Characterization of the Mechanosensitivity of Tactile

Receptors using Multivariate Logistical Regression

By
Sam Bradshaw

A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
In

Electrical Engineering
By

May, 2001

Approved:

Dr. Fred J. Looft
Thesis Advisor

Dept. of Electrical and
Computer Engineering

Dr. Peter Grigg

Committee Member

Dept. of Physiology

University of Mass. Medical Center

Dr. Sean S. Kohles
Committee Member

Dept. of Biomedical
Engineering

Dr. Edward A. Clancy
Committee Member
Dept. of Electrical and
Computer Engineering



Abstract

Tactile sensation is a complex manifestation of mechanical stimuli applied to the skin.
At the most fundamental level of the somatosensory system is the cutaneous
mechanoreceptor, making it the logical starting point in the bottom-up approach to
understanding the somatosensory system and sensation, in general. Unfortunately, a
consensus has not been reached in terms of the afferent behavior of mechanoreceptors
subjected to compressive stimulation.

In this study, 10 afferent mechanoreceptors were isolated and mechanically stimulated
with controlled compressive loads. Their responses were recorded and the sensitivities of
the individual receptors to compressive stimulation were statistically evaluated by
correlating the compressive state of the skin to the observed “all-or-nothing” responses.
A host of linear techniques have been employed previously to describe this multiple-
input, binary-output system; however, each of these techniques has associated
shortcomings when employed in this context. In particular, two shortcomings are the
assumption of linear system input-output and the inability of the model to assess
individual input-output associations relative to concurrent input in a multivariate context
with interacting input. Therefore, a non-linear regression technique called logistical
regression was selected for characterizing the mechanoreceptor system. From this model,
the relative contributions that each component of the stimulus has upon the neural
response of the receptor can be quantitatively assessed and extrapolated to the greater
population of cutaneous mechanoreceptors.

Since this study represents a novel approach to receptor characterization, a framework for
the application of logistical regression to the time-series representation of the multiple-
input, binary-output mechanoreceptor system was established and validated.
Subsequently, in-vitro experiments were performed in which the afferent behavior of
tactile receptors in rat hairy skin were recorded and the relative association between a
number of biologically meaningful stimulus metrics and the observed neural response
was evaluated for each receptor. Through the application of logistical regression, it was
determined that cutaneous mechanoreceptors are preferentially sensitive to the rate of
change of compressive stress when force-control stimulated and both stress and its rate of
change when position-control stimulated.
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1.0 Introduction

Tactile sensation is a complex manifestation of mechanical stimuli applied to the skin.
At the most fundamental level of the somatosensory system is the cutaneous
mechanoreceptor. Thus, the bottom-up approach to understanding the somatosensory
system and sensation, in general, begins with a characterization of tactile receptors.
While tactile receptors have been studied extensively, a consensus has not been reached
in terms of a robust model for describing and predicting the afferent behavior of tactile
receptors subjected to compressive stimulation [47]. It is widely accepted that these
receptors respond readily to pressure and low-frequency vibratory stimuli and studies
involving populations of cutaneous receptors typically exploit this fact [17,18,21,29,36—
39]. This study exploits the known sensitivities of tactile mechanoreceptors as well.

Tactile skin mechanoreceptors transduce externally-applied mechanical stimuli into a
binary action potential event stream. The input stimuli can be described by multiple
components, each quantified by a different metric. In order to determine the relationship
between the response of the receptor and each component of the stimulus, researchers
will systematically vary each component and look for changes in the response of the
receptor [36-38,43,44,47,48]. In this type of experiment, it is difficult to evaluate the
relationship between components of the stimulus to the observed nerve response for two
reasons. First, the stimulus component controlled in the experiment may influence other
components of the stimulus such that there is no clear single-input/single-output
relationship. Second, the input-output behavior of the system is confounded when
interactions of stimulus components are encoded by the receptor.

Multivariate logistical regression (MLR) is a mathematical technique in which multiple
continuous explanatory variables, or covariates, are correlated to a dichotomous response
variable. The technique was first employed in epidemiological studies to determine
which habits and predispositions best predicted a particular disorder such as heart disease
or kidney failure [5,17,51]. The explanatory variables could be, for example, age,
weight, quantifiable eating habits, and disorder history. The response variable would be
the presence or absence of the disorder, expressed as a binary output. MLR provides a
quantification of the relative contribution that each explanatory variable has upon the
binary response. The capabilities of MLR are realized without any predisposition
towards known input/output correlations and MLR has the ability to account for
confounded interactions among explanatory variables (such as height and weight in
growing individuals).



Multivariate Logistical Regression Applied to Neural Systems

In this study, a multivariate logistical model was used to characterize the in-vitro
behavior of isolated rapidly adapting mechanoreceptor afferents in rat hairy skin. The
explanatory variables were controlled, time-sampled compressive stimulus states
expressed as stress, strain, and their respective time-derivatives. The binary response
variable was the presence or absence of a nerve action potential.

Since tactile receptors respond to a plurality of local stimuli, it is difficult to ascertain
with certainty whether a mechanoreceptor responds more readily to internal strains or to
external compressive stresses when stimulated via force or displacement applied
orthogonally to the skin surface. The multivariate logistical model provides an elegant
solution to this problem in that over a uniform distribution of stimulus states, the method
can be used to quantify the relative spike output contributions from each of the
components of the stimulus, including any stimulus state interactions. As a result, one
can gain a more rigorous understanding of the incipient behavior of the system by
analyzing the influence that interaction terms in the multivariate logistical model have
upon the nerve response.
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2.0 Research Summary

The goal of this research was to gain a more fundamental understanding of how tactile
stimuli are transduced by a mechanoreceptor into a neural response. More specifically,
the goal was to determine which stimulus metric or interaction of stimulus metrics is
encoded by a mechanoreceptor afferent through the application of multivariate logistic
regression.

This research involved stimulating an isolated, in-vitro patch of hairy skin from the inner
leg of rat using indenting pseudorandom and non-repeating noise sequences as input,
recording both the controlled input variables and corresponding nerve responses, and
applying the multivariate logistical regression technique to the sampled data using
commercial and custom designed software. Indentation stimuli were applied using an
actuator to indent a tip of known dimensions into the surface of the skin directly above an
isolated afferent receptor. Stimulus magnitude was varied from threshold to 8 times the
receptor threshold with the actuator controlling either the indented position or the applied
force. The position (displacement) and force data were then transformed offline into
stress, strain, and their time derivatives.

After data were collected, MLR was performed on each data set and odds ratios
calculated for each explanatory variable and interaction term in the regression model
using a maximum likelihood estimation technique. The odds ratio is a quantitative
measure of the degree to which the outcome variable changes for a single-unit change in
a covariate. When the explanatory variables are normalized, the odds ratio can be
interpreted as a dimensionless quantitative measure of the strength of association between
the explanatory variable and the response relative, to all other explanatory variables
included in the model. Therefore, the odds ratio was used to compare stimulus encoding
characteristics among mechanoreceptors activated by dynamic compressive loads of
varying magnitudes.

Two response characteristics, unique to neural encoders, were addressed during data
processing. First, an evoked action potential may correspond to a stimulus state that
occurred before the action potential was recorded. To address this problem, odds ratios
were calculated for explanatory variable combinations that occurred up to 100
milliseconds before the observed action potential. This approach effectively decoupled
the stimulus variables across samples, ensuring independence among explanatory
variables that had been confounded in time by discrete sampling.

Second, nerve responses are followed by an absolute and relative refractory period,
during which no magnitude of stimuli and elevated stimuli can elicit an action potential,
respectively. In order to break this cross-sample dependency, post-spike sample points
were assigned positive (binary 1) outcomes and added to the model as categorical
(discrete) explanatory variables. An odds ratio was calculated for each and post-spike
samples were discarded if they were calculated to be protective against spikes (i.e., an
odds ratio less than 1). The regression coefficients and odds ratios were then recomputed
for each explanatory variable.

11



3.0 Background

This Background section will serve to supplement the reader’s knowledge of the afferent
behavior of tactile receptors as well as introduce the concept of multivariate logistical
regression.

3.1 Mechanoreceptors

Mechanoreceptors transduce static and dynamic mechanical deformations resulting from
externally applied vibration, stretching, and pressure into action potential event streams.
Mechanoreceptors found in the skin are known as tactile receptors and mediate cutaneous
sensation. The nerve endings associated with cutaneous sensation are known as
Meissner’s corpuscles, Merkel cells, Pacinian corpuscles, and Ruffini corpuscles.

Mechanoreceptors found in muscles, joints, and tendons mediate the kinesthetic sensation
by transmitting information on active muscle contraction, passive stretch of muscles, and
actively or passively produced tension. These receptors are known as muscle spindles,
Golgi tendon organs, and joint receptors.
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FIGURE 3.1: SKIN CROSS-SECTION WITH CUTANEOUS RECEPTORS
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FIGURE 3.2: CUTANEOUS RECEPTOR MORPHOLOGY

3.1.1 Cutaneous Mechanoreceptor Behavior

Both the intensity and duration of the stimulation is encoded by the frequency of action
potentials. However, mechanoreceptors exhibit adaptation when subjected to prolonged
stimulation. This adaptation is either rapid or slow and each type of adaptation encodes
different information [8,36,48].

Rapidly Adapting (RA) receptors encode rapid mechanical changes such as those
produced by vibration. RA receptors fire at the onset and offset of a stimulus at or above
the nerve’s threshold and are generally quiet in between. RA afferents may also respond
with a high frequency burst of action potentials at the onset of the stimulus where the
burst rate is a function of the magnitude of the initial stimulation. The more intense or
rapid the deformation of a single corpuscle, the higher the burst rate of nerve impulses
generated in its neuron. If the stimulation is continuous but static in magnitude, an RA
afferent will adapt, resulting in a decrease in the frequency of action potentials until none
are observed. At this point, any change in the stimulus from this static state will again
prompt a volley of action potentials, followed by the same pattern. Rapidly adapting
afferents, therefore, tend to encode stimulus rate. An example of an RA tactile afferent is
the Meissner corpuscle [8,36,48].

Pacinian corpuscles are rapidly adapting receptors that encode much higher frequency
stimuli. Pacinian corpuscles are preferentially sensitive to vibrations up to approximately
400 Hz. They also have a much larger receptive field, resulting in fewer receptors per
unit area in the skin, and are often found much deeper in the skin and subcutaneous
tissues than other cutaneous receptors. Due to the large size of Pacinian corpuscles
relative to other cutaneous receptors (~1 millimeter vs. 5 — 100 micrometers in diameter,
respectively), the morphology of Pacinian corpuscles has been documented more
thoroughly [8,36,48].

Slowly adapting (SA) receptors respond to slowly changing or static stimuli and can

convey stimulus magnitude and duration more accurately than rapidly adapting receptors.
To various degrees, SA afferents fire continuously for the duration of the above-threshold
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stimulus. Rather than responding with a volley of impulses of decreasing frequency with
time, slowly adapting afferents will respond to a constant compressive load with periodic
impulses of low and relatively constant frequency. The adaptation time constant is much
larger than that observed for RA afferents. Merkel cells and Ruffini corpuscles are
slowly adapting and are referred to as slowly adapting type I (SAI) and type II (SAII),
respectively [8,36,48].

Mechanoreceptor types can be further subdivided based on their receptive field size
relative to one another, as shown in Table 3.1. Meissner corpuscles, Ruffini corpuscles,
and Merkel cells typically resolve fine spatial differences, while the Pacinian corpuscles
resolve coarse spatial differences. Pacinian corpuscles are sensitive to higher frequency
stimulation than other cutaneous afferents and have the largest receptive field sizes.

Adaptation | Receptive Field Size
Meissner's Corpuscle Rapid Small
Merkel Cells Slow Small
Pacinian Corpuscle Rapid Large
Ruffini's Corpuscle Slow Small

TABLE 3.1: RECEPTOR CHARACTERISTICS

3.2 The Linear Probability Model of Binary Data

When modeling a system with continuous output, common regression techniques attempt
to provide a model that predicts the best estimate of the value of the continuous output.
When dealing with binary output bounded by 0 and 1, on the other hand, regression
techniques attempt to describe the conditional mean of a response variable, or the mean
value of the response given the state of the input variables [2,34,40,41].

Linear regression is perhaps the most ubiquitous of data modeling techniques and
involves fitting a line to a set of data points using the method of least. The equation for
the first-order linear probability model for binary data with a single input variable takes
the form:

Y=0,+Bx+¢, [Eq. 1]

where:
e Yrepresents the dependent variable, in this case a binary (0 or 1) outcome
e [ represents the coefficient associated with the independent variable x
e X represents the value of a single independent variable or the value of a first order
transformation of an independent variable
e [ represents the constant term coefficient
e s represents the error in the model prediction
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Throughout this document, the terms dependent variable, outcome, response, response
variable, output, and risk factor will all refer to the dependent variable. Similarly, the
terms independent variable, covariate, explanatory variable, input, and predictor will all
refer to the independent variable(s).

The technique for determining the coefficients £ and S is straightforward and resolves
into selecting fp and S to minimize & where & is the squared difference between the
independent variable x and the value of Y predicted by the model. In other words, & is
the minimum chi-squared error of the estimate. When the coefficients are resolved, they
can be directly interpreted as the probability of the given coefficient generating a binary 1
response [40,41].

While this model may correctly indicate the significance of the independent variable(s)
based on the values of the coefficients in the fitted model, it violates several fundamental
assumptions for statistical models because [2,7,12,13,22,28,30,34,41,45,53]:

e The variance of the error term is dependent on the independent variable. In
other words, the error is not constant for every level of the independent variable.
This is referred to as “heteroscedasticity.”

e The error is not normally distributed. As a result, standard errors are
inconsistent.

e The dependent variable is binomially distributed. Linear regression assumes a
normally distributed dependent variable.

o The predicted probability (expected value) of the dependent variable is not
bounded by 0 and 1. Mathematically, it can take on any value between -co and
+00. This result is inconsistent with the definition of probability.

For these and other reasons that will become apparent below, a logistic model is used
instead of a linear model for predicting binary outcomes.

3.3 The Logistic Model of Binary Data

In the logistic model, the probability of the dependent variable, or the conditional mean
of the system, is modeled by a logistic function. The logistic function, which will
henceforth be denoted by 7(x), represents the probability of observing a positive outcome
given the system inputs: Prob(Y = 71 | x). It takes on the following form for the
univariate case [13,22,25,30,31,33,34,41,45]:

eﬂ0+xﬂl +é&y

m(x) = Prob(Y =1]x) = | ey [Eq. 2]

+eﬂ°
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e Yrepresents the dependent variable, in this case a binary (0 or 1) outcome

e [ represents the coefficient associated with the independent variable x

e X represents the single independent variable, in this case a continuous variable
e [ represents the constant term coefficient

e & represents the error associated with the independent variable x

The formula 7(x) is also described as the conditional mean of the dependent variable
given X, or the expected value of the dependent variable, given x: (E[Y]|x]). The
assumptions inherent in the model will become apparent as this section progresses.

An example of a logistic function is shown in Figure 3.3. It is a sigmoid, or S-shaped,
curve that looks similar to a Cumulative Distribution Function (CDF). In fact, the
logistic function is often used as a CDF [3]. It should also be noted that the independent
variable could be continuous or categorical (discrete) where an example of a categorical
value is age or the year. The method for determining the coefficients fp and £; will be
discussed in a subsequent section.

The logistic model is a non-linear transformation of the model used in linear regression.
Because of this transform, coefficients can no longer be directly interpreted as
probabilities as they were in linear regression [41]. This transform, called the “logit” or
“log odds” transform, produces a linear combination of the independent variable(s)
(Equation 3) and is significant because it represents the natural log of the probability that
an event occurs (P = 7z(x)) divided by the probability that the event does not occur (Q =
1 - P =1 - z(x)). The quantity (P / 1 — P) represents the “odds” of observing a
particular outcome. The logit transform is the natural log of this value. Since the
probability of an event occurring is modeled by a logistic function, the logit transform
produces a linear combination of the explanatory variables [13,22,25,30,31,33,34,41,45]:

logit[(x)] = logit[Prob(Y=1 |x)] = 1{%} = ln{%}= 1{13’(‘2)} Bo+ xB: [Eq.3]

If, for example, the probability of a particular horse winning a given race were 20% (P =
0.20), that horse would be expected to win 1 race and lose 4 in every 5 races. In other
words, the odds are 1 to 4, or 0.25, in favor of this horse winning a given race. Given this
convention, it is clear that the lower bound on the odds is zero and the upper bound is
infinite. The importance of these bounds on “odds” will become apparent shortly.

The logit transform is particularly useful as a basis for characterizing binary responses
because a simple transformation of the probability of a positive response produces a
linear function, making the task of regression and evaluating the “goodness of fit”
considerably easier [25,26,30]. It is important to understand that the logit, the
probability, and the odds are different methods for expressing the same function. The
interpretation of probability and odds is more straightforward that the interpretation of the
logit. However, the logit transformation removes the shortcomings associated with linear
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regression for predicting probabilities and is a mathematically simpler form for
expressing the relationship between a dichotomous value and continuous values. Since a
logistic function is bounded by 0 and 1, it does not predict probabilities greater than 1 or
less than 0 as shown in Figure 3.4 [7,12,41].

FIGURE 3.3: LOGISTIC FUNCTIONS
One can see from this graph that the S-shaped Logistic function can take on a variety of shapes
ranging from continuous and predominantly linear to a step function.

Y=1 2

Logistic Regression Model

X
/ear F'I'EEbl;bilit)' Madel

FIGURE 3.4: COMPARISON OF LINEAR PROBABILITY AND LOGISTIC PROBABILITY MODELS
The probability of the Logistic regression model is inherently bounded by 0 and 1; however, the
linear probability model can predict response/event probabilities greater than 1 and less than 0.

=0
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To clarify, the odds of having a positive response are expressed as the ratio P/Q or
(Prob[Y = 1| x])/(Prob[Y = 0| x]). In other words [13,22,25,30,31,33,34,41,45]:

Prob[Y = l|x] _ 7(x)
Prob[Y = O|X] 1-7(x)

= e/ [Eq. 4]

: . . : 1
The logit transform of the conventional logistic function { Z} would produce an

l-e

undefined result, In(-e™). Therefore, the model logistic function is modified such that the
logit transform produces a linear result [17,25,31]. This will facilitate the task of model
fitting.

3.3.1 The Multivariate Logistical Model

The logistical model can be extended into a multivariate case in which there are multiple
independent, or explanatory, variables in the model. These variables are collectively
referred to as “covariates.” In the multivariate case, the natural log of Prob(Y = 1|x,) is a
linear combination of “n” known independent variables (Xx7._ ) multiplied by unknown
parameters (f;..n), each representing an single covariate variable. In other words
[2,17,22,25,31,41]:

logit(z(x,)) = In [M} =P+ xifr +Xofo ¥ X3P+ .. ¥ Xl [Eq. 5]
1-7(x,)

or

n

logit(r(xs)) = In[Prob(Y = 1x,)] = > x5 = xB [Eq. 6]

i=1
where:
e “n” is the number of independent variables included in the model
® Xpis a vector containing all of the input variables in the model
e Xxf is the linear combination of independent variables multiplied by their
respective Beta coefficients

Since there are multiple independent variables in the multivariate model, additional
covariates can be included that account for interactions among the independent variables.
The interacting covariates are said to be “confounded”. Confounded interactions occur
when one or more covariates modify the affect that another covariate has upon the
response variable [7,12,15,16,17,25,34,40,41]. Confounded variables are said to be
associated both with the outcome variable and an independent variable.

The logistical model must be statistically adjusted to account for confounded interactions.

This adjustment takes the form of an additional covariate that is included in the model.
The value of this additional covariate is the normalized cross-product of the two
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confounded covariates. Normalization is necessary because a covariate with a large
standard deviation or a different mean may mask the effect of the other covariate in the
interaction pair.

An example of a confounded interaction is a covariate and its derivative. If an
explanatory variable follows a sinusoidal pattern, then its derivative will follow the
pattern of a cosine, which is a sine wave with a 90° phase shift. If the response variable
is correlated with either of these covariates, it is difficult to isolate which of the two has a
more significant relationship with the sampled response [17,36,37,38].

Interaction terms can be included in the logistic model if they are statistically significant
or have a meaningful interpretation [17,25,41]. Statistical significance implies that the
model is more accurate if the interaction term is included and can be determined
mathematically as will be discussed in subsequent sections. A meaningful interpretation
implies that the interaction term has some significance in terms of the results of the study.
In the previous example involving a sinusoid and its derivative, the second and even third
derivatives can be calculated and proven mathematically to be confounded with the
original sinusoid; however, such interaction terms should be eliminated if they cannot be
interpreted in a meaningful way. Furthermore, certain biologically or physically
confounded terms will not be statistically discernible, yet still warrant an interaction term
in the model [25]. Therefore, it is necessary to use discretion when customizing the
logistic function 7(X) such that statistically and experimentally meaningful confounded
interactions are included. In the mechanoreceptor model discussed previously,
interaction terms between stress and strain are meaningful because they describe
mechanical states within the skin that cannot be described fully by either stress or strain
alone.

Higher order (squared, cubed, etc.) interactions can be included. However, once again, it
is important to be able to interpret the results of the model. Higher order interactions of
stress and strain in the mechanoreceptor model do not yet have an interpretable physical
or biological manifestation. In fact, over-fitting the model can lead to inaccuracies in the
predicted probabilities and exaggerated independent variable standard errors because the
model may be fitted to the random noise inherent in the system rather than the incipient
behavior of the system [25,41].

A second consideration when fitting a model to sampled data is the issue of events per
independent variable. More precisely, how many positive events are needed per
covariate to obtain reliable estimates for the regression coefficients (Beta values)? A
general heuristic is to include no more primary independent variables (disregarding
interaction terms) than the number of events in the sample space divided by 10 [25]. This
heuristic does not apply exclusively to logistical models; rather, it applies universally to
data modeling techniques.

In the remaining sections of this Background, the terms logistical regression and

logistical model will be assumed to refer to the multivariate model unless explicitly stated
otherwise.
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3.3.2 Building the Logistical Regression Model

There are two primary techniques for building a logistical model from sampled data. One
method involves simply including all independent variables of interest in the model and
evaluating the contribution that each has upon the accuracy of the fitted model [25,41].

The second, and more conventional technique, is “stepwise regression.” In stepwise
regression, each independent variable of interest is fitted with a univariate logistical
model containing that independent variable only. Within this model, a strong correlation
between the independent variable and the dependent variable indicates this independent
should be included in the multivariate model. Next, independent variables that show
associations with the dependent variable in their respective univariate model are included
in the multivariate model. Each independent variable is first included then excluded and
its significance tested by contrasting the “goodness-of-fit” of the model with and without
the variable in question [25,41]. Two common statistics used to evaluate the significance
of an independent variable within the logistical model are the odds ratio and the
likelihood ratio test. The likelihood ratio test will be discussed in the next section and the
odds ratio in a subsequent section.

Likelihood Ratio Test

In order to build a suitable logistical regression model, an indication of the relative
significance of the marginal contribution of the X;f; term to the entire logit transform of

7(Xn) is needed. A statistic called deviance (D) is useful for expressing this relationship
and 1s defined as [3,16,25,28,31]:

[hkethOd fittedmodel ]
[likelihood

D=21n [Eq. 7]

saturatedmodel ]

where:

e The saturated model is the model that contains all independent variables that
showed significant association with the dependent variable in their respective
univariate models

e The fitted model contains the independent variable under test

e The likelihood function indicates the probability of the observed outcome as a
function of the unknown parameters and will be described below (Equation 8)

e The constant multiplication factor -2 forces the deviance function to be positive
and to assume an approximately chi-squared distribution

Essentially, deviance represents the likelihood of the fitted model normalized by the
saturated model. A large, positive value of the ith term of the deviance indicates the
model does not provide a good fit for observation j [3,25,31]. If the deviance of a model
calculated with a particular variable is significantly larger than that without the variable,
then it would suffice to say that the variable should not be included in the model. Within
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the brackets of Equation 7 is a ratio of likelihood functions, hence the qualification of
deviance as the likelihood ratio test.

The deviance of the fitted logistical model is the equivalent of the residual sum of squares
in linear regression. In fact, it produces the residual sum of squares value for a normal
distribution [16,25,31,40]. Consequently, deviance will become smaller with each fitted
parameter in the model [28,31].

Least Squares

In linear regression, the model is fitted to the data by a minimization of the least squares
error in the model prediction for the system output relative to the observed system output
[3,6,16,40]. If least squares were used for the logistical regression model, the unknown
parameters fp and f; for the univariate case (p = 7) and all unknown parameters £ for
the multivariate case (/ = 7...p) would be selected to minimize the chi-squared error of
the estimation. This method, however, does not account for the variance in these
estimated coefficients, particularly in the case where independent variables are
categorical. Unless weighting is employed, this variance leads to an over-estimation of
the standard error of the coefficients. Therefore, a more powerful technique called
maximum likelihood estimation is used in logistical regression [2,6,7,16,19,24,25,34,49].

Maximum Likelihood

The principle of maximum likelihood estimation is to determine which Beta values
maximize the probability of  generating the observed outcome
[2,6,7,16,19,24,25,34,41,49]. Maximum likelihood estimation involves first constructing
a likelihood function, which indicates the probability of the observed outcome as a
function of the unknown parameters (/). The likelihood function is [6,16,25,31,41]:

Likelihood = /(B) = lM[ﬂ(x)Y" [1-7(x)]" [Eq. 8]

where:
e Yiis the known outcome of the ith sample point
e M is the number of sample points

In essence, the likelihood function is the probability of the product of the observed
dependent variables in the sample. In other words, the likelihood function is a measure
of how likely it is that the observed outcome is predicted from the observed input.
Maximum likelihood estimation involves estimating the parameters in the likelihood
equation such that the likelihood of the observed outcome is maximized, given the
recorded inputs to the model. For binary outcomes, the complexity of estimating the
maximum likelihood is reduced by solving for the unknown variables that minimize —2*L
where L is the log of the likelihood function for the model. Minimizing the log of the
likelihood function is mathematically equivalent to maximizing the likelihood function.
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The shape of the minimized —2*log-likelihood function is an indication of the extent to
which the values of the unknown parameters (/) of the model are the best fit.

