to reproduce.

III. EMG BIOSENSING

EMG (Electromyography) Biosensing is a
technique used to detect and measure the electrical
activity generated by nervous impulses which
signal for the contraction of skeletal muscles. In the
context of speech production, the electrical signals
generated by the muscles involved in facial
articulation can be measured and recorded using
surface EMG sensors (sSEMG) placed on the skin
above these muscles. When performing
subvocalization, muscles in the face and neck create
myoelectrical signals in preparation for speech
production. These electrical impulses generate a
time-varying potential difference pattern over
various muscles which can be captured by sEMG
sensors. We chose to use electromyography sensors
in our research using pre-gelled Ag/Cl adhesive
electrodes. These surface adhered electrodes
provide a non-invasive method to capture the subtle
muscle activity associated with subvocalization.



To determine optimal sensor placement, we
conducted multiple rounds of data collection and
analysis in order to find muscle locations which
would provide the lowest Signal-to-Noise (SNR)
ratio for our dataset. Signal-to-Noise Ratio is a
measure of the strength of a signal relative to the
background noise present in the recording. In the
context of SEMG biosensing, SNR is an important
metric because it indicates the reliability of the
myoelectric signal being recorded. The higher the
SNR, the easier it is to distinguish the subtle
electrical activity associated with speech production
from background noise. Since the electrical signals
we're trying to detect are very minute and
susceptible to various types of noise, it's crucial to
find the optimal sensor placement to obtain the
highest possible SNR in our data. By selecting
muscle locations with a low SNR, we can ensure
that our recorded signals are as clear and reliable as
possible, which will improve the accuracy of our
machine learning model in decoding subvocalized
words.

In order to find optimal sensor placement we
determined a few possible locations using the
expertise of Professor Adam Lammert, who
specializes in speech pathology and biomechanics.
Including facial and throat muscle structure, we
narrowed our focus down to six primary locations:

Region Common Location
Laryngeal Throat
Mentalis Chin

Hyoid Under Chin

Buccal Mouth

Orbital Cheek
Masseter Jaw

Fig. I - Sensor Placement Locations

Recordings from various configurations of these
locations were collected and analyzed in order to
select final locations.

To collect data, participants were instructed to
silently subvocalize numbers from one to five
repeatedly in their heads for a period of five
minutes per number while wearing the sEMG
sensors. An accelerometer was attached to the
participant’s index finger, which they would tap on
the table when thinking of a word. The
accelerometer data was used to segment the
continuous stream of data into individual samples
of data. The participants were given a rest period of
five seconds in between each subvocalization task.

IV. DATA PROCESSING & ANALYSIS

In order to analyze the quality of our data, we first
split our collected data into samples, then further
subdivided the samples by region, number, and
participant. The primary goal of our analysis was to
find sensor locations which provided quality data
and easily discernible differences between our
target classes.
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Figure 2 - Filtered vs Unfiltered sEMG Signals

After collecting our data, we performed a
preprocessing step to reduce and eliminate as much
interference as possible before analyzing our
samples. In order to eliminate cardiac and other
biological interference, we placed a reference
electrode behind the right ear. We used a
Butterworth  filter to reduce electrical line
interference from nearby power sources, which we
found to be a common source of noise in our
recorded signals. The filter has a passband of 2 to
45Hz, which means it allows frequencies in that
range to pass through while attenuating frequencies
outside of that range. While the filter effectively
reduced noise in our signals, it did not completely
eliminate all 60Hz interference. To further reduce
the impact of 60Hz interference, we applied an
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Figure 3 - Noisy vs Final data (3 CH)

additional Infinite Impulse Response (IIR) notch
filter. The IIR notch filter is a type of filter that can
be used to selectively remove a narrow range of
frequencies, in this case, 60Hz, from the signal
while leaving other frequencies largely unaffected.
With these preprocessing steps in place, we were
able to obtain high-quality signals from our sSEMG
sensors and reduce the noise in our data (Fig. 2).

To evaluate the accuracy of our collected data, we
chose to visually analyze samples using a
spectrogram representation. Samples were grouped
by number and location, then for each channel all of
the samples in that subset were averaged together.

The preprocessed data was then transformed into a
spectrogram representation using a multi-tapered
method with a window length of 128 ms and 50%
overlap. The spectrograms were then plotted for
each channel (out of three) per number and
location. This spectral analysis allowed us to
visually evaluate the quality of our data.

Due to the averaging of samples we can see noise
when recording poor quality data and distinct
clusters with useful data (Fig. 3). Using this
technique, we chose the three best performing
locations for which to develop our model with.
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Figure 4 - sSEMG Sensor Locations

Using spectral analysis we determined three final
sensor regions located on the Mentalis, Depressor
Labi Inferioris, and Buccinator (Fig. 4).
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Figure 5 - Final CNN Model Architecture

V. NEURAL NETWORK

In an attempt to reduce the time-shifting bias
incurred from signalling subvocalization through
accelerometer taps, we augmented preprocessed
training data by shifting samples by up to 25 ms in
either direction from the signal onset. By doing so,
we increased the size of our dataset, thereby
providing more varied examples for training, which
allowed us to further improve our model's test
accuracy. Ultimately, the model was trained on a
dataset of 10,800 samples, divided into five classes,
each consisting of 425ms of sEMG data with 3
channels per sample. 6,100 unshifted samples were
used to validate the accuracy of the model with
3,600 samples used during training and 2,600
samples kept entirely separate to test the model on
after training completed.

To classify our subvocalized data on the numbers
1-5, we tried a cohort of differing machine learning
processes. After experimenting with various neural
network types, we discovered that a Convolutional
Neural Network (CNN) was the most effective at
classifying our time-series data. This was primarily
due to the fact that CNN's are particularly adept at
detecting features in data with a temporal or spatial
nature, which is crucial for speech recognition. We
found that a CNN model performed exceptionally

well with our dataset, and was able to accurately
classify our data.