For given values of “x”, the log-likelihood function for the logistical regression model is
[6,16,25,41]:

M

L(B) = Log-Likelihood = In(I() = D[ Y, In[z(x,)]+[1-Y][In(1-z(x,))]]  [Eq.9]

i=1

In a simplified form, Equation 9 becomes:

LB=Y, [Yg-In(1+e%)]  [Eq.10]

i=1
where:
e (@is a vector representation of the linear combination of the explanatory variables,

Lot X1f1+ X0+ ... + Xpfh

The p values used to maximize this function (in other words, minimize the quantity —
2*L) produce the best fit. To find these S values, the function in Equation 10 is
differentiated with respect to S for i = 0...n to produce [3,19,24,25,41]:

Z [Yi - 7(x))] = 0; (for /o) [Eq. 11]

i=1
and

i [xi(Yi - n(x;))] = 0; (for f1: n = 1 =univariate case) [Eq. 12]

i=1

For the multivariate case (n independent variables), Equation 12 becomes:

M n
z Z [(Xi(Yi - n(xy))] = 0; (for f1..n:j = 1...n = multivariate case) [Eq. 13]

i=1 =l

Equation 11 is used to solve for fp and Equation 12 is used to solve for f; in the
univariate case. Equation 13 is used to solve for f; - [, in the multivariate case.
Equation 13 is inherently non-linear and its solution (/£ values) must be computed using
iterative methods. The algorithm to compute the maximum likelihood starts with an
initial arbitrary "guesstimate" for the logit coefficients. The algorithm then determines
the direction and size change for the logit coefficients that will increase the likelihood
function. After this initial function is estimated, the residuals are tested and another
estimate is made with the improved function. This process is repeated typically about a
half-dozen times until the logit function converges (i.e., the likelihood does not change
significantly when the coefficients are re-estimated). For more information on this
algorithm, the interested reader is encouraged to consult [4,19,24,25,41,46,49].
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3.3.3 Interpreting the Logistical Regression Model

When interpreting the fitted model, one should ask, “What information do the estimated
coefficients communicate regarding the questions motivating the study?” Techniques to
help answer this question are discussed below.

The Odds Ratio

A significant and easy to interpret measure of association between explanatory variables
and the dependent variable is the odds ratio. Essentially, the odds ratio is a quantitative
measure of the degree to which the outcome variable changes for a single-unit change in
the explanatory variable being tested [17,25,34,35,40,41,51,52]. In addition to being
used to interpret the fitted logistical model, the odds ratio can be used in stepwise
regression to help determine which independent variables are significant and, therefore,
which independent variables should be included in the model. Mathematically, the odds
ratio (denoted by ¥') takes the form of the ratio of the odds for an input variable to be
one over the odds for an input variable to be zero [16,24,25,40,41]:

Eq
\P:[oddsofx=l} 1-7(1)

= Eq. 14
oddsof x =0 7(0) [Eq. 14]
1-7(0)
For the univariate case (p = 1), Equation 14 becomes:
eﬂn+ﬁ1 |: 1 :|
1+e? P | 1+eP P
Y= =eh [Eq. 15]

eﬂn [ 1 j|
l1+e” || 1+eth

The logit difference is simply the natural log of ¥. If, for example, an odds ratio was
calculated to be 2, then the model including the particular explanatory variable
corresponding to the £ value used to determine the odds ratio would be twice as likely to
predict a positive outcome than if the model did not include the explanatory variable.
One could safely deduce that this explanatory variable should be included in the model
due to its profound effect on the probability of a particular outcome (assuming the
variable is of interest or can be interpreted in a meaningful fashion).

In the multivariate case, the independent variables can be normalized before determining
the odds ratios for each variable [17,41]. The advantage of using standardized logit
coefficients is that they indicate the relative significance of the independent variables
with which they are associated, despite any disparity in the units of the independent
variables [41,52]. When the independent variables have the same mean and standard

23



deviation, the Beta (f) values and odds ratios corresponding to each independent variable
rank those independent variables in terms of their significance relative to one another
within the fitted model. The odds ratios and relative significance of each independent
variable can be compared by plotting them on the same axis measured in multiples of the
standard deviation. Since normalization is a linear transform, the data can be converted
back into original units in a straightforward manner, allowing for the comparison of
sensitivity ranges among trials [17].

When odds ratios are calculated for normalized independent variables (zero mean, unit
variance), the following categories can be used to contrast the influence that each
independent variable has upon the response:

= Odds ratio >> 1: Very significant positive correlation between the independent
and the response. When the level of the independent variable increases, the
probability of generating a positive response increases.

= Odds ratio = 1: No statistical correlation between the independent variable and
the response. In other words, the independent variable is no more correlated with
the response than random noise.

= (< Odds ratio << 1: The independent variable is negatively correlated with, or
protective against, the response. When the level of the independent increases, the
probability of generating a positive response decreases.

For the situation in which the explanatory variables are continuous, the equation for the
odds ratio becomes [25,41]:

[ﬂx:a)}

(odds of x :a) L l-rx=a)] s,

(oddsof x=b) | z(x=b) | .
)

¥(a,b) = [Eq. 16]

This expression can also be used to evaluate pseudo-odds ratios that relate the change in
the outcome variable for a change of (& — b) in the explanatory variable “x”. It is
important in this case to evaluate the logit at x = @ and x = b, rather than the situation
above in which @ = 1 and b = 0. It is conceivable that the odds ratio will be different
depending on the levels of “a@” and “b” used in the calculation; therefore, a useful
quantity in this case is the average (or geometric mean) of the odds ratios for all “a” and
“b” such that (a — b) =1 [25,41]. In general, the relationship between the odds ratio and
the range of the continuous explanatory variable should be selected so that it has a
meaningful interpretation [17,25]. For example, for a model relating the outcome
variable of heart disease to the continuous explanatory variable age, an odds ratio
corresponding to a period of 1 month does not have a meaningful interpretation since the
average person lives for approximately 70 years.
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For a multivariate model in which there are only two covariates, “7” and “v”, and which
are confounded, the logistic function becomes [16,25,40,41]:

e Po+nB+0Bs+10p;

72.(77’ U) - 1+ eﬁ0+’7ﬂ1+uﬁz+’luﬂ3 [Eq 17]

where
e purepresents the normalized product of the two terms that are confounded

The linear outcome of the logit transform of (7, v) becomes:

il _FOBLY) | penpiopenon, [Eq. 18]
1- 7[(775 U)

In order to calculate the odds ratio for models with interaction terms, all explanatory
variables and interaction terms are held constant while the formula for the odds ratio of
the variable in question is derived. The formula for the odds ratio of “77” is [25,40,41]:

x=mn)
B (odds of n =n, given u) | =7z(n=mn,)
\P(U|U)_ (odds of 7 =77, givenv) {;;(;7:771)} [Eq. 19]

l=7(n=mn,)
Equation 19 translates into:

\P(U|U) — e(’?l"?z ) By + ef(’h"h)ﬁz [Eq 20]

For [n1 - 12 = 1], this value expresses the odds ratio of 7 for the given of v. To calculate
the true geometric mean of the odds ratio, one must now average the samples such that
[771 - 2 = 1] for all 7 and for all v [25]. With multiple covariates and interaction terms,
this task becomes increasingly compute intensive.

This method can easily be expanded for use with multivariate models comprising a larger
set of covariates with multiple interaction terms.
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The Wald Test

The Wald statistic is a computationally simple quantification of the significance of
individual coefficients and their associated independent variables within the fitted model.
There are two commonly employed forms of the Wald statistic. The first is the squared
ratio of the unstandardized logit coefficient to the standard error of that coefficient
[3,25,41]:

2
Wald Statistic; = [L} [Eq. 21]
SE(f,)
where:
e /[ is the maximum likelihood fitted Beta value for the ith independent variable
e SE(/) is the standard error (the square root of the variance of £)

The first form is asymptotically distributed as a chi-square distribution.

The second form is the simply the ratio of the unstandardized logit coefficient to its
standard error:

Wald Statistic, = B [Eq. 22]
SE(f,)

The second form is normally distributed.

A low Wald value relative to the Wald values for the other fitted parameters in the model
indicates that the independent variable does not have a profound effect on the model,
meaning it can be removed from the model without significantly changing the goodness-
of-fit [3]. It should be noted that the Wald statistic should not be used exclusively to
measure logit coefficient significance because significant coefficients with large standard
errors may have deflated Wald values. Conversely, insignificant coefficients with small
standard errors may be falsely identified as significant if the Wald test is used as the sole
measure of significance.

Outliers

In any regression diagnosis, an analysis of outliers is necessary. Outliers are data points
that fall outside the confidence interval of a fitted model. In other words, outliers fall
beyond a reasonable deviation from the curve representing the fitted model. In logistical
regression, the typical means for identifying and evaluating outliers are plots of A (delta)
Beta vs. Probability, ADeviance vs. Probability, and AChi-square vs. Probability.

Before explaining how each of these plots is generated, two variables must be defined:
the Pearson residual and the Deviance residual. A “residual” is an estimate of error that
can be used not only to identify cases for which the model fits poorly, but also cases that
have a disproportionately large influence on the estimated coefficients in the fitted model.
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These residuals are used in the functions that generate ABeta, ADeviance, and AChi-
square.

The Pearson residuals are elements of the Pearson chi-square that can be used to detect
ill-fitted patterns in the independent variables. The Pearson residual, also known as the
“standardized” or “chi” residual, defined for the jth independent variable pattern is given
by [25,41]:

Y.-m.x.
”,:# [Eq. 23]

Jmz,(-7))

where:

e Y;is the number of successes for the jth independent variable pattern
e m;is the number of trials for the jth independent variable pattern

e 7, is the estimated probability for the jth independent variable pattern

The Pearson residual is simply the difference between the observed and estimated
probabilities divided by the binomial standard deviation of the estimated probability. For
large samples, this residual is normally distributed with a mean of 0 and a standard
deviation of 1. A Pearson residual with a large absolute value for a particular observation
indicates the model fits that observation poorly.

The deviance residual is similar to the Pearson. Deviance residuals are based on the
model deviance and are also useful in identifying ill-fitted independent variable patterns.
The model deviance is a goodness-of-fit statistic based on the log-likelihood function as
discussed previously. The deviance residual defined for the jth independent variable
pattern is given by [25, 41]:

Y, m, Y, ’
d; =%|2| Y log, — ¢+ (m;, —Y)log, ——= [Eq. 24]
m;7, m;(1=7;)

Given these definitions, ABeta, ADeviance, and AChi-square are now discussed.

ABeta is useful for detecting independent variable patterns that have a strong influence on
the estimates of the coefficients. It represents the standardized change in the regression
coefficients if a particular case is deleted. The value itself is proportional to the Pearson
residual. The change in the regression coefficients if case j is deleted is given by [25,41]:

AB, =L [Eq. 25]
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where:
e J;is the leverage for the jth independent variable pattern
e 7; is the Pearson residual for the jth independent variable pattern (defined in
Equation 23 above)

The leverage indicates whether an observation has unusual predictors.  These
observations have a large influence on the values of the estimated regression coefficients.
It ranges from O (no influence) to 1 (completely determines the estimation of the
coefficients in the fitted model). Since a thorough discussion of this value is beyond the
scope of this section and the interpretation of this variable is straightforward, the
interested reader is encouraged to consult [25,26,41,46] for a more thorough analysis.
Most logistical regression software packages (SPSS, STATA, SAS, MINITAB) calculate
this value automatically.

The Achi-square is useful for detecting independent variable patterns that lie outside the
confidence interval. Just as in the formula for ABeta, it is calculated by deleting the
observations corresponding to a given pattern and contrasting the accuracy of the fit
before and after the deletion. The change in chi-square if case j is deleted is given by
[25,41]:

2
2 r.

Ay, :l—Jh. [Eq. 26]

J

Similarly, the Adeviance statistic is a measure of how well a particular observation
contributes to the fitted model. It is simply the deviance residual added to the ABeta and
is given by [25,41]:

AD, =d’ +rf—hf [Eq. 27]

where:
e d; is the deviance residual for the jth independent variable pattern (defined in
Equation 24 above)

In general, large values of AD, and A;(jz for a particular observation indicate that
observation does not fit well within the model. A large value for Af; indicates that the
given observation exerts a particularly large influence on the estimated coefficients in the
model. AD; and A;(jz are used to identify outliers while A, is used to assess the

impact that the identified outliers.

The value of AD,, A;(jz, or Af, is not particularly useful in itself, however, when

plotted versus the estimated logistic probability (ﬂ_j) or leverage (h;), one can visually
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identify observations that lie outside the confidence interval. A plot of Af, vs. ﬁ_j is

shown in Figure 3.5. The RED dots indicate positive (Y; = 1) observations. The BLUE
dots represent binary 0 outcomes (Y; = 0). The data points in the upper left hand corner
of the graph are the observations that have the most influence on the estimated logit
coefficients in the fitted model. In this graph, no observations are flagged as possible
outliers since there are no data points that lie a significant distance away from the cluster.

Delta Beta

The RED dots indicate positive (¥; = 1) observations. The BLUE dots represent binary 0 outcomes

Delta Beta versus Probability
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FIGURE 3.5: SAMPLE DELTA BETA VS. PROBABILITY

(¥;=0). No outliers are shown.

A plot of A;(jz Vs. 7Z'_j is shown in Figure 3.6. The RED dots indicate positive (Y; = 1)

observations. The BLUE dots represent binary 0 outcomes (Y; = 0). In this plot, a single

positive-outcome data point sits apart from the balance of the plot at [zr_j ~ 0.0, A;(jz
380]. This point, indicated by the GRAY circle, is flagged as an outlier.
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Delta Chi-Square versus Probability
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FIGURE 3.6: SAMPLE DELTA CHI-SQUARE VS. PROBABILITY
The RED dots indicate positive (¥; = 1) observations. The BLUE dots represent binary 0 outcomes
(¥;=0). The outlier is circled in GRAY.

A plot of AD; vs. 77_] is shown in Figure 3.7. The RED dots indicate positive (Y; = 1)

observations. The BLUE dots represent binary 0 outcomes (Y; = 0). In this plot, 3
positive-outcome observations are flagged as outliers.  These points exist at

approximately [;sz 0.55, AD; ~ 1] and are circled in Figure 3.7 with a GRAY circle

(the RED dots within the circle are the outliers). These data points fall slightly outside
the balance of the slope representing positive outcomes.

Delta Deviance versus Probability

Delta Deviance
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FIGURE 3.7: SAMPLE DELTA DEVIANCE VS. PROBABILITY

The RED dots indicate positive (¥; = 1) observations. The BLUE dots represent binary 0 outcomes
(Y;=0). The outliers are circled in GRAY (RED dots only within the circle).
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Besides these purely numerical methods, several types of graphical methods can be
employed to gain insight regarding the distribution of error terms associated with the
fitted logistic regression model. These models, as discussed by Landwehr, et. al. [31],
include local mean deviance plots and partial residual plots. It is, however, beyond the
scope of this thesis to discuss these methods extensively; therefore, some general
comments will be made regarding each of the methods.

Local mean deviance plots are generated from scatterplots of the system response on axes
corresponding to the data producing the response. The responses are grouped by a
proximity metric and the local mean deviance of each group is calculated. This value is
plotted versus the degree of freedom used to generate the mean. It is useful for detecting
the lack of a necessary interaction term in logistic function 7z(x) [3,28,31].

Partial residual plots help to detect relationships between explanatory variables in the
model and the response variables that do not adhere to the established model, signifying
the need for the inclusion of non-linear terms (squared, absolute value, etc.). Such a
method determines if improvements could be made to the model but does not indicate
what types of improvements can be made [3,31].

3.3.4 Assessing the Fit of the Model

Assessments of the accuracy of the fitted model are a necessary component of any
regression. The most common techniques for evaluating the goodness-of-fit are
discussed below.

Classification Tables

Also known as contingency tables, classification tables are indices expressing the
predictive efficiency of the fitted model. The tables organize observed and predicted data
into a format that summarizes the predictive accuracy of the model. A 2 x 2 table is
shown below in Table 3.2. In logistical regression, a 2 x 2 table is used because there are
only two levels for the dependent variable. Each level can be correctly or incorrectly
predicted, resulting in 4 values that can be organized in a 2 x 2 fashion.

Observed
Predicted |Dependent=1|Dependent=0] Total
Dependent = 1 A B X
Dependent =0 C D Y
Total U vV Z

TABLE 3.2: 2 X 2 CONTINGENCY TABLE
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In Table 3.2, the variables are defined as follows:

e A =# of responses that were both observed experimentally and predicted by the
model as 1.
e B =# of responses that were observed to be 0 but predicted incorrectly as 1.
These variables represent Type I statistical errors.
e ( =+# of responses that were observed to be 1 but predicted incorrectly as 0.
These variables represent Type II statistical errors.
e D = # of responses that were both observed experimentally and predicted by the
model as 0.
X =Sum of 4 + B=# of responses predicted by the fitted model to be binary 1.
Y= Sum of C + D = # of responses predicted by the fitted model to be binary 0.
U= Sum of 4 + C =# of observed binary 1 responses.
V= Sum of B + D = # of observed binary 0 responses.
Z =X+ Y= U+ V=total number of data points.

The predicted values of the fitted model are probabilities. If the predicted probability
generated by the model for a particular observation is greater than a cut value, the
observation is classified as a binary 1 in the table. Otherwise, it is classified as a binary
0. The value selected as the cut value strongly influences the efficiency of the model as
defined in the context of a contingency table. A typical cut value is 0.5.

Three descriptive statistics are defined based on the values in Table 3.2, sensitivity,

specificity, and correct prediction %. Sensitivity describes the % of the dependents in the
binary 1 category that were correctly classified. It takes on the following form [25]:

Sensitivity = gx 100 [Eq. 28]

The quantity [100 — Sensitivity] is a measure of the percent of Type II statistical errors in
the prediction.

Specificity describes the % of the dependents in the binary 0 category that were correctly
classified in the fitted model. It assumes the following form [25]:

Specificity = %x 100 [Eq. 29]

The quantity [100 — Specificity] is a measure of the percent of Type I statistical errors in
the prediction.
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The Correct Prediction % defines the overall predictive accuracy of the fitted model. It
is an average of the Specificity and Sensitivity that is weighted according to the number
of observations in each category. It is defined as [25]:

A+D

Correct Prediction % = x 100 [Eq. 30]

This value is sensitive to group sizes and favors the prediction % of the larger of the two
groups.

R’ Tests

In linear regression, a measurement called R” is often used to evaluate the error in the
prediction of the fitted model. R’ represents the proportion by which the regression

equation reduces the error in the prediction relative to a simple prediction of the mean Y .
The linear regression R* value is composed of a number of simpler evaluations of the
accuracy of the fitted model. These evaluations are the total sum of squares, the error
sum of squares, and the residual sum of squares [41]:

N —\2
Total Sum of Squares = SST = Z(Yl — Y) [Eq. 31]
i=1
where:
e Y;is the ith value (0 or 1)
e Yisthemeanof ¥
e Nis the number of samples
N =\2
Error Sum of Squares = SSE = Z( =Y ) [Eq. 32]
i=l1
where:
J ?, is the ith predicted value for Y
Residual Sum of Squares = SSR = SST — SSE [Eq. 33]

Given these definitions, R?, or the proportional reduction in error, is defined as:
R® = SSR/SST = 1 — (SSE/SST) [Eq. 34]

The value of R* ranges from 0 (the independent variables are no help at all) to 1 (the
independent variables allow us to predict Y; precisely).

While there are several functions that will produce psuedo-R* quantities in logistical

regression diagnostics, none of the functions produce a measurement that is analogous to
the R? value in linear regression, therefore, the psuedo—R2 value is denoted RLZ. RL2 1S
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based on the likelihood function and its interpretation becomes “the proportional
reduction in the absolute value of the log-likelihood.” 1t measures the degree to which
including an independent variable in the model increases the “badness-of-fit” of the
model and ranges from 0 (the independent variable is useless in predicting the dependent
variable) to 1 (the model predicts the dependent variable perfectly incorporating the
independent variable).

The formula for R is given by [41]:

R’ = -Le [Eq. 35]
LO
where:
e [pisthe log-likelihood (Equation 8) of the model containing p covariates
e [y is the log-likelihood (Equation 8) of the model containing none of the
covariates (the logistic function, therefore, contains only the intercept or By
coefficient)

While in linear regression, large R” indicate an accurate model and values very close to 1
are not uncommon, in logistical regression, R;* values are considerably lower. For this
reason, the R;* values are typically used in model building rather than as a descriptive
statistic.

Chi-Squared Goodness-of-Fit
A familiar statistic that is often used to determine the goodness of fit is the chi-squared
( ;(2) statistic. It is a summation over all samples on which the model is based of the

following empirical equation [16]:

(observed # of successes - fitted #of successes)’

[Eq. 36]
fitted # of successes

In logistical regression, the formula for chi-squared error is [16,25,40]:

eﬁoﬂﬁlﬂﬁr +Xp 2
Y.-
i Y ﬁ(x) i i 1+ eﬁ'o+x1,6'1+...+xpﬁp
z =
i=l1 ﬂ-(X) 1 H(X) i=1 eﬂOJrXIﬂlJr“.erPﬂp

(1 n eﬂo+xlﬂ1+..4-¢—xpﬂp )2

[Eq. 37]
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where:
e M represents all of the sample points in the sample space
e Y,represents the observed outcome (0 or 1) for the ith sample point
e 7(x) represents the familiar logistic function

The denominator in the equation, [7(X)*(1 - 7(x))], is the estimated variance of the given
logistic distribution 7(Xx).

The chi-squared statistic does not give any indication of concentrations in the discrepancy
between observed and fitted portions of the model or of the distribution of error beyond
that immediately discernible from artificial grouping. Additionally, this statistic is
unstable for fitted values near zero and one. Since logistical regression attempts to fit a
logistic function to binary (0 or 1) data, this statistic, in itself, is not a definitive measure
of the goodness of fit for the logistical regression model [6,25,31,41].

Hosmer & Lemeshow Tests

Hosmer & Lemeshow tests consist of first grouping observations based on their estimated
probabilities and then evaluating the model fit for each of the groups. This method
extends the notion of a “cut value” segregating groups into two categories into multiple
cut values segregating groups into multiple categories. Strategies for group segregation
can either be based on fixed values for the estimated probability or by dividing the
probability range (0 to 1) into percentiles. Typical commercial software applications
(namely SPSS, SAS, STATA) follow the latter technique, usually using 10 groups
(percentiles of 10 %). The first group typically contains the smallest 10 % of the
estimated probabilities while the last group contains the largest 10 % of the estimated

probabilities. The Hosmer & Lemeshow goodness-of-fit statistic (denoted Z‘) is obtained

by calculating the Pearson chi-square statistic from a contingency table of the number of
groups (g) by the number of categories for the dependent variable (2 for binary) [25,26]:

(iyil_”k'imji[j
— g R i
c=|—~— 2 = n [Eq. 38]
k=l ”k,imﬂ,[j l_czkmji[j
G Ao )|

where:
e g is the number of groups
e (i is the number of levels of the covariates that were grouped into the kth group
e 1’ is the number of observations that fall into the kth group
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the quantityz Y, represents the number of responses (binary 1 values) among the
Jj=1

¢ levels
Sk m.IT.
e the quantity Z ~—= represents the average estimated probability
=y,
Dependent =1 Dependent =0
Group| Prob | Observed | Expected | % Accuracy | Observed | Expected | % Accuracy
1 A K U EE 00 YY AJ
2 B L Vv FF PP Y4 AK
3 C M w GG QQ AB AL
4 D N X HH RR AC AM
5 E o] Y Il SS AD AN
6 F P Z JJ TT AE AO
7 G Q AA KK Uy AF AP
8 H R BB LL A% AG AQ
9 | S CC MM wWw AH AR
10 J T DD NN XX Al AS
TABLE 3.3: G X 2 HOSMER & LEMESHOW CONTINGENCY TABLE
Within Table 3.3, the variables A — AS are defined as:

A — J = Average probability of the estimated probabilities of the observations that
fall within group 1 — 10, respectively.

K — T = Number of dependent variable observations that were binary 1 in the
group 1 — 10, respectively.

U — DD = Number of dependent variables estimated as binary 1 by the model for
group 1 — 10, respectively.

EE — NN = Percent accuracy within the indicated group, 1 — 10. Calculated for
each group as:

|Estimated —Observed |

Observed

Percent Accuracy =

OO0 — XX = Number of dependent variable observations that were binary 0 in the
group 1 — 10, respectively.

YY — Al = Number of dependent variables estimated as binary 0 by the model for
group 1 — 10, respectively.

AJ — AS = Percent accuracy within the indicated group. Calculated the same as
above.

Table 3.3 is the standard format for expressing the Hosmer & Lemeshow goodness-of-fit

values.
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3.4 Logistical Model Summary

Logistical regression has the benefits of linear regression but allows experimenters to
overcome the limitations of linear regression models for certain systems. The following
are modeling assumptions met by both logistical and linear regression [7,12,34,41]:

e All relevant variables are included in the model. If a relevant variable is
omitted, the shared variability may be wholly attributed to the complementing
variable, leading to inaccurate predictions or inflated error.

e All irrelevant variables are excluded from the model. If irrelevant variables
are included in the model, the variance they share with relevant variables may be
incorrectly attributed to the irrelevant variables, resulting in greater standard
errors of the regression coefficients for these independent variables.

e Interaction terms must be explicitly included. The significance of interactions
can be tested and included or not included, depending on their significance within
the model.

The following are modeling assumptions unique to logistical regression [7,12,34,41]:

e Logistic regression does not assume a linear relationship between the
dependent variable (system output) and the independent variables (system
input). It does, however, assume a linear relationship between the logit of the
independents and the dependent variable. The model accounts for nonlinear
effects even when exponential and polynomial terms are not explicitly added as
additional independent variables; however, the model can be explicitly modified
to account for pertinent interaction terms and higher order interactions.

e Logistical regression does not assume a normally distributed dependent
variable. Linear regression assumes that the dependent variable is normally
distributed. Since a binary dependent variable is not normally distributed, least
squares estimates of coefficient significance tend to be incorrect and have an
inflated standard error.

e Logistical regression does not assume normally distributed error terms.
Logistical regression assumes error and the variance in the error to be independent
of the independent variable(s).

e Logistical regression does not make any assumptions regarding the
distribution of the independent variable(s). Normal, binomial, and uniform
multivariate distributions are allowed.

e Logistical regression does not require that the independent variables be
continuous. Continuous, categorical, and mixed continuous and categorical
inputs are allowed.

e Logistical regression does not require unbounded independent variables.
Independent variables can be discrete (categorical).

e Logistical regression assumes a discrete dependent variable. The dependent
variable can only take on discrete values. In binary logistic regression, the
dependent can only assume 2 different values. However, in multinomial logistic
regression, the dependent variable can assume many discrete values.
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4.0 Methodology

This Methodology establishes a framework for modeling the afferent behavior of
mechanoreceptors under dynamic, transversely applied compressive loads using logistical
regression and details an experiment in which the sensitivity of rapidly adapting afferents
in rat hairy skin was quantitatively correlated to the stimulus metrics stress, strain, and
their time derivatives. The results of this experiment are discussed in the subsequent
Results and Analysis sections.

4.1 Experimental Design

This section details the experiments that were conducted. The experiments were not
designed to correlate nerve response thresholds to absolute levels of induced stress and
strain because the internal stress and strain components in the skin are a complex
function of externally applied stimuli. Instead, this study examined the effect that
external components of the stimuli have on the threshold of rapidly adapting afferents.

Briefly, stimuli applied externally to the skin were carefully quantified for both the
absolute indented position of the stimulator and the force applied by that stimulator.
These data were transformed into the cross-platform units strain and compressive stress.
Finally, a multivariate logistical regression analysis was performed and the relative
contributions of each recorded variable were assessed quantitatively.

4.1.1 Goals and Objectives

The purpose of this methodology is to explain the environment in which the following
hypothesis was tested:

Rapidly adapting mechanoreceptors are preferentially
sensitive to compressive stress and the rate of change of strain.

This hypothesis was conjectured from the findings of Looft [36-39], Del Prete and Grigg
[17,18], and Grigg [21] in similar studies.

4.1.2 Experimental Setup

The experimental setup has been detailed previously [18,21,36-39] and, therefore, does
not warrant an extensive discussion. The preparation can be described succinctly as:

1) Calibrate actuator (Model 300B Lever System, Aurora Scientific, Richmond

Hills, CN).
2) Anesthetize an adult Sprague-Dawley rat using Pentobarbital Sodium.
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3) Depilate and remove a skin patch from the inside of the rat’s leg with an intact
Saphenous nerve.

4) Transfer skin patch onto support substrate in plastic chamber bathed in
artificial interstitial fluid (Hepes solution). See Figure 4.2 below.

5) Stretch skin to original dimensions (as determined by a circle drawn on the
skin prior to excision) by attaching hooks to edges and corners of skin patch.

6) Measure skin thickness by recording the position voltage differential between

the surface of the skin and the supporting substrate surface. Convert this
value to an absolute thickness by multiplying by the calibration coefficient
determined in Step (1).

7) Move nerve bundle through chamber wall into oil filled recording chamber.
See Figure 4.2 below.

8) Micro-dissect nerve to isolate a fiber corresponding to a single, identifiable
rapidly adapting afferent.

9) Wrap afferent fiber around electrode submersed in oil solution.

10)  Position actuator tip above qualitatively-established most sensitive point for
the nerve.

11)  Visually verify receptor is not associated with hair shaft.

The actuator movements can be either position-controlled (£ 2 millimeter range, ~I1
micrometer resolution) or force-controlled (£ 50 gram range, ~30 milligram resolution).
Before data are recorded, the actuator tip is lowered to the surface of the skin and the
position and force voltage feedback is zeroed. Then, the actuator tip is pre-indented
approximately 300 — 600 micrometers for several seconds. The purpose of this pre-
indentation is to prevent the actuator tip from losing contact with the surface of the skin
during stimulation. This pre-indented state is referred to as “stimulus neutral.” Both
position and force voltage readings are recorded at “stimulus neutral” and are used in
subsequent data manipulation. Indented position and force are recorded as positive
values.

The waveforms used to control either the position or applied force of the actuator tip are
either non-repeating noise with a 10 minute period or pseudorandom noise with a 0.5
second period. The non-repeating noise waveform is generated algorithmically using a
noise generator (Hewlett Packard 8057A, 1 Kilohertz output bandwidth, band-pass
filtered 0.5 — 80 Hz) and the pseudorandom noise sequences are 0.5-second noise records
of non-repeating noise that can be looped under the control of software running on a
personal computer.
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4.1.3 Experimental Parameters

Parameters were varied in this experiment in order to ensure uniform coverage of the
stimulus input space. These parameters include stimulus control, stimulus waveform,
actuator tip area, and stimulus intensity.

Stimulus Control

Stimulus control refers to controlling either the applied compressive force or the
indenting position of the actuator tip relative to the skin surface. This technique does not
vary the distribution of inputs; rather, it varies the distribution of stimulus combinations.
If position is the controlled variable, then the indented force will take on whatever value
is necessary to ensure proper positioning of the actuator tip. Since skin is viscoelastic
and exhibits non-linear stress-strain profiles, the force value needed to properly position
the actuator tip may vary with time due to creep and stress-relaxation within the skin.

Stimulus Waveform

The stimulus waveform was either non-repeating noise (NRN) or pseudorandom noise
(PRN). The distribution of inputs for non-repeating waveforms was purely Gaussian,
while the distribution for pseudorandom inputs is approximately Gaussian. Non-
repeating noise sequences have the advantage of covering all possible input combinations
that occur naturally. With non-repeating noise input, rich waveform stimuli can be
applied in a relatively short period of time. Pseudorandom inputs facilitate verification of
the logistical regression technique and allow one to evaluate the effects that the time
varying properties of skin have upon the receptor response. The analogy in epidemiology
studies is to ask the same person the same set of questions repeatedly in order to compare
the responses over time.

Sinusoidal or ramp inputs are not used because they suffer from the phenomenon known
as phase-locking, as will be discussed subsequently.

Actuator Tip Area

The diameter of the stimulus tip contacting the skin was varied in order to change the
physical manifestation of the indented force. A tip with a large, flat circular area creates
non-localized compressive stress. A tip with a small circular area creates both localized
compressive and shearing stress. Since the experimental setup does not allow the
compressive, tensile, and shearing stress levels within the skin to be measured directly, it
is conjectured that if varied sensitivity is detected for each stimulus tip, the receptors may
respond preferentially to one type of induced stress or differently to each type of induced
stress. The tip areas used in this experiment are summarized in Table 4.1. All tips were
circular and planar where they contacted the skin surface.
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Tip Diameter (mm) Area (mm?)

T1 2.3 4.2
12 4.6 16.6
T3 6.6 34.2

TABLE 4.1: STIMULUS TIP DIMENSIONS

Stimulus Intensity

The intensity of the stimulus was varied from the qualitatively established threshold to 8
times this threshold as established through voltage gain levels controlling the actuator.
The higher intensity stimulation increases the number of action potentials that are elicited
while the nerve is in its relative refractory period, allowing for a more concise
determination of the length of the refractory period.

Other Parameters
Variables that could, but were not, varied directly during in this experiment include:

e Receptor type: Rapidly adapting only
e Substrate compliance: Non-compliant only
e Stimulus waveform bandwidth: Band-limited to 0.5 — 80 Hz

Rapidly adapting afferents were chosen due to the ease with which they can be identified
and their high incidence rates within rat hairy skin. The number of identified and cleanly
recorded slowly adapting receptors was small.

The substrate was selected to be non-compliant because the recorded position and force
values could be linearly transformed into strain and induced stress values. If the
substrate were compliant, this transform would no longer be linear. As will be indicated
subsequently, the ability to convert normalized stress and strain back into their absolute
levels is significant.

The stimulus waveforms were band-limited from 0.5 — 80 Hz. Rapidly adapting afferents
are preferentially sensitive to frequencies at the higher end of this range.

4.1.4 Nerve Recordings

A coordinate plane must be established in order to understand the physical expression of

the collected data. As shown in Figure 4.3, positive stimulus components are recorded as
the actuator indents the stimulus tip into the surface of the skin. The sampling rate for
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these recordings is fixed at 2 KiloHertz and a typical record lasts for 30 seconds (60000
sample points). The position, force, and nerve response signals are represented as 16-bit
values corresponding to the voltage levels recorded as feedback from the actuator. These
recordings were stored in binary datafiles on the personal computer. All sampling was
completed with custom software and analog-to-digital converters. Additionally, the
support substrate is non-compliant.

ACTUATOR

SKIN SURFACE

SUPPORT SUBSTRATE

FIGURE 4.3: SYSTEM COORDINATE PLANE

In the datafiles, positive position is represented as the change in the actuator from its
resting state on the surface of the skin to its instantaneous indented position. This value
is converted numerically into strain by dividing the change in position by the measured
skin thickness. Positive indented force is calculated as the change in the recorded force
from the actuator’s resting state on the surface of the skin to its instantaneous indented
applied force. This value is converted into stress algorithmically by dividing it by the
cross-sectional area of the actuator tip. The time derivatives of both stress and strain are
calculated by averaging two rates of change. The first rate of change is calculated with
the instantaneous recorded level of a variable and the level of that variable 1 sample
prior. The second rate of change is calculated from the instantaneous recorded level of a
variable and the level of that variable 2 samples prior. In pseudocode, the equations are:

DSTRESS/DTT1] := ((STRESS[1] = STRESS[1 — 11)/0.5 + (STRESS[I] — STRESS[1 - 2])/1)/2 [Eq. 39]
DSTRESS/DT Units = KiloPascals/millisecond

DSTRAIN/DT1] == ( (STRAIN[I] — STRAIN[I — 11)/0.5 + (STRAIN[I] — STRAIN[1 - 2])/1 )/2 [Eq. 40]
DSTRAIN/DT Units = milliseconds™

The calculated values of stress, strain, dstress/dt, and dstrain/dt are then normalized to a
mean of 0 and a standard deviation of 1.
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4.2 The Mechanoreceptor Model

The receptor population being studied in this experiment exhibits non-linear behavior
such that the instantaneous system output is not purely a function of the instantaneous
system input. This non-linear behavior results from a number of biological and
mechanical mechanisms:

Adaptation to prolonged stimuli

Absolute and relative refractory periods

Phase locking with periodic input

Receptors suspended in a viscoelastic medium
Variable action potential propagation velocity

This section will describe this behavior and the subsequent section will address these
issues in the context of a logistical regression analysis.

4.2.1 Adaptation

Response adaptation is biologically significant because it prevents the nervous system
from being saturated with information about relatively insignificant matters such as the
touch and pressure of clothing.

Rapidly adapting (RA) afferents primarily encode stimulus rate by responding with a
high frequency burst of action potentials at the onset of a stimulus. The magnitude of this
stimulation is encoded in the frequency of the action potentials. If the load is continuous
but static, the nerve adapts and the frequency of impulse generation decreases. However,
any variation in the load will again prompt a volley of action potentials, followed by the
same adaptation pattern [8,36,43,44,47,48].

Slowly adapting (SA) afferents are preferentially sensitive to static stimuli and respond to
a constant compressive load with periodic impulses at a low, relatively constant rate
roughly proportional to the load. The period of adaptation is longer relative to that
observed in rapidly adapting afferents, hence the designation “slowly adapting”
[8,36,43,44,47,48].

In this experiment, RA afferents were targeted because they respond more readily to

dynamic stimuli, minimizing the effects of adaptation, and because of their ubiquitous
presence in the skin of Sprague-Dawley rats.
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4.2.2 Refractory Periods

When a nerve fires, an ionic depolarization gradient across the cell membrane propagates
down the nerve axon from the point of transduction. This wave of depolarization is
called the action potential. Immediately following this impulse, the receptor enters a
repolarization phase in which sodium and potassium ions actively diffuse across the axon
membrane in order for the nerve to return to its resting state. After repolarization, the
nerve enters a hyperpolarized state in which the threshold is elevated. Following
hyperpolarization, the stimulation threshold of the nerve returns to a steady-state.

The refractory period of a nerve exhibits both an absolute and a relative refractory period.
During the absolute refractory period, the receptor will not respond to any level of
stimulation. This period exists after an action potential has been generated up until
repolarization occurs. During the relative refractory period, the receptor will respond to
elevated levels of stimulation as compared to the steady-state of the receptor. This period
exists after repolarization has begun and lasts until the resting cell potential is restored.
The relative refractory period is characterized by the nerve, at first, responding to
elevated threshold stimuli, followed by an exponentially decreasing threshold sensitivity
until the steady-state threshold is reached at the end of the refractory phase.

Each receptor has a unique time constant that characterizes the transition from the
beginning to the end of the relative refractory period. The mechanoreceptors targeted in
this study have a refractory period (combined relative and absolute) of about 25
milliseconds. See Figure 4.4 below for an illustration of a nerve refractory period.

In a system in which elevated levels of post-spike stimulation elicit action potentials, the
challenge is the treatment of data corresponding to this behavior. To include refractory
response data could mean biasing the response of the model towards an elevated
threshold. Various modeling approaches to address this issue are presented later in this
chapter.
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milliseconds

FIGURE 4.4: ABSOLUTE AND RELATIVE REFRACTORY STAGES OF A NERVE
This figure represents the voltage differential that is recorded across a nerve axon membrane when
an action potential propagates through the region of the axon being recorded. The transition from
the absolute refractory phase to the relative refractory phase occurs just after repolarization begins,
or when active transport causes the ions that diffused across the axon membrane to cause the voltage
differential to cross the membrane again back to their original locations. In a typical nerve at room
temperature, each tick mark on the time axis represents approximately 5 milliseconds.

4.2.3 Phase Locking

Phase locking refers to an invariant, steady-state response to periodic stimulation. When
mechanoreceptors are stimulated with a sinusoidal stimulus, impulses consistently occur
at specific phases in the period of the stimulus. This is a result of stimulation occurring
in the recovery phase of a receptor during which time the threshold of the receptor is
elevated. When the stimulus reaches this elevated threshold, an impulse is generated
followed by the same period of recovery. Over a multitude of repetitions, this threshold
recovery causes a recurring steady-state response at a particular phase in the stimulus
waveform. Phase locking should be avoided because it represents a decoupling of
receptor response from absolute stimulus magnitude and may cause the receptor to appear
to be sensitive to elevated stimulus levels. Additionally, since the mechanoreceptor
system has a latency between stimulus at threshold and the observed nerve response
when represented as time-series data, a waveform that is periodic also has a time
derivative that is periodic, which makes it difficult to ascertain whether the receptor is
sensitive to a stimulus metric or the time-derivative of that stimulus metric. See Figure
4.5 below for a diagram illustrating the phenomenon of phase locking.

In this experiment, non-deterministic (i.e., pseudo-random and non-repeating) noise
sequences were used as stimulus input waveforms in order to mitigate the effects of phase
locking behavior in mechanoreceptor afferents. Previous studies have shown that phase
locking is alleviated by non-deterministic stimulus control [17,18,21,36-39]. In addition,
non-deterministic waveforms represent a more natural stimulus as compared to
deterministic waveforms because a continuum of stimulus states is applied.
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FIGURE 4.5: EXAMPLE OF A PHASE LOCKED NERVE RESPONSE TO SINUSOIDAL

STIMULATION
This sample plot shows that when stimulated with periodic (in this case sinusoidal) input, a phase
locked nerve will respond periodically in spite of increasing or decreasing stimulus intensity. Since it
is widely accepted that tactile nerves respond differently with different stimulus intensity, phase
locking represents a decoupling of the receptor response from the intensity level of the stimulus.

4.2.4 Viscoelastic Medium

The mechanoreceptors being studied in this experiment are suspended in the dermal and
epidermal layers of the skin as shown in Figure 3.1. Skin is an inherently viscoelastic
substrate. Viscoelastic materials exhibit both elastic and time-dependent deformation
under loads, resulting in a non-linear stress-strain relationship and hysteresis as shown in
Figure 4.6 below. Skin, and viscoelastic material, in general, exhibits the following
characteristics:

e Stress relaxation — Skin exhibits decreasing levels of internal stress with time for
a fixed initial indentation or expansion (i.e., constant strain).
e Creep - Skin exhibits continuing deformation with time under static loads (i.e.,

fixed stress).
e Creep recovery — Skin will recover from creep-induced deformation with time

after the load is released.
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FIGURE 4.6: SAMPLE NON-LINEAR STRESS-STRAIN PROFILE (HYSTERESIS)
This chart exemplifies the stress-strain profile of viscoelastic skin when subjected to displacement
controlled loading and unloading.

Creep and stress relaxation are relevant within the context of this study because with
prolonged stimulation, these factors modify the physical manifestation of the load upon
the receptor within the skin. This issue will be addressed by comparing the afferent
behavior of the skin both before and after prolonged stimulation. It is assumed that the
skin will have reached a steady-state deformation after prolonged stimulation.

During an experiment, creep recovery occurs after the stimulus is removed from the skin
for an extended period of time. Recovery time is allowed between stimulation trials so
that creep recovery has ample time to convert the skin back to its original dimensions and
properties.

Figures 4.7, 4.8, and 4.9 show the interactions of indented-position/applied-force,
applied-stress/indented-strain, and the time derivatives of applied-stress/indented-strain
over time, respectively. The variable time difference between the peaks (example: stress
vs. strain peaks in Figure 4.8) within each graph give an indication of the degree to which
transversely compressed skin exhibits hysteresis.
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FIGURE 4.7: NORMALIZED POSITION AND FORCE PROFILES OVER TIME
This graphs shows that indented-position and force transversely applied to the skin exhibit a non-
linear interaction. The values of position and force were normalized (zero mean, unit variance)

before being plotted.
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FIGURE 4.8: NORMALIZED STRESS AND STRAIN PROFILES OVER TIME
This graphs shows that indented-stress and indented-strain transversely applied to the skin exhibit a
non-linear interaction. The values of stress and strain were normalized (zero mean, unit variance)
before being plotted.
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FIGURE 4.9: NORMALIZED DSTRESS/DT AND DSTRAIN/DT PROFILES OVER TIME
This graphs shows that the time derivative of indented-stress and the time-derivative of indented-
strain transversely applied to the skin exhibit a non-linear interaction. The values of dstress/dt and
dstrain/dt were normalized (zero mean, unit variance) before being plotted.

4.2.5 Propagation Delay

The speed at which an action potential propagates is a function of the diameter of the
axon transmitting the signal, the ambient temperature, and the degree to which the axon
in myelinated.

Propagation delays must be accounted for since they corrupt the timing relationship
between the stimulus and the action potential resulting from that stimulus. The
propagation latency can be estimated by using a step function to control indented position
or force and measuring the time between the introduction of the stimulus and the
recorded action potential. However, since it is not clear exactly which component of the
stimulus causes the threshold to be exceeded and since components of compressive
stimuli do not propagate through the skin uniformly due to the viscoelastic nature of skin,
the latency introduced can only be estimated. This issue will be addressed in subsequent
sections.
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4.3 Logistical Regression Analysis

A multivariate logistical model of the system was chosen because the system contains
continuous input variables and a singular binary output variable corresponding to an “all-
or-nothing” nerve action potential. This section will examine the modeling assumptions
of logistical regression and illustrate techniques for addressing these assumptions in the
context of a model for the afferent behavior of mechanoreceptors subjected to dynamic
transversely-applied compressive loads.

4.3.1 Addressing Modeling Assumptions

Logistical regression makes certain assumptions regarding the data under scrutiny in
addition to conventional regression assumptions. These assumptions must be met in
order to draw statistical inferences from the sample population to the population at large.
These assumptions are:

1. The probability of generating a response given the system inputs follows a logistic
distribution (in other words, the logit of (x) is linear as shown in Equations 3, 4,
and 6)

2. The distribution of error is binomial

Each observation is independent

[98)

The first two assumptions are met by the mechanoreceptor system; however, the last
assumption is not met directly. This assumption will be discussed below.

Observation Independency

Logistical regression assumes that every dependent variable and its corresponding
independent variable(s) represent an independent observation. That is, a particular level
of an independent variable or combination of independent variables will always produce
the same result for the dependent variable no matter what other observations are included
in the model or what order the observations were made.

The requirement of observational independency is not met by the time series data used in
this experiment. In this experiment, an observed impulse may be the result of stimulus
reaching threshold several sample periods prior to the sample period in which the impulse
was observed. In contrast to epidemiology studies in which an observation corresponded
to a single input combination, the input corresponding to a time series event is spread out
in time across a multitude of consecutive, non-independent samples. Furthermore, if an
observation falls within the refractory period of a nerve, elevated stimuli, which would
elicit a response if observed outside a refractory period, may or may not evoke an action
potential.
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There are two techniques that can be employed to redress the issue of non-independence
in time-quantized observations. The first involves generating and using post-impulse
data points as categorical independent variables. The second involves calculating odds
ratios using independent variable combinations that correspond to dependent variables
prior to the observed dependent variable indicating an impulse. In both of these
techniques, the independent variables must all be normalized to the same mean and
standard deviation prior to fitting the model. The significance of normalization will
become apparent as the methods are explained.

Lag Variable Correlations

Nerve responses are followed by an absolute and relative refractory period, during which
time, no level of stimulation and elevated stimuli (exponentially decreasing to resting
threshold) evokes an action potential, respectively. In order to mitigate the effects of this
system feedback, post-spike sample points offset in time from the observed impulse were
assigned positive (binary 1) outcomes and added to the model as categorical explanatory
variables. These dummy variables are called “lag” variables since they represent a
stimulus state that occurred some number of sample periods after the observed impulse.

When lag variables are included in the model, their odds ratios can be used to assess the
correlation between their associated post-impulse sampling period and the impulse for all
observed impulses in the data set. Subsequently, one can plot the odds ratios for each lag
variable as a function of its offset from the observed impulse. This graph will look
similar to the one shown in Figure 4.10. Post-impulse data samples with odds ratios
below 1 are protective against impulses and can be discarded without significantly
affecting the overall correlations predicted by the model. All sampling periods up until
the sampling period with an odds ratio greater than 1 occur within the refractory period of
the nerve, hence the protective correlation (inversely correlated: 0 < odds ratio < 1)
indicated by the odds ratio for the given sampling period. This technique is significant
because it predicts statistically which post-impulse sample periods exist within the
refractory period of the nerve [17].
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FIGURE 4.10: LAG VARIABLE CORRELATION
All data samples that fall between the observed spike (time = 0 in this graph) and point at which the
odds ratio becomes larger than 1 (time =7 milliseconds in this graph) fall within the nerve’s
refractory period. These odds ratios were calculated at a standard deviation of 0.

Memory Effects

Due to the non-linear nature of skin and the action potential propagation latency, an
action potential may correspond to an above-threshold stimulus state that occurred
several time samples prior to the sample during which the action potential was observed.
In other words, the system has memory. To address this issue, pre-impulse independent
variable combinations can be assigned positive (binary 1) dependent variable outcomes.
These dummy dependent variables represent an impulse occurring some number of
sample periods prior to the observed impulse. When a model is fitted to these data with
the dummy variables as dependent variables, a plot of odds ratio versus sample period
prior to the observed spike can be generated for each independent variable. When a
particular component of the stimulus reaches threshold N samples before the observed
impulse, the odds ratio for this stimulus component evaluated at a standard deviation of 0
will peak N samples prior to the sample during which the impulse was observed. This
approach effectively decouples the components of the stimulus (independent variables)
across samples [17].

In this experiment, odds ratios were systematically calculated for positive dependent
variables offset in time up to 100 milliseconds prior to an observed impulse. The
resulting graphs indicated the strength of the interaction between the stimulus component
and the response as well as provided a quantification of the memory effects inherent in
the system. A sample graph is shown in Figure 4.11.
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FIGURE 4.11: SAMPLE ODDS RATIOS VS. PRE-SPIKE TIME IN SAMPLES
1 Sample = 0.5 Milliseconds. This graph indicates that the nerve in question shows sensitivity to
compressive stress. These odds ratios were calculated at a standard deviation of 0.

Interaction Term Effects
Since interaction terms are used in the logistical regression model to express the
relationship between confounded independent variables, it is important to evaluate the

effect of these interaction terms at varying levels of stimulation in order to answer the
question: Are the effects of confounding manifested at high levels of stimulation?

The model being used in this experiment is as follows:

e(l
Y=—— [Eq. 41]
I+e
where:
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where:
® G = stress
e ¢ =strain

do . .
—— = time derivative of stress

dt
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de
dt
e © & = stress-strain interaction term

= time derivative of strain

do . . } )
e o —= stress-time derivative of stress interaction term

de .. . .. )
e c— = strain-time derivative of strain interaction term

do de . . . . L. )
e — — =time derivative of stress-time derivative of strain interaction term

dt dt

Based on this model, the odds ratios for each independent variable are:

d
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Each of these odds ratios is a function of the Beta (/) coefficient associated with the
particular independent variable as well as the independent variables with which the
particular independent interacts. Therefore, the odds ratios are not constant. Rather, they
are a function of the levels of the interacting independents that are observed for the given
level of the particular independent. In other words, due to the non-linear nature of skin,
varying levels of strain, dstress/dt, and dstrain/dt can be observed for a particular level of
stress and the effects of these varying combinations are a non-constant odds ratio with
varying levels of stress because of the included interaction terms. This affect will
become apparent in the next several sections as sample logistical regression analyses are
performed.

4.3.2 Sample Logistical Regression Analysis
This section first describes the steps necessary for a logistical regression analysis of the
data collected in the manner detailed in Section 4.1. After the steps in the analysis are

explained, a sample analysis is performed using:

A) Artificial data that represents receptor behavior
B) Actual recordings from compressively stimulated receptors

The purpose of the first sample analysis is to validate the suitability of the logistical
regression model by assessing the model’s ability to predict known nerve sensitivities.
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The purpose of the second sample analysis is to contrast the model of the artificial nerve
data to the model fitted to actual experimental recordings and to prepare the reader for
what follows in the Results and Analysis section.