However, we did not solely rely on the CNN model
for our analysis. In an effort to identify the most
suitable structure for our classification task, we
explored other neural network architectures. We
tested several RNN models, which are designed to
process sequential data, as well as Long Short-Term
Memory (LSTM) models, a type of recurrent neural
network that can learn long-term dependencies.
Despite the promise of these models, they appeared
to underperform in comparison to the CNN.

75.00% 80.00% 85.00% 90.00% 95.00% 100.00%

Test Accuracy

Figure 6 - Model Complexity (CNN+Dense Layers) vs.
Test Accuracy
In addition to experimenting with different neural
network types, we also varied the complexity of our



CNN model to evaluate its impact on classification
performance. This included changing the structures
of the model, such as adjusting filter sizes, the
number of layers, and using different pooling
techniques. We also adjusted the number of neurons
in the hidden layers, the learning rate, and the
regularization parameters to minimize the model
complexity while still retaining a high classification
accuracy. The final model structure that we settled
on minimized model complexity, allowing for
quicker inference times, which is an important
aspect in speech interfaces. Figure 6 illustrates the
impact of varying model complexity on
classification performance, and Figure 5 shows the
final model architecture.

VI.RESULTS

Our results showed that the final trained model was
able to accurately classify the numbers 1-5 from
facial subvocalization signals with an average
accuracy of 99.9%. The confusion matrix for the
classification results is shown in Figure 7.

Confusion Matrix (Filtered Weights - Test Set)
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Figure 7 - Confusion matrix for the classification of
numbers 1-5

Comparison with previous research showed
significant improvements in accuracy rates.
Previous studies using machine learning algorithms
to classify subvocal speech reported accuracy rates
around 95%. Again, this study had inconsistencies

and a non reproducible framework. This study also
required 8 sEMG sensors, while our data was
recorded with 3.

The choice of which ML technique was used also
strongly affected our results. When experimenting
across various ML models, we found that though
model architecture affects accuracy — data quality
was significantly more important. Depending on the
network architecture and data quality, our accuracy
varied from as 30% to 60% when using poor quality
data. After prioritizing the optimization of our
sensor placement and model architecture, we started
to see significant improvements in classification
accuracy.

In our evaluation of the trained model, we
performed testing on 2,600 samples of previously
unseen data. The results demonstrated a remarkable
level of accuracy, with the model able to perfectly
classify a subset of the data with 100% accuracy. In
order to ensure that the accuracy was not the result
of overfitting or test data leakage into the training
data, we undertook several steps.

Firstly, we experimented with varying model
complexities to ensure that the model was not
overfitting on the training data. We then conducted
a thorough analysis of the training process to ensure
that there was no data leakage between the test and
training sets. Through these measures, we were able
to establish the accuracy of the model with
confidence.

Further testing of different model structures with
varying complexities revealed a strong correlation
between the complexity of the model and its
performance (Fig. 6).
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We demonstrate the successful application of
machine learning techniques for accurate
classification of subvocalized speech signals from
facial muscles. Our final trained model achieved an
accuracy of 99.9% in classifying numbers 1-5,
outperforming previous studies that relied on more
sensors. Our findings also emphasize the
importance of optimizing both data quality and
model architecture for achieving high classification
accuracy. The level of accuracy achieved by this
model demonstrates its robustness and further
potential for additional research.

VIL

We will provide a framework for further
development in the field of subvocalization and
human-computer interaction, particularly for
individuals with speech impairments. A future
version of this system could make communication
for such individuals more efficient and convenient,
thereby enhancing their quality of life. Additionally,
this technology could also be useful in scenarios
where silent communication is necessary, such as in
loud environments or when maintaining secrecy is
critical.

DiscussioN

As we chose to categorize only upon numbers,
more research and data would be required to
recognize a broader range of words or phrases.
Moreover, the sample size of our participants was
fairly limited, underscoring the need for future

studies with a larger sample size to validate the
ability to generalize our findings across a wide
range of different individuals. When investigating
generalization, attempting to use transfer learning
may enable more accurate and individualized
models without the need for large data collection on
a person-by-person basis [12]. In addition, more
advanced or specific Al techniques may be
necessary to develop in order to accurately interpret
sEMG signals during subvocalization, particularly
in environments with high electrical interference.

The opportunities for the practical application of
this system are numerous, and could be utilized in a
number of different industries. For instance, the
technology could be incorporated into devices such
as glasses, helmets, “smart stickers” [13], or other
applications. This integration would allow for
hands-free and simple communication between
users and technology. Silent and privacy focused
communication has applications in  noisy
environments, situations which require secrecy, or
even simply to allow people to interact with their
technology without being noticed. Industries such
as gaming could also utilize the system to provide
users with a more realistic and lifelike gameplay.

Despite the potential applications, there are
numerous ethical concerns related to the
development and use of this technology that need to
be addressed [14]. It is essential to consider the
potential privacy implications of recording and
interpreting an individual's “thoughts”.
Additionally, it is important that this technology is
accessible to all individuals by ensuring further data
collection has a broad representation from various
groups of people.

VIIL

Our proposed system demonstrated promising
results in accurately interpreting SEMG signals

CONCLUSION

during subvocalization. Although there are
limitations to the study, the findings have
significant  implications for the field of

subvocalization and human-computer interaction.



Our results show that using our methodology
classification of subvocalized thoughts can be
performed with an extremely high accuracy,
demonstrating the potential for the application of
decoding subvocalized speech, and providing a
basis for further exploration.
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