The steps that were performed for the multivariate logistical regression analysis are as
follows:

Step 1: Determination of Experimentally Pertinent Covariates and Interaction Terms for
the Logistic Function

The first step in logistical regression is to determine which factors are to be included in
the model. Both the applied compressive stress and the indented strain are included in
the model, as well as their time derivatives, based on models used in similar studies [17].

As mentioned previously, the objective for selecting interaction terms to include
interactions that are both significant and interpretable [17,25]. Under that premise, any
variable and its derivative should be included since, in some cases, one is merely a phase-
offset of the other and in other cases, the effect of the rate of change of a variable may
only manifest itself above certain absolute thresholds [17]. Additionally, stress and
strain should be included as an interaction term since they covary in this experiment.
Furthermore, if two covariates warrant an interaction term, then their time derivatives
also warrant an interaction term, meaning the term (dstress/dt x dstrain/dt) should be
included. All of these terms are evaluated in the analysis to determine if their impact is
significant enough to earn them a place in the final logistic model used in this
experiment.

The logistic function, therefore, is:

ot ap ey do | difyrdz) difiy+o Xefis+o Xdo | dif+eXde  difpy+do | dide) difi

Y

= 1+ eﬁ0+6ﬁ1+5ﬂ2+do-/dt,b’3+dg/dlﬂ4+GX£,65+o-Xdo-/dt,B6+5ng/dt,b’7+d0'/thds/dtﬂ8

This equation is identical to Equation 42.

Step 2: Conditioning Data

The second step is to condition the data such that it can be imported into commercial
logistical regression software. Each covariate is measured by a different metric and when
comparing odds-ratios to determine whether a particular variable or interaction term
should or should not be included in the model, it is necessary to compare data on the
same scale [17]. Therefore, it is necessary to normalize all covariates and interaction
terms to zero mean and unit variance before calculating the £ values with the commercial
regression software. Custom software was implemented to complete the task of
conditioning and normalization.
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Step 3: Derive Odds Ratios

Since the preliminary model includes interaction terms, it is necessary to derive the odds-
ratios for each covariate. Following the explanation found in the Background, the odds
ratios for the current model are:
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Each of these odds-ratios is a function of two other covariates due to the inclusion of
interaction terms in the model. These equations are identical to Equations 43 — 46.

Step 4: Qualitative Assessment of the Fit of the Data to a Logistical Model

The fourth step was to plot the logistic functions of each covariate. This can be
completed by grouping the normalized magnitude of the covariate in question into bins
and calculating the odds of a spike occurring in that bin. The plot of the odds of a nerve
response occurring versus the average magnitude of the stimulus for each stimulus bin is
the logistic function for that particular covariate. From this plot, one can determine
graphically how well the data fit a logistic distribution and hypothesize as to which
covariates will have a significant impact on the response based on how well the curve fits
the idealized logistic curve.

Step 5: Calculate S Coefficients and Corresponding Odds Ratios

Step 5 is to determine the £ coefficients for the experimentally established model and use
these f values to calculate the odds ratios for each covariate. The S coefficients can be
calculated by maximizing the likelihood function, as explained in the Background (or by
minimizing the log-likelihood function) [16,25,31,40]. The interpretation of the f
coefficients is quite straightforward in the absence of interaction terms. As the absolute
value of the S coefficient increases, the covariate or interaction term correlates more
strongly with the outcome; however, if the f value is becoming more negative, it
indicates a covariate or interaction term that contributes negatively to the outcome. If the
absolute value of the S coefficient is small, it indicates little to no correlation between the
covariate or interaction term and the outcome. Since interaction terms are present,
however, the interpretation is not quite as simple. Interaction terms often overcome the
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predisposition of the £ values because they are a function of other variables and as those
other variables increase in magnitude, the effect of the interaction term is much more
pronounced [25]. Such is the case with the model developed for this study; therefore, this
study concentrated on a more meaningful quantitative measure of the significance of a
covariate: the odds ratio.

The odds ratio is calculated using the maximum likelihood estimates of the S coefficients.
As discussed in the Background, the odds ratio represents a quantitative measure of the
degree to which the outcome variable changes for a single-unit change in the explanatory
variable being tested. Since the data have been normalized to a constant standard
deviation, the odds ratios can be graphed on the same axes and compared.

Step 6: Assessing the Accuracy of the Fitted Logistical Model versus Observed Data

The sixth and final step involves assessing the accuracy of the established model. In
general, the assessment of the fit of the model is completed with a multitude of statistical
techniques, some of which were discussed in the Background and the rest will be
introduced in the following sample logistical regression analyses as well as the Results
and Analysis section.

Sample Logistical Regression Analysis: Artificial Data

In order to validate the logistical regression model for tactile receptors, it is useful to
manufacture and fit data sets that exemplify the behavior of a mechanoreceptor system
under dynamic compressive loads. Neural discharges can be artificially correlated with
any one of the independent variables at a given number of samples prior to the observed
spike. Additionally, an artificial refractory period can be added. Assessing the accuracy
of the fitted model resolves into comparing the artificially imposed variables to the fitted
variables.

The first step in creating these data sets is to generate pseudorandom and non-repeating
noise sequences similar to those used to control the voltage levels of the actuator when
experimental data are collected. The non-repeating noise sequences used in the
experiment are generated in real-time by a band-limiting noise generator. The
pseudorandom noise sequences are simply 0.5-second recordings of the non-repeating
noise that are looped and used to drive the actuator. Random noise was artificially
superimposed on these values to mimic the conditions under which these values are
recorded. Subsequently, these voltage levels were then linearly transformed into absolute
strain and stress values.

After artificially selecting a component of the stimulus to which the impulse will be
correlated with and a refractory period, the data are parsed into a form that is compatible
with the logistical regression software packages being used for data analysis. Essentially,
stimulus combinations are searched linearly in time for any supra-threshold levels. A
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supra-threshold stimulus exists when the integral of an exponentiated linear sum of each
stimulus component multiplied by its weighting factor crosses a fixed value. The
weighting factors are determined by the chosen component of the stimulus. In pseudo-
code, the algorithm is as follows (Algorithm 1):

EXP] := 100, // ~0.98
EXP2 :=1.0 —EXP1; // ~0.02
SUM :=0;

IMPULSE := FALSE,;
FOR STIMULUS COMBINATIONSI:=1TON {

VARI := STRESS GAIN x STRESS[1] + STRAIN _GAIN x STRAIN[I] +
DSTRESS GAIN x DSTRESS[1] + DSTRAIN GAIN x DSTRAIN[I] +
STRESSXSTRAIN GAIN x STRESS[1] x STRAIN[I] +
STRESSXDSTRESS GAIN x STRESS[1] x DSTRESS[1] +
STRAINXDSTRAIN GAIN x STRAIN[I] x DSTRAIN[I] +
DSTRESSXDSTRAIN _GAIN x DSTRESS[1] x DSTRAIN[I];

DIFF := VARI — SUM,

SUM := DIFF x EXP2 + SUM x EXPI,

IF (SUM <0) {

SUM :=0;
} ENDIF;
IF (SUM > FIXED VALUE) {
IMPULSE[l + PROPAGATION DELAY OFFSET) := TRUE;
SUM :=0;
} ENDIF;
} ENDFOR;

The fixed value in Algorithm 1 was experimentally derived such that approximately 5%
of the stimulus component permutations produced an artificial impulse response when the
weighting system was imposed.

Once supra-threshold stimulation is reached, a binary 1 value (corresponding to the
observation of an impulse) is added to the spike category of the data file in place of a
binary 0. The data value is written to the file some fixed number of samples in time after
the observed above-threshold stimulus to account for the inherent propagation delays of
the mechanoreceptor system as recorded experimentally. Next, the threshold is set to
infinity for the duration of the absolute refractory period. This period is followed by a
phase in which the threshold decreases exponentially from infinity down to the initial
resting threshold. If, at any point during this period of elevated threshold, a supra-
threshold stimulus level is encountered, a binary 1 data point is again added some fixed
number of sample points following the sample point containing the supra-threshold
stimulus. Following this observation, the threshold is again set to infinity followed by the
same exponentially decreasing elevated threshold.
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Trial | Actual/Predicted | Response Sensitivity | Refractory Length
1 Actual Strain 5
Predicted Strain 4
2 Actual Stress 10
Predicted Stress 8
3 Actual Stress x Strain 15
Predicted Stress x Strain 14
4 Actual dStrain/dt 10
Predicted dStrain/dt 8
5 Actual dStress/dt 5
Predicted dStress/dt 4
6 Actual dStress/dt x dStrain/dt 12
Predicted dStress/dt x dStrain/dt 10

TABLE 4.2: SAMPLE REGRESSION ANALYSIS OF ARTIFICIAL DATA SETS

Several trials were completed with the results summarized in Table 4.2. The results of
Trial 1 are illustrated in Figure 4.12, 4.13, and 4.14. As can be seen from Table 4.2, the
logistical regression model accurately detected the sensitivity of the system to a
component of the stimulus. The logistical regression model predicted the refractory
length with approximately 17% error.
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FIGURE 4.12: ANALYSIS OF ARTIFICIAL DATA - TRIAL 1 PRE-IMPULSE ODDS RATIOS
These odds ratios were calculated at a standard deviation of 0.

As is shown in Figure 4.12, the logistical regression model identified the strain
sensitivity of the artificial receptor and predicted the strongest correlation at 4 samples (2
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milliseconds) prior to the observed impulse. A dstrain/dt artifact was also detected at an
offset of 14 samples (7 milliseconds). This is due to the inherent confounded relationship
between strain and its derivative. Derivative artifacts of a strongly correlated
independent will, in general, be evident up to 12.5 milliseconds before or after the peak
correlation of that independent variable because the system inputs are band-limited up to
80 Hz.
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FIGURE 4.13: ANALYSIS OF ARTIFICIAL DATA - TRIAL 1 POST-IMPULSE ODDS RATIOS
These odds ratios were calculated at a standard deviation of 0.

In Figure 4.13, the post-impulse correlations are illustrated. At approximately 10
milliseconds following the observed impulse, the correlation between the dependent
variable and the categorical dummy variable associated with that sampling period peaked,
indicating a return of the nerve’s threshold to a resting state.

In Figure 4.14, odds ratios are plotted versus the magnitude of the stimulus component in
standard deviations. This plot was generated by converting the stimulus magnitude into
bins and averaging the odds ratio of each stimulus component (calculated with Equations
43 - 46) for all samples of that stimulus component that fall within that particular bin.
Since all components of the stimulus (stress, strain, dstress/dt, dstrain/dt) were
normalized prior to being fitted, this graph indicates how the odds ratios of each
component change with stimulus magnitude due to confounded interactions. Due to the
fact that the odds ratios are relatively constant across all stimulus magnitudes,
confounded interactions have a constant affect across all stimulus magnitudes.

From these experiments, one can see that logistical regression accurately assesses the

sensitivity of a compressively stimulated tactile receptor system expressed as time-series
input-output observations.
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FIGURE 4.14: ANALYSIS OF ARTIFICIAL DATA - TRIAL 1 ODDS RATIOS VS. STIMULUS
MAGNITUDE

Sample Logistical Regression Analysis: Collected Data

For the logistical regression analysis involving collected data, a dataset was chosen at
random and the steps listed at the beginning of this section were performed. The
extended model (described previously by Equations 41 and 42) was fitted using
commercial software (SPSS Base and Systat, MINITAB) and the Beta values (£ - fs)
were estimated.

The fitted logistic curve is generated as shown in Figure 4.15. This curve represents the
probability of an impulse given the stimulus state versus the magnitude of the stimulus.
Similarly, the fitted curve can be plotted versus the normalized value of each
independent, as shown in Figures 4.16 and 4.17.
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FIGURE 4.16: FITTED REGRESSION LINES
Dataset R1221911 [Compressed 5:1]
Due to limitations in available plotting software, these plots were generated using the first 3000 data
samples of the compressed data file. The shift in the fitted line from the distribution indicated in the
dStrain/dt data points and, to a lesser degree, in the Stress data points are due to the overall
distribution of data points being shifted towards lower stimulus magnitudes (towards negative

standard deviations).
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FIGURE 4.17: FITTED LINE
Dataset R1221911 [Compressed 5:1]

The accuracy of the fit of the interaction terms can be assessed visually by contrasting the
predicted probability of the model as compared to the observed probability for each
interaction term (stress X strain, stress X dstress/dt, strain X dstrain/dt, dstress/dt X
dstrain/dt). These graphs are shown in Figures 4.18 through 4.21. In general, the stress x
dstress/dt fit is more accurate than the other fits; however, the predicted probabilities of
the other interaction terms indicate that the model predicts the spikes relatively accurately

but falls victim to over-prediction in some regions outside those with high observed spike
probabilities.
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FIGURE 4.18: PREDICTED (LEFT) VS. OBSERVED (RIGHT) SPIKE PROBABILITIES FOR

STRESS-STRAIN INTERACTION TERM
Dataset R1221911
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FIGURE 4.20: PREDICTED (LEFT) VS. OBSERVED (RIGHT) SPIKE PROBABILITIES FOR

STRAIN-DSTRAIN/DT INTERACTION TERM
Dataset R1221911
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FIGURE 4.21: PREDICTED (LEFT) VS. OBSERVED (RIGHT) SPIKE PROBABILITIES FOR
DSTRESS/DT-DSTRAIN/DT INTERACTION TERM
Dataset R1221911
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The next step in the analysis is to perform a lag variable correlation. This correlation
indicates which post-impulse data samples occur within the refractory period of the
nerve. These samples will be removed from the data and a second logistical regression
will be performed. The reason for the removal of these data points was explained
previously: these data points represent non-independent observations and violate a
fundamental assumption of logistical regression.
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FIGURE 4.22: LAG VARIABLE CORRELATION
Dataset R1221911; 1 Millisecond =2 Samples
These odds ratios were calculated at a standard deviation of 0.

The results from a lag variable correlation are illustrated in Figure 4.22. The peak of the
curve exists at approximately 8 milliseconds (16 samples) post-impulse and indicates the
statistical end of the nerve refractory period. The data file is then parsed such that 16
samples following every observed impulse are removed.

Following a lag variable correlation is a pre-impulse correlation for each independent
variable and interaction term. This procedure was defined previously. The goal of this
procedure is to determine which independent or interaction term has the strongest
correlation to the impulse and at what pre-impulse offset. As shown in Figure 4.23, the
0-offset correlation indicates that the nerve has a strong sensitivity to dstrain/dt.
However, at an offset of approximately 7 samples (3.5 milliseconds), the effects of the
dstrain/dt sensitivity diminish and dstress/dt becomes the component of the stimulus to
which the nerve is preferentially sensitive.
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Pre-Spike Odds Ratios
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FIGURE 4.23: PRE-SPIKE ODDS RATIOS
Dataset R1221911; 1 Sample = 0.5 Milliseconds
These odds ratios were calculated at a standard deviation of 0.

The next step is to determine the effect that confounded interactions have upon the odds
ratios of each stimulus component. The odds ratios for each stimulus magnitude bin were
averaged and plotted versus the magnitude of the stimulus corresponding to that bin. The
result is shown in Figure 4.24. The graph indicates strong dstrain/dt sensitivity across all
magnitudes of the stimulus. The slope of the dstrain/dt curve is negative, indicating that
the interaction between dstrain/dt and the other independent variables with which
dstrain/dt interacts become weaker as the magnitude of the stimulus increases. Since the
other independents show a constant odds ratio across all magnitudes of the stimulus, the
interactions in which those independents participate do not affect the odds ratio of the
independent significantly.
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Dataset R1221911

4.4 Comparison of Data Analysis Techniques

Linear regression is the de facto standard for modeling the interactions between
continuous independent variables and a continuous dependent. Linear regression models
of dichotomous event probabilities, however, have some significant drawbacks, as noted
in Section 3.2 of this report. Linear regression is an appealing technique for modeling
dichotomous probabilities due to the direct interpretation of coefficients, but the model
violates several fundamental regression modeling assumptions, leading researchers to use
alternative models when the dependent variable is dichotomous. These alternative
techniques include logit models using logistic or probit functions and discriminant
analysis. Logistical regression using a logistic model has been previously contrasted to
linear regression in this report for the sake of explanation; however, both probit analysis
and discriminant analysis have yet to be addressed. This section provides a brief
comparison of the practicality of these methods in a context in which the dependent
variable is dichotomous.

Probit analysis is essentially identical to logistical regression modeling, save for the fact
that a cumulative normal function is used in place of a logistic function and the
coefficients are computationally more difficult to determine. The cumulative normal
function has the familiar sigmoid shape synonymous with the logistic function. The only
difference exists in the tails of the cumulative normal function. Just as in logistic
regression, the estimated coefficients cannot be directly interpreted as the probability of
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generating a positive response but can be converted into probabilities with a simple
transform [2,12,34].

Discriminant analysis models dichotomous dependent variables by creating an equation
to discriminate between two groups. Discriminant analysis predicts the probability of
one group versus another by minimizing the cost of misclassification within the groups or
by estimating the conditional probability of a particular event within the groups. The
latter approach assumes that the multivariate distribution of the independent variables is
normal [2,12,34]. The probability of an observation being in one group, given the
observed independent variables [analogous to 7z(X) in logistical regression] has the same
functional form in discriminant analysis as it does in logistical regression.
Computationally, discriminant analysis is more straightforward than logistical regression
or probit analysis [2,12,34].

When the independent variables are distributed in a multivariate normal form, logistical
regression, probit analysis, and discriminant analysis all produce approximately the same
functional model. The most significant difference occurs between logistical regression
and discriminant analysis when the predicted probabilities are very close to 0 or 1, in
which case, the results of discriminant analysis may be misleading. Conversely, when
the data are not distributed multivariate normal as is the case with categorical or discrete
independent variables, logistical regression and probit analysis produce statistically
consistent estimations for the modeling coefficients while discriminant analysis does not
[2,12,34].

Of these methods, logistical regression was chosen for this application because:

e The dependent variable is dichotomous

e Some independent variables are categorical

The multivariate distribution of the independent variables is not necessarily
normal

Confounded interactions exist within the independent variables

Logistical regression is computationally simpler than probit analysis

Commercial software for logistical regression modeling is readily available
Logistical regression has been previously used for modeling mechanoreceptor
systems [17]

4.5 Chapter Summary

In this chapter, a logistical regression framework for modeling afferent tactile
mechanoreceptor behavior under dynamic compressive loads was developed. This model
addressed the assumptions of logistical regression in an afferent tactile mechanoreceptor
system. Subsequently, a systematic experiment was described based on this model. The
purpose of the experiment was to determine if rapidly adapting mechanoreceptors are
preferentially sensitive to compressive stress and the rate of change of strain in time. The
next several sections describe the results of that experiment.
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5.0 Results and Analysis

The recordings from 10 rapidly adapting mechanoreceptors from 7 different rats are
discussed in this Results and Analysis section. One hundred ten trials were completed, 25
of which were force-controlled stimulation and the remainder of which were position-
controlled stimulation.

In the first section, a single receptor is profiled with logistical regression techniques.
This receptor is analyzed in the same fashion that all datasets were analyzed. After this
detailed discussion, comments are made regarding general patterns that were observed in
the analysis of all datasets with isolated examples given to illustrate the observations.

In the second section, more general patterns of sensitivity are assessed through a
logistical regression analysis of all the nerves sampled in this study.

5.1 Single Neuron Analysis

The neuron profiled in this section is a rapidly adapting afferent. The component of the
stimulus being controlled by the non-repeating noise sequences is indented position.
Trials 1 and 2 used tip T2 (Area: 16.6 mm?) while trials 4-7 used tip T1 (Area: 4.2 mm?).
All trials lasted for 30 seconds, resulting in 60000 samples at the fixed 2 KiloHertz
sampling rate. Trial 3 was discarded due to a recording anomaly. The magnitude of the
stimulus and number of observed impulses in these trials can be summarized as:

e Trial 1 (R1221911)

o Threshold stimulation

o 206 Impulses (0.34 % of samples)
e Trial 2 (R1221912)

o 2x Threshold stimulation

o 427 Impulses (0.71 % of samples)
e Trial 4 (R1221914)

o Threshold stimulation

o 154 Impulses (0.26 % of samples)
e Trial 5 (R1221915)

o Threshold stimulation

o 335 Impulses (0.56 % of samples)
e Trial 6 (R1221916)

o 2x Threshold stimulation

o 434 Impulses (0.72 % of samples)
e Trial 7 (R1221917)

o 2x Threshold stimulation

o 139 Impulses (0.23 % of samples)
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Figures 5.1 and 5.2 indicate the correlations between the impulse and stimulus states that
occurred up to 20 samples (10 milliseconds) prior to the observed impulse. Odds ratios
were calculated up to 100 samples prior; however, the useful information in the graph is
occurs in the 0 to 20 sample range. Trials 1 and 2 (Tip T2) indicate strong dstress/dt
sensitivity at 4 milliseconds pre-impulse as well as dstrain/dt sensitivity at the instant the
impulse was observed. Trials 4, 5, and 6 (Tip T1) also show a dstress/dt and dstrain/dt
sensitivity at approximately 3 milliseconds pre-impulse, however, they also show both
stress and strain sensitivity at approximately 2 milliseconds pre-impulse. Trial 7 shows
purely stress and strain sensitivity. All of the trials indicate that the response of this
receptor is statistically uncorrelated with any of the confounding interaction terms
included in the model.
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Pre-Spike Odds Ratios (R1221911)
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FIGURE 5.1: R122191X MEMORY EFFECTS [TRIAL 1, 2, 4]
Note the differing ranges for the abscissa. The interaction term odds ratios are not visible in trial 4
due to their low magnitude relative to the odds ratios corresponding to stress, strain, dstress/dt, and

dstrain/dt.

72



Pre-Spike Odds Ratios (R1221915)

250
A 200 4>—strerss
—m—strain
/ \ 150 '% ——dstress
/ \L ﬁ —{—dstrain
- 100 T | ——stress x strain
% O —o—stress x dstress
~au 50 ——strain x dstrain
. IS - 4 | o dstress x dstrain
20 -18 -16 -14 -12 -10 -8 -6 -4 -2 spk
Pre Spike Sample (1 Sample = 0.5 milliseconds)
Pre-Spike Odds Ratios (R1221916)
10
2 9
/\ 2 —¢—stress
7 o —=—strain
g ®|——dstress
5 f ——dstrain
4 3| —k—stress x strain
3 O o stress x dstress
2 —<— strain x dstrain
3 dstress x dsfrain
20 -18 -16 -14 -12 -10 -8 -6 -4 -2 spk
Pre Spike Sample (1 Sample = 0.5 milliseconds)
Pre-Spike Odds Ratios (R1221917)
2500
M 2000 —<>—str9jss
—— strain
/\ / 1500 '% —— dstress
/ V f+dstrain
1000 3| —«— stress x strain
/ /\-\ O o stress x dstress
= 500 —— strain x dstrain
T T e T S ——%—r 0 dstress X dstrain
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 spk

Pre Spike Sample (1 Sample = 0.5 milliseconds)

dstrain/dt. Similarly, the interaction term and time-derivative term odds ratios are not visible in trial

FIGURE 5.2: R122191X MEMORY EFFECTS [TRIAL 3, 6, 7]
Note the differing ranges for the abscissa. The interaction term odds ratios are not visible in trial 5
due to their low magnitude relative to the odds ratios corresponding to stress, strain, dstress/dt, and

7 due to their low magnitude relative to the odds ratios corresponding to stress and strain.
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Based on the odds ratio peaks shown in these graphs (Figures 5.1 and 5.2), this receptor
is preferentially sensitive to the rate of change of stress and the rate of change of strain
when stimulated with a tip of large area. When a tip of small area is used, the nerve is
preferentially sensitive to the rate of change of stress and the rate of change of strain at
low levels of stimulus magnitude and directly sensitive to stress and strain at all levels of
stimulus magnitude.

5.1.1 Coefficient Significance

It is important to evaluate the significance of each coefficient within the fitted model in
order to be able to interpret the odds ratios produced by the fitted model. Both the Wald
statistic and the standard error indicate the significance of the associated independent
variable with the standard error being the square root of the variance. An abnormally
large standard error for a Beta coefficient (> 1) indicates that if the associated
independent variable were removed, the fit of the model would be improved.

In Figures 5.3 and 5.4, the standard errors of the coefficients associated with each
independent variable and interaction term are plotted up to 20 samples prior to the
observed impulse. Trial 7 in Figure 5.4 shows the highest standard error of all the trials
(strain peaks at 1, stress peaks at approximately 0.9). Trials 4 and 5 indicate elevated
levels of standard error for stress, strain, and dstress/dt. These trials also have elevated
odds ratios as shown in Figures 5.1 and 5.2. These elevated values are a direct result of
the exponentiation operation performed on the coefficients to determine the odds ratio.
With the exception of trial 1, the standard error curves follow a similar pattern for the
independent variables that show correlations with the response. Any disparities are
amortized over the range of standard errors, resulting in no radically erroneous
coefficients. Such results lend credibility to the odds ratios predicted by the model.

The Wald statistic used in this example is calculated using Equation 22 from Section
3.3.3. It is effectively the value of the coefficient in the fitted model divided by the
standard error of that coefficient. If the coefficient is large and has a small standard error,
than the Wald statistic would indicate that the independent variable associated with the
coefficient is both significant within the fitted model and strongly correlated with the
outcome.

As shown in Figures 5.5 and 5.6, the Wald values are large for dstress/dt in trials 1, 2, 4,
5, and 6. Similarly, the Wald values for the dstrain/dt coefficient are large in trials 1 and
2. Therefore, in addition to these independent variables being correlated to the response,
these independent variables have an elevated significance within the fitted model, thus
indicating reliability both in the method and in the information embodied in the fitted
model for these trials. The Wald values in trial 7 are similar and relatively constant for
all coefficients, meaning that no one independent variable is particularly significant
within the model. This result detracts from the credibility of the information predicted by
the model fit in this trial.
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Standard Error (R1221911)
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FIGURE 5.3: R122191X STANDARD ERROR [TRIALS 1, 2, 4]
The standard error in trial 4 is significantly higher than the standard error in trials 1 and 2.
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Standard Error (R1221915)
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FIGURE 5.4: R122191X STANDARD ERROR [TRIALS 5, 6, 7]
The standard error in trial 7 is significantly higher than the standard error in trials 5 and 6.
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Wald Statistic (R1221911)
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FIGURE 5.5: R122191X WALD STATISTICS [TRIALS 1, 2, AND 4]
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Wald Statistic (R1221915)
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FIGURE 5.6: R122191X WALD STATISTICS [TRIALS 5, 6, AND 7]
Trial 7 indicates that no coefficient is particularly significant within the fitted model.
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5.1.2 Lag Variable Correlation

The lag variable analysis performed for this receptor indicated no discernible difference
between the pre-impulse odds ratios shown in Figures 5.1 and 5.2 and the same odds
ratios calculated after statistically protective post-impulse data points were removed (as
shown in Figures 5.7 and 5.8). This trend was observed in all datasets that were analyzed
throughout the course of this experiment. Therefore, due to the fact that they do not
provide any more information regarding the fit of the model, lag variable correlations will
not be discussed further in this Results and Analysis section. It will, however, be
addressed in the Discussion section that follows.
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Pre-Spike Odds Ratios (R1221911)
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FIGURE 5.7: PRE-SPIKE ODDS RATIOS WITHOUT PROTECTIVE POST-SPIKE DATA SAMPLES
Contrast this graph to Figure 5.1. There are no noticeable differences.
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Pre-Spike Odds Ratios (R1221915)
250

A 200 4>—strerss
—m—strain
/ \ 150 ®| ——dstress
/ \; —o—dstrain
- 100 —¢—stress x strain
%.\'\ —o—stress x dstress
50 —<—strain x dstrain
dstress x dstrain

0Odds Ratio

B | L | L L ' L ' ._I_&__ 0
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 spk
Pre Spike Sample (1 Sample = 0.5 milliseconds)

e

Pre-Spike Odds Ratios (R1221916)

10
2 9
/\ s —¢—stress
7 —m—strain
(=]
G £ ——dstress
5 ﬁ —{—dstrain
4 3T —k—stress x strain
3 © _o—stress x dstress
f —+—strain x dstrain
0 dstress x dstrain
20 -18 -16 -14 -12 -10 -8 -6 -4 -2 spk
Pre Spike Sample (1 Sample = 0.5 milliseconds)
Pre-Spike Odds Ratios (R1221917)
2500
—4¢— stress
[ 2000 _
/\ / o, = strain
1500 B| —— dstress
/ V ® —— dstrain
1000 3| ——stress x strain
/ /\-\ O| _o—stress x dstress
= 500 —— strain x dstrain
) . . ] N ) ) dstress x dstrain
T . T O B T e | T H—r 0

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 spk
Pre Spike Sample (1 Sample = 0.5 milliseconds)

FIGURE 5.8: PRE-SPIKE ODDS RATIOS WITHOUT PROTECTIVE POST-SPIKE DATA SAMPLES
Contrast this graph to Figure 5.2. There are no noticeable differences.
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5.1.3 Effects of Stress-Relaxation and Skin Creep

In order to assess the effect of stress-relaxation and creep within the skin on the
sensitivity of the receptor, datasets were segmented in time into 6 equal-sized sets and
pre-impulse odds ratios were calculated for each of the 6 sets. The purpose of this
technique is to evaluate the correlations at the beginning of the trial compared to the
correlations at the end of the trial after the skin has had ample time to reach a steady
state. The results of this analysis for trial 1 are shown in Figures 5.9 and 5.10. These
graphs indicate that adapting characteristics of the skin have a minimal effect on the
regression coefficients within the fitted model, meaning the receptor in this trial responds
relatively uniformly in spite of the varying properties of the medium in which the nerve is
suspended. Trials 2, 4, 5, 6, and 7 exhibited similar behavior.

Figure 5.11 illustrates the Wald statistics for the first segment (first 10000 data samples)
in the record and last segment (last 10000 data samples) in the record. It is clear from the
maximum level of the peaks in the graphs that dstress/dt and dstrain/dt have more
significance within the fitted model in the last segment of the dataset compared to the
first segment. In addition to their improved significance over time, one can see from
Figure 5.12 that the standard error of dstress/dt and dstrain/dt is nearly identical in the
last segment whereas in the first segment the dstrain/dt standard error is elevated
compared to the standard error of the other model coefficients. Based on these results,
the predictive accuracy of the fitted model for this nerve increases as the skin reaches a
steady state. The fitted model predicts elevated Wald values (coefficient divided by its
standard error) for dstress/dt and dstrain/dt in the last segment of the dataset despite the
elevated standard errors in the last segment compared to the first segment.
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Pre-Spike Odds Ratios (First 10000 Samples of R1221911)
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FIGURE 5.9: INFLUENCE OF SKIN BEHAVIOR ON ODDS RATIOS [R1221911 SEGMENTS 1, 2,
AND 3]
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Pre-Spike Odds Ratios (4th 10000 Samples of R1221911)
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FIGURE 5.10: INFLUENCE OF SKIN BEHAVIOR ON ODDS RATIOS [R1221911 SEGMENTS 4, 5,
AND 6]
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FIGURE 5.11: WALD STATISTICS — FIRST VS. LAST SEGMENTS OF DATASET [R1221911]
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FIGURE 5.12: STANDARD ERROR — FIRST VS. LAST SEGMENTS OF DATASET [R1221911]
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5.1.4 Interaction Term Effects

The inclusion or exclusion of interaction terms has a significant effect on the fitted
model. In the fitted model for receptor R122191X, interactions among the independent
variables were either statistically uncorrelated (odds ratio = 1 £0.1), protective (0.5 <
odds ratio < 1), or weakly correlated (1 < odds ratio < 1.25). More than 80 % of the odds
ratios for interaction terms were determined to be approximately 0.9 with a standard
deviation of 0.1. For this reason, pre-impulse odds ratios were calculated using the
standard regression model (no interaction terms). The results are shown in Figures 5.13
and 5.14. Compared to the pre-impulse odds ratios from the extended model (shown in
Figures 5.1 and 5.2), the results are similar in trials 1, 2, and 4, however, in trials 5, 6, and
7, the predominant stress sensitivity indicated by the extended model is not observed.
Additionally, the dstress/dt sensitivity decreases as the stimulus intensity increases (trials
1, 4, and 5 at threshold vs. trials 2, 6, and 7 at 2x threshold).

The more important difference between the model with and without interaction terms is
the fact that the fitted model without interaction terms produces odds ratios that fall
within a reasonable range. In the extended model shown in Figure 5.1 and 5.2, the odds
ratios for trials 4, 5, and 7 are an order of magnitude or more larger than those found in
the other trials fit with the extended model (1, 2, and 6) and in comparison to the trials
using the standard model, which have an upper limit of 10. This discrepancy is due to the
fact that several statistically uncorrelated terms were included in the extended model.
The influence of these interaction terms on the fitted parameters in the model increases
with the number of samples in the experiment and since this model fit is based on
approximately 60000 samples, the influence is significant enough that the extended
model predicts odds ratios far beyond tangible levels. Despite this fact, the standard
model validated the sensitivities predicted by the extended model.
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Pre-Spike Odds Ratios (R1221911)
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FIGURE 5.13: ODDS RATIOS USING STANDARD MODEL WITHOUT INTERACTION TERMS

[TRIALS 1, 2, AND 4]
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Pre-Spike Odds Ratios (R1221915)
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FIGURE 5.14: ODDS RATIOS USING STANDARD MODEL WITHOUT INTERACTION TERMS

[TRIALS 5, 6, AND 7]
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The effects of interaction terms at differing levels of stimulus intensity are assessed by
plotting the odds ratio vs. stimulus magnitude (measured in standard deviations) for each
independent variable. Odds ratios in Figures 5.1 — 5.14 are all calculated at a stimulus
standard deviation of 0 and thus do not account for any interactions between the
independent variables since the interaction effects are null at a standard deviation of 0.
Figures 5.15 and 5.20 —5.24 indicate the significance of interaction terms on odds ratios.
In Figure 5.15, the interactions of dStrain/dt and other independent variables observed at
the instant the spike is observed cause the odds ratio to be highest approximately 3
standard deviations from the average towards the lower range of the stimulus intensity
spectrum. Figure 5.16 shows the Stress interaction term effects (mean) from Figure 5.15
plotted vs. elapsed time pre-spike. At approximately 6 milliseconds pre-spike, the
interaction term effects are shown to significantly affect the odds ratio for Stress,
particularly at low intensity stimuli (standard deviation < -2). If one were to trace along
the [time = 0] peak in Figure 5.16, one would generate the same jagged line shown for
dStrain/dt in Figure 5.15. In Figure 5.17, similar patterns of elevated odds ratios exist for
Strain at a pre-spike offset of 4 milliseconds, however, the odds ratios are relatively
constant over the full range of stimulus intensities. At the same pre-spike offset of 6
milliseconds, the dStress/dt, and dStrain/dt odds ratios show considerable variance over
the range of stimulus magnitudes (Figure 5.18 and Figure 5.19, respectively). Based on
these results, interactions involving stress and dStress/dt are significant in the model
whereas interactions involving Strain and dStrain/dt are not significant.
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FIGURE 5.15: INDEPENDENT VARIABLE INTERACTION EFFECTS (TRIAL 1)

This graph shows that the odds ratio for Stress, Strain, and dStress/dt are relatively constant at all
levels of the stimulus. On the other hand, dStrain/dt odds ratios decrease from a peak at the lowest of
stimulus magnitudes to a low point at the highest of stimulus magnitudes. This trend indicates that
interaction terms play a significant role in the calculated odds ratios, particularly as the stimulus
magnitude approaches the low end of the intensity spectrum.
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FIGURE 5.16: 3-D REPRESENTATION OF STRESS INTERACTION TERM EFFECTS VS. ELAPSED

TIME PRE-SPIKE (TRIAL 1)

This graph indicates the Stress odds ratios vs. stimulus magnitudes for 40 samples leading up to an
observed action potential (time = 0). One can see from the graph that at an offset of approximately 6
milliseconds pre-spike, the odds ratios peak. This peak is highest at low stimulus intensities and
decreases as the stimulus intensity increases. This means that the interactions in which Stress takes
part in the fitted model have a significant effect on the odds ratio for Stress at low stimulus intensities
and this effect decreases as the stimulus intensities increase. The flattened region at the low end of
the stimulus intensity spectrum indicates a region of no data. If one were to trace along the time = 0
line from low stimulus intensities to high stimulus intensities, one would see the same curve shown in
Figure 5.15 for Stress.
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FIGURE 5.17: 3-D REPRESENTATION OF STRAIN INTERACTION TERM EFFECTS VS. ELAPSED

TIME PRE-SPIKE (TRIAL 1)

This graph indicates the Strain odds ratios vs. stimulus magnitudes for 40 samples leading up to an
observed action potential (time = 0). One can see from the graph that at an offset of approximately 4
milliseconds pre-spike, the odds ratios peak. This peak is relatively constant for all stimulus
intensities, meaning the interaction terms that have S#rain as a component do not have a significant
effect on the Strain odds ratios. The flattened regions at the high and low ends of the stimulus
intensity spectrum indicate regions of no data. If one were to trace along the time = 0 line from low
stimulus intensities to high stimulus intensities, one would see the same curve shown in Figure 5.15

for Strain.
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FIGURE 5.18: 3-D REPRESENTATION OF DSTRESS/DT INTERACTION TERM EFFECTS VS.

ELAPSED TIME PRE-SPIKE (TRIAL 1)

This graph indicates the dStress/dt odds ratios vs. stimulus magnitudes for 40 samples leading up to
an observed action potential (time = 0). One can see from the graph that at an offset of
approximately 7 milliseconds pre-spike, the odds ratios peak. This peak is dramatically higher at low
stimulus intensities than at high intensity stimuli. This means that the interactions in which
dStress/dt takes part in the fitted model have a significant effect on the odds ratio for dStress/dt at low
stimulus intensities. This effect decreases dramatically as the stimulus intensities increase. The
flattened region at the low end of the stimulus intensity spectrum indicates no data for that region of
the intensity spectrum. If one were to trace along the time = 0 line from low stimulus intensities to
high stimulus intensities, one would see the same curve shown in Figure 5.15 for dStress/dt.

93



Odds Rakio
B0 30D MDD

0

FIGURE 5.19: 3-D REPRESENTATION OF DSTRAIN/DT INTERACTION TERM EFFECTS VS.

ELAPSED TIME PRE-SPIKE (TRIAL 1)
This graph indicates the dStrain/dt odds ratios vs. stimulus magnitudes for 40 samples leading up to
an observed action potential (time = 0). One can see from the graph that between the time the spike
is observed and 6 milliseconds prior to that point that the odds ratio peaks. This peak is very high
relative to the overall distribution of odds ratios up to 40 milliseconds post spike. This result
indicates that the interaction effects significantly affect the odds ratio of dStrain/dt at very low
stimulus intensities. Since there are very few data points in the region showing extremely elevated
odds ratios, one could conclude that there is not enough coverage in this region of the sample space to
draw any conclusions from the odds ratio peaks. The flattened region at the high end of the stimulus
intensity spectrum indicates a region of no data. If one were to trace along the time = 0 line from low
stimulus intensities to high stimulus intensities, one would see the same curve shown in Figure 5.15
for dStrain/dt.
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FIGURE 5.20: INDEPENDENT VARIABLE INTERACTION EFFECTS (TRIAL 2)
In this trial, the odds ratios are relatively constant for all levels of stimulus intensities.
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FIGURE 5.21: INDEPENDENT VARIABLE INTERACTION EFFECTS (TRIAL 4)

The results of this trial show extremely elevated odds ratios at the low end of the intensity spectrum.
The extreme levels of these odds ratios immediately make the results questionable. Since they fall in
a region in which very few samples exist, they are not considered to be indicative of the properties of
the data, rather, they are simply statistical anomalies.
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FIGURE 5.22: INDEPENDENT VARIABLE INTERACTION EFFECTS (TRIAL 5)
See caption under Figure 5.21.
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FIGURE 5.23: INDEPENDENT VARIABLE INTERACTION EFFECTS (TRIAL 6)

This graph shows clear trends: the interactions in which Stress and Strain participate have a
significant effect on the odds ratios of those variables at low intensity stimuli. This effect mitigates as
the stimulus intensity increases. The dStrain/dt odds ratios show similar behavior but to a lesser
degree. The odds ratio of the dStress/dt variable is not affected by the interaction terms in which it
participates.
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FIGURE 5.24: INDEPENDENT VARIABLE INTERACTION EFFECTS (TRIAL 7)
See caption under Figure 5.21.

5.1.5 Outliers

Outliers are data points that fall outside the confidence interval of the fitted model. In
logistical regression, plots of A (delta) Beta vs. Probability, ADeviance vs. Probability,
and AChi-square vs. Probability help identify outliers. The identification process is
purely subjective as it is up to the researcher to identify data points that fall outside
normal groupings or patterns, however, data points that fall outside 3 standard deviations
from the distribution mean should be considered. Each of these plots contains 60000 data
points, however, the binary 0 observations are tightly grouped such that they are not
individually discernible.

Figures 5.25A through 5.25C show a plot of ABeta vs. Probability for nerve R122191X.
Since positive outcomes corresponding to a nerve response are the minority
(approximately 2 % of the total number of observations), positive outcome outliers are
significant. In trial 2, positive outcomes (observed nerve impulses) are tightly clustered
except for 7 data points. These 7 data points exert an above-average influence on the
model. In trial 4, 2 data points corresponding to positive outcomes stand out as affecting
the model more than the status quo and in trial 6, approximately 25 data points stand out
apart from a tightly coupled cluster of positive outcome data points.

97



Delta Beta

Delta Beta

Delta Beta versus Probability (Trial 1)

L
0.04 — s
L]
L ]
L]
0.03 s
%
e T
» * »
%, *
0.02 — * .
% *2% o .
4 :0 .s '.. L *
... e * . . .o. -
0.01 4 ..o .o. .oo.
*» * 4
- e a®* . @
0.00 - M
| | | |
0.0 0.2 04 0.6
Probabkility
Delta Beta versus Probability (Trial 2)
L
L
L
0.10 —
L ]
L
0.05 —
hd ®
S ®
2t o - !
0.00 - = wta ©
| | | | | | | | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.a
Praobability

FIGURE 5.25A: DELTA BETA VS. PROBABILITY [TRIALS 1 AND 2]

The RED dots indicate positive (Y = 1) observations. The BLUE dots represent binary 0 outcomes

(Y =0). Possible outliers are circled in GRAY.
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Delta Beta versus Probability (Trial 4)
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FIGURE 5.25B: DELTA BETA VS. PROBABILITY [TRIALS 4 AND 5]
The RED dots indicate positive (Y = 1) observations. The BLUE dots represent binary 0 outcomes
(Y =0). Possible outliers are circled in GRAY.
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Delta Beta versus Probability (Trial 6)
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FIGURE 5.25C: DELTA BETA VS. PROBABILITY [TRIALS 6 AND 7]
The RED dots indicate positive (Y = 1) observations. The BLUE dots represent binary 0 outcomes
(Y =0). Possible outliers are circled in GRAY.
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Figures 5.26A through 5.26C illustrate plots of ADeviance vs. Probability for nerve
R122191X. Trials 2, 4, and 6 show outliers. Figure 5.27 shows the pre-impulse odds
ratios for trial 2 after the outlier was removed and the odds ratios were re-calculated. The
difference between these values and the odds ratios calculated with the outlier included
are negligible, as shown in Figure 5.28. The maximum difference is 8 % but the average
is less than 1 %. This is due primarily to the extremely large sample size (60000

observations).
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FIGURE 5.26A: DELTA DEVIANCE VS. PROBABILITY [TRIALS 1 AND 2]

The RED dots indicate positive (Y = 1) observations. The BLUE dots represent binary 0 outcomes
(Y =0). Possible outliers are circled in GRAY.

101



Delta Deviance versus Probability (Trial 4)
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FIGURE 5.26B: DELTA DEVIANCE VS. PROBABILITY [TRIALS 4 AND 5]
The RED dots indicate positive (Y = 1) observations. The BLUE dots represent binary 0 outcomes
(Y =0). Possible outliers are circled in GRAY.
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Delta Deviance versus Probability (Trial 6)
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FIGURE 5.26C: DELTA DEVIANCE VS. PROBABILITY [TRIALS 6 AND 7]
The RED dots indicate positive (Y = 1) observations. The BLUE dots represent binary 0 outcomes
(Y =0). Possible outliers are circled in GRAY.
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Pre-Spike Odds Ratios (R1221912 with Outliers Removed)
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FIGURE 5.27: PRE-IMPULSE ODDS RATIOS WITH DEVIANCE OUTLIERS REMOVED [TRIAL 2]
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FIGURE 5.28: DIFFERENCE IN PRE-IMPULSE ODDS RATIOS WITH VS. WITHOUT DEVIANCE
OUTLIERS [TRIAL 2]
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Figures 5.29A through 5.29C show plots of AChi-square vs. Probability for nerve
R122191X. All the trials have a small number of identifiable outliers, meaning the chi-
square fit of the model shows a number of inconsistencies for this nerve. Figure 5.30
shows the pre-impulse odds ratios for trial 6 after the outlier was removed and the odds
ratios were re-calculated. The difference between these values and the odds ratios
calculated with the outlier included are significant, as shown in Figure 5.31. The
maximum difference is approximately 25 % and the average is approximately 5 %. This
plot indicates the sensitivity of the logistical regression estimation: a presence or absence
of a single positive observation can change the calculated odds ratios by 25 %.
Fortunately, each estimated coefficient is affected uniformly so the relative change is
negligible. In other words, the incipient properties of the data are not lost if outliers are
removed.
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Delta Chi-Square versus Probability (Trial 1)
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FIGURE 5.29A: DELTA CHI-SQUARE VS. PROBABILITY [TRIALS 1 AND 2]
The RED dots indicate positive (Y = 1) observations. The BLUE dots represent binary 0 outcomes
(Y =0). Possible outliers are circled in GRAY.
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Delta Chi-Square versus Probability (Trial 4)
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FIGURE 5.29B: DELTA CHI-SQUARE VS. PROBABILITY [TRIALS 4 AND 5]
The RED dots indicate positive (Y = 1) observations. The BLUE dots represent binary 0 outcomes
(Y =0). Possible outliers are circled in GRAY.
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Delta Chi-Square versus Probability (Trial 6)
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FIGURE 5.29C: DELTA CHI-SQUARE VS. PROBABILITY [TRIALS 6 AND 7]
The RED dots indicate positive (Y = 1) observations. The BLUE dots represent binary 0 outcomes
(Y =0). Possible outliers are circled in GRAY.
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Pre-Spike Odds Ratios
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FIGURE 5.30: PRE-IMPULSE ODDS RATIOS WITH CHI-SQUARE OUTLIERS REMOVED

[R1221912]
Contrast to Figure 5.1, Trial 2 [R1221912]
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FIGURE 5.31: DIFFERENCE IN PRE-IMPULSE ODDS RATIOS WITH VS. WITHOUT CHI-SQUARE
OUTLIERS [R1221912]

Peaks represent regions where there is a large discrepancy between the fitted model with outliers vs.
without outliers.
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5.1.6 Goodness of Fit

One can gain a visual impression of the accuracy of the logistical model by generating a
plot of the probability of an impulse as determined by the logistic function with estimated
coefficients vs. time and observed impulses vs. time. A 2.25-second sample of this plot
is shown in Figure 5.32. This analysis is purely visual and subjective; however, it can
point to regions of inaccurate predictions that warrant further examination. One can see
that where the predicted probability peaks, a spike is consistently observed. This
agreement between observed and predicted values means the model can predict spikes
with relative accuracy. On the other hand, many spikes are observed where the fitted
model predicts that no spike should be observed, given a cut value of 0.2, for example.
This inaccuracy is described quantitatively in the contingency tables that were generated
for this fitted model and are discussed below. Figure 5.33 illustrates the relative
prediction error of the model vs. time. Large BLUE peaks indicate predictive
inefficiency.
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FIGURE 5.32: SPIKE PROBABILITY VS. TIME WITH OBSERVED SPIKES SUPERIMPOSED
Predicted probability peaks with observed spikes indicate regions where the model has elevated
predictive efficiency. Peaks without observed spikes and valleys with observed spikes indicate
regions of low predictive efficiency for the model.
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FIGURE 5.33: PREDICTED PROBABILITY AND SUPERIMPOSED PREDICTION ERROR VS. TIME
Blue peaks above 0 indicate regions where a spike was observed when predicted proabability was

low. Blue peaks below zero indicate regions where the model predicted spikes but none were

observed. The Red indicates the predicted spike probability.

Trial 1 Trial 2 Trial 4 Trial 5 Trial 6 | Trial 7
Chi-square’ 897.254| 1154.679 787.228| 1488.922| 1765.38] 784.734
-2 Iog_;-likelihood2 1184.215| 2535.886 859.103] 1566.53| 1964.62] 729.905
Hos & Lem Chi-square® 15.028 54.858 1.671 1.822| 13.163 0.207
Contingency Table ¢
spk=0 observed 1010 913 1050 906 835 1062
predicted 1026.138| 924.143| 1053.872] 910.421] 842.847] 1062.55
% error 1.5978218] 1.220482] 0.3687619| 0.4879691| 0.93976| 0.05151
spk=1 observed 187 284 147 291 362 135
predicted 170.862| 272.857 143.128| 286.579| 354.153| 134.453
% error 8.6299465( 3.923592| 2.6340136| 1.519244| 2.16768| 0.40519
1. Calculated as 2*[Log-likelihood,a1-model — LOg-likelih00d;yitiaimodel]s 0 represents a perfect
fit.
2. Calculated using Equation 9 or 10, 0 represents a perfect fit.
3. Calculated using Equation 38, 0 represents a perfect fit.
4. Described in Section 3.3.4, 0 % error represents a perfect fit.

TABLE 5.1: NERVE R122191X GOODNESS-OF-FIT SUMMARY STATISTICS
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Other quantifications of the “goodness-of-fit” of the fitted model for each trial are shown
in Table 5.1. The average % error for all trials for the [observed = 0, predicted = 0]
category for group 10 of the Hosmer & Lemeshow G x 2 contingency table is 0.78 %.
The [observed = 0, predicted = 0] category showed higher average % error at 3.21 %.
These values represent the predictive efficiency of only a subset of all the observed and
predicted values, meaning these values are not representative of the overall predictive
efficiency of the fitted model. The predictive efficiency of all the data samples is
indicated in Figure 5.27 below. This plot shows specificity and sensitivity as a function
of the cut value in a 2 x 2 contingency table. The most efficient prediction occurs at low
cut values. This result makes sense given the small number of observed nerve responses.
The fact that less than 1 % of all samples correspond to a nerve response would be an
issue if stepwise regression techniques were employed, i.e., failure to reject the null
model since it would be 99 % accurate. Additionally, trials 4 and 7 show lower chi-
square and log-likelihood values than the other trials, indicating the fit of the model in
those trials is more accurate than the fit of the model in the other trials.
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FIGURE 5.27: INFLUENCE OF 2 X 2 CONTINGENCY TABLE CUT VALUE ON PREDICTIVE

EFFICIENCY
This graph shows that as the cut value that differentiates predicted responses as either 0 or 1
decreases, the efficiency in the model’s prediction increases significantly in the [Observed =1,
Predicted = 1] group but decreases slightly in the [Observed = 0, Predicted = 0] group.

5.1.7 General Observations

Nerve R122191X is preferentially sensitive to dstress/dt and dstrain/dt at low levels of
stimulus intensity. At higher levels of stimulus intensity and with a stimulus tip of
smaller area, the sensitivity to dstress/dt diminishes and stress, strain, and dstrain/dt
sensitivity predominates. High intensity stimuli produced estimated coefficients of
higher-than-average standard error and inconclusive Wald quantifiers. Stress-relaxation
and creep within the skin did not significantly affect the relative sensitivity of this nerve.
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5.2 Multiple Neuron Analysis

In addition to the nerve profiled in the previous section, 9 other nerves were analyzed in
the same fashion. This section will summarize the patterns observed in the regression
analysis of these nerves.

5.2.1 Memory Effects

Tables 5.2 through 5.10 are tables of the nerve sensitivities predicted by the extended
logistical regression model. The color-coding scheme in each chart is as follows:

Tip T2
Tip T3
Force-controlled

No sensitivity
Relatively Elevated

All trials are position-controlled unless specified as force-controlled by the above coding.
The “No Sensitivity” rating means that no independent variables showed odds ratios
above 2 in the span of samples up to 44 samples prior to the observed spike. The
“Relatively Elevated” rating means the value in question is considerably higher than other
values at the same pre-spike offset. This is a purely subjective, qualitative observation.
The categories in the chart are described as follows:

e Trial: The number of the trial. The stimulus intensity, stimulus tip type, and
stimulation type (force or position-controlled) are varied among different trials.

e Tip: The tip type used in the experiment, T1, T2, or T3.

e Intensity: Intensity is one of 4 types: threshold, 2 x threshold, 4 x threshold, 6 x
threshold, and 8 x threshold. These values are qualitative assessments of the
intensity of the stimulus as measured through voltage feedback from the indenter
tip position or force.

e Sensitivity: Sensitivity refers to the independent variable that shows a strong
correlation to the response. A strong correlation corresponds to an odds ratio
peak of 2 or higher.

e Offset: This category represents the offset value (in pre-spike samples)

corresponding to the peak of the odds ratio profile for the independent variable
listed under sensitivity.
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e Odds Ratio: The peak value that the odds ratio for the independent variable listed
under sensitivity achieves up to 44 samples prior to the observed spike.

e StdErr: The standard error of the Beta coefficient associated with the
independent variable listed under sensitivity at the given pre-spike sample offset.
The standard error is the square root of the variance of the Beta coefficient,
meaning a lower value (relative to the standard errors associated with the other
fitted parameters in the model) represents a better fit.

e Wald: The Wald value of the Beta coefficient associated with the independent
variable listed under sensitivity at the given pre-spike sample offset. The Wald
values quantify the significance of the Beta values within the fitted model. A
larger value (relative to the Wald values associated with other fitted parameters)
indicates more significance within the model.

e -2 Log-like: The -2 Log-likelihood value of the fitted model corresponding to the
given offset. A smaller value relative to the other —2 Log-likelihood values
represents a better fit of the model to the data. Zero represents a perfect fit.

e Chi-square: The Chi-square value of the fitted model corresponding to the given
offset. A smaller value relative to the other chi-square values represents a better
fit of the model to the data. Zero represents a perfect fit.

e Comments: General comments about the recording or odds ratio profile.

Each nerve recording is detailed in the subsequent sections. Unless otherwise specified,
each recording consists of 60000 samples with approximately 1 % of samples
corresponding to nerve responses.

R010702X

Nerve R010702X was not consistently sensitive to any one or more of the independent
variables in the first 4 trials as shown in Table 5.2. In trials 5, 6, and 7, however, the
nerve shows sensitivity to stress and dstress/dt at a similar offset from the observed
spike. The stress sensitivity occurs approximately 14 samples (7 milliseconds) pre-spike.
The dstress/dt sensitivity occurs at the instant of the observed spike. The dstress/dt
variable shows elevated significance within the fitted model without elevated levels of
standard error as indicated by the Wald and standard error values for dstress/dt, meaning
the estimated coefficient within the model is a good fit for the dstress/dt data. Trials 2
and 4 show dstrain/dt sensitivity at an offset of approximately 20 samples pre-spike as
well as elevated Wald values without elevated standard errors.
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R010702X
Trial M Intensity] Sensitivity | Offset | Odds Ratio| StdErr Wald | -2 Log-like | Chi-Square Experiment Comments
1 Thresh None
2 2X dSTRAIN/dt -20 3.5 0.1 170 2243.7 470.5 Long, Jagged peak
2X dSTRESS/dt -42 3.5 0.1 0.5 1982.3 233.3
3 2X STRESS -32 23 0.2 128 4431.3 582.1 Long, Jagged Peak
4 Thresh STRESS -20, spk 12 0.5,0.5 | 30,20 2138.7 552.7 2 Long, Jagged Peaks
Thresh | dSTRAIN/dt -18 4 0.15 82 1767.5 459.9 Smooth
5 2X STRESS -18 8.5 0.25 73 2717.7 909.9 Smooth Peak, Sharp Rise
2X STRAIN -4 4 0.4 9 2653.2 985.0 Smooth
2X dSTRESS/dt spk 7 0.1 200 2692.2 946.0
6 2X STRESS -14 4 0.2 57 4594.5 898.7 Identical to 5
2X STRAIN -2 2 0.2 9 4342.0 1218.8
2x dSTRESS/dt spk 4.5 0.1 240 4287.5 1273.3
7 Thresh STRESS -12 4 0.25 32 2232.2 459.3 Identical to 5
Thresh | dSTRESS/dt spk 5 0.1 183 2092.4 610.5
TABLE 5.2: RO10702X SENSITIVITY CHART
R010701X

The stimulated using force-controlled actuator movements, nerve R010701X responds
readily to dstress/dt stimulation (trials 9, G, and H) as indicated in Table 5.3. In trials 9
and H, the Wald value of the fitted coefficient is elevated while the standard error is not,
indicating a good model fit. When stimulated using position-controlled movements, the
nerve responds to stress (trials 1-7, A, B, D), dstress/dt (trials 2, 3,4, 6,7, 8, A, B, D, E,
F), and dstrain/dt (trials 1, 2, 3, 5, 6, 7, A, E). The stress sensitivity typically falls in the
range between the observed spike and 6 samples (up to 3 milliseconds) prior to the
observed spike. The dstrain/dt sensitivity occurs approximately 12 samples (6
milliseconds) pre-spike. The dstress/dt sensitivity typically occurs in the same sample as
the observed spike. The dstress/dt odds ratio curve also shows dual odds ratio peaks in
trials 6, 7, 9, E, and G ranging from 6 to 24 samples pre-spike. In several cases, the odds
ratio quantified sensitivities of the nerve when stimulated with Tip T1 were often an
order of magnitude lower than those when Tip T2 was used. Additionally, the Wald
values for the dstress/dt sensitivity were consistently elevated when Tip T1 was used,
emphasizing the significance of the nerve’s sensitivity to dstress/dt when stimulated with
a smaller diameter actuator tip.
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R010701X
Trial | Tip | Intensity| Sensitivity Offset ] Odds Ratio] StdErr Wald | -2 Log-ﬁke Chi-Square Experiment Comments
1 Thresh | dSTRAIN/dt -8 100 0.31 224 2201.9 1189.0
STRESS -4 25 0.34 102 2129.9 1271.9
2 2X STRESS -2 20 0.27 120 3951.3 1830.3
dSTRESS/dt spk 16 0.18 226 3896.8 1884.8
dSTRAIN/dt -10 14 0.2 186 4639.6 1113.3
3 4x dSTRESS/dt spk 5.5 0.12 200 5322.2 1959.0
STRESS -2 3 0.2 34 5114.8 2166.5
STRAIN -2 3 0.14 0.3 5114.8 2166.5
dSTRAIN/dt spk 3 0.13 10 5322.2 1959.0
4 2X STRESS | spkto-6 110 0.62 61 1184.8 681.7
dSTRESS/dt -6 32 0.54 41 1191.2 675.4
5 4x STRESS spk 110 0.44 112 2155.4 1202.7
dSTRAIN/dt -10 51 0.38 109 2323.5 1034.6
STRAIN -12 30 0.47 53 2378.3 979.8
6 2X dSTRESS/dt | -24, spk 9,8 0.27, 0.26] 16, 66 3240.7 1643.7 Dual Peak
dSTRAIN/dt -14 5.5 0.27 38 4141.5 722.9
STRESS -2 5.5 0.22 55 3225.8 1658.6
7 Thresh | ASTRESS/dt | -24, -6 55, 230 0.5, 1 13,2 823.7 832.3 Dual Peak, Strong Sensitivity
STRESS -4 293 0.95 36 823.7 832.3 Strong Sensitivity (spk to -8)
STRAIN spk 145 1 25 833.4 822.6 Strong Sensitivity (spk to -8)
dSTRAIN/dt -8 130 0.68 52 906.8 749.3 Strong Sensitivity (spk to -8)
8 4x dSTRESS/dt spk 3 0.06 312 7758.6 2400.8 Lifting, Discard
9 2X dSTRESS/dt| -6, spk 8,4 0.25,0.2 | 65,50 998.9 904.3 Dual Peak
STRAIN spk 4.5 0.22 46 998.9 904.3
a Thresh | dSTRESS/dt spk 6 0.13 175 2785.3 1065.1
dSTRAIN/dt -12 3 0.14 75 3387.4 441.9
STRESS -2 3 0.19 35 2699.9 1150.5
b 2X dSTRESS/dt spk 7 0.09 542 4616.5 1861.4 2 Units
STRESS | spkto-8 2.5 0.21 23 4616.5 1861.4
c Thresh None
d 2X dSTRESS/dt spk 3 0.13 76 3045.3 804.3
STRESS -2 2.5 0.21 19 3097.6 752.1
e Thresh | dSTRESS/dt | spk, -12 4,25 0.12, 0.14] 141, 36 3460.9 1293.4
dSTRAIN/dt -24 2.5 0.16 31 4067.7 209.4
f 2X dSTRESS/dt spk 3 0.05 573 6657.1 1610.9 2 Units
g Thresh | dSTRESS/dt | spk, -16 25,2 0.15, 0.09] 40, 55 2304.4 1086.2
dSTRAIN/dt -26 2.5 0.1 10 3091.5 146.7
h 2x dSTRESS/dt spk 2.5 0.05 422 4872.0 1404.3
TABLE 5.3: RO10701X SENSITIVITY CHART
R011901X

As shown in Table 5.4, under position-controlled stimulation, this nerve shows
preferential sensitivity to stress (trials 1 — 6, B, C), strain (trials 1 — 6, A, B, D), dstress/dt
(trials 1 — 6, A, B, C), and dstrain/dt (trials 1 — 6, B, D). The stress sensitivity has a low
standard deviation and is consistently in the range between the observed spike and 8
samples prior. The strain sensitivity has a higher standard deviation and falls within a
larger range from the observed spike up to 14 samples prior. The dstress/dt and
dstrain/dt sensitivities fall between 4 and 14 pre-spike samples with equivalent standard
deviations.  Of these sensitivities, only dstress/dt showed consistently elevated
significance (Wald values) in the fitted model. Both stress and strain showed elevated
Wald values in approximately 60 % of the trials. Under force-controlled stimulation, this
nerve indicates weak sensitivity (2 < odds ratio < 3.5) to both dstress/dt and dstrain/dt in
a range from 12 to 30 pre-spike samples. The degree of the sensitivity predicted by the
fitted model is influenced, in part, by the stimulus tip used. Trials in which Tip T2 was
used show consistently and significantly higher odds ratios than those trials in which Tip
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T3 was used. In trials 1 — 6 and B, the sensitivities are influenced partially by derivative
effects. This phenomenon is apparent due to the consistent grouping of dstress/dt and
dstrain/dt some number of samples from the terms from which they are derived, stress
and strain.

R011901X
Trial m] Intensity| Sensitivity Offset | Odds Ratio| StdErr Wald | -2 Log-like | Chi-Square Experiment Comments
1 Thresh STRAIN spk to -6 50 0.33 130 2740.5 1402.4 Low SNR
STRESS -2 to -4 35 0.34 125 2704.2 1438.7
dSTRESS/dt -10 22 0.28 125 2624.3 1518.6
dSTRAIN/dt -8 17 0.28 104 2563.9 1579.0
2 Thresh | dSTRESS/dt -8 87 0.26 305 4184.7 2395.3
STRAIN spk to -6 17 0.22 220 4711.0 2080.5
STRESS | spk to-8 18 0.22 180 4711.0 2080.5
dSTRAIN/dt -8 12 0.26 127 4184.7 2395.3
3 2X STRESS -2 9 0.14 255 6377.1 2713.8 2 Units, Derivative Effects
STRAIN -6 8 0.18 136 5977.1 2629.1
dSTRESS/dt -10 6.5 0.09 418 6103.3 2339.6
dSTRAIN/dt -6 3 0.11 106 5977.1 2629.1
4 Thresh | dSTRESS/dt -12 30 0.28 142 2913.1 1353.7 Derivative Effects
dSTRAIN/dt -12 21 0.25 152 2913.1 1353.7
STRESS -8 18 0.38 60 2924.8 1372.9
STRAIN  [spkto-12 8 0.34 39 3000.6 1317.7
5 2X dSTRESS/dt -14 21 0.22 188 39771 1419.0 2 Units, Derivative Effects
STRESS spk 20 0.24 156 4364.4 1758.7
dSTRAIN/dt -10 9 0.18 153 4044.3 1516.5
STRAIN -14 9 0.27 66 39771 1419.0
6 Thresh STRESS -6 5202 0.53 259 4068.7 3400.9
STRAIN -4 1570 0.38 379 4329.6 3388.8
dSTRESS/dt -8 407 0.31 384 4048.0 3403.7
dSTRAIN/dt -10 16 0.21 178 4260.2 3182.6
7 Thresh | dSTRAIN/dt -12 3.5 0.15 73 3362.7 842.3 1 Unit
dSTRESS/dt | -24 to -30 2 0.15 10 3855.1 89.9
8 2X None
9 2X None
a 2X STRAIN -4 3.5 0.1 172 4028.8 1162.2
dSTRESS/dt -4 3 0.1 102 4028.8 1162.2
b 4x STRAIN -2 5 0.08 423 5931.6 1546.9 2 Units, Derivative Effects
STRESS -2 2.5 0.12 61 5931.6 1546.9
dSTRAIN/dt -14 25 0.08 128 5360.0 7913
dSTRESS/dt -12 2.5 0.06 205 5350.9 1053.0
c 2X STRESS spk to -4 25 0.24 185 2706.9 1153.9
dSTRESS/dt -20 17 0.23 160 2690.4 1001.1
d 4x dSTRAIN/dt -16 6 0.1 348 5796.7 764.7
STRAIN -4 to -8 3 0.06 380 5495.0 1424.5
e 2X dSTRESS/dt |-10 to -16 2 0.09 64 6132.0 833.0 Multiple Units
dSTRAIN/dt -26 2 0.12 10 5783.1 65.3
f 2X dSTRESS/dt -12 2 0.1 69 4991.3 598.4
dSTRAIN/dt -28 2 0.13 10 4904.9 68.9
STRAIN -2 2 0.1 52 5047.5 1132.0
TABLE 5.4: RO11901X SENSITIVITY CHART
R020902X

As indicated by Table 5.5, trials 4 — E of R020902X are either weakly sensitive to one of
the independent variables (trials 7 and B) or not sensitive at all (trials 4 — 6, 8 — A, D, E).
This lack of detectable sensitivity is due, in part, to weak signal-to-noise ratios in the
recordings as well as multiple receptor action potentials detected on the same nerve axon.
The other trials (trials 1 — 3) show inconsistent sensitivity strengths (trial 1 odds ratios:
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stress = 16,826, strain = 3495, dstrain/dt = 755; trial 2 odds ratios: stress = 753). Based
on these results, the logistical regression analysis of this nerve is inconclusive.

R020902X
Trial M Intensity| Sensitivity Offset | Odds Ratio| StdErr Wald | -2 Log-like | Chi-Square Experiment Comments
1 Thresh STRESS -2 16826 0.85 131 1832.3 1569.5
STRAIN spk 3495 0.86 89 1891.1 1510.7
dSTRAIN/dt -8 755 0.56 139 1902.4 1499.4
dSTRESS/dt -8 55 0.56 49 1902.4 1499.4
2 2X STRESS -4 753 0.42 249 4071.6 2646.4
dSTRESS/dt -2 53 0.25 234 4098.1 2620.0
STRAIN -6 41 0.34 121 4117.4 2600.6
dSTRAIN/dt -6 51 0.25 248 4117.4 2600.6
3 4x STRAIN spk 9 0.17 159 5556.8 930.6
STRESS -10 3 0.23 26 5019.8 1458.3
dSTRAIN/dt -4 2.5 0.1 84 5051.5 1435.9
4 6X STRESS -8 3.5 0.12 111 4933.1 1554.3
5 8x None 2 Units
6 8x None Multiple Units
7 4x dSTRESS/dt -4 2.5 0.06 221 3514.5 772.9 Low SNR
8 2X None
9 6X None Multiple Units
a 8x None Multiple Units + Noisy
b 6X STRAIN -16 2 0.18 25 2404.8 103.2
dSTRESS/dt -8 2 0.08 86 2314.6 456.3
c 6X STRAIN spk 2 0.07 99 9156.2 1641.9
d 8x None
e 8x None Multiple Units
TABLE 5.5: R020902X SENSITIVITY CHART
R120891X

When force-control stimulated, nerve R120891X is weakly sensitive to dstress/dt (trials
4, 8,9, C, D, E) as shown in Table 5.6. When position-control stimulated, the nerve
exhibits preferentially sensitivity to stress and dstress/dt as well as a weaker sensitivity to
strain and dstrain/dt. Of the position-controlled sensitivities, stress [mean = 5, standard
deviation = 3.5], strain [mean = 12, standard deviation = 5.5], and dstress/dt [mean = 9,
standard deviation = 3.5] show considerable disparity while dstrain/dt [mean = 10.5,
standard deviation = 2] showed much less disparity in pre-spike offsets corresponding to
the peak odds ratio. Although the dstrain/dt sensitivity was weaker than the stress or
dstress/dt sensitivity, particularly at intensity levels above threshold (trials 3 and B), the
consistency of the sensitivity lends credibility to this independent variable as being the
primary sensitivity of this nerve. Additionally, the nerve’s sensitivity to dstress/dt is
substantiated by the consistently elevated Wald values, and, therefore, elevated
significance within the fitted model. Trials 1, 2, 3, A, and B exhibit derivative effects,
which means the model has mathematical difficulty determining to which covariate the
nerve is sensitive: an independent variable or its time derivative.
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R120891X
Intensity| Sensitivity | Offset | Odds Ratio| StdErr | Wald | -2 Log-like | Chi-Square Experiment Comments
Thresh STRESS -2 107 0.55 72 816.5 481.3
STRAIN -6 45 0.85 20 817.6 480.2
dSTRESS/dt -12 28 0.45 54 793.6 504.2
dSTRAIN/dt |-10 to -14 20 0.42 52 793.6 504.2
Thresh | dSTRESS/dt -16 28 0.31 117 1601.1 542.5 Derivative Effects
dSTRAIN/dt -12 15 0.3 84 1485.8 657.9
STRESS -8 10 0.29 64 1514.2 641.4
STRAIN -8 9 0.42 30 1514.2 641.4
2x STRESS -2,-12 54 0.22, 0.28] 60, 28 4035.4 1251.3 2 Jagged Peaks
dSTRESS/dt -4 2.5 0.07 163 4116.8 1150.4
STRAIN -8 2 0.15 23 4334.4 893.7
dSTRAIN/dt -12 2 0.08 96 4171.7 849.7
2X STRESS spk 3 0.28 17 969.5 456.8
dSTRAIN/dt -2, -6 2 0.09, 0.15| 63, 23 1142.0 449.7
dSTRESS/dt -4 2 0.14 28 1105.0 4741
Thresh | dSTRESS/dt | -6, -44 3,35 0.16 49 1418.4 374.4 2 Long, Smooth Peaks
STRAIN -42 2.5 0.27 10 1598.7 119.7 2 Long, Smooth Peaks
Thresh STRAIN -4 5 0.22 56 2930.6 654.3
dSTRESS/dt -2 3.5 0.11 148 2997.6 694
2X None
2X dSTRESS/dt |-32 to -38 2 0.13 10 2763.1 210.2 Dual Peaks
STRAIN spk, -24 2 0.13 36, 17 3070.8 406.6
Thresh [ dSTRESS/dt | spk, -40 4.5,25 ]0.13,0.15] 137 5265.2 1017.3 Dual Peaks
dSTRAIN/dt -24 2 0.17 10 5137.9 277.6
Thresh [ dSTRESS/dt -12 8 0.13 240 4253.4 1374.8 Derivative Effects
STRESS |spk to-10 6 0.14 177 4826.7 1632.9
dSTRAIN/dt |-10 to -16 3.5 0.12 114 4319 1395.7
STRAIN -6 to -8 3.5 0.17 57 4666.4 1550.6
2X dSTRESS/dt -10 4 0.07 321 6078.4 1310.4 Derivative Effects
STRESS spk 4 0.08 286 7189.6 2178
STRAIN -6 3.5 0.11 131 6355.4 1503.8
dSTRAIN/dt -4 2.5 0.08 118 6741.6 1769.9
Thresh STRESS spk 85 0.4 123 1745 797.6
dSTRESS/dt -18 22 0.26 143 1831.4 653.5
STRAIN |spkto-10 6 0.36 26 1745 797.6
Thresh [ dSTRESS/dt -16 3.5 0.09 187 3855.1 514.3 Derivative Effects
STRESS spk 2 0.13 28 3719.1 833.6
Thresh | dSTRESS/dt -14 2 0.1 55 5685.2 277.3

TABLE 5.6: R120891X SENSITIVITY CHART

R122391X

Nerve R122193X, as shown in Table 5.7, is consistently and preferentially sensitive to
strain and dstress/dt when position-control stimulated. Of these two, only dstress/dt
shows consistently elevated Wald values and low standard errors. When force-control
stimulated, the sensitivity is primarily to dstress/dt. Two patterns emerge from this chart
in terms of the position-controlled stimulation sensitivity: dstress/dt and strain odds
ratios that peak very close to the observed nerve response (up to 4 samples pre-spike) and
dstress/dt and strain odds ratios that peak a considerable amount of time prior to the
observed impulse (20 to 40 samples prior). This observation leads one to believe that
there are two receptors whose impulse responses are detected by the recording electrode
attached to the nerve axon. In trial 2, the dstress/dt sensitivity is dual peaked with one
peak lying very close to the observed impulse response and the other lying in the second
range of observed peaks (20 to 40 samples pre-spike). When recording was taking place,
this trial was visually interpreted as having multiple units attached to the recorded axon.
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R122391X

Trial | Tip | Intensity| Sensitivity Offset ] Odds Ratio] StdErr Wald | -2 Log-ﬁke Chi-Square Experiment Comments
1 Thresh STRESS -16 3 0.3 14 2707.9 420.6 Very Sensitive
STRAIN -4 3 0.24 43 2296.5 832
dSTRESS/dt -4 2.5 0.12 67 2296.5 832
2 Thresh STRAIN -20 3 0.09 147 4164.4 428.8 2 Units
dSTRESS/dt | -24, spk 2.5 0.09 |100, 111] 3648.2 1216.2 Dual Peaks
3 Thresh | dSTRESS/dt spk 3 0.14 59 1617.1 551 Clean
STRAIN spk 2.5 0.19 24 16171 551
4 2X STRAIN -32 4.5 0.1 35 2559.8 535.6 Clean
dSTRESS/dt -40 4.5 0.1 110 2555.5 528.8
6 Thresh | dSTRESS/dt -10 2.5 0.13 43 3752.3 647.8 No Lifting
7 Thresh | dSTRESS/dt -6 3 0.15 53 5901 1127.6 No Lifting
8 Thresh None No L/'?ting
9 Thresh | dSTRESS/dt -20 25 0.12 61 3292.7 130.8
STRAIN -2 2.5 0.2 22 2612.4 940.3
a 2x STRAIN spk 2.5 0.13 48 4619.6 1360.7 Good
b 2x STRAIN spk 3.5 0.21 30 1841.6 585.2 Good
TABLE 5.7: R122391X SENSITIVITY CHART
R122194X
Trial M Intensity| Sensitivity | Offset |Odds Ratio| StdErr | Wald | -2 Log-like | Chi-Square Experiment Comments
1 Thresh | dSTRESS/dt -6 188 0.51 104 1270.3 7421 Derivative Effects
STRESS -4 15 0.51 28 1268.7 743.7
STRAIN -2 10 0.44 26 1308 704.4
dSTRAIN/dt -6 8 0.49 18 1270.3 742.1
2 Thresh | dSTRESS/dt -6 2928 0.91 76 790.3 637.3
STRESS -4 373 0.91 43 802.2 625.4
STRAIN spk 205 0.92 33 841.5 586
dSTRAIN/dt -6 74 0.65 44 790.3 637.3
3 2X STRESS -2 110 0.48 94 1589.3 999.3
STRAIN -2 100 0.57 65 1589.3 999.3
dSTRESS/dt -6 12 0.17 188 1711 877.6
4 4x STRESS spk 315 0.65 79 1411.6 684.2
STRAIN spk 100 0.55 70 1411.6 684.2
5 2X dSTRESS/dt -8 78 0.3 196 1946.9 845.4 2 Units
STRAIN -2 51 0.44 81 1993.1 789.3
STRESS spk 36 0.45 63 1996.5 785.9
6 2X STRESS -2 6.5 0.21 75 2485.7 385
dSTRESS/dt -6 6 0.13 159 2223 658.9
STRAIN -2 3.5 0.23 26 2485.7 385
dSTRAIN/dt -8 3.5 0.12 113 2196.5 640.4
7 2X STRESS -2 31 0.33 108 1594.2 844.3 Noisy
dSTRESS/dt -2 6.4 0.21 77 1594.2 844.3
8 2X STRESS spk 18 0.28 103 2598.1 11254
STRAIN spk to -8 5 0.23 37 2598.1 1125.4
TABLE 5.8: R122194X SENSITIVITY CHART
R122194X

When either force or position-control stimulated, nerve R122194X shows preferential
stress, strain, and dstress/dt sensitivity. See Table 5.8. The dstress/dt sensitivity profile
consistently peaks at approximately 6 pre-spike samples and shows consistently elevated
significance in the fitted model (Wald values). The stress profile peaks between the
sample in which the impulse was observed and 4 samples prior to that point. The strain
sensitivity is consistently highest at the sample in which the spike was observed. Neither
stress nor strain shows consistent significance in the fitted model and both show elevated
standard error on a number of occasions (trials 3 — 6).
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R111791X
Trial M Intensity| Sensitivity | Offset |Odds Ratio| StdErr | Wald | -2 Log-like | Chi-Square Experiment Comments
1 Thresh STRESS -8 10 0.2 131 5265.4 865.1
STRAIN -2 3 0.12 76 4773.1 1366.6
2 2x STRESS -8 14 0.16 276 8487.1 1190.5
STRAIN spk 5 0.1 249 7663.3 2086.7
3 Thresh STRESS -8 3.5 0.24 25 3878 528.6 Clean
dSTRESS/dt spk 2 0.1 58 3783.5 782.5
4 Thresh None Good
5 Thresh STRAIN -10 2.5 0.11 81 3643.9 409.5 Messy
7 Thresh STRAIN -2 76 0.37 134 2943.1 2073.2
STRESS -4 25 0.24 174 2858 2158.4
dSTRAIN/dt -4 13.5 0.17 270 2858 2158.4
dSTRESS/dt -6 7.5 0.17 112 3019.8 1996.5
8 Thresh STRAIN -2 30 0.33 105 2231 1865.9 Messy + Hysteresis
STRESS -2 9 0.23 88 2231 1865.9
dSTRAIN/dt -4 7 0.12 266 2274.2 1822.7
9 2X dSTRESS/dt -4 2 0.07 149 4435.4 248.7 Messy + Hysteresis
a 4x STRESS -6 5.5 0.21 66 2701.4 319.7 Messy + Hysteresis
STRAIN -14 2 0.15 30 2617.6 216.8
TABLE 5.9: R111791X SENSITIVITY CHART
R111791X

In Table 5.9, nerve R111791X shows preferential sensitivity to stress and strain when
subjected to position-controlled stimulation. The stress sensitivity peaks occurs between
2 and 8 samples prior to the observed spike while the strain sensitivity typically occur 2
samples prior. These variables also show frequently elevated variance (standard error)
and Wald values, making the model prediction suspect. These inconsistencies are most
likely due to poor experimental recordings. The force-controlled records of this nerve are
inconclusive due to weak sensitivity and poor recordings.

R111793X

As shown in Table 5.10, the responses of nerve R111793X are weak and inconsistent.
The results of this trial, therefore, are not considered indicative of mechanoreceptor
sensitivities.

R111793X
Trial | Tip [Intensity] Sensitivity Offset | Odds Ratio] StdErr | Wald | -2 Log-ﬁke Chi-Square Experiment Comments
Thresh None

2X None Hysteresis
4x None Poor
2X dSTRAIN/dt | -4 to spk 8 0.09 120 1765.3 607.6
4x dSTRAIN/dt -2 2 0.07 139 6778.4 1028
STRAIN spk 2 0.11 56 6366.4 1440
Thresh None
Thresh STRAIN spk 2 0.14 35 5202.3 919.1
Thresh | dSTRESS/dt -8 2 0.15 36 2608.8 236.8
dSTRAIN/dt -22 2 0.15 17 2649 85.7
2X None
2X None

TABLE 5.10: R111793X SENSITIVITY CHART
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Memory Effects: Comparison

The results of the comparison of the memory effects of the receptors in this study can be
summarized in Table 5.11. In general, receptors subjected to force-controlled stimulation
were preferentially sensitive to dstress/dt. This sensitivity was determined from 25
independent trials using 7 different nerves (2 of which produced inconclusive results due
to poor recordings). Position-control stimulation of these receptors yielded different
results: primary sensitivity to stress and dstress/dt as well as strain and dstrain/dt to a
lesser degree. This sensitivity was determined from 79 independent trials using 9
different nerves (2 of which produced inconclusive results because of poor recordings).

Position-controlled Sensitivity Force-controlled Sensitivity
R010702X Stress, dStress/dt NA
R010701X Stress, dStress/dt, dStrain/dt dStress/dt
R011901X Stress, dStress/dt, dStrain/dt dStress/dt, dStrain/dt
R020902X Inconclusive NA
R120891X Stress, Strain, dStress/dt, dStrain/dt dStress/dt
R122391X Strain, dStress/dt dStress/dt
R122194X Stress, Strain, dStress/dt Stress, Strain, dStress/dt
R111791X Stress, Strain Inconclusive
R111793X Inconclusive Inconclusive

TABLE 5.11: NERVE SENSITIVITY SUMMARY

5.3 Results: Summary & Discussion

This section serves to put the results of the two previous sections into perspective. First,
general trends that were observed during the execution the logistical regression analysis
for each receptor considered in this study are summarized. Next, comments are made on
the implications of experimental input/output coverage. Finally, the interpretation of the
logistical regression results is discussed.

5.3.1 General Observations
There were several noticeable trends in the analysis that warrant discussion:

e The sensitivities of the nerves were consistent for the duration of the individual
trials. In other words, the dynamic nature of skin did not have a significant effect
on the estimated parameters of the fitted logistical regression model.

e Force-controlled stimulation produced markedly different patterns of sensitivity

as compared to position-controlled stimulation.  Force-control stimulation
produced more consistent results when the experimental recordings were usable.
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e The logistical model indicates that the receptors in this study are preferentially
sensitive to dstress/dt when subjected either to position or force-controlled
stimulation and stress when subjected exclusively to position-controlled
stimulation.

e The size of the actuator tip used to compress the skin surface affected the level of
the sensitivity predicted by the logistical regression model. Tip T2 (Area: 16.6
mm?) got consistently higher, often an order of magnitude higher, sensitivity
ratings than either Tip T1 (4.2 mm?) or T3 (34.2 mm?).

e High levels of stimulus intensity (6x and 8x) produced inconsistent results. The
inconsistency is due to the actuator tip losing contact with the skin surface and
creating non-linear input/output combinations.

e The sensitivities of the receptors in these trials were statistically uncorrelated to
the interaction terms included in the extended model (stress x strain, stress x
dstress/dt, strain x dstrain/dt, and dstress/dt x dstrain/dt), yet the interaction terms
showed elevated Wald values in most of the trials, indicating that they are
significant within the fitted model.

e Removing post-spike data points that correspond to observations within the
refractory period of the nerve does not noticeably affect the estimated Beta
coefficients, the significance of the estimated coefficients within the fitted model,
or the accuracy of the model fit.

5.3.2 Input Space Coverage

Despite the fact that 110 trials were completed, the input space of this experiment was not
covered thoroughly. Of the position-controlled trials, 75 % (64 trials) used Tip T2 and 78
% (66 trials) were low-level stimulation (threshold and 2 x threshold). In the force-
controlled trials, the disparity was greater with 80 % (20 trials) using Tip T2 and 96 %
(24 trials) corresponding to low-level stimulation. These results are shown graphically in
Figures 5.28 and 5.29.

The reason for the seemingly incomplete coverage is twofold. First, the receptors in
question often became unresponsive or lifeless after only a few trials were completed.
Second, the recording system was subject to transient noise, which often rendered trials
inconclusive. These trials were identified manually and then discarded.
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FIGURE 5.28: EXPERIMENTAL INPUT SPACE COVERAGE - ACTUATOR TIPS
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FIGURE 5.29: EXPERIMENTAL INPUT SPACE COVERAGE — STIMULUS INTENSITY
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5.3.3 Logistical Regression Interpretation

In this analysis, several decisions were made that may or may not have influenced what
the fitted model predicted as receptor sensitivities. These include:

1. Normalizing the independent variables prior to fitting and using the odds ratio as
a measure of association

2. Assuming that the peaks in graphs of odds ratio vs. pre-spike sample for all
coefficients represent receptor sensitivities

3. Using stress, strain, dstress/dt, and dstrain/dt as independent variables and stress
X strain, stress x dstress/dt, strain x dstrain/dt, and dstress/dt x dstrain/dt as
interaction terms in the model

4. Concentrating on correlated relationships as opposed to inverse or protective
relationships

Each of these assumptions is now discussed.

1. Normalizing the independent variables prior to fitting and using the odds
ratio as a measure of association

The odds ratio was selected as a quantitative measure of the input-output association for
several reasons. First, it has an intuitively appealing interpretation. It quantifies the
degree to which the probability of generating a positive response changes for a single unit
change in a particular independent variable. Second, it is calculated in a straightforward
manner and is listed in fitted-model summaries by commercial logistical regression
software packages. Third, the odds ratio has been used as a measure of correlation in
other studies [11,13,17,20,35,51].

Since the independent variables are normalized prior to being fit, the Beta coefficients
themselves could be used directly as relative measures of association. When the
coefficients are 0, the corresponding independent variable is statistically uncorrelated to
the response. When the coefficients are less than 0, the corresponding independent
variable has an inverse or protective relationship with the response. When the
coefficients are greater than 0, the corresponding independent variable has a correlated
relationship with the response. The disadvantage of comparing Beta coefficients directly
is that they do not have the straightforward, easy-to-understand interpretation that the
odds ratio has. Additionally, Beta coefficients do not account for the varied effects that
interaction terms have upon the input-output correlation at varying levels of the
independent variable.

The odds ratio does not give any more information on the relative input-output
association than the Beta coefficients. In fact, both will order the input-output
associations in the same fashion. However, the odds ratio is chosen over the Beta
coefficient for its attractively simple interpretation.
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The key to being able to make direct comparisons between Beta coefficients or odds
ratios is the fact that the independent variables are normalized (standardized) prior to
being fit. Normalization allows direct comparison of the coefficients associated with
independent variables that inherently have different means and standard deviations as
wall as units and ranges. Normalization, however, is not without experimental
implications.  During normalization, an independent variable undergoes a linear
transform. The degree to which this variable is modified depends solely on the overall
distribution of the variable and is not at all dependent on the distributions of the other
independent variables. This implies that permutations comprising the independent
variables that make up a particular sample or observation may be lost since one variable
in that combination may undergo a dramatic change while others do not.

A potential solution to this dilemma is post-regression normalization as discussed by
Menard [41]. In this method, the regression coefficients are estimated based on the
absolute levels of the independent variables. Following estimation, the coefficients are
normalized based on the levels of their associated independent variables. This transform
allows direct comparison of the coefficients and odds ratios relative to one another. Due
to the fact that post-regression normalization requires custom software (as it is not an
option in commercial logistical regression software), this technique was not evaluated in
this study.

2. Assuming that the peaks in graphs of odds ratio vs. pre-spike sample for all
coefficients represent receptor sensitivities

The odds ratio peaks correspond to regions within the sample space in which a single unit
change in a particular independent variable corresponds to an elevated increase in the
probability of generating a response relative to the other independent variables. These
peaks do not convey any information about average level of the odds. As an example,
contrast the odds ratio for stress in Figures 5.30 and 5.31 below. The peak in Figure 5.30
has a much larger time variance than the one shown in Figure 5.31. This wider
sensitivity range is not conveyed by peak value alone.

Alternative techniques to assess nerve sensitivity from odds ratio vs. pre-spike sample
time could include integration of the curves over a finite interval no longer than the
approximated conduction delay. The efficacy of alternative techniques has not been
addressed in the literature on logistical regression or in studies in which logistical
regression was employed. Most likely, the reason for this is the unique, unconventional
context in which logistical regression is being applied in this study.
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FIGURE 5.30: BROAD PEAK ODDS RATIO [NERVE R0107023]
Contrast the odds ratio peak shown in this figure to the one shown in Figure 5.31. The peak shown
here is considerably wider, spanning approximately 20 samples.
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FIGURE 5.31: NARROW PEAK ODDS RATIO [NERVE R0107026]
Contrast the odds ratio peak shown in this figure to the one shown in Figure 5.30. The peak shown
here is considerably narrower (less time variance), spanning only a few samples.
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3. Using stress, strain, dstress/dt, and dstrain/dt as independent variables and
stress x strain, stress x dstress/dt, strain x dstrain/dt, and dstress/dt x dstrain/dt
as interaction terms in the model

The independent variables and interaction terms used in the model were selected based
on a number of different reasons. First, the model was used in other studies in which
logistical regression was used to model the responses of mechanoreceptors subjected to
tensile loads [17].

Second, stress and strain are customary cross-platform metrics, meaning similar
experiments could be performed in a different context and the results contrasted to this
experiment. Although the stress and strain values used are linearly derived from the
recorded indented position and applied force values, a cross-platform comparison would
be complicated if indented position and applied force were used in place of stress and
strain.

Third, the interaction terms were selected because they have experimental and physical
significance in the system being modeled. The stress x strain interaction term, for
example, is proportional to the energy applied to the skin in the elastic region of the
stress-strain profile. Higher order interaction terms (2““l derivatives, for example) do not
have a meaningful interpretation in the context of the system being modeled. If
interaction terms without biological or statistical significance were included in the model
without due consideration, the danger is over-fitting, i.e., fitting the inherent noise in the
system rather than the emergent properties of the system. Additionally, it demonstrates a
lack of a thorough understanding of the system being modeled.

While not all of the interaction terms showed consistent significance within the fitted
model across all the receptors included in this analysis, interaction terms did show
consistent significance in individual receptors. Based on this observation, it was decided
to uniformly use the extended model with all the interaction terms (stress x strain, stress
x dstress/dt, strain x dstrain/dt, and dstress/dt x dstrain/dt). Although the standard model
with no interaction terms may converge on nerve sensitivities more consistently, the
disparity between the sensitivities predicted by the standard model and the extended
model were not significant enough to warrant exclusive use of the standard model.

In a future analysis, it may be useful to perform stepwise inclusion or exclusion of
interaction terms and independent variables based on statistical significance within the
fitted model and compare the results of that analysis to the results predicted by an
analysis using the standard or extended models. In stepwise logistical regression,
however, the model is particularly sensitive to the number of binary 1 events relative to
binary 0 events such that the method often fails to reject the null hypothesis when less
than 10 % of the covariate combinations result in a binary 1 output. Since the average
percentage of binary 1 observations in the time-series representation of the
mechanoreceptors used in this study is considerably less than 10, stepwise regression
may be ineffective without some type of pre-regression data parsing or compression.
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4. Concentrating on correlated relationships as opposed to inverse or protective
relationships

In this analysis, protective or inverse input-output relationships are not addressed. There
is a wealth of information in these relationships. For example, a receptor may be
preferentially sensitive to strain when the actuator tip is retracting from the skin (negative
dstrain/dt values). This sensitivity may not be detected because the method correlates
elevated stimulus levels to the response variable. This information is still present in the
odds ratios embodied in the model fit; however, one must look for it statistically rather
than qualitatively. In other words, the odds ratios map Beta coefficients from their
inherent range of [-oc to +oc] to a range of [0 to +oc], meaning the quantitative
assessments of the protective relationships in the fitted model (-oc < Beta coefficient < 0)
are compressed into the region from 0 < odds ratio < 1. Therefore, minute changes in the
odds ratios of protective independent variables correspond to dramatic changes in Beta
coefficients. It is difficult to perceive such differences qualitatively. Instead, a more
rigid statistical technique should be employed. Such an analysis is beyond the
capabilities of the commercial software used in this study.
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6.0 Discussion

Tactile sensation is a complex manifestation of mechanical stimuli applied to the skin.
At the most fundamental or atomic level of the somatosensory system is the cutaneous
mechanoreceptor. Therefore, the mechanoreceptor is a logical starting point in the
bottom-up approach to understanding the somatosensory system and sensation, in
general. In this study, we isolated several afferent mechanoreceptors, mechanically
stimulated them, recorded their responses, and determined the sensitivities of each of the
individual receptors by correlating the compressive state of the skin to the observed
receptor responses.

What sets this study apart from other studies in which the input-output association of
individual mechanoreceptors was evaluated is the fact that:

a) We proposed the novel application of a powerful statistical technique to
characterize the response of a single mechanoreceptor subjected to controlled
compressive loads.

b) We established and validated a framework for the application of this statistical
method to a time-series representation of the multiple-input, binary-output
system being modeled.

c) We performed in-vitro experiments to record the afferent behavior of tactile
receptors in rat hairy skin.

d) We applied the technique to the recorded data to quantitatively evaluate the
relative association between a number of biologically meaningful stimulus
metrics and the observed neural response.

The statistical technique chosen for this study was multivariate logistical regression. The
multivariate logistical model provides an elegant solution for modeling a system with
confounded input combinations and a binary output. From this model, we can quantify
the relative contributions that each of the components of the stimulus has upon the neural
response of the receptor and extrapolate any input-output associations to the greater
population of cutaneous mechanoreceptors.

In any regression method, there are fundamental assumptions concerning the data being
modeled that must be met. We must meet these assumptions in order to draw statistical
inferences from the sample population to the population at large. Violating some
assumptions may carry little consequence. Violating others may quash much of the
useful information embodied in the estimated parameters of the fitted model. Therefore,
the decision to apply a statistical technique in a non-conventional manner carries the
burden of heightened post-regression diagnostics. Nevertheless, we are dealing with a
deterministic mathematical technique that will produce a given result regardless of the
context in which the data were collected. In this study, we exploited that fact.

Multivariate logistical regression assumes that each observation or subject in a dataset is

independent of the other observations or subjects included in the dataset. In a time-series
representation of a system in which there is latency between input at a particular level
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and the response of the system to that level, the requirement of observational
independency is not met. Furthermore, when the response of the system is artificially
depressed or elevated following a particular event, the requirement of observational
independency is not met.

In this study we addressed these issues by manipulating the inputs and outputs of the
system before performing the regression analysis such that the regression analysis
produced results that could be interpreted as being derived from independent
observations. In addition, we utilized a technique to statistically quantify the extent of
the post-event observational dependencies such that these observations could be removed
from the datasets. Subsequently, the non-independent observations were removed and
the regression coefficients re-estimated. The result of the employment of both of these
methods is a lack of model misspecification due to observational inter-dependency.

The application of multivariate logistical regression models to mechanoreceptor systems
represents a significant deviation from conventional linear analysis techniques like
stimulus-response histograms, raster plotting, cross-correlation, and transinformation
analyses. Each of these linear techniques has associated shortcomings when employed in
the context of mechanoreceptor systems, the most common being the assumption of
linear system input-output and the inability to assess individual input-output associations
relative to other input in a multivariate context with interactive input.

To conclude, multivariate logistical regression is a powerful technique for quantifying the
input-output relationship between compressed skin states and the afferent response
characteristics of mechanoreceptors. When applying this technique to sampled time-
series representations of the input-output state of mechanoreceptors, special consideration
is necessary to meet the modeling requirements of multivariate logistical regression.
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7.0 Summary

Multivariate logistical regression is a mathematical technique that provides quantitative
assessments of the contributions that each variable in a set of covariates has upon some
binary response that is a complex, non-linear function of those inputs. The ability of
logistical regression to quantify the relationship between inputs that covary and a
response makes it the definitive statistical method for studies in which the input to a
system corresponds to one or more measurable, continuous variables that elicit a
dichotomous response from the system.

In this study, the system being modeled transduces mechanical stimuli applied to the skin
into afferent nerve responses. The covariates are the position of the stimulator that
indents into the skin, the force applied to the skin by that stimulator, and their respective
time derivatives. The binary response is the presence or absence of a nerve response,
given the state of the stimulus. A multivariate logistical model was developed for this
system and the relative contributions of each covariate assessed in a quantitative fashion
based on the multivariate logistical regression technique.
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Appendix A: Logistical Regression Using SPSS

This Appendix contains a short tutorial on how to use SPSS to perform multivariate
logistical regression.

Introduction

The purpose of this brief tutorial is to show the user how to use SPSS Base with
Regression Models v10 for performing multivariate logistical regression analyses. The

SPSS product that is discussed in this tutorial is described on the SPSS website here:

http://www.spss.com/spss10/

A technical discussion of the regression component of the software can be found here:

http://www.spss.com/tech/stat/algorithms/regres.pdf

The SPSS product that is described here is Win32 compatible (Windows 95, 98, NT 4.0,
and 2000). This tutorial references version 10 of the software but has also been verified
to work with version 9 of the software. It is assumed that the user has the software
installed and understands logistical regression before starting this tutorial.

Navigating the Software

When a particular subheading under one of the main categories (File, Edit, View, Data,
Transform, Analyze, Utilities, Graphs, Window, or Help) is to be selected, it will be
referenced as follows:

Main Heading = Selection = Subheading

For example, to select the Binary Logistic Regression subheading, one would select:
Analyze = Regression = Binary Logistic

This is shown in Figure 1. Once the Binary Logistic subheading is highlighted and

clicked, a second window will pop up allowing the user to make selections and perform
the regression analysis.
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Importing Data

SPSS can import data from a number of different data sources and formats. Some of the
more common formats are: SPSS Systat (.sys), Microsoft Excel (.xIs), Lotus (.w¥),
dBase (.dbf), and Text (.txt). The format that SPSS uses to store data once it has been
imported is the .sav extension.

To import data in these formats, go to:
File = Open = Data

Select the format of the data from the pull down menu. Then highlight the file to be
opened in the window and click Open. SPSS will then import the users data into columns
in the main window as shown in Figure 2.

If the user chooses to import a file with a .« extension, the Text Import Wizard will
appear. At this point (Step 1 of the Text Import Wizard), one can select either to specify
the format of the text or to import the text according to a pre-established format. Since
no pre-established format exists yet, we will choose to specify the format of the text by
selecting “no” where it asks, “Does your text file match a pre-defined format?” and then
selecting Next.

[z Untitled - SPSS Data Editor 1= x|

File Edit View Data Transform | Analyze Graphs Utiities Axum  Window Help

Reports 3
= olm| =) E{E] %2
—IEI@ . . D Descriptive Statistics 13 m % t‘g @
| ﬁl:!r_,w | Custom Tables 3
Compare Means »
|‘I . |— General Lingar Model 3
var war Correlate D war [ war I war war war war war war war =
] Regression » Linear. ..
3 Loglinear » Curve Estimation. ..
Classify 3 = =
3 Data Reduction » Binary Logiskic...
F] scale . Multinornial Logistic. ..
Ordinal...
5 Monparametric Tests » Gt
tiabit.,.
B Time Seties »
7 Survival *  Honlinear...
i Multiple Response 3 teight Estimation. ..
e Missing Value Analysis. .. 2-Skage Least Squares...
10 Optimal Scaling. ..

28 -
4 | ¥ [\ Data view £ Variables view L« | D

Logistic Regression SPS5 Processor is ready | |

Figure 1: Subheading Selection (Binary Logistical Regression)
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Step 2 of the Text Import Wizard asks questions about the format of the data file. After
selecting the radio button for each question that describes the data file, click Next.

Step 3 of the Text Import Wizard asks questions regarding the number of cases you wish
to import and how the cases are organized. Answer the questions and click Next.
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1 .85 1.43 1.55 -1 117 -.58 0
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3 -1.09 .64 =22 .07 -1.30 -.56 0
4 02 08 05 1.1 -96 63 0
5 B8 10 .30 .21 01 20 0
B 31 10 23 -39 35 14 0
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g 27 53 .50 -12 21 0o 0
9 .59 41 - 11 -.95 40 1.32 0
10 1.47 23 -.91 -.45 1.21 1.00 0
11 67 1.00 =82 1.12 1.04 35 0
12 95 1.07 30 1.32 38 1.25 i}
13 1.77 15 .54 34 177 1.80 0
14 1.12 1.06 1.46 Ell 173 3z 0
15 54 1.52 54 1.43 16 2.01 i}
16 1.40 94 .38 20 1.24 85 0
17 25 09 1 1.2¢ 1.18 74 0
18 61 24 16 31 21 16 0
19 11 21 -19 -.88 04 52 0
20 1.16 44 -85 -.82 56 1.03 i}
21 1.29 1.04 1.18 Ell 1.00 22 0
22 o7 1.43 -89 1.42 3 73 0
23 1.21 1.00 -18 61 1.05 1.28 0
24 95 03 A1 54 1583 73 0
25 14 64 30 1.02 74 70 0
26 1.16 54 -.40 74 55 1.15 0
27 1.51 .26 -95 .09 1.46 71 0
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IIZI Data View A Variable Yiew 1N | _>|_I
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Figure 2: Imported Data

Step 4 of the Text Import Wizard asks what types of delimiters separate variables in the
text file. Answer the question and click Next.

Step 5 of the Text Import Wizard allows you to name each of the columns in the text file.
Use the mouse pointer to highlight a row in the data preview window as shown in Figure
3, then type the name for that column under variable name. You also have the ability to
select how the data in that column are imported under data format. You can also choose
not to import certain columns. Continue by clicking Next.

Step 6 of the Text Import Wizard allows you to save the current format so you don’t have
to go through each of these steps for the next file that you import that has this format.
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Click Finish to complete the import and your data will appear in the columns of the
primary SPSS window, as shown in Figure 2.

Note: You may need to go through these steps several times, making different selections
each time, before the data is imported into SPSS in the desired format. Once the desired
import format is determined, it is wise to save this import format as a template for future
data imports.

Text Import Wizard - Step 5 of & _ ﬂ

— Specifications for wariable(z] zelected in the data previem

Wariable name:

Istress

[ ata farmat;

INumeric vI

— Data preview

v V5 V6 r;l
0.000 . 0.000 0.000 0,000 0.00

000 | 0.000 0000 0.000 0.00C
0 0.000 0000 0.000 0.00C
0.000 ! 0.000 0.0aa 0.000 0.00C*

¢ Back I M et = I Fimizh | Cancel | Help |

Figure 3: Text Import Wizard Step 5 — Column Naming

Once the data has been imported, changes may be made to column names, the precision
of the displayed data, and type of the displayed data by clicking the Variable View tab in
the lower left hand corner. Clicking this tab will change the main data window from a
spreadsheet-type listing to a listing shown in Figure 4. You can then modify a number of
different properties regarding the displayed data by clicking on the cell that contains the
setting you wish to modify. To get back to the spreadsheet-type listing, simply click the
Data View tab in the lower left-hand corner.
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Plotting

A number of different graphs of the imported data can be generated. The complete listing
is shown under the main heading Graphs. We will discuss a subset of these graphs here:
Line, Scatter, Histogram, and Interactive.

sample.sav - SPSS Data Editor == x|
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g
g
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13
14
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16
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18 -
19
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|4 [ [\ Data View ) Variable View / 1] | » |_I
SPSS Processor is ready
Figure 4: Variable View
Line Plots

SPSS is capable of generating a number of different line 2-dimensional line plots. Upon
selecting Line from the Graphs heading, the window shown in Figure 5 will appear. If
you wish to plot a single line (single column of Y-axis data points, single column of X-
axis data points), highlight the Simple plot as shown in Figure 5. If you wish to plot
multiple lines on the same axis (multiple columns of Y-axis data points, single column of
X-axis data points), highlight Multiple instead of Simple.

Next, choose the type of line plot: Summaries for Groups of Cases, Summaries for

Separate Variables, or Values of Individual Cases. After selecting the type of plot you
wish to generate, click Define.
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Summaries for groups of cases means you choose a variable/column to represent the X-
axis and then choose a summary of that variable or another variable to represent the Y-
axis, as shown in Figure 6. To select an X-axis variable, highlight the variable in the
leftmost window then click on the arrow button just to the left of the Category Axis label.
The variable you selected will now appear in this box. To select a Y-axis variable, you
can either use a summary function of the X-axis variable or a summary function of
another variable in the list in the left hand window. If you wish to select a different
variable, select the radio button next to Other Summary Function. Next, highlight the
variable you wish to use from the left-hand window and click the arrow next to Variable.
The variable you selected will appear on this line with a Mean wrapper
(mean(variable)). If you do not wish to use the mean of this variable, click Change
Summary and you will have a number of different choices, as shown in the window
labeled “Summary Function” on the right hand side of Figure 6. Upon making your
selection, click Continue to return to the previous window, then click OK and the plot
will be generated. To modify the appearance of the generated plot, go to the section of
this tutorial labeled “Plot Modification.”

Line Charts

X
ey Simple
Cancel |
:}4:{ Multiple Help |
;EEE Drop-line
— Data in Chart &re

% Summaries for groups of cazes
™ Summaries of separate varisbles

i~ Walues of individual cazes

Figure S: Line Plot Options
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Figure 6: Summaries for Groups of Cases — Plotting Options

Summaries for separate variables allows you to choose a summary function to represent
both the X-axis variable and the Y-axis variable. The summary functions are shown in
Figure 7. The routine to select the variables you wish to plot consists of first highlighting
the desired variable, clicking the arrow to the right of the window in which the variable
was highlighted, then highlighting the same variable and clicking Change Summary. The
Summary Function window shown as the right window in Figure 7 will appear. Make
your selection and click Continue to return to the previous window. You can add a
number of different variables in this way. When you have added all the variables you
want, click OK and the plot will be generated. To modify the appearance of the plot, see
the “Plot Modification” section of this tutorial.
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Figure 7: Summaries for Separate Variables — Plotting Options
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Values for individual cases allows you to plot the actual values of the variables
themselves, rather than a summary of the values. Select the variables that you wish to
plot from the left hand window by highlighting them, then click the arrow to move the
variable into the Line Represents space. This will be the Y-axis variable. Then choose
the X-axis variable by first highlighting it, then clicking the Variable radio button,
followed by the arrow under Variable. The variable you select will appear on the line
under Variable and the window will look similar to Figure 8. To generate the plot, click
OK. To modify the plot appearance, see “Plot Modification™ in this tutorial.

To undo any variable selections, simply highlight the variable in question and click the
arrow next to it to return it to the pool of unselected variables in the leftmost window.

If the OK button is invisible, it means the plot variables have not been completely
specified, therefore, repeat the steps discussed above for the desired type of plot.

i Define Simple Line:

x|
& energy Line Represents: 0K |
@ ditress I@ shress -
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> denergy Category Labels Peset |
@ spk " Case rumber - I
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[ Use chart specifications from:
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Figure 8: Values of Individual Cases — Plotting Options

The above descriptions pertain to Simple Line plots only. If you wish to generate
Multiple Line plots, the steps are virtually identical, save for the fact that you have the
option to select multiple Y-axis variables to plot versus one X-axis variable.

Scatter Plots

The scatter-plot option is available under Graphs = Scatter. The Simple scatter plot is
described here. To select the Simple scatter plot, highlight Simple in the first window
(Figure 9) and click Define. This will bring you to a window similar to the one shown in
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Figure 10. Highlight the desired variables in the left-most window then click the arrow
next to the X or Y-axis labels to move the variable into the label. Click OK to generate
the plot. Information on modifying the appearance of this plot is found in the “Plot
Modification” section of this tutorial.
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Figure 9: Scatter-Plot Types
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Figure 10: Scatter Plot Settings

Histogram Plots

Under Graphs = Histogram, one can generate a histogram of the data in any one of the
variables/columns. In the window shown in Figure 11, highlight the variable to be
plotted in the leftmost window, click the arrow to move the variable into the box labeled
Variable, then click OK to plot the variable’s histogram. If you want a normal regression
curve fitted to the histogram, check the Display Normal Curve box before clicking OK.
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Figure 11: Histogram Plots

Interactive Plots

A number of different graphs can be custom-designed under the Graphs = Interactive
heading. The steps for selecting the variables to be used in the graph is the same for all
graphs, therefore, the steps will be detailed for the Line plot only.

Upon selecting Graphs = Interactive = Line, a window similar to the one shown in
Figure 12 will appear. To select the X and Y-axis variables, highlight the variable in the
leftmost window and drag it to the desired box to the right of the window. In Figure 12,
the box with the variable [stress] in it corresponds to the Y-axis. The empty box
corresponds to the X-axis. Upon dragging the variables to their appropriate boxes, you
can either click OK at the bottom or choose from the various chart options available in
the tabs at the top of the window (Dots and Lines, Error Bars, Titles, and Options).
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Figure 12: Interactive Line Plot Options

Plot Modification

Whenever a plot is generated using the techniques described above, a second window
will pop up (assuming one is not already open) called SPSS Viewer containing the plot.
If you wish to modify the appearance of the plot, double-click on the plot itself and
another window called SPSS Chart Editor will appear as shown in Figure 13. The chart

in SPSS Viewer will be darkened.
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Figure 13: SPSS Chart Editor

In SPSS Chart Editor, one can change virtually all aspects of the plot. Under Chart =
Axis, one can change the range, scale, titles and title justification, tick marks, and remove
undesirable axis markers if needed. Under the Format menu, the color, line-type, fill-
type, and marker for the data points can be changed as well as the font and font size for
text. When changing any of these properties, you must first highlight the item or label in
the chart that you wish to change before making the selection.

To change the color of the data points in the plot, first click on the data points themselves
to highlight them. If there are many data points, only a few data points will be
highlighted as shown in Figure 14. Then select Format = Color and a small window
labeled “Colors” will appear. Click the desired color and the data points will be changed
to that color, as shown in Figure 14.
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Figure 14: SPSS Chart Editor Use

To change the range of the Y-axis, for example, first click on the X-axis to highlight it
(each tick mark will darken when the axis is highlighted). Then select Chart = Axis and
a window will appear that is similar to the one labeled “Y Scale Axis” in Figure 15. From
this window, one can chart a number of different properties including the title, title-
justification, range, etc. To change the range, go to the Range portion of the window and
adjust the minimum or maximum value to the desired value and click OK.

With a bit of experimentation, one can learn how to adjust all of the properties of the
chart such that it has the desired appearance. Once one has made all of the adjustments,
one can save the chart as a template so that the same chart can be generated for a different
data set without having to change all the settings manually. To save the chart as a
template, go to File = Save Chart Template, select a name, and save the template to the
desired directory. When you wish to generate the same chart with different data, simply
use select this chart template instead of selecting all the variables to generate the chart
(for example, in Figure 11, instead of inputting the variables, check the “Use chart
specifications from” box and point towards the template corresponding to the desired
chart). When you are done editing the chart, close the SPSS Chart Editor to return to the
SPSS Viewer and the main SPSS window containing the data. The SPSS Viewer contents
can be saved or copied using the Windows clipboard, if desired.
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Figure 15: Chart Property Adjustment

Multivariate Logistical Regression

Before explaining how to use SPSS to perform logistical regression, let us discuss the
format for the data that can be used in a logistical regression analysis.

Binary logistical regression requires that the input(s) to the regression model
(covariates or independent variables) be continuous or categorical. If the inputs
are categorical, they must take on a finite number of values or strings. Any
number of inputs can be used.

The output (response or dependent variable) of the regression model must be
binary. The output does not necessarily have to be coded as 0 or 1 values but it
does have to be coded as either one value/string or another value/string (example:
yes or no, lived or died). It can be determined from the post-regression results
how the regression software treated the output variable (i.e., whether it encoded
“lived” as 0 and “died” as 1 or “lived” as 1 and “died” as 0).

An output variable must be present for every input combination included in the
model.
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e Each input variable must have its own column and the output variable must have
its own column. Each row corresponds to an observation, i.e., a set of inputs and
the binary output produced by those inputs. When imported into SPSS, the data
should look similar to that in Figure 2. In Figure 2, there are 6 independent
variables (stress, strain, energy, dstress, dstrain, denergy) and the dependent
variable (spk).

With these requirements met, we can proceed to the Logistical Regression analysis. The
first step is to select Analyze = Regression = Binary Logistic. A logistical regression
window will appear as shown in Figure 16. To select the dependent variable, highlight
the variable from the leftmost window and click the arrow next to the Dependent
category. The variable will appear on the line just below the Dependent label. Similarly,
to select the independent variables, highlight the desired variable and click the arrow next
to Covariates to draw the variable from the leftmost window to the window below the
label Covariates. For interaction terms, highlight both the variables that participate in the
interaction and click the >a*b> button (as shown in Figure 16) to bring the two variables
into the Covariate window as an interaction term. Select the type of regression you wish
to perform from the Method pulldown menu (choices: Enter, Forward (Conditional),
Forward (LR), Forward (Wald), Backward (Conditional), Backward (LR), and
Backward(Wald)).

» Logistic Regression

Dependent: g,

|® = Pazte
B dstra : Previous | Block 1 of 1 M et | Reset
=train

@ denergy Covanates: Cancel
¥ stre;s
‘—, ztraim el
xh datress

dztrain
strainstress

b ethiod: I Erter j

Select »» | Eategn:-rin:al...l Save. . | Optionz... |

Figure 16: Logistical Regression Window

FEEEN,

At this point, we have the option to specify if any of the covariates are categorical
variables (the assumption when they are first selected is that they are continuous). To do
this, click the Categorical label and another window will pop up. In this window, we can
select from any of the non-interaction term covariates in the list of covariates. To choose
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a covariate, highlight it and click the arrow to move it from the list in the leftmost
window into the Categorical Covariates list, as shown in Figure 17. You then have the
option to specify the contrast for the categorical variable as shown in Figure 17.
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Figure 17: Categorical Variable Selection

Next, we have the option to save a number of different quantifications of the data once
the regression has been performed. The variables that can be saved are: Predicted
Probabilities, Predicted Group Membership, Cook’s Influence, Leverage Values, Delta
Beta, and a number of different Residuals (Unstandardized, Logit, Studentized,
Standardized, and Deviance). To save any of these, first click Save from the logistical
regression window. You will then be shown a window with a number of checkboxes
similar to the one in Figure 18.

Logistic Regression: Save New ¥ariables ﬂ
— Predicted Values —Residuals————
¥ Probabilities v Unstandardized
¥ Group membership ¥ Logit Cancel |
Irflusnce It Studentized Help |
[ Cook's - Etar'!dardized

eviance
¥ Leverage values
Iv DiBetajz]

Figure 18: Saving Logistical Regression Variables
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After the regression is performed, all of the values that were selected will appear in the
main data window as shown in Figure 19. Each column will have a label corresponding
to the regression variable. The encoding is shown in Table 1.

Regression Variable |[Encoding Type
Predicted Probability pre_ 1 | Continuous
Predicted Group par 1 Binary
Cook's Influence coo 1 | Continuous
Leverage Value lev 1 Continuous
Delta Beta dfbX 1* | Continuous
Unstandardized Residual res 1 Continuous
Logit Residual Ire 1 Continuous
Studentized Residual sre 1 Continuous
Standardized Residual zre 1 Continuous
Deviance Residual dev_1 | Continuous

Table 1: Regression Variable Encoding
* X is a number corresponding to a particular covariate or interaction term that was included in the
model. The encoding is based on the order of the variables in the Covariates list shown in Figure 16.
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|1U por_1 |D
denergy spk pre_1 pgr_1 coo_1 lev_1 res_1 Ire_1 sre_1 zre_1 dev_1 dfb0_1 dfb1_1 ;I
1 -85 0 03578 0 00021 00562 - 03678 -1.03711 - 27071 - 159264 -.2R955 -.00390 00003
2 -1.85 0 00074 0 00000 .00073 - 00074 | -1.00074 -.03860 -.02723 -.03859 -.00020 00001
3 -.56 0 00001 0 00000 00003 - 00001 | -1.00001 - 00451 -.00340 - 00451 -.00001 00000
4 B3 0 .00000 0 .00000 .00002 .00000|  -1.00000 -.00253 -.00211 -.00253 -.00001 .00000
5 .20 0 00042 0 .00000 .00036 -00042|  -1.00042 -.02906 -.02065 -.02906 -.00023 -.00005
B -4 0 00245 0 .00000 .00066 -00243|  -1.00248 -.07043 -.045986 -.07046 -.00081 -.00003
7 .38 0 00170 0 .00000 .000849 -00170|  -1.00170 -.06832 -.04124 -.06529 -.00090 .0ooo7
g oo 0 00125 0 0noon 00063 -00125|  -1.00125 -.04993 -.03534 - 04996 - 00064 00000
9 -1.32 0 00054 0 .00000 .00029 -00054 | -1.00054 -03275 -.02318 -.03274 -.00016 .00000
10 -1.00 0 00004 i 00000 .00004 -00004 | -1.00004 -.00920 -.00651 -.00920 -.00003 00000
11 35 0 00001 0 00000 00004 - 00001 | -1.00001 -00413 -.00292 -00413 -.00001 00000
12 125 0 00035 0 .00000 .00069 -00033| -1.00033 02774 -.01961 02773 -.00032 -.00006
13 1.90 0 06431 0 00043 .00619 - 06431 -1.06872 -.36573 - 26215 -.36460 -.00803 -.00221
14 .32 0 1773 0 00102 .00755 - 11779 -1.13362 -.60256 -.36541 -.50066 -.00662 00396
15 -2.01 0 00255 0 00001 00257 - 00285 | -1.00293 -07731 -.056463 - 07721 -.00026 00004
16 -85 0 0noo2 0 00000 00005 - 00002 | -1.00002 - 00670 -.00474 - 00670 -.00002 00000
17 74 0 .00000 0 .00000 .00001 .00000|  -1.00000 -.00185 -.00131 -.00185 .00000 .00000
13 16 0 00021 0 .00000 .00024 - 00021 -1.00021 -.02025 -.01432 -.02025 -.00015 -.00004
19 -.82 0 00155 0 .00000 .00075 -00155|  -1.001585 -.05565 -.03935 -.05563 -.00036 -.00005
20 -1.03 0 00023 0 .00000 .00025 -00025| -1.00023 -.02351 -.01662 -.02380 -.00003 00002
21 -2 0 00004 0 0noon 000os - 00004 | -1.00004 -00533 -.00593 -00533 -.00003 00000
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23 1.23 0 00643 0 00002 00256 - 00643 | -1.00847 - 11376 -.08047 - 11361 -.00262 -.00045
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26 -1.14 0 .0o0z7 0 .00000 .00m7 - 00027 | -1.00027 -.02345 -.01658 -.02344 -.00012 00002
27 -7 0 .00001 0 .00000 .00002 -.00001 | -1.00001 -.00530 -.00374 -.00530 -.00001 .00000
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(4 [ ¥ [\ Data View £ Wariahle view KX | _»lJ
|SPSS Processor is ready | | | |

Figure 19: Regression Variable Lists
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We also have the option of specifying several diagnostic procedures to be performed on
the data during the regression. The statistics and plots that can be generated are:
Classification Plots, Hosmer & Lemeshow goodness-of-fit tests, Residual listing (greater
than a given standard deviation), Correlations of Estimates, Iteration History, and
Confidence Intervals. Additionally, one can specify the cutoff value used to categorize
values in a contingency table and whether or not to include a constant in the model. To
select any of these options, choose Options from the logistical regression window and
check or enter the desired values or variables in the window that appears. The window is
similar to the one shown in Figure 20. Click Continue when through.

Logistic Regression: Options

— Statigticz and Platz

X
¥ Classification plats ¥ Conelations of estimates
¥ Hosmer-Lemezhow goodness-of-fit [ lteration histony Carcel |
¥ Cazewise listing of residuals |J>S Cl for explB]: |E|5 b4 Help |

" Outliers outside |2 std. dew.

" &l cases
— Drigplay
' At each step Al last step
-~ Probability for Stepwis Clazzification cutaff: I.E

Entry:  |.05 Femoval; |10

b airnurn [berations: |2EI

¥ Include constant in madel

Figure 20: Logistical Regression Diagnostic Options

After you have completely specified the logistical regression variable, options, and
diagnostics, click OK in the logistic regression window. After a brief delay during which
time the regression is being performed, an SPSS Viewer window will appear with the
results of the regression.

The contents of the SPSS Viewer window will now be discussed. Keep in mind that not
all the charts that are discussed will appear in your SPSS Viewer window unless you
select all the options available in Figure 20. Conversely, the charts describing the null
model are not discussed here.

The case processing summary (Figure 21) details the number of cases included in the
regression analysis and excluded from the analysis (missing cases).
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Case Processing Summary

Unweighted Cases® N Percent
Selected Cases Included in Analysis 2000 100.0
Missing Cases 0 .0
Total 2000 100.0
Unselected Cases 0 .0
Total 2000 100.0

a. If weight is in effect, see classification table for the total
number of cases.

Figure 21: Case Processing Summary

The dependent variable encoding is shown in Figure 22. The encoding is the same as the
original values due to the fact that our dependent variable was coded as either O or 1.

Dependent Variable Encoding

Original Value [ Internal Value
0 0
1 1

Figure 22: Dependent Variable Encoding

Figure 23 shows the iteration history of the regression including the —2 Log-likelihood at
each iteration as well as the Beta coefficients associated with each independent variable.

Iteration HistoryP.¢:d

Coefficients

-2 Log STRAIN by DSTRESS DSTRAIN | DSTRAIN by

Iteration likelihood | Constant | STRESS | STRAIN | DSTRESS | DSTRAIN STRESS by STRESS | by STRAIN | DSTRESS
Step 1 684.025 -1.914 -.009 .028 -.006 149 -.021 -.026 .060 -.009
1 2 388.880 -2.921 -.036 .062 .008 438 -.058 -.080 153 -.021
3 281.499 -3.833 -.087 .066 .099 .957 -120 -.187 .262 -.008
4 234.255 -4.812 -.096 .027 .233 1.558 -194 -.346 .344 .085

5 216.471 -5.803 -.083 -.014 .186 2.087 -.256 -.504 422 .281
6 210.920 -6.605 -.100 -.037 -.268 2.506 -.292 -.586 470 .594
7 209.517 -7.156 -.139 -.040 -.805 2.803 -.294 -.616 AT7 .876
8 209.426 -7.349 -.161 -.041 -.957 291 -.289 -.635 AT75 .962
9 209.426 -7.363 -.163 -.042 -.967 2.919 -.288 -.637 475 .968

a. Method: Enter

b. Constant is included in the model.

C. Initial -2 Log Likelihood: 407.623

d. Estimation terminated at iteration number 9 because log-likelihood decreased by less than .010 percent.

Figure 23: Iteration History
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The model summary is shown in Figure 24. It shows the goodness-of-fit measurements
-2 Log-likelihood, Cox & Snell R?, and the Nagelkerke R? values for the final model.

Model Summary

-2 Log Cox & Snell Nagelkerke
Step likelihood R Square R Square
1 209.426 .094 512

Figure 24: Model Summary (Goodness of Fit)

Figure 25 indicates the Hosmer & Lemeshow Chi-square value for the final model.

Hosmer and Lemeshow Test

Step Chi-square df Sig.
1 3.256 8 917

Figure 25: Hosmer & Lemeshow Goodness of Fit

Figure 26 shows the Hosmer and Lemeshow contingency table. The distribution of
response probabilities are divided into 10 equal groups and a contingency table is
computed for each group. This is represented by this figure.

w Test
| SPK=0 SPK =1
Observed | Expected | Observed | Expected Total
Step 1 200 200.000 0 .000 200
1 2 200 199.998 0 .002 200
3 200 199.989 0 .01 200
4 200 199.966 0 .034 200
5 200 199.915 0 .085 200
6 200 199.819 0 181 200
7 200 199.580 0 420 200
8 200 198.894 0 1.106 200
9 198 196.106 2 3.894 200
10 160 163.734 40 36.266 200

Figure 26: Hosmer & Lemeshow Contingency Table
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Figure 27 shows a simple contingency table with a cut value of 0.5. This is effectively
the same as Figure 27 but instead of 10 groups, there are only 2 groups (response
probability greater than 0.5 and less than 0.5).

Classification Tablé

Predicted
SPK Percentage
Observed 0 1 Correct
Step1 SPK 0 1949 9 99.5
1 33 9 21.4
Overall Percentage 97.9

a. The cut value is .500

Figure 27: Contingency Table

Figure 28 details the statistics associated with the fitted Beta coefficients in the model.
The standard error (S.E.), Wald, and odds ratios (Exp(B)) are all listed in addition to the
confidence interval for the coefficient.

95.0% C.I.for EXP(B)

B S.E. Wald df Sig. Exp(B) Lower Upper

Sfep  STRESS -.163 .458 127 1 721 .849 .346 2.083

1 STRAIN -.042 .581 .005 1 .943 959 .307 2.994
DSTRESS -.967 .820 1.391 1 .238 .380 .076 1.897
DSTRAIN 2.919 .548 28.381 1 .000 18.519 6.328 54.199
STRAIN by STRESS -.288 299 .928 1 .335 .750 417 1.347
DSTRESS by STRESS -.637 .370 2.962 1 .085 529 .256 1.092
DSTRAIN by STRAIN A75 .376 1.592 1 .207 1.608 769 3.363
DSTRAIN by DSTRESS .968 486 3.966 1 .046 2.632 1.015 6.820
Constant -7.363 .766 92.330 1 .000 .001

a. Variable(s) entered on step 1: STRESS, STRAIN, DSTRESS, DSTRAIN, STRAIN * STRESS , DSTRESS * STRESS , DSTRAIN *
STRAIN , DSTRAIN * DSTRESS .

Figure 28: Coefficient Statistics

Figure 29 shows the correlation matrix for the fitted coefficients. This gives an
indication of the degree to which all the included independent variables interact with one
another
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Correlation Matrix

STRAINby  DSTRESS DSTRAIN  DSTRAIN by
Constant STRESS  STRAIN DSTRE DSTRAIN STRESS by STRESS by STRAIN  DSTRESS

Step  Constant 1.000 -.013 125 .605 -.639 -.010 -.055 -.102 -.450
1 STRESS -.013 1.000 -113 -.154 -.728 -.210 .374 21 -.265
STRAIN 125 -113 1.000 496 -.018 -.009 110 -.680 -.396
DSTRESS .605 -.154 496 1.000 -.293 .047 .019 -.355 -.745
DSTRAIN -.639 -.728 -.018 -.293 1.000 101 -.287 .028 .554
STRAIN by STRESS -.010 -.210 -.009 .047 101 1.000 .208 -.676 -.191
DSTRESS by STRESS -.055 .374 110 .019 -.287 .208 1.000 -.233 -.600
DSTRAIN by STRAIN -.102 121 -.680 -.355 .028 -.676 -.233 1.000 440
DSTRAIN by DSTRESS -.450 -.265 -.396 -.745 .554 -191 -.600 440 1.000

Figure 29: Correlation Matrix

Figure 30 is a casewise listing of residuals that fall outside 2 standard deviations from the
mean of all the residuals. These cases are considered outliers since they lie outside the
confidence interval.

Casewise Lis®

ed Observed Predicted Temporary Variable
Case Status® SPK Predicte Group Resid ZResid
89 S 1** .074 | 0 .926 3.527
141 S o** 895 | 1 -.895 -2.923
244 S 1** .091 |0 .909 3.169
280 S 1** .075 | 0 .925 3.519
316 S 1** .042 | 0 .958 4.787
460 S 1** .080 | O .920 3.380
550 S 1** 104 | O .896 2.929
721 S 1** .021 | 0 979 6.907
823 S 0** .870 | 1 -.870 -2.592
944 S 1** .040 | O .960 4.897
964 S 1** 131 |0 .869 2.577
995 S 1** .041 | 0 .959 4.865
1560 | S 1** .091 |0 .909 3.167
1968 | S 1** .020 | O .980 6.962
1998 | S 1** 133 | 0 .867 2.553

a. S = Selected, U = Unselected cases, and ** = Misclassified cases.

b. Cases with studentized residuals greater than 2.000 are listed.

Figure 30: Residual Listing
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Automation

If one had to complete all the steps detailed in the Multivariate Logistical Regression
section for the hundreds of regressions that one must run for a typical analysis, it would
be very time-consuming. Therefore, we now discuss the scripting capabilities of the
software. The SPSS software comes with an excellent reference for scripting. It can be
found in the Help = Syntax Guide = Regression Models help file under the heading
Logistic Regression (page 608). This section completely explains how to write and
execute scripts.

While scripts can automate the execution of regressions, they do not convert the results of
the regression analysis into a format that can be easily plotted with SPSS or other
software. For this reason, it is necessary to write additional scripts/macros (called
“syntax” by SPSS) to convert the results of a regression into a format that is more
conducive to plotting. The easiest way to complete this is to execute a macro that
converts all the data from the SPSS Viewer into a Microsoft Excel format, which can then
be parsed and the desired data extracted. The SPSS website has a section devoted to
scripting (http://www.spss.com/tech/scptxchg/). There one can find a script called
“Export_to Excel BIFF.SBS” (http://www.spss.com/tech/scptxchg/export.htm).  This
script will convert the data found in an SPSS Viewer window into Excel with one SPSS
Viewer table per Excel sheet.
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